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OPTIMAL TRANSPORT NETWORKS IN SPATIAL EQUILIBRIUM
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We study optimal transport networks in spatial equilibrium. We develop a frame-
work consisting of a neoclassical trade model with labor mobility in which locations
are arranged on a graph. Goods must be shipped through linked locations, and trans-
port costs depend on congestion and on the infrastructure in each link, giving rise to
an optimal transport problem in general equilibrium. The optimal transport network
is the solution to a social planner’s problem of building infrastructure in each link. We
provide conditions such that this problem is globally convex, guaranteeing its numeri-
cal tractability. We also study cases with increasing returns to transport technologies in
which global convexity fails. We apply the framework to assess optimal investments and
inefficiencies in the road networks of European countries.
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1. INTRODUCTION

TRADE COSTS ARE a ubiquitous force in international trade and economic geography,
as they shape the spatial distributions of prices, real incomes, and trade flows. Transport
infrastructure is a key determinant of trade costs.1 Governments, international organi-
zations, and private companies routinely invest large amounts of resources to improve
transport networks within and across countries. How should these investments be allo-
cated? Are observed transport networks suboptimal, and if so, how important are these
inefficiencies?

In this paper, we develop and apply a framework to study optimal transport networks
in general equilibrium spatial models. We solve a global optimization over the space of
networks, given any primitive fundamentals, in a general neoclassical framework. In con-
trast to the standard approach, here trade costs are an outcome rather than a primitive,
endogenously responding to fundamentals such as resource endowments and geographic
frictions through optimal investments in the transport network. We apply the framework
to European road networks, where we assess the aggregate and regional impacts of opti-
mal infrastructure growth, the inefficiencies of observed networks, and the optimal place-
ment of roads as a function of observable regional characteristics.
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The point of departure for the framework is a neoclassical economy with multiple
goods, factors, and locations, nesting standard trade models (such as the Ricardian, Arm-
ington, and factor-endowment models) and allowing either for a fixed spatial distribu-
tion of the primary factors (as in international trade models) or for labor to be perfectly
mobile (as in economic geography models). The key methodological innovation is that
locations are arranged on a graph and goods can only be shipped through connected lo-
cations subject to transport costs that depend both on how much is shipped (e.g., because
of congestion or decreasing returns to shipping technologies) and on how much is in-
vested in infrastructure (e.g., the number of lanes or the quality of the road). We tackle
the planner’s problem of simultaneously choosing the transport network (i.e., the set of
infrastructure investments), the allocation of production and consumption, and the gross
trade flows across the graph.

Solving this problem may be challenging because of dimensionality—the space of all
networks is large—and interactions—an investment in one link asymmetrically impacts
the returns to investments across the network. It is also complicated by the potential pres-
ence of increasing returns due to the complementarity between infrastructure investments
and shipping. We exploit the fact that the planner’s subproblem of choosing gross trade
flows is an optimal flow problem on a network, a well-understood problem in the oper-
ations research and optimal transport literatures. A key insight from these literatures is
that the optimal flows derive from a “potential field”—prices in our context—that can be
efficiently solved numerically using duality techniques. We make assumptions such that
the full planner’s problem, involving the general equilibrium allocation and the network
investments alongside the optimal transport, inherits the tractability of optimal flow prob-
lems. Our assumptions, including a continuous mapping from infrastructure investments
to trade costs and curvature in the technology to transport goods, ensure that the full
planner’s problem is convex and that the set of optimal infrastructure investments can
be expressed as a function of equilibrium prices. As a result, we solve the full planner’s
problem while avoiding a direct search in the space of networks. Instead, we optimize in
the space of equilibrium prices applying the numerical methods typically used for optimal
transport problems.

While strong enough congestion in transport guarantees the convexity of the planner’s
problem and enables the use of a duality approach, our framework can also be used when
congestion is weak or absent—a case that implies increasing returns in the transport tech-
nology. We numerically approximate the global solution in non-convex cases by combin-
ing the duality approach to obtain the optimal flows with global-search numerical meth-
ods that build upon standard simulated annealing techniques. Even though in non-convex
cases we only find local optima, the ensuing networks display the qualitative features that
one would expect in the presence of economies of scale, such as more concentration in
fewer links and a larger amount of zeros.

The framework has enough flexibility to be matched to data on actual transport net-
works. The quantification relies on two steps. First, the model’s fundamentals can be
calibrated such that the solution to the planner’s optimal allocation of consumption, pro-
duction, and gross flows matches spatially disaggregated data on economic activity given
an observed transport network. This step is enabled by the fact that, given the transport
network, the welfare theorems hold assuming Pigouvian taxes to correct congestion exter-
nalities. Second, assuming a specific technology to build infrastructure makes it possible
to undertake counterfactuals involving the optimal network.

We apply these steps in the context of European road networks. We calibrate the pro-
ductivity and the endowment of non-traded goods such that the model reproduces the
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observed population and value added at a high spatial resolution separately for each of
the 24 countries in our data. We construct a measure of the road infrastructure linking
any two contiguous cells in the data and entertain different assumptions on labor mo-
bility and on the returns to infrastructure, encompassing both convex and non-convex
cases. We either assume that the observed road network is the outcome of the full plan-
ning problem—allowing us to back out these costs from the first-order conditions of the
planner’s problem—or use existing estimates for how building costs vary with observable
geographic features.

Our counterfactuals in the benchmark parameterization with convex costs imply that,
across countries, the average welfare gain from an optimal 50% expansion in the observed
road networks and the average welfare loss from road misallocation are on average 2%
and range between 0�1% and 7%. The optimal expansion or reallocation of roads reduces
regional inequalities in real consumption, reflecting that optimal infrastructure invest-
ments reduce dispersion in the marginal utility of consumption of traded commodities.
We illustrate the alternative road investment plans implied by the different assumptions
and counterfactuals by considering two of the largest economies in our data, France and
Spain. We conclude with an exercise involving multiple countries in Western Europe,
which highlights the importance of trade across borders and international coordination in
infrastructure policy.

The rest of the paper proceeds as follows. Section 2 discusses the connection to the
literature. Section 3 develops the framework, establishes its key properties, and discusses
the numerical implementation. Section 4 presents simple illustrative examples. Section 5
applies the model to road networks in Europe. Section 6 concludes. We relegate proofs,
additional derivations, details of the quantitative exercise, tables, and figures to the Sup-
plemental Material Appendix (Fajgelbaum and Schaal (2020)).

2. RELATION TO THE LITERATURE

A quantitative literature in international trade and spatial economics studies the role of
trade costs in rich geographic settings. Eaton and Kortum (2002) and Anderson and Van
Wincoop (2003) developed quantitative versions of the Ricardian and Armington trade
models, respectively, allowing counterfactuals with respect to trade costs in multi-country
competitive equilibrium. A standard approach to study the gains from market integration
is to fit these models to data on the geographic distribution of economic activity, and then
ask what would happen if trade costs between specific locations were to change by some
predetermined amount.2 We develop a different approach to implementing counterfac-
tuals. We first pinpoint the best set of infrastructure investments in a transport network,
and then ask what would happen if trade costs were to change in the way implied by the
efficient transport network.

Recent studies undertake counterfactuals with respect to the cost of shipping across
specific links in models where traders choose least-cost routes to ship goods.3  Allen and
Arkolakis (2014) measured the aggregate effect of the U.S. highway system, Donaldson

2Costinot and Rodríguez-Clare (2013) reviewed the quantitative gravity literature on changes in trade costs
focused on measuring gains from international trade. Redding and Rossi-Hansberg (2017) reviewed a body of
research using similar frameworks to study counterfactuals involving changes in infrastructure within countries.
See Donaldson (2015) and Redding and Turner (2015) for reviews of empirical analyses of actual changes in
transport infrastructure, as well as the literature review below for additional references.

3Chaney (2014a) studied endogenous networks of traders in contexts with imperfect information. For a
review of recent literature on the role of various types of networks in international trade, see Chaney (2014b).
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and Hornbeck (2016) calculated the historical impact of railroads on the U.S. economy,
and Redding (2016) compared the impact of infrastructure changes in models with vary-
ing degrees of increasing returns. Alder (2019) simulated counterfactual transport net-
works in India, Nagy (2016) studied how the development of U.S. railways affected city
formation, and Sotelo (2016) simulated the impact of highway investments on agricultural
productivity in Peru. Other recent studies allowing for factor mobility and trade frictions
within countries include Bartelme (2015), Caliendo, Parro, Rossi-Hansberg, and Sarte
(2017), and Ramondo, Rodríguez-Clare, and Saborío-Rodríguez (2016).

Some papers feature an optimization over transport networks. Alder (2019) applied a
heuristic algorithm that adds or removes links in a specific order based on their contri-
bution to net aggregate income.4  Felbermayr and Tarasov (2015) studied optimal infras-
tructure investments by competing planners in an Armington model where locations are
arranged on a line. Allen and Arkolakis (2019) computed the welfare gradient with re-
spect to reductions in the cost of shipping across specific links in an Armington model
with spillovers.5 Their approach is suitable to compute the first-order welfare impact of
infrastructure investments around an initially observed allocation.

We solve instead a global optimization over the space of networks in a neoclassical
framework. Both our model and the studies cited above include an optimal transport
problem, defined as the trader’s problem of choosing least-cost routes across pairs of loca-
tions.6 In most of the studies cited above, the optimal transport problem does not include
congestion and can therefore be solved independently from the general equilibrium. In
our context, congestion in transport renders the infrastructure investment problem con-
vex, enabling the search for the global optimum. The least-cost route optimization from
the applications of the gravity trade models discussed before corresponds to the solution
of our optimal transport problem in the special case without congestion.

As mentioned in the Introduction, the planner’s subproblem of choosing how to ship
goods given demand, supply, and infrastructure formally defines an optimal transport
problem. Optimal transport problems were studied early on by Monge (1781) and Kan-
torovich (1942).7 Because we analyze the optimal route problem instead of the direct as-
signment of sources to destinations, our approach is more closely related to optimal flow
problems on a network as in Chapter 8 of Galichon (2016).8 Our problem differs from
this literature in two important aspects. First, in our model, consumption and production
are endogenous because they respond to standard general-equilibrium forces. Instead,
the aforementioned optimal flow problems map sources with fixed supply to sinks with
fixed demand.9 Second, our ultimate focus is on the optimal network investments in the
presence of general-equilibrium forces, whereas this literature usually takes the transport
costs between links as a primitive. In that regard, the problem that we study is akin to the
optimal transport network problems in non-economic environments analyzed in Bernot,
Caselles, and Morel (2009).

4See Section B of the Supplementary Material for a comparison with the Alder (2019) algorithm.
5Swisher IV (2015) and Trew (2016) allowed for endogenous transport costs in different historical contexts.
6Note that “optimal transport” refers to the optimal shipping of goods throughout the network. This is one

of the subproblems embedded in our framework, alongside the optimal network design problem.
7See Villani (2003) for a textbook treatment of the subject.
8See also Bertsekas (1998) for a survey of algorithms and numerical methods for optimal flow and transport

problems on a network.
9See Beckmann (1952) for an early continuous-space example of such an optimal transport problem in

economics. See Carlier (2010) and Ekeland (2010) for lecture notes on optimal transport and its connection to
economics.
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Despite these differences, our model inherits key appealing properties of optimal trans-
port problems. While the optimal transport literature shows that strong duality holds un-
der weak conditions, it holds under some conditions in our model as a special case of
convex duality. Hence, our way of embedding an optimal transport problem into a gen-
eral neoclassical equilibrium model extended with a network design problem does not
preclude the validity of key earlier insights from the optimal transport literature. The
main benefit of duality, in our context, is a reduction of the search space and substantial
gains in computation times.10

A large body of research estimates how actual changes in transport costs impact eco-
nomic activity. For instance, Fernald (1999) estimated the impact of road expansion on
productivity across U.S. industries; Chandra and Thompson (2000), Baum-Snow (2007),
and Duranton, Morrow, and Turner (2014) estimated the impact of the U.S. highways on
various regional economic outcomes; Donaldson (2018) estimated the impact of access
to railways in India; and Faber (2014) estimated the impact of connecting regions to the
expressway system in China.11 Our application measures the aggregate country-level wel-
fare gains from optimally expanding current road networks in European countries. In the
counterfactuals, we inspect the relationship between optimal infrastructure investment
and population growth across regions.

As we apply the model to measure the potential losses from misallocation of roads, the
paper is broadly related to studies of the aggregate effects of misallocation such as Restuc-
cia and Rogerson (2008) and Hsieh and Klenow (2009). Desmet and Rossi-Hansberg
(2013), Brandt, Tombe, and Zhu (2013), Asturias, García-Santana, and Ramos (2019),
Fajgelbaum, Morales, Suárez Serrato, and Zidar (2018), and Hsieh and Moretti (2019),
among others, focused on geographical misallocation arising from frictions or spatial poli-
cies.

3. MODEL

3.1. Environment

Preferences

The economy consists of a discrete set of locations J = {1� � � � � J}. We let Lj be the
number of workers located in j ∈J , and L be the total number of workers. We entertain
cases with and without labor mobility. Workers consume a bundle of traded goods and a
non-traded good in fixed supply, such as land or housing. Utility of an individual worker
who consumes c units of the traded goods bundle and h units of the non-traded good is

u=U(c�h)� (1)

where the utility function U is homothetic and concave in both of its arguments. In loca-
tion j, per capita consumption of traded goods is cj = Cj/Lj , where Cj is the aggregate
demand of the traded goods bundle in location j.

10A network-design and planning literature in operations research studies related network-design prob-
lems in telecommunications and transport without embedding them in general-equilibrium spatial models.
See Ahuja, Magnanti, and Orlin (1989).

11See also Coşar and Demir (2016) and Martincus, Carballo, and Cusolito (2017) for empirical studies of
how infrastructure investments impact international shipments.
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There is a discrete set of tradable sectors n = 1� � � � �N , combined into Cj through a
homogeneous of degree 1 and concave aggregator (e.g., a CES aggregator),

Cj =Dj

(
D1
j � � � � �D

N
j

)
� (2)

where Dn
j is sector n’s output used in location j.

Production

The supply side corresponds to a standard neoclassical economy. In addition to labor,
there is a fixed supply Vj = (V 1

j � � � � � V
M
j )

′ of primary factors m= 1� � � � �M in location j.
These factors are immobile across regions but mobile across sectors. The production pro-
cess may also use goods from other sectors as intermediate inputs. Output of sector n in
location j is

Yn
j = Fnj

(
Lnj �Vn

j �Xn
j

)
� (3)

where Lnj is the number of workers, Vn
j = (V 1n

j � � � � � V
Mn
j )′ is the quantity of other pri-

mary factors, and Xn
j = (X1n

j � � � � �X
Nn
j ) is the quantity of each sector’s output allocated to

the production of sector n in location j. The production function Fnj is either neoclassi-
cal (constant returns to scale, increasing and concave in all its arguments) or a constant
(endowment economy).

Underlying Graph

The locations J are arranged on an undirected graph (J �E), where E denotes the set
of edges (i.e., unordered pairs of J ). For each location j, there is a set N (j) of connected
locations, or neighbors. Goods can only be shipped through connected locations; that is,
goods shipped from j can be sent to any k ∈ N (j), but to reach any k′ /∈ N (j) they must
transit through a sequence of connected locations. The transport network design prob-
lem will consist of determining the level of infrastructure linking each pair of connected
locations. A natural interpretation is that j is a geographic unit such as county, N (j) are
its bordering counties, and shipments are done by land. More generally, the neighbors in
the model do not need to be geographically contiguous, since it could be possible to ship
directly between geographically distant locations by land, air, or sea. The fully connected
case in which every location may ship directly to every other location, N (j)=J for all j,
is one special case.

Transport Technology

In the model, goods transit through several locations before reaching a point where
they are consumed or used as intermediate input. We let Qn

jk be the quantity of goods
in sector n shipped from j to k ∈ N (j), regardless of where the good was produced. We
adopt two alternative specifications for transport costs: iceberg costs without congestion
across commodities, and a case with cross-goods congestion. For simplicity of exposition,
we discuss the former case here. In Section 3.7, we discuss congestion across goods, which
will also be the benchmark specification in our applications. Appendix A of the Supple-
mental Material (Fajgelbaum and Schaal (2020)) presents the model in a general case
encompassing both formulations.

Transporting each unit of good n from j to k requires τnjk units of the good n itself, so
that 1 + τnjk corresponds to the iceberg cost. This per-unit cost is specified as a function of
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the total quantityQn
jk of good n shipped along the link jk and of the level of infrastructure

Ijk:

τnjk = τjk
(
Qn
jk� Ijk

)
� (4)

The per-unit cost of shipping is increasing in the quantity of commodities shipped:

∂τjk(Q� I)

∂Q
≥ 0� (5)

This assumption allows for decreasing returns in the shipping sector. We refer to these
decreasing returns as congestion, with the understanding that this concept encapsulates
several real-world forces whereby an increase in shipping activity leads to higher marginal
transport costs. These forces may include higher travel times or road damage, as well as
decreasing returns to scale in transportation due to land-intensive fixed factors such as
warehousing or specialized inputs. In short, the more that is shipped, the higher the per-
unit shipping cost.12

We interpret Ijk as capturing features that lead to reductions in the cost of transporting
goods. For example, when shipping over land, Ijk may correspond to whether a road link-
ing j and k is paved, its number of lanes, or the availability of roadside services. Hence,
we assume

∂τjk(Q� I)

∂I
≤ 0�

The transport technology τjk(·) is allowed to vary by jk, capturing variation in shipping
costs across links for the same quantity shipped and infrastructure. This variation may re-
flect geographic characteristics such as distance or ruggedness. The per-unit cost function
τjk(Q� I) may also depend on the direction of the flow; for example, if elevation is higher
in j than k and it is cheaper to drive downhill, then τjk(Q� I) < τkj(Q� I).

Flow Constraint

In every location, there may be tradable commodities being produced, as well as com-
ing in or out. The balance of these flows requires that, for all locations j = 1� � � � � J and
commodities n= 1� � � � �N ,

Dn
j +

∑
n′
Xnn′
j +

∑
k∈N (j)

(
1 + τnjk

)
Qn
jk︸ ︷︷ ︸

Consumption + Intermediate Use + Exports

≤ Yn
j +

∑
i∈N (j)

Qn
ij︸ ︷︷ ︸

Production + Imports

� (6)

The left-hand side of this inequality is location j’s consumption Dn
j of good n, inter-

mediate-input use Xnn′
j by each sector n′, exports to neighbors Qn

jk, and inputs to the
transport sector τnjkQ

n
jk. These flows are bounded by the local production Yn

j and imports
from neighbors Qn

ij . In standard minimum-cost flow problems, this restriction is known as
the conservation of flows constraint.

12For a review of the early literature on production-function estimates of returns to scale in the transport
sector, see Winston (1985). Newbery (1988) theoretically studied road damage externalities, whereby the road
damage caused by one vehicle increases the operating costs of subsequent vehicles. Maibach et al. (2013) listed
higher travel times, higher accident rate, and road damage as reasons why increased road use may impact
transport costs. Other social costs include environmental damage and noise.
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We let Pnj be the multiplier of this constraint. This multiplier reflects society’s valuation
of a marginal unit of good n in location j. In the decentralized allocation, this multiplier
will equal the price of good n in location j. Therefore, we refer to Pnj as the price of good
n in location j.

Network-Building Technology

We define the transport network as the distribution of infrastructure {Ijk}j∈J �k∈N (j). The
network-design problem will determine this distribution. We assume that building in-
frastructure requires a resource (“concrete” or “asphalt”) in fixed aggregate supply K,
which can be freely shipped across locations and cannot be used for other purposes.
This assumption represents a situation where an amount of resources has been sunk into
network-building but must still be allocated across the network. When characterizing the
planner’s problem, it will lead to the intuitive property that the opportunity cost of build-
ing infrastructure in any location is only foregoing infrastructure elsewhere.

The cost of setting up infrastructure may vary across links jk. Specifically, building a
level of infrastructure Ijk on the link jk requires an investment of δIjkIjk units of K. The
network-building constraint therefore is∑

j

∑
k∈N (j)

δIjkIjk ≤K� (7)

We allow the network-design problem to take place when some lower bound for infras-
tructure Ijk is already in place. We also allow for an upper bound Ijk to how much can
be built, possibly representing geographic constraints on the capacity to build on a spe-
cific link. While the graph (J �E) is undirected, the infrastructure matrix {Ijk} defines a
weighted directed graph, as there is no need to impose symmetry in investments or costs
between connected locations.

While both the transport technology τjk(Q� I) in (4) and the infrastructure building cost
δIjk may vary across links jk, each type of variation reflects different forces. Variation in
τjk(Q� I) by jk captures how features of the terrain impact per-unit shipping costs given
quantity shipped and infrastructure, whereas δIjk captures the marginal cost of setting up
infrastructure. In the planner’s problem below, δIjk will not impact the allocation other
than through infrastructure Ijk.

3.2. Planner’s Problem

We solve the problem of a utilitarian social planner who maximizes welfare under two
extreme scenarios: labor is either immobile or freely mobile. In the former case, we let
ωj be the planner’s weight attached to each worker located in region j. We define each
problem in turn.

DEFINITION 1: The planner’s problem with immobile labor is

W = max
cj �hj�{Ijk}k∈N (j)�

{Dnj �Lnj �Vnj �Xnj �{Qnjk}k∈N (j)}n

∑
j

ωjLjU(cj�hj)

subject to:
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(i) availability of traded commodities,

cjLj ≤Dj

(
D1
j � � � � �D

N
j

)
for all j;

and availability of non-traded commodities,

hjLj ≤Hj for all j;
(ii) the balanced-flows constraint,

Dn
j +

∑
n′
Xnn′
j +

∑
k∈N (j)

(
1 + τjk

(
Qn
jk� Ijk

))
Qn
jk ≤ Fnj

(
Lnj �Vn

j �Xn
j

) +
∑
i∈N (j)

Qn
ij for all j, n;

(iii) the network-building constraint,∑
j

∑
k∈N (j)

δIjkIjk ≤K�

subject to a pre-existing network,

0 ≤ Ijk ≤ Ijk ≤ Ijk ≤ ∞ for all j�k ∈N (j);
(iv) local labor-market clearing,∑

n

Lnj ≤Lj for all j;

and local factor market clearing for the remaining factors,∑
n

V mn
j ≤ V m

j for all j and m; and

(v) non-negativity constraints on consumption, flows, and factor use,

Cn
j � cj�hj ≥ 0 for all j ∈N (j)�n�

Qn
jk ≥ 0 for all j�k ∈N (j)�n�

Lnj � V
mn
j ≥ 0 for all j, m, n�

If labor is freely mobile, then the problem is defined as follows.

DEFINITION 2: The planner’s problem with labor mobility is

W = max
u�cj �hj�{Ijk}k∈N (j)�Lj�

{Dnj �Lnj �Vnj �Xnj �{Qnjk}k∈N (j)}n

u

subject to restrictions (i)–(v) above; as well as:
(vi) free labor mobility,

Lju≤LjU(cj�hj) for all j; and
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(vii) aggregate labor-market clearing,∑
j

Lj =L�

This formulation restricts the planner’s problem to allocations satisfying utility equal-
ization across locations, a condition that must hold in the competitive allocation. Since
U is strictly increasing, restriction (vi) implies that the planner will allocate u=U(cj�hj)
across all populated locations, and cj = 0 otherwise.

We stop for a moment to discuss the generality achieved in the previous definitions. The
case without labor mobility corresponds to international trade models. The production
structure encompasses neoclassical trade models.13 When labor mobility is allowed, the
model nests urban economics model with a single homogeneous tradable good in the
tradition of Roback (1982). Since we have assumed neoclassical production functions,
this formulation does not encompass new economic geography models such as Krugman
(1991) and Helpman (1998) nor quantitative extensions with increasing returns (Allen
and Arkolakis (2014), Redding (2016)). In Section 3.7, we discuss how to implement some
cases with increasing returns and provide some examples.

The planner’s problem from Definition 1 can be expressed as nesting three problems:

W = max
Ijk

max
Qn
jk

max
{cj �hj�Dnj �Lnj �Vnj �Xnj }

∑
j

ωjLjU(cj�hj)

subject to the constraints. The innermost maximization problem is a standard allocation
problem of choosing consumption and factor use subject to the production possibility
frontier and the availability of goods in each location. In what follows, we refer to it as the
“optimal allocation” subproblem. We now discuss some intuitive features of the solution
to the optimal flows subproblem over Qn

jk and the network design problem over Ijk.

Optimal Flows

The optimal flow problem that determines the gross flows Qn
jk combines an optimal

transport problem—how to map production sources to destinations—and a least-cost
route problem with congestion. Under the assumption that domestic absorption Dn

j and
production Yn

j are taken as given, this problem is well known in the optimal transport
literature (see, for instance, Chapter 8 of Galichon (2016) or Chapter 4 of Santambrogio
(2015)) and in operations research (Bertsekas (1998)). A general lesson from these liter-
atures is that these problems are well behaved and admit strong duality. In other words,
while the least-cost route and the optimal coupling of sources to destinations may appear
to be high-dimensional problems, the solution boils down to finding a “potential field,”
meaning one Lagrange multiplier (or price) for each location-good pair, and then ex-
pressing the flows as a function of the difference between the multipliers across locations.

The optimal flow problem in our model shares these properties as a special case of
convex duality. To understand the solution, remember that Pnj is the multiplier of the flows
constraint (ii), equal to the price of good n in location j in the market allocation according

13The Armington model (Anderson and Van Wincoop (2003)) corresponds to N = J (as many sectors as
regions) and Fnj = 0 for n �= j, so that Yj

j is region j’s output in the differentiated commodity that (only) region
j produces. The Ricardian model corresponds to labor as the only factor of production and linear technologies,
Yn
j = znj Lnj . The specific-factors and Hecksher–Ohlin models are also special cases.
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to Proposition 4 below. The first-order condition (A.1) from the planner’s problem in
Supplemental Material Appendix A.1 gives the following equilibrium price differential
for commodity n between j and k ∈N (j):

Pnk
Pnj

≤ 1 + τnjk + ∂τnjk

∂Qn
jk

Qn
jk� = if Qn

jk > 0. (8)

Condition (8) is a no-arbitrage condition: the price differential between a location and its
neighbors must be less than or equal to the marginal transport cost. From the planner’s
perspective, this marginal cost takes into account the diminishing returns due to conges-
tion. In the absence of congestion, ∂τnjk/∂Qjk = 0, the price differential would be bounded
by the trade cost.

This expression has a number of intuitive properties. Given the network investment, it
identifies the trade flow Qn

jk as a function of the price differential, as long as the right-
hand side can be inverted. The inversion is possible if the total transport cost Qn

jkτ
n
jk is

convex in the quantity shipped. In that case, the gross trade flow Qn
jk is increasing in

the price differential. Condition (8) also implies that goods in each sector flow in only
one direction, although a link may have flows in opposite directions corresponding to
different sectors. In addition, not all goods need to be shipped and some links may be
unused despite having positive infrastructure. This may occur if the price gap is not large
enough at zero trade to justify shipping.

To help visualize the geometric properties of the problem, Figure 1 illustrates how a
price field can implement the optimal flows given consumption and production in an ex-
ample with a single traded commodity. In the example, the good is produced in the loca-
tion at the origin (light gray circle) and demanded in ten locations (dark gray circles). This
example uses the functional form for τjk in (10), which implies that there are some ship-

FIGURE 1.—Example of optimal flows as a function of the price field. Notes: The figure shows an example of
optimal flows in a 15 × 15 square network with uniform infrastructure across links and one good produced at
the origin (light gray circle) and consumed in 10 other locations (dark gray circles). The price in each location is
indicated by the z-axis coordinate, and corresponds to a solution of the optimal flow problem given production,
consumption, and population. The density of flows is represented by the thickness of links and their direction
is indicated by the arrows.
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ments in every link although they become negligible in regions far away from the points
of production and consumption. The prices, represented on the z-axis, attain their lowest
value at the point of production, and gradually increase with the distance to that point.
The optimal flows follow the price gradient according to equation (8) under equality. The
consumption locations are local peaks of the price field as long as they do not re-ship the
good.

The least-cost route optimization present in the applications of gravity trade models
discussed in the literature review corresponds to the solution to this optimal transport
problem assuming no congestion. In that case, the optimal transport problem can be
solved independently from the rest of the model. In our case, determining the least-cost
routes requires information about the flows, the supply, and the demand for each good,
which are endogenously solved as part of the allocation. Therefore, the optimal transport
problem must be solved jointly with the optimal allocation problem.

Optimal Network

Consider now the outer problem of choosing the transport network Ijk for all j ∈J and
k ∈ N (j). Letting PK be the multiplier of the network-building constraint (iii) (in other
words, the shadow price of asphalt), and as long as the (possibly infinite) upper bound Ijk
is not binding, the planner’s choice for Ijk implies

PKδ
I
jk︸ ︷︷ ︸

Marginal Building Cost

≥
∑
n

Pnj Q
n
jk

(
−∂τ

n
jk

∂Ijk

)
︸ ︷︷ ︸

Marginal Gain from Infrastructure

� (9)

with equality if there is actual investment, Ijk > Ijk. This condition compares the marginal
cost and benefits from investing on the link jk. The left-hand side is the opportunity cost
of building an extra unit of infrastructure along jk, equal to the marginal value of the
scarce resource K in the economy (the multiplier PK of the network-building constraint
(7)) times the rate δIjk at which that resource translates to infrastructure. The gain from
the additional infrastructure, on the right-hand side of (9), is the reduction in per-unit
shipping costs, −∂τjk/∂Ijk, applied to the value of the goods used as inputs in the transport
technology.14

Importantly, the network investment problem inherits the properties that make the op-
timal transport problem tractable. Substituting the solution for Qn

jk as a function of the
price differentials Pnk/P

n
j into (9) implies that the optimal infrastructure Ijk between loca-

tions j and k is only a function of prices in each location. Hence, rather than searching in
the very large space of all networks, this condition allows us to solve for the optimal invest-
ment link by link given the smaller set of all prices. Similar properties can be attained in a
case with cross-goods congestion, as described in Supplemental Material Appendix A.1.

14Various papers measure the first-order impact of changes in bilateral trade costs on world welfare (Atke-
son and Burstein (2010) Burstein and Cravino (2015), Lai, Fan, and Qi (2015), Allen, Arkolakis, and Takahashi
(2019)) or in trade costs in specific links of a transport network on country-level welfare (Allen and Arkolakis
(2019)) around an observed equilibrium. The right-hand side of (9) could be used for a similar purpose, given
a specific set of changes in trade costs.
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3.3. Properties

Convexity

We establish conditions for the convexity of the planner’s problem, which guarantee its
numerical tractability.

PROPOSITION 1—Convexity of the Planner’s Problem: (i) Given the network {Ijk}, the
joint optimal transport and allocation problem in the fixed (resp. mobile) labor case is a
convex (resp. quasiconvex) optimization problem if Qτjk(Q� Ijk) is convex in Q for all j and
k ∈ N (j); and (ii) if, in addition, Qτjk(Q� I) is convex in both Q and I for all j and k ∈
N (j), then the full planner’s problem including the network-design problem from Definition 1
(resp. Definition 2) is a convex (resp. quasiconvex) optimization problem. In either the joint
transport and allocation problem, or the full planner’s problem, strong duality holds when
labor is fixed.

The first result establishes that the joint optimal allocation and optimal transport sub-
problems, taking the infrastructure network {Ijk} as given, define a convex problem for
which strong duality holds under the mild requirement that the transport technology
Qτjk(Q� Ijk) is (weakly) convex in Q. This property ensures that our specific way of in-
troducing an optimal transport problem into a general neoclassical economy is tractable.
Specifically, it guarantees the existence of Lagrange multipliers that implement the op-
timal allocation and transport subproblems and ensures the sufficiency of the Karush–
Kuhn–Tucker (KKT) conditions, in turn allowing us to apply a duality approach to solve
the model numerically—an approach which, as discussed in Section 3.6, substantially re-
duces computation times. Even if the full problem, including the network design, is not
convex due to increasing returns to the network building technology (i.e., if part (ii) of the
proposition fails but part (i) holds), a large subset of the full problem can still be solved
using these efficient numerical methods.

The second result establishes the convexity of the full planner’s problem, including
the network design, under the stronger requirement that the transport cost function
Qτjk(Q� Ijk) is jointly convex in Q and I.15 This condition restricts how congestion in
shipping and the returns to infrastructure enter in the transport technology in each link
through τjk(Q� I). In the absence of congestion (i.e., if ∂τjk/∂Q= 0), convexity fails unless
τjk is a constant. The intuition for this convexity requirement is that the model features
two complementarity forces between infrastructure investments and commodity ship-
ments: the higher the investment in a link, the lower the transport costs and the higher
the flows. In turn, higher shipments lead to more congestion and to more incentives to
develop its infrastructure. The global convexity of the transport cost function ensures that
the congestion forces eventually dominate and that the solution to the investment prob-
lem is interior and stable. Section C of the Supplementary Material develops this point
more formally.

15The proof of Proposition 1 is immediate: given the neoclassical assumptions, the objective function is
concave and the constraints are convex, except possibly for the balanced-flows constraint; convexity of the
transport cost Qτjk(Q� Ijk) ensures convexity of that constraint as well. In the case with labor mobility, the
planner’s problem can only be recast as a quasiconvex optimization problem, but the Arrow–Enthoven theorem
for the sufficiency of the Karush–Kuhn–Tucker conditions under quasiconvexity, requiring that the gradient of
the objective function is different from zero at the optimal point, is satisfied (Arrow and Enthoven (1961)).
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Log-Linear Parameterization of Transport Costs

A convenient parameterization of (4) is the constant-elasticity transport technology,

τjk(Q� I)= δτjk
Qβ

Iγ
with β≥ 0�γ ≥ 0� (10)

If β> 0, this formulation implies congestion in shipping: the more is shipped, the higher
the per-unit shipping cost; when β = 0, the marginal cost of shipping is invariant to the
quantity shipped, as in the standard iceberg formulation. In turn, γ captures the elasticity
of the per-unit cost to infrastructure. The scalar δτjk captures the geographic frictions that
affect per-unit transport costs given the quantity shipped Q and the infrastructure I.

When the transport technology is given by (10), many of the preceding results admit
intuitive closed-form formulations. First, the restriction that Qτjk(Q� I) is convex in both
arguments from Proposition 1 holds if and only if β≥ γ. This inequality captures a form of
diminishing returns to the overall transport technology: the elasticity of per-unit transport
costs to investment in infrastructure is smaller than its elasticity with respect to shipments.

Second, from the no-arbitrage condition (8), we obtain the following solution for total
flows from j to k as function of prices:

Qn
jk =

[
1

1 +β
Iγjk

δτjk
max

{
Pnk
Pnj

− 1�0
}] 1

β

� (11)

This solution naturally implies that better infrastructure is associated with higher flows
given prices and geographic trade frictions. It also shows that the total flows fall with
congestion β and increase with the average price differentials. Third, using the log-linear
transport technology (10), the optimal level of infrastructure is

Ijk = min
[
max

(
I∗
jk� Ijk

)
� Ijk

]
� (12)

where I∗
jk is the optimal infrastructure (9) arising from the unconstrained optimal network

problem (Ijk = 0 and Ijk = ∞),

I∗
jk =

[
γ

PK

δτjk

δIjk

(∑
n

Pnj
(
Qn
jk

)1+β
)] 1

1+γ
� (13)

Given the prices at origin, the optimal infrastructure increases with gross flows. Given
these flows, infrastructure also increases with prices at origin, as a higher sourcing cost
implies a higher marginal saving from investing. Conditioning on these outcomes, infras-
tructure increases with δτjk, reflecting that the optimal investments offset geographic trade
frictions, and decreases with δIjk, reflecting that the investment is smaller where it is more
costly to build. Because it satisfies the Inada condition, the log-linear specification (10)
implies that the solution to the planner’s problem features a positive investment whenever
the price of any good varies between neighboring locations, Pnj �= Pnk for any n.

Combining (11) with (13), we reach an explicit characterization of the optimal infras-
tructure in each link as a function of prices, elasticities, and geographic frictions:

I∗
jk =

[
γ

PKδ
I
jk

(
δτjk

) 1
β

(
1

1 +β
∑

n:Pn
k
>Pnj

Pnj

(
Pnk
Pnj

− 1
) 1+β

β
)] β

β−γ
� (14)
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where the multiplier PK is such that the network-building constraint (7) is satisfied.

PROPOSITION 2—Optimal Network in Log-Linear Case: When the transport technol-
ogy is given by (10), the full planner’s problem is a convex (resp. quasiconvex) optimization
problem if β≥ γ. The optimal infrastructure is given by (12).

Under a general formulation of the transport technology τjk(Q� I) and in the absence
of a pre-existing network (Ijk = 0), the solution to the full planner’s problem may feature
no infrastructure (and therefore no trade) in some links, even if prices vary between the
nodes connected by those links. However, when the transport technology takes the log-
linear form (10), this possibility arises if and only if there are no incentives to trade (Pnj =
Pnk for all n) due to the Inada condition on Ijk in the transport technology (10) and the
property that the marginal shipping costs are zero when no shipping is done as long as
β≥ 0, respectively.

Other Convex Transport Technologies

We provide two additional tractable transport technologies and the conditions that sat-
isfy their convexity:

1. Exponential:Qτjk(Q� I)= δτjk max(exp(βQ−γI)−1�0), convex for all β≥ 0, γ ≥ 0;

2. CES: Qτjk(Q� I)= δτjk max(Qβ − ζIγ�0)
1
γ , ζ ≥ 0, convex for 0 ≤ γ ≤ 1 and β≥ γ.

Non-Convexity: The Case of Increasing Returns to Transport

When the condition guaranteeing global convexity in Proposition 1 fails, the constraint
set in the planner’s problem is not convex and the sufficiency of the first-order conditions
is not guaranteed. We may nonetheless implement these cases numerically, as we discuss
in Section 3.6. Focusing on the log-linear specification (10) introduced above, such non-
convexities arise when the transport technology features economies of scale, γ > β. We
now show in a simple special case how the qualitative properties of the optimal network
are affected by such economies of scale. In particular, increasing returns to investment in
infrastructure create an incentive for the planner to concentrate flows on few links. As a
result, the optimal network may take the form of a tree, a property already highlighted in
other applications of optimal transport such as formation of blood vessels, irrigation, or
electric power supply systems (Banavar, Colaiori, Flammini, Maritan, and Rinaldo (2000),
Bernot, Caselles, and Morel (2009)).

PROPOSITION 3: In the absence of a pre-existing network (i.e., Ijk = 0, Ijk = ∞), if the
transport technology is given by (10) and satisfies γ > β, and if there is a unique commodity
produced in a single location, the optimal transport network is a tree.

A tree is a connected graph without loops. Intuitively, under the conditions of the
proposition, it is always better to remove alternative paths linking pairs of nodes and
concentrate infrastructure investments in fewer links. As a result, in the optimal network
a single path connects any two locations, a defining characteristic of a tree. This property
is guaranteed to hold when there is only one source for one commodity. In the general
case, it may still be optimal to maintain loops, but the incentives to concentrate flows on
fewer but larger routes remain. In Section 4, we present examples with multiple goods
and multiple production locations where, if γ > β, the optimal network is sparser and
concentrated on fewer links relative to cases with γ ≤ β.
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3.4. Decentralized Allocation Given the Network

We establish that the planner’s optimal allocation (maxcj �hj �Dnj �Lnj �Vnj �Xnj ) and optimal
transport (maxQn

jk
) subproblems given the network {Ijk} correspond to a decentralized

competitive equilibrium. For this decentralization, we do not take a stand on whether the
network is the result of a planner’s optimization.

Given the network, the decentralized economy corresponds to the perfectly compet-
itive equilibrium of a standard neoclassical economy where consumers maximize utility
given their budget, producers maximize profits subject to their production possibilities,
and goods and factor markets clear. The only less standard feature is the existence of
a transport sector with congestion. We assume free entry of atomistic traders into the
business of purchasing goods in any sector at origin o and delivering at destination d for
all (o�d) ∈ J 2. The traders are price-takers and use a constant-returns to scale shipping
technology. Each trader has a cost equal to τnjkq

n
jk of delivering qnjk units of good n from

j to k ∈ N (j) and takes the iceberg trade cost τnjk as given, although this trade cost is
determined endogenously through (10) as function of the aggregate quantity shipped.

As long as there is congestion in shipping, the traders will engage in an inefficient
amount of shipping. We assume that the market allocation features policies that correct
this externality. Specifically, the shipments of commodity n over link jk are subject to ad
valorem taxes ετQ�jknτ

n
jk on their value at j. Consider then a trader purchasing good n at

location o and delivering it to location d. This company maximizes profits by optimizing
over the route r = (j0� � � � � jρ) ∈ Rod , where j0� � � � � jr is a sequence of nodes from o to d
and Rod is the set of all such routes. The optimal route rnod maximizes the per-unit profits:

πnod = max
r=(j0�����jρ)∈Rod

pnd − pno︸︷︷︸
Sourcing Costs

−
ρ−1∑
k=0

pnjkτ
n
jkjk+1︸ ︷︷ ︸

Transport costs

−
ρ−1∑
k=0

pnjkt
n
jkjk+1︸ ︷︷ ︸

Taxes

� (15)

where pnj is the price of good n in location j in the market allocation. A shipper from o to
d purchases each unit at price pno and obtains the price pnd . In addition, shippers must pay
the transport costs pnjkτ

n
jkjk+1

as well as the “toll” pnjkt
n
jkjk+1

on each segment. In the absence
of tolls, the shipping cost from o to d would equal the total iceberg cost, and the solution
would correspond to a standard least-cost route optimization.

To define the competitive equilibrium, we must also allocate the returns to factors other
than labor. Under no labor mobility we assume that, in addition to the wage, each worker
in location j receives a transfer tj such that

∑J

j=1 tjLj =Π, where Π is an aggregate port-
folio including ownership of fixed factors and government transfers. Hence, workers are
rebated all tax revenues and own the primary factors and non-traded goods in the econ-
omy. This formulation allows for trade imbalances, which are needed to implement the
planner’s allocation.

Since they are standard, we relegate the definitions of the competitive allocation with
and without labor mobility to Definition 3 in the Supplemental Material. Using that defi-
nition, we establish that the welfare theorems given the transport network hold.

PROPOSITION 4—First and Second Welfare Theorems: If the tax on shipments of prod-
uct n from j to k is

tnjk = ετQ�jknτnjk�
where ετQ�jkn = ∂ logτnjk/∂ logQn

jk, then:
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(i) if labor is immobile, the competitive allocation coincides with the planner’s problem
under specific planner’s weights ωj . Conversely, the planner’s allocation can be implemented
by a market allocation with specific transfers tj ; and

(ii) if labor is mobile, the competitive allocation coincides with the planner’s problem if
and only if all workers own an equal share of fixed factors and tax revenue regardless of their
location, that is, tj = Π

L
.

In either case, the price of good n in location j, pnj , equals the multiplier on the balanced-
flows constraint in the planner’s allocation, Pnj .

These results are useful for bringing our model to the data. Under the assumption that
the observed allocation corresponds to the decentralized equilibrium, the first welfare
theorem enables us to calibrate the model using the planner’s solution to the optimal al-
location and optimal transport subproblems given the network. In Section 3.7, we discuss
how to calibrate the model assuming that the observed market allocation does not feature
policies correcting the externality. We note that the optimal allocation can be equivalently
implemented by per-unit toll θnjk = pnjkετQ�jknτnjk.

3.5. Decentralization of Network Investments

We now discuss a market structure that efficiently decentralizes the infrastructure in-
vestments. Consider a decentralized allocation as in Definition 3, including tolls. Suppose
that, in addition, Ijk is endogenously determined by a link-specific builder who is granted
the right to build infrastructure and receives in exchange a per-unit toll θnjk. Builders can
purchase the “asphalt” K at a price pK , the stock of K may be initially owned by the gov-
ernment or by private individuals, and the price pK adjusts such that the market for K
clears. The builders will solve the problem

max
Ijk

∑
n

θnjkQ
n
jk(Ijk)−pKδIjkIjk�

whereQn
jk(Ijk) is the quantity of good n consistent with zero profits of shipping companies

on the link jk given infrastructure Ijk and prices. The builders internalize that, by adding
infrastructure, they can increase the flow of goods through their link, but we assume that
they do not internalize general-equilibrium impacts on commodity prices. Now, the spe-
cific transfers tj exhaust a portfolio Π which, in addition to fixed factors and government
transfers, also includes ownership of K and net profits of builders.

We then obtain the following result.

PROPOSITION 5: If the global convexity condition of Proposition 1 is satisfied and the toll
θnjk is consistent with the optimal Pigouvian tax (θnjk = Pnj ε

τ
Q�jknτ

n
jk), then the decentralized

infrastructure choice implements the optimal network investment.

This result echoes the self-financing theorem of Mohring and Harwitz (1962) who
showed that revenues from optimal congestion taxes are sufficient to cover capital costs
of roads when the transport cost can be expressed as a function of the ratio Q/I. Our
result is not restricted to the case in which the transport cost function is homogeneous
of degree 0. The global convexity condition of Proposition 1 ensures the sufficiency of
the first-order conditions in implementing the optimal allocation. In this general case,
however, lump-sum transfers to builders may be needed to ensure participation.
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3.6. Numerical Implementation

In this section, we broadly discuss our numerical implementation and relegate details
to Section B of the Supplementary Material.16

Convex Cases

Under the conditions of Proposition 1, the full planner’s problem is a convex optimiza-
tion problem and the KKT conditions are both necessary and sufficient. The system of
first-order conditions is, however, a large system of nonlinear equations with many un-
knowns. Gradient-descent based algorithms make large-scale convex optimization prob-
lems like ours numerically tractable, meaning that these algorithms are guaranteed to
converge to the unique global optimum (Boyd and Vandenberghe (2004)).17

Our problem can be tackled numerically using two equally valid approaches. The first
one is to feed the numerical solver the primal problem, meaning the full planner’s problem
exactly as written in Definition 1. Specifically, letting L be the Lagrangian of the planner’s
problem as a function of the controls x = (cj�hj�D

n
j �L

n
j �Vn

j �Q
n
jk� � � �) and the multipliers

λ = (Pnj � � � �), the primal consists of solving the saddle-point problem

sup
x

inf
λ≥0

L(x�λ)�

The second approach, preferred in the optimal transport literature, is to solve instead the
dual problem obtained by inverting the order of optimization, that is,

inf
λ≥0

sup
x

L(x�λ)�

In our context, the convexity of the full planner’s problem without labor mobility ensures
that the dual coincides with the primal (Proposition 1), that is, strong duality holds. The
advantage of the dual is that we can use the first-order conditions from the optimal trans-
port and the optimal investment problems, (8) and (13), as well as those from the neoclas-
sical allocation problem, to express the control variables as functions of the multipliers,
x(λ). The remaining minimization problem, infλ≥0 L(x(λ)�λ), is a convex minimization
problem over fewer variables, subject to non-negativity constraints only.

Non-Convex Cases

When the condition stated in Proposition 1 fails, the full planner’s problem is no longer
globally convex, and the method described above is not guaranteed to find the global
optimum. To solve for such non-convex cases, we exploit the property, stated at the begin-
ning of Proposition 1, that the joint neoclassical allocation and optimal transport prob-
lem nested within the planner’s problem is convex as long as Qτjk(Q� Ijk) is convex in Q.
This condition is weaker and holds under the log-linear specification as long as β ≥ 0,
including the standard case without congestion (β= 0). We combine the primal and dual
approaches to solve for the joint neoclassical allocation and optimal transport problems
with an iterative procedure over the infrastructure investments. Specifically, starting from

16A Matlab toolbox implementing our model with detailed documentation and examples is available on the
authors’ websites.

17We use the open-source large-scale optimization package IPOPT (https://projects.coin-or.org/Ipopt)
which is based on an interior point method and is able to handle thousands of variables as long the problem is
sufficiently sparse. The software converges in polynomial time (Nesterov and Nemirovskii (1994)).

https://projects.coin-or.org/Ipopt
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a guess on the network investment Ijk, we solve for the optimum over cj , hj , Dn
j , L

n
j , Vn

j ,
andQn

jk, and then use the optimal network investment condition (9) to obtain a new guess
over Ijk, and then repeat until convergence. We then refine the solution using a simulated
annealing method that perturbs the local optimum and gradually reaches better solutions.
Appendix B of the Supplemental Material provides details.

3.7. Alternative Assumptions

Congestion Across Goods

We have assumed that congestion only applies within good types. A natural assumption
is that congestion takes place across goods. A simple way to incorporate this feature while
preserving the convexity of the problem is to assume that the per-unit cost τnjk is denomi-
nated in units of the bundle of traded goods aggregated throughDj(·) rather that in units
of the good itself. We assume that transporting each unit of good n from j to k ∈ N (n)
requires

τnjk =mnτjk(Qjk� Ijk) (16)

units of the traded goods bundle, wheremn measures product-specific characteristics such
as weight or volume, and Qjk = ∑N

n=1m
nQn

jk is the total weight or volume transported
from j to k. Then, the number of units of the traded goods bundle Dj used to transport
goods from j to its neighbors is

Tj =
∑
k∈N (j)

τjk(Qjk� Ijk)Qjk�

After properly adjusting the resource constraints in the definition of the planner’s prob-
lem, the convexity of the full planner’s problem is preserved under the same conditions
stated in Proposition 1.

Appendices A.1 and A.2 of the Supplemental Material present the definition and first-
order conditions of the planner’s problem in a general case encompassing iceberg costs
with own-good congestion, as well as this alternative formulation with congestion across
goods. As it is more realistic, we adopt the case with congestion across goods as the bench-
mark in our application.

Externalities and Inefficiencies in the Market Allocation

In Section 3.4, we assumed that the decentralized allocation is efficient. However, in
some cases it may be desirable to consider an inefficient market allocation. For exam-
ple, a standard formulation with agglomeration spillovers is to assume that the produc-
tion technology is Yn

j = Fnj (L
n
j �Vn

j �Xn
j ;Lj), where the spillover from the total number of

workers Lj on output Yn
j is not internalized in the market allocation. Another common

formulation is to assume externalities in the consumption of amenities entering through
utility, U(cj�hj;Lj). Similarly, without the Pigouvian taxes tnjk correcting the congestion
externality in shipping, the market allocation is inefficient. In these cases, it is in prin-
ciple still possible to calibrate the model and undertake counterfactuals using a “ficti-
tious” planner who ignores the dependence of Yn

j on Lj or of τnjk on Qn
jk. For example,

in the case of production spillovers, the fictitious planner’s problem is defined as in Def-
inition 2 under the assumption that the vector of aggregate population levels L = {Lj}
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in Yn
j = Fnj (L

n
j �Vn

j �Xn
j ;Lj) is taken as given.18 As long as Fnj (·) is neoclassical given Lj ,

the statement in part (i) of Proposition 1, establishing convexity of the planner’s problem
given the network, remains the same given Lj . However, this approach requires solving
an additional loop imposing that the vector of population L = {Lj} that solves the fic-
titious planner’s problem coincides with the aggregate distribution L taken as given by
the planner. Every distribution of population L satisfying this fixed point problem corre-
sponds to a market allocation and vice versa.19 An important caveat, however, is that we
can no longer establish the general convexity of the problem corresponding to part (ii) of
Proposition 1. Section D of the Supplementary Material explains how to implement these
cases along with a method to derive the optimal infrastructure gradient and conduct local
optimization.

4. ILLUSTRATIVE EXAMPLES

In this section, we implement examples that illustrate the basic economic forces cap-
tured by the framework and its potential uses. All the figures can be found in Section A of
the Supplementary Material. We start with an endowment economy without labor mo-
bility and only one traded and one non-traded good in a symmetric graph. Then, we
progressively move to more complex cases with multiple locations in asymmetric spaces,
multiple sectors, labor mobility, and heterogeneous building costs due to geographic fea-
tures. Throughout the examples, we illustrate the contrast between the globally optimal
networks in convex cases, where the congestion forces dominate the returns to network
building, and the approximate optimal networks in cases where global convexity of the
planner’s problem fails. In all the examples, preferences are CRRA over a Cobb–Douglas
bundle of traded and non-traded goods, U = (cαh1−α)1−ρ/(1 − ρ) with α = 1

2 and ρ = 2.
There is a single factor of production, labor, and all technologies are linear. We adopt the
constant-elasticity functional forms (10) for the transport and network-building technolo-
gies.

4.1. One Good on a Regular Geometry

Comparative Statics Over K in a Symmetric Network

To start, we impose β= γ = 1, which lies at the boundary of the parameter space guar-
anteeing global convexity. We assume a single good, no labor mobility, and no geographic
frictions, δτjk = δIjk = Distancejk.

Figure A.3 presents a network with 9 × 9 locations uniformly distributed in a square,
each connected to eight neighbors. All fundamentals except for productivity are sym-
metric: (Lj�Hj)= (1�1). Labor productivity is zj = 1 at the center and 10 times smaller
elsewhere.

18The fictitious planner problem is defined exactly as in Definition 2 with U(cj�hj;Lj) in the case of con-
sumption externalities, taking Lj as given, or with τjk(Qn

jk� Ijk) in the case of congestion externalities, taking
the shipments Q = {Qn

jk}j�k�n as given.
19Whether such a fixed point exists depends on the specifics of the environment. It is beyond the scope of this

paper to determine the conditions under which that is the case, but we note that, given the network {Ikl}, our
environment can accommodate the specific parametric assumptions that guarantee existence or uniqueness of
an inefficient decentralized allocation found in the previous literature. For example, see Allen and Arkolakis
(2014) for conditions that lead to existence and uniqueness in an Armington model with labor mobility and
size spillovers.
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Figure A.4 shows the globally optimal network when K = 1 (panel (a)) and when K =
100 (panel (b)). The upper-left figure in each panel displays the optimal infrastructure
network Ijk corresponding to (13). The optimal network investments radiate from the
center, and so do shipments. The bottom figures in each panel display the multipliers of
the flows constraint (6)—the prices in the market allocation—and consumption. Because
tradable goods are scarcer in the outskirts, marginal utility is higher and so are prices.
As the aggregate investment grows from K = 1 to K = 100, the network grows into the
outskirts and the differences in the marginal utility shrink. Panels (c) and (d) display the
spatial distribution of prices and consumption. As the network grows, relative prices and
consumption converge, and spatial inequalities are reduced.

Randomly Located Cities and Non-Convex Cases

We now explore more complex networks and non-convex cases. Figure A.5 in the Sup-
plementary Material shows 20 “cities” randomly located in a space where each location
has six neighbors. Population is Lj = 1 in each city and 0 otherwise. Productivity is again
10 times larger at the center. The top panel shows the infrastructure and commodity flows
in the optimal network. The optimal network radiates from the center to reach all desti-
nations. Due to congestion, some destinations are reached through multiple routes. How-
ever, to reach some faraway locations such as the one in the northwest, only one route is
built.

The middle panel inspects the same spatial configuration but assumes γ = 2. Now, the
sufficient condition for global convexity from Proposition 1 fails. We see a qualitative
change in the shape of the network. Due to increasing returns to network building, fewer
roads are built but each has higher capacity. In particular, there is now only one route
linking any two destinations, consistent with the no-loops result in Proposition 3.

Because, in the non-convex network, we can only guarantee convergence to a local
optimum, we refine the solution by applying the numerical approach discussed in Supple-
mentary Material Section B involving simulated annealing. The bottom panel compares
the non-convex network before and after the annealing refinement. The refined network
economizes on the number of links, leading to a welfare increase but preserving the no-
loops property.

4.2. Many Sectors, Labor Mobility, and Non-Convexity

We now further introduce multiple traded goods and labor mobility. We allow for 11
traded commodities, one “agricultural” good (good 1) that may be produced everywhere
outside of “cities” (z1

j = 1 in all “countryside” locations), and ten “industrial” goods, each
produced in one random city only (znj = 1 in only one city j and znj = 0 otherwise). These
goods are combined via a constant elasticity of substitution aggregator with elasticity of
substitution σ = 2. Labor continues to be the sole factor of production, but is now mobile.
The supply of the non-traded good is uniform, Hj = 1 for all j.

Figure A.6 shows the convex case (β= γ = 1). The first panel shows the optimal net-
work. In the figure, each circle’s size denotes the population share. The remaining figures
show the shipments of each good, with the circle sizes representing the shares in total pro-
duction for the corresponding good. Figure A.7 shows the optimal network with annealing
in the non-convex case when γ = 2.

In these examples, we observe complex shipping patterns. There are bilateral flows over
each link, now involving several commodities. Overall, the optimal network in the first
panel reflects the spatial distribution of comparative advantages. Since industrial goods
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are relatively scarce, wages and population are higher in the cities that produce them. Due
to the need to ship industrial goods to the entire economy and to bring agricultural goods
to the more populated cities, the transport network has better infrastructure around the
producers of industrial products. As panel (a) of each figure illustrates, the optimal net-
work links the industrial cities through wider routes branching out into the countryside.
The agricultural good, being produced in many locations, travels short distances and each
industrial city is surrounded by its agricultural hinterland.

The comparison between Figures A.6 and A.7 confirms the intuition that, in the pres-
ence of economies of scale in transportation, the optimal network becomes more skewed
towards fewer but wider “highways.” Note, however, that the tree property from Proposi-
tion 3 no longer holds because there are multiple goods.

4.3. Geographical Features

We now show how the framework can accommodate geographical features like moun-
tains and rivers. To highlight the role of these frictions, we revert to a case with a single
good and no factor mobility. Panel (a) of Figure A.8 shows 20 cities randomly allocated
in a space where each location is connected to eight other locations. Population equals 1
in all cities and productivity is the same everywhere (equal to 0�1) except in the central
city, displayed in red, where it is 10 times larger. Each city’s size in the figure varies in
proportion to consumption.

As implied by condition (13), the optimal infrastructure in a given link depends on
the link-specific building cost δIjk. In panel (a), we show the optimal network under the
assumption that the cost of building infrastructure is proportional to the Euclidean dis-
tance:

δIjk = δ0Distanceδ1
jk� (17)

As in our first set of examples, the optimal network radiates from the highest-productivity
city to alleviate differences in marginal utility.

In panel (b), we add a “mountain” by adding an elevation dimension to each link and
re-configuring the building cost as

δIjk = δ0Distanceδ1
jk

(
1 + |�Elevation|jk

)δ2 � (18)

Because it is more costly to build through the mountain, the optimal network circles
around it to reach the cities in the northeast. Because more resources are invested in
that region, the network shrinks elsewhere.

In the subsequent figures, we either increase or decrease the cost of building the net-
work in specific links. Specifically, we allow for the more general specification:

δIjk = δ0Distanceδ1
jk

(
1 + |�Elevation|jk

)δ2δ
CrossingRiverjk
3 δ

AlongRiverjk
4 � (19)

In panel (c), we include a river and assume that δ3 = δ4 = ∞, so that investing in in-
frastructure either across or along the river is prohibitively costly. The optimal network
linking cities across the river can only be built through the patch of dry land. In that nat-
ural crossing, there is a “bottleneck” and a large infrastructure investment takes place.

In panel (d), we assume instead that no dry patch exists but that building bridges is
feasible, 1 < δ3 <∞. Now, the planner builds two bridges, directly connecting the pairs
of cities across the river. Panel (e) further allows for transport capacity along the river
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(δ4 <∞). The planner retains the bridges, but now faraway locations in the southeast are
reached by water instead of via ground transport.

Finally, panel (f) shows the non-convex case, γ = 2>β, implemented through the com-
bination of first-order conditions and simulated annealing described in Section 3.6. Now,
a unique route links any two cities and fewer roads are built.

5. ROAD NETWORK EXPANSION AND MISALLOCATION IN EUROPE

We apply the framework for quantitative analysis of road networks in European coun-
tries. We start by describing the steps to represent data on economic activity and road
networks in terms of the graph of our model. Then we choose the fundamentals to match
the observed distribution of economic activity within each country. We conclude by im-
plementing counterfactuals involving the optimal transport network. We implement the
calibrations and counterfactuals country by country. In a final exercise, we also implement
the analysis simultaneously for a connected set of countries in continental Europe.

5.1. Data

Sources

We combine geocoded data on road networks, population, and income across Euro-
pean countries. The road network data are from EuroGlobalMap (EGM) by EuroGeo-
graphics.20 The data set combines shapefiles on the road network from each European
country’s mapping and cadastral agencies, and it includes all major highways and roads
connecting populated areas.21 For example, the French road network is represented by
38,668 segments of active roads connecting 159,258 geographic points with a total length
of about 130,000 km.

We perform the calibration and counterfactual analysis separately for each of the 24
countries included in EGM for which data on number of lanes are available. This set
includes rich and poor countries, as well as geographically large and small. Table A.1 in
Supplemental Material Appendix B reports the list of countries with summary statistics
about the size and average features of their road networks, the number of cells, and fea-
tures of their discretized road networks.

An appealing feature of this data set is that each segment of a road network has in-
formation about objective measures of road quality including type of road use (national,
primary, secondary, or local), number of lanes, and whether it is paved or includes a me-
dian. National roads encompass each country’s highway system.22 On average across the
countries in our data, national roads represent 10% of the road network, feature twice
as many lanes per kilometer as other types of roads, are always paved (while 94% of the
non-national networks are), and are more likely to include a median (87% relative to 4%
of non-national networks). Since the roads labeled as primary, secondary, and tertiary

20This product includes Intellectual Property from the European National Mapping and Cadastral Au-
thorities and is licensed on behalf of these by EuroGeographics. Original product is available for free at
www.eurogeographics.org. Terms of the license are available at https://eurogeographics.org/services/open-
data/topographic-data/.

21We use GlobalMap data v8, corresponding to the year 2016, which is the earliest year we have access to.
We only use road segments that are reported as “operational.”

22For example, roads labeled as national in the data include the Autobahn highway system in Germany,
autovias and autopistas in Spain, and the autoroute system in France.

http://www.eurogeographics.org
https://eurogeographics.org/services/open-data/topographic-data/
https://eurogeographics.org/services/open-data/topographic-data/
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have very similar characteristics along these dimensions, we bundle them into a single
“non-national roads” category.

We use population data from NASA-SEDAC’s Gridded Population of the World
(GPW) v.4 and value added from Yale’s G-Econ 4.0. Both data sets correspond to the
year 2005. The GPW population data are reported for 30 arc-second cells (approximately
1 kilometer) and the G-Econ value-added data are reported for 1 arc-degree cells (ap-
proximately 100 km). To implement the model, we must take a stand on the geographic
units corresponding to each node. To strike a balance between the high spatial resolu-
tion of the EGM and GPW data sets and the coarser resolution of the G-Econ data set, in
most countries we use 0.5 arc-degree cells (approximately 50 km by 50 km) as benchmark.
We adopt squares as geographic units so that the boundaries of the geographic units in
the G-Econ data set coincide with ours. We allocate population to each 0.5-degree cell
by aggregating the smaller cells in GPW and we apportion income from the G-Econ cells
according to the GPW-based population measure. In a few countries, we use smaller or
larger cells in order to allow for either a significant number of cells or avoid having a very
large number.23 We denote the population and value added observed in each cell j of each
country by Lobs

j and GDPobs
j .

The resulting number of cells in each country is reported in Table A.1. In the 19 coun-
tries where the NUTS subdivision of geographic units is available, the number of cells is
larger than the number of level-2 NUTS regions. In most countries, it is also larger than
the number of level-3 NUTS.24

Underlying Graph

Using these data, we construct empirical counterparts to the underlying geography
(J �E) corresponding to the locations and links in the graph of our model, as well as
an observed measure of infrastructure Iobs

jk for each link.
To define the set of nodes J in each country, we use the GPW data to locate the pop-

ulation centroid of each cell. The population centroids are usually very close to a node
on the road network. We relocate each population centroid to the closest point on a na-
tional road crossing through the cell, or on other types of roads if no national roads cross
through the cell.25 We define the observed population and income of each node j ∈ J to
be equal to the total income GDPobs

j and the population Lobs
j of the cell that contains it.

In turn, we define the set of edges E as all the links between nodes in contiguous cells.
This step defines a set of up to eight neighbors N (j) for each node j ∈J : the four nodes
in horizontal or vertical neighbors and the four nodes along the diagonals.

23We use the default 0.5 arc-degree cells in 17 countries (Austria, Belgium, Czech Republic, Denmark,
Georgia, Hungary, Ireland, Latvia, Lithuania, Macedonia, Moldova, Netherlands, Northern Ireland, Portugal,
Slovakia, Slovenia, and Switzerland). Whenever assuming 0.5 arc-degree cells would lead to more than 200
cells, we use 1 arc-degree cells (Finland, France, Germany, Italy, and Spain); and whenever doing so would
lead to fewer than 20 cells, we use 0.25 arc-degree cells (Luxembourg and Cyprus).

24NUTS (Nomenclature of Territorial Units for Statistics) is a standard developed by the European Union to
divide the territory. NUTS 2 correspond to “basic regions for the application of regional policies,” and NUTS
3 correspond to “small regions for specific diagnoses” (https://ec.europa.eu/eurostat/web/nuts/background).
Excluding overseas territories, Spain has 15 level-2 NUTS (autonomous communities) and 47 level-3 NUTS
(provinces), whereas our partition has 61 cells. In France, there are 21 level-2 NUTS (regions) and 94 level-3
NUTS (departments), whereas our partition has 74 cells.

25On average across countries, the relocation across all cells within a country is 5.3 km.

https://ec.europa.eu/eurostat/web/nuts/background
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Discretized Road Network

To construct a measure of infrastructure corresponding to Ijk in our model, we first
aggregate the observed attributes of the road network over the actual roads linking each
j ∈ J and k ∈ N (j). We use information on whether each segment s on the actual road
network belongs to a national road and its number of lanes. We define the average number
of lanes and average road type for the link between j and k as follows:

lanesjk =
∑
s∈S
ωjk(s) lanes(s)�

natjk =
∑
s∈S
ωjk(s)nat(s)�

where lanes(s) is the number of lanes on each segment s on the actual road network S,
nat(s) indicates whether segment s belongs to a national road, and ωjk(s) is the weight
attached to the infrastructure of each segment when computing the level of infrastructure
from j to k. The weights ωjk(s) should be larger on segments of the road network that
are more likely to be used when shipping from j to k, and equal to zero for all s ∈ S if no
direct route exists linking j and k. We define ωjk(s) based on the fraction of the cheapest
path P(j�k) from j to k corresponding to that segment:

ωjk(s)=

⎧⎪⎪⎨
⎪⎪⎩

length(s)∑
s′∈P(j�k)

length
(
s′
) � s ∈P(j�k)�

0� s /∈P(j�k)�

where length(s) is the length of segment s and P(j�k) is the cheapest path from j to k
on the actual road network.26 We follow these steps as long as the cheapest path does not
stray from the cells containing j and k.27 When that happens, we assume that no direct
path from j to k exists in the actual road network, P(j�k)= ∅, in which case ωjk(s)= 0
for all segments s ∈ S.

We define the observed measure of infrastructure Iobs
jk for each j ∈ J and k ∈ N (j)

by letting Iobs
jk = lanesjk for national roads and Iobs

jk = lanesjk×κ for non-national roads,
where κ < 1 captures the smaller cost of non-national roads. We set κ= 1/5, which cor-
responds to the cost of road construction and maintenance per kilometer on trunk roads
relative to federal motorways in Germany in 2007, as reported by Doll et al. (2008). We
impose Iobs

jk = Iobs
kj , implying that infrastructure applies equally in either direction. In sum,

we construct the observed infrastructure Iobs
jk as the average number of national road lanes

over the path from j to k on the actual road network, if a direct path exists.28

26This step does not use the model. In this step, for each pair of nodes j ∈ J and k ∈ N (j) we ask: what
are the average characteristics (number of lanes and type of road) of the existing route connecting these two
locations in the real world? To do this, we must choose some route connecting the pair of locations in the real
world. We use the cheapest-route criterion as a way to choose this route. The cheapest path is constructed by
weighting each segment s by its road user cost based on data from Combes and Lafourcade (2005) and other
sources. See Supplemental Material Appendix B for details.

27We classify a path from j to k as straying from the cells containing j and k if more than 50% of the path
steps over cells that do not contain j or k.

28Across connected nodes in the discretized network, there is a correlation of 0.67 between Iobs
jk and the

speed on the quickest path according to GoogleMaps.
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FIGURE 2.—Discretization of the French road network. Notes: Panel (a) shows total population from GPW
aggregated into 0.5 arc-degree (approximately 50 km) cells. Panel (b) shows the nodes J corresponding to the
population centroids of each cell in panel (a), reallocated to their closest point on the actual road network, and
the edges E corresponding to all the vertical and diagonal links between cells. Panel (c) shows the centroids
and the actual road network. Light gray segments correspond to national roads, dark gray segments are all
other roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows the same
centroids and the edges as the baseline graph in panel (b), where each edge is weighted proportionally to the
average number of lanes on the cheapest path between each pair of nodes on the road network. The shade
varies according to the fraction of the shortest path traveled on a national road.

Examples: France and Spain

Figures 2 and 3 represent each of the steps described above for two large countries
in our data, France and Spain. Panel (a) of each figure shows the discretized map and
associated population. Brighter cells are more populated, corresponding to higher deciles
of the population distribution across cells. The (b) panels display the cells, the centroids,
and the edges of the underlying graph. The (c) panels show the centroids and the full
road network. Light gray segments correspond to national roads and dark gray segments
correspond to other roads. The width of each road is proportional to its number of lanes.

Finally, the (d) panels show the infrastructure in the discretized road network. Each of
the edges from the (b) panels is now assigned a width depending on the average number
of lanes, lanesjk, and a level of brightness depending on the likelihood of using a national
road, natjk. The width and color scale are the same as in panel (c). When no direct link
from j to k is identified by our procedure, no edge is shown. The resulting discretized
networks on the baseline grids clearly mirror the actual road networks for both countries,
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FIGURE 3.—Discretization of the Spanish road network. Notes: Panel (a) shows total population from GPW
aggregated into 0.5 arc-degree (approximately 50 km) cells. Panel (b) shows the nodes J corresponding to the
population centroids of each cell in panel (a), reallocated to their closest point on the actual road network, and
the edges E corresponding to all the vertical and diagonal links between cells. Panel (c) shows the centroids
and the actual road network. Light gray segments correspond to national roads, dark gray segments are all
other roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows the same
centroids and the edges as the baseline graph in panel (b), where each edge is weighted proportionally to the
average number of lanes on the cheapest path between each pair of nodes on the road network. The shade
ranges according to the fraction of the shortest path traveled on a national road.

but they are now expressed in terms of the nodes and edges of our model and therefore
allow us to quantify it.

5.2. Parameterization

We discuss the specific parametric assumptions to implement the general model de-
scribed in Section 3.

Preferences and Technologies

The individual utility over traded and non-traded goods defined in (1) is assumed to be
Cobb–Douglas,

U = cαh1−α�



1438 P. D. FAJGELBAUM AND E. SCHAAL

while the aggregator of traded goods (2) is CES:

Cj =
(

N∑
n=1

(
Cn
j

) σ−1
σ

) σ
σ−1

� (20)

where σ > 0 is the elasticity of substitution. Labor is the only factor of production and the
production technologies (3) are assumed to be linear:

Yn
j = znj Lnj �

We assume α = 0�4 to match a standard share of non-traded goods in consumption and
σ = 5 which corresponds to a central value of the demand elasticities reported by Head
and Mayer (2014) across estimates from the international trade literature. As we discuss
below, the calibrated model gives a reasonable prediction for the distance elasticity of
trade, which is closely linked to σ .

Labor Mobility

We undertake the country-by-country analysis of misallocation for the cases in which
labor is fixed and in which it is perfectly mobile. In this way, we accommodate that in-
ternal rates of labor mobility may be different across countries. In the absence of data to
discipline this assumption, we opt for reporting the results in these polar cases. For the
multi-country application of the last section, we allow in addition for a partial-mobility
case where labor is mobile within countries but not across countries.

Transport Technology

We adopt the log-linear transport technology (10) with cross-good congestion as de-
scribed in Section 3.7. We must parameterize the congestion parameter β and the returns
to infrastructure parameter γ. Ideally, we would like to set these parameters to elasticities
of total trade costs with respect to trade flows and infrastructure. Since such elasticities
are not readily available, we narrow the focus to the impact of shipping time on trade
costs. Several studies point to a relevant value of time in international shipping.29 Since
the majority of inland shipments in the EU are done via road, they likely include goods
that are time-sensitive.30

We assume that: (i) trade costs are a linear function of shipping time; (ii) shipping speed
is a log-linear function of the number of vehicles and road lane kilometers; and (iii) the
number of vehicles is a linear function of the quantity shipped. As shown in Supplemen-
tal Material Appendix B, under these assumptions we can calibrate β and γ to match the

29Anderson and Van Wincoop (2004) calculated 9-percent tax equivalent of the average ocean shipping
time cost in the U.S. over the second half of the 20th century. Hummels and Schaur (2013) quantified that
one additional day in transit is equivalent to 0.6 to 2.1 percent tariff, and Djankov, Freund, and Pham (2010)
argued that each additional day of delay is equivalent to a country distancing 70 km from its trade partner. Firth
(2017) showed that the time delays caused by congestion of railroads impact firm-level outcomes in India, and
Brancaccio, Kalouptsidi, and Papageorgiou (2019) argued, using a structurally estimated search model of ships
and exporters, that congestion in ports leads to costly delays for exporters.

30Seventy-five percent of the tonne-kilometer shipped via inland transport modes (rail, waterways, or road)
within the EU-28 are done by road. The share is 50% when considering all transport modes. See https://ec.
europa.eu/eurostat/statistics-explained/index.php/Freight_transport_statistics_-_modal_split.

https://ec.europa.eu/eurostat/statistics-explained/index.php/Freight_transport_statistics_-_modal_split
https://ec.europa.eu/eurostat/statistics-explained/index.php/Freight_transport_statistics_-_modal_split
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empirical relationship between speed, roads, and vehicles estimated by Couture, Duran-
ton, and Turner (2018) in U.S. data. Their estimates imply β = 0�13 and γ = 0�10, sug-
gesting decreasing returns to scale.31 We use these parameters as a benchmark and also
implement the analysis in a case with increasing returns. Specifically, we consider a higher
value of γ such that the ratio between γ and β is the mirroring case, γ/β= 0�13/0�10 for
β= 0�13.

Productivities, Endowments, and Geographic Frictions

We must impose values for the productivities znj and the endowment of non-traded ser-
vices Hj . In the case with perfect labor mobility, we interpret (Lobs

j �GDPobs
j ) as outcomes

of the planner’s solution for the optimal allocation and optimal flows problems discussed
in Section 3.2 taking the observed network Iobs

jk as given, and use this information to back
out the fundamentals (znj �Hj). In the case with fixed labor, we interpret GDPobs

j as the
outcome of the planner solution and use this information to back out the productivities
znj , normalizing non-tradeable consumption per capita Hj/L

obs
j to 1 and setting the plan-

ner’s weights ωj = 1 everywhere.
Since our data only include aggregate measures of economic activity for each cell, we

assume that each location produces only one tradable good. We allow for N + 1 different
sectors:N differentiated goods, and one homogeneous good. As a benchmark, we assume
that each of the differentiated goods is produced in each of the N cells with the largest
observed population, and that the homogeneous good is produced by all the remaining
cells. We assume 10 different sectors and explore the robustness to alternative values
of N . We also implement an alternative calibration where the differentiated products are
allocated to the N largest level-2 NUTS regions within each country.

This approach leaves us with J productivity parameters zj , each corresponding to the
productivity of a different location. We choose each location’s productivity (and supply
of non-traded goods, when allowing for labor mobility) such that, taking the observed
network Iobs

jk as given, the planner’s solution to the optimal allocation and optimal flows
problems from Definition 2 reproduces the observed value added (and population, when
allowing for labor mobility).32

We must also determine the values of the geographic trade frictions δτjk entering in
the transport technology (10). We assume that all goods have the same weight (mn = 1)
and that frictions depend on distance, δτjk = δτ0distjk. To calibrate δτ0, we target the level
of intra-regional trade in Spain, where regional-level trade data are available. We esti-
mate δτ0 jointly with the other fundamentals so that the model matches the 44% share

31Couture, Duranton, and Turner (2018) found decreasing returns to scale across their specifications, al-
though the difference between the two parameters is typically small (see Tables 5 and 6 of their paper). They
referred to this result as suggesting “modest decreasing returns to scale.” Their preferred estimate, used for
our calibration, is column (6) of Table 5 of their paper.

32To compute GDP, we invoke the second welfare theorem from Proposition 4 to recover the prices in the
calibrated allocation as the multipliers of the various constraints in the planner’s problem. In the solution of
the planner’s problem, each location’s value added in tradable and non-tradable sectors is Pn(j)j zjLj + PHj Hj ,
where n(j) denotes the good produced by location j, Pnj is the price of good n in location j (i.e., multiplier
of the flows constraint for good n in j in the planner’s problem), and PHj is the price of non-traded services
in sector j (i.e., the multiplier of the availability of non-traded goods constraint in the planner’s problem).
Value added in the transport sector is not attached to specific nodes and often corresponds to links connecting
near empty locations. For accounting purposes, we allocate the national value added in the transport sector
proportionally to value added in other sectors, so that regional variation in measured GDP is driven by goods
and services.
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of intra-regional trade in intra-national trade among tradable sectors across the 15 conti-
nental level-2 NUTS regions of Spain from 2001 to 2005, according to Spain’s C-Intereg
Dataset (Llano, Esteban, Pérez, and Pulido (2010)). To generate model-based regional
trade flows, we aggregate the bilateral node-to-node trade flows in differentiated goods
to the bilateral region-to-region level.33 We then use this value of δτ0 in the remaining
countries when calibrating fundamentals.

Figure A.1 in Supplemental Material Appendix B shows the results of the calibration
for the convex case of the parameters (β= 0�13, γ = 0�10). Similar relationships hold for
the non-convex case (β = 0�13, γ = 0�169). Panels (a) and (b) show the model-implied
population and income shares of each location against the data, over all locations in the
24 countries. Except for a few locations, both population and income shares are matched
with high precision. The internal trade share for Spain is also precisely matched.34

Panels (c) and (d) show the calibrated fundamentals (productivity and endowment of
non-traded good) in the vertical axes against income and population shares in the data,
respectively, for the case with labor mobility. Both fundamentals are strongly correlated
with observables. A similar positive relationship between productivity and income shares
holds in the calibration of the model with fixed labor.

Cost of Building Infrastructure

To implement the optimal transport network in counterfactual scenarios, we must pa-
rameterize the cost of infrastructure along each edge, δIjk. We follow two approaches. In
the first approach, we interpret the observed infrastructure Iobs

jk as the outcome of the
planner’s problem, under the assumption that it is equally costly to build in either direc-
tion. In this case, the observed network, Iobs

jk , is consistent with the planner’s first-order
condition for Ijk in (13) under the assumption that Ijk = 0. Imposing symmetry on that
first-order condition, we then recover the cost of infrastructure as a function of outcomes
from the calibrated model (see Supplemental Material Appendix A.2). We refer to this
measure as the “FOC-based” measure of building costs, δI�FOC

jk .
Our second approach is agnostic about whether the observed network results from

any sort of optimization, but takes a stand about how the building costs depend on ge-
ographic features. Specifically, we rely on data from Collier, Kirchberger, and Söderbom
(2016), who estimated highway building costs from World Bank infrastructure investment
projects across the world, and then related these costs to a host of geographic and non-
geographic frictions.35 We assume that δIjk is a function of two geographic features in-
cluded in their study, distance and ruggedness of the terrain, and refer to this building-
cost measure as the “geographic” measure, δI�GEO

jk . We interpret an improvement to the
connection between any pair of nodes in our counterfactuals as an infrastructure project.

33The model does not make a prediction for bilateral flows of homogeneous goods. Since this good is pro-
duced in every region, most of its production is not traded across region boundaries. In the calibration, the
intra-regional trade share of this sector is 93%.

34Across the 24 countries, the average internal trade share is 38%, with a standard deviation of 12%. We
calibrate 0.00156 in the benchmark convex case with mobile labor and 0.00164 in the non-convex case.

35The investment projects in their data are concentrated in low- and middle-income countries, of which
three (Lithuania, Georgia, and Macedonia) are in our data. The coefficients from their study introduced in
our equation (21) correspond to the average of the coefficients over the distance dummy and the ruggedness
index across the six specifications in Tables 4 and 5 of their paper.
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In our notation, their estimates imply

ln
(
δI�GEO
jk

distjk

)
= ln

(
δI0

) − 0�11 × (distjk > 50 km)+ 0�12 × ln(ruggedjk)� (21)

where distjk is the distance between j and k and ruggedjk is the average ruggedness over
locations j and k, constructed as detailed in Supplemental Material Appendix B. Hence,
it is more costly to build on rugged terrain, but less costly per kilometer to build on longer
links. We assume that the elasticity of building costs with respect to features of the terrain
is the same across all countries.

These steps give two alternative measurements of δIjk up to scale in each country. We
set K = 1 and choose δI0 to satisfy the network-building constraint with equality in each
country.

5.3. Model-Implied Trade Flows and Congestion

We check the model predictions for bilateral trade flows. We use bilateral trade data
across Spanish regions defined at the level-2 NUTS subdivision from Spain’s C-Intereg
Dataset. Excluding islands, this gives 15 Spanish regions. Panel (a) of Figure 4 shows
observed and model-based trade flows in differentiated products for the calibration where
each differentiated good is allocated to a different region. Own-region trade flows are
shown as hollow circles. The model implied bilateral flows have a correlation of 0.79 with
the data.

Another way to assess the implied trade flows is to look at the gravity implications. The
standard gravity model posits a log-linear relationship between bilateral trade shares and
trade costs. The gravity model typically gives a good fit of the international data (Head
and Mayer (2014)), and is often applied within countries (Allen and Arkolakis (2014)).
A common approach is to parameterize bilateral trade costs as a function of geographic
frictions. In our parameterization, bilateral trade costs among locations depend on the
distance through the network, but also on the equilibrium levels of congestion, the ob-
served levels of infrastructure, and the calibrated values of β and γ. We can compare the
relationship between trade flows and distance implied by the model using the previous
aggregation to the level-2 NUTS subdivision in Spain. Panel (b) of Figure 4 shows the
bilateral import share among level-2 NUTS and the log of distance in the model and in
the data, after controlling for exporter fixed effects.36 A linear regression yields elasticities
of −0�91 in the model and −1�37 in the data. Overall, the figures suggest that the model
makes reasonable predictions for the distribution of trade flows.37

We examine the congestion taxes needed to implement the allocation. Due to the log-
linear specification of the transport technology, Proposition 4 implies that the taxes are
a fraction β = 13% of the transport costs in every link. Given the total transport costs,

36We run, in both model-generated and observed data, the regression ln(λNUTS
jk ) = δ ln(distjk) + ψj + εjk,

where λjk is the import share and distjk is the bilateral distance between the level-2 NUTS divisions. The
figure shows both the import share and distance as residuals from exporter fixed effects. Distance is computed
between geographic centroids. We exclude zero flows and flows to the own region.

37The results are similar in calibrations that assign differentiated products to the largest locations in the
country, with correlations around 0�8 between model-based nonzero bilateral trade flows and the data. They
are also similar in calibrations that assign one good to each region but assume away the homogeneous prod-
uct. The relationship between trade and distance is very similar for France, suggesting that the key gravity
properties are dictated by elasticity parameters rather than by the distribution of fundamentals.



1442 P. D. FAJGELBAUM AND E. SCHAAL

FIGURE 4.—Actual and predicted trade. Note: The left panel shows the model-based flows across level-2
NUTS regions of continental Spain against the data in the calibration assigning a differentiated product to the
largest city within each level-2 NUTS region. The right panel shows the log of the model-implied and observed
import shares against distance as residuals from exporter fixed effects. Linear regression slope (robust SE) is:
−0�908 (0.069) in the model and −1�368 (0.058) in the data. Trade flows to the same region appear as hollow
circles in the first panel.

we obtain numerically that the mean ad valorem tax across locations is about 0.6% in the
cases with and without labor mobility. The total taxes paid represent 0.3% of GDP in both
cases.38

5.4. Optimal Expansion and Reallocation

We simulate two types of counterfactuals. First, we compute the aggregate gains from
an optimal expansion of the observed road network within each country. We assume that
the total resourcesK are increased by 50% relative to the observed network, constraining
the planner to build on top of the existing network, Iobs

jk . In the notation of restriction (iii)
in Definitions 1 and 2, this means that Ijk = Iobs

jk . Second, we compute the losses due to
misallocation of current roads within each country. We assume that the total resources K
are the same as in the observed network, without constraining the planner to build on top
of the existing network, Iobs

jk . In the notation of restriction (iii) in Definitions 1 and 2, this
means that Ijk = 0. We set the upper bound on infrastructure Ijk to be 50% above the
largest level of infrastructure observed in each country.

In short, the first “optimal expansion” counterfactual amounts to optimally expanding
the network on top of what is already observed, while the second “optimal reallocation”
counterfactual amounts to optimally reallocating the existing roads. The first counterfac-
tual is more policy-relevant, as it prescribes where new roads should be built and yields the
aggregate gains of those investments. The second counterfactual is unfeasible in reality,
but gives a sense of the losses from misallocation of existing roads.

38In simulations of the calibration for Spain where we randomly increase capacity in random links, we find
an elasticity of quantity flows Qjk to infrastructure Ijk of 0�503 (0�0202) in the benchmark calibration (γ < β),
0�799 (0�0330) in a calibration that imposes γ = β, and 1�296 (0�0395) in the non-convex calibration (γ >
β). Duranton and Turner (2011) reported IV estimates of the relationship between total vehicles-kilometers
traveled and road capacity across U.S. cities between 0�68 and 1�33 (in their Table 6), with many of these
estimates close to 1.
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We implement the optimal expansion under the two measures of building costs, the
FOC-based measure δI�FOC

jk and the geographic measure δI�GEO
jk . The optimal reallocation

is only meaningful under the geographic measure, since the observed network is optimal
by construction under δI�FOC

jk . We implement each of these counterfactuals for each of
the two values of γ, assuming both fixed and mobile labor, separately for each of the 24
countries. We recalibrate the model for each value of γ, assumption on labor mobility,
and country.

Regional Impact Within Countries

We inspect first the within-country regional implications for two large countries in our
data, Spain and France. Figure 5 depicts the pattern of investment and population change
under the geographic measure of building costs δI�GEO. Panels (a) and (b) show the opti-
mal expansion and panels (c) and (d) show the optimal reallocation under labor mobility.
Panels (e) and (f) reproduce the optimal reallocation assuming that labor is not mobile.
The thickness of each link increases with the absolute value of the investment, defined as
the difference between the counterfactual and the observed infrastructure, I∗

jk − Iobs
jk . In

the reallocation counterfactual, links with higher reallocation are brighter. In turn, with
labor mobility, lighter nodes denote higher population increase.

In the optimal reallocation counterfactual, we observe positive investments radiating
away from some areas with higher economic activity in the case of France, but a more dis-
persed investment pattern in Spain. As we compare panels (a) and (b) with panels (c) and
(d), we recognize similar investment patterns in the optimal reallocation and expansion
counterfactuals within each country: the links identified as having too much infrastruc-
ture, shown in dark gray in panels (c) and (d), typically feature no expansion in panels (a)
and (b). The comparison between panels (c)–(d) and panels (e)–(f) reveals that allowing
labor mobility does not fundamentally affect the optimal infrastructure investments.

In the cases of optimal expansion and optimal reallocation, the population is reallo-
cated to the same set of regions within each country. Due to the labor mobility constraint
in the planner’s problem, changes in labor are perfectly correlated with changes in con-
sumption of traded commodities per worker, cj .39 For the cases without labor mobility,
there is a similar consistency across the counterfactuals in the changes in consumption of
traded commodities per capita cj across locations.

We inspect, across the 24 countries, how a few typically observable regional outcomes
map to infrastructure investment. Panel (a) of Table I reports results from regressions of
infrastructure growth on each location’s initial population and tradable income per capita.
We report here results corresponding to the case with labor mobility and the benchmark
parameterization of γ and β, but the qualitative features we discuss are similar under al-
ternative specifications. Optimal road investments are directed to locations with initially
lower levels of infrastructure, reflecting decreasing returns to infrastructure at the link
level. The investments are also more intensely directed to locations with initially higher
levels of population and income per worker. Since the model implies a complex mapping
from the fundamentals to the investments, these observable outcomes guide only a frac-
tion of the optimal investment decisions (R2 in the order of 24–39% under geographic
measure of trade costs and only 4% under the FOC measure).

39The labor mobility constraint (vi) from Definition 2 implies α� ln cj = (1 −α)� lnLj +� lnu, where � lnx
denotes the difference in the log of variable x between the counterfactual and calibrated allocations.
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FIGURE 5.—Optimal network reallocation and expansion: Spain and France. Notes: All counterfactuals use
the geographic measure of building cost, δI�GEO and the benchmark parameterization of β and γ. Graph nodes
aggregate data from 0.5 arc-degree (approximately 50 km) cells. The width and brightness of each link is pro-
portional to the difference between the optimal counterfactual network and the observed network, I∗

jk − Iobs
jk ,

for each link jk ∈ E shown in panel (b) of Figures 2 and 3. The color scale is the same as in Figure 2. Dark
links represent negative investment. With labor mobility, brighter nodes represent larger population increase.
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TABLE I

OPTIMAL INFRASTRUCTURE INVESTMENT, POPULATION GROWTH, AND LOCAL CHARACTERISTICSa

(1)
Reallocation

(2)
Expansion (GEO)

(3)
Expansion (FOC)

Panel A: Dependent Variable: Infrastructure Growth

Population 0�343 0�125 0�002
Tradable Income per Capita 0�151 0�071 0�007
Infrastructure −0�418 −0�235 −0�010

Observations 868 868 868
Adjusted R-squared 0�29 0�24 0�04

Panel B: Dependent Variable: Population Growth

Population −0�001 −0�000 −0�000
Tradable Income per Capita 0�008 0�008 0�001
Consumption per Capita −0�061 −0�060 −0�008
Infrastructure −0�001 −0�001 −0�000
Infrastructure Growth 0�002 0�002 −0�001
Differentiated Producer 0�010 0�010 0�002

Observations 868 868 868
Adjusted R-squared 0�53 0�54 0�80

aEach column corresponds to a different regression pooling all locations across the 24 countries in the benchmark parameterization
of γ and β, assuming mobile labor and N = 10. All regressions include country fixed effects. Standard errors are clustered at the
country level. Dependent variables: population growth is defined as � lnLj , where �x= x′ −x denotes the difference between variable
x in the counterfactual (x’) and in the calibrated allocation (x). Investment growth is defined as the difference over the average,
�Ij/(

1
2 (Ij + I′j )), where total infrastructure at the node level is defined as Ij = ∑

k∈N (j) Ijk . Independent variables correspond to
the log of the level of each variable in the calibrated model. Population and income per capita are the two outcomes matched by the
calibration. Consumption per capita corresponds to traded goods cj in the calibrated model. Differentiated producer is a dummy for
whether the location is a producer of differentiated goods in the calibration.

In panel (b), the dependent variable is population growth. To understand the patterns
of optimal reallocation of population, in addition to the variables from the previous re-
gression we also include infrastructure growth, consumption per capita, and a dummy for
whether a location is a differentiated producer. The handful of variables in the regression
explain between 50% and 80% of the population changes. Infrastructure growth in a lo-
cation has a positive impact on population in the counterfactuals that use the geographic
measure of trade costs. The magnitude of the effect and its explanatory power on the dis-
tribution of population changes is small, reflecting that growth in a location depends on
investments in other locations.

Consumption of traded goods per capita is a strong determinant, with a negative elas-
ticity of population growth with respect to initial consumption in the order of 1%–7%. If
consumption per capita was excluded, then the coefficient on income per capita would be-
come negative and significant, with a negative elasticity of growth with respect to income
per capita of 1% across the three counterfactuals. Hence, the impact of initial income on
population growth in the optimal investment plan operates through the level of consump-
tion.

This reallocation pattern reflects that the goal of the optimal investments is to reduce
variation in the marginal utility of consumption of traded commodities across locations.
Since changes in population and consumption per capita between the counterfactual and
initial allocation are perfectly correlated, the optimal investment plan leads to an in-
crease in consumption of traded commodities in locations where consumption per capita
is initially low. We conclude that the optimal investment in infrastructure reduces spa-
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tial inequalities, although different assumptions on building costs imply different ways of
achieving this goal by changing the optimal placement of infrastructure, as implied by our
previous discussion.

Aggregate Impact Across Countries

We now show the aggregate welfare effects. Table II shows the average welfare gain
for each counterfactual across the 24 countries in our data. Tables A.2 and A.3 in Sup-
plemental Material Appendix B show the results for each country with fixed and mobile
labor, respectively. In the benchmark parameterization of γ and β, using the geographic
measure of building costs, we find average welfare gains across countries of 1.7%–1.8%.
The effects are much smaller under the FOC-based measure because in that case the op-
timal expansion does not address a suboptimal placement of existing roads. The average
gains are increasing in the returns to scale γ, with the average welfare gains increasing
to between 2�4% and 2�9% under geographic measure of building costs. These effects
vary considerably across countries, ranging from around 0.1% to 8%. There is no clear
relationship between misallocation and country size or income. Some Eastern European
countries such as Georgia, Lithuania, and Latvia appear with relatively high misallocation
in the benchmark case (3.0% to 3.6% relative to a mean of 2.4%), and so do Denmark
(7.8%), France (3.4%), and Spain (4.7%). Belgium, Luxembourg, and Macedonia appear
as the least misallocated countries.

This distribution of welfare gains across countries is, in general, stable regardless of
the parameterization of γ, the assumption on labor mobility, the parameterization of the
building costs δI , or the type of counterfactual. For example, across the parameterizations
of γ and labor mobility, the correlation between the gains from optimally expanding the
network under the two measures of building costs, δI�GEO and δI�FOC, is between 0.76 and
0.92. Therefore, the answers to the questions of which countries would gain more from
optimally expanding their current road networks and which countries suffer larger losses
from misallocation of current roads are robust across these cases.

Alternative Assumptions

The analysis was implemented assuming N = 10 sectors. We also implement the cali-
bration and counterfactuals assuming different numbers of sectors. Table A.4 in Supple-
mental Material Appendix B reports the coefficients from column (2) of Table I corre-
sponding to the optimal expansion under calibrations that assume N = 5 or N = 15. In

TABLE II

AVERAGE WELFARE GAINS ACROSS COUNTRIESa

Returns to Scale

Benchmark Non-Convex

Labor Labor

Fixed Mobile Fixed Mobile

Optimal Reallocation
δ= δI�GEO 1.7% 1.8% 2.4% 2.5%

Optimal Expansion
δ= δI�GEO 1.7% 1.8% 2.8% 2.9%
δ= δI�FOC 0.3% 0.3% 0.9% 1.3%

aEach element of the table shows the average welfare gain in the corresponding counterfactual across the 24 countries.
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these alternative cases, the patterns described above remain unchanged, and the magni-
tude of most of the coefficients does not exhibit large variation.

Similarly, Table A.5 reproduces Table II for the benchmark and for N = 15. The ag-
gregate gains change little with the number of sectors. The correlation between the ag-
gregate welfare effects across countries under N = 15 and under N = 10 is above 0.9 for
each possible type of counterfactual and assumptions on labor mobility and value of γ.
The table also reports average welfare effects under an alternative calibration where each
of the largest N regions in each country, defined as level-2 NUTS political subdivisions,
is assigned a differentiated product. The correlation in welfare gains across countries be-
tween the benchmark case and this alternative allocation is above 0.8 across assumptions
of labor mobility, number of goods, and type of counterfactual.

Finally, Table A.6 replicates the benchmark case under the assumption of no congestion
across goods. We find very similar average welfare effects in the two cases.

5.5. Application to Multiple Countries Within Europe

Our previous applications considered each country in isolation. We now implement the
analysis for a region of western Europe.40 Supplemental Material Appendix Figure A.2
shows the baseline map and the discretized network for this connected set of countries.
We assume that each country produces a country-specific differentiated product, in ad-
dition to a homogeneous good, and use the same parameters as in the benchmark. We
recalibrate the fundamentals assuming that the five largest locations in terms of observed
population within each country produce the differentiated product of that country, while
the remaining locations produce the homogeneous product. We now also implement a
case with partial mobility where labor is mobile within countries but not across countries,
recalibrating the fundamentals each time.

Figure 6 shows the optimal network expansion under different assumptions of labor
mobility. The counterfactuals highlight the areas where European investments would be
more profitable. The investments are concentrated in Benelux countries, France, Ger-
many, and Northern Italy. Within Spain, the optimal expansion looks quite different from
what we found in panel (b) of Figure 5, reflecting the European planner’s incentives to
deal with international trade. The European planner prioritizes two corridors connecting
Spain to the north of Portugal and the center of Spain to France, whereas the Spain-
level planner chose a higher density of investment in the south of the country. Within
France, the pattern of investments radiating from Paris is similar to the case in panel (a)
of Figure 5, but now we see optimal investments in the connection with Spain, as well as
investments in the northeast to connect with neighboring countries.

The optimal network expansion is very similar in the three cases of labor mobility and
the welfare gains are close to 2�5% in the three cases. When labor is mobile across Eu-
rope, the optimal network investment reallocates workers to southern Spain and Portugal,
much like in the country-by-country analysis we found reallocation to areas with relatively
lower income per worker. As in the previous cases, these changes in population do not
correlate very strongly with the investments.

To conclude, we ask whether these patterns are approximately comparable with the
Trans-European Transport Network (TEN-T), a European Commission policy that sup-
ports the development of Europe-wide transport networks. The network includes roads,

40We include 11 countries: Austria, Belgium, Switzerland, Germany, Denmark, Spain, France, Italy, Luxem-
bourg, Netherlands, and Portugal. We use 1 degree by 1 degree cells, resulting in 261 cells.
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FIGURE 6.—Optimal network expansion: Europe. Notes: All counterfactuals use the geographic measure
of building costs, δI�GEO and the benchmark parameterization of β and γ. The width and brightness of
each link is proportional to the difference between the optimal counterfactual network and the observed
network, I∗

jk − Iobs
jk , for each link jk ∈ E shown in panel (b) of Figure A.2. The color scale is the same

as in Figure 2. Dark links represent negative investment. With labor mobility, brighter nodes represent
larger population increase. Panel (d) shows a discretized version of the TEN-T Core Network Corridors
of the Trans-European Transport Network, based on information available at http://ec.europa.eu/transport/
infrastructure/tentec/tentec-portal/site/en/maps.html.

air, and inland waterways. The TEN-T defines a core network of “strategic importance”
for future investments based on criteria such as eliminating bottlenecks or following sug-
gestions from member states.41 Panel (d) of Figure 6 shows these corridors for the area
of Europe covered by our counterfactual. Broadly speaking, our planning problem identi-
fies some priorities for investment which appear to be similar to what real-world planners
have decided, such as the high density of investment in Benelux countries and Germany;
the international corridor from Paris to the southwest of France, north of Spain, and Por-
tugal; and the connection between Germany and Denmark. However, we also see some

41See https://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/maps_en. The planning guide-
lines are mentioned in the European Commission working document, available in https://eur-lex.europa.eu/
legal-content/EN/TXT/PDF/?uri=CELEX:52013SC0542&from=EN.

http://ec.europa.eu/transport/infrastructure/tentec/tentec-portal/site/en/maps.html
http://ec.europa.eu/transport/infrastructure/tentec/tentec-portal/site/en/maps.html
https://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/maps_en
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52013SC0542&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52013SC0542&from=EN
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differences, as the solution to our planning problem does not identify the need to invest
in roads connecting the southeast of France to the south of Spain and Portugal.

6. CONCLUSION

In this paper, we develop a framework to study optimal transport networks in spatial
equilibrium models. The framework combines a neoclassical environment where each lo-
cation is a node in a graph, an optimal transport problem subject to congestion in shipping
across commodities, and an optimal network design. It nests standard neoclassical trade
models and it allows for either fixed or mobile factors across space. We provide condi-
tions such that the full planner’s problem, involving the optimal flow of goods as well as
the general-equilibrium and network-design problems, is globally convex and numerically
tractable using standard numerical methods typically applied to tackle optimal transport
problems.

In the application, we match the model to data on road networks and economic ac-
tivity across European countries. Using the calibrated model, we compute the gains from
road expansion and losses from misallocation. Across countries, we find real consumption
losses in the order of 2% associated with misallocation of roads.

Our approach using a global planner is particularly well suited for environments where
agglomeration spillovers may not be too strong. We have also shown how in principle
the model could be used in cases with spillovers. Due to current limitations in computing
power and given the level of geographic detail that we handle, we have only applied the
model to cases with a limited number of commodities.

We expect the framework to serve as basis for future work. It could be used to study
political-economy issues associated with infrastructure, such as spatial competition among
planning authorities. We have refrained from identifying sources of misallocation, but
it would be interesting to know the role of regional characteristics such as institutional
quality. Our application was limited to European countries, but low-income economies
are likely to benefit more from infrastructure investment and are perhaps more prone to
inefficient investments due to their institutional environments.

The persistence of transport networks also raises interesting issues. The model could
be extended to study inefficient network lock-in due to past investments corresponding
to dated economic fundamentals. We have also abstracted from decision-making under
uncertainty, but it would be interesting to study a planner who decides in anticipation
of changing conditions about technology or fundamentals. In the spirit of Barjamovic,
Chaney, Coşar, and Hortaçsu (2019), who used the prediction of gravity models to infer
the location of cities, the model could be used to infer the location of roads in histori-
cal data. The framework might also be used to construct instruments for investments in
transport infrastructure.

Finally, a number of forces such as commuting or dynamic adjustment were left out of
our analysis. We believe these are all interesting avenues to pursue in future research.
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