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We study the effect on the growth of an economy of alternative financing 
opportunities in a stochastic growth model with incentive constraints. Eflicient 
accumulation mechanisms are designed and computed for economies that differ in 
their incentive structure. We show that when borrowing is subject to information 
constraints, there is a computable efficient transfer mechanism that does not affect 
capital accumulation and investment patterns, even though consumption patterns 
and the distribution of wealth are affected. In contrast, enforcement constraints can 
severely reduce the outside financing opportunities and affect investment patters 
and economic growth. We adapt numerical algorithms for obtaining numerical 
solutions of these models. Journal of Economic Literature classification Nos. C63, 
(33, D82, E22, F15, F21, G32, 040. 0 1992 Academic Press. 1nc. 

1. INTRODUCTION 

Our aim is to study the effect that alternative financing opportunities 
may have on economic growth. To this purpose, we study different 
institutional and informational environments and we analyze the effects on 
growth, investment, consumption, and welfare of optimal mechanisms 
under different incentive constraints. We abstract from other factors that 
can affect growth and that are the subject of analysis in the expanding 
growth literature. 

* A previous version of this paper was circulated under the title ‘Computing Efficient 
Accumulation Mechanisms for Economies with Alternative Communication and Commitment 
Technologies.” We are grateful to Javier Diaz-Gimenez, Edward Prescott, Victor Rios-Rull, 
Thomas Sargent, and Stanley Zin for useful comments and the DGCYT for tinancial support. 
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Standard stochastic growth models, in which a single agent must solve 
an intertemporal optimization problem-see, for example, Brock and 
Mirman [9]-can be interpreted as displaying and extreme form of lack of 
both commitment and communication. Under this interpretation, all 
investment must be self-financed and smoothing of consumption must take 
the form of self-insurance through the capital stock, which is the only 
available asset. Alternatively, an Arrow-Debreu stochastic growth model 
with many consumers (or countries) and firms (see, for example, 
Marimon [27]) assumes perfect capital markets based on the equally 
extreme assumptions of the existence of both complete and costless 
commitment and communication technologies. As a consequence of these 
assumptions borrowing and lending by project managers at the market 
interest rate are unrestricted, idiosyncratic risks are smoothed out through 
costless pooling, and, furthermore, agents never break their promises. In 
contrast with these assumptions of perfect markets, the historical 
experience of most economies is full of examples of credit constraints, 
partial forms of insurance, and reneged contracts. For example, investors 
might not be able to monitor all investments and agents might default on 
their promises. 

The fact that the equilibrium model abstracts from many institutional or 
contractual elements is, in principle, a welcome simplification. However, 
some of the predictions of these models are at odds with observed growth 
patterns. We conjecture that some of these differences between theory and 
observations can be explained if contractual and organizational elements 
are incorporated into the growth model.’ 

As examples of the differences between the predictions of the standard 
general equilibrium growth model and the historial experience of both 
domestic and international economies, consider the following features of 
standard general equilibrium growth models: (i) the way contracts (for 
example, debt contracts) are enforced on agents is the same, regardless of 
whether these agents are supposed to represent individual countries, or 
individual households; (ii) risk-averse agents smooth their consumption 
and, as a result, individual consumption fluctuations reflect aggregate 
fluctuations; (iii) the distribution of wealth has no effects on the process of 
capital accumulation, (iv) decreasing return technologies imply that 
countries (or entrepreneurs) with below average capital labor ratios absorb 
external financing and, therefore, capital flows from countries that are rich 

1 Of course we do not claim to be the first ones to think along these lines. To Adam 
Smith [36], for example, differences in social forms of organization were the central 
explanation underlying the divergent patterns of growth observed in different economies of his 
time, such as England and Spain. Similarly, many economic historians, notably North 
130, 311, have stressed the possible effect of the institutional and the legal environment on 
economic growth. 
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to countries that are poor; and (v) capital flows to countries (or industries) 
with positive idiosyncratic productivity shocks.’ 

In contrast, domestic and international evidence on cross-sectional 
consumption and investment patterns shows that (i) patterns of investment 
and consumption that clearly differ for domestic households and countries, 
and, for example, significant differences in the way that countries or 
households can write their debt contracts; (ii) consumption smoothing 
between countries is small, and certainly lower than across households in 
both high- and low-income areas; (iii) some negative correlation between 
income inequality and growth; (iv) a wide spectrum of borrowing patterns 
across low- and middle-income countries, and (v) finally, a high degree of 
self-financing in industrialized countries (see 4, 14, 24, 32, 39, 4143). Note 
that models of sustained growth also have severe difficulties in explaining 
these facts, in particular, the rich structure of capital flows. 

Since standard growth models have difficulties in accounting for the 
observed patterns of capital flows they do not provide the right frame- 
work to address issues such as the effect on economic growth of opening a 
closed economy to external financing, or the properties of the financial 
arrangements that should be implemented in this newly opened economies. 
In contrast, the model analyzed here provides a framework to analyze these 
issues, both qualitatively and quantitatively, and to account for some 
observed patterns of international capital flows. For example, in our model, 
the effect on growth of opening an economy to external financing depends 
on the country’s reputation, on the likelihood of its defaulting on its debt, 
and on the legal structure that determines who are the residual claimants 
in case of default. 

We analyze a model with two agents, one risk-neutral (the investor) and 
the other risk-averse (the manager) who owns the technology and decides 
how much to invest in physical capital3 There is a Cobb-Douglas 
technology for production and no disutility from labor as in Brock and 
Mirman’s stochastic growth model [9]; the main difference is that invest- 
ment is converted into new units of capital through a nonlinear technology 
that is affected by stochastic shocks. We analyze the behavior of the model 
under four different regimes (i) autarky, where the manager does not use 
external financing; (ii) external financing with full information and full 
enforcement of debt contracts; (iii) external financing with partial 

*Strictly speaking, (iii) is true when there exists one risk neutral consumer with an 
unbounded consumption set or when the country is atomless and there is no aggregate 
uncertainty. 

3 The principal-agent relationship can be interpreted literally or, following [lS], as 
representing one small risk-averse agent having access to outside perfect capital markets with 
a riskless security; we return to this point in Section 2. 
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information and perfect enforcement of contracts; and (iv) external financing 
with perfect information but partial enforcement of contracts. 

We demonstrate that these different communication-commitment 
technologies have large and very different effects on growth. The results 
indicate that limited enforcement can severely limit the ability of outside 
financing to enhance growth, although borrowing is still useful in order to 
smooth consumption against unforeseen shocks. On the other hand, 
limited information permits growth levels as high as with perfect 
information. In our computational experiments we show that the growth 
rate in the economy with partial information can be one percentage point 
higher than in the economy with partial enforcement. In this paper, we 
always refer to growth as the transitional state from a low initial capital 
stock to the steady state distribution of capital. 

This paper has a direct predecessor in Marimon [28]. There, it is shown 
that alternative mechanisms imply different wealth distributions and 
possible accumulation paths. Also, that in an economy with limited 
communication and enforcement, the loss of efficiency due to incentive 
constraints can be made arbitrarily small if the discount factor is close 
enough to one. It also relates to the more recent literature that follows 
Bewley’s [f&7) and Green’s [ 151 analysis of an exchange economy with a 
continuum of agents with idiosyncratic risks (see [2, 3, 16, 22, 34, 37, 383). 

There are two main analytical results in this paper. First, once we have 
characterized the set of efficient contracts for the environment with full 
information and full enforcement, we show how to construct an efficient 
mechanism for an environment with limited information and full 
enforcement recursively using the set of efficient contracts of the full 
information environment; we call this efficient mechanism the A-transfer 
mechanism. In the limited information environment, investors cannot 
monitor entrepreneur’s investment decisions and can only observe past 
capital stocks. The E--transfer mechanism, however, preserves the optimal 
investment policy of the full information environment. That is, in our 
context-with a risk-neutral agent-the entrepreneur can be induced to 
follow the optimal investment policy if his stream of consumption is made 
conditional on output-or capital-realizations, so that it looses the 
perfect insurance property of the optimal contract with full information 
and full enforcement. 

Second, in the environment with full information and limited 
enforcement, we assume that it is possible for the manager to take possession 
of the capital stock and switch to autarky; if he does so, he stays in the 
autarkic regime forever. Enforcement constraints, then, take the form of 
participation constraints in which the utility for the risk-averse agent (the 
manager) of staying in the contact is always at least as high as the utility 
from going to the autarkic regime. With these participation constraints, the 
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optimal contacting problem does not have a standard recursive structure 
suitable for dynamic programming techniques. We show, however, that this 
problem can be transformed into a saddle-point dynamic programming 
problem;4 this is crucial in making the model computable, since it 
guarantees that the solution is a time-invariant function of a few state 
variables. In particular, the optimal investment policy depends not only on 
the current capital stock and autocorrelated shock, as in the full enforcement 
environment, but also on a new reputationaZ state variable that summarizes 
the credit record of the manager. As a result, when, for example, the initial 
capital stock is relatively low, as to require an important inflow of outside 
financing, enforcement constraints are a severe limitation on this flow and 
the resulting optimal accumulation path can be fairly close to that of 
an economy with self-financing. Nevertheless, the consumption path is 
smoother than in the self-financing environment. Therefore, under limited 
enforcement external financing can be used to smooth out cyclical 
variations of output, but not to maintain a constant level of consumption 
along the growth path towards the steady state. 

We illustrate, quantify, and expand these analytical findings with our 
numerical analysis and results. We apply the parameterized expectation 
approach (PEA) developed by Marcet [25]. That is, we parametrize the 
conditional expectation of the optimality conditions with flexible functional 
forms, and we iterate on these expectations until they are the best 
prediction of the future in the series they generate. Some features of our 
application of PEA are novel. As described in [25], this algorithm is 
suitable for finding the steady state distribution of a model; however, using 
similar ideas to the ones found in [29] we can solve for the transitional 
growth path. Also, the participation constraints take the form of inequality 
constraints that involve conditional expectations and that are binding in 
some periods and non-binding in others. To our knowledge this is the first 
paper where a dynamic model with this type of constraints is solved.5 

The use of computational experiments is crucial in obtaining several of 
our results. This paper is, therefore, one example of how computations can 
be used for obtaining results that are in essence theoretical: they illustrate 
the behavior of the economy, allow us to make quantitative statements, 
and enrich the analysis. For example, the fact that growth under limited 

4 A full treatment of this result is included in 1261. 

’ Phelan and Townsend 1341 have computed sequentially efficient mechanisms for 
stationary economies with no capital accumulation. They follow the approach of linearizing 
the sequential constraints by means of lotteries over continuation payoffs. With this approach, 
they can solve for the efficient mechanism by solving a large number of linear programming 
problems. Our approach differs from theirs in that we do not linearize the problem and, by 
constructing I-transfer mechanisms, we can limit most computations to solving maximization 
problems without information constraints, 
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enforcement can be as slow as under autarky is a result from our 
computational experiments. 

The rest of the paper is organized as follows. Section 2 presents the 
model and the theoretical results under autarky and external financing with 
perfect information and perfect enforcement of contracts; these economies, 
with no incentive constraints, are used on a benchmark for the models 
with incentive constraints. Section 3 analyzes the model under private 
information and full enforcement; it defines the %-transfer mechanism and 
proves its optimality. Section 4 analyzes the model under partial enforce- 
ment and full information; it provides a recursive formulation of this time- 
inconsistent model. Section 5 describes the computational algorithm in 
more detail. Section 6 presents some numerical results. 

2. BENCHMARK ECONOMIES: SELF-FINANCING AND EXTERNAL FINANCING 
WITHOUT INCENTIVE CONSTRAINTS 

In all four environments analyzed in this paper some elements- 
preferences of the agents, exogenous shocks and technologies-remain con- 
stant. We have two agents: agent 1, who is risk averse and decides how 
much to invest, we refer to as the manager, agent 2, who is risk neutral, we 
refer to as the investor. The technology is described more precisely in 
Eqs. (1) and (2) below. The main difference with the usual stochastic 
models of capital accumulation is that the technology that converts units 
of investment into units of new capital is nonlinear and affected by 
productivity shocks. 

However, financing opportunities differ across environments. In this 
section we discuss the extreme cases of an autarkic solution and the model 
of external financing with full information and full enforcement. 

With full information and enforcement and given an initial capital stock 
k, and aggregate shock 8,, efficient transfer mechanisms are obtained 
as a solution to a dynamic principal-agent problem. An efficient growth 
mechanism, r, specifies state-contingent investment and transfer plans, 
r= {i,, rr}, and it is indexed by (A, k,, f3,), where 1~ R, is the weight 
assigned to the risk-averse agent in the planner’s problem 

subject to 

max( 1 - 6) E, f S’[Au(c,) + ( -r,)l 
1=0 I 

c, + i, - z, = f(k,) 

k, = dk,-, + Ai,- I ; 0,, 3,) 

c, 30, i,>O, k, given. 

(1) 
(2) 
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Here, u( .) represents the instantaneous utility function of the risk-averse 
manager, f( .) the production function, and g( .) the function that 
transforms investment goods into capital goods. The variable c, represents 
consumption of the manager; r, transfers from the investor to the manager 
or, alternatively, -r, can be interpreted as the consumption the risk 
neutral investor obtains for his services. We assume that both agents have 
the same discount factor. The exogenous stochastic shocks (0,, s,) affect the 
productivity of investment; where S, is an isiosyncratic i.i.d. shock, which, 
in the environment with limited information, is private information, and 8, 
is a first order autoregressive individual shock which is public information. 
Note that the investment technology is such that at the time the investment 
decision is made the realizations of the shocks are unknown. 

Assumptions. The following assumptions are made: (i) the utility 
function u( .) is strictly concave, twice differentiable and satisfies the Inada 
conditions: u’(c) + +oc, as c + 0, u’(c) + 0 as c + co; (ii) f is concave and 
differentiable; (iii) the exogenous stochastic processes (6,, s,) are stationary 
and mutually independent; (iv) d E [0, 11; (v) g( . ; 9, S) is differentiable and 
concave, with fixed range independent of (0, s); if i’> i, then the 
distribution of g(i’; ., .) (second order) stochastically dominates the 
distribution of g(i; ., .), and g(. ; 8, S) satisfies the Inada conditions 
described in (i), and (vi) there exists p > 0 and R such that, for all k> R, 
f’(k)</?, and, for all 0 and i, if E[g(i; ., .)ltI] > (1 -d)k, then 6-l >d + 
mgw ., 4 I ei. 

Remark. The above assumptions are relatively standard in the stochastic 
growth literature. The main exception is (v), which is introduced to 
guarantee that in a private information environment it is not possible ex 
post to detect investment decisions with probability one from observations 
on the capital stock and the serially correlated shock, thereby making the 
problem of monitoring investment in the private information economy 
interesting. Assumption (vi) guarantees that present discounted values are 
well defined and, as it can be seen, allows for long-run growth of the capital 
stock.6 Nevertheless, in this paper we concentrate our attention on the case 
j? < 1, where there is a stationary state and growth is a translational process 
towards the steady state, although our main results generalize to the case 
described by assumption (vi). 

2.1. The Environment with Self-Financing (AU) 

The self-financing (autarkic) solution for an economy with lack of 
communication and commitment is obtained from the above planner’s 
problem by having T, = 0, for all t, and solving for an optimal investment 

6 Jones and Manuelli [18] have similar assumptions in their growth model. 
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process {it}. In addition to (1) and (2) the autarkic problem (AU) has the 
following first order condition:’ 

u’(c,) = 6E, 
[ 

$y f (wn u’(c,+,+,,f.(k,+,+,)]. (3) 
f ?I=0 

Using standard arguments one can show the existence of a 
time-invariant investment policy function i”(k, O), a consumption policy 
function P(k, 0) and a value function V”(k, 0). 

2.2. The Environment with Full Information and Full Enforcement (PO) 

When both agents observe all shocks and contracts are perfectly 
enforceable, efficient contracts are solutions to the planner’s problem 
described at the beginning of this section. In addition to (1) and (2), the 
first order conditions are 

(4) 

u’(c,) = A-‘. (5) 

It follows that the policy functions (i*(& k, 0), c*(l, k, 19), z*(A., k, 0)) 
have some interesting properties. First, note that c*(& k, 0) = c(n). That is, 
the risk-averse agent is fully insured with a constant stream of consumption; 
which only depends on A. Second, the investment policy takes the form 
i*(A, k, 0) = i(k, 0). That is, accumulation paths are independent of the 
relative weights in the planner’s problem. This implies that growth is 
independent of the wealth distribution. Furthermore, if there is a steady 
state distribution of capital stocks, and the initial capital, k,, is low with 
respect to the steady state distribution, then the risk-averse manager 
borrows heavily in the initial periods in order to finance high investment 
levels. Finally, since the risk-neutral agent absorbs all the fluctuations, 
transfers depend on L and the current values of (k, 0). 

The optimal policies define an efficient transfer mechanism for this 
environment, r, = {i,, rlt}, where i, = i(k,, 0,) and ti,, = r*(L, k,, 0,). Given 
r, and an initial state (k, f3), the agents’ valuation of the contract is given 
by 

u,(/l, k, @) = (1 - 6) E, f 6’u(c,) = u(c(A)) 

u,(A, k, 0)=(1-d) E, f 6’(-~~,). 
I=0 

’ Throughout the paper (dg,, ,/al,) represents the derivative of the function g with respect 
to its tirst argument; notice that this derivative depends on future values of the stochastic 
shocks. 



COMMUNICATION, COMMITMENT, AND GROWTH 221 

Remark (Competitive Transfers). Of special interest is the competitive 
mechanism r,, , where L*(kO, 0,) is the only value ;1 E R, satisfying 
Q2*(k0, I$,), k,, 0,) = 0. Using standard arguments, it can be shown that, 
;l*(k,, 13) is the inverse of the marginal utility of expenditure in the 
competitive equilibrium in which the agent faces a lifetime budget 
constraint, has property rights over k, and an initial shock 8,. The existence 
and uniqueness of I*(k,, 0,) can easily be derived from our assumptions. 

Remark (The Continuum of Agents Formulation). We can now briefly 
describe an economy with a continuum of agents for which efficient 
contracts can be characterized by the principal-agent formulation used in 
this paper. To this end, we adapt the arguments in [lS] to an economy 
with capital accumulation. Assume there is a steady state (see the first 
remark in Section 2). That is, the optimal investment policy i*(k, 0) and 
the markovian process {0} define a transition probability P(. 1 (k, 0)) E 
d(Kx 0) and this transition probability defines an ergodic measure 
p~d(Kx O), where (Kx 0) is a compact subset of R: and A(Kx 0) 
denoted the set of probability distributions on this subset. Now, assume 
agents are uniformly distributed on [0, l] and have independent and 
equally distributed shocks, {((I,, s,)}. Let VE A( [0, 11) denote the uniform 
distribution of agents. Agents have homogeneous preferences. The initial 
state (k,, e,), for agent a is given by e,, where the measurable map 
e: [0, l] + K x 6’ satisfies v{a : e, E M} = p(M), for every (Borel) subset 
Mc K x 0. Therefore the economy is at the steady state. More generally, 
one can think that, at the moment that the efficient contract is being 
designed, a set-of measure l-of agents has reached the steady state. 
Then, 

j [f(k) - i(k e)i 4&e) = 2 

for some constant C > 0. That is, the steady state aggregate consumption is 
constant. Efficient allocations are now solutions to a planner’s problem of 
the form 

max(1 - 6) 2 6’ i X,u(c,,) h(a) 
I=0 

subject to 

s cat h(a) = E. 

It follows that there exists a constant c1> 0, such that 

u’(c,,) = ax-’ 



228 MARCETAND MARIMON 

Let 2, = 1, u- ‘; then (5) is satisfied, and 

z*(&n k 0) = I’+ T*(k, 0) = c(&) + i(k, 0) -f(k) 

satisfies 

s z’(n,) &(a) = 0 and s 
T*(k, 13) dp(k, 0) = 0. 

Note that the above competitive solution correspond to a particular choice 
of social weights; namely, if e, = (k,, 0,) then 1, = J.*(k,, 0,). The efficient 
contract is defined for any possible agent and event, not only at the steady 
state. An individual agent may not be at the steady state; however, a set of 
full measure of agents must be at the steady state for the contract to be 
feasible. By the law of large numbers, aggregation over this set of agents 
reduces the contracting problem to the principal-agent problem of our 
analysis.’ 

3. THE ENVIRONMENT WITH LIMITED COMMUNICATION 
AND FULL ENFORCEMENT (PI) 

We proceed with the study of an economy where investments are not 
observable and transfer payments can only depend on past transfers and 
capital stocks. In this environment a transfer mechanism, r= {i,, z,}, makes 
recommendations for nonobservable investments and observable transfers 
as a function of all past public information. We follow Abreu, Pearce, and 
Staccetti [I] who, in turn, follow a dynamic programming approach in 
characterizing a contract as a prescription for each event of an action and 
a continuation payoff contingent on the observed consequences (output 
and capital stock) of the prescribed action. 

In general, consider a mechanism r that recommends actions {xI} and 
let z represent the current observable state; z may include all the past 
history of observables or, in a recursive problem, z can be a finite vector 
of state variables. Given z, the current action x affects the distribution of 
tomorrow’s state z’. If the agent’s current payoff is given by x(x) and the 
present value, at Z, of the contract r is V(Z), then the mechanism (contract) 
is said to be sequentially incentive compatible if for every state z 

v(z) = (1 - 6) 7c(X) + 6E,,.;)U(Z’) 

2 (1 - 6) 7$X) + &EC,,-,v(z’). 

8 Here we do not discuss some known technicalities like the right integrability definition for 
a proper application of the law of large numbers. 
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r is said to be a sequentially efficient mechanism if it is sequentially 
incentive compatible and it is not Pareto dominated by any other 
sequentially inventive compatible mechanism. 

The I- Transfer Mechanism 

In addition to observable transfers, natural candidates as state variables 
are (k, 0), but these variables are not enough in order to design an 
incentive compatible mechanism. Recall that in the full information environ- 
ment rLr = z*(& k,, 0,) guarantees a constant stream of consumption. With 
private information, if the manager is offered the contract that is optimal 
under full information (as in Section 2), he will under-invest, since 
x(i, z, k) = u(f (k) + z - i). To create the right incentives, let the state 
variable be z = (1, k, (3). Then, ex post present values can be associated with 
alternative 1 values of the social planner’s problem will full communication, 
and the agent is rewarded or punished along each observed history by 
changing the weight II. We call this type of mechanism a l-transfer 
mechanism and show that it is a sequentially efficient mechanism. 

As we have seen, in the full communication-commitment environment, 
agents can perfectly smooth their consumption and investment is 
independent of the weight, 2, given to the representative agent in the 
planner’s problem. The A-transfer mechanism for an economy with limited 
communication and perfect enforcement induces a less smooth pattern of 
consumption. Ex ante homogeneous agents have an ex post unequal 
distribution of wealth. We will show that investment, however, is not 
affected by the presence of information constraints, and the process of 
capital accumulation is the same as in the economy with full information. 

The l-transfer mechanism exploits the downward sloping property of the 
Pareto frontier in the full information and full enforcement (PO) problem. 
With a downward sloping Pareto frontier, if agent 1 has weight I and the 
state is (k, 0) then for agent i= 1, 2, there is a unique value wi such that 
wi = ui(A, k, 0). The inverse problem is also well defined. That is, given a 
value wi and a state (k, 0) there is a unique I satisfying u,(ll, k, 0) = wi. 

The A mechanism is recursively constructed as follows. If the current 
state is z = (2, k, e), then the recommended current actions are i(k, 0) and 
z*(L, k, 13); i.e., the efficient actions of the PO problem with A. The efficient 
level of investment, the current shock, and the unobservable shocks 
determine tomorrow’s capital and observable shock (k’, 0’). The I-transfer 
mechanism completes the definition to tomorrow’s state by means of a 
function h( .) which determines tomorrow’s 1’; we will specify this function 
in the next paragraph. This implies that, z’ = (h(ll, k, 0, k’, O’), k’, 0’). In 
other words, while in the full information environment, 1 is constant and 
the manager’s value of an efficient contract is Vi(l) = u,(& k, f3), for all 
(k, t9), in the private information environment, the L-transfer mechanism 
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prescribes recursive revisions of I and, therefore, the manager’s present 
values of his future stream of consumption are also revised -say, from 
Cl(A) = ul(A, k, 19) to v,(A’) E ul(;l’, k’, 0’). 

We now define h( .). The main idea is that the risk-averse manager 
should bear some of the fluctuations that in the full information 
environment are solely absorbed by the risk-neutral investor. Let 
W, k 8, k’U = uz(k k’, fl’) - E~iw,~,~,~~ A u A, k’, 0’). That is, ti2( .) is the 
investor’s deviation of the realized value of utility from the conditional 
expected value of utility in the full information efficient contract one period 
before. Define 

In other words, if the current state is z = (k, A, Q) and, after the 
recommendation to follow the optimal action, the observed state is (k’, 0’) 
then the manager should suffer (gain) a deviation from t?,(A) of 
A- ’ I?,(& k, 8, k’, 0’). That is, agent 1 is punished or rewarded with the 
deviation of agent 2’s utility in the PO problem, properly weighted by A ~ ‘. 

The A-transfer mechanism induces the manager to solve the planner’s 
problem at every state and, therefore, the planner’s Bellman’s equation 
becomes the manager’s incentive compatibility condition. Furthermore, 
since, by optimality, the planner’s solution cannot be improved at any state 
the A-transfer solution cannot be improved upon. These are the two ideas 
behind the proof of the following proposition. 

PROPOSITION 1. The A-transfer mechanism is a Sequentially Efficient 
Mechanism for an economy with limited communication andfull enforcement. 

Proof. The mechanism is resource feasible since it defines a sequence of 
feasible actions (from the corresponding PO problems). We now show that 
it satisfies the incentive compatibility constraints. Let the current state be 
z = (%, k, 0), then the 1, mechanism is sequentially incentive compatible if 

u,(k k, 0) = Cl- 6) n(i(k, d), ~(2, k, O), k) 

+ GE,i(k.H,.k,fl,u,(h(~., k, 8, k’, Q’), k’, Q’) 

2 (1 - 6) n(i ~(1, k, 01, k) 

+ GE,,,,,,o,(h(l, k, 8, k’, e’), k’, e’). 

By construction, the last inequality is simply 
v,(~)~(l-6)71(1,~(~~,k,e),k) 

+GE,,,.,,[V,(I)+I~‘~,(~,k, 8, k’, 0’)] 

= (1 - 6) n(i, ~(2, k, e), k) + &,(A) 

+ J.-’ ~E,ci,~.e,C~AA k’, ‘U - Eo,,,,,,,,,u,(k k’, @)I. 
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Using the fact that u,(A, k’, 0’)= r?r(A), the last inequality can be 
expressed as 

+ C(l - @(-T(A k 0)) + ~&,,,,,,,,,u,(L k’, @)I 

3 Q-(1 -6) n(‘i, ~(2, k, O), k) + GEl,,l,,e,u,(A, k’, O’)] 

+ C(l - W -~.(k k, 0) + 6E,,/c.,,u,(A k’, e’)]. 

This inequality say that in the full information and enforcement (PO) 
problem with weight Iz, at the state (k, e), i(k, 0) is the best feasible action. 
By optimality of i(k, 0) the inequality is satisfied. This argument, however, 
not only shows that the I-transfer mechanism is sequentially incentive 
compatible, but almost demonstrates its efficiency. We now complete this 
argument. 

Suppose there exists a sequentially incentive compatible mechanism r* 
that Pareto dominates the A-transfer mechanism. Let (u:, uf) be the 
present .values attained through r* (for a given state (k,, 0,)). Let 
A = 6; ‘(0 I*) and use the initial condition z = (A, k,, f3,) to recursively define 
the A-transfer mechanism. Note that by construction agent one has the 
same present value for both contracts. Therefore, Pareto dominance 
requires that u: > u,(l, k,, 0,). But this is not possible, otherwise we obtain 
a contradiction with the Pareto optimality of the solution to the full 
information and enforcement (PO) problem with weight 1”. 

4. THE ENVIRONMENT WITH FULL INFORMATION 

AND LIMITED ENFORCEMENT (PC) 

Enforcement constraints are very different from the information 
constraints in the previous section. We now study the case in which society 
(or the investor) has full commitment and the system of property rights 
establishes that, when the manager breaches the contract, he can take 
possession of the existing capital stock, but he will then be prevented from 
ever re-entering the social mechanism. That is, the current reservation 
value for the manager is the utility of the autarkic solution given the 
current capital stock and productivity shock. In this environment, a 
contract can be enforced only if the utility the manager derives from the 
contract is, at each point in time, at least as high as the utility from 
autarky; this means that the manager will have to be compensated so as to 
make his utility high enough at every period. 
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The participation constraint is a non-standard constraint in dynamic 
programming. Nevertheless, we show how the problem can be cast in a 
recursive framework, where the solution is given by a time-invariant 
function of the natural state variables and the pseudo-state variable M. 
This approach has independent interest since it can be applied to other 
non-recursive problems. 

Optimal allocations can be found by maximizing a planner’s problem 
giving different weights to each agent, subject to participation constraints 
on agent 1, so that we have to solve 

PROGRAM 1. 

max (l--6)& f ~5~[Au(c,)-z,] 
h,r,.i,.k,j;=,, r=0 

subject to 

and 

c, - z, + i, =f(k,) 

k t+I=dk,+g(i,,e,+l,s,+l) 

(6) 

(7) 

(l-C?)& f s”u(c,+i) 
[ 1 b Vu@,, 0,) (8) 

i=O 

for all t, where V” is the value function under autarky. Equations (6) 
and (7) are the technology constraints, and Eq. (8) is the participation 
constraint that makes the utility of the first agent in every period at least 
as large as the utility he would obtain from switching to an autarkic regime 
from time t onwards. 

To realize the special features of Program 1 let us recall that a standard 
dynamic program has the following form: 

PROGRAM 2. 

s.t. x, < qx, ~ 1, St), x ~ 1 given, (9) 

(see, for example, [23]) where x, is a vector of finite length, s, a stochastic 
shock, s, is a Markov chain, and the functions r and r are known and 
independent of the choice for x,. .Unfortunately, the participation constraint 
(8) is not a special case of (9): even though the conditional expectation in 
the left side of the participation constraint is a function of past state 
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variables, this function depends on the whole stochastic process (cl} yZO. 
In other words, the function r should not depend on the choice of 
endogenous variables, but the conditional expectation in Eq. (8) does. 

The next proposition states that Program 1 can be rewritten in a way 
that the objective function and the constraints are recursive. A similar 
approach can be used in most problems with expectational constraints and 
time inconsistent solutions, for example, [35] applies similar ideas to a 
model of optimal taxation. The general idea is to introduce expectational 
constraints in the objective function of the Lagrangean. This will be useful 
in order to characterize the form of the solution and, perhaps more 
importantly, to calculate the numerical solution of the problem since, by 
casting the solution in a recursive framework, the solution is a time- 
invariant function of a small set of state variables. 

The following proposition states formally this equivaience. 

PROPOSITION 2. The solution to Program 1 is the saddle point of the 
following Lagrangean: 

PROGRAM 3. 

$P=(l-6)E, f s~{(n+M,&,)u(c,)-z, 
r=O 

+ P,CU(C,) - nk* e,Ml - 6111 

subject to 

(6) - (7) p,20, 

M,=M,-I+& and M-1 =o, (10) 

where p, is the Lagrange multiplier of the participation constraint at time 
t. In Program 3 we minimize with respect to {pL,} and maximize with 
respect to {ct. k,, i,, tt}. 

Proof By the usual arguments, the solution to Program 1 is the saddle 
point of the following: 

PROGRAM 4. 

Y=Eo f 6’ Au(c,)-T,+~~ -V”(k,,O,)/(l-6) 
I=0 I 

subject to the technology constraints (6) and (7) and 

p,>O. 
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Program 4 has conditional expectations in the return function so that is 
not yet of the form of Program 2. We finally obtain Program 3 by using the 
law of iterated expectations to eliminate the symbols E,, rearranging the 
objective function, and introducing the law of motion for M, as constraint 
(10). 

Note that both the return function and the constraints in Program 3 are 
of the form of standard dynamic programs like Program 2 where the 
feasible set at t is a known function of the past. Arguments adapted from 
standard dynamic programming [26] show that the optimal decision for 
the control variables at time t is a time-invariant function of the state 
variables (k,, M,- r, 13,). Program 3 displays the unusual feature of having 
Lagrange multipliers in a constraint.’ 

Equation (10) can be viewed as a constraint that the planner imposes on 
himself in order to follow the optimal path. Given that only k, and 8, enter 
in the return function and in the constraints at time t of the original 
Program 1, it would be physically possible for the planner to re-set 
A4 ,~ I = 0 at any point in time; this is what the planner would do if he 
reoptimized at time t. However, the optimal path set at the initial period 
calls for a scrupulous observations of (lo), and resetting M, at a later date 
is suboptimal. This is another version of the time-inconsistency problem of 
Kydland and Prescott [20]. 

The first order conditions of the problem are 

(A+ M,) u’(c,) - 1 = 0 (11) 

-l-,E*[,,+,y]=o 

f’(k,)-6dE,[y,+,l +Y,-ir,z/(l -6)=O 
I 

(12) 

(13) 

1 
-k’“(k~,~~)/(l-J)>O (14) 

r+i) 
I 

- Vk,, e,)l(l -6) =O, 1 (15) 
‘See [lo] for a similar use of these multipliers and [26] for a description of how this 

approach can be applied to many other models. Kydland and Prescott 1211 showed how 
some time inconsistent models could be placed in a recursive framework in a problem of 
optimal taxation. They also had past Lagrange multipliers determining future decisions, and 
they used the expression “pseudo-state variable” to denote these Lagrange multipliers. Unlike 
in our case, though, their Lagrange multiplier was the one in the budget restriction of the 
agent (a’(~,)) and their problem was only recursive after the initial period. In models with 
uncertainty their approach seems to loose some recursive properties and it is not clear how 
it would apply to a restriction on the value function as in the PC model. 
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the technology constraints (6) and (7) the law of motion for M, (lo), the 
participation constraint and p, > 0. In Eqs. (11) to (15), yI represents the 
Lagrange multiplier of constraint (7). 

The variable M, is an accumulation of past multipliers; roughly 
speaking, if the participation constraint has been binding very often in the 
recent past, then M, will be high. The role of M, in Program 3 is to shift the 
weight 1 given to agent 1 in the objective function of the planner; when the 
participation constraint is binding, the optimal path calls for augmenting 
this weight; this increase is maintained for all future periods and 
consumption is higher forever. Therefore, whenever (8) is binding, the planner 
compensates agent 1 by increasing his consumption to a certain level and 
leaving consumption at this level until the participation constraint binds 
again. 

Characterization of Equilibrium in the PC Model 

In this sub-section we parameterize the function that converts 
investiment into new capital goods as 

Consumption of agent 1 satisfies 

u’(c,) = l/(1 + M,), (16) 

so that c, depends only on (A + M,). Assuming that the shocks have 
bounded support, there exists a finite constant P such that i7> V”(k,, 0,) 
with probability one, so that M, and c, will grow until M, reaches a level 
such that 

u(c,) 2 R (17) 

this inequality means that the utility of keeping consumption constant for 
the whole future is higher than the upper bound on autarkic utility. If M, 
reaches this level, consumption will not change, since the participation 
constraint will never be binding again and M, will be constant from then on. 

We can now study the behavior of investment. With the above functional 
form for g, the first order conditions (12) and (13) reduce to 

(l+i,)2=6E, (e,+,+~,+~)a f (6d)‘aky;f+, 
[ ,=o 1 

(er+l+S,+Ib f (Wjp 
,=o 

I+ j+ I ;L’+l,li(l p6)]. 
I+/+1 

(18) 
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It is clear that the Euler equation for the case with full enforcement and 
full information (4) is exactly like (18) without the second conditional 
expectation that depends on future $s. We conclude that investment is 
lower in periods when the participation constraint is likely to be binding in 
the near future; in this case, the second expectation in Eq. (18) has a high 
absolute value, and the left hand side must go down. 

We have seen that when M, reaches a high enough level the participation 
constraint will never again be binding, so that the second expectation in 
the right side of (18) vanishes and it becomes (4). Therefore, after this 
period investment equals the level of optimal investment with full enforce- 
ment. Hence, the steady state distribution for capital accumulation of the 
limited enforcement model is the same as in the PO model. In the initial 
periods, however, when the constraints are binding and M, is growing, the 
behavior of investment cannot be determined analytically and we will 
resort to simulations of the model. These are described in Section 6. 

5. AN ALGORITHM FOR SOLVING THE GROWTH MODEL 
WITH INCENTIVE CONSTRAINTS 

We will explain here how to obtain numerical solutions for the various 
models in this paper. There are four models that we want to solve: autarky 
equilibrium (AU), Pareto Optimal with full communication and full enfor- 
cement (PO), the model with participation constraints (PC), and under 
private information (PI ). 

We use the functional forms 

.f(k,) = k: 

g(i,,e,+1,s,+,)=a(e,+,+s,+,)i,l(l+i,)+bs,+, 
u(c,) = c; + ‘/(y + 1) 

where E, is i.i.d. 

log et = p log et- i + E,, 

5.1. Solving the Autarkic and Pareto Optimal Equilibria 

The AU model has the following first order conditions: 

c; = 6E, 
& 
$ ,f (64’ c;+j+, crk;;,!, I] 

J=o 

c, + i, = k; 

(19) 

(20) 

(21) k r+,=dk,+g(i,,e,+,,s,+,) 
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To solve this model numerically we use the parameterized expectation 
approach (PEA). Since there is only one expectation to approximate, the 
model can be solved quite easily. We substitute the expectation in the right 
side of (19) by a parameterized function of the state variables $(p, k,, 0,). 
We choose IJ in a flexible way so as to approximate the conditional 
expectation arbitrarily well. In particular, we choose 

WA k,, 0,) = exp(P,Wg(k,), log(e,))) 

for a given n, where P, is a polynomial of degree n. The parameters /l are 
the coefficients in the polynomial. We can, in principle, increase the degree 
of the polynomial until we have a reasonable approximation to the 
conditional expectation. This functional form is convenient because it is 
strictly positive, as is the conditional expectation that it intends to 
approximate. 

We want to find the parameter /I,/- with the following property: if agents 
use j?,- in order to form the expectations of the Euler equation, then 
$(pf, k,, 0,) is the best predictor among functions II/( ., k,, 0,). 

The mechanics for finding fl are the following: 

Step 1. Fix /I. Substitute the conditional expectation in (19) by $ to 
obtain: 

CT(B) = W(B, k,(B), 0,). (22) 

Step 2. Obtain a long series of the endogenous variables that solves 
(20), (21) and (22)” for this particular fl; call this series (c,(b), i,(p), k,(B)}. 

Step 3. For this series calculate the expressions inside the 
conditional expectation of (19)” and perform a non-linear regression of 
these expressions on $( ., k,(b), 0,); let S(B) be the result of this regression. 

Step 4. Finally, use an iterative scheme to find the fixed point of S, 
and set fir = S( BY).” 

The solution for consumption, investment, and capital is given by 

{c,(l3,), it(Pfh k,(B,)l. 

“Note that this is quite simple: c,(B) can be solved directly from (22), i,(B) from (20) and 

k+AB) from (21). 
‘I Note how the sums x,‘~, (ad)’ cy+,ak:;j can be calculated very elliciently using 

backward recursion. 

I2 For more detailed description of this approach see [25]. For details on the implementa- 
tion of the algorithm in a simple growth model see [13]. 
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The solution to the PO model does not present any additional 
difficulties. It can be found by applying Steps 1 to 4 to the corresponding 
first order conditions of that model. 

5.2. Solving for First Periods with a Low Initial Capital 

The scheme just described can, in principle, approximate the true 
equilibrium at the steady state distribution arbitrarily well as the length of 
the simulation and the degree of the polynomial go to infinity. However, if 
the economy starts at a very low capital stock k,, the B/ from long run 
simulations may not be a good approximation to the conditional expectation 
during the lirst few periods, as the capital stock grows from k, to the 
steady state distribution. For example, in the first few periods marginal 
productivity of capital is very high and the long run simulations will not 
take this into account. This would be a problem in our paper because we 
are particularly interested in analyzing growth of the economy in the initial 
periods. 

To avoid this problem we find a different policy function (a different /?/) 
for the initial periods by, instead of running a long realization of the 
process, finding many realizations of a given (short) length T, starting each 
realization at k,. Step 2 is modified as follows: 

Step 2b. Obtain a large number N of (independent) realizations of 
length T, that solve (20), (21), and (22); each initial capital is fixed at k,. l3 

To obtain arbitrary accuracy in S( JI), we let N + co. Here, T is selected 
to be long enough for the economy to get in the range of the steady state 
distribution. In our model, and for the parameters we selected, T= 50 was 
sufficient. 

Then we proceed with Steps 3 and 4 as before. 
One final modification is needed. In the conditional expectation we find 

discounted sums of future variables, like 

f (6d)‘ak;,f+, c;+~+ ,; 
i=o 

these are used in the non-linear regression of Step 4. Since for t + i> T the 
model to the steady state distributions, we could run simulations of length 
T+ T’, where T’ is large so that the truncated sum is close to the infinite 
sum, and the k,, i, for which t + i > T are calculated with the steady 
state fir This is not a good solution, however, because it requires long 
simulations, as T’ may have to be quite large. 

I3 A similar approach was used in Marshall [29] to solve a model with a non-stationary 
forcing process. 
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Instead, we note that for t < T, the expectation in the right side of (19) 
can be rewritten as 

fJ (6d)‘c:+jaky,f 
j=O I 

+(6d)Tp’+1E,+, $ (6d)icG+,+,ak;;1,+i 
[ 

. 
j=O -111 

The expectation conditional on information at T+ 1 involves only 
variables at the steady state distribution, so we can parameterize it as a 
polynomial function of the state variables, and find the parameters in this 
polynomial by running (only one) regression, with a long simulation at the 
steady state /I/ 

So, the variable predicted in the regression of Step 3 for these periods is 

ag T--f 
1+1 

ai, FL 2 (6d)jcr+j+,akF;f+, +(6d)T+r+1 $SS(~,kr+l,Br+l) , 
j=O 1 I 

where $” is the result of the non-linear regression described in the previous 
paragraph. 

5.3. Solving the Problem with Full Information and 
Limited Enforcement (PC) 

Now we discuss how to solve the model with limited enforcement 
numerically with PEA, where agent 1 (the manager) is guaranteed at least 
as much utility as in the autarkic equilibrium in every period, and where 
both agents observe all the shocks. This model is harder to solve than the 
previous ones because of the inequality constraints that are binding in 
some periods and non-binding in others. Further, we now have one 
additional expectation to parameterize and the additional state variable M,. 

From our discussion of Section 4 we see that the following equations 
have to be satisfied: 

c,--~~+i,=f(k,) (23) 

pL, [u(c,) + E~~~~~~;:+~~~~~~~~~,1;1, - 6)] = 0 35;; 

u’(c,) = l/CA + PL, + M,- 1) (26) 

M,=M,-, +Pr (27) 

(O,,, +s,+l)a f (6d)’ 
j=O 

aVY+j+l 

pl+i+l dk,,,,, 11 . (28) 
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With these equations we can solve the model following Steps 1, 2b, 3, 
and 4 of Subsection 5.2. Only Step 2b, which involves solving for the 
endogenous series, is more cumbersome. This is because, in addition to the 
above equations, the inequality conditions for p and the participation 
constraint (8) are satisfied. 

After parameterizing the conditional expectations in Eqs. (25) and (26) 
the above system provides six equations to solve for (cl, rr, k,, i,, pL,, M,). 
To solve for c, and pL, we proceed as follows: first try the case where the 
participation constraint (8) is non-binding, so that ~1, = 0, and c, is given 
by Eq. (26). For this solution, we check if the participation constraint is 
satisfied; if it is, we go on to solve for the remaining variables; otherwise 
we know that p! >O, so that the large bracket in (25) is equal to zero, 
which provides an equation to solve for consumption; then we can find p, 
from (26). It is easy to check that pf will be positive by construction. 

In this model the steady state distribution for investment is the same as 
that in the PO problem with full enforcement, so the only interesting part 
to solve is in the first few periods as the capital stock and M, grow to their 
steady state distribution. Then the scheme we use for the initial periods 
described in Section 5.2 becomes crucial. 

Finally, note that the expression inside the conditional expectation of 
(28) involves the derivative of I’“. Because the productivity of investment 
is not known at the time investment is realized, the usual formula for the 
derivative of the value function does not apply (see [23] for this formula). 
In Appendix 1 we find an expression for this derivative that is easy to 
compute. 

5.4. Solving the Model with Informational Incentive Compatibility 
Constraints (PI) 

In Section 3 we saw that in order to find the equilibrium with the 
incentive compatible contract at a given period, for a given value of the 
contract, we have to find the point in the Pareto Optimal frontier that 
gives the same value for the full information full enforcement model. Then 
the manager takes the same decision as he would take at that point in the 
PO frontier, and the continuation payoffs are calculated using the value 
functions of both agents at that point of the PO frontier. Hence, we need 
to have the decision functions and value functions readily available at 
many points of the frontier. 

We first solve the PO problem for 1000 lambdas between zero and 
infinity. At each lambda, we calculate the /I/ that corresponds to the 
expectation involved in the Euler equations and the /I/ involved in the 
conditional expectation of the value function to calculate 
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This is then used to calculate the continuation payoffs as described in 
Section 3. 

6. CHARACTERIZATION OF EQUILIBRIA AND SIMULATION RESULTS 

In this section we characterize the behavior of the four models. We use 
simulations that are plotted in Figs. 1 to 7; also, the main results are 
summarized in Table II. Those features of the models that we could 
characterize analytically were described in Sections 2, 3, and 4 and we will 
often refer to them. The series plotted in Figs. 1 to 7 correspond to a 
simulation using the same realization of the exogenous shocks for all series. 
In order to see results that do not depend on a given realization the reader 
is referred to Table II which reports calculations of some important 
population moments of the model. 

The values of the parameters used in the simulations are described in 
Table I. 

Given the choice of d and 6, one period can be interpreted as one year. 
Most values of the parameters are within the usual range that is used in 
neoclassical growth models, with the exception of the standard deviations, 
which are higher than usual. We chose as initial capital k, = 1, in order to 
obtain growth rates of around 3 or 4% for the first 15 periods, which seems 
reasonable for developing countries. 

With our numerical results, we hope to illustrate the behavior of the 
model and detect the magnitude of the impact on growth and utility of 
alternative communication and commitment environments. 

In Figs. 1 to 7, the last two letters identify the environment, so “au” 

Time 

FIG. 1. Capital stock, initial periods. 
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FIG. 2. Capital stock, steady state. 
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FIG. 3. Investment, initial periods. 
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FIG. 4. Investment, steady state. 
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FIG. 5. Consumption of the manager, initial periods. 
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FIG. 7. Utility of the manager, initial periods. 
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TABLE I 

Marginal productivity of capital 
Risk aversion parameter of the manager 
Discount factor 
Autocorrelation parameter of log(H,) 
Standard deviation of innovation of log(0,) 
Standard deviation of s 
Mean of s 
Unpredicted proportion of capital 
Constant in investment function 

rl=o.5 
y=-3 
s =0.95 
p =0.95 

0,=0.03 
cr,=o.o3 
s=o.2 
d = 0.9 
n =0.6 

denotes autarky equilibrium, “PO” Pareto optimal allocation with full 
information and perfect enforcement, “PC” participation constraints, and 
“pi” provate information. For these figures, we plot the first 40 periods 
as representative of the initial periods, and periods 200 to 240 as 
representative of the steady state distribution. 

6.1. Autarky versus Full Information Full Commitment 

We first compare the PO environment with an autarkic environment 
(AU). We already argued that consumption of the manager is constant in 
the PO equilibrium, while the investor absorbs all the shocks. 

When the initial capital stock is low relative to the steady state distribu- 
tion, in an economy with external financing the manager can borrow 
heavily at the beginning to enhance his investments and attain faster 
growth than he would have attained in an autarkic environment (see 
Figs. 1 and 3). Table II tells us that with external financing growth can go 
from 3 to 4%. However, the mean of the steady state distribution of capital 
and investment (see Figs. 2 and 4 and Table II) is not significantly different 

TABLE II 

Model 

Autarky 
PO 
PC 
PI 

Mean of growth Utility of the 
rate of output manager 

2.88% -0.386 
3.90% -0.358 
2.91% -0.384 
3.90% -0.36 

Mean of capital 
in steady state 

2.51 
2.53 
2.53 
2.53 

Increase in 
consumption 

3.84% 
0.38% 
3.55% 

Note. “Mean of the growth rate of output” refers to the mean during the first 15 periods 
across independent realizations. The utility of the manager is measured at Time 0 and using 
many independent replications of the model, conditioning on k, = 1 and 8, = 1. The “Increase 
in consumption” refers to the permanent increase in consumption that would equal the 
present value achieved in the autarkic environment with the present values achieved in the 
other environments. 
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between the two environments. The need to use capital as the only asset for 
self-insurance under autarky causes the mean of capital to be higher in an 
autarkic regime. Also, we see that investment is more volatile in the Pareto 
Optimal case; this is, then, and example where an increase in volatility of 
investment is not undesirable. 

Consumption for the manager is constant in the full information-enfor- 
cement environment. In contrast, in an autarkic environment wit low initial 
capital stock, consumption grows with the capital stock and fluctuates in 
response to random shocks. 

6.2. Private Information (PI) vs. Autarky (AU) and vs. full Information with 
full Enforcement (PO) 

We showed in Section 3 that the A-transfer mechanism preserves the 
investment decisions of the full information-enforcement environment when 
investment decisions are observable. Therefore, capital accumulation paths 
for the PI coincide with the PO paths of Figs. 14. Figures 5 to 7 display 
the behavior of consumption, utility of the manager and of transfers. 

Consumption is affected by the presence of informational incentive 
constraints, although the manager can smooth his consumption much 
more than in an autarkic environment and, therefore, attain higher payoff. 
Also, it is interesting to note that, even though the manager starts out with 
a very high utility, in the long run he can be worse off under private 
information than under autarky. 

6.3. Limited Enforcement with Full Information (PC) vs Autarsky (AU) and 
vs Full Enforcement with Full Znforcement (PO) 

In Section 2 we proved that, in the steady state distribution, the capital 
and investment series under participation constraints were equal to the 
capital accumulation in the PO model and that consumption of agent 1 
was constant; thereby, transfers absorbed all the shocks. During the first 
few periods, however, the behavior of the model PC is quite different from 
the full optimum. We are reporting the series that correspond to a 1 that 
makes expected discounted transfers at t = 0 equal to zero, so these series 
correspond to the equilibrium contract. 

In the PC environment the path of capital accumulation (and 
investment) in the first few periods is very similar to the autarky equilibrium 
(see Fig. 1). This is remarkable since we saw that private information did not 
have any effect on growth. In fact, in a given realization, the capital stock 
can even be lower with participation constraints for certain periods, then, 
it is possible for the utility of the manager to be lower under participation 
constraints than in autarky in certain periods (see Fig. 7). Note that this 
does not mean that the participation constraints are violated in these 
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periods: since capital can be smaller under participation constraints, the 
value for agent 1 of moving to autarky after a few periods may be lower 
than if he had started out in autarky. 

In the model with partial enforcement, even though borrowing from the 
investor does not help in growing at a faster rate, it does help the manager 
smooth out consumption against unforeseen shocks. Figure 5 shows how 
consumption of the manager grows more smoothly under participation 
constraints than under autarky, even though the consumption levels are 
similar at any point in time. So, in the PO model, borrowing and lending 
were used for smoothing along the growth path and against unforeseen 
shocks, but in the PC model it only serves the latter purpose. 

The fact that in this model external financing can be used to smooth out 
consumption against unforeseen shocks makes it possible to have a gain in 
utility with respect to autarky; the gain is equivalent to an increase in 
consumption of 0.39% in the first period and leaving consumption constant 
thereafter, so that the utility gain from external financing under limited 
enforcement is very small. Clearly, with a higher degree of risk-aversion or 
increasing the randomness in the economy, it would be possible to increase 
the utility gain in the PC model relative to the AU model. 

Figure 7 tells us that transfers in the PC model are negligible (of the 
order to 1% the level of total consumption), while transfers under PI have 
a similar pattern to the optimal transfers. 

APPENDIX 1: COMPUTING THE DERIVATIVE 
OF THE VALUE FUNCTION IN AUTARKY 

In order to apply PEA to the model with participation constraints we 
need to calculate the values inside the conditional expectations of 
Equation (18), so we need to calculate the derivative of V”. It is convenient 
to express this derivative in terms only of conditional expectations and 
functions of variables of the model; we now derive such a formula based on 
the ideas of Benveniste & Scheinkman. In the rest of this appendix, all 
variables correspond to the autarky equilibrium so that the superscript “a” 
on the variables is suppressed. 

The Bellman equation for the autarkic problem is 

subject to the production constraint. The first order conditions of the 
maximization problem in the right hand side of the Bellman equation 

U'(c,)=dE, Va'(kr+,,@l+l) ai 
[ 

ag,+ I [ 11 7 I (29) 
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where the primes denote derivatives with respect to the first argument of 
each function involved in this expression. 

Letting f(k,, 0,) be the optimal decision function for investment under 
autarky, we have the following identity 

JTk,, et)= (l-4 4Ie-m,, et)1 

+w VIdk, + df(k,, et)), e,, IYsI+ ,I. 

Differentiating both sides with respect to capital we have 

vqk,, e,) = (I- 6) ZQ,)[CA;-~ -fyk,, e,)] 

+ WC YU’(k + 1, e,+I)~~+g:+I(~,)~‘(~,,e,)ii. 

Using (29) this reduces to 

and, by recursive substitution we have 

V”(k,,e,)=(l-6)E, g @d)‘u’(c,+,)ak;;, ) 
[ j=O 1 

which is the formula that we are seeking. Note that we can approximate 
this derivative by parameterizing the conditional expectation as a 
polynomial and that we can obtain an approximation to this derivative by 
running one non-linear regression after solving the model with autarky.14 
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