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 We study the convergence of recursive least-squares learning
 schemes in economic environments in which there is private infor-
 mation. The presence of private information leads to the presence of
 hidden state variables from the viewpoint of particular agents. By
 applying theorems of Ljung, we extend some of our earlier results to
 characterize conditions under which a system governed by least-
 squares learning will eventually converge to a rational expectations
 equilibrium. We apply insights from the learning results to formu-
 late and compute the equilibrium of a version of Townsend's model.

 I. Introduction

 This paper studies the convergence of least-squares learning mech-

 anisms to limited information rational expectations equilibria. We

 study linear models in which agents have access to information on

 only a subset of the relevant state variables. The models cover situa-

 tions in which there are distinct groups of differentially informed

 agents. We proceed by applying to our system the recently developed

 We received very extensive and useful comments on an earlier draft of this paper
 from Margaret Bray, Michele Boldrin, Robert E. Lucas,Jr., and an anonymous referee.
 We also thank Lawrence Christiano, Ramon Marimon, and Will Roberds for helpful
 discussions of issues related to this paper. Sargent's research was supported by a grant
 from the National Science Foundation to the University of Minnesota (SES-8508935).

 [Journal of Political Economy, 1989, vol. 97, no. 61
 ? 1989 by The University of Chicago. All rights reserved. 0022-3808/89/9706-0007$01.50

 1306

This content downloaded from 
�������������84.89.157.41 on Wed, 30 Sep 2020 11:35:48 UTC�������������� 

All use subject to https://about.jstor.org/terms



 LEAST-SQUARES LEARNING L'O7

 "ordinary differential equations" approach of Ljung (1977).' This

 involves extending some earlier results of Marcet and Sargent (1989)

 to handle situations with private information and hidden state vari-

 ables. We give sufficient conditions for almost sure convergence to a

 limited information rational expectations equilibrium and describe

 necessary conditions for local convergence.

 Our conditions for convergence restrict an operator that maps a set

 of perceived vector autoregressions into a set of actual (or optimal)

 vector autoregressions. This operator is determined by the particular

 economic model in hand. The operator is related to but distinct from

 the operator governing convergence in the class of models studied in

 Marcet and Sargent (1989). The presence of private information and
 hidden state variables alters the relevant operator, in essence by com-

 posing the key operator in Marcet and Sargent with another "pro-

 jection" operator.

 Section II describes a class of models with limited and private infor-

 mation and asserts a convergence proposition for least-squares learn-

 ing mechanisms.2 Section III applies our framework in order to for-
 mulate and compute the equilibrium of a version of Townsend's

 (1983) model. In his model, firms with private information face signal

 extraction problems involving endogenous variables whose laws of

 motion are themselves determined by the solutions of those signal

 extraction problems. Models with structures like Townsend's (see also

 Lucas 1975) have proved to be difficult to formulate in ways that

 facilitate computing their equilibria. The purpose of Section III is to

 show how our results on convergence of least-squares learning can be

 used to help in formulating these models and to suggest alternative

 tractable algorithms for computing their equilibria.

 II. The Model and a Convergence Proposition

 There is an n X 1 state vector z,. Let z,, be any n, X 1 vector z,, = eiz,
 where 1 cni ' 71 and ei are selector matrices for i = a, b, c, and d.

 ' The ordinary differential equations approach is described and applied by LjuLng
 and Sdderstr6m (1983) and Goodwin and Sin (1984). See also Kushner and Clark
 (1978). Woodf'ord (1986) applies some of' LjuLng's methods to a nonlinear dynamic
 model.

 2 Bray's (1982) model and a version of' Frydman's (1982) model are members of' the
 class of' models described in Sec. II. Analyses of' these models are contained in Marcet
 and Sargent (I 987). Papers about least-squares learning in models without hidden state
 variables include Bray and Savin (1986) and Fourgeauid, Gourieroux, and Pradel
 (1986). Marcet and Sargent (1988) present an informal interpretative survey of' the
 literature on least-squares learning.

 ' The ability to compute the equilibria of' these models rapidly would contribute to
 their being econometrically tractable. It is probably true that the technical difficulties in
 computing the equilibria of' models of' the style of' Lucas (1975) and Townsend (1983)
 have impeded their adoption by other researchers.
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 1308 JOURNAL OF POLITICAL ECONOMY

 There are two types of agents, types a and b, who observe z, = e,Cz,
 and Zbt = ebzt, respectively, possibly distinct subvectors of zt. Agents of
 type want to predict future values of possibly distinct subvectors Zk(,)
 = ek( ,)Z,, where k(a) = c and k(b) = d, and use the current observation
 on z( , in order to form those predictions. The selection matrices e, eb,
 en, and el are constant through time. There is an economic model that

 maps beliefs of agents a and b into actual outcomes in the following
 way. If the beliefs of agents of type a and type b were given by the
 time-invariant rules

 E*(z, lz,(t- I) = IPZat- 1,

 E*(zdt |Zl- l) = bZbt,- I for all t,

 then the actual law of motion zt would be given by

 Zt = T(O)z,- I + V(P)Et, (2)

 where Et is an m x 1 vector white noise with EEtE' = Q.,(I = (Isa, ib),
 and T and V are operators that map matrices into matrices conform-
 able to the objects they operate on. A particular economic model will
 determine the operators T and V. In the next section, we describe a
 version of Townsend's model and display the operators T and V that
 are associated with it.

 We are interested in regions of the parameter space P for which (2)
 implies that z, is a covariance stationary stochastic process. For this
 purpose, we define the following set:

 D, =P I{the operators T(13) and V(Pi) are

 well defined, and the eigenvalues of T(I)

 are less than unity in modulus}.

 For P E D,, (2) generates a covariance stationary stochastic process,
 for which the second-moment matrix Eztzt is well defined. The matrix
 Mz(P) = Ez,z satisfies the discrete Lyapunov equation

 Mz(P) = T(P)Mz(P)T(P)' + V(jB)QV(P)'. (3)

 A variety of algorithms are available for solving (3) for Mz(B). We use
 the following notation for some submatrices of Ezz,':

 Mz (PB) =Eztz', / a, b,

 MZj z(P) = Ez1zr, j a, b.

 In general, each of these moment matrices is a function of r.

 If the actual law of motion for z1 is (2), then it can be calculated that

 the linear least-squares projection of Zk(_j)t on z.,_ I is given by

 E(Z(zL ;s >Iz E.t O = S (BP z + . (4)
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 LEAST-SQUARES LEARNING 1309

 where

 S,(f) = ek(,)T(P)[Mz(I)-'Mzjz()]', for] = a, b. (5)

 The operators S,( a) map the perceptions If = (W, ib) into the pro-

 jection coefficients (S(,(P), Sb(P)). Let us define S(W) = (S,(P), Sb(1)).
 We now advance the following definition.

 DEFINITION. A rational expectations equilibrium with asymmetric

 private information is a matrix I (it, Iub) that satisfies " S(IB).
 Thus a rational expectations equilibrium is a fixed point of the

 mapping S. Let us denote such an equilibrium I _. Notice that this
 concept of a rational expectations equilibrium is relative to the fixed

 information sets zt- I and Zb- I specified by the model builder.

 We now describe the model of learning. ForJ = a, b, we let {?ltf} be a
 positive, nondecreasing sequence with limt. cyt = 1. Beliefs of
 agents of type j (= a, b) evolve according to the following scheme.

 Define Pt and Rft by

 jt = Fist- l + ( I' )R7. I{Zjt-2[Zk(j)t-I - Zt-2] },

 R = Rjl + ( c - )(z1t lt 1 Rf l )- (6a)

 Let D2J C D1, C RlkjX(fl1 ) ,j a, b. The algorithm generating beliefs at
 t is then

 (Ii,,, R_ pit, R1.) if (13,t, R ,t) & (6b
 some value in D2j if( J., R,)5tD11.

 Two distinct sets, DI, and DC2 , are used in defining the projection
 facility in order to properly invoke some technical arguments made
 by Ljung (1977). In practice, we shall be free to choose D21 to be a set

 contained within but arbitrarily close to DI1. In the applications below,
 we shall always think of D2J as being arbitrarily close to D1J and shall
 thus focus our attention on specification of the set DI1.4

 If D2, = DI - R1k,)X(1/), then the "projection facility" on the sec-
 ond branch of (6b) is never invoked, and with suitable initial condi-

 tions, (6a)-(6b) simply become a recursive version of weighted least
 squares:

 In the special case that {a;,} = {1}, the formula above is just ordinary

 ^ Ljung and S6derstr6m (1983) frequently proceed in this way, specifying a pro-
 jection facility in terms of' a single set.
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 1310 JOURNAL OF POLITICAL ECONOMY

 least squares. In cases in which a nontrivial projection facility is speci-

 fied by choosing DI1 to be a proper subset of IR ?X(Ti), it is natural to
 set "some point in D2 " in (6b) equal to (I?t' R.,,), where t' is the last
 time that (Pi,, R11) E D21. With D21 set arbitrarily close to DI, (6) then
 amounts to least squares adjusted sequentially to ignore observations

 that threaten to drive (,( R-,) outside of the set DI_. When the se-
 quence {cyt} is chosen to be strictly increasing, it leads to adjusting the
 least-squares algorithm to weight more recent observations more

 heavily. (The restriction that limbo c=, 1 restricts the eventual rate

 of forgetting in a way sufficient to permit convergence of j within

 the system to be studied below.)

 The sets D1J and D21 will play important roles in one part of the
 proposition to be stated below. One role of the sets DI1 and D21 can be
 to force the learning algorithm to remain within the set D, defined
 above.

 We assume that when agents are learning according to (6), the

 actual law of motion is determined by substituting P, = (IL, PO) from
 (6) for IP on the right side of (2):

 Z. = T(Pt 1)ztI + V(Pt I)E,. (7)

 The system that we want to study is (6) and (7).

 Associated with the system of stochastic difference equations (6)

 and (7) is the following ordinary differential equation:

 I [R'M (~)[SbPj~ -8 dt R(, MR (P) - R (,8) dt -Rf Rl'MZb(I [Sb(I9) -ah~] (8
 [Rb L Mz,(P) - Rb

 Defining R = (R,1 R,,), we can represent (8) in the vector form

 d (col(I)) -g(P, R),

 where col(d) is a vector obtained by stacking columns of R on top of
 each other, and col(R) is a vector obtained by stacking columns of R
 on top of each other. For the purpose of studying the linear approxi-

 mations that govern the local behavior of (8), we define

 _d h (P R) dgolPco R R).

 Let {(P(t), )},e1, denote the trajectories of (8). We define the
 set DA to be the domain of attraction of the fixed point ( R) of (8),
 which we assume to be unique. That is, DA consists of the set of (P(O),
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 LEAST-SQUARES LEARNING LAL 1

 R(O)) such that when (0(0), R(O)) C DA, then (8) implies lima ((t),
 R(t)) = (W /, R/).

 We use a set of six assumptions about system (6)-(7), which are
 described in the Appendix. Among these, the first five are in the

 nature of regularity conditions that are easy to verify and are typically
 satisfied for the kinds of applications we have encountered. It bears

 mentioning that assumption 1, which states that S has a unique fixed
 point, could be relaxed to permit multiple fixed points. Then our

 propositions would transform to statements about each fixed point of

 Assumption 6 can be considerably more difficult to verify than 1-5.

 Assumption 6 is used in only the first part of our four-part proposi-
 tion. For this first part, we also use the following assumption.

 ASSUMPTION 7. For J = a, b, assume that D2J is closed, that DIJ is
 open and bounded, and that 0 C D, for all (0,r, R,, Ihb Rb) C DIa X
 Dlb. Assume that the trajectories of (8) with initial conditions (0,(O),
 Ra(O), Pb(O), Rb(O)) E D2 x D2X never leave a closed subset of DI, X
 Dlb.

 We now state proposition 1.

 PROPOSITION 1. Assume that (a,, R,, z,) are determined by (6) and
 (7). Assume that assumptions 1-5 are satisfied.

 i) Assume also that assumptions 6 and 7 are satisfied and that DI , x
 Dlb C DA, where DA is the domain of attraction of (a/, R/) in (8).
 Then P [0, W] 1.

 ii) Let 7 of, and assume that M, (0) is positive definite for j = a, b.
 Then P[, -r] 0.

 iii) If h(R1, Wt) has one or more eigenvalues with strictly positive real
 part, then P[, -* W] = 0.

 iv) h(1t, R/) has (n, )2 + (nb)2 repeated eigenvalues of negative one.
 The remaining eigenvalues are the same as those of the following
 derivative matrix:

 (a 0)col[Sa(I) - ]1
 V anJCOI[Sb(P) - Oh]d 13"=13,

 This concludes the proposition.5

 Statement i asserts that sufficient conditions for It, -f W almost
 surely as t -x are that the set DI, x Dlb generated in the projection
 facility be contained in DA and that at (and close to) the boundary of

 DI, X Dlb, the differential equation (8) have trajectories that point

 5 Proposition 1 can be proved by retracing the steps used to prove propositions 1, 2,
 and 3 of Marcet and Sargent (in press). We do not present that proof here.
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 1312 JOURNAL OF POLITICAL ECONOMY

 toward the interior of Dil, X DIb. Statement ii asserts that the only
 possible limit points of the learning scheme are rational expectations
 equilibria. Statement iii asserts sufficient conditions for nonconver-

 gence of the learning scheme. Statement iv implies that everything

 can be learned about the local stability of the learning scheme by

 studying the differential equation

 dt ( be SI, (P) - he (b"

 Proposition 1 can be used to study convergence of least-squares

 learning in the context of a variety of models that have been pro-

 posed. Marcet and Sargent (1987, 1988) describe applications for

 several such models. In terms of the literature on least-squares learn-

 ing, we find proposition 1 of use for several purposes. First, it some-

 times makes it possible to strengthen results that have been obtained

 by other means (see, e.g., the analysis of Bray's [1982] model in Mar-

 cet and Sargent [1987]). Second, application of the proposition can

 markedly shorten the length of arguments needed to establish con-

 vergence results (again see Marcet and Sargent [1987]). Third, the

 proposition permits a unified interpretation in terms of the proper-

 ties of the S(P) operator for the apparently disparate conditions for
 convergence that previous papers have discovered.

 In the remainder of this paper we focus on another way that propo-

 sition 1 can be used, namely, to guide the computation of a rational
 expectations equilibrium. As a laboratory for our study, we use a

 model of Townsend for which the equilibrium has been difficult to

 formulate and to compute by means other than those suggested by

 proposition 1.

 III. A Model of Townsend

 This section uses an algorithm suggested by proposition 1 to compute

 the equilibrium of a version of Townsend's (1983) model. We adopt

 his formulation of the demand and cost structure but reformulate his

 way of modeling firms' forecasting problems. Townsend formulates

 that forecasting problem by imputing to firms more understanding of

 the economic structure than we do. He models each firm as knowing

 that the mean beliefs of firms in other industries are hidden state

 variables about whose laws of motion the firm itself forms beliefs. We

 model the firm as forecasting its own price by using a vector autore-

 gression that includes its own price, the price of the other industry,

 and all other variables in its information set. This transformation of

 Townsend's "forecasting the forecasts of others" into the problem of
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 LEAST-SQUARES LEARNING 1313

 "forecasting output price using vector autoregressions" turns out to

 be a reformulation that leaves the economic content of his equilib-

 rium concept unaltered. We shall return to this point later in this

 section. We now turn to describing our version of Townsend's model.

 There are two industries, indexed by j = a, b, consisting of N
 identical firms. The representative firm in industry j has objective

 function

 E)E bt Pj[fkjt - wujk,, - (2)(k ,+I - k/,)21 d > 0, 0 < b < 1, (10)

 where

 p, = -A/Kj, + uP, A > 0,() > 0, (11)
 K, = NkM, N > 0, (12)

 Uj, = 0, + Ej1, (13)

 Ot= p0t-I + V,, p < 1, (14)

 where (E, zl,) are mutually orthogonal white noises, pf, is the price of
 output in industry j at t, k,, is the capital stock of the representative

 firm, f. k,, is the firm's output, uJ, is a random shock to demand, 0, is a
 hidden conmmion component to the demand in industries a and b, and
 w1, is a serially uncorrelated rental rate on capital in industry j, as-

 sumed orthogonal to wi, for i 4 j and to all components of I-,, v,. We
 have omitted constant terms. Firms in industry a observe the history

 {P(, K,, pi); s ' t}. Firms in industry b observe the history {pi,, Kilo, pa;
 S t. The structure of demand described by (13)-(14) creates a

 situation in which price in the other market is a useful signal about
 future movements in price in one's own market. The only relation-

 ship between the two industries is this informational link.

 We assume that firms in each industry solve their optimization

 problem by positing that the variables in their information sets follow

 a vector autoregression. r They use this vector autoregression to solve

 the "prediction part" of the linear-quadratic control problem induced

 by (I(0).; In this section, we assume for convenience that firms in each

 industry fit a first-order vector autoregression to their observables.7

 ti Because ot the linear-(quadratic structure of this problem, it separates into "control
 and "prediction" parts (see Sargent 1987, chap. 14).

 [ This is a restriction and causes the e(luilit)rium that we compute to deviate from the
 one that Iownsenld wotild recover as he drives toward infinity in his calculations in sec.
 8. B1v modeling agents ats fitting tith-order vector autoregressions and driving n to
 infinity, we woolul recover precisely Townsend's j = x tloel. We shall return to this
 point at the end of this se(ction.
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 1314 JOURNAL OF POLITICAL ECONOMY

 We now show how our version of Townsend's model can be
 mapped into the setup of Section II. The state and noise of the model
 at t are specified as

 Kat" Eat U~~~l,6~ht
 z, = Kb , =Et Vt

 Ubt Wat, I

 LOf Wbf- I

 Firms in industryj behave competitively. To maximize (10), firm
 needs to forecast p,. We set

 [Kat 1 Kbtl
 Zat = Zt = Uat 'Zt = Zdt = Ubt

 PhlPat]

 Thus firm a observes both Kt and pat (because pat is a linear combina-
 tion of K,, and u,,,), but only Pbi. The situation is reversed in industry b.

 Note that

 Ka[t
 Ka t 1 0 0 0 0 Uat
 Uat 0 1 0 0 0 Kbt,
 Pbt 1 0 0 - Af 1 0] Ubt

 Ot -

 which defines e, and eh via Zt = eazt and Zbt = ehZt. Note that pat =
 Caz, and Pbt = ChZht, where c, = Cb = [-Af 1 0].

 The perceived law of motion of firm j is

 Z. = jZjt,,- + nb', (15)

 where mt is a vector white noise and i is a 3 x 3 matrix. The firm uses
 the perceived law of motion (15) to solve its Euler equation for a
 decision rule. Following Townsend and noting that the roots of the
 polynomial [1 + (1 + b- ')L + b- 'L2] are (1, b- 1), we can represent
 the Euler equation for firm j as

 kt + I= k1t + d'-f >3 b1Etpjt+1+ - - ldzwt. (16)
 i=o

 Using the perceived law of motion (15) to evaluate the expectations
 on the right side of (16) gives (see Sargent 1987)

 kt+I = kit + d- 1f(b I,) lejzt -d- bWo
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 LEAST-SQUARES LEARNING 1315

 which simplifies to

 kjt+= kkt + d-1fbcjI1[I - b,1-1ezt-d-1wjt. (17)

 Multiplying both sides of (17) by N and using (12) gives

 Kjt+= Kjt + Nd-1fbcjI([I - b,9]-lejzt - d-'Nwjt. (18)

 Equations (15) and (18) permit us to define the mapping T(IP) in the
 setup of Section II. When the perceived laws of motion are given by

 ia and fib in (15), then the actual law of motion for zt is given by

 Kat -T II (0j,) T12(,), T13(0,(), T14 (P, 0 ~Kt I
 Uat 0, 0, 0, 0, P Uat-1

 Kbt T21(0b), T22(0b), T23(0b), T24(Ib), 0 Kbt-I
 Ubt 0, 0, 0, 0, p bt- I

 (19)

 0 , O. O. -d- IN, 0 eat
 i1, 0, I1, 0, 0 ENt

 + 0, 0, 0, 0, -d- N, vt
 O, 0, 1, 0, 0 Wat-

 O. O. 1,I, O. 0 J LWbt- I

 where the mappings Thk(pl) are given by (18). Equation (19) can be
 written as

 Zt = T(O3)zt- 1 + V(Pl)Et, (20)

 which is equation (2). This model is a special case of the model studied
 in Section II.

 Because this is a big system-there are 18 free parameters in 1, and
 fib-we have not calculated analytically the eigenvalues associated
 with the right side of (9), which would govern local stability of a least-

 squares learning mechanism. For a system of this size, that is an im-

 possible task. Instead, a numerical analysis of the differential equa-

 tion (9) must be resorted to. To accomplish this, one needs formulas

 for T(Pil) and for the terms M,,,(P) -Mz, (I), which compose Sj(p). We
 use equation (18) and the solution of the discrete Lyapunov equation
 (3) to compute these.

 In the context of a model as complicated as Townsend's, proposi-
 tion 1 carries insights about alternative ways of computing a rational
 expectations equilibrium. We illustrate these by describing some cal-

 culations for Townsend's model. For several sets of parameter values,
 we computed a rational expectations equilibrium by numerically solv-
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 1316 JOURNAL OF POLITICAL ECONOMY

 ing the "small" ordinary differential equation (9), which we represent

 here as

 d 6=S(6)- (21)

 We used a version of Euler's method to solve (21). In particular, we

 computed {I,} by solving

 Wt = Pit - + y[S (Pt - 1) - Pt - I ] (22)

 for a small value of 'y > 0. We then used a finite difference method to
 evaluate the derivative matrix of the right side of (21) at the fixed

 point P/1 of (21) and computed the eigenvalues of this matrix.8 For
 each set of parameter values that we studied, our calculations indicate

 that the real parts of all eigenvalues are negative, implying that for

 these parameter values, a least-squares learning scheme would be

 locally stable.

 Tables 1-5 report the results of our computations for Townsend's

 model with five settings of parameter values. common for all five

 tables are the following parameter values: N = A = f = b = = 1

 for j = a, b and E&/ = 2, Ew, E=Wb,. Remaining parameters are
 described in the tables. The parameter settings induce symmetry be-

 tween the two industries, so that Silf = P~f = Sa,(P,/, 0itbf) = S b(t,, 13bl 1)
 We report All as well as T(P1). The tables also report the eigenvalues
 of the 18 x 18 matrix

 - Col[S(,) - s] (23)

 For each set of parameter values, 12 eigenvalues of At equal - 1. The

 remaining six are always real and negative, so that the conditions for

 local stability of the learning mechanisms are satisfied.

 The tables reveal that the coefficient on KJ, - in the equilibrium law
 of motion for KJ, becomes large' when either (a) var(wp,) is small (com-
 pare table 1 with 2 and table 3 with 4), (b) p is large (compare table 1
 with 3 and table 2 with 4), or (c) d is large (compare table 2 with 5).

 Informally, the smaller is the variance of wj,, the less the variation of K
 comes from an idiosyncratic white noise, making K, more highly auto-
 correlated. Also, if p is large, there occurs more persistence in the
 demand shock, making K, more correlated with K,_ ,. Notice that the

 ' We imposed accuracy levels of five significant digits in determining whether f, had
 converge(1 to S(IB,) and in computing successive difference quotients used to approxi-

 mate the derivative of S(P,).
 'The coefficient on K,, -- in the equilibrium law of motion for K,, is the element (1, 1)

 of fr1 and the elements (1, 1) and (3, 3) of T(P).
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 TABLE 1

 EQUILIBRIUM OF TOWNSEND'S MODEL

 var(w,,) = 1, p = .8, d = 1

 PI at the Fixed Point of S

 .44556 .21912 .06645
 .10814 .45284 .12688

 .09530 .11556 .22658

 T-Mapping

 .44557 .21913 - .06645 .06645 .00000
 .00000 .00000 .00000 .(0000 .80000

 - .06645 .06645 .44557 .21913 .00000
 .00000 .00000 .00000 .00000 .80000

 .00000 .00000 .00000 .00000 .80000

 Eigenvalues of Ak

 -5.297 -4.748 - 3.936 - 2.807 -3.801 -2.987 -1.000

 NOTE.

 z, = [K,,, u,,, Kb,, Ub,, et,.

 zt = [K,,, U,,, ph,],

 Zbt = [Kbt, Ubt, P,11]

 TABLE 2

 EQUILIBRIUM OF TOWNSEND'S MODEL

 var(wit) = .1, p = .8, d = 1

 at the Fixed Point of S

 .61851 .17494 .11070
 .39798 .34513 .20993
 .04866 .10034 .15335

 7'-Mapping

 .61852 .17494 -.11070 .11070 ,.00000
 .00000 .00000 .00000 .00000 .80000

 -.11070 .11070 .61852 .17494 .00000
 .00000 .00000 .00000 .00000 .80000
 .00000 .00000 .00000 .00000 .80000

 Eigenvalues of At

 -16.336 -11.400 - 3.280 -2.939 - 2.528 -2.456 -1.000

 NOTE.

 zt = [K,,t, U,,, Kb,, Ubt, st]',

 Zat = [Ka,,, Ut,, Pbt].

 zbt = [Kb,, Ubt, P,1,]
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 TABLE 3

 EQUILIBRIUM OF TOWNSEND'S MODEL

 var(wj,) = 1, p = .95, d = 1

 01 at the Fixed Point of S

 .49988 .27533 .05471
 .19088 .53446 .09758
 .11550 .12323 .22575

 T-Mapping

 .49989 .27534 - .05472 .05472 .00000
 .00000 .00000 .00000 .00000 .95000

 - .05472 .05472 .49989 .27534 .00000
 .00000 .00000 .00000 .00000 .95000

 .00000 .00000 .00000 .00000 .95000

 Eigenvalues of At

 -8.352 -7.804 - 2.816 - 3.026 - 3.738 -3.795 -1.000

 NOTE.

 Z. = [Kat, ual, Kbt, Uht, Otl',

 zut = [K,t, uat, p,,,

 Zbt = [Kbt, Ubt, Pa]

 TABLE 4

 EQUILIBRIUM OF TOWNSEND'S MODEL

 var(wj,) = .1, p = .95, d = 1

 P,; at the Fixed Point of S

 .72979 .19071 .07714
 .54594 .35923 .13792
 .08717 .06766 .14128

 T-Mapping

 .72979 .19071 - .07714 .07714 .00000
 .00000 .00000 .00000 .00000 .95000

 - .07714 .07714 .72979 .19071 .00000
 .00000 .00000 .00000 .00000 .95000
 .00000 .00000 .00000 .00000 .95000

 Eigenvalues of At

 -63.531 -42.413 -3.291 -3.171 -2.712 -2.417 -1.000

 NOTE.

 zt = [Kt, uat, Kb,, Ubt, Ot],

 z, = [Kat, Uat, Pb]

 Zbt = [Kbt, Ubt, pat]-
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 TABLE 5

 EQUILIBRIUM OF TOWNSEND'S MODEL

 var(wj,) = . 1, p = .8, d = 2

 (a at the Fixed Point of S

 .67827 .12927 .08381
 .36737 .35693 .21510
 .05317 .12995 .20676

 T-Mapping

 .67828 .12927 - .08382 .08382 .00000
 .00000 .00000 .00000 .00000 .80000

 - .08382 .08382 .67828 .12927 .00000
 .00000 .00000 .00000 .00000 .80000

 .00000 .00000 .00000 .00000 .80000

 Eigenvalues of At

 -9.861 - 7.471 - 2.688 - 2.382 -1.921 - 1.940 -1.000

 NOTE.

 z = [Kau, Ua,, Kb,, Ubt, Ot]

 Zau = [Kai, Uut, Pbt],

 Zb= [Kb,, Ubt, Pau

 stronger is the dependence of Kjt on Kjt- l, the larger are the eigen-
 values in absolute value.

 Notice that

 a co S() = A + I, (24)

 where I is the identity matrix. Equation (24) implies that X is an

 eigenvalue of Al iff (X + 1) is an eigenvalue of the left side of (24). For

 the calculations reported in tables 1-5, several eigenvalues of Al + I

 are larger than one in absolute value. Therefore, S is not a contraction

 mapping (even locally about of). For such parameter values, itera-
 tions of the kind pursued by Townsend (1983) and Evans (1985),

 which set y = 1 in (21), would not converge for our model. More

 generally, in applications of Euler's method to (21) in order to find of,
 a good choice of y depends on the eigenvalues of A. Sometimes one
 accelerates convergence by choosing a large y. However, when the
 eigenvalues of Al are large in absolute value, unless we use a very small

 y, the sequence fit starts to oscillate explosively. In computing tables
 1-5, we varied the choice of y. In table 1, y = .15 worked, while for
 table 4 we needed to use a y = .01.10

 10 With such settings of -y, we started Euler's method at many different initial condi-
 tions. Provided that fi was required to stay in the set D, = $I T(p) has all eigenvalues
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 1 q2O JOURNAL OF POLITICAL ECONOMY

 We close this section by returning to the point that by positing that
 agents fit only first-order vector autoregressions, we have restricted
 agents' perceived laws of motion relative to what Townsend had in
 mind (when he was drivingj toward infinity in his sec. 8 calculations).
 The first-order vector autoregressions are too short in the sense that
 in equilibrium, the prediction errors from these vector autoregres-
 sions will not be orthogonal to information lagged two or more pe-
 riods. In effect, Townsend had in mind permitting agents to run
 infinite-order vector autoregressions, so that agents are conditioning

 on infinite histories of zet and zi,. There are two ways that one can
 think of modifying the present setup to capture the idea that agents
 condition on longer histories than we have permitted them to. The
 first is simply to let agents fit nth-order vector autoregressions and to
 think of increasing n toward infinity.'' The second is to model agents
 as making forecasts by fitting finite-order vector autoregressive, mov-
 ing average (ARMA) processes. We conjecture that by adopting this
 second path, one could adapt the framework of this paper to compute
 exactly the equilibrium that Townsend would recover by driving j
 toward infinity. We also suspect that by specifying a recursive es-
 timator for learning the vector ARMA process (see Ljung and Sdder-
 strom 1983), a modified version of proposition 1 of this paper would

 apply and would support Townsend's equilibrium as a limit point.

 IV. Extensions

 From this paper, there naturally emerge several alternative methods
 for computing a rational expectations equilibrium for a linear model
 in which agents have limited information. Solving the differential
 equation (9) numerically is one such method since the limit point, if
 there is one, is a rational expectations equilibrium. Another method
 consists of simulating the least-squares learning model (6)-(7). Once
 the mappings T and V are known, the model with learning is very easy
 to simulate since these equations have a recursive structure. The
 method of simulating the learning model has the disadvantage that it
 requires computing a realization of a pseudo random process for a
 sufficiently long realization to assure convergence. In practice, it can
 be difficult to assure that a realization of the process has indeed con-
 verged. Against this difficulty is balanced the reward that simulations

 less than one}, 0, always converged to the sane rational expectations eqnilibri-mL11.
 Consequently, we suspect that, for Townsend's model, (9) is globally stable.

 ' l For reasons related to the infinite regress problems of Townsend ( 1 983), it can be
 shown that there is no finite-order vector antoregression that is long enough to make
 the prediction errors orthogonal to the Hilbert space generated by the infinite past
 history of agents' information.

This content downloaded from 
�������������84.89.157.41 on Wed, 30 Sep 2020 11:35:48 UTC�������������� 

All use subject to https://about.jstor.org/terms



 LEAST-SQUARES LEARNING 1321

 can be easier to implement than computing solutions to (9) because

 simulations can be executed without finding the moment matrices of

 Zt. Further, by expressing P, as a version of the Kalman filter, it is
 possible to compute De, without inverting any matrix, so that the com-
 puter can perform each iteration very efficiently. 2

 Appendix

 We state six assumptions that we make about system (6)-(7).
 AssuMPTION 1. The operator S has a unique fixed point I3f = S(111) that

 satisfies B1 E Ds,
 AssuMPTION 2. For IiE D.,, T is twice differentiable and V has one deriva-

 tive.

 AssuMPTION 3. The covariance matrices Mz (li1) are nonsingular fb;rj= a,
 b.

 AssuMPTION 4. Forj a, b and for all I, ot, > 0; ot, is increasing in 1; ot, 1
 as t - so; and

 lim sup tI(t, - (,ti -II= Ki < o, j = a, b.

 AssuMPrION 5. The vector a, consists of m stationary random variables; e,
 is serially independent. Further, E eI Et < xc for all p > 1, all i = 1., m.

 AssuMPTION 6. There exists a subset l(, of the sample space with P(flo) =
 1, four random variables C,,(w), Cb(w), G(,(w), Gb(w), and a subsequence {I;(w)}
 for which

 zit,(wt) I< C,((w), j = a, b,

 |RP, () I < GI(w), j = a, b,
 for all w E Q() and all / = 1, 2, ....

 References

 Bray, Margaret M. "Learning, Estimation, and the Stability of Rational Ex-

 pectations."J. Econ. Theory 26 (April 1982): 3 18-39.
 Bray, Margaret M., and Savin, Nathan E. "Rational Expectations Equilibria,

 Learning, arid Model Specification." Econometrica 54 (September 1986):
 1129-60.

 Evans, George. "Expectational Stability and the Multiple Equilibria Problem
 in Linear Rational Expectations Models." Q.J.E. 100 (November 1985):
 12 17-33.

 Fourgeaud, Claude; Gourieroux, Christian; and Pradel, Jacqueline. "Learn-
 ing Procedures and Convergence to Rationality." Econometrica 54 (July
 1986): 845-68.

 Frydman, Roman. "Fowards an Understanding of Market Processes: Individ-

 12 Note that a simulation of the mIo(del un(ler learning has a chance of being superior
 to iterations on the differential equation only if agents do not have full information. In

 the full information case, only the mapping 7 needs to be known in order to use the
 first method since the relevant differentiall equation is simply ,B = T(,B) - ,B (see
 Marcet and Sargent, in press).

This content downloaded from 
�������������84.89.157.41 on Wed, 30 Sep 2020 11:35:48 UTC�������������� 

All use subject to https://about.jstor.org/terms



 1322 JOURNAL OF POLITICAL ECONOMY

 ual Expectations, Learning, and Convergence to Rational Expectations
 Equilibrium." A.E.R. 72 (September 1982): 652-68.

 Goodwin, Graham C., and Sin, Kwai Sang. Adaptive Filtering Prediction and
 Control. Englewood Cliffs, N.J.: Prentice-Hall, 1984.

 Kushner, Harold J., and Clark, Dean S. Stochastic Approximation Methods for
 Constrained and Unconstrained Systems. New York: Springer-Verlag, 1978.

 Ljung, Lennart. "Analysis of Recursive Stochastic Algorithms." IEEE Trans.
 Automatic Control AC-22 (August 1977): 551-75.

 Ljung, Lennart, and Soderstrom, Torsten. Theory and Practice of Recursive
 Identification. Cambridge, Mass.: MIT Press, 1983.

 Lucas, Robert E., Jr. "An Equilibrium Model of the Business Cycle."J.P.E. 83
 (December 1975): 1113-44.

 Marcet, Albert, and Sargent, Thomas J. "Convergence of Least Squares
 Learning in Environments with Hidden State Variables and Private Infor-
 mation." Manuscript. Pittsburgh: Carnegie-Mellon Univ., 1987.

 . "The Fate of Systems with 'Adaptive' Expectations." A.E.R. Papers
 and Proc. 78 (May 1988): 168-72.

 . "Convergence of Least Squares Learning Mechanisms in Self Refer-
 ential Linear Stochastic Models." J. Econ. Theory (in press).

 Sargent, Thomas J. Macroeconomic Theory. 2d ed. New York: Academic Press,
 1987.

 Townsend, Robert M. "Forecasting the Forecasts of Others."J.P.E. 91 (Au-
 gust 1983): 546-88.

 Woodford, Michael. "Learning to Believe in Sunspots." Working Paper no.
 86-16. New York: New York Univ., C. V. Starr Center, June 1986.

This content downloaded from 
�������������84.89.157.41 on Wed, 30 Sep 2020 11:35:48 UTC�������������� 

All use subject to https://about.jstor.org/terms


	Contents
	image 1
	image 2
	image 3
	image 4
	image 5
	image 6
	image 7
	image 8
	image 9
	image 10
	image 11
	image 12
	image 13
	image 14
	image 15
	image 16
	image 17

	Issue Table of Contents
	The Journal of Political Economy, Vol. 97, No. 6, Dec., 1989
	Volume Information [pp.  1505 - 1510]
	Front Matter
	Product Development and International Trade [pp.  1261 - 1283]
	Profit Regulation of Defense Contractors and Prizes for Innovation [pp.  1284 - 1305]
	Convergence of Least-Squares Learning in Environments with Hidden State Variables and Private Information [pp.  1306 - 1322]
	Currency and Credit in a Private Information Economy [pp.  1323 - 1344]
	Optimal Contracts under Costly State Falsification [pp.  1345 - 1363]
	Cost of Business Cycles with Indivisibilities and Liquidity Constraints [pp.  1364 - 1383]
	Rationing and Rent Dissipation in the Presence of Heterogeneous Individuals [pp.  1384 - 1394]
	Why Democracies Produce Efficient Results [pp.  1395 - 1424]
	Is Schooling "Mostly in the Genes"? Nature-Nurture Decomposition Using Data on Relatives [pp.  1425 - 1446]
	Giving with Impure Altruism: Applications to Charity and Ricardian Equivalence [pp.  1447 - 1458]
	Durable-Goods Monopoly with Discrete Demand [pp.  1459 - 1478]
	Unemployment Insurance and Short-Time Compensation: The Effects on Layoffs, Hours per Worker, and Wages [pp.  1479 - 1496]
	Comment
	Wasteful Commuting Again [pp.  1497 - 1504]

	Back Matter



