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a b s t r a c t 

How do macrofinancial shocks affect investor behavior and market dynamics? Recent ev- 

idence on experience effects suggests a long-lasting influence of personally experienced 

outcomes on investor beliefs and investment but also significant differences across older 

and younger generations. We formalize experience-based learning in an overlapping gen- 

erations (OLG) model, where different cross-cohort experiences generate persistent het- 

erogeneity in beliefs, portfolio choices, and trade. The model allows us to characterize a 

novel link between investor demographics and the dependence of prices on past dividends 

while also generating known features of asset prices, such as excess volatility and return 

predictability. The model produces new implications for the cross-section of asset hold- 

ings, trade volume, and investors’ heterogeneous responses to crises, which we show to be 

in line with the data. 
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1. Introduction 

Recent crises in the stock and housing markets have

stimulated a new wave of macro-finance models of risk-

taking. A key challenge, and motivation, has been to find

tractable models of investor expectations that account not
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only for asset pricing puzzles, such as return predictabil-

ity ( Campbell and Shiller, 1988; Fama and French, 1988 )

and excess volatility ( LeRoy and Porter, 1981; Shiller,

1981; LeRoy, 2006 ), but also for micro-level stylized facts

such as investors chasing past performances. As argued

by Woodford (2013) , the empirical evidence suggests a

need for dynamic models that go beyond the rational-

expectations hypothesis. 

In line with Woodford’s proposal, several emerging the-

ories feature agents who over-weigh recent realizations

of the relevant economic variables when forming beliefs. 1

Overweighing past realizations helps to successfully cap-

ture the above-mentioned asset pricing facts. However, as
1 Examples are models of natural expectation formation ( Fuster et al., 

2012; 2010 ) and over-extrapolation ( Barberis et al., 2015; 2018 ). 
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the existing theories assume homogeneous overweighing 

of realizations from the last year or couple of years, they 

miss two important empirical patterns: first, macroeco- 

nomic shocks appear to alter investment and consump- 

tion behavior for decades to come, as conveyed by the 

notion of “depression babies” or of the “deep scars” left 

by the 2008 financial crisis ( Blanchard, 2012; Malmendier 

and Shen, 2018 ). In other words, the measurable impact of 

past realizations goes far beyond the timeframe of existing 

models. 

Second, there is significant and predictable cross- 

sectional heterogeneity. Younger cohorts tend to react sig- 

nificantly more strongly to a recent shock than older co- 

horts, both for positive and for negative realizations. For 

example, in the above-mentioned case of “scarred con- 

sumption” ( Malmendier and Shen, 2018 ), periods of higher 

unemployment rates induces everybody to be more fru- 

gal, controlling for income, wealth, and unemployment sta- 

tus, but the effect is particularly strong among younger co- 

horts. The reverse holds after times of economic booms, 

when consumers continue to spend more lavishly, particu- 

larly the younger cohorts. 

A growing empirical literature on experience effects 

shows both empirical patterns in numerous macrofinance 

contexts. This literature emphasizes that the long-lasting 

neuropsychology effects of personal “experience” is the key 

mechanism at work. For example, personal lifetime expe- 

riences in the stock market predict future willingness to 

invest in the stock market ( Malmendier and Nagel, 2011 ), 

and the same holds for the bond market and bond in- 

vestment, for Initial Public Offering (IPO) experiences and 

future IPO investment, and for inflation experiences and 

fixed-rate mortgage choices ( Kaustia and Knüpfer, 2008; 

Chiang et al., 2011; Malmendier and Nagel, 2016 ). There 

is also evidence of experience effects in nonfinance set- 

tings, e. g., on the long-term effects of graduating in a 

recession on labor market outcomes ( Oreopoulos et al., 

2012 ), or of living in (communist) East Germany to political 

attitudes postreunification ( Alesina and Fuchs-Schundeln, 

2007 ), 2 which in turn affect beliefs about communism ver- 

sus capitalism and explain east/west differences in stock 

market investment ( Laudenbach et al., 2019a; 2019b ). 

The overweighing of personal experiences appears to be 

a pervasive and robust psychological phenomenon affect- 

ing belief formation, related to availability bias as first put 

forward by Tversky and Kahneman (1974) as well as the 

extensive evidence on the different effects of description 

versus experience. 3 Much of the evidence on experience 

effects pertains directly to stated beliefs, e. g., beliefs about 

future stock returns (in the UBS/Gallup data), about future 

inflation (in the Michigan Survey of Consumers, known as 

the MSC), or about the outlook for durable consumption 

(also in the MSC). 4 
2 See also Giuliano and Spilimbergo (2013) , who relate the effects of 

growing up in a recession to redistribution preferences. 
3 See, for example, Weber et al. (1993) , Hertwig et al. (2004) , and 

Simonsohn et al. (2008) . 
4 Cf. Malmendier and Nagel (2011) , Malmendier and Nagel (2016) , 

Malmendier and Shen (2018) . 
This growing empirical literature on experience effects 

and its strong psychological underpinning raise the ques- 

tion whether experience-based learning and the implied 

dynamic cross-cohort differences have the potential to ex- 

plain aggregate dynamics. For example, which generations 

invest in the stock market and how much? What are the 

dynamics of stock market investment? How do markets re- 

act to a macro-shock? 

Our paper develops an equilibrium model of asset mar- 

kets that formalizes experience-based learning and the re- 

sulting belief heterogeneity across investors. The model 

clarifies the channels through which past realizations af- 

fect future market outcomes by pinning down the effect 

on investors’ own belief formation and the interaction with 

other generations’ belief formation. We derive the aggre- 

gate implications of learning from experience and the im- 

plied cross-sectional differences in investor behavior. To 

our knowledge, this model is the first to tease out the ten- 

sion between experience effects and recency bias. It aims 

to provide a guide for testing to what extent experience- 

based learning can enhance our understanding of mar- 

ket dynamics and of the long-term effect of demographic 

changes. 

The key model features are as follows. We consider a 

stylized overlapping generations (OLG) equilibrium model. 

Agents have constant absolute risk aversion (CARA) prefer- 

ences and live for a finite number of periods. During their 

lifetimes, they choose portfolios of a risky and a risk-free 

security. We assume that agents maximize their per-period 

payoffs (i. e., are myopic). 5 The risky asset is in unit net 

supply and pays a random dividend every period. The risk- 

free asset is in infinitely elastic supply and pays a fixed 

return. Investors do not know the true mean of dividends 

but learn about it by observing the history of dividends. 

We begin by characterizing the benchmark economy in 

which agents know the true mean of dividends. In this set- 

ting, there is no heterogeneity, and thus the demands of 

all active market participants are equal and constant over 

time. Furthermore, there is a unique no-bubble equilibrium 

with constant prices. 

We then introduce experience-based learning. The as- 

sumed belief formation process captures the two main em- 

pirical features of experience effects: first, agents over- 

weigh their lifetime experiences. Second, their beliefs ex- 

hibit recency bias. We identify two channels through 

which past dividends affect market outcomes. The first 

channel is the belief formation process: shocks to divi- 

dends shape agents’ beliefs about future dividends. Hence, 

individual demands depend on personal experiences, and 

the equilibrium price is a function of the history of divi- 

dends observed by the oldest market participant. 

The second channel is the generation of cross-sectional 

heterogeneity: different lifetime experiences generate per- 
5 Myopic agents omit the correlation between their next period payoff

and their continuation value function. This yields behavior that is analo- 

gous to the commonly used assumption of short-term traders (see Vives, 

2010 ). In a previous version of the paper, available on https://arxiv.org/ 

pdf/1612.09553.pdf , we show that, when the myopia assumption is re- 

moved, the first-order effects of experience-based learning are identical 

to those derived for myopic agents. 

https://www.arxiv.org/pdf/1612.09553.pdf
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sistent differences in beliefs. Agents “agree to disagree.”

Furthermore, younger cohorts react more strongly to a div-

idend shock than older cohorts, as it makes up a larger

part of their lifetimes. A positive shock induces younger

cohorts to invest relatively more in the risky asset, while

a negative shock tilts the composition toward older co-

horts. Thus, the model has implications for the time series

of trade volume: changes in the level of disagreement be-

tween cohorts lead to higher trade volume in equilibrium. 

The model captures an interesting tension between het-

erogeneity in personal experiences (which generates belief

heterogeneity across cohorts) and recency bias (which re-

duces belief heterogeneity). When there is strong recency

bias, all agents pay a lot of attention to the most recent

dividends. Thus, their reactions to a recent shock are sim-

ilar. Price volatility increases, while price autocorrelation

and trade volume decrease. The opposite holds when the

recency bias is weak, and agents form their beliefs using

their experienced history. Hence, the reaction of prices and

trade volume to changes in dividends is tightly linked to

the relative extent of recency bias versus experience-based

differences across cohorts in a given market, which are in

turn influenced by demographics. 

We explore the connection between market demo-

graphics and the dependence of prices on past dividends

by analyzing the effect of a one-time change in the fraction

of young agents that participate in the market. We find

that the demographic composition of markets significantly

influences the dependence of prices on past dividends. For

example, when the market participation of the young rel-

ative to the old increases, the relative reliance of prices

on more recent dividends increases. This is in line with

evidence in Cassella and Gulen (2018) who find that the

level of extrapolation in markets is positively related to the

fraction of young traders in that market, and with Collin-

Dufresne et al. (2017) who find that the price-divided ratio

is higher and more sensitive to macro-shocks when the ra-

tio of young to old market participants is larger. 

We then turn to several tests of the empirical impli-

cations of our model. First, we show that the model ac-

commodates several key asset pricing features identified in

prior literature. We follow the approach in Campbell and

Kyle (1993) and Barberis et al. (2015) to contrast CARA-

model moments with the data. We show the CARA-model

analogues of return predictability ( Campbell and Shiller,

1988 ) and of predictability of the dividend-price ratio.

This predictability stems solely from the experience-based

learning mechanism rather than, say, a built-in depen-

dence on dividends or past returns, and it depends on the

demographic structure of the market. Similarly, the model

generates excess volatility in prices and price changes as

established by LeRoy and Porter (1981) , Shiller (1981) , and

LeRoy (2006) , above and beyond the stochastic structure of

the dividend process. 

Experience-based learning generates new predictions

for the cross-section of asset holdings and trade volume,

which we test in the data. Using the representative sam-

ple of the Survey of Consumer Finance (SCF), merged

with data from the Center for Research in Security Prices

(CRSP) and historical data on stock market performance,

we first replicate and extend the evidence in Malmendier
and Nagel (2011) on stock market participation. We show

that cross-cohort differences in lifetime stock-market expe-

riences predict cohort differences in stock market partici-

pation and in the fraction of liquid assets invested in the

stock market. In other words, cross-cohort differences both

on the extensive and on the intensive margin of stock mar-

ket participation vary over time, as predicted by the time

series of cross-cohort differences in lifetime experiences.

We then turn to the predictions regarding trade volume

and show that the detrended turnover ratio is strongly

correlated with differences in lifetime market experiences

across cohorts. That is, changes in the experience-based

level of disagreement between cohorts predict higher ab-

normal trade volume, as predicted by the model. 

Overall, experience-based learning offers a unifying ex-

planation for financial market features of both prices and

trade volume. It also has novel implications for the cross-

sectional differences in market participation and portfolio

choice, which we show are consistent with the data. 

There is a wide literature on the role of learning in ex-

plaining asset pricing puzzles. Most closely related, Cogley

and Sargent (2008) propose a model in which the rep-

resentative consumer uses Bayes’ theorem to update es-

timates of transition probabilities as realizations accrue.

As in our paper, agents use less data than a “rational-

expectations-without-learning econometrician” would give

them. There are two important differences in our setup.

First, agents are not Bayesian. Second, different cohorts

have different, finite experiences. Consequently, observa-

tions during an agent’s lifetime have a nonnegligible effect

on beliefs and generate cross-cohort heterogeneity. 

Our paper also relates to the work on extrapolation

by Barberis et al. (2015) and Barberis et al., 2018 . They

consider a consumption-based asset pricing model with

both “rational” and “extrapolative” agents. The latter be-

lieve that positive price changes will be followed by posi-

tive changes. In contrast, the heterogeneity in extrapolation

in our model is linked to the demographic structure of the

market. In addition, while cross-sectional heterogeneity in

their model arises from the presence of both rational and

extrapolative infinitely lived agents, in our model, it results

from the different experiences of different finitely lived

cohorts. This allows us to generate predictions about the

cross-section of asset holdings and the relation between

extrapolation and demographics in line with the data. 

More generally, our paper relates to the large as-

set pricing literature that departs from the correct be-

liefs paradigm. For instance, Barsky and DeLong (1993) ,

Timmermann (1993, 1996) , and Adam et al. (2016) study

the implications of learning and Cecchetti et al. (20 0 0) and

Jin, 2015 Working paper of distorted beliefs for stock re-

turn volatility and predictability, the equity premia, and

booms and busts in markets. At the same time, our ap-

proach is different from asset pricing models with asym-

metric information, as surveyed in Brunnermeier (2001) .

While in these models agents want to learn the informa-

tion their counterparties hold, in our model of experience-

based learning, information is available to all agents at all

times. 

Finally, there are contemporaneous papers that also ex-

plore the macroeconomic effects of learning from experi-
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Fig. 1. A timeline for an economy with two-period lived generations, q = 2 . 

 

 

 

 

 

ence in OLG models. Schraeder (2015) focuses on how it 

impacts high-frequency trading patterns, such as overre- 

action and reversal, while Ehling et al. (2018) analyze the 

trend-chasing behavior of the young and its implications 

for risk premia and the risk-free rate. More closely related 

to our work, Collin-Dufresne et al. (2017) explore the role 

of demographics on asset pricing features, such as return 

predictability and excess volatility. 

Our paper contributes to this literature in several re- 

spects. First, we allow for recency bias in the belief for- 

mation process, as both the underlying psychology litera- 

ture on availability bias ( Tversky and Kahneman, 1974 ) and 

the prior empirical literature on experience effects iden- 

tify it as an important component of how individuals as- 

sign weights to previously experienced outcomes. Allow- 

ing for recency bias turns out to be also of interest the- 

oretically, as the analysis reveals that an increase in re- 

cency bias reduces the cross-sectional heterogeneity driven 

by the experiential learning bias. Second, our agents are 

not Bayesian and do not update their posterior variance as 

they gain experience, and thus our results do not depend 

on heterogeneous posterior variances. 6 Third, our CARA- 

normal framework allows us to obtain closed-form solu- 

tions to clearly understand the link between demographics, 

experience, and recency. Finally, we consider our empiri- 

cal approach more comprehensive, as we test the model 

predictions about portfolio holdings, asset pricing features, 

and trade volume. 

There is also a large literature that proposes other 

mechanisms, such as borrowing constraints or life-cycle 

considerations, as the link from demographics to asset 

prices and other equilibrium quantities. We view these 

other mechanisms as complementary to our paper. They 

are omitted for the sake of tractability of the model. 

The remainder of the paper is organized as follows. First 

we present the model setup and the notion of experience- 

based learning in Section 2 . We illustrate the mechanics of 

the model in a simplified setting in Section 3 . The main 
6 Once we depart from the Bayesian paradigm, nothing guarantees our 

agents understand that more information increases the precision of their 

beliefs. If this was the case, for example, one should expect agents to also 

incorporate past data. 

 

results are in Section 4 . In Section 5 we extend the model 

to study demographic shocks, and in Section 6 we present 

empirical implications. Section 7 concludes. All proofs are 

in the Appendix. 

2. Model set-up 

Consider an infinite-horizon economy with overlapping 

generations of a continuum of risk-averse agents. At each 

point in time t ∈ Z , a new generation is born and lives for

q periods, q ∈ { 1 , 2 , 3 , . . . } . Hence, there are q + 1 genera-

tions alive at any t . The generation born at t = n is called

generation n . Each generation has a mass of q −1 identical 

agents. 

Agents have CARA preferences with risk aversion γ . 

They can transfer resources across time by investing in fi- 

nancial markets. Trading takes place at the beginning of 

each period. At the end of the last period of their lives, 

agents consume the wealth they have accumulated. We 

use n q to indicate the last time at which generation n 

trades; n q = n + q − 1 . (If the generation is denoted by t ,

we use t q .) Fig. 1 illustrates the timeline of this economy 

for two-period lived generations ( q = 2 ). 

There is a risk-free asset, which is in perfectly elastic 

supply and has a gross return of R > 1 at all times. And

there is a single risky asset (a Lucas tree), which is in unit 

net supply and pays a random dividend d t ~ N ( θ , σ 2 ) at 

time t . To model uncertainty about fundamentals, we as- 

sume that agents do not know the true mean of dividends 

θ and use past observations to estimate it. To keep the 

model tractable, we assume that the variance of dividends 

σ 2 is known at all times. 

For each generation n ∈ Z , the budget constraint at any 

time t ∈ { n, . . . , n + q } is 
W 

n 
t = x n t p t + a n t , (1) 

where W 

n 
t denotes the wealth of generation n at time t , 

x n t is the investment in the risky asset (units of Lucas tree 

output), a n t is the amount invested in the riskless asset, and 

p t is the price of one unit of the risky asset at time t . As a

result, wealth next period is 

W 

n 
t+1 = x n t (p t+1 + d t+1 ) + a n t R 

= x n t (p t+1 + d t+1 − p t R ) + W 

n 
t R. (2) 
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We denote the excess payoff received in t + 1 from in-

vesting at time t in one unit of the risky asset, relative to

the riskless asset, as s t+1 ≡ p t+1 + d t+1 − p t R . This is analo-

gous to the equity premium in our CARA model. Using this

notation, W 

n 
t+1 

= x n t s t+1 + W 

n 
t R . 

We assume that agents maximize their per-period util-

ity (i. e., are myopic). This assumption simplifies the max-

imization problem considerably and highlights the main

determinants of portfolio choice generated by experience-

based learning. 

For a given initial wealth level W 

n 
n , the problem of a

generation n at each time t ∈ { n, . . . , n q } is to choose x n t to

maximize E n t [ − exp (−γW 

n 
t+1 

)] , and hence 

x n t ∈ arg max 
x ∈ R 

E n t [ − exp (−γ xs t+1 ) ] , (3)

where E n t [ ·] is the (subjective) expectation with respect to

a Gaussian distribution with variance σ 2 and a mean de-

noted by θn 
t . We call θn 

t the subjective mean of dividends,

and we define it below. Note that when x n t is negative, gen-

eration n is short selling. 

2.1. Experience-based learning 

In this framework, experience-based learning (EBL)

means that agents overweigh realizations observed during

their lifetimes when forecasting dividends and they may

tilt the excess weights toward the most recent observa-

tions. For simplicity, we assume that agents only use ob-

servations realized during their lifetimes. 7 That is, even

though they observe the entire history of dividends, they

choose to disregard earlier observations. 8 

EBL differs from reinforcement learning-type models in

two ways. First, as already discussed, EBL agents under-

stand the model and know all the primitives except the

mean of the dividend process. Hence, they do not learn

about the equilibrium; they learn in equilibrium. Second,

EBL is a passive learning problem in the sense that play-

ers’ actions do not affect the information they receive. This

would be different if we had, say, a participation decision

that links an action (participate or not) to the type of data

obtained for learning. We consider this to be an interesting

line to explore in the future. 

Let m denote the prior belief about the mean of divi-

dends that agents are born with and where we restrict m

to be Gaussian with mean θ for tractability. With this, we

construct the subjective mean of dividends of generation n

at time t following the empirical evidence on Malmendier

and Nagel (2011) as follows: 

θn 
t ≡ (1 − ω age ) · m + ω age ·

age ∑ 

k =0 

w (k, λ, age ) d t−k , (4)

where age = t − n, and where, for all k ≤ age , 

w (k, λ, age ) = 

(age + 1 − k ) λ∑ age 

k ′ =0 
(age + 1 − k ′ ) λ

(5)
7 We only need agents to discount prelifetime relative to lifetime ob- 

servations for our results to hold. 
8 In our full-information setting, prices do not add any additional in- 

formation. While it is possible to add private information and learning 

from prices to our framework, these (realistic) feature would complicate 

matters without necessarily adding new intuition. 

 

 

denotes the weight an agent aged age assigns to the div-

idend observed k periods earlier and w ( k, λ, age ) ≡ 0 for

all k > age . The denominator in Eq. (5) is a normalizing

constant that depends only on age and on the parameter

that regulates the recency bias, λ. For λ > 0, more re-

cent observations receive relatively more weight, whereas

for λ < 0, the opposite holds. Finally, ω age ≡ age +1 
τ+ age +1 de-

notes the weight that agents assign to their experience be-

liefs (with 1 − ω age being the weight they assign to their

prior belief m ), which increases with age and decreases

with the relative importance agents assign to their prior

beliefs, regulated by parameter τ ∈ [0, ∞ ). Since the pres-

ence of prior beliefs has no qualitative implications in our

model, unless otherwise stated, we study the case of τ = 0

(i. e. ω age = 1 ). 9 

The following are three examples of possible weighting

schemes: 

Example 2.1 ( Linearly declining weights , λ = 1 ). For λ = 1 ,

weights decay linearly as the time lag increase; i. e., for

any 0 ≤ k, k + j ≤ age, 

w (k + j, 1 , age ) − w (k, 1 , age ) = − j ∑ age 

k ′ =0 
(age + 1 − k ′ ) 

. 

Example 2.2 ( Equal weights , λ = 0 ). For λ = 0 , lifetime ob-

servations are equal weighted; i. e., for any 0 ≤ k ≤ age , 

w (k, 0 , age ) = 

1 
age +1 . 

Example 2.3 . For λ → ∞ , the weight assigned to the most

recent observation converges to 1, and all other weights

converge to 0; i. e., for any 0 ≤ k ≤ age , 

w (k, λ, age ) → 1 { k =0 } . 

Observe that by construction, θn 
t ∼ N(θ, σ 2 

∑ age 

k =0

(w (k, λ, age )) 2 ) . Hence, θn 
t does not necessarily con-

verge to the truth as t → ∞ ; it depends on whether∑ age 

k =0 
(w (k, λ, age )) 2 → 0 . This in turn depends on how

fast the weights for “old” observations decay to zero

(i. e., how small λ is). When agents have finite lives,

convergence will not occur. 

We conclude this section by showing a useful property

of the weights, which is used in the characterization of our

results. 

Lemma 2.1 (Single-crossing property). Let age ′ < age and

λ > 0 . Then the function w (·, λ, age ) − w (·, λ, age ′ ) changes

signs (from negative to nonnegative) exactly once over

{ 0 , ..., age ′ + 1 } . 

2.2. Comparison to Bayesian learning 

To better understand the experience-effect mechanism,

we compare the subjective mean of EBL agents to the pos-

terior mean of agents who update their beliefs using Bayes

rule. We consider two cases: full Bayesian learning (FBL),

wherein agents use all the available observations to form

their beliefs; and Bayesian learning from experience (BLE),

where agents only use data realized during their lifetimes. 
9 We solve the model for τ > 0 in Appendix B , and we discuss the 

quantitative implications of prior beliefs in our model in Section 6.1 . 
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2.2.1. Full Bayesian learners 

To illustrate the comparison of EBL and FBL in a com- 

mon sample, just for this analysis, we start the economy at 

an initial time t = 0 since FBL use all the available observa- 

tions since “the beginning of time.” Then, all generations of 

FBL agents consider all observations since time 0 to form 

their belief. We denote the prior of FBL agents as N(m, σ 2 
m 

) . 

For simplicity, all generations have the same prior, though 

the analysis can easily be extended to heterogeneous Gaus- 

sian priors across generations. 10 

The posterior mean of any generation alive at time t , 

denoted by ˆ θt , is given by 

ˆ θt = 

σ−2 
m 

σ−2 
m 

+ σ−2 t 
m + 

σ−2 t 

σ−2 
m 

+ σ−2 t 

( 

1 

t 

t ∑ 

k =0 

d k 

) 

. 

The belief of an FBL agent is a convex combination of the 

prior m and the average of all observations d k realized 

since time 0. The key difference to EBL agents is that dif- 

ferences in personal experiences do not play a role: there 

is no heterogeneity in beliefs, and all generations alive in 

any given period have the same belief about the mean of 

dividends. In addition, beliefs of FBL agents are nonstation- 

ary (i. e., they depend on the time period). As t → ∞ , 

the posterior mean converges (almost surely) to the true 

mean. That is, with FBL the implications of learning vanish 

as time goes to infinity. With EBL, this is not true. Since 

agents have finite lives and learn from their own expe- 

riences, our model generates learning dynamics even as 

time diverges. 

2.2.2. Bayesian learners from experience 

For BLE agents, the situation is different. We assume 

again that each generation has a prior N(m, σ 2 
m 

) when they 

are born. Here, the posterior mean of generation n at pe- 

riod t = n + age, denoted by ˜ θn 
t , is given by 

˜ θn 
t = 

σ−2 
m 

σ−2 
m 

+ σ−2 (age + 1) 
m 

+ 

σ−2 (age + 1) 

σ−2 
m 

+ σ−2 (age + 1) 

( 

1 

age + 1 

t ∑ 

k = n 
d k 

) 

. 

The belief of a BLE generation is a convex combination of 

the prior m and the average of (only) the lifetime obser- 

vations d k available to date. The BLE belief coincides with 

belief θn 
t of EBL when there is no recency bias, λ = 0 , and 

the importance assigned to prior belief is τ = 

σ 2 

σ 2 
m 

. 

2.3. Equilibrium definition 

We now proceed to define the equilibrium of the econ- 

omy with EBL agents. 

Definition 2.1 (Equilibrium). An equilibrium is a demand 

profile for the risky asset { x n t } , a demand profile for the 

riskless asset { a n } , and a price schedule { p t } such that 
t 

10 The assumption of Gaussianity is also not needed but simplifies the 

exposition greatly. 

 

1. Given the price schedule, { (a n t , x 
n 
t ) : t ∈ { n, . . . , n q }}

solve the generation n problem. 

2. The market clears in all periods: 1 = 

1 
q 

∑ t 
n = t−q +1 x 

n 
t for 

all t ∈ Z . 

We focus the analysis on the class of linear equilibria 

(i. e., equilibria with affine prices): 

Definition 2.2 (Linear equilibrium). A linear equilibrium is 

an equilibrium wherein prices are an affine function of div- 

idends. That is, there exists a K ∈ N , α ∈ R , and βk ∈ R for

all k ∈ { 0 , . . . , K} such that 

p t = α + 

K ∑ 

k =0 

βk d t−k . (6) 

2.3.1. Benchmark with known mean of dividends 

For the sake of benchmarking our results for EBL agents, 

we characterize equilibria in an economy where the mean 

of dividends, θ , is known by all agents (i. e., E n t [ d t ] =
θ ∀ n, t). In this scenario, there are no disagreements across 

cohorts, and the demand of any cohort trading at time t 

is 

x n t ∈ arg max 
x ∈ R 

E [ − exp (−γ xs t+1 ) ] . (7) 

The solution to this problem is standard and given by 

x n t = 

E [ s t+1 ] 

γV [ s t+1 ] 
(8) 

for all n ∈ { t − q + 1 , . . . , t} , and zero otherwise. Since there

is no heterogeneity in cohorts’ demands and there is a 

unit supply of the risky asset, in any equilibrium, x n t = 1 

for all n ∈ { t − q + 1 , . . . , t} , and zero otherwise. Further-

more, there exists a unique bubble-free equilibrium with 

constant prices p t = P ∀ t, where P = 

θ−γ σ 2 

R −1 . 

3. Toy model 

To illustrate the mechanics of the model, we first high- 

light the main results of the paper in a simple environ- 

ment, namely, for q = 2 . We will solve the model for any

q > 1 in the next section. 

In the toy model with q = 2 , there are three cohorts 

alive at each point in time: a young cohort, which enters 

the market for the first time; a middle-aged cohort, which 

is participating in the market for the second time; and an 

old cohort, whose agents simply consume the payoffs from 

their lifetime investments. At time t , the problem of gen- 

erations n ∈ { t, t − 1 } is given by Eq. (3) . It is easy to show

that their demands for the risky asset are 

x n t = 

E n t [ s t+1 ] 

γV 

n 
t [ s t+1 ] 

. 

As one of our first key results in Section 4 , we will

show that (i) prices depend on the history of dividends and 

(ii) this price predictability is limited to the past dividends 

observed (experienced) by the oldest generation trading 

in the market. In other words, we show that K = q − 1 in

Eq. (6) . Anticipating this result here for q = 2 , we have 

p t = α + β0 d t + β1 d t−1 . (9) 
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The dependence of prices on past dividends is an im-

portant feature of our model, which is shared by many

models of extrapolation and learning. A distinct feature of

our model is that this dependence is intrinsically linked

to the demographic structure of the economy. It matters

which generations are participating in the market and how

much. 

The cross-sectional differences in lifetime experiences,

and the resulting cross-sectional differences in beliefs, de-

termine cohorts’ trading behavior. Given the functional

form for prices, we can rewrite the demands of both co-

horts that are actively trading as 

x t t = 

α + (1 + β0 ) E 
t 
t [ d t+1 ] + β1 d t − p t R 

γ ( 1 + β0 ) 
2 σ 2 

x t−1 
t = 

α + (1 + β0 ) E 
t−1 
t [ d t+1 ] + β1 d t − p t R 

γ ( 1 + β0 ) 
2 σ 2 

. 

The difference between cohorts’ demand arises from

their different beliefs about future dividends, E t t [ d t+1 ] and

E t−1 
t [ d t+1 ] , given by 

E t t [ d t+1 ] = d t , 

E t−1 
t [ d t+1 ] = 

(
2 

λ

1 + 2 

λ

)
︸ ︷︷ ︸ 

w (0 ,λ, 1) 

d t + 

(
1 

1 + 2 

λ

)
︸ ︷︷ ︸ 

w (1 ,λ, 1) 

d t−1 . 

These formulas illustrate the mechanics of EBL and the

cause of heterogeneity among agents. In the simplified set-

ting, the younger generation has only experienced the div-

idend d t and expects the dividends to be identical in the

next period. The older generation has more experience

and incorporates the previous dividend in their weigh-

ing scheme. An implication of these formulas is that the

younger generations react more optimistically than older

generations to positive changes in recent dividends and

more pessimistically to negative changes. In Section 4.2 ,

we show that this result continues to hold in the general

model. We also see that belief heterogeneity is increasing

in the change in dividends, | d t − d t−1 | , and decreasing in

the recency bias, λ. In Section 4.3 , we exploit this obser-

vation to link movements in the volume of trade to belief

disagreements. 

We now impose the market clearing condition, 1 
2 (x t t +

x t−1 
t ) = 1 , to derive the equilibrium price given these de-

mands. We use the method of undetermined coefficients to

solve for { α, β0 , β1 }. Setting the constants and the terms

that multiply d t and d t−1 to zero, we obtain a system of

equations whose solution determines the price constant

and the loadings of prices on present and past dividends, 

α = − γ (1 + β0 ) 
2 σ 2 

R − 1 

, (10)

β0 = 

2 R 

2 

( R − 1 ) 
(
1 + 2 R − 2 λ

1+2 λ

) − 1 , (11)

β1 = 

R 

(
1 − 2 λ

1+2 λ

)
( R − 1 ) 

(
1 + 2 R − 2 λ

1+2 λ

) . (12)
 

These solutions illustrate how the price loadings on

past dividends depend on the demographics of the econ-

omy and on the magnitude of the recency bias. It is

easy to derive the unconditional price volatility, which is

σ (p t ) = (β2 
0 + β2 

1 ) 
1 
2 σ, and price autocorrelation, which is

ρ(p t , p t+ j ) = β0 β1 for j = 1 and ρ(p t , p t+ j ) = 0 for j > 1.

The variance of prices is increasing in the recency bias λ,

while the price autocorrelation is decreasing in the recency

bias. The intuition is straightforward: as the recency bias

increases, prices become more responsive to the most re-

cent dividend, 
∂β0 
∂λ

> 0 , increasing price volatility, and less

responsive to past dividends, 
∂β1 
∂λ

< 0 , decreasing price au-

tocorrelation. In Section 5 , we present an enriched version

of the model with demographic shocks and discuss how

these price loadings vary with the demographic structure

of the economy. 

4. General model 

We now return to the general case (i. e., allow for any

q > 1) and characterize the portfolio choices and resulting

demands for the risky asset of the different cohorts when

agents exhibit EBL. We impose affine prices, use market

clearing to verify the affine prices guess, and fully char-

acterize demands and prices. Deriving the results in the

general model allows us to discuss in more detail the re-

lation between demographics, cross-sectional asset hold-

ings, and market dynamics. We obtain testable predictions,

which we bring to the data in Section 6 . 

4.1. Characterization of equilibrium demands and prices 

For any s, t ∈ Z , let d s : t = (d s , . . . , d t ) denote the his-

tory of dividends from time s up to time t . For simplic-

ity and without loss of generality, we assume that the

initial wealth of all generations is zero (i. e., W 

n 
n = 0 for

all n ∈ Z ). At time t ∈ { n, . . . , n q } , an agent of generation

n determines her demand for the risky asset maximizing

E n t [ − exp ( −γ xs t+1 ) ] , as in Eq. (3) . 

The model setup allows us to derive a standard expres-

sion for risky-asset demand: 

Proposition 4.1 . Suppose p t = α + 

∑ K 
k =0 βk d t−k with β0 � =

−1 . Then, for any generation n ∈ Z trading in period t ∈
{ n, . . . , n q } , demands for the risky asset are given by 

x n t = 

E n t [ s t+1 ] 

γV [ s t+1 ] 
= 

E n t [ s t+1 ] 

γ (1 + β0 ) 2 σ 2 
. (13)

The expression for the risky-asset demands in

Eq. (13) allows us to derive equilibrium prices. Note

that Eq. (13) implies that demands at time t are affine

in d t−K: t . It is easy to see, then, that beliefs about future

dividends are linear functions of the dividends observed

by each generation participating in the market, and thus

prices depend on the history of dividends observed by the

oldest generation in the market: 

Proposition 4.2 . The price in any linear equilibrium is affine

in the history of dividends observed by the oldest generation
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participating in the market (i. e., for any t ∈ Z ), 

p t = α + 

q −1 ∑ 

k =0 

βk d t−k , with (14) 

α = − 1 (
1 − ∑ q −1 

j=0 

w j 

R j+1 

)2 

γ σ 2 

R − 1 

(15) 

βk = 

∑ q −1 −k 
j=0 

w k + j 
R j+1 

1 − ∑ q −1 
j=0 

w j 

R j+1 

k ∈ { 0 , . . . , q − 1 } , (16) 

where w k ≡ 1 
q 

∑ q −1 
age =0 

w ( k, λ, age ) . 

Proposition 4.2 establishes a novel link between the 

factors influencing asset prices and demographic compo- 

sition. For each k = { 0 , 1 , . . . , q − 1 } , one can interpret w k 

as the average weight placed on the dividend observed at 

time t − k by all generations trading at time t . As the for- 

mula also reveals, the relative magnitudes of the weights 

on past dividends, βk , depend on the number of cohorts 

in the market, q , on the fraction of each cohort in the mar- 

ket, 1 
q , and on the extent of agents’ recency bias, λ. 11 

The main idea of the proposition is as follows. In a 

linear equilibrium, demands at time t are affine in divi- 

dends d t−K: t . However, from these dividends, only d t−q +1: t 

matter for forming beliefs; the dividends d t −K: t −q only en- 

ter through the definition of linear equilibrium. The proof 

shows that, under market clearing, the coefficients accom- 

panying older dividends d t −K: t −q are zero. The proposition 

also implies that we can apply the same restriction to de- 

mands and conclude that demands at time t only depend 

on d t−q +1: t . 

Note that 
∂βk 
∂R 

< 0 and 

∂α
∂R 

> 0 for any λ. That is, if the 

interest rate is higher, the equilibrium price of the risky as- 

set responds less strongly to past dividends. Furthermore, 

higher risk aversion γ decreases the equilibrium price by 

lowering α. 

The following proposition establishes that, as long as 

agents exhibit any positive recency bias (i. e., λ > 0), the 

sensitivity of prices to past dividends is stronger the more 

recent the dividend realization. 

Proposition 4.3 . For λ > 0, more recent dividends affect 

prices more than less recent dividends (i. e., 0 < βq −1 < .... < 

β1 < β0 ). 

This result reflects the fact that the dividends at time 

t are observed by all generations, whereas past dividends 

are only observed by older generations. At the same time, 

the extent to which prices depend on the most recent div- 

idends varies with the level recency bias, as shown in the 

following Lemma. 

Lemma 4.1 . The effect of the most recent dividend realization 

on prices, β0 , is increasing in λ, with lim 

λ→∞ 

β0 (λ) = 1 / (R − 1) 

and lim 

λ→∞ 

βk (λ) = 0 for k > 0 . 
11 In our baseline model, cohorts are equally weighted. We remove this 

assumption in Section 5 , where we analyze demographic shocks. In those 

examples, there is no link between the number of cohorts and the frac- 

tion of each cohort in the market. 
As λ → ∞ , the average weights w k (defined in 

Proposition 4.2 ) converge to 1 { k =0 } for all k = { 0 , 1 , . . . , K} .
Therefore, βk → 0 for all k > 0 and β0 → 

1 
R −1 . In other 

words, under extreme recency bias ( λ → ∞ ), only the 

current dividend affects prices in equilibrium, while the 

weights on all past dividends vanish. 

In Section 5 , we show that the dependence of prices on 

more recent dividends is also increasing in the fraction of 

young agents in the market; that is, β0 increases as the 

relative measure of the youngest cohort in the market in- 

creases. 

These results on price sensitivity to past dividends, as 

well as the dampening effect of recency bias on cross- 

sectional heterogeneity, produce a range of asset pricing 

implications, from known puzzles, such as the predictabil- 

ity of stock returns and excess volatility, to new predictions 

about the link between asset prices and demographics. We 

derive and test these empirical implications in Section 6 . 

4.2. Cross-section of asset holdings 

EBL has distinctive implications for the cross-section of 

asset holdings. We show that positive shocks (booms) in- 

duce a larger representation of younger investors in the 

market, while negative shocks (crashes) have the opposite 

effect. To illustrate this, we first show that younger in- 

vestors react more optimistically than older ones to pos- 

itive changes in recent dividends and more pessimistically 

to negative ones. 

Proposition 4.4 . For any t ∈ Z and any generations n ≤ m 

trading at t, there is a threshold time lag k 0 ≤ t − m − 1 such

that for dividends that date back up to k 0 periods, the risky- 

asset demand of the younger generation (born at m) responds 

more strongly to changes than the demand of the older gen- 

eration (born at n), while, for dividends that date back more 

than k 0 periods, the opposite holds. That is, 

1. 
∂x m t 
∂d t−k 

≥ ∂x n t 
∂d t−k 

for 0 ≤ k ≤ k 0 and 

2. 
∂x m t 
∂d t−k 

≤ ∂x n t 
∂d t−k 

for k 0 < k ≤ q − 1 . 

Proposition 4.4 establishes that, for any two cohorts of 

investors, there is a threshold time lag up to which past 

dividends are weighted more by the younger generation 

and beyond which past dividend realizations are weighted 

more by the older generation. 

In what follows, we extend this insight into predictions 

about relative stock market positions. We show that, as a 

result of the stronger impact of more recent shocks on the 

beliefs (and thus, demands) of younger generations, the 

relative positions of the young and the old in the market 

fluctuate. Let us denote the difference between generations 

n and n + k in terms of their investment in the risky asset,

as ξ (n, k, t) ≡ x n t − x n + k t . By Proposition 4.1 , and some sim-

ple algebra, it follows that: 

ξ (n, k, t) = 

E n t [ θ ] − E n + k t [ θ ] 

γ ( 1 + β0 ) σ 2 

∀ k = { 0 , . . . , t − n } , n = { t − q + 1 , . . . , t} . (17) 

This formulation illustrates that the discrepancy between 

the positions of different generations is entirely explained 
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by the discrepancy in beliefs. For instance, if for some

a > 0, d n : t ≈ d n + a : t+ a , then ξ (n + a, k, t + a ) ≈ ξ (n, k, t) . 12 

The next result shows that, among generations born

and growing up in “boom times,” understood as periods of

increasing dividends, the younger generations have a rel-

atively higher demand for the risky asset than the older

generations. The reverse holds for depression babies (i. e.,

generations born during times of contraction). In times of

depression, the younger generations exhibit a particularly

low willingness to invest in the risky asset, relative to older

generations born during those times. 

Proposition 4.5 . Suppose λ > 0 . Consider two points in time

t 0 ≤ t 1 such that dividends are nondecreasing from t 0 up to

t 1 . Then for any two generations n ≤ n + k born between t 0
and t 1 , the demand of the older generation for the risky as-

set ( x n t ) is lower than the demand of the younger generation

( x n + k t ) at any point n ≤ t ≤ t 1 ; i. e., ξ ( n, k, t ) ≤ 0 . On the

other hand, if dividends are nonincreasing, then ξ ( n, k, t ) ≥ 0 .

The proposition illustrates that, while boom times tend

to make all cohorts growing up in such times more opti-

mistic, the effect is particularly strong for the younger gen-

erations. This induces them to be overrepresented in the

market for the risky asset. The opposite holds during times

of downturn. 

4.3. Trade volume 

We now study how learning and disagreements affect

the volume of trade observed in the market. We consider

the following definition of the total volume of trade in the

economy: 

T V t ≡
( 

1 

q 

t ∑ 

n = t−q 

(
x n t − x n t−1 

)2 

) 

1 
2 

, (18)

with x t 
t−1 

= 0 . That is, trade volume is the square root of

the weighted sum (squared) of the change in positions of

all agents in the economy. Using this definition, we char-

acterize the link between trade volume and belief hetero-

geneity. 

Proposition 4.6 . The trade volume defined in Eq. (18) can be

expressed as 

T V t = 

⎛ 

⎝ 

χ2 

q 

t ∑ 

n = t−q 

( (
θn 

t − θn 
t−1 

)
− 1 

q 

t ∑ 

˜ n = t−q 

(
θ ˜ n 

t − θ ˜ n 
t−1 

)) 2 

+ 

1 

q 
(x t t ) 

2 + 

1 

q 
(x t−q 

t−1 
) 2 

) 

1 
2 

, (19)

where χ = 

1 
γ σ 2 ( 1+ β0 ) 

, θ t 
t−1 

= θ t−q 
t = 0 . 
12 This last claim follows since the intertemporal change in 

discrepancies between sets of generations of the same age, 

ξ (n + a, k, t + a ) − ξ (n, k, t) for a > 0, is given by ( 
∑ t−n −k 

j=0 { w ( j, λ, t −
n ) − w ( j, λ, t − n − k ) } (d t+ a − j − d t− j ) + 

∑ t−n 
j= t−n −k +1 w ( j, λ, t − n )(d t+ a − j −

d t− j )) / (γ (1 + β0 ) σ 2 ) . 

 

 

 

 

 

 

Expression (19) illustrates that the presence of EBL

induces trade through changes in beliefs, which in our

framework are driven by shocks to dividends. More specif-

ically, when the change in a cohort’s beliefs is differ-

ent from the average change in beliefs, trade volume in-

creases. That is, trade volume increases in the dispersion

of changes in beliefs. 

To understand the drivers of trade volume, we need

to understand not only the demands of agents that enter

and exit the market but also, most importantly, how be-

liefs across cohorts change in response to a given shock.

From our previous analysis, it follows that an increase (de-

crease) in dividends induces trade when it makes young

agents more optimistic (pessimistic) than old agents. This

mechanism is solely due to the presence of EBL since it

is essential that each generation reacts differently to the

same dividend. 

We formalize this insight in the following thought ex-

periment capturing the reaction to a dividend shock that

occurs after a long period of stability. 

4.3.1. Thought experiment 

Suppose that for t − t 0 > q, d t 0 = d t 0 +1 = . . . = d t−1 =
d̄ and d t � = d̄ . Hence, all generations alive at time t − 2

and t − 1 have only observed a constant stream of divi-

dends d̄ over their lifetimes so far. Therefore, E n 
t−2 [ d t−1 ] =

E n 
t−1 [ d t ] = d̄ for all n ∈ { t − 1 − q, . . . , t − 1 } , and thus trade

volume in t − 1 is simply given by the demand of the

youngest (entering) and the oldest (exiting) agents. 

What happens at time t , when a dividend d t � = d̄

is observed? For each generation n trading at time

t and at time t − 1 , i. e., for n = { t − q + 1 , .., t − 1 } ,
beliefs are given by E n t [ d t+1 ] = w (0 , λ, t − n )(d t − d̄ ) + d̄

and E n 
t−1 [ d t ] = w (0 , λ, t − 1 − n )(d t−1 − d̄ ) + d̄ , which im-

plies the following change in cohort n ’s beliefs: E n t [ d t+1 ] −
E n 

t−1 [ d t ] = w (0 , λ, t − n )(d t − d̄ ) . Trade volume in t is there-

fore 

T V t = 

[ 

χ2 
(
d t − d̄ 

)2 

q 

t−1 ∑ 

n = t−q +1 

( 

w (0 , λ, t − n ) 

− 1 

q 

t−1 ∑ 

˜ n = t−q +1 

w (0 , λ, t − ˜ n ) 

) 2 

+ 

1 

q 
(x t t ) 

2 + 

1 

q 
(x t−q 

t−1 
) 2 

⎤ 

⎦ 

1 
2 

. 

(20)

This thought experiment pins down two aspects of

the link between the volatility in beliefs and trade vol-

ume: first, the trade volume increases proportionally to the

change in dividends, | d t − d̄ | , independent of whether the

change is positive or negative, and also proportionally to a

function that reflects the dispersion of the weights agents

assigned to the most recent observation in their belief for-

mation process. Second, the increase in trade volume gen-

erated by a given change in dividends depends on the level

of recency bias of the economy, which is captured by λ. For

example, as λ → ∞ , the dispersion in weights decreases as

w (0, λ, age ) → 1 for all age ∈ { 0 , . . . , q − 1 } . Thus, our re-

sults suggest that higher recency bias, λ, should generate
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lower trade volume responses for a given shock to divi- 

dends and vice versa. 

5. Market participation 

The results derived so far illustrate a key feature of 

EBL: the demographic structure of an economy, and in par- 

ticular the cross-sectional composition of investors, affect 

equilibrium prices, demand, and trade volume in a pre- 

dictable direction. 

In this section, we explore the link between market de- 

mographics and financial market outcomes by considering 

an unexpected increase in the fraction of young market 

participants (e. g., due to a baby boom or a generation- 

specific event drawing a certain generation into the stock 

market). 13 The goal of this exercise is to understand how a 

larger fraction of young market participants affects market 

dynamics. 

For ease of illustration, we focus again on our q = 2 

economy. We denote the mass of young agents at any time 

t by y t and the total mass of agents at t by m t = y t + y t−1 .

We consider a one-time unexpected (exogenous) shock to 

the mass of young agents in the market at time τ . 14 For all 

t < τ and t > τ + 1 , instead, y t = y and thus m t = 2 y = m . 

We know from our previous results that when the mar- 

ket has equal-sized cohorts, prices are given by p t = α + 

β0 d t + β1 d t−1 , with { α, β0 , β1 } given by Eqs. (10)–(12) . 

Here, prices follow this path for t > τ + 1 and since the 

shock at time τ is unexpected, for t < τ as well. For 

these time periods, the market is as described in Section 3 . 

We are left to characterize demands and prices for τ and 

τ + 1 , when the larger young generation enters the market 

and when this generation becomes old, respectively. We 

make the following guesses: 

p τ = a τ + b 0 ,τ d τ + b 1 ,τ d τ−1 , (21) 

p τ+1 = a τ+1 + b 0 ,τ+1 d τ+1 + b 1 ,τ+1 d τ . (22) 

We solve the problem by backward induction. Note that 

the form of agents’ demands remains unchanged. By im- 

posing market clearing in τ + 1 , with mass y of young 

agents and y τ of old agents, and using the method of un- 

determined coefficients, we obtain 

a τ+1 = α
1 

R 

[ 
1 + 

R − 1 

m τ

] 
, 
13 We also analyze the implications of a growing market population, 

as opposed to a one-time market demographic shock. In Appendix C , 

we show that population growth generates a positive trend in prices, 

which is independent of experience effects: the growing mass of agents 

increases the demand for the risky asset, and hence prices adjust to clear 

markets, since risky-asset supply is assumed to be constant. While the 

positive trend is independent of experience effects, EBL does affect the 

path of the prices fluctuating around this trend. In particular, we find that 

the relative reliance of prices on the most recent dividend is increasing in 

the population growth rate. 
14 In reality, the participation of young agents in the market could also 

be determined endogenously (e. g., by entry costs). While the forces de- 

scribed in this section would still be present in such a scenario, other 

forces may be at play as well. The study of these interactions is out of 

the scope of this paper. 
b 0 ,τ+1 = β0 

[ 
1 + 

1 

R 

(
m τ − y τ

m τ
+ 

y τ

m τ
ω − y 

m 

(1 + ω) 
)] 

+ 

1 

R 

(
m τ − y τ

m τ
+ 

y τ

m τ
ω − y 

m 

(1 + ω) 
)
, 

b 1 ,τ+1 = β1 
y τ

m τ

m 

y 
, 

where ω ≡ 2 λ

1+2 λ
and m τ = y + y τ . Note that for y τ = y,

the coefficients are, as in the baseline model, given by 

Eq. (10)–(12) . The above expressions show that the total 

mass of agents m τ only affects the price constant, while 

the price loadings depend on the fraction of young agents 

in the market, y τ / m τ . We impose market clearing in τ , 

with mass y τ of young agents and y of old agents. Using 

the method of undetermined coefficients, we obtain 

a τ = 

1 

R 

[
a τ+1 − γ ( 1 + b 0 ,τ+1 ) 

2 σ 2 

m τ

]
, 

b 0 ,τ = 

1 

R 

( 1 + b 0 ,τ+1 ) 

(
y τ

m τ
+ 

m τ − y τ

m τ
ω 

)
+ 

1 

R 

2 
( 1 + β0 ) 

y τ

m τ
( 1 − ω ) , 

b 1 ,τ = 

1 

R 

( 1 + b 0 ,τ+1 ) 
m τ − y τ

m τ
( 1 − ω ) . 

Fig. 2 shows how the reliance of prices on past divi- 

dends changes with the fraction of young agents in the 

market at time τ . We see that as the fraction of young 

people in the market increases ( y τ > 0.5), the more cur- 

rent dividends matter more relative to past dividends for 

the determination of prices (i. e., b τ
0 

increases while b τ
1 

de- 

creases). Consistent with this, when the τ -generation be- 

comes old, prices depend less on contemporaneous divi- 

dends and more on past dividends (i. e., b τ+1 
0 

decreases 

while b τ+1 
1 

increases). Finally, an increase in the overall 

market population, and thus demand for the risky asset, 

generates a level increase in prices captured an increase 

in the price constant both at τ and τ + 1 . All predictions 

are reversed when the fraction of young agents in the mar- 

ket decreases ( y τ < 0.5). These results are consistent with 

Collin-Dufresne et al. (2017) , who show both theoretically 

and empirically that the sensitivity of the price-dividend 

ratio to macro-shocks increases with the relative fraction 

of young market participants. 

6. Empirical implications 

In this section, we analyze the empirical implications of 

our model. The analysis consists of two approaches. First, 

we turn to three main asset pricing puzzles established in 

prior empirical literature: the predictability of stocks re- 

turns, the predictability of the dividend-price ratio, and the 

excess volatility puzzle. We show that the EBL model can 

quantitatively match these empirical findings and, more- 

over, it generates refined predictions relating these fea- 

tures to the demographic composition of investors. Second, 

we test the additional, novel predictions generated by our 

model regarding the implications of the demographic com- 

position for the predictability of the price-dividend ratio, 

trade volume, and the cross-section of asset holdings. We 
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Fig. 2. Demographic shocks and price coefficients. Notes. This figure plots coefficients { β0 , b 0 ,τ , b 0 ,τ+1 } in Panel (a) and { β1 , b 1 ,τ , b 1 ,τ+1 } in Panel (b) as a 

function of the demographic shock y τ . The results are for y = 0 . 5 , λ = 3 , and R = 1 . 05 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 We also simulate our model, replicate the regression with simulated 
show that these predictions are in line with evidence from

micro-level data in the SCF and the CRSP. 

6.1. Quantitative implications for asset pricing moments 

We first show that EBL can explain key asset pricing

puzzles. As the CARA-normal framework is not well suited

for a thorough calibration exercise, we follow the approach

of Campbell and Kyle (1993) and Barberis et al. (2015) ,

among others, to compute the moments of interest gener-

ated by our model and contrast them with the data. As in

these papers, we define quantities in terms of differences,

rather than ratios, since variables in the model proxy for

the log of their values in the data. We use capital letters

P and D to denote prices and dividends, while small let-

ters denote their logs, p = log (P ) and d = log (D ) . For ex-

ample, instead of stock returns, we measure price changes

�p and, instead of the price-dividend ratio P / D , we study

the difference p − d. 

A distinguishing feature of our model is that it estab-

lishes a link between the age profile of agents participating

in the stock market and the factors that determine prices. 15

Another feature of our model is the small number of pa-

rameters to be set for generating numerical results. Fol-

lowing Barberis et al. (2015) , we choose the following pa-

rameter values for our numerical solutions: the gross risk-

free interest rate is R = 1 . 05 , the volatility of dividends is

σ = 0 . 25 , and the coefficient of risk aversion is γ = 2 . We

show our estimates for λ ∈ {1, 3} and for q ∈ {2, 40}. 

6.1.1. Predictability of excess returns 

A first prominent stylized fact about stock market re-

turns, established by Campbell and Shiller (1988) , is that

the dividend-price ratio predicts future returns with a pos-

itive sign. EBL rationalizes such predictability and at the

same time limits it to those dividend realizations experi-

enced by the oldest cohort participating in the market. 
15 The link between demographics and price features is also studied in 

Collin-Dufresne et al. (2017) . 
To relate the predictability generated in our model to

the existing empirical evidence, and to show how it varies

with the demographic composition of investors, we calcu-

late the following measure of comovement between the

analogs of the dividend-price ratio and returns, namely,

between dividend-price differences d t − p t Jin, 2015 and

price changes p t+ z − p t over return horizon z : 

B 

R (z) ≡ Cov (d t − p t , p t+ z − p t ) 

V ar(d t − p t ) 
. (23)

We compute B R ( z ) for different horizons using

Eq. (14) from Proposition 4.2 . Fig. 3 plots B R ( z ) for z

ranging from 1 to 40, for two different levels of recency

bias, λ ∈ {1, 3}, in an economy with q = 40 . Given the

number of cohorts, the obtained comovements can be

interpreted as annual (e. g., z = 1 as a one-year horizon).

As the figure shows, the EBL model generates a positive

(and strong) relation between the dividend-price ratio and

returns, which increases with the return horizon. 

The predicted patterns are consistent with the empir-

ical findings described in Cochrane (2011) . To show this,

we estimate B R ( z ) on US stock market data from 1960 to

2013 (from Robert Shiller’s website), using the approach of

Cochrane (2011) . We regress the log of the dividend-price

ratio on the log of returns for different horizons, z ∈ {1,

5, 10}. We find that the slope of these regressions are
ˆ B R (1) = 0 . 1 , ˆ B R (5) = 0 . 3 , and 

ˆ B R (10) = 0 . 6 , respectively. 16

We note that the predictability of excess returns under EBL

is an equilibrium phenomenon that stems solely from our

learning mechanism and not from, say, a built-in depen-

dence on dividends or past returns. Similar to prior theo-

retical approaches, such as the overextrapolation model of

Barberis et al., 2015, 2018 , our explanation relies on agents’

overweighting recent realizations. 
data, and verify that the R 2 increases with the horizon both in the re- 

gressions with US and simulated data. In particular, the R 2 of the US data 

regressions are {0.02, 0.1, 0.2} respectively, while with the simulated data, 

{0.06, 0.23, 0.35}. 
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Fig. 3. Predictability of d t − p t for p t+ z − p t Notes. This figure plots the coefficient B R ( z ) over varying horizons z for two levels of recency bias, λ ∈ {1, 3}, 

in a q = 40 economy with R = 1 . 05 . 

Fig. 4. Young market participants and the predictability of D t − P t for P t+1 − P t Notes. This figure plots our predictability coefficients for two levels of 

recency bias, λ ∈ {1, 3} in the q = 2 economy with R = 1 . 05 . Panel (a) shows how the predictability of future returns, B R (1, y t ), varies with the fraction y t 
of young agents in the market at time t , while Panel (b) shows how this predictability varies with the fraction y t+1 of young agents in the market at time 

t + 1 . The results are calculated for y = 0 . 5 . 

 

We now turn our attention to a comparative static anal- 

ysis of how our proposed measure of return predictability, 

given by Eq. (23) , changes with the fraction of young mar- 

ket participants in an economy with q = 2 . 17 To do this, we 

use the framework of Section 5 , where we study the ef- 

fect of a one-time unexpected shock to the mass of young 

market participants. 18 We first consider the case where the 

fraction of young agents is y at all times before and after 

t , and y t � = y at time t . Therefore, the comparative stat- 

ics exercise amounts to computing a version of Eq. (23) , 

but where the moments are conditioned on the y t shock. 
17 Note that with q = 2 the comovements cannot be interpreted as an- 

nual; in particular, z = 1 captures approximately a 15- to 20-year horizon. 
18 We acknowledge the very stylized nature of the modeling of changes 

in market demographics. A more thorough analysis is beyond the scope 

of our baseline model and left for future work. 
We denote this conditional predictability measure by B R ( z, 

y t ). This demographic shock will impact B R ( z, y t ) through 

its effect on the pricing β ’s, which we analyze in detail 

in Section 5 . Fig. 4 (a) plots B R (1, y t ) as a function of the

fraction of young agents at time t, y t . As the plot shows, 

the predictability of next period’s return decreases in the 

fraction of young market participants in the current pe- 

riod. The increase in the fraction of young market partic- 

ipants at time t increases the covariance between d t − p t 
and returns p t+1 − p t , as the new mass of young agents 

increases the sensitivity of price p t to dividends at time t . 

However, this also increases the variances of d t − p t . These 

two effects go in opposite directions, and the latter effect 

dominates. 

To shed more light on these two effects, we study what 

happens with the predictability measure when the fraction 

of young agents changes at time t + 1 as opposed to time 
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Fig. 5. P t − D t autocorrelation Notes. This figure plots the coefficient B PD for two levels of recency bias, λ ∈ {1, 3}. Panel (a) shows how B PD ( z ) varies with 

the investment horizon z for q = 40 . Panel (b) shows how B PD (1) varies with the fraction y t of young agents in the market at time t for q = 2 . The results 

are calculated for y = 0 . 5 and R = 1 . 05 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 The solution to the model with prior beliefs is described in detail in 

Appendix B . 
t ; that is, the fraction of young agents is y at all times

before and after t + 1 , and y t+1 � = y at time t + 1 . With a

slight abuse of notation we denote this predictability mea-

sure as B R (z, y t+1 ) , and we plot it as a function of y t+1 in

Fig. 4 (b). In this case, the predictability measure increases

with the fraction of young agents. As before, the increase

in the fraction of young market participants at time t + 1

increases the covariance between d t − p t and p t+1 − p t as

the new mass of young agents increases the sensitivity of

price p t+1 to dividends at time t + 1 . However, the variance

of p t − d t is not affected by y t+1 , and thus the “covariance

effect” dominates. 

We thus conclude that return predictability not only is

affected by the demographic composition of market partic-

ipants, but the effect is sensitive to the timing of the mar-

ket participation shock. 

6.1.2. Predictability of price-dividend ratio 

In addition to the predictability of returns, we can also

compute the predictability of the price-dividend (P/D) ra-

tio implied by the model. That is, we relate past P/D ratios

to future P/D realizations and analyze the persistence of

the P/D ratio. In particular, we study how this predictabil-

ity of P/D ratios varies with the investment horizon and

with the fraction of young people in the market. Our mea-

sure of predictability is constructed as follows: 

B 

PD (z) = 

cov ( p t+ z − d t+ z , p t − d t ) 

v ar ( p t − d t ) 
(24)

We first calculate how B PD varies with the horizon z .

Panel (a) of Fig. 5 displays how B PD varies for different

horizons z , and for different levels of recency bias, λ ∈ {1,

3}, in an economy with q = 40 . The large q allows us to

relate the obtained correlations to annual correlations. As

in the data, we obtain that the P / D is highly autocorrelated

at short lags, with the autocorrelation being zero at longer

horizons. We see that as we reduce the number of cohorts

in the market (see Panel (b)), or their horizon, autocor-

relations are lower. Furthermore, B PD decreases in the ex-

tent of recency bias present in the population for all q , as
prices become less sensitive to the most recent dividends.

A direct implication is that the dividend-price ratio is pos-

itively correlated only with lagged realizations where the

number of periods lagged is below the number of cohorts

in the market. 

We then turn to the analysis of the role of the de-

mographic structure of the market for the q = 2 economy.

To do so, we compute our conditional predictability mea-

sure using the results from Section 5 , which we denote by

B DP (1, y t ), and analyze how it varies with the fraction of

young agents in the market at time t, y t . As shown in Panel

(b) of Fig. 5 , B PD (1, y t ) increases with y t , and the effect is

weaker under higher recency bias. 

6.1.3. Price dynamics 

A third set of asset pricing implications are related to

the dynamics of prices and, in particular, the excess volatil-

ity puzzle. As is standard in the literature, we analyze the

volatility of the log price growth and of the log P/D ratio,

and the volatility of log prices relative to that of log div-

idends, both in the model and in the data. To do so, we

use historical price and dividend data from Robert Shiller’s

website, where all log series are detrended. Our stylized

model generates ample volatility relative to our bench-

mark economy and to the data, the main reason being that

agents’ beliefs are extremely volatile when they do not put

any weight on their prior belief ( τ = 0 in Eq. (4) ), which

would operate as an anchor. To highlight the quantitative

effects of prior beliefs, we compute the model generated

volatilities when we vary the importance that agents as-

sign to their prior beliefs. 19 Table 1 presents our results for

an economy with λ = 1 , q = 40 , and for different levels of

prior relevance, captured by τ . 

We see that EBL generates ample excess volatility

in prices, returns, and P/D ratios. This can be seen by

comparing the data with the model with no prior beliefs
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Table 1 

Excess volatility. 

Relative prior precision: σ (p − d) σ ( �p ) σ ( d )/ σ ( p ) 

τ q = 40 , λ = 1 

0 0.96 1.77 0.04 

1 0.71 1.32 0.06 

5 0.41 0.76 0.19 

10 0.29 0.53 0.39 

20 0.22 0.34 0.93 

30 0.18 0.20 2.55 

Data 0.30 0.18 0.47 

Table 2 

Markovs-switching regime (MSR) model. 

This table shows estimation results for model specification (25) , where 

p t − d t is the log of the price-to-dividend ratio and is regressed onto lags 

of itself interacted with a demographic dummy variable. Y t is the frac- 

tion of young people, which we define as an indicator equal to one when 

the fraction of investors under 50 is larger than 0.5 (in column 1) or as 

an indicator equal to one when the fraction of wealth of investors below 

50 is larger than their 1960–2013 sample average (in column 2). The de- 

mographic data including age and wealth (liquid assets) of stock market 

participants are from the SCF and the stock data are from Robert Shiller’s 

website. Standard errors are in parentheses. ∗ and ∗∗ denote significance 

at the 10% and 5% levels, respectively. 

Dependent variable: p t − d t 

(1) (2) 

Y t age-based Y t age/wealth-based 

δ1 0.701 ∗∗ 0.475 ∗

(0.154) (0.252) 

δ2 −0.013 −0.115 

(0.146) (0.366) 

δ3 −0.745 ∗∗ −0.329 

(0.115) (0.232) 

β1 0.377 ∗∗ 0.622 ∗∗

(0.120) (0.159) 

β2 −0.216 ∗∗ −0.074 

(0.088) (0.136) 

β3 0.714 ∗∗ 0.249 ∗∗

(0.093) (0.099) 

μ( S 1 ) 5.089 ∗∗ 5.741 ∗∗

(1.554) (1.812) 

μ( S 2 ) 19.450 ∗∗ 18.350 ∗∗

(3.070) (4.768) 

σ 3.812 4.343 

(0.388) (0.600) 

Q 11 0.956 0.978 

(0.026) (0.017) 

Q 21 0.365 0.206 

(0.204) (0.154) 

N 51 51 

 

( τ = 0 ). However, if we allow agents to have prior beliefs, 

the model can generate moments more in line with the 

data. From these findings, we conclude that EBL has the 

ability to generate volatility in line with the data. 

6.2. Demographics and price-dividend predictability 

The predictability results in the previous section are 

consistent with the findings of Cassella and Gulen (2018) , 

who find a positive relation between their market-wide 

measure of return extrapolation and the relative partici- 

pation of young versus old investors in the stock market. 

Our model of EBL goes beyond a rationalization of the evi- 

dence on agents extrapolating from past dividends (cf. also 

Greenwood and Shleifer, 2014 ). It puts structure on the ex- 

tent of such extrapolation exhibited by different market 

participants and links it to market demographics. We now 

bring this prediction to the data and show that it is aligned 

with empirical observations. 

We want to test whether the predictive power of the 

lagged P/D ratios for the current one depends on the rela- 

tive representation of younger versus older generations in 

the market in the manner predicted by the model. EBL pre- 

dicts that the correlation between future and current lags 

is higher when the current share of young market partici- 

pants is large. Moreover, the model generates the heuristic 

that young people put little weight on observations of the 

“distant” past (cf. Proposition 4.4 ). 

To test these predictions, we regress the log of the P/D 

ratio onto lags of itself interacted with a dummy variable 

that indicates a larger presence of young people in the 

market. To model the dynamics of the P/D process, we de- 

part from the standard linear AR models and postulate a 

Markov-switching regime (MSR) model, which allows us to 

capture richer nonlinear dynamics in a tractable way. 20 The 

regression model is thus given by 

p t+1 − d t+1 = μ(S t+1 ) 

+ 

3 ∑ 

j=1 

(p t+1 − j − d t+1 − j )(β j + δ j × Y t+1 ) + σεt+1 , (25) 

where p t and d t denote the log of dividends and prices 

at time t , respectively; S t+1 ∈ { 0 , 1 } is an unobserved state 

that evolves according to a Markov transition kernel Q; Y t 
is a dummy variable that takes value one if the share of 

young generations participating in the market at time t is 
20 For a more thorough discussion of MSR, see Hamilton (1989) . 
large relative to the participation of older generations, and 

zero otherwise; and we assume εt+1 ∼ N(0 , 1) . The param- 

eters, ({ μ(s ) } s ∈{ 0 , 1 } , σ, Q, { β j , δ j } 3 j=1 
) , are jointly estimated

using maximum likelihood (see, e. g., Hamilton, 1994 for 

details). 

We consider two dummies for the relative representa- 

tion of younger generations in the market. First, we com- 

pute the ratio of investors who are less than 50 years 

old in the total population and construct an indicator that 

equals one if their share is bigger than 50% (or, for robust- 

ness, bigger than 55% or 60%). Second, we calculate young 

investors’ share of liquid wealth and use an indicator that 

equals one if their liquid wealth share is above its sam- 

ple average (or, for robustness above 90% or 110% of the 

sample average). Details on the variable construction and 

robustness checks are in Appendix D . 

The theoretical prediction of our model is that the cor- 

relation between future and current lags should be higher 

when the current share of young market participants is 

large. This translates into the hypothesis that δ1 > 0 in the 

estimation model in Eq. (25) . 

The estimated values are reported in Table 2 . In col- 

umn (1), we use the fraction of young people in the 

population and, in column (2), the fraction of their wealth 
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with the natural logarithm of earnings and GDP to remove nonlinearities 

in these series. In unreported analyses, we also use the natural logarithm 

of dividends and obtain very similar results. 
22 Those are 1960, 1962, 1963, 1964, 1967, 1968, 1969, 1970, 1971, and 

1977. 
23 For 1983 and 1986, we need to impute the stock component of re- 

tirement assets from the type of the account or the institution at which 

they are held and allocation information from 1989. From 1989 to 2004, 

the SCF offers only coarse information on retirement assets (e. g., mostly 

stocks, mostly interest bearing, or split), and we follow a refined version 
to proxy for the relative representation of younger peo-

ple in the market. In both cases, the estimates provide ev-

idence in favor of the model hypothesis. We estimate a

positive δ1 coefficient, which is either significant at the

5% or at the 10% level. Moreover, considering all three

coefficients (δi ) 
3 
i =1 

jointly, a roughly “decreasing” pattern

emerges: δ1 is typically positive, δ2 is typically nonsignifi-

cant, and δ3 is negative or insignificantly negative, consis-

tent with the heuristics that young people put little weight

on observations of the distant past. Thus, in periods when

their share is relatively large, the correlation between fu-

ture and distant past values is weakened. 

6.3. Cross-section of asset holdings and trade volume 

We now turn to the novel empirical predictions of the

EBL model about the cross-section of equity holdings and

stock turnover. We investigate two sets of predictions that

are directly testable and jointly hard to generate by alter-

native models. 

The first prediction is that cross-sectional differences in

the demand for risky securities reflect cross-sectional dif-

ferences in lifetime experiences of risky payoffs. That is,

cohorts with more positive lifetime experiences are pre-

dicted to invest more in the risky asset than cohorts with

less positive experiences ( Proposition 4.1 ). We test this

both in terms of stock market participation (extensive mar-

gin) and in terms of the amount of liquid assets invested

in the stock market (intensive margin). The second pre-

diction is that changes in the cross-section of experience-

based beliefs generate trade ( Proposition 4.6 ). 

To test these model predictions, we combine historical

stock returns data from Robert Shiller’s website with SCF

data on stock holdings and CRSP data on stock turnover.

The key explanatory variable is a measure of cohorts’ life-

time experiences of risky-asset payoffs. Theoretically, divi-

dends in the Lucas tree economy capture the performance

of the risky asset or the stock market. Empirically, divi-

dend payments do not necessarily reflect how well firms

are doing. For example, firms have incentives to smooth

dividends and also to retain earnings rather than distribute

them. In other words, dividends in our model do not

translate one-to-one to the dividend payments recorded in

CRSP. We therefore use an array of empirical measures to

capture the performance of the risky asset in our model:

(1) annual stock market returns, (2) real dividends, (3) real

earnings, and (4) US GDP. We obtain the first three series

from Robert Shiller’s website and the nominal GDP data

from the Federal Reserve Bank of St. Louis (for 1929–2016)

and Historical Statistics of the United States Millennial Edi-

tion Online (for 1871–1928). We convert nominal GDP into

real GDP using Shiller’s consumer price index variable. 

Dividends in our model are best interpreted as the per-

formance of the risky asset at medium frequencies. There-

fore, we use the Christiano and Fitzgerald (2003) band-

pass filter and remove stochastic cycles at frequencies

lower than two years and higher than eight years, 21 for all

nonstationary series (dividend, earnings, and GDP). 
21 These are the default frequencies for the CF-filter. We also remove a 

linear trend of the series before applying the filter and, in addition, work 
To construct the experienced returns, dividends, earn-

ings, and GDP of different generations over the course of

their lives, we apply the formulas from Eqs. (4) and (5) for

ω age = 1 . We calculate generation-specific weighted aver-

ages, employing both linearly declining weights ( λ = 1 ),

and a steeper weighting function ( λ = 3 ), corresponding to

the range of empirical estimates in Malmendier and Nagel

(2011) . 

6.3.1. Stock market participation 

We test the first prediction relating the differences in

lifetime experiences between older and younger cohorts

(i. e., those above 60 and those below 40 years of age)

to the differences in their stock market investment. Our

source of household-level micro data is the cross-sectional

data on asset holdings and various household background

characteristics in the SCF. We use all waves of the modern,

triannual SCF, available from the Board of Governors of the

Federal Reserve System since 1983. We follow the variable

construction of Malmendier and Nagel (2011) and extend

their analysis to the most recently released data. In addi-

tion, we employ some waves of the precursor survey, avail-

able from the Inter-university Consortium for Political and

Social Research at the University of Michigan since 1947.

We use all survey waves that include age and stock mar-

ket participation. 22 

For the extensive margin of stock holdings, we con-

struct an indicator of stock market participation. It equals

one when a household holds more than zero dollars worth

of stocks. We define stock holdings as the sum of di-

rectly held stocks (including stock held through invest-

ment clubs) and the equity portion of mutual fund hold-

ings, including stocks held in retirement accounts (e. g.,

IRA, Keogh, and 401(k) plans). 23 

For the intensive margin of stock holdings, we calcu-

late the fraction of liquid assets invested in stocks as the

share of directly held stocks plus the equity share of mu-

tual funds, using all surveys from 1960–2013 other than

1971. Liquid assets are defined as the sum of stock hold-

ings, bonds, cash, and short-term instruments (checking

and savings accounts, money market mutual funds, certifi-

cates of deposit). In these analyses of the intensive margin,

we drop all households that have no money in stocks. 

For both the young and old age group, we calculate

their experience and their stock market investment as a

weighted average across cohorts, with the weight variable

provided in the SCF. The weighted estimates are represen-

tative of the US population. 24 
of the Federal Reserve Board’s conventions in assigning portfolio shares. 

See Malmendier and Nagel (2011) for more details. 
24 The 1983–2013 SCF waves oversample high-income households with 

significant stock holdings. The oversampling is helpful for our analysis of 
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Fig. 6. Experienced returns and stock holdings Notes. Difference in experienced returns is calculated as the lifetime average experienced returns of the 

S&P500 Index as given on Robert Shiller’s website, using declining weights with either λ = 1 or λ = 3 as in Eq. (5) . Stock market participation is measured 

as the fraction of households in the respective age groups that hold at least $1 of stock ownership, either as directly held stock or indirectly (e. g. via 

mutuals or retirement accounts). Fraction invested in stock is the fraction of liquid assets stock market participants invest in the stock market. We classify 

households whose head is above 60 years of age as “old” and households whose head is below 40 years of age as “young.” Difference in stock holdings, 

the y -axis in graphs (a) and (c), is calculated as the difference between the logs of the fractions of stock holders among the old and among the young age 

group. Percentage stock, the y -axis in graphs (b) and (d), is the difference in the fraction of liquid assets invested in stock. The red line depicts the linear 

fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

We present the results graphically. We plot the relation 

between stock holdings (extensive and intensive margin) 

and experienced returns ( Fig. 6 ), dividends ( Fig. 7 ), earn- 

ings ( Fig. 8 ), and GDP ( Fig. 9 ). (Graphs 6 (a) and 6 (c) up-

date the evidence on the extensive margin and returns pre- 

sented in Malmendier and Nagel, 2011 ). 

The results for all four performance measures and both 

for the extensive and intensive margin are in line with the 

predictions of our model. Starting from experienced re- 

turns with λ = 1 in Panel (a) of Fig. 6 , we see that the 

older age group is more likely to hold stock, compared 

to the younger age group, when they have experienced 
asset allocation but could induce selection bias. By applying SCF sample 

weights, we undo the overweighting of high-income households and also 

adjust for non-response bias. 
higher stock-market returns in their lives. The opposite 

holds when the returns experienced by the younger gener- 

ations are higher than those of the older generations. The 

slope coefficient of the linear line of fit is significant at 5%. 

The steepness of the weighting function, and hence the ex- 

tent of imposed weight on recent data points, makes little 

difference, as the comparison with graph (b) for λ = 3 re- 

veals. 

The analysis of the intensive margin of stock market in- 

vestment yields the same conclusion. Both graph (c) and 

graph (d) indicate that older generations invest a higher 

share of the their liquid assets in stock, compared to the 

younger generations, when their experienced returns have 

been higher than those of the younger age group over their 

respective lifespans so far, and vice versa when they have 

experienced lower returns than the younger cohorts. Here, 

the slope coefficient is significant at 10%. 
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Fig. 7. Experienced dividends and stock holdings Notes. Difference in experienced dividends is calculated as the lifetime average experienced real dividends 

as given on Robert Shiller’s website, using declining weights with either λ = 1 or λ = 3 as in Eq. (5) . Stock market participation is measured as the fraction of 

households in the respective age groups that hold at least $1 of stock ownership, either as directly held stock or indirectly (e. g. via mutuals or retirement 

accounts). Fraction invested in stock is the fraction of liquid assets stock market participants invest in the stock market. We classify households whose head 

is above 60 years of age as “old” and households whose head is below 40 years of age as “young.” Difference in stock holdings, the y -axis in graphs (a) and 

(c), is calculated as the difference between the logs of the fractions of stock holders among the old and among the young age group. Percentage stock, the 

y-axis in graphs (b) and (d), is the difference in the fraction of liquid assets invested in stock. The red line depicts the linear fit. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 For this, we obtain data on US population by age between 1985 and 

2015 from the US Census Bureau. 
Figs. 7 to 9 present the corresponding results for ex-

perienced dividends, earnings, and GDP. For all measures,

we observe a positive relation of differences in experienced

performance and stock investments between the young

and the old. The fact that we obtain very similar findings

for a wide array of performance measures lends support to

the link between our theoretical model and the empirical

facts and ameliorates concerns about dividends not trans-

lating one-to-one into an empirical performance measure. 

6.3.2. Trade volume 

We now turn to the second prediction, which relates

trade volume to the dispersion of changes in disagreement

among investors. We calculate changes in the level of dis-

agreement as the cross-cohort standard deviation of the

change in experienced performance between the current
year and the previous year. We weight the cohorts by their

sizes when computing the standard deviation. 25 

As a measure of abnormal trade volume, we calculate

the deviation of the turnover ratio from its trend. Follow-

ing prior literature ( Statman et al., 2006; Lo and Wang,

20 0 0 ), we first compute firm-level turnover ratio (i. e., the

number of shares traded over the number of shares out-

standing, on a monthly basis). We require that firms be

listed on the NYSE or Amex. We exclude Nasdaq-listed

firms because the dealer market has volume measure-

ment conventions that differ from exchange-traded secu-

rities ( Atkins and Dyl, 1997; Statman et al., 2006 ). Then,

we aggregate these numbers into a market-wide turnover
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Fig. 8. Experienced earnings and stock holdings Notes. Difference in experienced earnings is calculated as the lifetime average experienced log real earnings 

as given on Robert Shiller’s website, using declining weights with either λ = 1 or λ = 3 as in Eq. (5) . Stock market participation is measured as the fraction of 

households in the respective age groups that hold at least $1 of stock ownership, either as directly held stock or indirectly (e. g. via mutuals or retirement 

accounts). Fraction invested in stock is the fraction of liquid assets stock market participants invest in the stock market. We classify households whose head 

is above 60 years of age as “old” and households whose head is below 40 years of age as “young.” Difference in stock holdings, the y -axis in graphs (a) 

and (c), is calculated as the difference between the logs of the fractions of stock holders among the old and among the young age group. Percentage stock, 

the y -axis in graphs (b) and (d), is the difference in the fraction of liquid assets invested in stock. The red line depicts the linear fit. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.) 
ratio, weighting firms by their market capitalization. 26 

Since the turnover ratio is nonstationary, we proceed in 

the same way as above and apply the Christiano and 

Fitzgerald (2003) to the logarithm of the turnover ratio se- 

ries so that we keep frequencies between two and eight 

years. We examine the comovement between the afore- 

mentioned measure of disagreement (i. e., the standard de- 

viation of the change in experienced stock returns) and the 

above measure of (abnormal) trade volume. 

Fig. 10 displays the trade volume in dashed, dark (blue) 

color and changes in the experience-based disagreement 

about returns between cohorts in light (orange) color over 

time. Graph (a) shows the results when we apply linear 

weights for the calculation of experienced returns, and 
26 This measure is equivalent to dollar turnover ratio (i. e., the ratio of 

the dollar value of all shares traded and the dollar value of the market). 
graph (b) displays the case with superlinear weights ( λ = 

3 ). Since we work with annual data for our disagreement 

variable, we choose the average of the turnover ratio in De- 

cember of a given year and in January of the following year 

as our measure for trading volume of the given year. That 

is, Fig. 10 compares the variation (standard deviation) in 

changes in experienced returns in a given year to trading 

volume in December of that year and January of the fol- 

lowing year. We choose 1985 as the starting year for this 

analysis since individual investors were trading substan- 

tially less frequently when trading cost were significantly 

higher up to the mid-1980s, making it less likely that (in- 

dividual) investors trade repeatedly based on experienced 

performance. 

Consistent with the predictions of our model, we ob- 

serve a clear comovement between disagreement among 

cohorts and trading volume. Table 3 reveals that the 
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Fig. 9. Experienced Log GDP and Stock Holdings Notes. Difference in experienced GDP is calculated as the lifetime average experienced log real GDP, using 

declining weights with either λ = 1 or λ = 3 as in Eq. (5) . Stock market participation is measured as the fraction of households in the respective age groups 

that hold at least $1 of stock ownership, either as directly held stock or indirectly (e. g. via mutuals or retirement accounts). Fraction invested in stock is 

the fraction of liquid assets stock market participants invest in the stock market. We classify households whose head is above 60 years of age as “old” and 

households whose head is below 40 years of age as “young.” Difference in stock holdings, the y-axis in graphs (a) and (c), is calculated as the difference 

between the logs of the fractions of stock holders among the old and among the young age group. Percentage stock, the y-axis in graphs (b) and (d), is the 

difference in the fraction of liquid assets invested in stock. The red line depicts the linear fit. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Table 3 

Trading volume and changes in experience-based disagreement. 

Notes. The table displays the pairwise correlations (and corresponding p -values in parentheses) of trading volume and eight measures of the change in 

experience-based disagreement. Trading volume is calculated using the market-capitalization weighted average turnover ratio (shares traded divided by 

shares outstanding) across all firms for January of the current year and December of the preceding year (averaged). We log, linearly detrend, and CF-filter 

the yearly variable. Experience-based disagreement is calculated separately for returns, dividends, earnings, and GDP, where returns are defined as the 

inflation-adjusted change in price from the prior year divided by inflation-adjusted price in the prior year and dividends, earnings, and GDP are inflation 

adjusted. Returns, dividends, log earnings, and log GDP are linearly detrended and CF-filtered, and experience is calculated both with linear weights ( λ= 1) 

and with superlinear weights ( λ = 3 ). For each measure, we calculate the change in experience for individuals of a given age from the experience of the 

same individuals in the prior year. We then calculate the current-year age-cohort population-weighted standard deviation of the changes in experiences. 

Experiences constructed using: Returns Dividends Log Earnings Log GDP 

λ = 1 Correlation 0.5976 0.1788 0.3225 0.1780 

( p -value) (0.0004) (0.3358) (0.0768) (0.3379) 

λ = 3 Correlation 0.4904 0.1489 0.3099 0.1886 

( p -value) (0.0051) (0.4240) (0.0898) (0.3096) 
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Fig. 10. Trading volume and standard deviation of changes in experienced returns Notes. Trading volume, shown in dashed dark (blue), is calculated as the 

market-capitalization weighted average monthly turnover ratio (shares traded divided by shares outstanding) across all firms in January and in December 

of the preceding year. We log, linearly detrend, and CF-filter the yearly variable to obtain the deviation of turnover ratio from the trend. Returns are 

defined as the inflation-adjusted change in price from the prior year divided by inflation-adjusted price in the prior year. Returns are linearly detrended 

and CF-filtered. After creating the experience variables for returns, we take the change of the experience variable for individuals of a given age from the 

experience of those individuals in the prior year. We then calculate the current-year age-cohort population-weighted standard deviation of this difference 

variable for each year as our measure of experience-based disagreement. 

 

 

 

 

comovement is statistically significant at 1%. The table 

presents the correlation between trading volume and our 

measures of changes in return disagreement, as well as 

the correlations when disagreement is measured using our 

alternative performance measures (i. e., using again divi- 

dends, earnings, or GDP). In each case, the correlation coef- 

ficient is again positive, albeit (marginally) significant only 

for changes in disagreement in experienced earnings. 

The relation between trade volume and changes in dis- 

agreement in experience-based beliefs about future returns 

in Table 3 and Fig. 10 , as well as the directionally simi- 

lar correlations with the disagreement about other prox- 

ies for returns, corroborate the empirical relevance of our 

model for a better understanding of investor behavior. The 

pattern is consistent with EBL and suggests that our novel 

explanation is worth considering. Moreover, as long as we 

assume that people trade based on their beliefs, it is un- 

likely that our channel is spurious. At the same time, other 

variables might also affect both the change in beliefs and 

the fluctuations in the trade volume. For example, if fluc- 

tuation in trade volume is caused both by variability in 

change in the beliefs (our model) and by another business 

cycle macro variable, and both factors are positively corre- 

lated, we might still obtain a graph similar to Fig. 10 . The 

claim in this section is not that there are no such factors, 

nor even that we can attribute most or all of the corre- 

lation depicted in Fig. 10 to belief-based learning. Instead, 

the conclusion is that all empirical findings in this section 

are consistent with EBL and suggest EBL as a novel and rel- 

evant factor that helps explain these empirical regularities 

jointly. 

For a more detailed and careful empirical analysis, it 

will be useful to analyze long-term individual-level panel 

data, which allows to link cumulative experiences and 

new experiences to trading decisions in the corresponding 

year. 
7. Conclusion 

In this paper, we propose an OLG equilibrium frame- 

work to study the effect of personal experiences on mar- 

ket dynamics and how the demographic composition of 

an economy can have important implications for the ex- 

tent to which prices depend on fundamentals. We incorpo- 

rate the two main empirical features of experience effects, 

the overweighing of lifetime experiences and recency bias, 

into the belief formation process of agents. By doing so, 

we generate what we think are two important channels 

through which shocks have long-lasting effects on mar- 

ket outcomes. The first is the belief formation process: all 

agents update their beliefs about the future after experi- 

encing a given shock. The second is the cross-sectional het- 

erogeneity in the population: different experiences gener- 

ate belief heterogeneity. 

We show that EBL not only generates several well- 

known asset pricing puzzles that have been observed in 

the data, but it also produces new testable predictions 

about the relation between demographics, prices, trading 

behavior, and the cross-section of asset holdings, which are 

in line with the data. 

Appendix A. Proofs 

A.1. Proofs for results in Section 2 

Proof of Lemma 2.1 . Let �(k ) ≡ w (k, λ, age ) − w (k, λ, age ′ )
for all k ∈ { 0 , . . . , age } . We need to show that ∃ k 0 ∈
{ 0 , . . . , age ′ } such that �( k ) < 0 for all k ≤ k 0 , and �( k ) ≥ 0

for all k > k 0 , with the last inequality holding strictly for 

some k . 

For k > age ′ , �( k ) > 0 since w ( k, λ, age ′ ) ≡ 0, and hence

�(k ) = w (k, λ, age ) > 0 , for all k ∈ { age ′ + 1 , . . . , age } . 
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For k ≤ age ′ , we note that �(k ) > 0 ⇐⇒ Q(k ) :=
w (k,λ,age ) 
w (k,λ,age ′ ) > 1 . Hence, it remains to be shown that ∃ k 0 ∈
{ 0 , . . . , age ′ } such that Q ( k ) < 1 for all k ≤ k 0 , and Q ( k ) ≥ 1

for all k > k 0 . Since the normalizing constants used in the

weights w ( k, λ, age ) are independent of k (see the defini-

tion in Eq. (5) ), we absorb them in a constant c ∈ R 

+ and

rewrite 

Q(k ) = c · (age + 1 − k ) λ

(age ′ + 1 − k ) λ
= c ·

[ 
age + 1 − k 

age ′ + 1 − k 

] 
λ

= c · α(k ) λ ∀ k ∈ { 0 , . . . , age ′ } . (26)

The function x �→ α(x ) = 

age +1 −x 
age ′ +1 −x 

has deriva-

tive α′ (x ) = 

age −age ′ 
(age ′ +1 −x ) 2 

> 0 for x ∈ [0 , age ′ + 1) , and

hence Q ( · ) is strictly increasing over { 0 , . . . , age ′ } .
Thus, to complete the proof, we only have to show

that Q ( k ) < 1 or, equivalently, �( k ) < 0 for some

k ∈ { 0 , . . . , age ′ } . We know that 
∑ age 

k =0 
�(k ) = 0 be-

cause 
∑ age 

k =0 
w (k, λ, age ) = 

∑ age ′ 
k =0 

w (k, λ, age ′ ) = 1 , and we

also know that 
∑ age 

k = age ′ +1 
�(k ) > 0 since �(k ) =

w (k, λ, age ) > 0 for all k ∈ { age ′ + 1 , . . . , age } . Hence, it

must be that �( k ) < 0 for some k < age ′ . �

A.2. Proofs for results in Section 4 

Proposition 4.1 directly follows from the following

Lemma. 

Lemma A.1 . Let z ~ N ( μ, σ 2 ), then for any a > 0, 

x ∗ = arg max 
x 

E[ − exp {−axz} ] = 

μ

aσ 2 

and 

max 
x 

E[ − exp {−axz} ] = − exp 

{ 

−1 

2 

(σax ∗) 2 
} 

= − exp 

(
−1 

2 

μ2 

σ 2 

)
. 

Proof of Lemma A.1 . Since z ~ N ( μ, σ 2 ), we can rewrite the

problem as follows: 

x ∗ = arg max 
x 

− exp 

(
−axE[ z] + 

1 

2 

a 2 x 2 V [ z] 

)
= arg max 

x 
axμ − 1 

2 

a 2 x 2 σ 2 . 

From FOC, x ∗ = 

μ
aσ 2 . Plugging x ∗ into

− exp 

(
−ax ∗μ + 

1 
2 a 

2 (x ∗) 2 σ 2 
)

the second result follows. �

Proof of Proposition 4.2 . We show the result for the guess

p t = α + β0 d t + . . . + βK d t−K with K = q . This case shows

the logic of the proof; the proof for the case starting from

an arbitrary lag K ≥ q is analogous but more involved and

is omitted for simplicity. 

From Lemma A.1 , agents’ demand for the risky asset is

given by x n t = 

E n t [ s t+1 ] 
γV [ s t+1 ] 

. Plugging in our guess for prices, and

for β0 � = −1 , we obtain: 

x n t = 

( 1 + β0 ) θn 
t + α + β1 d t + . . . + βq d t−q +1 − p t R 

γ ( 1 + β0 ) 
2 σ 2 

. (27)
 

By market clearing, 1 
q 

∑ t 
n = t−q +1 x 

n 
t = 1 , which implies that 

( 1 + β0 ) 
1 
q 

∑ t 
n = t−q +1 θ

n 
t 

γ ( 1 + β0 ) 
2 σ 2 

+ 

α + β1 d t + . . . + βq d t−q +1 − p t R 

γ ( 1 + β0 ) 
2 σ 2 

= 1 . 

By straightforward algebra and the definition of θn 
t , it fol-

lows that 

( 1 + β0 ) 
1 

q 

t ∑ 

n = t−q +1 

[ 

t−n ∑ 

k =0 

w ( k, λ, t − n ) d t−k 

] 

+ 

[
α − γ ( 1 + β0 ) 

2 σ 2 
]

+ β1 d t + . . . + βq d t−q +1 = p t R. 

Plugging in (again) our guess for p t and using the method

of undetermined coefficients, we find the expressions for α
and the β ’s: 

−γ ( 1 + β0 ) 
2 σ 2 

R − 1 

= α (28)

( 1 + β0 ) 
1 

q 

t−k ∑ 

n = t−q +1 

w ( k, λ, t − n ) + βk +1 = βk R 

∀ k ∈ { 0 , 1 , . . . , q − 1 } (29)

0 = βq R. (30)

Let w k be the average of the weights assigned to

dividend d t−k by each generation in the market at

time t ; i. e., w k = 

1 
q 

∑ t 
n = t−q +1 w ( k, λ, t − n ) . Given that

a weight of zero is assigned to dividends that a gen-

eration did not observe, i. e., for k > t − n, we can

rewrite w k = 

1 
q 

∑ t−k 
n = t−q +1 w ( k, λ, t − n ) . Also using βq = 0

from Eq. (45) we obtain 

( 1 + β0 ) w k + βk +1 = βk R ∀ k ∈ { 0 , 1 , . . . , q − 2 } (31)

( 1 + β0 ) w q −1 = βq −1 R (32)

By solving this system of equations, we obtain the ex-

pressions in the proposition. In particular, ( 1 + β0 ) (w q −2 +
w q −1 /R ) = βq −2 R for k = q − 2 , ( 1 + β0 ) (w q −3 + w q −2 /R +
w q −1 /R 2 ) = βq −3 R for k = q − 3 , and so on. This allow us

to express (31) and (32) as 

(1 + β0 ) 
k −1 ∑ 

j=0 

w q −(k − j) /R 

j = βq −k R for k = 1 , . . . , q. (33)

The last expression (33) implies β0 = 

∑ q −1 
j=0 

w j /R j 

R −∑ q −1 
j=0 

w j /R j 
=

∑ q −1 
j=0 

w j /R j+1 

1 −∑ q −1 
j=0 

w j /R j+1 
(from plugging in k = q ), which in turn,

plugged into (43) , allows us to obtain the expression for

α from (15) in Proposition 4.2 . And expression (33) im-

plies βk = 

∑ q −1 −k 
j=0 

w k + j /R j+1 

1 −∑ q −1 
j=0 

w j /R j+1 
(from substituting k with q − k

and using the expression for β0 ) as expressed in Eq. (16) of

the proposition. The latter also subsumes Eq. (32) , solved
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for βq −1 , and the above formula for β0 , and hence holds 

for k = 0 , . . . q − 1 . �

Proof of Proposition . 4.3 . For this proof, we use Eq. (31) and 

(32) . In addition, note that by construction, w k < w k −1 for 

λ > 0 since for all generations, w ( k, λ, age ) is decreasing in 

k and more agents observe the realization of d t−(k −1) than 

d t−k . Given this, it follows that since β0 > 0 then βq −1 > 0 

and 

βq −1 = 

1 

R 

( 1 + β0 ) w q −1 < 

1 

R 

[ ( 1 + β0 ) w q −2 + βq −1 ] = βq −2 .

(34) 

In addition, if βk < βk −1 , then 

βk −1 = 

1 

R 

[ ( 1 + β0 ) w k −1 + βk ] 

< 

1 

R 

[ ( 1 + β0 ) w k −2 + βk −1 ] = βk −2 . (35) 

Thus, the proof that βk < βk −1 for all k ∈ { 1 , . . . , q − 1 } fol-

lows by induction. �

Proof of Lemma . 4.1 . To show that β0 is increasing in λ, let 

G q (λ) = 

∑ q −1 

k =0 
w k /R k +1 . We thus have β0 = 

G q (λ) 

1 −G q (λ) 
, and it 

suffices to show that G 

′ 
q (λ) > 0 ∀ q > 0 and ∀ λ > 0. After

some algebra, the terms in G q ( · ) can be reorganized as 

follows: 

G q (λ) = 

q −1 ∑ 

age =0 

1 

q 

age ∑ 

k =0 

w (k, λ, age ) /R 

k +1 . (36) 

Note that for any age ∈ { 0 , . . . , q − 1 } , (i) ∑ age 

k =0 
w (k, λ, age ) = 1 , and (ii) for any λ1 , λ2 such that 

λ1 > λ2 > 0, 
∑ age 

k = j w (k, λ1 , age ) < 

∑ age 

k = j w (k, λ2 , age ) . 

Thus, the weight distribution given by λ2 first-order 

stochastically dominates the weight distribution given 

by λ1 . Since 1 /R > 1 /R 2 > 1 /R 3 > . . . > 1 /R q −1 , stochas-

tic dominance implies that for all age ∈ { 0 , . . . , q − 1 } , ∑ age 

k =0 
c k +1 w (k, λ1 , age ) > 

∑ age 

k =0 
c k +1 w (k, λ2 , age ) , and thus 

G q ( λ1 ) > G q ( λ2 ). 

To show the limit results, note that 

lim λ→∞ 

w (0 , λ, age ) = 1 , while lim λ→∞ 

w (k, λ, age ) = 0

for all k > 0. �

Proof of Proposition 4.4 . From Propositions 4.1 and 4.2 , we 

know that, for any t , any generations m ≥ n both in { t −
q + 1 , . . . , t} and any k ∈ { 0 , . . . ., q − 1 } , 

∂(x n t − x m 

t ) 

∂d t−k 

= 

(1 + β0 ) 

γV [ s t+1 ] 

∂(θn 
t − θm 

t ) 

∂d t−k 

. 

ξ (n, k, t) 

= 

∑ t−n 
m =0 (F (m, t − n ) − F (m − 1 , t − n )) d t−m 

− ∑ t−n 
m =0 (F (m,

γ (1 + β0 ) σ 2 

= 

∑ t−n −1 
j=0 (d t− j − d t− j−1 )(F ( j, t − n ) − F ( j, t − n − k )) 

γ (1 + β0 ) σ 2 
. 
 

We note that, for any n ∈ { t − q + 1 , . . . , t} , ∂θn 
t 

∂d t−k 
=

w (k, λ, n − t) if k ∈ { 0 , . . . , t − n } , and 

∂θn 
t 

∂d t−k 
= 0 if k ∈ { t −

n + 1 , . . . , q − 1 } . (Observe that t − n ≤ q − 1 .) Hence, it suf-

fices to compare w (k, λ, t − n ) with w (k, λ, t − m ) for any

k ∈ { 0 , . . . , q − 1 } . (As usual, here we adopt the convention

that for any age , w (k, λ, age ) = 0 for all k ≥ age .) From

Lemma 2.1 , there exists a k 0 such that w (k, λ, t − n ) <

w (k, λ, t − m ) for all k ∈ { 0 , . . . , k 0 } and w (k, λ, t − n ) ≥
w (k, λ, t − m ) for the rest of the k ’s, k ∈ { k 0 + 1 , . . . , q −
1 } . �

The proof of Proposition 4.5 relies on the following 

first-order stochastic dominance result: 

Lemma A.2 . For any a ∈ { 0 , 1 , . . . } , a ′ < a and any m ∈
{ 0 , . . . , a } , let F (m, a ) ≡ ∑ m 

j=0 w ( j, λ, a ) . Suppose the condi-

tions of Lemma 2.1 hold; then F ( m, a ) ≤ F ( m, a ′ ) for all

m ∈ { 0 , . . . , a } . 
Proof of Lemma A.2 . From Lemma 2.1 , we know that there 

exists a unique j 0 where w ( j 0 , λ, a ′ ) − w ( j 0 , λ, a ) “crosses”

zero. Thus, for m ≤ j 0 , the result is true because w ( j, λ,

a ′ ) > w ( j, λ, a ) for all j ∈ { 0 , . . . m } . For m > j 0 , the result

follows from the fact that w ( j, λ, a ′ ) < w ( j, λ, a ) for all

j ∈ { m, . . . a } and F (a, a ) = F (a ′ , a ′ ) = 1 . �

Proof of Proposition 4.5 . We first introduce some nota- 

tion. For any j ∈ { t − n − k + 1 , . . . , t − n } , let w ( j, λ, t −
n − k ) = 0 ; i. e., we define the weights of generation

n + k for time periods before they were born to be 

zero. Thus, 
∑ t−n −k 

j=0 w ( j, λ, t − n − k ) d t− j = 

∑ t−n 
j=0 w ( j, λ, t −

n − k ) d t− j . In addition, we note that (w ( j, λ, t − n − k )) t−n 
j=0 

and (w ( j, λ, t − n )) t−n 
j=0 

are sequences of positive weights 

that add up to one. 

Let for any m ∈ { 0 , . . . , t − n } , 

F (m, t − n − k ) = 

m ∑ 

j=0 

w ( j, λ, t − n − k ) and 

F (m, t − n ) = 

m ∑ 

j=0 

w ( j, λ, t − n ) . 

These quantities, as functions of m , are nondecreasing and 

F (t − n, t − n − k ) = F (t − n, t − n ) = 1 . Moreover, F (m +
1 , t − n − k ) − F (m, t − n − k ) = w (m + 1 , λ, t − n − k ) , and

F (m + 1 , t − n ) − F (m, t − n ) = w (m + 1 , λ, t − n ) . Finally,

we set F (−1 , t − n ) = F (−1 , t − n − k ) = 0 . 

By these observations, by the definition of ξ ( n, k, t ), and 

by straightforward algebra, it follows that, 

− k ) − F (m − 1 , t − n − k )) d t−m 

If the weights are nondecreasing, then d t− j − d t− j−1 ≥
0 for all j = 0 , . . . , t − n − 1 , and it suffices to show that

F ( j, t − n ) ≤ F ( j, t − n − k ) for all j = 0 , . . . , t − n − 1 . This
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follows from applying Lemma A.2 with a = t − n > t − n −
k = a ′ . 

If the weights are nonincreasing, then d t− j − d t− j−1 ≤ 0 ,

and the sign of ξ ( n, k, t ) changes accordingly. �

Proof of Proposition . 4.6 . By Propositions 4.1 and 4.2 , it fol-

lows that for any t and n ≤ t , 

x n t = 

1 

γ σ 2 ( 1 + β0 ) 
2 

( 

α0 (1 − R ) + (1 + β0 ) θ
n 
t − Rβ0 d t 

+ 

q −1 ∑ 

k =1 

βk (d t+1 −k − Rd t−k ) 

) 

. (37)

Thus, for n ∈ { t − q + 1 , . . . , t − 1 } , 

x n t − x n t−1 = 

(1 + β0 )(θ
n 
t − θn 

t−1 ) + T (d t : t −q ) 

γ σ 2 ( 1 + β0 ) 
2 

, (38)

where T (d t : t −q ) ≡
∑ q −1 

k =1 
βk (d t+1 −k − d t−k − R (d t−k −

d t−1 −k )) − Rβ0 (d t − d t−1 ) . Note that T (d t : t −q ) is not

cohort specific (i. e., does not depend on n ). 

The fact that x t t − x t 
t−1 

= x t t and x 
t−q 
t − x 

t−q 
t−1 

= −x 
t−q 
t−1 

, and

market clearing imply 

q −1 

( 

t ∑ 

n = t−q 

x n t − x n t−1 

) 

= 0 . (39)

This expression and the expression in (38) imply that 

1 

q 

( 

t−1 ∑ 

n = t−q +1 

(1 + β0 )(θn 
t − θn 

t−1 ) 

γ σ 2 ( 1 + β0 ) 
2 

+ x t t − x t−q 
t−1 

) 

= −1 

q 

t ∑ 

n = t−q 

T (d t : t −q ) 

γ σ 2 ( 1 + β0 ) 
2 

= − T (d t : t −q ) 

γ σ 2 ( 1 + β0 ) 
2 
. 

Letting θ t 
t−1 

= θ t−q 
t = 0 , it follows that 

1 

q 

( 

t ∑ 

n = t−q 

(1 + β0 )(θ
n 
t − θn 

t−1 ) 

) 

= −T (d t : t −q ) . 

Thus, we can express the change in individual demands

for those agents with n = { t − q + 1 , . . . , t − 1 } in expres-

sion (38) as follows: 

x n t − x n t−1 = χ

[ (
θn 

t − θn 
t−1 

)
− 1 

q 

t ∑ 

n = t−q 

(
θn 

t − θn 
t−1 

)] 

, 

∀ n ∈ { t, . . . , t − q } , (40)

where χ ≡ 1 
γ σ 2 ( 1+ β0 ) 

. By squaring and summing at both

sides and including the demands on the youngest ( n = t)

and oldest ( n = t − q ) market participants, the desired re-

sult follows. 

�

Appendix B. Incorporating prior beliefs 

In this section, we show how the model can be ex-

tended to allow agents to have prior beliefs; that is,

τ > 0 in (4) . We will prove results analogous to those in

Proposition 4.2 . 
As a reminder, we now suppose that all cohorts are

born with prior belief N(m, σ 2 
m 

) and update their beliefs

during their lifetime as follows: 

θn 
t = (1 − ω t−n ) m + ω t−n 

[ 

t−n ∑ 

k =0 

w ( k, λ, t − n ) d t−k 

] 

, (41)

where ω t−n is given by 

ω t−n = 

t − n + 1 

τ + (t − n + 1) 
, 

and where τ captures the relative importance of prior be-

liefs to experience-based beliefs. For example, if agents are

Bayesian from experience as described in Section 2.1 , then

τ = 

σ 2 

σ 2 
m 

. For the purpose of our analysis, however, all that

is important is how results vary with τ . 

We continue to guess that prices are affine in past div-

idends, 

p t = α + β0 d t + . . . + βK d t−K 

with K = q, as in the baseline model. From Lemma A.1 ,

agents’ demand for the risky asset is given by x n t = 

E n t [ s t+1 ] 
γV [ s t+1 ] 

.

Plugging in our guess for prices, and for β0 � = −1 , we ob-

tain 

x n t = 

( 1 + β0 ) θ
n 
t + α + β1 d t + . . . + βq d t−q +1 − p t R 

γ ( 1 + β0 ) 
2 σ 2 

. (42)

By market clearing, 1 
q 

∑ t 
n = t−q +1 x 

n 
t = 1 , which implies

that 

( 1 + β0 ) 
1 
q 

∑ t 
n = t−q +1 θ

n 
t 

γ ( 1 + β0 ) 
2 σ 2 

+ 

α + β1 d t + . . . + βq d t−q +1 − p t R 

γ ( 1 + β0 ) 
2 σ 2 

= 1 . 

By straightforward algebra and the definition of θn 
t , it

follows that (
1 

γ ( 1 + β0 ) 
2 σ 2 

)[ 

( 1 + β0 ) 
1 

q 

t ∑ 

n = t−q +1 

θn 
t + α + β1 d t 

+ . . . + βq d t−q +1 − p t R 

] 

= 1 

( 1 + β0 ) 
1 

q 

t ∑ 

n = t−q +1 

×
[ 

(1 − ω t−n ) m + ω t−n 

t−n ∑ 

k =0 

w ( k, λ, t − n ) d t−k 

] 

+ α − γ ( 1 + β0 ) 
2 σ 2 . . . 

+ β1 d t + . . . + βq d t−q +1 = p t R. [ 

( 1 + β0 ) 
1 

q 

t ∑ 

n = t−q +1 

(1 − ω t−n ) m + α − γ ( 1 + β0 ) 
2 σ 2 

] 

+ . . . ( 1 + β0 ) 
1 

q 

t ∑ 

n = t−q +1 

t−n ∑ 

k =0 

ω t−n w ( k, λ, t − n ) d t−k 

+ β1 d t + . . . + βq d t−q +1 = p t R. 



620 U. Malmendier, D. Pouzo and V. Vanasco / Journal of Financial Economics 136 (2020) 597–622 

 

 

 

 

Plugging in (again) our guess for p t and using the 

method of undetermined coefficients, we find the expres- 

sions for α and the β ’s: 

γ ( 1 + β0 ) 
2 σ 2 + ( 1 + β0 ) 

1 
q 

∑ t 
n = t−q +1 (1 − ω t−n ) m 

1 − R 

= α

(43) 

( 1 + β0 ) 
1 

q 

t−k ∑ 

n = t−q +1 

ω t−n w ( k, λ, t − n ) + βk +1 = βk R 

∀ k ∈ { 0 , 1 , . . . , q − 1 } (44) 

0 = βq R, (45) 

where w k is now the average of the weights assigned to 

dividend d t−k by each generation in the market at time t ; 

i. e., w k = 

1 
q 

∑ t 
n = t−q +1 ω t−n w ( k, λ, t − n ) . 

Introducing prior beliefs requires two adjustments. 

First, the constant in prices, α, now increases to incorpo- 

rate the demand driven by prior belief, m . Second, all the 

weights that an agent with age t − n gives to past divi- 

dends are now adjusted by ω(t − n ) , which keeps track of 

the importance that these agents assign to their EBL. Such 

adjustment affects the β ’s in the pricing equation. Given 

these adjustments, the model is isomorphic to the baseline 

model. 

Appendix C. Population growth 

In addition to considering the effects of a one-time 

shock to population structure, we also explore the impli- 

cations of population growth. 

In this section of the Appendix, we consider an OLG 

model two-period lived agents where the mass of young 

agents born every period grows at rate g . For this growth 

setting, we need to set an initial date for the economy, 

which we define to be t = 0 . Let y t denote the mass 

of young agents born at time t ; then y t+1 = ( 1 + g ) y t = 

y 0 (1 + g) t . We further denote the total mass of people at 

any point in time t > 0 as n t , and hence n t = y t + y t−1 =
( 2 + g ) y t−1 . It is easy to check that n t = ( 1 + g ) n t−1 ; that 

is, total population grows at rate g . 

The framework is otherwise as in the “toy model” in 

Section 3 of the main paper. The main difference is that 

now population is growing over time. As a result, we make 

a different guess for the price function: 

p t = α0 ( 1 + g ) 
−t + β0 d t + β1 d t−1 . 

We verify this guess using our market clearing condition, 

which requires the demand of the young and the old to 

add up to total supply of the asset, one: 

1 = y t 
E t t [ p t+1 + d t+1 ] − Rp t 

γV [ p t+1 + d t+1 ] 

+ y t−1 

E t−1 
t [ p t+1 + d t+1 ] − Rp t 

γV [ p t+1 + d t+1 ] 
⇐⇒ 

1 = 

y 0 ( 1 + g ) 
t−1 

γ ( 1 + β0 ) 
2 σ 2 

[
( 1 + β0 ) 

[
( 1 + g ) E t t [ d t+1 ] + E t−1 

t [ d t+1 ] 
]

+ ( 2 + g ) 
[
α0 ( 1 + g ) 

−( t+1 ) + β1 d t − Rp t 
]]

. 
and after simple algebra, 

Rp t = ( 1 + β0 ) 

{ 

1 + g 

2 + g 
d t + 

1 

2 + g 
[ ( 1 − ω ) d t−1 + ωd t ] 

} 

+ 

α0 

( 1 + g ) 
t+1 

+ β1 d t − γ σ 2 (1 + β0 ) 
2 

y 0 ( 2 + g ) ( 1 + g ) 
t−1 

. 

We plug in p t = α0 ( 1 + g ) −t + β0 d t + β1 d t−1 , and we use 

the method of undetermined coefficients to obtain: 

α0 = −γ ( 1 + β0 ) 
2 σ 2 

R − 1 
1+ g 

( 1 + g ) 

y 0 ( 2 + g ) 

Rβ0 = ( 1 + β0 ) 

(
1 + g 

2 + g 
+ 

1 

2 + g 
ω 

)
+ β1 

Rβ1 = ( 1 + β0 ) 
1 − ω 

2 + g 
. 

Let αt ≡ α0 (1 + g) −t and γ ≡ y t 
n t 

denote the fraction of 

young agents, which is easy to verity is constant over time. 

Then, we can rewrite the above equations as 

αt = −γ ( 1 + β0 ) 
2 σ 2 

R − 1 
1+ g 

1 + g 

n t 

Rβ0 = ( 1 + β0 ) ( γ + (1 − γ ) ω ) + β1 

Rβ1 = ( 1 + β0 ) (1 − γ )(1 − ω) . 

The latter expressions reveal that the total mass of 

agents in the market is reflected only in the price con- 

stant, while the fraction of young people in the market 

determines the dividend loadings β0 and β1 . Overall, we 

see that adding population growth generates to our model 

generates a positive trend in prices. The relative reliance 

of prices on the most recent experiences (dividends) is in- 

creasing in the population growth rate. 

Appendix D. Empirical analysis 

We use two alternative approaches to measure the frac- 

tion of younger agents (below 50 years of age) in the mar- 

ket. First, we compute an indicator variable that equals one 

when the fraction of young agents in the market is above 

0.5 and zero otherwise, I { fraction of young investors t > 

0 . 5 } . Here, the fraction of young investors is based on their

relative cohort sizes, with 

fraction of young investors t = 

∑ 

j I ( age j,t < 50) · w 

scf 
j,t ∑ 

j=1 w 

scf 
j,t 

, 

where age j,t is the age of household head j in year t , and

w 

scf 
j,t 

is the weight given to household head j in year t in the

SCF to compensate for unequal probabilities of household 

selection in the original design and for unit nonresponse 

(failure to obtain an interview). 

Our second proxy captures the wealth of younger 

generations of investors. We construct an indicator 

variable that equals one when the fraction of liq- 

uid wealth owned by agents below 50 is above the 

1960–2013 sample average of their liquid wealth and 

zero otherwise, I ( fraction of young investors’ wealth > 
t 
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Table D.1 

Markov-switching regime (MSR) model. 

Robustness checks of the estimation results in Table 2 . p t − d t is the 

log of the price-to-dividend ratio, and regressed on its lagged values in- 

teracted with the demographic indicator variable Y t for the fraction of 

young investors. We use different thresholds to construct Y t . In column 

(1), Y t equals one when the fraction of investors below 50 is larger than 

0.55, and in column (2), the threshold is 0.60. In column (3), Y t equals 

one when the fraction of wealth of investors below 50 is larger than 90% 

of their 1960–2013 sample average, and in column (4), the threshold is 

110% of the sample average. As in Table 2 , the demographic data includ- 

ing age and wealth (liquid assets) of stock market participants are from 

the SCF and the stock data are from Robert Shiller’s website. ∗ and ∗∗ de- 

note significance at the 10% and 5% levels, respectively. 

Dependent variable: p t − d t 

Y t age-based Y t age/wealth-based 

(1) (2) (3) (4) 

δ1 0.430 1.134 ∗∗ 0.681 ∗∗ -0.339 

(0.288) (0.188) (0.209) (0.268) 

δ2 0.016 −0.194 −0.082 −0.137 

(0.304) (0.322) (0.210) (0.422) 

δ3 −0.460 ∗∗ −0.778 ∗∗ −0.629 ∗∗ 0.428 ∗

(0.225) (0.282) (0.161) (0.220) 

β1 0.623 ∗∗ 0.297 ∗∗ 0.417 ∗∗ 1.084 ∗∗

(0.259) (0.134) (0.177) (0.081) 

β2 −0.099 −0.132 −0.168 −0.223 ∗∗

(0.219) (0.140) (0.166) (0.100) 

β3 0.298 ∗∗ 0.452 ∗∗ 0.580 ∗∗ −0.044 

(0.151) (0.106) (0.140) (0.064) 

μ( S 1 ) 4.925 ∗∗ 5.780 ∗∗ 5.734 ∗∗ 5.430 ∗∗

(1.541) (2.915) (1.513) (1.683) 

μ( S 2 ) 19.590 ∗∗ 14.100 ∗∗ 20.310 ∗∗ 19.670 ∗∗

(3.399) (2.959) (3.144) (3.102) 

σ 3.948 3.259 3.792 3.737 

(0.392) (0.393) (0.397) (0.375) 

Q 11 0.953 0.779 0.956 0.931 

(0.030) (0.152) (0.026) (0.035) 

Q 21 0.374 0.115 0.365 0.473 

(0.214) (0.068) (0.210) (0.220) 

N 51 51 51 51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sample average ) 27 ; i. e., 

fraction of young investors’ wealth t 

= 

∑ 

j I ( age j,t < 50) · w 

sc f 
j,t 

· wealth j,t ∑ 

j w 

sc f 
j,t 

· wealth j,t 

For robustness, we also consider thresholds 0.55 and

0.60 for the age-based first proxy and 0.9 × Sample average

and 1.1 × Sample average for the age- and wealth-based

second proxy. Results are presented in Appendix Table D.1 .

We estimate a positive δ1 coefficient, which is significant

when requiring a fraction of 0.6 for the age-based coeffi-

cient and when requiring wealth above 0.9 of the sample

average for the age- and wealth-based coefficient. 
27 The SCF shows the age and wealth (liquid assets) information of each 

respondent in 1960, 1962, 1963, 1964, 1967, 1968, 1969, 1970, 1971, 1977, 

1983, 1986, 1989, 1992, 1995, 1998, 20 01, 20 04, 20 07, 2010, and 2013. We 

use linear interpolation to fill the missing years and construct a yearly 

sample from 1960 to 2013. The liquid assets variable is defined to be the 

sum of assets in an investor’s checking, savings, and money market ac- 

counts, as well as any call accounts at brokerages and prepaid cards. 
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