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Abstract

The frequentist and the Bayesian approach to the estimation of autoregressions are

often contrasted. Under standard assumptions, when the ordinary least squares (OLS)

estimate is close to 1, a frequentist adjusts it upwards to counter the small sample

bias, while a Bayesian who uses a flat prior considers the OLS estimate to be the best

point estimate. This contrast is surprising because a flat prior is often interpreted as

the Bayesian approach that is closest to the frequentist approach. We point out that

the standard way that inference has been compared is misleading because frequentists

and Bayesians tend to use different models, in particular, a different distribution of

the initial condition. The contrast between the frequentist and the Bayesian flat prior

estimation of the autoregression disappears once we make the same assumption about

the initial condition in both approaches.
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1 Introduction

From the frequentist point of view the OLS estimator is biased in autoregressions. This has

been known since Quenouille (1949) and Hurwicz (1950). Adjustments of the OLS estimator

that reduce this bias have been proposed by Marriott and Pope (1954), Andrews (1993),

MacKinnon and Smith (1998), and many others. When the autoregressive parameter of an

AR(1) model is in the vicinity of 1 the OLS estimate of this parameter is biased downward,

therefore a frequentist econometrician facing an OLS estimate close to 1 adjusts it upwards.

But from the Bayesian point of view the OLS estimator is a good summary of sample

information. This is because the posterior obtained with a flat prior is centered at the OLS

estimate and it is symmetric around it. Bayesian econometricians who just want to charac-

terize the shape of the likelihood often use the flat prior. Such a Bayesian econometrician

does not adjust the OLS estimate.

Therefore, the frequentist view is that the OLS estimate should be adjusted and the

above Bayesian view is that it should not. This is surprising because a flat prior is often

understood as the closest that the Bayesian approach can get to the frequentist approach.

The contrast between the above views has been highlighted, for example, in Sims and Uhlig

(1991), as a manifestation of fundamental differences between the Bayesian and frequentist

approaches to inference: bias is a property of the behavior of an estimator across different

samples, so it is relevant to a frequentist but irrelevant to a Bayesian, who conditions only

on the observed sample.

We first point out that contrasting the two views about the OLS estimator as is done in

the previous paragraph is misleading, since they are based on different models, in particular,

a different model of the initial condition. We then show using a Monte Carlo (the “helicopter

tour” approach of Sims and Uhlig (1991)) that the sharp contrast disappears when the same

model for the initial condition is used. When frequentists and Bayesians use a distribution

of the initial condition that depends on the AR parameters in a standard way, they both

adjust the OLS estimate upwards (when it is close to 1). When they use a flat density

for the initial condition,1 both frequentists and Bayesians facing an OLS estimate believe it

1In other words, when the researcher takes the initial condition as given and therefore uses the so-called
“conditional likelihood.”
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summarizes the sample information optimally and do not adjust it. We discuss the intuition

behind these Monte Carlo results.

The implication of our findings is that in most practical situations both frequentist and

Bayesian econometricians agree that an autoregressive process is more persistent than the

OLS estimate suggests. First, because in most practical situations it is reasonable to assume

that the initial condition is related to the parameters that apply in the rest of the sample,

second, because the OLS estimate is often in the range where it gets adjusted towards higher

values, implying a more persistent process.

We believe that this message is important for practitioners. Most applied econometri-

cians do not have strong views on the deep foundations of statistics. It may be unsettling if

the judgment on whether the persistence of the OLS estimate is appropriate or not hinged

on whether one adopts the Bayesian-flat-prior or the frequentist perspective. Adjusting

the OLS estimator of an autoregression often has relevant practical consequences, specially

in vector autoregressions (VARs).2 For example, numerous forecasting studies find that

increasing the persistence of a VAR is crucial for improving the forecasting performance,

this is in part why the Litterman (1986) prior is so popular. For another example, the

persistence of the estimated VAR crucially affects the size of term premia in dynamic term

structure models (see Bauer et al. (2012)). Reassuringly, we show that broad lessons that a

reasonable econometrician would draw from the data are not sensitive to deep foundations

of the inference approach.

Please note some clarifications. First, we do not propose a Bayesian analysis of an

autoregression that yields an unbiased point estimate, nor do we study conditions under

which Bayesian point estimates are unbiased (on this topic see, e.g., Firth (1993)). Second,

we do not contribute to the debate on whether the flat prior is indeed noninformative in

autoregressions (see Phillips (1991) and the ensuing debate in the Econometric Theory 1994

special issue). We just take it for granted that our Bayesian econometrician uses the flat

prior as a device for reporting the shape of the likelihood. Third, the claims in the paper

hold for an AR model where the constant term is unknown, as is usually the case in applied

2Vector autoregressions are commonly used in macroeconomics where the samples are small. Moreover,
the small sample bias of the OLS estimate towards stationarity increases with dimension. The frequentist
proof of this fact is in Abadir et al. (1999) and some Bayesian arguments are in Sims and Zha (1998) p.959.

3



work, the special case of the known constant term, studied in Sims and Uhlig (1991), is

different.3 Fourth, Sims and Uhlig highlight the fact that a Bayesian posterior is a different

object than the frequentist distribution of an estimator; we of course agree with this point.

We only highlight that when the constant term is unknown, as is typically the case, both

Bayesians and frequentists agree on whether to adjust the OLS estimate upwards or not,

provided that they use the same model for the initial condition.

Section 2 explains in more detail the contrasting views of Bayesians and frequentists as

they have been described in the literature. Section 3 describes two standard models for the

initial condition. Section 4 shows that whether or not the OLS estimate is adjusted depends

on the model chosen in section 3.

2 The false contrast

Consider a sample y ≡ {y0, ..., yT } that is modeled as an AR(1) process with an intercept:

yt = α+ ρyt−1 + ut, ut i.i.d. N(0, σ2) (1)

t = 1, . . . , T . y0 is the initial condition. The OLS estimates of α and ρ are denoted αOLS

and ρOLS .

Throughout the paper, we focus on the small sample inference and not on asymptotics.

Therefore, when we say “frequentist” we mean “frequentist, small sample”.

The following two views of ρOLS are often contrasted.

Frequentist (View A) For given true values of (α, ρ, σ) and with ρ near 1, the small

sample distribution of ρOLS is skewed to the left and its mean is lower than ρ. Such a

distribution for ρ = 0.95 and T = 100 is presented in the left panel of Figure 1. This is a

well known figure, it displays the skewness and the bias, in this case E(ρOLS) = 0.91 and

the bias is -0.04. Based on this picture, a frequentist econometrician facing ρOLS believes

that the true ρ is likely to be higher, so to obtain a better estimate of ρ she adjusts ρOLS

upwards. When constructing this picture we draw y0 from its ergodic distribution as this

3When the value of the constant term is known, the contrast is indeed there, since the posterior of
a Bayesian who uses a flat prior is centered at the OLS estimator regardless of the model of the initial
condition.
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is the standard procedure in the frequentist literature.4

Bayesian (View D)5 When the prior for (α, ρ, lnσ) is flat, the posterior distribution of

ρ is symmetric and centered precisely at ρOLS . An example of this distribution is presented

in the right panel of Figure 1 for a particular sample y. Therefore, a Bayesian econometrician

who uses a flat prior does not adjust ρOLS .6 This holds when we use the likelihood function

conditional on the initial condition y0, which is the standard approach.7
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Figure 1 – Two views of ρOLS

The typical interpretation of the contrast between view A and view D is that this is due

to the different approaches to statistics. The small sample bias is a frequentist property.

Therefore, the frequentist econometrician in A worries about the bias and adjusts ρOLS in

order to correct it. However, the bias is irrelevant to the Bayesian in D, who conditions on

the observed sample, and disregards other, unobserved samples, so this Bayesian embraces

ρOLS . This is the point of Sims and Uhlig (1991).

4The distribution presented in the left panel of Figure 1 is a smoothed histogram of values of ρOLS

computed from 10,000 samples of 100 observations each, simulated from the process (1). We assume α =
0, σ = 1.

5We use the letter D, because in what follows we introduce also two intermediate views, which we label
B and C.

6Throughout this paper we use a quadratic loss function for the Bayesian approach. Obviously, nonstan-
dard loss functions would justify other point estimates.

7The distribution presented in the right panel of Figure 1 is the marginal posterior p(ρ|y), conditional on a
sample y. To obtain this posterior, multiply the prior kernel by the likelihood kernel p(y1, ..., yT |α, ρ, σ2, y0) ∝
σ−T exp

(
− 1

2

∑T
t=1(yt − α− ρyt−1)2/σ2

)
and integrate α and σ out. The result is a kernel of the Student-t

density. This is a textbook derivation, see e.g. Zellner (1971) Ch.3.1.

5



Table 1 – Does the OLS estimate need an adjustment?

Approach to statistics

model of y0 Frequentist Bayesian

depends on α, ρ, σ A: YES B: ?
does not depend on α, ρ, σ C: ? D: NO

Given that in other contexts Bayesian-flat-prior and frequentist inference are often quite

close, this difference is surprising. The implications of the adjustment of OLS estimates in

applied work, especially in VARs, can be substantial.

Our point is that there is another difference between views A and D beyond the different

approaches to statistics, namely they use different models of y0. In view A y0 is drawn from

the ergodic distribution, therefore the distribution of y0 is related to the true value of the

parameters α, ρ, σ. View D, in contrast, assumes that the model of y0 is unrelated to

parameters. This is implicit in the use of the standard likelihood function conditional on

the observation y0, p(y1, ..., yT |α, ρ, σ, y0). This so-called conditional likelihood function is

the one used by flat-prior Bayesians, it has no term relating y0 to the parameters α, ρ, σ,

therefore it is consistent with a flat density for the initial condition, namely p(y0|α, ρ, σ) ∝ 1.

Therefore, in the rest of the paper we interpret that the Bayesian flat-prior approach that

uses a conditional likelihood is in effect assuming that y0 has a flat distribution.

To see what drives the contrast between A and D we need to make the models com-

parable. We propose to use the same model for the initial condition under each inference

approach. In other words, we need to answer the following two questions.

Question B, Bayesian Does a Bayesian econometrician adjust ρOLS when the model

of y0 depends on parameters α, ρ, σ?

Question C, Frequentist Does a frequentist econometrician adjust ρOLS when the

model of y0 does not depend on parameters α, ρ, σ?

Table 1 summarizes the above discussion. There are four possible inferences combining

two approaches to statistics and two models of the initial condition. The contrast in the

literature has focused on cells A and D, in the remainder of the paper we fill cells B and C.
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3 Two models of the initial condition y0

We now posit two models for y0. Drawing from the literature we assume

y0 ∼


N
(

α
1−ρ , κ

2 σ2

1−ρ2

)
if |ρ| < 1

0 if ρ = 1

N
(

α
1−ρ , κ

2σ2
)

otherwise.

(2)

We consider two cases, κ = 1 and κ = 100, which give rise to our two models.

When κ = 1 our model is the same as, e.g., in Bhargava (1986). The first line states

that when |ρ| < 1, i.e., when the process is stationary and has an ergodic distribution, then

y0 is drawn from this ergodic distribution, N
(

α
1−ρ ,

σ2

1−ρ2

)
. However, the ergodic distribution

does not exist when |ρ| ≥ 1. In this case, one needs a more or less arbitrary assumption.

Following Bhargava and many others, we assume y0 = 0 in the unit root case, and we

assume y0 ∼N
(

α
1−ρ , σ

2
)

in the explosive case.8

Now consider the case κ = 100. As κ → ∞, the relation between y0 and model pa-

rameters becomes weaker, and the density p(y0|α, ρ, σ) becomes flat, i.e., proportional to a

constant. Consequently, the likelihood function of the whole sample p(y0, y1, ..., yT |α, ρ, σ)

becomes proportional to the “conditional” likelihood function p(y1, ..., yT |α, ρ, σ, y0) and, as

we argued before, the flat-prior approach implicitly uses a κ close to ∞ . We use κ = 100

to approximate this situation in our numerical simulations.

Now, that we have specified the two models for y0, we are ready to answer questions B

and C stated above.

4 Joint density of ρ and ρOLS: A helicopter tour

To study the relation between ρ and ρOLS we adapt the approach of Sims and Uhlig (1991)

to the case of an unknown constant α and simulate the joint distribution of ρ and ρOLS by

8Our reading of the literature is that this is the most popular assumption about the distribution of y0, but
there are alternatives. For example, MacKinnon and Smith (1998), p.2, assume a variance equal to σ2 both
in the stationary and in the explosive case. We obtain qualitatively similar results in all the computations
below when we use their assumption. Other approaches to the initial condition can be found, for example,
in Uhlig (1994) and Phillips and Magdalinos (2009).
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Monte Carlo. The joint distribution of ρ and ρOLS depends on the sample size T and on the

model of the initial condition. We assume T = 100 and we generate two joint distributions

of ρ and ρOLS , one with κ = 1 in (2) and the second one with κ = 100 in (2). We maintain

a flat prior on ρ. The distribution of ρOLS |ρ is independent of the values of α and σ when

a model of the form (2) is used for y0. This issue as well as the details of the computations

are discussed in the Appendix.

Figure 2 presents isoprobability contours for the two joint distributions. The left panel

is for κ = 1 and the right panel is for κ = 100. In both panels we also plot the ρ = ρOLS

line.9 Let us make two observations about Figure 2.

First, consider the density for κ = 1, presented in the left panel. In the plotted range

for ρ and ρOLS more probability mass lays below the ρ = ρOLS line than above it. Fix a

value of ρ, most of the mass of ρOLS is at values lower than ρ. Fix a value of ρOLS , most

of the mass of ρ is at values higher than ρOLS .

Second, consider the density for κ = 100, in the right panel. This density is very

concentrated at the ρ = ρOLS line. There might be more probability mass below the

ρ = ρOLS line than above it, as in the left panel, but this effect is not quantitatively

relevant.
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Figure 2 – Two joint densities of ρ and ρOLS - isoprobability contours.

We now follow in the footsteps of Sims and Uhlig (1991) and take a helicopter tour of

9Note also that both distributions have a singularity at ρ = 1: at this measure-zero region the distribution
is not defined uniquely. This singularity does not matter for our discussion, we discuss this singularity in
the appendix.
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the two joint distributions of (ρ, ρOLS). The difference is that our tour is over the land of

an AR(1) model with a constant α and with two explicit assumptions for y0. The tour is

shown in Figure 3, displaying selected cuts of the two joint densities from Figure 2. The

first row of Figure 3 corresponds to the density obtained with κ = 1 while the second row

corresponds to the density obtained with κ = 100.
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Figure 3 – Two bivariate densities of ρ and ρOLS : various cuts

Note that the panels of Figure 3, labeled A, B, C and D correspond to the cells of Table

1. A cut along a fixed-ρ line (a vertical line in Figure 2) reveals the frequentist distribution

of ρOLS given a fixed value of ρ. Panels A and C present such cuts for ρ = 0.95.

A cut along a fixed-ρOLS line (a horizontal line in Figure 2) reveals the Bayesian posterior

distribution of ρ conditional on observing a given value of ρOLS . The distribution p(ρ|ρOLS)

is a convenient summary of posterior distributions of ρ conditional on the data y, p(ρ|y)

since it averages out across realizations of the data y. It also answers directly the question
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how a Bayesian forms his beliefs about ρ upon observing ρOLS only.10 Panels B and D

present such cuts for ρOLS = 0.95.

The cut in panel A is familiar. This is the small sample distribution of ρOLS when

κ = 1, the same as the one plotted in the left panel of Figure 1, to illustrate view A.

The cut in panel D is the Bayesian posterior distribution of ρ given ρOLS . κ = 100

approximates the use of the “conditional likelihood.” This posterior distribution is different

from the posterior in the right panel of Figure 1, because it conditions on ρOLS and not on

y, but of course it confirms the view that ρOLS should not be adjusted.

4.1 Does the Bayesian econometrician adjust ρOLS when y0 is related to

parameters α, ρ, σ? (Question B)

We now consider the model given by (1)-(2) with κ = 1 from the Bayesian point of view and

with the flat prior on α, ρ. Bayesian estimation with proper models for initial conditions

(using the so-called “exact likelihood”) have been studied in Zellner (1971, ch.7.1), Schotman

and Van Dijk (1991), Uhlig (1994) and Lubrano (1995). They find, like us, that a Bayesian

who assumes a similar distribution of y0 shifts her posterior distribution of ρ towards values

greater than ρOLS . But these papers used non-flat priors on α, ρ so it is not clear if the

higher posterior mean they find is due to the priors or to the model of the initial condition.

Therefore they do not answer question B in Table 1. We maintain a flat prior on α, ρ in

order to compare with the frequentist approach and to better isolate the effect of modeling

the density of y0.

Panel B of Figure 3 provides the answer to question B, and the answer is YES. When

reading this Figure note that, as in Sims and Uhlig (1991), the axis for ρ increases from right

to left. The cut presented in panel B exposes the density p(ρ|ρOLS = 0.95). This density is

clearly asymmetric and its mean is higher than the OLS estimate. This is striking, because

the analogous figure in Sims and Uhlig (1991) (their Figure 5) for the model without the

constant term shows a symmetric density, but in our setup the density becomes asymmetric.

In Figure 4 we reproduce the same density again in a two-dimensional graph, but flipping

10For a general discussion of posteriors conditional on sample statistics, such as ρOLS , rather than condi-
tional on the whole sample y, see Kwan (1998).
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the horizontal axis, so that the values of ρ are increasing. In the present example, upon

observing ρOLS = 0.95 a Bayesian would believe that the true value of ρ is around 0.97,

adjusting the OLS estimate upwards, in the same direction as a frequentist who corrects

the small sample bias. Figure 4 is simpler to read, but the value added of Figures 2 and

3 is that they show that the densities at other points between, roughly, ρOLS = 0.7 and

ρOLS = 1, are qualitatively similar to Figure 4. This illustrates that when the model relates

y0 to the parameters (α, ρ, σ), then in this range of values of ρOLS Bayesians tend to agree

with the frequentists that the OLS estimate is too low and it should be adjusted upwards.

Therefore, we answer YES to question B.
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ρ

Figure 4 – Bayesian density p(ρ|ρOLS = 0.95) assuming κ = 1 (case B). This is a smoothed
histogram from the Monte Carlo experiment explained in the appendix. The dotted vertical
line at ρ = 1 signals that at ρ = 1 the density is not uniquely defined.

Intuition. Let us provide an intuition about the results just shown. We will argue

that the effect of including the model (2) for y0 into the likelihood function is similar to the

effect of including a data point in the sample as if y0 would arise from some observation at

a notional date. This will be similar to adding an observation consistent with the Random

Walk model with ρ = 1 and this is likely to cause an adjustment of the posterior mean of

ρ towards 1 (which, for ρOLS < 1, means “upwards”). The analytic details follow.
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The posterior with initial condition (2) for ρ 6= 1 and κ = 1 is

p(α, ρ|y, σ2) ∝
√

1− ρ2 exp

(
− 1

2σ2

[
T∑
t=1

(yt − α− ρyt−1)2 + (y0(1− ρ)− α)2
1 + ρ

1− ρ

])
for |ρ| < 1

(3)

∝ exp

(
− 1

2σ2

[
T∑
t=1

(yt − α− ρyt−1)2 + (y0(1− ρ)− α)2
1

(1− ρ)2

])
for |ρ| > 1

We first consider an approximation to the posterior where the terms
√

1− ρ2, (1 +

ρ)/(1− ρ) and (1− ρ)2 that appear in this expression are substituted by a constant, so we

consider the approximate posterior

papprox(α, ρ|y, σ2) ∝ exp

(
− 1

2σ2

[
T∑
t=1

(yt − α− ρyt−1)2 +
σ2

σ2v
(y0 − α− ρy0)2

])
(4)

for a fixed σ2v and for all ρ. The result below will show that in this posterior the term

inside the exp(·) operator pushes an estimator ρOLS < 1 upwards, that is, towards one.

The calculations shown in Figure 4 show that this effect actually dominates. We discuss

informally the effect of the terms
√

1− ρ2, (1 + ρ)/(1− ρ) and (1− ρ)2 after Result 1.

Note that papprox corresponds exactly to the posterior of a model where the prior on α

and ρ is flat but, in addition to the sample, we have an observation for some notional date

t′

yt′ = α+ ρyt′−1 + v (5)

where v ∼ N(0, σ2v) and we happened to observe on this date yt′ = yt′−1 = y0.
11 Conversely,

notice that plugging y0 in (5) is quite similar to the model for the initial condition (2).

We show below that this approximate posterior, for most samples, will have a mean

that is larger than the OLS estimate.

To illustrate the effect of adding this “data point” we show in Figure 5 a scatter plot of

data points (yt, yt−1) for a sample of length 100 simulated from an AR(1) model. In this

11In his class-notes, Sims (2006) also points out the similarity between the distribution of the initial
condition and a likelihood of a dummy observation for a notional date. Our argument interprets this as an
approximation and Result 1 provides sufficient conditions for an upward adjustment of the posterior mean
when adding this notional date.
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which ρOLS = 0.93. The dashed line shows the OLS line fitted into this sample. The two circles
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and the one scaled by σv. The solid line shows the OLS line fitted into the sample that that
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of this line. The solid vertical line shows the value of αOLS/(1−ρOLS). The two dotted vertical
lines (one of which partly overlaps with the solid vertical line) delimit the range of values of y0
for which, given the rest of the sample, condition (7) would be violated.

sample ρOLS = 0.93. We also plot the “additional data point” representing the distribution

of the initial condition, this point is (y0, y0) so it lies exactly on the 45o line. It is intuitive

that adding a “data point” on the 45o line tends to tilt the regression line towards the 45o

line. This intuition is even stronger if instead of plotting the original “additional data point”

(which receives weight σ2/σ2
v

T+σ2/σ2
v

in the posterior (4)) we plot a point (y0
σ
σv
, y0

σ
σv

) which we

label “additional data point scaled by σv”. Adding this scaled point with the same weight

as the other data points and computing the OLS estimate is an equivalent way of finding

the mean of the posterior (4).12

The Figure illustrates that adding the scaled additional data point tilts the dashed

regression line into the steeper solid line. This is because the estimate of ρ moves upwards

relative to the original OLS estimate, while the absolute value of the posterior mean of α is

lower. In the sample presented in Figure 5, the posterior mean of ρ is equal to 0.96 while,

recall, we found ρOLS = 0.93.13

12In this data point the 1 corresponding to the constant term is also multiplied by σ
σv

.
13We obtain the posterior mean of 0.96 assuming σ = 1 and σv = 0.15. This value of σv would be justified
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Therefore, a Bayesian adjusts the OLS estimate upwards once she takes the distribution

of the initial condition into account because the behavior of papprox dominates the behavior

of the posterior (3).

We now show an analytic result that gives a necessary and sufficient condition for the

upward adjustment due to papprox. Notice that the result is about the posterior mean

conditional on the sample y, while the posterior shown in Figures 3, 4 conditions on less

information, namely on the value ρOLS .

Result 1. Assume papprox is the actual posterior for all ρ. Assume the sample satisfies

ρOLS 6= 1. Then we have

Ep
approx

(ρ|y) > ρOLS (6)

if and only if14

either y0 < min

(∑T
t=1 yt−1
T

,
αOLS

1− ρOLS

)

or y0 > max

(∑T
t=1 yt−1
T

,
αOLS

1− ρOLS

)
.

(7)

The proof is in the Appendix.

Condition (7) tends to hold in the common case when y grows more or less as a unit

root process. In this case, precisely due to the small sample bias, it is likely that ρOLS < 1,

and the initial condition is likely to be lower than both the sample mean and the estimated

long run mean.

More generally, the condition tends to hold in the stationary case ρOLS < 1. To see

this, note that in stationary datasets the OLS estimate of the steady-state αOLS

1−ρOLS , and the

sample mean
∑T

t=1 yt−1/T, are likely to be close to each other, then y0 is unlikely to be in

between αOLS

1−ρOLS and
∑T

t=1 yt−1/T since this is a very narrow interval, hence condition (7)

is likely to hold. In Figure 5 the range of values of y0 for which condition (7) is violated is

by assuming ρ = 0.96 and noting that model (2) would imply σv =
√

(1− ρ)/(1 + ρ). Of course, here we
treat σv as fixed and we use the value of 0.15 only for illustration.

14In the zero probability case that ρOLS = 1 the necessary and sufficient condition for the inequality to

hold is
(
y0 −

∑T
t=1 yt−1

T

)
αOLS > 0.
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delimited with vertical dotted lines, showing this range is indeed very narrow.15

The result also highlights that the upward adjustment does not occur for all the samples

y. But since the samples that violate (7) are unlikely given the model for y0 and ρOLS < 1

this explains why we find in Figures 2, 3 and 4 that E(ρ|ρOLS) > ρOLS when ρOLS is close

to, but below 1.

The above intuition and result work for the approximate posterior papprox. Recall that

the approximate posterior differs from the actual posterior because the terms
√

1− ρ2,

(1 + ρ)/(1 − ρ) and (1 − ρ)2 in (3) are substituted by constants. Let us discuss how these

approximations affect the results.

The actual posterior that includes these terms is non-symmetric, so that finding the

mean analytically is difficult or impossible. For the |ρ| < 1 branch, on the one hand,

(1+ρ)/(1−ρ) increases in the vicinity of ρ = 1, which increases the weight of the “additional

data point” in the posterior thus pushing the posterior mean of ρ more strongly towards 1.

On the other hand, the term
√

1− ρ2 downweighs the posterior in the vicinity of ρ = 1 hence

pushing the posterior mean ρ away from 1. For the |ρ| > 1 branch the term (1 − ρ)2 also

gives more weight to the additional observation. The combined effect on the posterior mean

is difficult to judge. This is why we resorted to numerical integration and to summarizing

the posteriors p(ρ|y) into p(ρ|ρOLS) in Figures 2, 3 and 4. Our Figures 2, 3 and 4 prove

that the adjustment is positive, suggesting that for ρOLS between, roughly, 0.7 and 1, the

intuition provided by Result 1 dominates, since E(ρ|ρOLS) > ρOLS .16

4.2 Does a frequentist econometrician adjust ρOLS when the model of y0

is unrelated to the parameters? (Question C)

Consider now the frequentist distribution of ρOLS when the initial condition is unrelated to

parameters ρ, α, σ, modeled as p(y0|ρ, α, σ) ∝ 1.17 It is known, but rarely highlighted, that

15In the case ρOLS > 1 the condition (7) is likely to be violated and therefore the result implies that it is
likely that E(ρ|y) < ρOLS . The condition is likely to be violated because in this case αOLS/(1 − ρOLS) is
the level from which the series appears to be diverging at an accelerating rate and thus typically y0 will be
between the sample mean and this level.

16The inequality might hold for lower values of ρOLS as well, but there the effect is quantitatively too
small to be visible in our plots.

17p(y0|ρ, α, σ) ∝ 1 is, to our minds, the only way to fully capture the idea that the initial condition
is unrelated to parameters. Consider e.g. an alternative assumption: y0 = 0. This looks like a natural
assumption to a frequentist econometrician who considers a model with α = 0, because for a stationary ρ
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Figure 6 – Two realizations of y1, ..., yT and the performance of the OLS estimator. T = 100, ρ =
0.95. The axes labeled yt and yt−1 show the distance from the steady state α/(1− ρ) in terms
of error standard deviations σ. For example, yt = −10 means that yt is ten error standard
deviations below α/(1− ρ).

in this case the small sample bias vanishes. Analytic results to this effect can be found in

Phillips (1987, section 6), and Phillips and Magdalinos (2009). Arellano (2003, p.86) and

Chamberlain (2000) show this result for some special cases in the context of panel data.

Therefore, we answer NO to question C.

Panel C of Figure 3 illustrates these analytical results. The density in panel C is obtained

with κ = 100, which approximates the situation when y0 is unrelated to the parameters. It

is clear that the bias of ρOLS in this figure is very small and the small sample distribution

of the OLS estimator is very tightly concentrated near the true value.

Intuition. Although in this case we have hard analytic results, it is useful to give

some intuition about why the OLS bias shrinks as the distribution of y0 becomes flat. In

the ergodic mean of the process is α/(1 − ρ) = 0. So y0 = 0, although with no explicit dependence on α
and ρ, actually introduces a dependence of y0 on α and ρ through the back door. In general, any proper
distribution of y0 introduces some relation between the initial condition and the parameters through the
back door.
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a nutshell, a large var(y0) implies a larger sample variation in the regressors yt−1 and, as

is well known, this larger variation increases the precision of the OLS estimator. To see

this, compare the simulated sequence of y1, ..., yT plotted in the top of Figure 6 with the

simulated sequence of y1, ..., yT plotted in the bottom of Figure 6.

The sequence in the top of Figure 6 starts near its steady state. This is the typical case

when we assume κ = 1. The left graph plots yt against time and the right graph shows the

scatter plot of yt against yt−1. The values of yt−1 in the horizontal axis of the scatter plot

are not very dispersed. As a result, when we fit a regression line by OLS into this collection

of points we may incur a large error. The small sample bias typically makes this regression

line flatter than the true regression line. Compare the dashed line, showing the regression

line fitted by OLS with the solid line showing the true regression line: the dashed line is

indeed flatter.

The sequence in the bottom of Figure 6 starts far from its steady state. This is the

typical case when we assume κ = 100. The values of yt−1 in the horizontal axis are now

very dispersed and the regression line fit by OLS into this collection of points is very close to

the true regression line. This explains why the small sample bias is negligible when κ = 100.

5 Conclusion

We have reexamined the classical versus flat-prior-Bayesian controversy about the validity

of the OLS estimator in autoregressions. We have shown in detail how the default Bayesian

and frequentist analysis of an autoregression assume very different models of the initial

condition. Then we have demonstrated how under a natural model of the initial condition

the flat-prior-Bayesian posterior tends to suggest that the process is more persistent (has a

higher ρ) than the OLS estimate. Finally, we showed how the commonly used “conditional

likelihood” is tantamount to a model of the initial condition that implies large sample

variation of the data and thus suggests that the OLS estimator is very good, also from the

frequentist perspective. The summary of this discussion is found in Table 2.

We have shown that classical and Bayesian econometricians qualitatively agree about

the virtues of OLS estimation when they model the initial condition in the same way. They

17



Table 2 – Does the OLS estimate need an adjustment? The complete picture

Approach to statistics

model of y0 Frequentist Bayesian

depends on α, ρ, σ A: YES B: YES
does not depend on α, ρ, σ C: NO D: NO

both conclude that if ρOLS is close to, but below 1, the OLS method underestimates the

true value of ρ if a proper model for the initial condition is specified, while both of them

conclude that the OLS method provides a good point estimate if they model y0 as unrelated

to the parameters that apply in the rest of the sample.

An applied econometrician could then use a certain model of the initial condition and

reduce considerably the difference between the standard point estimates coming from the

Bayesian and frequentist approaches. The use of a posterior or of confidence intervals

still is a different way of summarizing the data in the light of the model, both of them

possibly carrying useful information, but the two approaches do not give contradictory

recommendations about whether or not OLS is an appropriate point estimate.18

Even though our claims are based on simulations displayed in Figures 2-3-4 they are not

parameter dependent. However, our claims do depend on the fact that we used an AR(1)

model with a constant. We do not know if our results survive in more general models, but

it does show that the distribution of the initial condition should be taken into account.

Appendix
18Another option for an applied econometrician is to use the priors on observables as in Jarociński and

Marcet (2010). That paper motivates using priors on observables as a better way to summarize information
that experts actually have about the economy. The effect of their prior on growth rates on the posterior is
similar, analytically, to the term introduced by the marginal distribution of the initial condition. Therefore,
the prior on growth rates can be understood as another way to connect Bayesian and frequentist approaches.
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A Generation of the joint density of ρ and ρOLS by Monte

Carlo

In this appendix we explain how we adapted the Monte Carlo of Sims and Uhlig (1991) to

the model in which a constant term α is present. We first describe the Monte Carlo and

then argue that the joint density of ρ and ρOLS obtained with it corresponds to the flat

prior on α, ρ, lnσ.

A.1 The Monte Carlo

To generate the sample of (ρ, ρOLS) from their joint distribution we proceed as follows. We

use a grid of values of ρ from 0.7 to 1.2 at intervals of 0.01. For each value of ρ we generate

100,000 draws of y, where y = (y0, y1, ..., y100) is a vector of 101 observations from model

(1)-(2). To generate one draw of y we first draw y0 from (2). Without loss of generality, we

fix α = 0 and σ = 1. We explain below why there is no loss of generality in fixing α = 0 and

σ = 1. Given y0 we simulate y1, ..., y100 using (1). For each draw of y obtained this way we

compute ρOLS by regressing vector (y1, ..., y100) on a constant term and vector (y0, ..., y99).

Thus, for each value of ρ on the grid we have 100,000 draws of ρOLS . We assign the draws of

ρOLS to bins (−∞, 0.695), [0.695, 0.705), [0.705, 0.715), etc. The histogram made from these

bins for a given value ρ = ρ̄ approximates the distribution of ρOLS |ρ = ρ̄. (The left panel

of Figure 1 is such a histogram for ρ = 0.95, smoothed and normalized.) The histograms

lined up side by side form a surface that approximates the joint distribution of ρ and ρOLS .

A.2 Flat prior on ρ

A joint distribution of (ρ, ρOLS) generated as above corresponds to the flat prior for ρ. To

see that the underlying prior about ρ is flat notice that the grid of values of ρ is uniform

and we make an equal number of draws of ρOLS for each value of ρ.

A.3 Invariance to α and σ for ρ 6= 1

The joint distribution of (ρ, ρOLS) generated as above is invariant to the values of α and σ

everywhere except for the measure-zero set ρ = 1. Therefore, outside this set it applies to
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any prior on α and σ, including the flat prior on α and lnσ. The invariance holds when the

first observation comes from (2), and is an implication of the following result.

Result 2. Assume the model parameterized as

yt − µ = ρ (yt−1 − µ) + ut for t = 1 . . . T (A.1)

and assume that the initial condition is given by:

y0 = µ+ σψ (A.2)

where ψ is a random variable. Then, if ψ is independent of the shocks u and its distribution

is independent of µ and σ conditionally on ρ, the distribution of the OLS estimator of ρ in

(1) is independent of µ and σ conditionally on ρ.

Proof. Define normalized errors: v ≡ u/σ. (A.2) allows to write:

yt = µ+ σ

(
t∑
i=1

ρt−ivi + ρtψ

)
= µ+ σỹt (A.3)

where ỹ is the process with µ = 0, which would obtain from the same realization of errors,

but rescaled to have a unit variance. Then it is a matter of simple algebra to show that:

ρ̂ ≡ T
∑
ytyt−1 −

∑
yt−1

∑
yt

T
∑
y2t−1 − (

∑
yt−1)

2 =
T
∑
ỹtỹt−1 −

∑
ỹt−1

∑
ỹt

T
∑
ỹ2t−1 − (

∑
ỹt−1)

2 . (A.4)

Similar results about invariance of ρOLS have been used in the literature. Andrews

(1993, Appendix A), contains a verbal proof for |ρ| ≤ 1 and for a particular distribution for

ψ. DeJong et al. (1992) contains a similar proof for a fixed initial displacement y0 − µ. As

can be seen, the proof is very simple, but we could not find a formal result focused on giving

a general form of the initial condition which guarantees independence of the distribution of

ρOLS from nuisance parameters, so we offer it here for completeness.

To map this result to our case notice that whenever ρ 6= 1 the model (A.1)-(A.2) is

equivalent to the model (1)-(2), with the mapping α = (1− ρ)µ.
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A.4 The singularity at ρ = 1

When ρ = 1 then, unlike for ρ 6= 1, the distribution of ρOLS does depend on α and σ. The

flat prior about α and lnσ, that we assume, is a limit of proper priors and the distribution

of ρOLS depends on how we take this limit, since it depends on the relative size of α and

σ. Therefore, the distribution in the measure-zero region defined by ρ = 1 is not uniquely

pinned down.

When α is large relative to σ then the distribution of ρOLS collapses to a point mass

at the true value, 1. This happens because large absolute values of α imply large sample

variation in yt relative to the error standard deviation σ. Note that when ρ = 1, α is the

growth rate of yt. Therefore, large α means that yt changes fast from period to period, and

the sample variation in yt is large. With large sample variation the OLS estimator is very

precise (recall Figure 6). When α is small relative to σ then ρOLS has a proper distribution.

B Proof of Result 1

As we have argued in the text the posterior mean is obtained by minimizing the sum of

square residuals after adding the “additional data point.” Simple algebra shows that adding

the “additional data point” results in the following adjustment of the previous OLS estimate

using only the sample:19

Ep
approx

 α

ρ

∣∣∣∣∣∣ y, σ
 =

 αOLS

ρOLS

+R−1T+1

σ2

σ2v

 1

y0

 (y0 − αOLS − ρOLSy0), (B.1)

where the second moment matrices R are given by

RT =
T∑
t=1

 1

yt−1

 1

yt−1

′ ,

RT+1 = RT +
σ2

σ2v

 1

y0

 1

y0

′ .
19This type of formula is routinely used in models of least squares learning, see for example equation (4a)

in Marcet and Sargent (1989).
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In other words, with the “additional data point” the estimate [αOLS , ρOLS ] is updated by a

term where the regressors [1, y0] multiply the forecast error in the new data point and this

is weighted by the inverse of the second moment matrix of the regressors RT+1. To arrive

at (B.1) note that

Ep
approx

 α

ρ

∣∣∣∣∣∣ y, σ
 = R−1T+1

 T∑
t=1

 1

yt−1

 yt +
σ2

σ2v

 1

y0

 y0
 (B.2)

= R−1T+1

RT+1 −
σ2

σ2v

 1

y0

 1

y0

′ αOLS

ρOLS

+
σ2

σ2v
R−1T+1

 1

y0

 y0, (B.3)

where the first equality follows from the claim that Ep
approx

(α, ρ|y) is the OLS estimate

with the ”additional data point” and the second equality follows from simple algebra.

Applying the formula for the inverse matrix in (B.1) we get

Ep
approx

(ρ | y, σ)− ρOLS =

= (detRT+1)
−1

[
−

T∑
t=1

yt−1 −
σ2

σ2v
y0, T +

σ2

σ2v

]
σ2

σ2v

 1

y0

 (y0 − αOLS − ρOLSy0) (B.4)

= (detRT+1)
−1

[(
T +

σ2

σ2v

)
y0 −

(
T∑
t=1

yt−1 +
σ2

σ2v
y0

)]
σ2

σ2v
(y0 − αOLS − ρOLSy0). (B.5)

The last line is positive if and only if (7) holds hence Ep
approx

(ρ | y, σ) > ρOLS .

Conditioning both sides of the last inequality on the sample y and applying the law of

iterated expectations gives the result. �
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