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Abstract

The introduction of new technologies in agriculture can foster structural transfor-

mation by freeing workers who find occupation in other sectors. The traditional

view is that this reallocation of workers towards manufacturing can lead to indus-

trial development. However, when workers moving to manufacturing are mostly

unskilled, this process reinforces a country’s comparative advantage in unskilled-

labor intensive industries. To the extent that these industries undertake less inno-

vative activities, this change in industrial specialization can lead to lower long run

growth. We highlight this mechanism in an endogenous growth model and provide

empirical evidence using a large and exogenous increase in agricultural productivity

due to the legalization of genetically engineered soy in Brazil. Our results indi-

cate that improvements in agricultural productivity, while positive in the short-run,

can generate specialization in less-innovative industries and have negative effects on

manufacturing productivity in the long-run.

Keywords: Agricultural Productivity, Skill-Biased Technical Change, Labor Mo-

bility, Genetically Engineered Soy, Brazil.

∗Bustos: CEMFI and CEPR, paula.bustos@cemfi.es. Castro Vincenzi: Princeton, cas-
tro.vincenzi@princeton.edu. Monras: UPF, Barcelona GSE and CEPR, jm3364@gmail.com. Ponticelli:
Northwestern University and CEPR, jacopo.ponticelli@kellogg.northwestern.edu. We received valuable
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1 Introduction

Early development economists perceived the reallocation of workers from agriculture

to manufacturing as fundamental for development and growth.1 In particular, scholars

argue that high agricultural productivity can induce rural workers to find employment

in the industrial sector which can lead to higher growth (Gollin, Parente, and Rogerson

2002). This is because labor productivity is lower in agriculture than in the rest of the

economy (Gollin, Lagakos, and Waugh 2014). In addition, the manufacturing sector

is characterised by economies of scale and on-the-job accumulation of human capital,

such as learning-by-doing (Krugman 1987, Lucas 1988, Matsuyama 1992a). However,

manufacturing productivity growth may not only depend on the size of the industrial

sector but also on its composition. Thus, if workers leaving the agricultural sector are

mostly unskilled, agricultural productivity growth can reinforce comparative advantage

in non-innovating industries, reducing long run growth.

In this paper we study the effects of the adoption of new agricultural technologies

on industrial specialization and growth. For this purpose, we exploit the legalization of

genetically engineered (GE) soybean seeds in Brazil as a natural experiment. This new

technology requires fewer but relatively high-skilled workers to yield the same output,

thus can be characterized as unskilled-labor-saving technical change. In addition, the

new technology had a differential impact on yields in areas with different soil and weather

characteristics. This regional variation permits to assess the causal effects of agricultural

technical change on industrial specialization and growth by comparing the evolution of

employment and productivity across micro-regions subject to different rates of exogenous

agricultural productivity growth.2

As a measure of exogenous technical change we use the difference between the poten-

tial yield of soy in each micro-region before and after the legalization of GE soy seeds

as in Bustos, Caprettini, and Ponticelli (2016). This measure of technical change in soy

production is a function of weather and soil characteristics of different areas, and not of

actual yields. In addition, we use detailed individual information from the Brazilian Pop-

ulation Census to trace the flow of workers with different education levels across sectors,

as well as to construct wage measures adjusted for a large set of individual characteris-

tics. Finally, we use data from the Brazilian Manufacturing Survey and the Technological

Innovation Survey to construct measures of manufacturing productivity and expenditure

in innovative activities.

1For instance, Lewis (1954) argued that the movement of workers from a “subsistence” sector with
negligible productivity to a capitalist sector was at the core of the process of economic development,
whereas Kuznets (1973) identified the shift of resources away from agriculture into non-agricultural sectors
as one of the six main characteristics of modern economic growth.

2Our geographical unit of observation are Brazilian micro-regions. Micro-regions consist of a group of
municipalities and can be thought of as small open economies that trade in agricultural and manufacturing
goods but where production factors are immobile.
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We start by providing evidence that the adoption of GE soy led to a decrease in the

employment of unskilled labor in agriculture and a reallocation of unskilled workers to-

wards the manufacturing sector.3 Our estimates indicate that micro-regions with a one

standard deviation higher increase in soy technical change experienced a 2.4 percentage

points larger decrease in the share of unskilled workers employed in agriculture, and a

corresponding 2.1 percentage points larger increase in the share of unskilled workers em-

ployed in manufacturing. Next, we study the consequences of this reallocation of unskilled

labor from agriculture to manufacturing for industrial specialization. From the point of

view of the manufacturing sector, this reallocation of unskilled workers amounts to an in-

crease in the relative supply of unskilled labor. We document that this inflow of unskilled

workers was completely absorbed by an expansion of the manufacturing industries in the

lowest quartile of skill intensity. In addition, these industries are the least innovative as

measured by expenditure in research and development (R&D) as a share of sales.

To interpret our findings, we build a three sector model where final goods are traded

across regions but production factors are immobile. The agricultural sector produces an

homogeneous good using land, skilled and unskilled labor. The manufacturing sector has

two industries, H and L, which also produce homogeneous goods combining skilled and

unskilled labor. However, the H industry uses a more complex technology which is more

skilled-labor intensive and requires differentiated intermediate inputs. These intermediate

inputs are non-traded goods produced by monopolistically competitive firms which use

their profits to invest in R&D and invent new input varieties. The introduction of new

inputs generates knowledge which diffuses locally. In equilibrium, profits from introducing

new varieties are proportional to demand, which is given by the size of the H industry.

Thus, the growth rate of knowledge and output in the regional economy are proportional

to the size of the H industry.

In this setup, we model the introduction of GE soy seeds as a skilled-labor-augmenting

technical change in agriculture. We show that when skilled and unskilled workers are

imperfect substitutes and land and labor are strong complements in production, this type

of technical change leads to an absolute decrease in the marginal product of unskilled

labor in agriculture. As a result, given initial production levels in each sector, there is a

reduction in labor demand in agriculture and an excess supply of unskilled workers. In

equilibrium, these unskilled workers reallocate towards the manufacturing sector as long

as the L manufacturing industry is not much more skill intensive than agriculture.4 The

reallocation of unskilled workers towards the L industry from agriculture reinforces its

3We classify skilled workers as those who completed the 8th grade, which is equivalent to graduating
from middle school in the US.

4If agriculture is much more intensive in low-skilled labor than all manufacturing industries, then
unskilled workers are absorbed again by the agricultural sector. This is because of Hecksher-Ohlin forces:
an increase in the relative supply of a factor generates an expansion of the sector using that factor
intensively (Rybczinsky Theorem).
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comparative advantage. Thus, the L industry absorbs workers from the H industry, as in

the Rybczinsky Theorem. Since the H industry is the market for intermediate inputs, a

decrease in the size of this sector reduces the incentive to innovate. As a result, in the

long run, the regional economy conducts less R&D, exports more unskilled-labor intensive

products in exchange for high-skill intensive, high-R&D goods, and its total output grows

slower.

We test the predictions of the model by tracing the effects of agricultural technical

change on industrial specialization and productivity. For this purpose, we use yearly data

from the Annual Industrial Survey (PIA) which allows us to observe the evolution of

employment and productivity growth in the manufacturing sector. We find that micro-

regions facing faster agricultural technical change experienced faster employment growth

in unskilled-labor intensive manufacturing industries, which is consistent with the findings

reported above using population census data. In addition, we find that these regions face

a slowdown in manufacturing productivity growth. Our estimates imply that micro-

regions with a one standard deviation larger increase in potential soy yields experienced

a 9.1 percent larger increase in the relative size of the low-skill intensive industry and

a 1.2 percent lower yearly growth rate of manufacturing productivity. This decrease in

manufacturing productivity is not simply due to a composition effect. As predicted by

the model, it is driven by a reduction in productivity growth within high-skill intensive

industries.

Overall, our empirical findings indicate that unskilled labor-saving technical change

in agriculture can lead to a reallocation of labor towards unskilled-labor-intensive man-

ufacturing industries. This leads to an expansion of the industrial sectors with lower

R&D intensity in the economy, decreasing overall manufacturing productivity in the long

run. We interpret this result as a cautionary tale on the effects of structural change on

aggregate productivity growth. The adoption of new technologies in agriculture may re-

sult in static productivity gains in the agricultural sector but negative dynamic effects in

manufacturing productivity.

Our findings suggest that different forces driving structural transformation can lead

to different types of industrial specialization. In most countries, the process of labor real-

location from agriculture to manufacturing can be ascribed to one of two forces: “push”

forces, such as new agricultural technologies that push workers out of agriculture, or

“pull” forces, such as industrial productivity growth, that pull workers into manufactur-

ing. We show that when labor reallocation from agriculture to manufacturing is driven

by unskilled-labor-saving technical change in agriculture – rather than manufacturing

productivity growth – it can generate an expansion in those manufacturing sectors with

the lowest potential contribution to aggregate productivity. In this sense, our results are

informative for low- to middle-income countries where a large share of the labor force

is employed in agriculture, and who import new agricultural technologies from more de-
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veloped countries with highly mechanised agricultural sectors. Our results suggest that

positive agriculture productivity shocks coming from technology adoption may be more

effective if coupled with education policies.

Related Literature

There is a long tradition in economics of studying the links between agricultural pro-

ductivity and industrial development. Nurkse (1953), Schultz (1953), and Rostow (1960)

argued that agricultural productivity growth was an essential precondition for the indus-

trial revolution. Classical models of structural transformation formalized their ideas by

proposing two main mechanisms through which agricultural productivity can speed up

industrial growth in closed economies. First, agricultural productivity growth increases

income, which can increase the relative demand for manufacturing goods, driving labor

away from agriculture and into manufacturing (see Murphy, Shleifer, and Vishny 1989,

Kongsamut, Rebelo, and Xie 2001, Gollin et al. 2002). Second, if productivity growth in

agriculture is faster than in manufacturing and these goods are complements in consump-

tion, the relative demand for agricultural goods does not grow as fast as productivity

and labor reallocates toward manufacturing (Baumol 1967, Ngai and Pissarides 2007).5

Note that these two mechanisms are not operative in open economies, where high agri-

cultural productivity induces a reallocation of labor towards agriculture, the comparative

advantage sector (Matsuyama 1992b). However, Bustos et al. (2016) show that, if agri-

cultural technical change is labor-saving, increases in agricultural productivity can lead

to a reallocation of labor towards the industrial sector, even in open economies.

Several scholars argue that reallocating agricultural workers into manufacturing can

increase aggregate productivity. First, there might be large static productivity gains when

labor reallocates from agriculture to manufacturing. Sizable productivity and wage gaps

between agriculture and manufacturing have been measured in several studies and have

been shown to be larger in developing economies (e.g., Caselli 2005, Restuccia, Yang, and

Zhu 2008, Lagakos and Waugh 2013, Lagakos and Waugh 2013, Gollin et al. 2014). To

the extent that these gaps arise from the existence of inefficiencies and frictions in the

economy, a reallocation of labor from agriculture to the other sectors of the economy is

both productivity- and welfare-enhancing.6 Second, there can be dynamic productivity

gains when labor reallocates towards manufacturing if this sector is subject to agglom-

5See also: Caselli and Coleman 2001, Acemoglu and Guerrieri 2008, Buera, Kaboski, and Rogerson
2015.

6More recently, Herrendorf and Schoellman (2018) measure and compare agricultural wage gaps in
countries in different stages of the structural transformation process. They find that the implied bar-
riers to labor reallocation from agriculture are smaller than usually thought in the macro-development
literature, and argue that labor heterogeneity and selection are important drivers of such gaps. Other
scholars emphasize that structural change can be growth-enhancing or growth-reducing depending on the
correlation between changes in employment shares and productivity levels (McMillan and Rodrik (2011)
and McMillan, Rodrik, and Sepulveda (2017)).
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eration externalities and knowledge spillovers (Krugman 1987, Lucas 1988, Matsuyama

1992a).

In this paper, we take a different perspective based on endogenous growth theory,

which stresses that manufacturing productivity growth not only depends on the size of

the industrial sector, but also on its composition. In particular, we build on the work

of Grossman and Helpman (1991a) who study open economy endogenous growth models.

In their setup, there are two manufacturing industries with different skill intensities but

that use differentiated intermediates with the same intensity. As a result, incentives for

inventing new goods depend on the opportunity cost of performing R&D, which in their

case is driven by the skill premium, and not on the relative size of the two industries. This

implies that in Grossman and Helpman (1991a), an expansion of the supply of unskilled

workers does not affect the growth rate. This is so because if both industries are active

in the trade equilibrium, there is factor price equalization and, hence, an increase in the

supply of unskilled workers leads to an expansion of the output of the low industry which

is exported at constant prices and wages. In contrast, our model is an open economy

version of Romer (1990). Thus, in our setting, the incentive to do R&D depends on the

relative size of the two industries. As a result, an increase in the supply of unskilled labor

generates an expansion of the unskilled-labor intensive industry and a reduction in the

growth rate.

Finally, this paper builds upon the literature on the effects of agricultural technical

change, particularly those papers that provide evidence that technological advancements

in agriculture are skill-biased. For instance Foster and Rosenzweig (1996), who study

the effects of the introduction of high-yield varieties in India, show that technological

innovations in agriculture increased the relative demand for skill in agriculture and thus

returns to primary schooling.7 We contribute to this literature by showing that the recent

introduction of GE soy was also skill-biased. More importantly, we study the implications

of skill-biased agricultural technical change for industrialization, which have not previously

been explored.

The rest of the paper is organized as follows. Section 2 describes the institutional

background and the data used in the empirical analysis. Section 3 describes the theoretical

framework. Section 4 explains our identification strategy and empirical results. Finally,

section 5 contains our final remarks.

7In related recent work, Bragança (2014) shows that investments in soybean adaptation in Central
Brazil in the 1970s induced positive selection of labor in agriculture.
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2 Institutional Background and Data

2.1 Background

This section describes the technological change introduced in Brazilian agriculture

by GE soybean seeds and some basic stylized facts on soy production in Brazil. GE

soy seeds are genetically engineered in order to resist a specific herbicide (glyphosate).

Thus, the use of GE soybean seeds allows farmers to spray their fields with glyphosate

without harming soy plants, reducing labor requirements for weed control.8 The planting

of traditional seeds is usually preceded by soil preparation in the form of tillage, the

operation of removing the weeds in the seedbed that would otherwise crowd out the crop

or compete with it for water and nutrients. In contrast, the planting GE soy seeds requires

no tillage, as the application of herbicide selectively eliminates all unwanted weeds without

harming the crop. As activities related to weed control are mostly performed by unskilled

workers, the introduction of GE soy seeds should displace unskilled labor relatively more

than skilled labor.

The first generation of GE soy seeds (Monsanto’s Roundup Ready) was commercially

released in the U.S. in 1996 and legalized in Brazil in 2003.9 The 2006 Brazilian Agri-

cultural Census reports that, only three years after their legalization, 46.4% of Brazilian

farmers producing soy were using GE seeds with the “objective of reducing production

costs” (IBGE 2006, p.144). According to the Foreign Agricultural Service of the USDA,

by the 2011-2012 harvesting season, GE soy seeds covered 85% of the area planted with

soy in Brazil (USDA 2012).

Panel (a) of Figure 1 documents that the legalization of GE soy seeds was followed

by a fast expansion of the area planted with soy, which increased from 11 to 19 million

hectares between 2000 and 2010.10 Panel (b) of Figure 1 documents that, in the same

period, the number of workers employed in the soy sector decreased substantially. This is

consistent with the adoption of GE seeds reducing the number of agricultural workers per

hectare required to cultivate soy. Bustos et al. (2016) document that labor intensity in

soy production fell from 28.6 workers per 1000 hectares in 1996 to 17.1 workers per 1000

hectares in 2006. In addition, the production of soy is less labor-intensive than all other

major agricultural activities. According to the Agricultural Census, the average labor

intensity of cereals in 2006 was 94.9 workers per 1000 hectares, 129.8 for other seasonal

crops, and 126.7 for permanent crops.11 Thus, whenever soy displaced other agricultural

8Other advantages of GE soy seeds are that they require fewer herbicide applications (Duffy and Smith
2001; Fernandez-Cornejo, Klotz-Ingram, and Jans 2002), allow a higher density of the crop on the field
(Huggins and Reganold 2008) and reduce the time between cultivation and harvest.

9See law 10.688 of 2003 and law 11.105 – the New Bio-Safety Law – of 2005 (art. 35).
10According to the two most recent agricultural censuses, the area planted with soy increased from 9.2

to 15.6 million hectares between 1996 and 2006 (IBGE 2006, p.144).
11According to the 2006 Agricultural Census, even cattle ranching uses more workers per unit of land

than soy production (30.6 per 1000 hectares).
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activities, labor intensity in agriculture likely decreased.

In panel (c) of Figure 1, we decompose the decrease in employment in the soy sector

between skilled workers and unskilled workers, where a worker is considered as skilled if

she has completed at least the 8th grade. As shown, the decrease in employment in the soy

sector is entirely driven by low-skilled workers, while the skilled ones were retained. This is

consistent with GE soy seeds being an unskilled labor saving technology. Notice also that

soy production is more skill intensive than most other agricultural activities. As shown

in panel (d) of Figure 1, the share of skilled workers (those completed at least the 8th

grade) employed in soy is above 20 percent, while in most other agricultural activities this

share ranges between 5 and 15 percent. Thus, whenever soy displaced other agricultural

activities, skill-intensity of agriculture likely increased.

2.2 Data

The four main data sources used in this paper are the FAO-GAEZ database, the

Brazilian Population Census, the Annual Industrial Survey (PIA), and the Industrial

Survey of Technological Innovation (PINTEC ) which we describe in detail in this section.

In our analysis, we use microregions as our unit of observation. Microregions are statistical

units defined by the Brazilian Statistical Institute (IBGE) and consist of a group of

municipalities. There are 557 microregions in Brazil, with an average population of around

300,000 inhabitants. We use microregions as an approximation of the local labor market

of a Brazilian worker. They can be thought of as small, open economies that trade in

agricultural and manufacturing goods but where production factors are immobile.12

To construct our measure of technical change in soy production, we use estimates

of potential soy yields across microregions from the FAO-GAEZ database. This dataset

reports the maximum attainable yield for a specific crop in a given geographical area.

In addition, it reports maximum attainable yields under different technologies or input

combinations. Yields under the low technology are described as those obtained planting

traditional seeds, with no use of chemicals or mechanization. Yields under the high

technology are obtained using improved high-yielding varieties, with optimum application

of fertilizers and herbicides, and mechanization.

Following Bustos et al. (2016), we define technical change in soy production as the

difference in potential yields between high and low technology. This measure aims to cap-

ture the effect on soy yields of moving from traditional agriculture to the use of improved

seeds and optimum weed control, among other characteristics. Technical change in soy

production in microregion k is therefore defined as:

12In Table A2 of the Appendix we show that internal migration did not respond to the shock. This is
in line with evidence from Brazil’s lack of internal migration responses documented also in Dix-Carneiro
and Kovak (2019) and Costa, Garred, and Pessoa (2016).
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Figure 1: Soy Production and Employment
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(c) Soy: Employment by Skill Group
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(d) Share of Skilled Workers by Agricultural Activity

0
.0

5
.1

.1
5

.2

CassavaTobacco Maize Rice Coffee Sugar Other Vegetab. Citrics Livestock Soy

Notes: Figures in Panels (a) and (b) are from Bustos et al. (2016). Data sources are CONAB (Panel A), PNAD (Panel B
and C) and 2000 Population Census (Panel D). CONAB is the Companhia Nacional de Abastecimento, an agency within
the Brazilian Ministry of Agriculture, which runs surveys of farmers and agronomists to monitor the annual harvests of
major crops in Brazil. PNAD is the Brazilian National Household Sample Survey. The states of Rondonia, Acre, Amazonas,
Roraima, Pará, Amapá, Tocantins, Mato Grosso do Sul, Goias, and Distrito Federal are excluded due to incomplete coverage
by PNAD in the early years of the sample. In Panels C and D, an individual is classified as skilled if she has completed at
least the 8th grade.
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∆Asoyk = Asoy,Highk − Asoy,Lowk

where Asoy,Lowk is equal to the potential soy yield under the low technology and Asoy,Highk is

equal to the potential soy yield under the high technology. Figure 2 shows the geographical

variation in our measure of technical change in soy across microregions.

Figure 2: ∆ in Potential Soy Yield 2000-2010
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Notes: Authors’ calculations from FAO-GAEZ data. Technical change in soy production for each microregion is computed
by deducting the average potential yield under low inputs from the average potential yield under high inputs.

We obtain information on employment, wages and other worker characteristics from

the Brazilian population census. We focus on the two most recent surveys of the cen-

sus (2000 and 2010), which respectively precede and follow the 2003 legalization of GE

soybeans. Note that the population census collects information on both formal and infor-

mal workers, and therefore provides a more accurate description of employment in each

microregion than social security data, which is only available for formal workers.

In the population census, we focus on individuals with strong labor force attachment.

In particular, we include individuals aged between 25 and 55 that work more than 35

hours a week.13 Moreover, we only consider individuals not enrolled in the education

system at the time of the survey. For each individual, we define the sector of occupation

as the sector of their main job during the last week. The population census also provides

information on the number of hours worked during the last week and the monthly wage.

13In order to deal with extreme observations, we focus on individuals whose absolute and hourly wages
are between the 1st and the 99th percentile for the distribution of wages in their respective year, and
who work less than the 99th percentile of hours.
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Therefore, we compute hourly wages as the monthly wage divided by 4.33 times the hours

worked last week. For each microregion, we compute employment shares as the number

of workers in each sector divided by total employment.14

We use information on education from the population census to categorize individuals

as unskilled or skilled. We define a worker as skilled if they have completed at least

the 8th grade, although our results are robust to alternative definitions of this threshold.

This level should be attained when an individual is 14 or 15 years old and is equivalent

to graduating from middle school in the US. We define unskilled individuals as those

who have not completed the 8th grade. We use this data to characterize manufacturing

industries by their skill intensity. In particular, we split manufacturing industries into

two groups: low-skill-intensive industries and high-skill-intensive industries. To this end,

we first compute the share of skilled workers over total workers in each industry in the

baseline year (2000). Then, we split the distribution of industries at the median, weighting

industries by the total number of workers, so that each of the two groups has roughly

50% of the total manufacturing employment in Brazil.

Table 1 reports summary statistics of individual level characteristics for workers oper-

ating in agriculture, low-skill manufacturing, high-skill manufacturing and services.15 As

shown, there is large heterogeneity in skill intensity of workers across these broad sectors.

As much as 93.5% of workers in agriculture had not completed the 8th grade in 2000,

against the 80.7% in low-skill manufacturing, 61.8% in high-skill manufacturing, and 69%

in services.

We use data from the population census to compute “composition-adjusted” wages

(i.e., wages net of observable worker’s characteristics). To this end, we estimate a Mince-

rian regression of log hourly wages on observable characteristics for the two census years

of 2000 and 2010, as follows:

ln(wikt) = γkt +HiktβHt + εikt for t=2000, 2010 (1)

where ln(wijkt) is the log hourly wage of individual i, working in sector j in microregion

k at time t, and γkt is a microregion fixed effect, while Hijkt is a vector of individual

characteristics, which includes dummies for sector, skill group, age group, race, and all the

interactions between these variables. We estimate the previous Mincerian regression for

each microregion and for each broad sector separately. Also, we estimate these regressions

constraining the sample to either unskilled or skilled labor only, recovering the unit price

14Each worker is weighted according to their respective sampling weights.
15We define agriculture, manufacturing and services by following the classification of the CNAE Domi-

ciliar of the 2000 census. Agriculture includes Sections A and B (agriculture, cattle, forestry, and fishing).
Manufacturing includes Section D, which corresponds to the transformation industries. Services include:
construction, commerce, lodging and restaurants, transport, finance, housing services, domestic workers,
and other personal services. We exclude the following sectors because they are mostly under government
control: public administration, education, health, international organizations, extraction, and public
utilities.
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Table 1: Summary Statistics of the Sam-
ple of Individuals by Sector

2000 2010

Agriculture
Age 38.0 39.0
Male (% of the Total) 89.3 81.2
White (% of the Total) 55.4 48.6
Education level (highest degree obtained)

Less than Middle School (% of the Total) 86.1 72.7
Completed Middle School (% of the Total) 7.4 13.8
High School Graduates (% of the Total) 5.2 11.4
University Graduates (% of the Total) 1.3 2.1

Average log real hourly wage 0.81 1.06
For skilled labor 1.39 1.38
For unskilled labor 0.71 0.95

Low-Skill Manufacturing
Age 36.7 37.3
Male (% of the Total) 61.1 61.0
White (% of the Total) 62.2 54.0
Education level (highest degree obtained)

Less than Middle School (% of the Total) 61.8 43.5
Completed Middle School (% of the Total) 18.9 21.5
High School Graduates (% of the Total) 16.5 30.4
University Graduates (% of the Total) 2.9 4.5

Average log real hourly wage 1.23 1.41
For skilled labor 1.51 1.54
For unskilled labor 1.06 1.25

High-Skill Manufacturing
Age 36.4 37.0
Male (% of the Total) 80.0 72.4
White (% of the Total) 65.9 56.5
Education level (highest degree obtained)

Less than Middle School (% of the Total) 40.2 26.6
Completed Middle School (% of the Total) 21.5 19.9
High School Graduates (% of the Total) 28.8 43.1
University Graduates (% of the Total) 9.4 10.4

Average log real hourly wage 1.78 1.73
For skilled labor 2.03 1.84
For unskilled labor 1.40 1.42

Services
Age 37.1 37.8
Male (% of the Total) 67.3 62.1
White (% of the Total) 58.9 50.8
Education level (highest degree obtained)

Less than Middle School (% of the Total) 51.1 36.0
Completed Middle School (% of the Total) 17.9 19.3
High School Graduates (% of the Total) 23.4 34.3
University Graduates (% of the Total) 7.6 10.4

Average log real hourly wage 1.42 1.51
For skilled labor 1.77 1.67
For unskilled labor 1.01 1.24

Notes: The data source is the Population Census (2000, 2010). Manufac-

turing industries are classified as low-skill or high-skill intensive depending on

whether their skill intensity is below or above the median in 2000 (weighting

industries by number of employees so that each group captures around 50

percent of total manufacturing employment). We define skill intensity as the

share of skilled workers in a particular industry as per the 2000 Population

Census. A worker is classified as skilled if she has completed at least the 8th

grade (completed middle school).

of labor in each microregion for each type of labor in both cross sections. Since the

existing literature documented how Brazil has experienced a considerable reduction in
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its gender pay gap (Ferreira, Firpo, and Messina 2017), we estimate equation (1) only

for male workers. Observations are weighted by their corresponding population census

weight. Next, we use the microregion fixed effects estimated above as the unit price of

labor for a given skill group in a given microregion, and we compute the change in unit

prices of labor in microregion k between 2000 and 2010 as ∆γk = γk,2010 − γk,2000, which

gives us the change in the composition-adjusted wages at the microregion level.

Table 2 provides summary statistics for the main variables used in the empirical analy-

sis at the microregion level. For each variable, we report the mean and standard deviation

of their level in the baseline year (2000) and of their change between 2000 and 2010.

Table 2: Summary Statistics of the Sample of Microregions

2000 2000-2010

Source: Mean SD Mean SD Observations

Potential Yields FAO-GAEZ
Soy 0.286 0.135 1.787 0.740 557
Maize 1.847 0.9984 3.082 1.639 557

Employment Shares Population Census
Agriculture 0.279 0.140 -0.050 0.055 557
Low-Skill Manufacturing 0.100 0.055 -0.009 0.037 557
High-Skill Manufacturing 0.048 0.047 0.016 0.021 557
Services 0.573 0.118 0.044 0.057 557

Skill Intensity S
S+U Population Census

Local Economy 0.289 0.089 0.165 0.039 557
Agriculture 0.13 0.70 0.127 0.053 557
Low-Skill Manufacturing 0.305 0.101 0.191 0.091 557
High-Skill Manufacturing 0.446 0.147 0.153 0.134 557
Services 0.376 0.866 0.176 0.042 557

Log. Employment Population Census
Agriculture 8.268 0.890 0.122 0.249 557
Low-Skill Manufacturing 7.353 1.346 0.154 0.382 557
High-Skill Manufacturing 6.359 1.287 0.746 0.522 554
Services 9.194 1.887 0.404 0.175 557

Notes: The data source is the Population Census (2000, 2010). Manufacturing industries are classified as low-skill or high-skill

intensive depending on whether their skill intensity is below or above the median in 2000 (weighting industries by number of employees

so that each group captures around 50 percent of total manufacturing employment). We define skill intensity as the share of skilled

workers in a particular industry as per the 2000 Population Census. A worker is classified as skilled if she has completed at least the

8th grade (completed middle school).

Finally, we use data from the two different manufacturing surveys mentioned above

to investigate the dynamic effects of labor reallocation on industrial output. To study

the dynamic effect of labor reallocation on employment and value added per worker we

use data on number of workers, value added and wage bill from the Annual Industrial

Survey (PIA).16 This data comes aggregated at micro-region level and is constructed using

16We construct our measure of employment based on the aggregation of variable V0194, which is defined
in the original documentation as: “Total pessoal ocupado em 31/12” or end-of-year number of workers
and value added as the difference between output value and production costs. Specifically, the value of
output is defined as the sum of revenue from industrial sales, the value of production used for investment
and the changes in inventories, whereas production costs are equal to the sum of the cost of industrial
operations and the cost of materials used.
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manufacturing firms with more than 30 employees. Since firms with 30 or more employees

are sampled with probability one in the PIA survey, we have a representative sample at

the microregion level. We focus on firms operating in manufacturing as defined by the

CNAE 1.0 classification (codes between 15 and 37) and use the aggregate microregion-level

data from 2000 to 2009. To construct our measure of R&D intensity in manufacturing we

source data on R&D expenditure from the Industrial Survey of Technological Innovation

(PINTEC ) – which is designed to capture innovation activities of Brazilian firms.

3 Model

3.1 General setting

In this section we describe the model that guides our empirical exercise. For this we

combine the key insights from the model in Bustos et al. (2016) – extended to two labor

types in agriculture production using Acemoglu (2002) – and an open economy version

of Romer (1990).17 Our model gives rise to a number of predictions that are useful to

interpret the evidence that we present below. In this section we discuss these insights in

some depth. We provide further details of the model and prove the different results in

Appendix B.

The model has infinitely lived consumers that maximize life-time utility. To make

things simple, we assume that consumers have Constant Relative Risk Aversion flow

utility given by u(c) = c1−η−1
1−η . c is just a composite of consumption of the three goods in

the economy: the agricultural good, and two manufacturing goods. Time is continuous.

Life-time utility is given by
∫
e−ρtu(c(t))dt, where ρ is the discount factor. The budget

constraint is given by p(t)c(t) + I(t) ≤ p(t)Q(t), where Q(t) is the vector of total output

in the economy and p(t) is the vector of prices.18 I(t) denotes savings which are the same

as investment. In what follows we omit explicitly showing time t when it does not lead

to a confusion.

The model has three sectors and three factors of production: agriculture, low-skill

intensive manufacturing, and high-skill intensive manufacturing that use land, low- and

high-skilled workers. Hence, it is a three-factor, three-sector model, where prices of final

goods are determined by world markets. For simplicity, we assume that land is only used

in agriculture. To talk more easily about structural transformation – which we define as

the movement of resources away from agriculture – we denote by high- and low-skilled

17We simplify Romer (1990) using Chapter 3 of Aghion and Howitt (2008). As explained in the
introduction, our model is also related to small open economy models with endogenous growth developed
in Grossman and Helpman (1991a).

18We define total output by Q = (Qa, Q
`
m, (Q

h
m − (

∫Kt x1−αk dk)), where Qj is output in sector j and

(
∫Kt x1−αk dk) are the inputs used in the high-skill manufacturing sector. p(t) = (pa(t), p`m(t), phm(t)) is

the vector of prices. We assume that phm is the numeraire.
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intensive industries the two sectors in manufacturing.

The agricultural sector produces combining labor and land in a constant elasticity of

substitution (CES) production function. In turn, labor is a CES composite of high- and

low-skilled labor. In equations, the local agricultural production function is defined by:

Qa = KtAN [γ(ALLa)
σ−1
σ + (1− γ)(ATTa)

σ−1
σ ]

σ
σ−1 (2)

where AN is a Hicks-neutral technology shifter, γ governs the weight of labor in the

production function, AL and AT are labor-augmenting and land-augmenting technologies,

respectively, and σ is the elasticity of substitution between labor (La) and land (Ta). Kt is

the knowledge in the local economy which is driven by high-skilled intensive manufacturing

output as we discuss below. The main difference between this production function and

the one in Bustos et al. (2016) is that, in our context, La is not just raw labor, but rather

a CES aggregate of high- and low-skilled labor:

La = [θ(AUUa)
ε−1
ε + (1− θ)(ASSa)

ε−1
ε ]

ε
ε−1 (3)

where θ is the weight of low-skilled labor and ε is the elasticity of substitution between

high- and low-skilled labor.

In this model there are two manufacturing industries. In the first industry, which

we call high-skilled intensive or heterogeneous input industry, final output is produced

combining high- and low-skilled labor and intermediates according to:

Qh
m = AhmF

h
m(Uh

m, S
h
m)α(

∫ Kt

x1−α
k dk) (4)

Where Kt is the total amount of input varieties in the industry at time t. We also refer

to Kt as the knowledge in the economy. We interpret knowledge as the necessary local

ideas that may be necessary to fully develop complex products or organize production

in a given region. We assume that these ideas are developed in the high-skill intensive

sector, but that once developed they are common local knowledge. Hence, we assume

that knowledge in the economy affects the productivity in agriculture and low-skilled

manufacturing. It is worth noting that this assumption on local spillovers guarantees

balanced-growth across sectors, but is not essential to our overall argument.19

Note that by investing in R&D activities the high-skill intensive industry can expand

the set of inputs used in production and hence total production. We assume that each

input in the high-skill intensive industry is monopolized by the person who invented it,

who decides how much output to produce given the profits. The input for producing the

19In the absence of productivity spillovers across sectors the economy would eventually converge to the
high-skilled intensive manufacturing industry. If there are shocks that limit the movement of workers to
this sector, then the convergence toward it would be slower or slowed down.
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intermediates is the final good of the industry.20 Hence, for each input k we have that

profits are given by:

Πk = pkxk − xk

Intermediate producers take as given the demand for their intermediate given the final

good production function and optimally chose how much to produce. This generates some

rents that attracts potential inventors of new ideas.21

In the other industry, which we call the low-skill intensive manufacturing industry,

firms produce a homogeneous good under conditions of perfect competition according to:

Q`
m = KtA

`
mF

`
m(U `

m, S
`
m) (5)

Both sectors combine low- and high-skilled labor. The only difference across industries

is that industry h is relatively more intensive in high-skilled labor than the homogeneous

good industry `.

We define the gross domestic output of the economy as: GDP = paKtAaFa+p
`
mKtA

`
mF

`
m+

Ahm
(
F h
m

)α
(
∫ Kt x1−α

k )−(
∫ Kt x1−α

k ), i.e. total output minus inputs, and the long-run growth

rate of the economy as g =
˙GDP

GDP
, where the dot indicates the derivative with respect to

time.

3.2 Structural transformation

With the agricultural production function introduced before we can apply the results

in Bustos et al. (2016) and Acemoglu (2002) to think about the relative and absolute

demands for low-skilled labor in the primary sector. Hence, we first investigate how agri-

cultural technical change affects the distribution of high- and low-skilled workers between

agriculture and manufacturing. To do so, we proceed in two steps. We first look at the

relative demand and then at the absolute demand for low-skilled labor in agriculture.

Theorem 1. An increase in As in agriculture, leads to an increase in the relative demand

for high skilled workers in agriculture if and only if the elasticity of substitution between

high- and low-skilled workers is greater than one (ε > 1).

Proof. See Appendix B.

This result essentially follows from Acemoglu (2002). When it is relatively easy to

substitute low- for high-skilled labor, then when the latter becomes more productive

firms want to hire relatively more skilled labor.

20This assumption simplifies the algebra. We are inspired by chapter 3 of Aghion and Howitt (2008).
This chapter is, in turn, an adaptation of the original Romer (1990). See also Grossman and Helpman
(1991b) for a continuous sector version of the endogenous growth model, Helpman (1993) and Bayoumi,
Coe, and Helpman (1999) – where knowledge transfers across countries are analyzed –, Aghion and Howitt
(1992), and Grossman and Helpman (1994) for a review of some fundamental aspects of this literature.

21We discuss in more detail all the assumptions of the model in Appendix B.
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Note that, at the same time, this increase in AS makes the whole CES aggregate La

increase its output, which is akin to the increase in the productivity of labor AL studied

in Bustos et al. (2016). That paper shows that an increase in AL leads to a relocation of

labor from agriculture to manufacturing, provided that the elasticity between land and

labor (σ) is smaller than the share of land in production. Thus, by combining the insights

in Acemoglu (2002) and Bustos et al. (2016) we obtain, under certain conditions, that a

technology which improves the productivity of high-skilled workers in agriculture leads to

the relocation of low-skilled workers away from agriculture.

Theorem 2. Whether an increase in As in agriculture leads to an absolute decrease in

the demand for low skilled workers in agriculture depends on whether labor and land are

strong complements (σ < εΓ).

Proof. See Appendix B. Note that Γ =

(
(1−γ)(ATTa)

σ−1
σ

γ(ALLa)
σ−1
σ +(1−γ)(ATTa)

σ−1
σ

)
is the share of land

in agricultural production, and ε is the elasticity of substitution between high- and low-

skilled workers.

Theorem 2 extends the logic of Bustos et al. (2016) to two labor types and in doing so

we obtain interesting new insights. With only labor and land in agriculture, labor aug-

menting technical change may lead to a decrease in the demand of labor only if land and

labor are sufficiently strong complements. When there are two labor types, the argument

is a little bit more nuanced. If one of the labor types becomes more productive, then

on the one hand we would like to use more of it if it can substitute the other type of

labor. On the other hand, however, we want to use less labor overall if labor and land are

strong complements. As a result, when skill-biased-factor-augmenting technologies (As)

improve, as may be the case in many developing countries when importing technologies

from more developed countries, the demand for unskilled labor in agriculture decreases if

high- and low-skilled workers are good substitutes and land and labor are strong comple-

ments. With two labor types, strong complementarity is substantially weaker than with

just one labor type. The reason for that is that part of the adjustment takes place within

labor.

3.3 Industrial specialization and economic growth

From the view point of the manufacturing sector, the release of low-skilled workers

from agriculture essentially looks like an exogenous increase in the relative supply of labor.

Hecksher-Ohlin forces imply that this increase in low-skilled workers into manufacturing

expands the industries that use low-skilled labor more intensively. Industrial specialization

matters for economic growth because its composition determines the long-run growth rate

of the economy. We explain these two points in what follows.
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We start by analyzing how skill-biased factor-augmenting technical change in agri-

culture affects the return to the three factors in the economy, namely: land, high- and

low-skill labor. To do so, we need to analyze the zero profit conditions in each sector of

activity. These are given by:

pa = ca(ws, wu, r, As, Kt) = ca(ws, wu, r, As)/Kt (6)

1 = chm(ws, wu, p,Kt) = (chm(ws, wu, 1)1−αpα)/Kt ∝ chm(ws, wu, 1)/Kt (7)

p`m = c`m(ws, wu, Kt) = c`m(ws, wu)/Kt (8)

where ca(), c
h
m(), and c`m() are the unit cost functions in each sector.22 To obtain

these equations we also have used the fact that knowledge enters in a Hicks-neutral way

in both agriculture and low-skill manufacturing, and the fact that, given the symmetry

and the optimal behavior in the intermediate market, all intermediates are priced at the

same level p and produced in the same quantity x, and hence, Kt also enters as a Hick-

neutral term in high-skilled manufacturing. Finally, it is also worth mentioning that,

given our assumptions, the high-skilled manufacturing sector is also a constant return to

scale sector in high- and low-skilled labor once optimal production of intermediates is

taken into account.

Lemma 1. If all three sectors are active, the effect of an increase in skilled-biased-factor-

augmenting technology in agriculture (As) on wages is mediated by the effect of As on

local knowledge (Kt). In particular:

∂ lnws
∂As

=
∂ lnwu
∂As

=
∂ lnKt

∂As

and the effect of As on land prices is given by:

∂ ln r

∂As
=
∂ lnKt

∂As
+

θSa
AsθTa

where θSa is the cost share of high-skilled workers and θTa is the cost share of land in

agriculture.

Proof. See Appendix B.

Lemma 1 says that when all sectors of activity are active the economy is in an “effi-

ciency corrected” (labor) price equalization set. This is so, because the price of high- and

low-skilled labor is determined exclusively by manufacturing industries and international

22We provide the exact definitions of the unit cost functions in Appendix B.
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markets. Land prices are, instead, determined by what happens in the agricultural sector

given the prevailing prices of labor.

As a result of this setting, it is crucial to understand how an increase in skilled-

biased-factor-augmenting technolgy in agriculture leads to particular patterns of industrial

specialization. We summarize our results with the following theorem.

Theorem 3. An increase in skilled-biased-factor-augmenting technology in agriculture

(As), leads to an expansion of low-skill intensive manufacturing industries, provided that:

1. High- and low-skilled workers are imperfect substitutes (i.e. when ε > 1)

2. Land and labor are strong complements (i.e. when σ < εΓ)

3. Agriculture is not much more intensive in low-skilled labor than the low-skill inten-

sive industry.

Proof. In Appendix B we provide a proof of this theorem assuming that all sectors are

active.

The intuition for this result follows, essentially, from standard Hecksher-Ohlin inter-

national trade theory. In a two sector Hecksher-Ohlin world (think now about the high-

and low-skilled manufacturing industries), an exogenous increase in low-skilled workers

expands the low-skilled intensive industry more than proportionately and shrinks the

high-intensive industry. The reason for that is that if all low-skilled workers enter the

low-skilled intensive industry, total output would increase by more than if they were put

in the high-skilled intensive one. Given our assumption of a small open economy, prices

are fixed. Hence, if output of the high-skilled intensive good does not change and all

the extra low-skilled labor enters the low-skill intensive sector, the marginal product of

high-skilled labor would be higher in the low-skilled intensive industry. This means that

some high-skilled labor would want to leave the high-skilled intensive industry towards

the low-skilled intensive one. As a result, the high-skill intensive industry shrinks and

all the low-skilled labor released from agriculture plus some high-skilled labor from the

high-skill intensive industry enter the low-skilled intensive industry, expanding its size.

In our context we have three sectors (agriculture, low-skilled intensive manufacturing and

high-skill intensive manufacturing), instead of two. In this case, if agriculture was very

low-skill intensive (much more than the other two sectors), Rybczynski forces would push

the “freed labor” from skilled-biased-factor-augmenting technological progress back into

agriculture. If these forces are not too strong, which occurs when agriculture is not much

more intensive in low-skilled labor than low-skill intensive manufacturing, low-skilled la-

bor finds accommodation into low-skilled intensive manufacturing industries.

The final result in this section relates industrial composition and economic growth. In

particular, we show that:
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Theorem 4. When the following conditions hold:

1. High- and low-skilled workers are imperfect substitutes (i.e. when ε > 1)

2. Land and labor are strong complements (i.e. when σ < εΓ)

3. Agriculture is not much more intensive in low-skilled labor than the low-skill inten-

sive industry.

An exogenous change in skill-biased-factor-augmenting technology (As), results in:

1. Static gains from increased productivity in the agricultural sector.

2. Dynamic losses shaped by the decrease in the size of the R&D, high-skilled intensive

manufacturing industry.

In particular, the growth rate of consumption is given by:

gC =
χAhmF

h
m(Uh

m, S
h
m)− ρ

η
(9)

where χ > 0 is a constant defined in Appendix B. And the change in gross domestic

output is given by:

∂ lnGDPt
∂As

= ωa
∂ ln paAaFa

∂As
+ ω`m

∂ ln p`mA
`
mF

`
m

∂As
+ ωhm

∂ lnAhmF
h
m

∂As︸ ︷︷ ︸
Static gains/losses

+
χ

η

∂AhmF
h
m

∂As
t︸ ︷︷ ︸

Dynamic gains/losses

(10)

where ωj =
pjAjFj

paAaFa+p`mA
`
mF

`
m+ςAhmF

h
m

.

Proof. See Appendix B.

To provide some intuition for this result we just need to note that output in the high-

skill intensive industry can expand if Kt expands. The level of knowledge, Kt, expands

if it is profitable to do so. In our model, this is so because entrepreneurs can invest in

developing a new variety and become the monopoly owners of the profits derived from

the new variety they invent.

Under suitable assumptions, which we detail in Appendix B, we have that both to-

tal production, profits, and net production in the sector (i.e. total output minus the

output used for intermediates), are all proportional to AhmF
h
m(Uh

m, S
h
m). This, in turn,

has the convenient feature that the rate of return of investment is itself proportional to

AhmF
h
m(Uh

m, S
h
m), and given by χAhmF

h
m(Uh

m, S
h
m).

In steady state, total output depends on the sectoral composition and the economy

grows based on the size of the high-skilled intensive sector. We can then apply theo-

rems 1 to 3 to obtain the result that skill-biased-factor-augment technological change in
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agriculture leads, under the three conditions stated in theorem 4, to the expansion of

the low-skilled intensive industry and a contraction of the high-skill intensive one. This

movement of resources into the “wrong” industries lowers the long-run growth rate, some-

thing that we labeled as dynamic loses. On impact, however, total output increases since

there are productivity gains in agriculture and employment gains in low-skill intensive

manufacturing. This is what we labeled as static gains, which is different from the static

gains emphasized in prior literature and that we abstract from in the model.23

We provide a qualitative illustration of theorem 4 in Figure 3, where we abstract from

transition dynamics. The left-graph of the figure shows the evolution of total output in

the economy under two scenarios. Shown in a solid line, total output keeps increasing

over time (log) linearly at the steady state growth rate. If As increases (permanently) at a

point in time (denoted by t = 0 in the graph), then total output increases instantaneously,

as shown by the dashed line. This instantaneous increase is the result of the higher

productivity in agriculture and the increased output in manufacturing due to the entry

of low-skilled workers into the sector. However, because the sector that absorbs labor

is the low-skilled intensive manufacturing industry and some high-skilled workers leave

the high-skilled intensive industry, the new equilibrium growth rate decreases, shown

in the graph as a lower trend in the dashed line.24 The increase in total output in

manufacturing is lower than the increase in total output, as shown in the right-graph of

Figure 3, because total output in manufacturing only increases on impact because of the

reallocation of workers away from agriculture and not because of technological progress.

After the initial increase in manufacturing output, industrial specialization lowers the

trend in manufacturing output in exactly the same way as it lowers the trend in overall

output. In what follows, we explore how these theoretical insights can help us understand

the patterns in the data.

4 Empirics

This section describes our identification strategy and reports the main empirical results

of the paper. We start by discussing our identification strategy in section 4.1. In section

4.2 we study the effect of soy technical change on the reallocation of low-skilled and high-

skilled workers across sectors, as well as its effect on the wages of these two types of

workers. In section 4.3 we study industrial specialization, i.e. we document the effect

23Previous literature, see Caselli 2005, Restuccia et al. 2008, Lagakos and Waugh 2013, Lagakos and
Waugh 2013, or Gollin et al. 2014, argues that there are frictions to mobility from agriculture to manu-
facturing that impede workers to move across sectors. Instead, in this paper we observe patterns that are
in-line with relatively flexible cross-sector mobility, and the static gains come exclusively from increases
in agricultural productivity.

24In Appendix C we provide a variant of the model where an increase in low-skilled labor in the low-skill
intensive sector alone generates a slow-down in manufacturing productivity.
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Figure 3: Evolution of output given an increase in As

Total Output Total Output in Manufacturing

Notes: This figure shows the qualitative theoretical evolution of total output (left panel) and total output in manufacturing
(right panel) implied by our model when at time t = 0 skilled-biased-factor-augmenting technology (As) in agriculture
increases. The figure displays the evolution of the economy both with (dashed line) and without (solid line) the technological
change.

of soy technical change on labor allocation across industries within the manufacturing

sector. Finally, in section 4.4, we focus on the impact of industrial specialization driven

by soy technical change on manufacturing productivity in the long-run.

4.1 Identification Strategy

To estimate the effect of soy technical change on our outcomes of interest, we estimate

the following equation:

∆Yk = α + β∆Asoyk + ϕXk + εk (11)

where ∆Yk is the change in the outcome of interest in microregion k between 2000 and

2010, ∆Asoyk corresponds to our exogenous measure of technical change in soy described

in section 2.2, and Xk is a vector of controls of microregion k. Our identification strategy

relies on the fact that the new GE soybeans seeds were legalized in Brazil in 2003, and

that this new technology disproportionately favored microregions with certain soil and

weather characteristics (as captured by ∆Asoyk ), something that was not anticipated as of

2000.

In our baseline specification, we include as controls the share of rural population in

1991 and a measure of technical change in maize. The lagged share of rural population

captures differential trends in the outcome variable between urban and rural microregions,

whereas the technical change in maize captures the differential impact across microregions

of new maize production methods that were introduced in this period.25 In our extended

25This new production methods – and in particular second-season maize – might have affected some
of the outcomes and are partially correlated with the soy shock. See Bustos et al. (2016) for a detailed
discussion of second-season maize and pre-trends.
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specification, we also control for the initial level of income per capita, alphabetization rate,

and population density, all observed in 1991 and sourced from the Population Census.

These controls are meant to capture differential trends across microregions with different

initial levels of income and human capital.

4.2 Effect of Technical Change on Labor Reallocation and Wages

In this section we start by documenting that soy technical change introduced by GE

seeds was labor-saving. Microregions that could benefit more from the new technology

experienced a reallocation of workers from the agricultural sector to the manufacturing

and services sectors. Next, we document that soy technical change was also skill-biased. In

particular, with the introduction of this new technology, high-skilled workers had relatively

more opportunities in the agricultural sector than low-skilled workers. This led low-skilled

workers to leave agriculture. Finally, we document the effect of this increase in low-skill

labor supply on local wages.

We start in Table 3 by documenting that soy technical change generated a realloca-

tion of labor from agriculture into manufacturing, i.e. it led to structural transformation.

We find that microregions with higher exposure to soy technical change experienced a

decrease in the share of workers employed in agriculture and an increase in the share

of workers employed in manufacturing and services. Notice that – as shown in column

(2) – soy technical change had only small and not significant effects on total employ-

ment. Thus, the employment changes that we document in what follows are not driven

by migration between microregions or by changes in the total number of workers em-

ployed, but by movement of workers across sectors within microregions.26 The estimate

presented in column (4) indicates that microregions with a one standard deviation larger

increase in soy technical change experienced a 2.4 percentage points lower change in agri-

cultural employment share. This estimate is stable to the inclusion of controls. These

agricultural workers displaced by the new soy technology relocated into manufacturing

and services. Manufacturing employment shares increased by 1.7 percentage points – and

services employment share by 0.7 percentage points for a standard deviation difference in

soy technical change –, hence absorbing the bulk of workers released from agriculture. In

sum, the results presented in Table 3 indicate that soy technical change was labor-saving

and led to structural transformation, which are the main findings documented in Bustos

et al. (2016).27

26In Table A2 in the Appendix we provide direct evidence on the lack of internal migration responses.
27Bustos et al. (2016) find that soy technical change had a positive and significant effect on the em-

ployment share in manufacturing but no significant effect on the employment share in the services sector.
Table 3 in this paper documents that microregions more exposed to soy technical change experienced an
increase in employment share in both manufacturing and services. There are two reasons behind this
difference in results when the outcome is the employment share in the services sector. The first is that,
in this paper, we focus on remunerated labor – i.e. workers receiving a wage – whereas Bustos et al.
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Table 3: Effect of technical change in soy on employment shares

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. L ∆ Log. L ∆La

L ∆La

L ∆Lm

L ∆Lm

L ∆Ls

L ∆Ls

L

∆Asoy -0.033** -0.011 -0.034*** -0.033*** 0.020*** 0.023*** 0.014*** 0.009**
[0.015] [0.013] [0.005] [0.005] [0.004] [0.005] [0.005] [0.004]

Observations 557 557 557 557 557 557 557 557
R-squared 0.023 0.154 0.218 0.242 0.086 0.107 0.251 0.311
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of

observation is the micro-region. All the regressions include the baseline specification controls which are the share of rural population in

1991 and a measure of technical change in maize. The regressions with all controls also include income per capita (in logs), population

density (in logs), literacy rate, all observed in the 1991 Population Census. Robust standard errors reported in brackets. Significance

levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Next, in Table 4, we study the effect of soy technical change on the reallocation

across sectors of workers with different skills. More specifically, we characterize whether

the reallocation of workers from agriculture to manufacturing documented in Table 3 is

mostly driven by unskilled or skilled workers.

In Panel A of Table 4 we focus on unskilled workers. Columns (1) and (2) show that

soy technical change had a negative – although not precisely estimated – effect on the

total number of low-skilled workers. Then, in columns (3) to (8), we study the effect

of soy technical change on the share of low-skilled workers employed in each sector. We

find that microregions more exposed to soy technical change experienced a reallocation

of unskilled workers from agriculture to manufacturing. The magnitude of the estimated

coefficients indicate that microregions with a standard deviation higher increase in soy

technical change experienced a 2.4 percentage points larger decrease in the share of low-

skilled workers employed in agriculture, and a corresponding 2.1 percentage points larger

increase in the share of low-skilled workers employed in manufacturing. These magnitudes

correspond to a 7.2 percent decrease in the initial share of low-skilled workers employed

in agriculture, and a 15 percent increase of the share of those employed in manufacturing.

Combined with the coefficient presented in column (2), these results are consistent with

a decline in the absolute demand for low-skilled labor in agriculture in response to skilled

labor-augmenting technical change, as predicted by the model. The low-skilled employees

released from agriculture moved primarily into manufacturing.

In Panel B we focus instead on skilled workers. We find that microregions more ex-

posed to soy technical change experienced a higher increase in the total number of high-

skill workers, as shown in Columns (1) and (2).28 Columns (3) to (8) report the effect of

(2016) also included workers who helped household members without receiving a payment or worked
in subsistence agriculture. The second is the unit of observation, which is a microregion in Table 3, a
municipality in Bustos et al. (2016).

28As we document in Table A2 in the Appendix, this differential increase in high-skill workers is not
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soy technical change on the share of high-skilled workers by sector of employment. We

find that microregions more exposed to soy technical change experienced a larger decrease

in the share of high-skill workers in agriculture.29 We also find that microregions more

exposed to soy technical change experienced a larger increase in the share of high-skill

workers employed in manufacturing, consistently with some complementarity in the use of

both types of workers. The magnitude of the estimated coefficients indicate that microre-

gions with one standard deviation higher increase in soy technical change experienced

a 1.2 percentage points larger decrease in the share of high-skilled workers employed in

agriculture (10 percent of their initial share), and a corresponding 1 percentage points

increase in the share of high-skilled workers employed in manufacturing (5.8 percent of

their initial share).

Table 4: Effect of technical change in soy on employment shares
by skill group

Panel A: Reallocation of Unskilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. U ∆ Log. U ∆Ua

U ∆Ua

U ∆Um

U ∆Um

U ∆Us

U ∆Us

U

∆Asoy -0.062*** -0.023 -0.033*** -0.033*** 0.025*** 0.028*** 0.008* 0.005
[0.017] [0.014] [0.006] [0.006] [0.005] [0.005] [0.005] [0.004]

Observations 557 557 557 557 557 557 557 557
R-squared 0.136 0.301 0.106 0.120 0.092 0.100 0.117 0.142
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Panel B: Reallocation of Skilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES ∆ Log. S ∆ Log. S ∆Sa

S ∆Sa

S ∆Sm

S ∆Sm

S ∆Ss

S ∆Ss

S

∆Asoy 0.032* 0.052*** -0.015*** -0.016*** 0.012** 0.013** 0.002 0.003
[0.019] [0.017] [0.004] [0.004] [0.005] [0.005] [0.005] [0.005]

Observations 557 557 557 557 557 557 557 557
R-squared 0.301 0.446 0.030 0.043 0.057 0.076 0.032 0.069
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The

unit of observation is the micro-region. All the regressions include the baseline specification controls which are the share of

rural population in 1991 and a measure of technical change in maize. The regressions with all controls also include income per

capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. Robust standard errors

reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Taken together, our estimates show that the agricultural sector experienced a decrease

in its employment share of both low-skill and high-skill labor, while the manufacturing

driven by internal migration but rather by an increase in local employment.
29Notice that this negative coefficient does not indicate a larger decrease in the total number of high-

skilled workers employed in agriculture. This is because microregions more exposed to soy technical
change experienced a larger increase in total high-skill employment, as shown in column (2).
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sector experienced an increase in its employment share of both low-skill and high-skill

labor. The loss in the employment share of agriculture and the increase in the employment

share of manufacturing were stronger for low-skilled workers than for high-skilled workers.

If labor supply across sectors or microregions is imperfectly elastic, the documented

effects on employment should also be observable in wage changes. Instead, if workers mo-

bility across sectors over the decade is high, we should not observe substantial differences

in wage changes across sectors. This is what we investigate in what follows.

We first focus on what happens to the average worker in the local economy and then we

distinguish between high-skilled and low-skilled workers. Table 5 shows that microregions

with higher exposure to soy technical change experienced larger increases in wages. As

shown in Columns (3) and (4), these wage gains are driven by the agricultural sector. It is

important to remember that our outcome variable is the change in composition-adjusted

wages, computed as explained in Section 2.2. This means that we always net out all

the observable characteristics of workers using Mincerian regressions in order to obtain a

measure of how much each labor type is paid.

Table 5: Effect of technical change in soy on wages by sector

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy 0.012 0.023*** 0.044*** 0.048*** 0.014 0.016 0.004 0.018*
[0.009] [0.008] [0.012] [0.012] [0.012] [0.011] [0.010] [0.009]

Observations 557 557 557 557 557 557 557 557
R-squared 0.035 0.177 0.121 0.179 0.039 0.087 0.023 0.195
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Notes: Changes in wages are calculated over the years 2000 to 2010. The unit of observation is the micro-region. All the regressions include the

baseline specification controls which are the share of rural population in 1991 and a measure of technical change in maize. The regressions with all

controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. We recover the

estimates of the dependent variable from a first stage Mincerian regression in which we estimate a regression of the log of hourly wage on microregion

fixed effects, and a vector of individual characteristics that includes dummies for sector, skill group, age group, race, and all the interactions between

these variables. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Given the evidence presented in Table 4 we also study differences in wage response

across low-skill and high-skill workers. We investigate this in Table 6. Columns (1) and

(2) of Panel A show no significant effects of soy technical change on average wages of

low-skilled workers.30 When splitting workers by sector, we find that low-skilled agricul-

tural workers experienced higher wage growth in microregions more exposed to the soy

shock. We interpret this result as evidence that only the “best” low-skilled workers – in

30In part it may be that wages did not decline because of the large increase in minimum wages during
that period, see for instance Engbom and Moser (2018). To explore whether low-skilled workers in
manufacturing were disproportionately pushed into minimum wage levels in soy affected regions we show
in Table A4 in the Appendix regressions where the dependent variable is the number of workers in
manufacturing at the minimum wage. The evidence shows that the number of workers at the minimum
wage level increased more in high relative to low soy shocked microregions.
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Table 6: Effect of technical change in soy on wages by skill group

Panel A: Wages of Unskilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy -0.011 0.010 0.038*** 0.045*** 0.004 0.007 -0.004 0.011
[0.009] [0.009] [0.012] [0.012] [0.014] [0.013] [0.010] [0.010]

Observations 557 557 557 557 556 556 557 557
R-squared 0.181 0.262 0.118 0.170 0.027 0.068 0.018 0.169
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Panel B: Wages of Skilled Labor

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy 0.033*** 0.036*** 0.115*** 0.070*** 0.052*** 0.050*** 0.028** 0.037***
[0.011] [0.010] [0.021] [0.020] [0.019] [0.018] [0.012] [0.012]

Observations 557 557 557 557 555 555 557 557
R-squared 0.063 0.164 0.058 0.164 0.034 0.070 0.030 0.157
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Panel C: Skill Premia

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Overall Overall Agriculture Agriculture Manufacturing Manufacturing Services Services

∆Asoy 0.043*** 0.025*** 0.077*** 0.025 0.052** 0.042** 0.033*** 0.026***
[0.009] [0.009] [0.020] [0.019] [0.022] [0.020] [0.010] [0.010]

Observations 557 557 557 557 554 554 557 557
R-squared 0.081 0.121 0.028 0.098 0.012 0.014 0.018 0.025
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes No Yes

Notes: Changes in wages and skill premia are calculated over the years 2000 to 2010. All regressions include the baseline specification controls which

are the share of rural population in 1991 and a measure of technical change in maize. The regressions with all controls also include income per capita (in

logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. In columns (5) and (6) of Panel A we lose one observation

because there are no unskilled manufacturing workers in our sample in the microregion Amapá (IBGE ID 16002) in 2010. In columns (5) and (6) of Panel

B we lose two observations because there are no skilled male manufacturing workers in our sample in the microregions of Japurà (IBGE ID 13002) and

Chapadas Das Mangabeiras (IBGE ID 21021) in 2000. The missing observations in columns (5) and (6) of Panel C follow from the above explanation.

We recover the estimates of the dependent variable from a first stage Mincerian regression in which we estimate a regression of the log of hourly wage on

microregion fixed effects, and a vector of individual characteristics that includes dummies for sector, skill group, age group, race, and all the interactions

between these variables. Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

terms of unobservable characteristics – stayed in agriculture. In other words, the low-

skilled workers that moved into manufacturing were negatively selected both in terms of

observable characteristics, as documented in the previous section, and possibly in terms

of unobservable characteristics.31

In Panel B of Table 6, we focus on wages of high-skilled workers as an outcome.

Consistent with the increase in employment of high-skill workers, wages of high-skilled

workers increased faster in microregions more exposed to soy technical change. Although

31The fact that there is selection in unobservable characteristics has been used in previous literature to
explain cross-sectoral results: For an example, see Autor, Dorn, and Hanson (2013). Monras, Vazquez-
Grenno, and Elias (2018) show that there is selection in “observables” and “unobservables” that goes in
the same direction in labor market adjustments induced by a large amnesty program. They also introduce
a model of the labor market with heterogenously productive low-skilled labor that rationalizes this fact.
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this result holds across sectors, the effect is larger in agriculture. This is in line with

the idea that agriculture experienced a relative increase in the demand for high-skilled

workers, which is partly observable in employment and partly in wages.

Finally, in Panel C, we investigate whether the increase in the relative demand for

high-skilled workers in agriculture led to systematic differences in the relative wages across

types of workers in the different sectors of the economy. As can be seen in this panel, the

estimates in each sector are similar in magnitude, which is consistent with the idea that

labor reallocation across sectors is relatively elastic.

In sum, the evidence from wage regressions is consistent with soy technical change

being both labor-saving and skill-biased. The results in this section also imply that

readjustment across sectors was, over this period, relatively flexible, which suggests that

it may be particularly interesting to further investigate labor reallocation within sectors.

We turn to this point in the following section.

4.3 Industrial Specialization

As discussed in Section 3, the way in which the excess supply of low-skilled workers

in agriculture is absorbed into manufacturing is likely to have important consequences

for industrial specialization and long-term economic growth. In this section, we docu-

ment which industries absorbed the low-skilled workers released from agriculture due to

technological innovation in soy production.

To investigate this point, we distinguish between low-skill-intensive and high-skill in-

tensive industries within manufacturing. As explained in more detail in section 2.2, we

split overall employment in manufacturing between industries above the median level of

skill-intensity, defined as the share of skilled workers over total workers in the baseline

year of 2000. We also present results splitting manufacturing industries by R&D intensity,

which is measured as R&D expenditures as a share of sales in the baseline year. Table A3

reports the full list of industries by skill-intensity and R&D intensity, while Figure A.1

reports the correlation between skill intensity and R&D intensity at industry level.

Table 7 reports the main results of this section. We start in panel A by estimat-

ing equation (11) when the outcome variable is the share of unskilled labor employed in

manufacturing over total unskilled labor in a given microregion. Column (1) shows that

microregions more exposed to soy technical change experienced a larger increase in the

share of low-skilled workers employed in manufacturing. In columns (2) and (3) we split

the manufacturing sector into low-skill-intensive and high-skill-intensive industries. The

estimated coefficients indicate that the increase in low-skilled manufacturing employment

driven by soy technical change is concentrated exclusively in low-skill-intensive manufac-

turing industries. In columns (4) and (5) we replicate the same exercise splitting the

manufacturing sector into low versus high R&D intensive industries. We find results con-
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sistent with low skilled workers released from agriculture being absorbed mostly by low

R&D intensive manufacturing industries. In terms of magnitudes, the estimated coeffi-

cients in columns (2) and (4) indicate that microregions with a one standard deviation

larger increase in soy technical change experienced a 2 percent higher change in low-skilled

manufacturing employment share in low-skilled-intensive or low R&D industries.

Table 7: Reallocation of Labor to Manufacturing by Skill Group

Panel A: Unskilled Labor ∆UM
U

(1) (2) (3) (4) (5)
∆UM

U ∆UM

U ∆UM

U ∆UM

U

VARIABLES ∆Um

U Skill Intensity=Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy 0.028*** 0.025*** 0.002 0.024*** 0.004
[0.005] [0.004] [0.002] [0.004] [0.003]

Baseline Controls Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes

Observations 557 557 557 557 557
R-squared 0.100 0.103 0.034 0.120 0.031

Panel B: Skilled Labor ∆SM
S

(1) (2) (3) (4) (5)
∆SM

S ∆SM

S ∆SM

S ∆SM

S

VARIABLES ∆Sm

S Skill Intensity=Low Skill Intensity=High R&D Expenditure=Low R&D Expenditure=High

∆Asoy 0.013** 0.006 0.007** 0.013*** 0.000
[0.005] [0.004] [0.003] [0.004] [0.003]

Baseline Controls Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes

Observations 557 557 557 557 557
R-squared 0.076 0.051 0.038 0.053 0.056

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The unit of observation is the micro-

region. All the regressions include the baseline specification controls which are the share of rural population in 1991 and a measure of technical change

in maize. The regressions with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991

Population Census. In these regressions, we split manufacturing industries at the median of their level of skill intensity and R&D activity in such a way that

roughly 50% of the Brazilian manufacturing employment is in each group. We define skill intensity as the share of skilled workers in a particular industry

according to the 2000 Population Census. Our measure of R&D activity is R&D expenditure as a share of total sales at baseline and we source it from from

the 2000 Pesquisa de Inovação Tecnológica (PINTEC). Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Next, in Panel B of Table 7, we focus on the share of high-skilled labor employed in

manufacturing over total skilled labor in a given microregion as an outcome. Column

1 shows that manufacturing gained high-skilled employment in response to soy technical

change. However, as shown in columns (2) and (3), we do not find significant differences in

this effect between manufacturing industries with different skill-intensities. When splitting

manufacturing industries by R&D intensity, we find that, if anything, some high-skilled

workers moved into low-R&D-intensive industries, consistent with the Rybczynski logic

that the two-factor types move to the same type of sectors. In sum, Table 7 shows that

low-skilled workers reallocating from agriculture to manufacturing were mostly absorbed

into low-skill intensive manufacturing.
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So far, we have split manufacturing into two industries making sure that half of total

manufacturing employment is assigned to each industry. This is, however, an arbitrary

split of the manufacturing sector. In fact, the model suggests that low-skill intensive

manufacturing expands only if the unskill-intensity of the sector is sufficiently close to that

of agriculture. To investigate this further, we split manufacturing into four industries,

ranked by their skill intensity, and each employing one fourth of total manufacturing

workers. Then, we estimate which of the four groups absorbed low-skilled labor using the

following equation:

∆
Lm,ik
Lk

= α + βi∆A
soy
k × γi + γi + εik (12)

where i indexes quartiles of skill intensity at industry level and k indexes microregions.

The outcome variable in this regression is the change in manufacturing employment in

each quartile of industry skill-intensity as a share of total employment in a given microre-

gion. For example, ∆
Lm,1k
Lk

is the change in manufacturing workers employed in industries

belonging to the lowest quartile of initial skill-intensity divided by total workers in a given

microregion. When estimating equation (12) we include the standard set of controls at

microregion level interacted with quartiles of skill intensity at the industry level (γi).

Figure 4 shows the results. In the upper graph of this Figure we report the estimated

coefficients on soy technical change by quartile of industry skill-intensity. The Figure

shows that the effect of soy technical change on the change in manufacturing employment

share documented in Table 3 is concentrated in industries in the lowest quartile of skill-

intensity. We obtain similar results when splitting industries by R&D intensity, as shown

in the lower graph of Figure 4.

Overall, the results presented in Figure 4 show that soy-driven increases in manu-

facturing employment are concentrated in the lowest skill-intensive and R&D intensive

industries. This result is consistent with the model introduced in Section 3 when skill

intensity in manufacturing is not too far from that of agriculture, and it is in line with

the logic of the classical Heckscher-Ohlin theory of international trade.

As argued in Section 3, we view these findings on industrial specialization as a caution-

ary note on the potential benefits of structural change. When structural change is driven

by skill-biased technical change in agriculture, the workers leaving agriculture may be

negatively selected, and may, thus, favor the expansion of sectors in manufacturing with

lower innovation-intensity. The fact that these effects are concentrated in low R&D man-

ufacturing industries, thus, has implications for manufacturing productivity and long-run

growth. We test empirically these implications in what follows.
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Figure 4: Employment Share Growth by Quartile of Skill Inten-
sity
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Notes: The plot shows the βi coefficients of the following regression:

∆
Lkm,i

Lk
= α+ βi∆Asoy × γi + γi + ϕXk,1991 + εik

for i = 1, 2, 3, 4 where γi is a dummy for the different quartiles of skill intensity (upper graph) and R&D intensity (lower
graph). We split manufacturing industries in quartiles according to their level of skill and R&D intensity so that roughly
25% of the Brazilian manufacturing employment is in each group. Changes in dependent variables are calculated over
the years 2000 and 2010 (source: Population Censuses). We define skill intensity as the share of skilled individuals in a
particular industry in Brazil at baseline and we source it from the 2000 Population Census. We define R&D intensity as
R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica
(PINTEC)

4.4 Dynamic Effects on Manufacturing Productivity

In section 4.3 we showed that technical change in soy production led to a realloca-

tion of low-skilled workers into low-skill intensive and low-R&D intensive manufacturing

industries. A key implication of the theoretical framework presented in section 3 is that

this type of industrial specialization may push the economy towards a lower GDP growth

path in the long run. In this section we provide empirical evidence consistent with this
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argument.

The empirical analysis presented in this section relies on data from the Annual Indus-

trial Survey (PIA), described in detail in Section 2.2. There are two main advantages of

the PIA data relative to the Census data. First, it provides detailed information on both

labor and value added for the universe of manufacturing firms above a certain employment

threshold operating across Brazilian microregions. Second, because the data is reported

annually, it allows us to study the effect of soy technical change on manufacturing em-

ployment and productivity at a yearly frequency. The main draw-back of these data is

that we cannot distinguish between high- and low-skilled workers as we did with Census

data.

To exploit the yearly variation in the data and visualize the evolution of outcomes of

interest, we first estimate the following event-type equation:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k + γXk,t + t×X ′k,1991ω + εk,t (13)

where ∆Asoyk is the change in our exogenous measure of technical change in soy in

microregion k, and ln yk,t is an outcome of interest in microregion k at time t. δk and

δt are microregion and year fixed effects, respectively, Xk,t are time-varying controls and

Xk,1991 are baseline controls interacted with a time trend.32 βj estimates the effect of the

change in the productivity of soy in each year between 2000 and 2009, using 2000 as the

omitted category.33 Thus, we flexibly allow βj to capture the effect of soy ten year technical

change on the outcomes of interest in each year. Given that genetically modified soy was

introduced in 2003, we expect significant effects of our exogenous measure of technical

change on the outcomes of interest starting around 2003. This type of specification is also

informative on the persistence of these effects.

We use equation (13) to study the effect of soy technical change on two main outcomes:

manufacturing employment and manufacturing productivity. For each of these outcomes

we separately study the effects in low-skill intensive industries and high-skill intensive

industries. For each outcome we plot the estimated βj in equation (13) for each year

between 2000 and 2009, along with the 95 percent confidence interval around the point

estimates.

We start by studying the yearly effect of soy technical change on manufacturing em-

ployment. Figure 5 reports the results when the outcome variables are log employment in

low-skill intensive manufacturing industries (Figure 5a) and log employment in high-skill

32Xk,t controls for technical change in maize.
33When estimating equation 13 in the data we additionally control for the change in maize technical

change interacted with year fixed effects as well as for the standard set of microregion level controls used
in previous tables, interacted with time fixed effects.
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Figure 5: Effect of the Soy Shock on Manufacturing Employment
by Type of Industry

(a) Low-skill intensive
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(b) High-skill intensive
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Notes: The plot shows the point estimates and the 95% confidence intervals for the estimates of the βj coefficients of the
following regression:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k + tX′k,1991ω + εk,t

Standard errors are clustered at the microregion level. ln yk,t corresponds to aggregate log. employment in microregion k
at the end of year t for each group of industries (Source: PIA). We split manufacturing industries at the median of their
initial level of skill intensity in such a way that roughly 50% of manufacturing employment is in each group.

intensity manufacturing industries (Figure 5b). We find that in regions more affected by

soy productivity increases, more labor enters low-skilled manufacturing industries, while

there are no differential effects of soy technical change on employment in high-skill inten-

sive industries.34 In addition, the amount of labor entering low-skill intensive industries

starts to increase substantially after 2003, consistent with the timing of introduction of

GE soybean seeds. These results are also consistent with those presented in sections 4.2

and 4.3 using Census data, which showed that the workers entering manufacturing fol-

lowing the soy shock were mainly low-skilled, and that they tended to be absorbed by

low-skill intensive industries.

Next, we investigate the effect of soy technical change on manufacturing productivity.

Ideally, we would like to use total factor productivity in manufacturing as an outcome.

However, due to data limitations in the reporting of book value of physical capital in the

Annual Industrial Survey, we use value added per worker and relative to total wage bill

in a given micro-region as proxies for manufacturing productivity. Figure 6 shows the

differential dynamics in labor productivity as a function of the change in soy technical

34Notice that PIA data does not report information on workers’ education. Therefore, in this section
we cannot separate high and low-skilled workers accurately, which is why we have used Census data in
the previous sections.
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Figure 6: Effect of the Soy Shock on Manufacturing Productivity
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Notes: The plot shows the point estimates and the 95% confidence intervals for the estimates of the βj coefficients of the
following regression:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k + tX′k,1991ω + εk,t

Standard errors are clustered at the microregion level. ln yk,t corresponds to aggregate log. value added per worker in
microregion k at the end of year t for manufacturing industries (Source: PIA).

change. The graph shows that micro-regions more exposed to the soy shock experienced a

relative decline in labor productivity. The effect becomes statistically significant in 2005,

two years after the legalization of GE soybean seeds, and increases in magnitude over the

decade.

While Figure 6 seems to confirm the predictions of the model, it could also be explained

by labor productivity decreasing in manufacturing purely as a result of a composition ef-

fect. If labor productivity is lower in low-skill intensive industries, then the movement

of workers towards these industries necessarily results in lower aggregate labor produc-

tivity in manufacturing. Our model highlights instead that manufacturing productivity

decreases because the incentives to innovate in high-skill-intensive sectors decrease. To

investigate this, we split manufacturing between high- and low-skill-intensive industries,

as we did in Figure 5. The results are reported in Figure 7. As highlighted in our model,

the decrease in manufacturing productivity originates in high-skill-intensive industries.

We quantify the estimates shown in Figures 6 and 7 in Table 8. To this end we use

the following regression:

ln yk,t = δt + δk + βAsoyk,t + γXk,t + t×X ′k,1991ω + εk,t
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Figure 7: Effect of the Soy Shock on Manufacturing Productivity
by Type of Industry
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(b) High-skill intensive
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Notes: The plot shows the point estimates and the 95% confidence intervals for the estimates of the βj coefficients of the
following regression:

ln yk,t = δt + δk +

j=2009∑
j=2001

βj∆A
soy
k + tX′k,1991ω + εk,t

Standard errors are clustered at the microregion level. ln yk,t corresponds to aggregate log. value added per worker in
microregion k at the end of year t for each group of industries (Source: PIA). We split manufacturing industries at the
median of their initial level of skill intensity in such a way that roughly 50% of manufacturing employment is in each group.

where Asoyk,t is defined as potential soy yield under high inputs for the years between

2003 and 2009, and the potential soy yield under low inputs for the years between 2000

and 2002 in microregion k. δk and δt are microregion and year fixed effects, respectively,

and Xk,t are time-varying controls and Xk,1991 are baseline controls interacted with a

time trend.35 Hence, β is the (continuous) difference-in-difference estimate obtained from

comparing microregions before and after 2003.36

Column (1) of Panel A shows that microregions more exposed to soy technical change

experienced a larger increase in aggregate manufacturing employment. In this analysis

we use data from the manufacturing survey PIA, which does not allow us to distinguish

between low- and high-skilled workers. However, the data allows us to split workers

between those employed in low-skill vs high-skill intensive industries. We do that in Panels

B and C of Table 8. The results are consistent with those obtained with the Population

Census data: the increase in manufacturing employment driven by soy technical change

was concentrated in low-skilled intensive industries. Next, we study the effect of soy

technical change on manufacturing value added. We find no significant effect on aggregate

35Xk,t controls for technical change in maize and is defined as potential maize yield under high inputs
for the years between 2003 and 2009, and potential maize yield under low inputs for the years between
2000 and 2002.

36In this table we use a balanced panel of microregions that includes all the microregions for which we
have observations in each year of the decade.
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value added. However, microregions more exposed to soy technical change experienced an

expansion of value added of low-skill intensive industries and a contraction of value added

of high-skill intensive industries. Finally, we study the effect of soy technical change on

labor productivity as measured by value added divided by number of workers.37 We find

that microregions more exposed to soy technical change experienced a decline in overall

labor productivity. Taken together, the estimates presented in Table 8 imply that micro-

regions with a one standard deviation larger increase in potential soy yields experienced

a 9.1 percent larger increase in the relative size of the low-skill intensive industry and a

1.2 percent lower yearly growth rate of manufacturing productivity.38

In the model, manufacturing productivity declines because the inflow of low-skilled

workers into manufacturing reinforces the comparative advantage in low-skill intensive

industry and reduces the size of the high-skill intensive one. Since the high-skill intensive

industry is the only user of intermediate inputs, when this industry shrinks, investing in

developing new intermediate inputs becomes less profitable. Hence, innovation decreases,

and so does overall manufacturing productivity. Moreover, if there is some delay in the

knowledge spillover across sectors, the decrease in productivity should be initially driven

by the high-skilled intensive industries, which is what we observe in the data.

Notice that, in our model, what drives the decrease in size of the high-skill intensive

industry is that labor relocates away from it. In the data, we find a non significant effect

of soy technical change on employment in high-skill intensive industries. In an extension

of our baseline model explained in detail in Appendix C we show that a small deviation

from the assumptions made, based on the work by Jones (1995), is sufficient to generate

a slowdown in manufacturing productivity growth even if labor does not leave the high-

skill intensive industry but the low-skill intensive industry increases in size relative to the

high-skill intensive one.39

In sum, Figures 6 and 7, along with Table 8 provide empirical evidence consistent

with one of the key implications of the model discussed in Section 3. An increase in

agricultural productivity due to the introduction of new technologies can benefit the

37Table A1 in the Appendix shows that we obtain similar results by using value added divided by total
wage bill as an alternative measure of labor productivity.

38We quantify the effect of soy technical change on the relative size of the low-skill intensive manu-
facturing industry by subtracting the coefficient reported in column (1) of Panel C from the coefficient
reported in column (1) of Panel B, and multiplying the difference by a standard deviation in soy technical
change. The effect on the yearly growth rate of manufacturing productivity is computed by multiplying
the coefficient in column (3) of Panel A by a standard deviation in soy technical change and computing
the annualized effect on labor productivity for the post GE soy legalization years.

39In Appendix C we show that if the low-skilled intensive sector uses congestionable intermediate input
varieties – i.e. what matters in production is the number workers per input variety –, then an expansion
of the L-industry drives innovative activities towards this industry, at least for some time. The L-sector,
however, does not have endogenous growth type forces – because of the congestionable intermediate
input varieties – and hence when resources are diverted to it, overall manufacturing growth slows down.
Appendix C follows the discussion in (Aghion and Howitt, 2008, p. 97), adapted to our context. See also
Romer (1990) and Jones (1995).
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Table 8: Effect of soy technical change on manufacturing employ-
ment, value added, and productivity

Panel A: Aggregate

(1) (2) (3)
VARIABLES Log Labor Log Value Added L-productivity

Asoy 0.118*** 0.013 -0.105**
[0.034] [0.051] [0.047]

Observations 3,350 3,350 3,350
R-squared 0.976 0.965 0.864
Baseline Controls Yes Yes Yes
All Controls Yes Yes Yes

Panel B: Low Skill-Intensive

(1) (2) (3)
VARIABLES Log Labor Log Value Added L-productivity

Asoy 0.156*** 0.129** -0.025
[0.047] [0.064] [0.054]

Observations 3,350 3,350 3,350
R-squared 0.955 0.930 0.777
Baseline Controls Yes Yes Yes
All Controls Yes Yes Yes

Panel C: High Skill-Intensive

(1) (2) (3)
VARIABLES Log Labor Log Value Added L-productivity

Asoy 0.033 -0.137* -0.163***
[0.053] [0.081] [0.059]

Observations 3,350 3,350 3,350
R-squared 0.962 0.951 0.841
Baseline Controls Yes Yes Yes
All Controls Yes Yes Yes

Notes: The dependent variables correspond to aggregate log. employment in each microregion at the end of each year,

aggregate log. value added, and log. value added per worker. We use aggregate information from PIA at the microregion

level for the time period 2000-2009. We include only those microregions that have positive employment in both low-skill

intensive and high-skill intensive industries for all the years in the sample. Asoy is defined as potential soy yield under high

inputs for the years between 2003 and 2009, and the potential soy yield under low inputs for the years between 2000 and 2002.

Baseline controls include the share of rural population in 1991 and a measure of technical change in maize. The regressions

with all controls also include income per capita (in logs), population density (in logs), literacy rate, all observed in 1991, all

interacted with a linear trend. The unit of observation is a microregion. Standard errors clustered at the microregion level

reported in parentheses. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

local economy in the short-run. However, when these technologies are skilled biased they

tend to displace low-skilled workers into manufacturing, expanding the least productive

manufacturing industries. Thus, compared to a counterfactual where workers leaving
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agriculture enter the most vibrant and R&D intensive sectors, our evidence suggests that

structural transformation may not lead the economy from a “subsistence” sector with

negligible productivity to a capitalist and high growth potential sector, as argued by

Lewis (1954) and Kuznets (1973). Depending on the circumstances, the workers leaving

agriculture may expand the “wrong” industries, leading to lower productivity growth in

the long-run than what was believed in the previous literature.

5 Conclusions

The reallocation of labor from agriculture into manufacturing is generally regarded

as positive in economic development literature. Several studies have documented that

the manufacturing sector has, on average, higher productivity and pays higher wages.

However, little is known about which type of workers are released from the agricultural

sector and which manufacturing industries absorb them during the process of structural

transformation.

Our paper contributes to the literature by showing that the forces driving structural

transformation can shape the type of industries in which a country specializes. In most

countries, the process of industrialization can be ascribed to one of two forces: “push”

forces, such as new agricultural technologies that push workers out of agriculture, or

“pull” forces, such as industrial growth that pull workers into manufacturing. We show

that when labor reallocation from agriculture to manufacturing is driven by labor-saving

agricultural productivity growth – rather than manufacturing labor demand – it can gen-

erate an expansion in those manufacturing sectors with the lowest potential contribution

to aggregate productivity.

We guide our empirical analysis through the lenses of an open economy, three sector

endogenous growth model. The model suggests that the low-skilled labor released from

agriculture should find accommodation in the low-skilled intensive manufacturing indus-

tries, which leads to lower productivity growth. We use yearly data on labor productivity

to show that the data supports the predictions of the model.

Taken together, our findings indicate that structural transformation obtained through

labor-saving and skill-biased technical change in agriculture – which may be quite common

when developing countries adopt agricultural technologies from more developed ones –

can attenuate the standard gains from reallocation into manufacturing emphasized by the

existing literature.
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A Appendix: Empirics

A.1 Figures and Tables

Figure A.1: Correlation between Skill Intensity and R & D Ex-
penditure
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Notes: We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we
source it from the 2000 Population Census. Our measure of R&D activity is R&D expenditure as a share of total sales at
baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica ](PINTEC). The correlation between these
variables is approximately 0.33.
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Figure A.2: Evolution of profits from innovation given an increase
in As

Notes: This figure shows the qualitative theoretical evolution of profits from innovating in the L- and H-industries implied
by the extension of our model discussed in Appendix C when at time t = 0 skilled-biased-factor-augmenting technology
(As) in agriculture increases.
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Table A1: Effect of soy technical change on manufacturing value
added, wage bill and productivity

Panel A: Aggregate

(1) (2)
VARIABLES Log WL Log VA/WL

Asoy 0.113*** -0.104**
[0.037] [0.043]

Observations 3,350 3,350
R-squared 0.979 0.708
Baseline Controls Yes Yes
All Controls Yes Yes

Panel B: Low Skill-Intensive

(1) (2)
VARIABLES Log WL Log VA/WL

Asoy 0.151*** -0.025
[0.053] [0.052]

Observations 3,350 3,350
R-squared 0.958 0.603
Baseline Controls Yes Yes
All Controls Yes Yes

Panel C: High Skill-Intensive

(1) (2)
VARIABLES Log WL Log VA/WL

Asoy 0.044 -0.180***
[0.060] [0.055]

Observations 3,350 3,350
R-squared 0.967 0.699
Baseline Controls Yes Yes
All Controls Yes Yes

Notes: The dependent variables correspond to the aggregate log. wage bill and log.

value added divided by the wage bill (Source: PIA). We use aggregate information

from PIA at the microregion level for the time period comprehended between 2000-

2009. We include only those microregions that have both, low-skill intensive and high-

skill intensive, industries for all the years in the sample. Asoy is defined as potential

soy yield under high inputs for the years between 2003 and 2009, and the potential

soy yield under low inputs for the years between 2000 and 2002. We include time

and microregion fixed effects in all the regressions. All the regressions include the

baseline specification controls which are the share of rural population in 1991 and a

measure of technical change in maize. The regressions with all controls also include

income per capita (in logs), population density (in logs), literacy rate, all observed

in the 1991 Population Census. Since these controls do not vary over time they are

interacted with a linear trend. The unit of observation is the microregion. Standard

errors clustered at the microregion level reported in parentheses. Significance levels:
∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A2: Internal migration

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES Net Migration: ALL In-Migration: ALL Out-Migration: ALL Net Migration: S In-Migration: S Out-Migration: S Net Migration: U In-Migration: U Out-Migration: U

∆Asoy -0.000 0.004 0.004 -0.006 -0.000 0.006 0.008 0.012** 0.005
[0.009] [0.005] [0.006] [0.010] [0.005] [0.007] [0.008] [0.005] [0.006]

Observations 557 557 557 557 557 557 557 557 557
R-squared 0.496 0.307 0.541 0.442 0.307 0.532 0.535 0.292 0.526
Baseline Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
All Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Dependent variables are calculated for 2010 (source: Population Censuses). The unit of observation is the micro-region. These regressions compute the 5 year internal migration rate between 2005 and 2010, using the microregion of

residence 5 years prior to the Census 2010. All the regressions include the baseline specification controls which are the share of rural population in 1991 and a measure of technical change in maize. The regressions with all controls also include

income per capita (in logs), population density (in logs), literacy rate, all observed in the 1991 Population Census. . Robust standard errors reported in brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table A3: Classification of Manufacturing Industries by Skill Intensity

IBGE Code Description Skill Intensity R&D Share of Sales

20000 Wooden products 0.247 0.052
26091 Ceramic products 0.275 0.049
37000 Recycling 0.304 0.045
19011 Tanning and other preparations of leather 0.325 0.018
15041 Manufacturing and refining of sugar 0.334 0.021
19020 Footwear 0.348 0.018
23400 Alcohol production 0.350 0.014
15010 Slaughtering and preparation of meat and fish 0.355 0.021
26092 Miscellaneous products of non-metallic minerals 0.382 0.049
36010 Pieces of furniture 0.402 0.036
18001 Making of clothing articles and accessories - except on order 0.425 0.021
15043 Other food products 0.426 0.021
17002 Manufacturing of textile objects based on cloth - except for garments 0.433 0.036
15030 Dairy products 0.433 0.021
18002 Making clothing articles and accessories - on order 0.435 0.021
15022 Vegetable fat and oil 0.446 0.021
19012 Leather objects 0.453 0.018
27003 Foundries 0.462 0.063
17001 Processing of fibers, weaving and cloth making 0.471 0.036
15021 Preserves of fruit, vegetables and other vegetable products 0.484 0.021
23010 Coke plants 0.487 0.014
35010 Construction and repair of boats 0.493 0.059
28001 Metal products - except machines and equipment 0.496 0.035
16000 Tobacco products 0.496 0.011
15042 Roasting and grinding of coffee 0.499 0.021
28002 Foundries, stamping shops, powder metallurgy and metal treatment services 0.502 0.035
25020 Plastic products 0.543 0.045
15050 Beverages 0.555 0.021
34003 Reconditioning or restoration of engines of motor vehicles 0.556 0.071
25010 Rubber products 0.567 0.045
26010 Glass and glass products 0.576 0.049
36090 Miscellaneous products 0.576 0.036
21002 Corrugated cardboard, packaging, and paper and cardboard objects 0.577 0.039
35090 Miscellaneous transportation equipment 0.581 0.059
31002 Electrical material for vehicles 0.599 0.058
21001 Pulp, paper and smooth cardboard, poster paper and card paper 0.602 0.039
29001 Machines and equipment - except appliances 0.605 0.041
35020 Construction and assembly of locomotives, cars and other rolling stock 0.632 0.059
24090 Miscellaneous chemical products 0.635 0.040
34002 Cabins, car bodies, trailers and parts for motor vehicles 0.637 0.071
27002 Non-ferrous metals 0.644 0.063
24010 Paints, dyes, varnish, enamels and lacquers 0.656 0.040
24030 Soap, detergents, cleaning products and toiletries 0.658 0.040
27001 Steel products 0.659 0.063
31001 Machines, equipment and miscellaneous electric material - except for vehicles 0.678 0.058
18999 Making of clothing articles and accessories - on order or not 0.690 0.021
22000 Editing, printing and reproduction of recordings 0.702 0.033
33004 Equipment, instruments and optical, photographic and cinematographic material 0.709 0.050
29002 Appliances 0.709 0.041
33002 Measuring, testing and control equipment - except for controlling industrial processes 0.725 0.050
34001 Manufacturing and assembly of motor vehicles 0.738 0.071
33005 Chronometers, clocks and watches 0.751 0.050
33001 Medical equipment 0.753 0.050
32000 Electronic material and communications equipment 0.757 0.048
23020 Products in oil refining 0.763 0.014
24020 Pharmaceutical products 0.809 0.040
23030 Production of nuclear fuels 0.830 0.014
33003 Machines, equipment for electronic systems for industrial automation, and control 0.848 0.050
30000 Office machines and data-processing equipment 0.852 0.031
35030 Construction, assembly and repair of airplanes 0.875 0.059

Median 0.432 0.035

Notes: The industry codes correspond to the CNAE-Domiciliar, the industry classification used in the 2000 Population Census. Industries are sorted by their skill intensity at

baseline. We define skill intensity as the share of skilled individuals in a particular industry in Brazil at baseline and we source it from the 2000 Population Census. Our measure

of R&D activity is R&D expenditure as a share of total sales at baseline and we source it from from the 2000 Pesquisa de Inovação Tecnológica (PINTEC). The correlation

between these variables is approximately 0.33. We are splitting manufacturing industries across the median according to their level of skill intensity and R&D activity in such

a way that roughly 50% of the Brazilian manufacturing employment is at both sides of the median. Thus, industries below the median are classified as low and the ones above

the median as high.
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Table A4: Effect of technical change in soy on the number of
workers at the minimum wage

(1) (2) (3) (4) (5) (6)
∆ Log. L at the Minimum Wage

VARIABLES Manufacturing Manufacturing Manufacturing Low Manufacturing Low Manufacturing High Manufacturing High

∆Asoy 0.185*** 0.196*** 0.215*** 0.234*** 0.194** 0.179**
[0.041] [0.043] [0.044] [0.047] [0.083] [0.087]

Observations 556 556 555 555 508 508
R-squared 0.120 0.178 0.104 0.185 0.012 0.018
Baseline Controls Yes Yes Yes Yes Yes Yes
All Controls No Yes No Yes No Yes

Notes: Changes in dependent variables are calculated over the years 2000 and 2010 (source: Population Censuses). The
unit of observation is the micro-region. Workers at the minimum wage are workers paid below the mandatory minimum
wage in 2000 and 2010. All the regressions include the baseline specification controls which are the share of rural population
in 1991 and a measure of technical change in maize. The regressions with all controls also include income per capita (in logs),
population density (in logs), literacy rate, all observed in the 1991 Population Census. Robust standard errors reported in
brackets. Significance levels: ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1..
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B Appendix: Theory

In this appendix we provide the proofs of Theorems 1 to 4 and Lemma 1.

Theorem 1. An increase in As in agriculture, leads to an increase in the relative demand

for high skilled workers in agriculture if and only if the elasticity of substitution between

high- and low-skilled workers is greater than one (ε > 1).

Proof. Take the agriculture sector. Solving for the inner nest we get that the conditional

factor demands Sa(ws, wu, La), Ua(ws, wu, La) and the cost function C(ws, wu, La) for

agriculture labor La are given by:

Sa(ws, wu, La) =

(
ws
As

)−ε
La

As [w1−ε
s Aε−1

s + w1−ε
u Aε−1

u ]
ε
ε−1

(14)

Ua(ws, wu, La) =

(
wu
Au

)−ε
La

Au [w1−ε
s Aε−1

s + w1−ε
u Aε−1

u ]
ε
ε−1

(15)

C(ws, wu, La) = La

[(
ws
As

)1−ε

+

(
wu
Au

)1−ε
] 1

1−ε

(16)

Thus, the relative demand for skilled workers in agriculture is given by:

Sa
Ua

=

(
wu
ws

)ε(
As
Au

)ε−1

(17)

Theorem 2. Whether an increase in As in agriculture leads to an absolute decrease in

the demand for low skilled workers in agriculture depends on whether labor and land are

strong complements (σ < εΓ).

Proof. From the production function we can can compute the marginal productivity for

each raw labor type:

MPUa = AnKγΘ
1

σ−1A
σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

u U
−1
ε
a (18)

MPSa = AnKγΘ
1

σ−1A
σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

s S
−1
ε
a (19)

where Θ = γ(ALLa)
σ−1
σ + (1− γ)(ATTa)

σ−1
σ . Clearly, we can see that

∂Θ

∂As
= γ

σ − 1

σ
A

σ−1
σ

L L
σ−ε
σε
a S

ε−1
ε

a A
−1
ε
s

7



Moreover,

∂Lma
∂As

= mL
m−1+ 1

ε
a S

ε−1
ε

a A
−1
ε
s

Therefore,

∂MPUa
∂As

= AnKγA
σ−1
σ

L A
ε−1
ε

u U
−1
ε
a

 1

σ − 1
Θ

2−σ
σ−1

∂Θ

∂As
L
−(ε−σ)
εσ

a + Θ
1

σ−1
∂L

−(ε−σ)
εσ

a

∂As



∂MPUa
∂As

= AnKγA
σ−1
σ

L A
ε−1
ε

u U
−1
ε
a Θ

1
σ−1L

−(ε−σ)
εσ

a︸ ︷︷ ︸
κ

(
1

σ − 1
Θ−1 ∂Θ

∂As
− (ε− σ)

εσ
L−1
a

∂La
∂As

)

Notice that κ > 0. Thus,

∂MPUa
∂As

= κ

(
γ

σ
Θ−1A

σ−1
σ

L L
σ−ε
σε
a S

ε−1
ε

a A
−1
ε
s −

(ε− σ)

εσ
L

1−ε
ε

a S
ε−1
ε

a A
−1
ε
s

)
∂MPUa
∂As

=
κ

σ
L

1
ε−1
a S

ε−1
ε

a A
−1
ε
s

(
γΘ−1A

σ−1
σ

L L
σ−ε
σε
a − (ε− σ)

ε
L

1−ε
ε

a

)
Since κ

σ
L

1
ε−1
a S

ε−1
ε

a A
−1
ε
s > 0

∂MPUa
∂As

< 0 ⇐⇒ γΘ−1A
σ−1
σ

L L
σ−ε
σε
a − (ε− σ)

ε
L

1−ε
ε

a < 0

∂MPUa
∂As

< 0 ⇐⇒ σ < ε

(
γ(ALLa)

σ−1
σ + (1− γ)(ATTa)

σ−1
σ − γ (ALLa)

σ−1
σ

Θ

)

∂MPUa
∂As

< 0 ⇐⇒ σ < ε

(
(1− γ)(ATTa)

σ−1
σ

Θ

)
(20)

Lemma 1. If all three sectors are active, the effect of an increase in skilled-biased-factor-

augmenting technology in agriculture (As) on wages is mediated by the effect of As on

local knowledge (Kt). In particular:

∂ lnws
∂As

=
∂ lnwu
∂As

=
∂ lnKt

∂As

and the effect of As on land prices is given by:

8



∂ ln r

∂As
=
∂ lnKt

∂As
+

θSa
AsθTa

where θSa is the cost share of high-skilled workers and θTa is the cost share of land in

agriculture.

Proof. The unit cost functions are defined as:

ca(ws, wu, r, As, Kt) = min{wsSa + wuUa + rTa | Fa(Sa, Ua, Ta, As, Kt) ≥ 1}

chm(ws, wu, r, p,Kt) = min{wsShm + wuU
h
m + pKtx | AhmF h

m(Shm, U
h
m, x,Kt) ≥ 1}

c`m(ws, wu, r,Kt) = min{wsS`m + wuU
`
m | A`mF `

m(S`m, U
`
m, Kt) ≥ 1}

Where As denotes skilled-biased factor-augmenting technologies in agriculture, Kt is

the local knowledge which is an endogenous hicks neutral technology, and p is the price

of inputs and x is the quantity of inputs. Note that we already use the symmetry of the

input market to simplify notation.

From the unit cost functions we can define the unit factor demands:

aUi(ws, wu, r, Ai, Kt) =
∂ci(ws, wu, r, Ai, Kt)

∂wu

aSi(ws, wu, r, Ai, Kt) =
∂ci(ws, wu, r, Ai, Kt)

∂ws

aTi(ws, wu, r, Ai, Kt) =
∂ci(ws, wu, r, Ai, Kt)

∂r

In this economy, when all sectors are active, zero profit conditions are given by:

pa = ca(ws, wu, r, As, Kt) = ca(ws, wu, r, As)/Kt

1 = chm(ws, wu, p,Kt) = chm(ws, wu, p)/Kt

p`m = c`m(ws, wu, Kt) = c`m(ws, wu)/Kt

These equations can be re-written as:

pa = ca(
ws
As
, wu, r)/Kt

9



1 = chm(ws, wu, p)/Kt

p`m = c`m(ws, wu)/Kt

Where we made clear that the unit cost function in agriculture depends on the skilled

biased factor-augmenting technology As that we study, and that the productivity in all

sectors also depends on Kt. Taking log derivatives of these equations with respect to As

we obtain that:

∂ ln pa
∂As

= θTa
∂ ln r

∂As
+ θSa

∂ lnws
∂As

− θSa
∂ lnAs
∂As

+ θUa
∂ lnwu
∂As

− ∂ lnKt

∂As

∂ ln 1

∂As
= θShm

∂ lnws
∂As

+ θUhm
∂ lnwu
∂As

+ θxhm
∂ ln p

∂As
− ∂ lnKt

∂As

∂ ln p`m
∂As

= θS`m
∂ lnws
∂As

+ θU`m
∂ lnwu
∂As

− ∂ lnKt

∂As

But, we will later see that the price of inputs is proportional to the cost of producing

them. And the cost of producing one input is the same as the final good.40 Defining:

θ̃Shm = (θShm + θxhm
θShm

θShm + θUhm
)

We then have:

∂ lnKt

∂As
= θ̃Shm

∂ lnws
∂As

+ θ̃Uhm
∂ lnwu
∂As

∂ lnKt

∂As
= θS`m

∂ lnws
∂As

+ θU`m
∂ lnwu
∂As

Hence:

∂ lnKt

∂As
= θ̃Shm

∂ lnws
∂As

+ (1− θ̃Shm)
∂ lnwu
∂As

∂ lnKt

∂As
= θS`m

∂ lnws
∂As

+ (1− θS`m)
∂ lnwu
∂As

In matrix form: [
∂ lnKt
∂As
∂ lnKt
∂As

]
=

[
θ̃Shm (1− θ̃Shm)

θS`m (1− θS`m)

][
∂ lnws
∂As
∂ lnwu
∂As

]
40Note that an alternative is to use the fact that the cost function is Cobb-Douglas as we have in the

main text.
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Using Cramer’s rule:

[
∂ lnws
∂As
∂ lnwu
∂As

]
=

1

θ̃Shm − θS`m

[
(θ̃Shm − θS`m)∂ lnKt

∂As
+ (1− θ̃Shm)(∂ lnKt

∂As
− ∂ lnKt

∂As
)

(θ̃Shm − θS`m)∂ lnKt
∂As

− θS`m(∂ lnKt
∂As

− ∂ lnKt
∂As

)

]

Hence: [
∂ lnws
∂As
∂ lnwu
∂As

]
=

[
∂ lnKt
∂As
∂ lnKt
∂As

]
This equation means that skilled-biased factor-augmenting technical change in agri-

culture will result in wage increases for high and low skilled workers of the exact same

magnitude. Note that this result is a consequence of the small open economy assumption.

If increased exports of low-skill intensive goods decreased prices of low-skilled intensive

goods, then Stolper-Samuelson type forces would appear, which would tend to decreased

low-skilled workers’ wages.

We now turn to land prices.From,

0 = θTa
∂ ln r

∂As
+ θSa

∂ lnws
∂As

− θSa
∂ lnAs
∂As

+ θUa
∂ lnwu
∂As

− ∂ lnKt

∂As

we have that:

∂ ln r

∂As
=

(1− θSa − θUa)
θTa

∂ lnKt

∂As
+

θSa
AsθTa

=
∂ lnKt

∂As
+

θSa
AsθTa

Theorem 3. An increase in skilled-biased-factor-augmenting technology in agriculture

(As), leads to an expansion of low-skill intensive manufacturing industries, provided that:

1. High- and low-skilled workers are imperfect substitutes (i.e. when ε > 1)

2. Land and labor are strong complements (i.e. when σ < εΓ)

3. Agriculture is not much more intensive in low-skilled labor than the low-skill inten-

sive industry.

Proof. Consider the factor market clearing equilibrium conditions,

aTaQa = T (21)

aSaQa + aS`mQ
`
m + aShmQ

h
m = S (22)

aUaQa + aU`mQ
`
m + aUhmQ

h
m = U (23)
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Log-differentiating Equations 21, 22 and 23 we get that:

aTadQa + daTaQa = dT

aSadQa + daSaQa + aS`mdQ
`
m + aShmdQ

h
m = dS

daUaQa + aUadQa + aU`mdQ
`
m + aUhmdQ

h
m = dU

Now, define a hat-variable as X̂ = dX
X

and λij =
aIjQj
I

, i.e the share of factor I in industry

j. Therefore, dividing at both sides of the equalities by the respective factor endowment,

we can write the previous expressions as follows:

λTaQ̂a + λTaâTa = T̂ (24)

λSaQ̂a + daSa
Qa

S
+ λS`mQ̂

`
m + λShmQ̂

h
m = Ŝ (25)

λUaQ̂a + daUa
Qa

U
+ λU`mQ̂

`
m + λUhmQ̂

h
m = Û (26)

Since in our economy the factor endowments are unchanged, dT = dS = dU = 0. This

simplifies the expressions above in the following way:

Q̂a = −âTa (27)

λSaQ̂a + λS`mQ̂
`
m + λShmQ̂

h
m = −daSa

Qa

S
(28)

λUaQ̂a + λU`mQ̂
`
m + λUhmQ̂

h
m = −daUa

Qa

U
(29)

Combining these expressions, we arrive to:

λS`mQ̂
`
m + λShmQ̂

h
m = −âSaλSa + λSaâTa = λSa(âTa − âSa)︸ ︷︷ ︸

γs

(30)

λU`mQ̂
`
m + λUhmQ̂

h
m = −âUaλUa + λUaâTa = λUa(âTa − âUa)︸ ︷︷ ︸

γu

(31)

Q̂h
m =

λU`mγs − λS`mγu
∆

(32)

Q̂`
m =

λShmγu − λUhmγs
∆

(33)

where ∆ ≡ λU`mλShm − λUhmλS`m and ∆ > 0 since the share of unskilled in the low-skilled

12



intensive industry times the share of skilled in the skill-intensive industry is greater than

the share of high-skilled in the low-skilled intensive industry times the share of unskilled

in the high-skilled intensive industry. Then, Q̂h
m < 0 iff λU`mγs − λS`mγu < 0. Which holds

iff:

λU`mγs < λS`mγu

This can be re-written as:

λU`mλSa(âTa − âSa) < λS`mλUa(âTa − âUa)

This can be further simplified to:

λU`mλSa(âSa + Q̂a) > λS`mλUa(âUa + Q̂a)

And so, Q̂h
m < 0 iff:

λU`m
λS`m

(âSa + Q̂a)

(âUa + Q̂a)
>
λUa
λSa

Now, note that âSa > âUa, which we show that it holds in more detail below (note,

however, that this is simply saying that the demand for high-skilled labor increases relative

to unskilled labor with increases in As). From this, we have that, a∗ ≡ (âSa+Q̂a)

(âUa+Q̂a)
> 1.

Hence, we have that Q̂h
m < 0 iff

λ
U`m

λ
S`m

a∗ > λUa
λSa

. This condition holds as long as agriculture

is not much more intensive in low-skilled labor than the low-skilled intensive industry.

Finally we are going to prove that âSa > âUa. This condition basically says that

the elasticity of the agricultural unit factor demand with respect to As is larger for the

skilled factor than for the unskilled factor, i.e ∂lnaSa
∂lnAs

> ∂lnaUa
∂lnAs

. Now, take the marginal

productivities for skilled and unskilled labor in agriculture (Equations 18 and 19) and

equate them to their factor price:

wu = MPUa

ws = MPSa

and notice that we can write the following conditional labor demand equations:

U
1
ε
a =

1

wu
AnKγΘ

1
σ−1A

σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

u

S
1
ε
a =

1

wu
AnKγΘ

1
σ−1A

σ−1
σ

L L
−(ε−σ)
εσ

a A
ε−1
ε

s
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Log-differentiating both expressions with respect to As :

∂lnUa
∂lnAs

= ε

[
1

σ − 1

∂lnΘ

∂lnAs
− (ε− σ)

εσ

∂lnLa
∂lnAs

]
∂lnSa
∂lnAs

= ε

[
1

σ − 1

∂lnΘ

∂lnAs
− (ε− σ)

εσ

∂lnLa
∂lnAs

+
ε− 1

ε

]
Therefore,

âSa > âUa ⇐⇒
∂lnaSa
∂lnAs

>
∂lnaUa
∂lnAs

⇐⇒ ∂lnSa
∂lnAs

>
∂lnUa
∂lnAs

⇐⇒ ε− 1 > 0 (34)

Therefore, Q̂h
m < 0 and Q̂`

m > 0. Upon the technical change in agriculture, the low-skill

intensive industry expands and the high-skill intensive industry contracts.

For the last theorem we assume a number of small technical details that are explained

in the proof of the theorem.

Theorem 4. When the following conditions hold:

1. High- and low-skilled workers are imperfect substitutes (i.e. when ε > 1)

2. Land and labor are strong complements (i.e. when σ < εΓ)

3. Agriculture is not much more intensive in low-skilled labor than the low-skill inten-

sive industry.

An exogenous change in skill-biased-factor-augmenting technology (As), results in:

1. Static gains from increased productivity in the agricultural sector.

2. Dynamic losses shaped by the decrease in the size of the R&D, high-skilled intensive

manufacturing industry.

In particular, the growth rate of consumption is given by:

gC =
χAhmF

h
m(Uh

m, S
h
m)− ρ

η
(35)

where χ > 0 is a constant defined in Appendix B. And the change in gross domestic

output is given by:

∂ lnGDPt
∂As

= ωa
∂ ln paAaFa

∂As
+ ω`m

∂ ln p`mA
`
mF

`
m

∂As
+ ωhm

∂ lnAhmF
h
m

∂As︸ ︷︷ ︸
Static gains/losses

+
χ

η

∂AhmF
h
m

∂As
t︸ ︷︷ ︸

Dynamic gains/losses
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where ωj =
pjAjFj

paAaFa+p`mA
`
mF

`
m+ςAhmF

h
m

.

Proof. First, we assume that each input in the high-skill intensive industry is monopolized

by the person who invented it, who decides how much output to produce given the profits.

The input for producing the final good is the same final good.41 Hence,

Πk = pkxk − xk

This equation simply says that the cost of producing an input is equal to the output

and the revenues are the price multiplied by the total output. The price of the input is

given by the marginal product in the final good production:

pk =
∂Qh

m

∂xk
= (1− α)AhmF

h
m(Uh

m, S
h
m)αx−αk

We can use this price to find the optimal quantity of intermediate produced and

then use this to obtain output in the final good industry. This is given by:42 xk =

(1− α)2/αAhmF
h
m(Uh

m, S
h
m). From this, it is straightforward to show that total production

in the high-skilled industry is given by:43

Qh
m = κAhmF

h
m(Uh

m, S
h
m)Kt

where κ = (1 − α)2∗(1−α)/α. We also obtain that that profits in the sector are given

by:44

Πk = Π = χAhmF
h
m(Uh

m, S
h
m)

where χ = [(1− α)(2−α)/α − (1− α)2/α].

41This assumption simplifies the algebra. We are inspired by chapter 3 of Aghion and Howitt (2008).
This chapter is, in turn, an adaptation of the original Romer (1990). See also Grossman and Helpman
(1991b) for a continuous sector version of the endogenous growth model, Helpman (1993) and Bayoumi
et al. (1999) – where knowledge transfers across countries are analyzed –, Aghion and Howitt (1992), and
Grossman and Helpman (1994) for a review of some fundamental aspects of this literature.

42Note that profits are:

Πk = (1− α)AhmF
h
m(Uhm, S

h
m)αx1−αk − xk

We can take the derivative with respect to xk to obtain the optimal level of intermediate output.
43From the symmetry of the model, we then have that:

Qhm = KtA
h
mF

h
m(Uhm, S

h
m)αx1−α

in this we can plug in the amount of input.
44Note that Πk = (1−α)AhmF

h
m(Uhm, S

h
m)α((1−α)2/αAhmF

h
m(Uhm, S

h
m))1−α−((1−α)2/αAhmF

h
m(Uhm, S

h
m)),

and hence, Πk = [(1 − α)1+2(1−α)/α − (1 − α)2/α]AhmF
h
m(Uhm, S

h
m) = [(1 − α)(α+2(1−α))/α − (1 −

α)2/α]AhmF
h
m(Uhm, S

h
m), which can be simplified to:

Πk = [(1− α)(2−α)/α − (1− α)2/α]AhmF
h
m(Uhm, S

h
m)

which is the expression that we were looking for. Note, also, that [(1− α)(2−α)/α − (1− α)2/α] > 0.
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We also need to obtain net output in the sector, i.e. total output minus what is used

for intermediate production. Hence:45

Qh
m −Ktx = ςAhmF

h
m(Uh

m, S
h
m)Kt (36)

with ς = [(1− α)2∗(1−α)/α − (1− α)2/α]

Note that this model has the simplifying feature that both total output in the sector,

profits, and net output are all proportional to AhmF
h
m(Uh

m, S
h
m).

Finally, we need to know how much Kt grows. Kt grows at a rate that is equal to the

resources used in research, which are the ones not consumed, and hence given by It:

K̇t = It

The rate of return in the economy is given by the (flow) profits that can be made

in investing in new ideas. To invent new ideas, entrepreneurs use final H-industry good.

Hence,

(
Π

r
)It − It

are the flow profits from inventing new varieties. Free entry implies that in equilibrium:

r = Π

We can now use the standard CRRA Euler equation from the consumer maximization

problem, which implies that the growth rate in consumption is given by:

gC =
Π− ρ
η

And hence:

gC =
χAhmF

h
m(Uh

m, S
h
m)− ρ

η

This equation shows that consumption is growing as a function of the size of the high-

skilled sector. Moreover, knowledge grows at the level of investment, which is given by

what is not consumed. The growth rate in each sector is given by the growth rate in Kt

which is given by investment. This means that everything is growing at the same rate as

45 From:

Qhm −Ktx = κAhmF
h
m(Uhm, S

h
m)Kt −Kt(1− α)2/αAhmF

h
m(Uhm, S

h
m)

we have that:

Qhm −Ktx = [(1− α)2∗(1−α)/α − (1− α)2/α]AhmF
h
m(Uhm, S

h
m)Kt

Note that [(1− α)2∗(1−α)/α − (1− α)2/α] > 0.
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consumption.

Finally we need to see how skilled-biased-factor-augmenting productivity increases

affect the growth rate of the economy. For this, we obtain the evolution of GDP:

GDPt = paKtAaFa + p`mKtA
`
mF

`
m + ςKtA

h
mF

h
m

to obtain that:

lnGDPt = lnKt + ln(paAaFa + p`mA
`
mF

`
m + ςAhmF

h
m)

In equilibrium, we have that lnKt = lnK0 + gct. And, hence:

lnGDPt = lnK0 + gCt+ ln(paAaFa + p`mA
`
mF

`
m + ςAhmF

h
m)

And hence:

∂ lnGDPt
∂As

=
∂gC

∂As
t+

∂ ln(paAaFa + p`mA
`
mF

`
m + ςAhmF

h
m)

∂As

And hence

∂ lnGDPt
∂As

=
∂gC

∂As
t+

1

paAaFa + p`mA
`
mF

`
m + ςAhmF

h
m

(
∂paAaFa
∂As

+
∂p`mA

`
mF

`
m

∂As
+
∂ςAhmF

h
m

∂As
)

And hence:

∂ lnGDPt
∂As

=
∂gC

∂As
t+ ωa

∂ ln paAaFa
∂As

+ ω`m
∂ ln p`mA

`
mF

`
m

∂As
+ ωhm

∂ ln ςAhmF
h
m

∂As

with ωj =
pjAjFj

paAaFa+p`mA
`
mF

`
m+ςAhmF

h
m

Which is equal to:

∂ lnGDPt
∂As

=
∂gC

∂As
t+ ωa

∂ ln paAaFa
∂As

+ ω`m
∂ ln p`mA

`
mF

`
m

∂As
+ ωhm

∂ lnAhmF
h
m

∂As

Or:

∂ lnGDPt
∂As

=
χ

η

∂AhmF
h
m

∂As
t+ ωa

∂ ln paAaFa
∂As

+ ω`m
∂ ln p`mA

`
mF

`
m

∂As
+ ωhm

∂ lnAhmF
h
m

∂As
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C Appendix: Scale Economies

A divergence between the empirical exercise and the model shown in the main text

is that, in the model, innovation depends on the size of the high-skill intensive industry,

which in turn only depends on the workers working in that sector. In the data we do

not find a decrease in employment of the high-skilled sector, although we do observe a

decrease in valued added in the sector as reported in Table 8. Hence, from the view point

of the model and given that in the model the only factors of production in manufacturing

are workers, we should not see a decline in manufacturing productivity in soy shocked

regions relative to others. However, it could be that just the fact that the relative size

of the high-skilled intensive sector declines in shocked relative to non-shocked regions is

sufficient to divert resources devoted to innovative activities.

In this section we introduce a variant of our model where an increase in the size of

the low-skilled intensive sector, without a (necessarily) contraction of the high-skilled

intensive one, leads to the predictions on productivity and GDP growth that we observe

in the data. We do not make the model in this Appendix the main model of our paper

because the one in the main text is slightly more tractable and allows the main intuitions

of our general argument to be more transparent.

To do so, we build on the critique of the original Romer (1990) model by Jones (1995),

which we adapt to our context. The result of this exercise is a model that predicts that,

in the short-run, the growth rate of the economy depends on the composition of the

manufacturing industries and not just on the size of the high-skilled intensive sector.

We keep all the assumptions we made in Section 3 except that we assume that the

production function in the low-skilled intensive industry takes the following form:

Q`
m = (

A`mF
`
m(U `

m, S
`
m)

K`
t

)α(

∫ K`
t

x1−α
j dj)

This production function captures the idea that in the L-industry what matters is

workers per input variety, rather than the total amount of workers (Aghion and Howitt,

2008, p. 97). This is important since, unlike in the H-industry, it is more costly (in terms

of employment) to have a larger set of input varieties. The second difference between

this industry and the H-industry is that it does not generate spillovers towards the other

sectors, i.e. K`
t does not multiply the production function of agriculture or high-skilled

manufacturing. The third difference is that entrepreneurs need to decide whether they

want to invent new input varieties for the H-industry or for the L-industry, something

that depends on profits made on the new inputs invented.

A part from these differences, the L-industry operates like the H-industry. We will

see, though, that in equilibrium K`
t = K` is a constant, i.e. the set of input varieties does

not grow over time in the L-industry.
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Demand for the intermediate varieties is given by:

pj =
∂Q`

m

∂xj
= (1− α)(

A`mF
`
m(U `

m, S
`
m)

K`
t

)αx−αj

Profits for the intermediate varieties are given by:

Πj = (1− α)(
A`mF

`
m(U `

m, S
`
m)

K`
t

)αx1−α
j − xj

Profit maximization then leads to:46

xj = (1− α)2/α(
A`mF

`
m(U `

m, S
`
m)

K`
t

)

Hence, in equilibrium, operating profits are given by:

Π` = Πj = χ
A`mF

`
m(U `

m, S
`
m)

K`
t

Where χ is defined as before.

Free entry in the invention of new varieties means that the net present value flow

profit from inventing new input varieties for the L-industry cannot be larger than in the

H-industry. Hence:

Π`

r
=

Π

r

And hence:

K` = χA`mF
`
m(U `

m, S
`
m)Π

This is the equilibrium mass of varieties in the L-industry. It is worth noting that this

is a constant (in contrast to the H-sector where the mass Kt grows indefinitely).

In this model, when there is an increase in As, i.e. the factor-augmenting productivity

of high-skilled workers in agriculture, low-skilled workers leave agriculture and enter low-

skilled manufacturing (provided that conditions (1) to (3) in theorem 3 are satisfied).

With an inflow of workers into the L-industry, profits for inventing new input vari-

eties increase above equilibrium. This is, Π` > Π (at least for some time). This drives

entrepreneurs towards developing new input varieties for the L-industry instead of the

H-industry. If K` can adjust instantaneously, then the invention of new input varieties

created for the L-industry and hence not invented for the H-industry is short-lived. If

46We only need to use:

∂Πj

∂xj
= (1− α)2(

A`mF
`
m(U `m, S

`
m)

K`
t

)αx−αj − 1 = 0

and re-arrange.
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instead there is an adjustment cost, this diversion towards inventing input varieties for

the L-industry may last for longer. In either case, when entrepreneurs stop inventing

input varieties for the H-industry, Kt stops growing and so does the economy since the

across-sector spillovers generated from the H-industry are not present in the L-industry.

Figure A.2 illustrates the evolution of profits from innovation. Before the increase in

As there are positive profits in inventing input varieties for the H-industry which are a

fraction of the output in the industry (set a 20 percent for illustrative purposes). The

profits of innovating in the L-industry are at the exact same level, except that if any

positive mass of new input varieties is invented then profits drop below this level. This

keeps entrepreneurs from inventing new varieties for the L-industry. With the inflow

of low-skilled workers into low-skilled manufacturing, the profits from innovating in this

sector increase. Hence all innovating activity is geared towards this sector. As more

varieties are invented, profits decline until they reach the profits that entrepreneurs can

make when inventing varieties for the H-industry.

For some time, which in the figure is 10 periods, there are no new input varieties

invented for the H-industry. Hence, for some time Kt does not expand. Given that

growth is primarily driven by this sector since it’s a source of positive externalities towards

all other sectors, for some time growth slows down following the increase in As. This

slowdown in growth comes from the fact that entrepreneurs stop to innovate for the

H-industry. Hence, the slowdown comes from the H-industry (as in the data).
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