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1 Introduction

A growing literature has emerged in recent years that aims at re-examining some important macro

questions through the lens of monetary models with heterogenous agents. Models in this literature

commonly assume the presence of idiosyncratic shocks to individuals’ income, together with the

existence of incomplete markets and borrowing constraints. Those features are combined with

the kind of nominal rigidities and monetary non-neutralities that are the hallmark of New Key-

nesian models. Following Kaplan et al. (2016), we refer to those models as HANK models (for

"Heterogenous Agent New Keynesian" models).

Several lessons have been drawn from this literature. Thus, for instance, taking into account

agents’ heterogeneity has been shown to be important in order to understand the transmission of

monetary policy, including the relative contribution of direct and indirect effects (Kaplan et al.

(2016)) or its redistributive effects across income groups (Auclert (2016)). In addition, several

authors have emphasized how the transmission of monetary policy and its aggregate effects may

vary significantly depending on the prevailing fiscal policy, as the latter determines how the im-

plementation of monetary policy affects the distribution of individual income and wealth among

agents with different marginal propensities to consume.

As is well known, solving for the equilibrium of HANK economies requires the use of nontrivial

computational techniques, given the need to keep track of the wealth distribution, and the diffi-

culties arising from the presence of occasionally binding borrowing constraints. The reliance on

numerical techniques for the analysis of those models often presents a challenge when it comes to

understanding the mechanisms underlying some of the findings, and may thus limit their usefulness

in the classroom or as an input in policy institutions.

The purpose of the present paper is twofold. First, we provide a simple framework that helps

understand and quantify the implications of heterogeneity for aggregate fluctuations. Our frame-

work distinguishes between two types of households at each point in time, which we label as
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"unconstrained" or "constrained", depending on whether their consumption satisfies or not a

consumption Euler equation. Having made that distinction, we identify three dimensions of het-

erogeneity that explain differences in aggregate fluctuations between a HANK economy and its

representative agent counterpart (RANK, for short): (i) changes in the average consumption gap

between constrained and unconstrained households, (ii) variations in consumption dispersion within

unconstrained households, and (iii) changes in the share of constrained households . We show that

the previous three factors are captured through additive "wedges"showing up in a log-linearized

Euler equation for aggregate consumption, and which determine the differential behavior of a

HANK economy relative to its RANK counterpart. Furthermore, by tracing their responses to

aggregate shocks, we can assess the quantitative significance of each of those heterogeneity factors

in shaping aggregate output fluctuations.

A second objective of the present paper is to assess the ability of Two Agent New Keynesian

(TANK) models to approximate the role of heterogeneity in richer HANK models. TANK models

assume the existence of two types of consumers –"constrained" and "unconstrained"–with constant

shares in the population, while allowing only for aggregate shocks (i.e. disregarding idiosyncratic

shocks). A subset of households (the "unconstrained") are assumed to have full access to financial

markets (including markets for stocks and bonds), while "constrained" households are assumed to

behave in a "hand-to-mouth" fashion, consuming their current income at all times. This will be

the case if they do not have access to financial markets, find themselves continuously against a

binding borrowing constraint, or display a pure myopic behavior.

HANK and TANK models share a key feature that is missing in RANK models, namely, the

fact that at any point in time a fraction of agents face a binding borrowing constraint (or behave

as if they did), and thus do not adjust their consumption in response to changes in interest rates

or any variable other than their current income. As a result, average consumption of constrained

and unconstrained households will generally differ, with the gap between them changing over time
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in response to aggregate shocks. This corresponds to the first heterogeneity factor in our general

framework, and one that can be found in both HANK and TANK models.

On the other hand, HANK and TANK models differ in two important ways, related to the two

remaining heterogeneity factors introduced above. Thus, in HANK models –but not in TANK–

households face idiosyncratic shocks that cannot be fully insured against. As a result, there

exists a non-degenerate wealth distribution that evolves over time, constituting an additional

(infinite dimensional) state variable, and leading to a dispersion of consumption within the subset

of unconstrained households. Secondly, the subset of households who are subject (or act "as if"

subject) to a binding borrowing constraint does not change over time in TANK models, neither

in terms of their identity nor their weight in the population. By contrast, in HANK models that

fraction is endogenous and will generally vary over time, as a result of the interaction of aggregate

shocks, the distribution and composition of wealth at any point in time, and the presence of

borrowing limits.

From a more practical perspective, the analysis of TANK models is highly simplified relative

to their HANK counterparts for there is no need to keep track of the wealth distribution and its

changes over time. In fact, as we show below, the implied equilibrium conditions of a baseline

TANK model can be reduced to a system of difference equations isomorphic to that of a RANK

model.

A key finding of our analysis is that a simple TANK model approximates well, both from

a qualitative and a quantitative viewpoint, the aggregate output dynamics of a canonical HANK

model in response to aggregate shocks, monetary and non-monetary. This is because of two reasons.

On the one hand, for plausible specifications of a HANK model, consumption heterogeneity between

constrained and unconstrained households fluctuates significantly in response to aggregate shocks,

and its fluctuations are well captured by a TANK model. On the other hand, we show that the

two remaining heterogeneity factors, while significant, they tend to mutually offset each other.

3



The previous finding suggests that a TANK model may be used to obtain analytical results that

provide useful insights on the role of heterogeneity in more general HANK models. In particular,

our analysis below emphasizes the role of heterogeneity in amplifying or attenuating the impact

on output of changes in monetary policy and other sources of fluctuations.

1.1 Related Literature

The paper is related to two main strands of the literature. On the one hand, the emerging literature

introducing New Keynesian features into heterogeneous agent models with idiosyncratic risk and

incomplete markets. Some examples are the works of Guerrieri and Lorenzoni (2017), McKay et al.

(2016), Farhi and Werning (2017b), Gornemann et al. (2016), Kaplan et al. (2016), McKay and

Reis (2016), Werning (2015), Auclert (2017), Luetticke (2017), and Ravn and Sterk (2014), among

many others. The main difference with respect to that literature is the development of a simple

TANK model with no idiosyncratic shocks, which admits an analytical solution, and the emphasis

on the distinction between constrained and unconstrained households. On the other hand, the

paper builds on the earlier literature on two-agent models, such as Campbell and Mankiw (1989),

Galí et. al. (2007), Bilbiie (2008, 2018), Bilbiie and Straub (2013), Broer et. al. (2016) and

Walsh (2017). 1 The main difference with respect to that literature is the comparison, both from

a theoretical and a quantitative viewpoint, with more general heterogenous agent models.

The remainder of the paper is organized as follows. In section 1 we introduce our "organizing

framework." In section 2 we lay out a baseline HANK model and in section 3 we analyze the role of

the different heterogeneity components in shaping aggregate fluctuations. In section 4 we introduce
1Similarly, Bilbiie (2018) uses a TANK model to illustrate the "direct" and "indirect" effects of monetary policy

shocks emphasized by Kaplan et al. (2016) in a more general HANK model. Farhi and Werning (2017a) use a
variety of TANK models to analyze the size of fiscal multipliers in a liquidity trap and in currency unions. Ravn
and Sterk (2017) build a tractable heterogeneous agent model with nominal rigidities and labor market frictions,
giving rise to endogenous unemployment risk.
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a baseline TANK model and compare its predictions with those of the HANK counterpart. Section

5 summarizes our main findings and concludes.

2 Heterogeneity and Aggregate Consumption: An Organiz-
ing Framework

In this section we derive an equilibrium condition for aggregate consumption that we use as a sim-

ple organizing device to think about the implications of heterogeneity, relative to a representative

household model. Our approach is related to Werning (2015), but differs from the latter in the

emphasis we attach to the distinction between constrained and unconstrained households –a dis-

tinction emphasized by TANK models– in our interpretation of the deviations from the standard

Euler equation of a representative household model.

Consider an economy with a continuum of heterogeneous households, indexed by s ∈ [0, 1].

Each household seeks to maximize utility E0

∑∞
t=0 β

tU(Ct(s), Xt(s);Zt), where Ct(s) denotes con-

sumption, Xt(s) includes other household-specific endogenous variables, and Zt is an exogenous

preference shifter following a stationary process. We assume U(C,X;Z) ≡ C1−σ−1
1−σ Z + V (X;Z).

Households have identical preferences, but may differ in terms of their wealth, earnings, and/or the

transfers they receive. Most importantly, we assume that in any given period t, a fraction λt ∈ [0, 1]

of households do not have access to (or simply do not make use of) financial markets in order to

smooth consumption over time in the face of shocks. As a result, the standard consumption Euler

equation will not hold for these households. Possible reasons for this lack of participation include

the presence of a binding borrowing constraint or myopic behavior. The remaining households,

representing a fraction 1 − λt of the population, are assumed to satisfy their consumption Euler

equation. Such an environment is characteristic of most heterogenous agent models, tracing back

to Bewley (1983), Huggett (1993) and Aiyagari (1994).

Next we derive a generalized Euler equation for aggregate consumption for such an economy
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with heterogeneous households. We proceed in two steps. First we derive an Euler equation in

terms of average consumption for unconstrained households. Then we rewrite that Euler equation

in terms of aggregate consumption.

2.1 A Generalized Euler Equation for Unconstrained Households’ Con-
sumption

Let Ut ⊂ [0, 1] denote the set of households that in period t have unconstrained access to (and

make effective use of) a market for one-period bonds yielding a (gross) riskless real return Rt.2

The measure of Ut is given by 1 − λt. For any household s ∈ Ut the following Euler equation is

satisfied:

ZtCt(s)
−σ = βRtEt

{
Zt+1Ct+1(s)−σ

}
(1)

Integrating both sides of (1) over s ∈ Ut, and letting CU
t ≡ 1

1−λt

∫
s∈Ut Ct(s)ds denote average

consumption among households that are unconstrained in period t, we can write

Zt(C
U
t )−σ = βRtEt

{
Zt+1(CU

t+1)−σΘt+1

}
(2)

where

Θt+1 ≡

(
CU
t+1|t

CU
t+1

)−σ ∫
s∈Ut(Ct+1(s)/CU

t+1|t)
−σds∫

s∈Ut(Ct(s)/C
U
t )−σds

where CU
t+1|t ≡

1
1−λt

∫
s∈Ut Ct+1(s)ds denotes average consumption in period t+1 of households that

were unconstrained in period t.

Note that (2) can be viewed as an Euler equation describing the average consumption of uncon-

strained households. It differs from the standard Euler equation for the representative household

due to the presence of the Θt+1 term. The latter term captures the wedge between, on the one

hand, the average intertemporal marginal rate substitution across unconstrained households and,
2In the present section, we assume a riskless real bond for notational convenience. The analysis carries over to

the case of a nominally riskless bond, as assumed below.
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on the other, the intertemporal marginal rate of substitution of a "stand-in" household whose con-

sumption is, period by period, equal to the average consumption among unconstrained households,

CU
t .

In order to get some intuition about the factors behind that wedge, consider the following

second order approximation (derived in the appendix):

Θt+1 '

(
CU
t+1|t

CU
t+1

)−σ [
2 + σ (1 + σ) vars|t{ct+1(s)}
2 + σ (1 + σ) vars|t{ct(s)}

]
(3)

where vars|t{ct+k(s)} ≡ (1 − λt)
−1
∫
s∈Ut(ct+k(s) − cUt+k|t)

2 with ct(s) ≡ logCt(s) and cUt+k|t ≡

logCU
t+k|t. To understand the factors behind variations in Θt+1, consider an economy in which

the set of unconstrained households doesn’t change over time, i.e. Ut = U for all t.3 In that

case, CU
t+1 = CU

t+1|t and for all t. As a result, deviations of Θt+1 from unity will be exclusively

due to anticipated changes in the cross-sectional variance of consumption across the (fixed set

of) unconstrained households, i.e. if vars{ct+1(s)} differs from vars{ct(s)}. In particular, if that

variance is expected to increase, then Θt+1 > 1, which lowers CU
t , given CU

t+1, an effect analogous

to that of precautionary savings.

On the other hand, even if the cross-sectional variance of consumption among unconstrained

households were constant, Θt+1 may differ from unity and vary over time as a result of some

households switching from an unconstrained status to a constrained one and viceversa. Such

switches may occur in connection with changes in λt over time. To the extent that households who

become constrained at t + 1 have on average lower consumption in that period than those who

are unconstrained, then CU
t+1|t < CU

t+1. Furthermore, in the presence of switching, the variance of

consumption at t+1 across households who were unconstrained at t is likely to be larger than their

current (i.e. period t) consumption variance, i.e. vars|t{ct+1(s)} > vars|t{ct(s)}. Both phenomena

3A particular instance of such an environment is given by an economy with heterogeneous households but in
which none are constrained, i.e. U = [0, 1].
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tend to raise the anticipated average future marginal utility of currently unconstrained households,

leading to a decrease in their current consumption for any given interest rate and expected average

consumption CU
t+1.

Given the previous considerations, we can interpret Θt as a wedge that captures the impact

of consumption heterogeneitywithin the set of unconstrained households on the dynamics of their

average consumption. The size of that wedge will generally vary over time in response to shocks

that trigger the mechanisms discussed above.

For future reference, we can log-linearize (2) around a steady state to yield

ĉUt = Et{ĉUt+1} −
1

σ
r̂t −

1

σ
Et{∆zt+1} −

1

σ
Et{θ̂t+1} (4)

where lower case letters denote the natural log of a variable and a "̂" indicates deviation from

steady state. Equation (4) makes clear that an anticipated increase in consumption dispersion

within unconstrained households, reflected in an increase in Et{θ̂t+1}, will lower current average

unconstrained consumption, ceteris paribus.

2.2 A Generalized Euler Equation for Aggregate Consumption

Next we proceed to relate average consumption among the unconstrained, CU
t , with aggregate

consumption Ct ≡
∫ 1

0
Ct(s)ds, in order to derive an Euler equation for the latter.

Let Kt ⊂ [0, 1] denote the set of constrained households in period t, i.e. households that do not

satisfy (2) in that period. Recall that such households represent a fraction λt of all households.

We denote their average consumption by CK
t ≡ 1

λt

∫
s∈Kt Ct(s)ds. Note that aggregate consumption

Ct satisfies Ct = (1− λt)CU
t + λtC

K
t .

We define γt ≡ (CU
t −CK

t )/CU
t , an index of the average consumption gap between constrained

and unconstrained households, which thus captures consumption heterogeneity between the two
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type of households.4 In much of the discussion above we assume that steady state average con-

sumption among unconstrained households is above its counterpart among constrained households.

Accordingly, γ ≡ (CU − CK)/CU ∈ [0, 1]. That property is satisfied in all the models considered

below.

Note that we can write:

Ct = CU
t (1− λtγt)

Thus, the extent to which aggregate consumption differs from average unconstrained consump-

tion will be the result of two factors: (i) changed in the gap measure γt, and (ii) variations in

the share of constrained households, λ̂t. In particular, and for any given level of average uncon-

strained consumption, aggregate consumption will be larger the smaller is the gap between the

two household types and the smaller is the share of unconstrained households.

In a neighborhood of the steady state, and up to a first order:

ĉt = ĉUt −
λ

1− λγ
γ̂t −

γ

1− λγ
λ̂t (5)

where λ̂t ≡ λt− λ and γ̂t ≡ γt− γ denote deviations from steady state values. Combining (4) and

(5) yields the following Euler equation for aggregate consumption:

ĉt = Et{ĉt+1} −
1

σ
r̂t −

1

σ
Et{∆zt+1} − Et{∆ĥt+1}

where ĥt is a heterogeneity index defined by

ĥt ≡ ĥγt + ĥθt + ĥλt

with

ĥγt ≡ −
λ

1− λγ
γ̂t

4Note that, since the consumption Euler equation does not hold for constrained households, heterogeneity within
those households is not relevant for the purposes of deriving an Euler equation for aggregate consumption. The latter
can instead be obtained combining the average consumption of unconstrained households, and the consumption gap
between constrained and unconstrained households.
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ĥθt ≡ −
1

σ

∞∑
k=1

Et{θ̂t+k}

and

ĥλt ≡ −
γ

1− λγ
λ̂t

Assuming all variables are expected to revert asymptotically to their steady state values, we

can solve the previous difference equation forward to obtain the following expression for aggregate

consumption:

ĉt = − 1

σ
r̂Lt +

1

σ
zt + ĥt (6)

where r̂Lt ≡
∑∞

k=0 Et{r̂t+k}.

The first two factors behind aggregate consumption fluctuations, namely, current and expected

real interest rates (as summarized by r̂Lt ) and the exogenous demand shifter zt, are already found in

the representative household model. The third factor, ĥt, summarizes the impact of heterogeneity

on aggregate consumption. The heterogeneity index ĥt has, in turn, three different components,

respectively associated with variations in γ̂t, θ̂t, and λ̂t. Henceforth we refer to these three com-

ponents as the gap, dispersion and share components, respectively.

Note that in the representative household model, ĥt = 0 for all t. Thus, the extent to which

aggregate consumption (and, in equilibrium, aggregate output and employment) in a HANK model

behaves differently from its RANK counterpart, conditional on the monetary policy stance (as

summarized by r̂Lt ) will depend on response of ĥt to different aggregate shocks. That response will

in turn depend on the joint endogenous response of γ̂t, θ̂t, and λ̂t. Thus, the response of aggregate

consumption to an expansionary shock will be amplified if it is accompanied, ceteris paribus, by:

(i) an increase in ĥγt , resulting from a reduction in the consumption gap between constrained

and unconstrained households resulting from a redistribution of resources towards the latter as a

result of the shock;
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(ii) an increase in ĥθt , i.e. caused by a lower anticipated cross-sectional dispersion of consumption

among currently unconstrained households;

(iii) an increase in ĥλt i.e. triggered by a reduction in the share of constrained households

for, ceteris paribus, this represents an increase in average consumption of those switching to an

unconstrained status.

It is important to note that the responses of these three factors to an aggregate shock will generally

not be independent from each other, as the analysis below will illustrate.

Instead, a standard TANK model with a constant share of hand-to-mouth households and no

heterogeneity among unconstrained households, λ̂t = θ̂t = 0 for all t. Accordingly, ĥt = ĥγt , with

variations in the gap variable γ̂t being the only source of deviations from the predictions of a

RANK model.

It is an open question, both empirical and theoretical, whether fluctuations in ĥt, as well as

its underlying components, ĥγt , ĥθt , and ĥλt , contribute significantly to fluctuations in aggregate

consumption. The analysis of the dynamics of those factors, i.e. the size of their fluctuations and

their response to aggregate shocks, should contribute to our understanding of the implications

of heterogeneity for aggregate fluctuations. Unfortunately, it is not clear that currently available

data (at least for the U.S. economy) would allow one to determine the identity of constrained and

unconstrained agents at business cycle frequencies and to match this information with individual

consumption.5 Instead, below we using a baseline HANK model as a laboratory economy, where we

analyze quantitatively the behavior of the heterogeneity index ĥt and its underlying components

(ĥγt , ĥθt , and ĥλt ), and their role in shaping aggregate fluctuations.
5Ideally one would need a long balanced panel with quarterly consumption and wealth data for individual

households.
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3 A Baseline HANK Model

Next we lay out a baseline HANK model which captures in a stylized way many key features of

the existing models in the literature.

3.1 Households

As in the general framework above, we assume a continuum of households, indexed by s ∈ [0, 1],

with identical preferences given by E0

∑∞
t=0 β

tU(Ct(s),Nt(s);Zt), where Zt ≡ exp{zt} is an exoge-

nous preference shifter, Ct(s) ≡
(∫ 1

0
Ct(s, i)

1− 1
ε di
) ε
ε−1 is a consumption index with Ct(s, i) denoting

the quantity of good i consumed by the household s in period t, and Nt(s) denote work hours. As

above we specialize the utility function to be of the form U(C,N ;Z) ≡
(
C1−σ−1

1−σ − N 1+ϕ

1+ϕ

)
Z. The

household’s period budget constraint is given by:

1

Pt

∫ 1

0

Pt(i)Ct(s, i)di+QtFt(s) +
Bt(s)

Pt
≤ Bt−1(s)(1 + it−1)

Pt
+ [Qt + (1− δ)Dt]Ft−1(s)

+WtNt(s) exp{et(s)}+ Tt(s)

for t = 0, 1, 2..., where Pt(i) is the price of good i. Wt is the nominal wage per efficiency unit of

labor. Bt(s) represents purchases of one-period discount bonds (yielding an interest rate it). Ft(s)

are the holdings of shares in an equity fund (described below). Qt is the price of those shares. Tt(s)

denotes net transfers. et(s) is an idiosyncratic productivity shock, satisfying
∫ 1

0
exp{et(s)}ds = 1

for all t.

An equity fund hold claims to a fraction 1 − δ of firms’ profits. Shares in the equity fund are

tradable and fully liquid, and can be used for consumption smoothing purposes. The remaining

fraction δ of firms’ profits, which we refer to as illiquid, have no tradable claims associated with

it. Instead they are allocated across households according to a distribution/transfer rule described

below.

We assume a borrowing constraint of the form
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Bt(s)

Pt
≥ −ψY (7)

for all t, where Y denotes steady state output and ψ ≥ 0. In addition, we assume short-selling of

shares in the equity fund is not allowed, i.e. Ft(s) ≥ 0, for all t and s.

As in most of the HANK literature, we do not model explicitly households’ portfolio decisions.

Instead we assume that all households with positive net wealth allocate an identical share υt ∈

[0, 1] of that wealth to the equity fund, i.e. QtFt(s) = max[0, υtAt(s)] for all s ∈ [0, 1], where

At(s) ≡ QtFt(s) +Bt(s)/Pt denotes household s financial wealth.

Optimal allocation of expenditures implies Ct (s, i) = (Pt(i)/Pt)
−εCt(s). We assume employ-

ment is demand determined, and uniformly distributed across households, i.e. Nt(s) = Nt for all

s ∈ [0, 1]. Below we make assumptions that guarantee that it is optimal for each households to

meet that labor demand at the prevailing wage.

As in the general framework of section 1, households who are unconstrained (i.e. for whom (7)

is not binding) will satisfy a standard consumption Euler equation. Formally

ZtCt(s)
−σ = β(1 + it)Et

{
Zt+1Ct+1(s)−σ(Pt/Pt+1)

}
for all s ∈ Ut where Ut ≡ {s|Bt(s) > −ψPtY }. On the other hand, the price of shares in the equity

fund is assumed to satisfy the difference equation

Qt = Et
{

Λ+
t,t+1[Qt+1 + (1− δ)Dt+1](Pt/Pt+1)

}
where Λ+

t,t+1 ≡ β(C+
t+1|t/C

+
t )−σ(Zt+1/Zt) is the stochastic discount factor used by the fund, with

C+
t and C+

t+1|t denoting consumption in period t and t+ 1 of households with positive net wealth

in period t, weighted by their share holdings (or, equivalently, by their wealth).

We need to specify how the illiquid component of profits is allocated among households. We

assume the following distribution rule:
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Tt(s) =

[
1 + τat

(
A+
t (s)

A+
t

− 1

)
+ τ et (exp{et(s)} − 1})

]
δDt (8)

where A+
t (s) ≡ max[0,At(s)] and A+

t ≡
∫ 1

0
A+
t (s)ds. Note that

∫ 1

0
T (s)ds = δDt. The previous

rule is governed by two parameters, τat ∈ [0, 1] and τ et ∈ [0, 1], which capture, respectively, the

weight attached to net financial wealth and labor income as a determinant of the share of illiquid

profits allocated to each household. Note that such a rule may capture both institutional and fiscal

mechanisms. We assume households take their allocated transfers as lump-sum.

Rule (8) embeds several special cases of interest found in the literature. A first case, which we

refer to as "wealth-based rule" (or W-rule, for short) corresponds to τat = 1 and τ et = 0, implying

that illiquid profits are distributed only to current shareholders, in proportion to their holdings.

This is similar to the case analyzed in Gornemann et al. (2017) and the one that we view as the

most realistic (among the three considered). At the other extreme we have by τat = 0 and τ et = 1

in which case illiquid profits are transferred to households in proportion to their productivity (or,

equivalently, their labor income). This corresponds to the case considered by Kaplan et al. (2018),

which they interpret as capturing profit sharing in the form of bonuses. Below we refer to this rule

as "productivity-based" or P-rule. Another special case of interest is the rule assumed in McKay

et al. (2016) which corresponds to τat = τ et = 0, which implies that illiquid profits are distributed

uniformly among households, independently of their wealth or productivity. Below we refer to this

transfer rule as "uniform" or U-rule.

Note that our baseline HANK model satisfies all the assumptions of the general framework in

section 1. Thus we can write an Euler equation for aggregate consumption as

ĉt = Et{ĉt+1} −
1

σ
(̂it − Et{πt+1})−

1

σ
Et{∆zt+1} − Et{∆ĥt+1} (9)

where ĥt = ĥγt + ĥθt + ĥλt summarizes the influence of the relevant heterogeneity factors, as discussed

in section 1.
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3.2 Supply Side

Our focus is on aggregate demand dynamics, so we keep the supply side of the model as simple as

possible. In particular we assume a wage schedule

Wt =MwCσ
t N

ϕ
t (10)

where Ct ≡
∫ 1

0
Ct(s)ds denotes average consumption and where Mw > 1 is a constant (gross)

average wage markup. Throughout we assume Wt ≥ Ct(s)
σNϕ

t for all s ∈ [0, 1] and all t, so that

all households will be willing to supply the work hours demanded by firms at wage Wt.

On the supply side, a continuum of firms, indexed by i ∈ [0, 1] is assumed. Each firm produces

a differentiated good with a linear production function

Yt(i) = AtNt(i) (11)

where At ≡ exp{at} is an exogenous technology parameter common to all firms. Each firm

sets the price of its good optimally each period, subject to a quadratic adjustment cost C (·) ≡
ξ
2
PtYt

(
Pt(i)
Pt−1(i)

− 1
)2

where ξ > 0 and a sequence of demand constraints Yt (i) = (Pt(i)/Pt)
−εYt,

where Yt denotes aggregate output. Profit maximization, combined with the symmetric equilibrium

conditions Pt (i) = Pt and Yt (i) = Yt for all i ∈ [0, 1], implies:

Πt (Πt − 1) = Et
{

Λt,t+1

(
Yt+1

Yt

)
Πt+1 (Πt+1 − 1)

}
+
ε

ξ

(
1

Mp
t

− 1

Mp

)
(12)

where Πt ≡ Pt/Pt−1 is the (gross) price inflation rate, and Mp
t ≡ At/Wt is the average gross

markup, with the latter’s optimal value in the absence of price adjustment costs given byMp ≡
εp
εp−1

. Aggregate profits are given by Dt = Yt∆
p(Πt)−WtNt where ∆p(Πt) ≡ 1− (ξ/2) (Πt − 1)2.

Log-linearization of (12) around the zero inflation steady state yields the inflation equation

πt = βEt{πt+1} − ωµ̂pt (13)
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where µ̂pt ≡ log(Mp
t/Mp) and ω ≡ εp/(ξMp). Combining (10) and (11) (after taking logs) we can

express the deviations of the (log) price markup from steady state can be written as:

µ̂pt = (1 + ϕ) at − (σ + ϕ) ŷt (14)

Note that by setting µ̂pt = 0 all t we can solve for the natural (i.e. flexible price) level of output,

ŷnt (expressed in log deviations from steady state). In the baseline model analyzed here, the latter

variable is as a function of technology only, given by

ŷnt =
1 + ϕ

σ + ϕ
at ≡ ψaat.

More generally, however, ŷnt may also depend on other exogenous shocks that may shift the

markup-output schedule (14), including labor supply shocks and shocks to the desired markup,

among others. Importantly, under our assumptions, heterogeneity factors do not have an impact

on the natural level of output, which is determined by the supply side. Accordingly, any effect of

heterogeneity on aggregate output will be result from its impact on aggregate demand combined

with the presence of nominal rigidities.

Independently of the number and nature of the shocks affecting ŷnt , the following relation will

generally hold:

µ̂pt = − (σ + ϕ) ỹt (15)

where ỹt ≡ yt − ynt is the output gap, i.e. the log deviation of output from its flexible price

counterpart. Substituting (15) into (13) we obtain a version of the New Keynesian Phillips curve:

πt = βEt{πt+1}+ κỹt (16)

where κ ≡ ω (σ + ϕ).

The fact that the supply side of our baseline HANK model is not affected by the presence of

heterogeneity allows us to focus the impact of the latter on aggregate demand (which coincides

with aggregate consumption in our simple model), in the spirit of Werning (2015).
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3.3 Monetary Policy

The central bank is assumed to follow a Taylor-type rule given by

ît = φππt + φyŷt + vt (17)

where vt is an exogenous monetary policy shock, which follows an AR(1) process. The previous

rule, often assumed in the New Keynesian literature, is meant to capture in a parsimonious way

the behavior of central banks’ in "normal" times.

3.4 Equilibrium

We complete the description of our model by listing several market clearing conditions that will

need to be satisfied in equilibrium. Goods market clearing requires

Yt(i) = Ct(i) +Xt(i)

for all i ∈ [0, 1], where Xt(i) = (Pt(i)/Pt)
−εp(ξ/2)Yt (Πt − 1)2 captures the demand for good i to

meet price adjustment costs. Noting that in equilibrium all firms set the same prices, thus implying

Yt(i) = Yt and Ct(i) = Ct for all i ∈ [0, 1], we can write

Ct = Yt∆
p(Πt) (18)

where ∆p
t (Πt) ≡ 1− (ξ/2) (Πt − 1)2. Furthermore, market clearing in the bonds and stock markets

implies that
∫ 1

0
Bt(s)ds = 0 and

∫ 1

0
Ft(s)ds = 1 for all t.

Aggregate employment is given by

Nt =

∫ 1

0

Nt(i)di (19)

= Yt/At

and is assumed to be distributed uniformly among household types, so that Nt(s) = Nt for all

s ∈ [0, 1] all t.
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Note that, up to a first-order approximation and in a neighborhood of the zero inflation steady

state (18) can be written as

ĉt = ŷt

Combining the previous condition with Euler equation (9) we obtain a version of the dynamic

IS equation for the HANK model:

ỹt = Et{ỹt+1} −
1

σ

(̂
it − Et{πt+1} − r̂nt

)
− Et{∆ĥt+1} (20)

where

r̂nt ≡ −Et{∆zt+1}+ σEt{∆ynt+1} (21)

= (1− ρz)zt − σ(1− ρa)ψaat

is the natural rate of interest in the associated RANK economy, which is independent of hetero-

geneity factors. Solving (20) forward we obtain:

ỹt = − 1

σ
r̃Lt + ĥt (22)

where r̃Lt ≡
∑∞

k=0 Et{̂it+k − πt+k − r̂nt+k}.

Knowledge of the response of ĥt to aggregate shocks would be sufficient to solve for the equi-

librium of the model above. Unfortunately, there is no simple relation between ĥt and aggregate

shocks, due to its dependence on the wealth distribution at each point in time. Keeping track of

the latter requires the use of nontrivial non-linear methods.6

3.5 Calibration and Solution Method

The baseline calibration of the model closely follows recent studies in the HANK literature, and

is summarized in Table 1. In particular, each period is assumed to be a quarter, and we set the

discount factor β such that the steady-state real risk-free rate is 3 percent per year.7

6See, e.g. Algan et al. (2014) for a recent survey and comparison of alternative solution methods.
7This implies values for β of 0.9745, 0.9743 and 0.9679, for the wealth-based, labor-based and uniform specifica-

tion, respectively.
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Regarding preferences, we set the coefficient of risk aversion σ = 1 (log-utility), the (inverse)

Frisch elasticity of substitution φ = 1, the elasticity of substitution among good varieties ε = 10,

which implies that profits are 10 percent of GDP. Also, we set the price adjustment cost parameter

ξ = 105 implying a slope of the Phillips curve κ = 0.17, which corresponds to the value that would

arise in a model with sticky prices à la Calvo with average price duration of four quarters.

Regarding the idiosyncratic productivity shock, and following McKay et al. (2016) and Auclert

(2016), we assume that et (s) follows an AR(1) with persistence parameter ρe = 0.9777 and stan-

dard deviation σe = 0.1928. This parameterization implies that at an annual frequency individual

wages display an autocorrelation of 0.92 and a standard deviation of 0.7, which are consistent with

the estimates of Floden and Lindé (2001) and the calibration of Kaplan et. al. (2018).

Furthermore, following the taxonomy of U.S. assets contained in Kaplan et. al. (2018, Table

2), the fraction of illiquid assets δ is assumed to equal to 0.92, which implies a value of liquid

net worth of 25 percent of annual GDP.8Finally, we set the borrowing limit ψ = 0.5, which

implies that between 21% and 27% of the households are borrowing constrained (depending on

the specification of the transfer rule), which is in the middle of the range of values used in the

literature. Section 5 considers alternative values of ψ and δ. Regarding the distribution of illiquid

profits, as discussed above, we consider three different transfer rules which are nested in our

framework, namely, "wealth-based" or W-rule (with τa = 1, τe = 0), the "productivity-based" or

P-rule (τa = 0, τe = 1), and the "uniform" or U-rule (τa = 0, τe = 0).

As to the interest rate rule coefficients, it is assumed that φπ = 1.5 and φy = 0.5/4.9 Finally, it

is assumed that each aggregate shock follows an AR(1) process, where the persistence parameters

are set to ρv = ρz = 0.5 for the monetary and preference shocks, and to ρa = 0.9 for the technology

shock. These are standard values in the New Keynesian literature.
8Total net worth, calculated as the present discount value of firm’s profits, equals 3.3 times annual GDP, which

is also consistent with the evidence reported in Kaplan et. al. (2018).
9These values were proposed by Taylor (1993) as providing a good approximation to U.S. monetary policy in

the Greenspan years.
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The numerical solution algorithm is based on the projection and perturbation method devel-

oped by Reiter (2010). In particular, the individual consumption choices and the implied wealth

distribution are approximated on a coarse grid for the two individual state variables, i.e. "cash-on-

hand" (the sum of income, transfers and liquid wealth) and the idiosyncratic shock.10 The steady

state is calculated with a fixed point iteration for the discount factor β and the value of A+
t , while

the dynamic responses to aggregate shocks are computed using a (linear) perturbation method

around the steady state.

4 Aggregate Fluctuations in HANK: The Role of Hetero-
geneity

In this section we report our findings regarding the role of heterogeneity in the HANK model

described above. In doing so, we take the Representative Agent New Keynesian (RANK) model

as a natural benchmark. Note that the RANK model may be viewed as a limiting case of our

baseline HANK model with et(s) = 0 for all s ∈ [0, 1] and t, together with the assumptions of

identical initial conditions (i.e. Bt−1(s) = 0, for all s ∈ [0, 1]) and absence of borrowing constraint

(7). Note that in that case ĥt = 0 for all s ∈ [0, 1], with (20) collapsing into the familiar dynamic

IS equation

ỹt = Et{ỹt+1} −
1

σ

(̂
it − Et{πt+1} − r̂nt

)
(23)

or, equivalently,

ỹt = − 1

σ
r̃Lt

Note that (23), together with the New Keynesian Phillips curve (16) and the interest rate rule

(17) fully describe the equilibrium dynamics of the RANK economy. In the analysis below all the

parameters defining the RANK model are calibrated as their counterparts in HANK.11

10The exogenous idiosyncratic shock is discretized on a grid of 11 points, while cash-on-hand is discretized using
80 points. The policy functions are approximated using a piecewise cubic spline.

11In the case of β, as in the HANK model, it is set to generate an annualized steady state real rate of 3%.
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Figure 1 displays a scatterplot of the output gap ỹt and the heterogeneity factor ĥt generated

by a simulation (of 10,000 periods) of our calibrated HANK model for each of the transfer rules

considered, under the assumption of an exogenous AR(1) process for the real interest rate r̂t

(or, equivalently, a monetary policy shock vt, under fully rigid prices). The previous assumption

guarantees that any differential behavior between HANK and RANK is not influenced by the

assumed monetary policy rule, and is instead only due to the heterogeneity factors, since r̃Lt =

(1− ρr)−1r̂t is the same in both models in that case.

For each rule we report (i) the standard deviation of the output gap ỹt relative to RANK,

(ii) the elasticity of ĥt with respect to ỹt, denoted by Φ, and which we obtain as the estimated

coefficient of an OLS regression of ĥt on ỹt, and (iii) the first-order autocorrelation of ỹt. The same

sequence of shocks is fed into the model across the three transfer rule specifications. Note that the

three graphs have an identical scale, for ease of comparison.

A number of observations, uncovered by Figure 1, are worth making. First, the size of fluc-

tuations in ỹt and ĥt, as well as the sign of the correlation between those two variables, depend

strongly on the transfer rule in place. In particular, we see that output gap fluctuations rela-

tive to RANK are amplified under the W-rule, whereas they are dampened under the U-rule,

with respective relative standard deviations being 1.84.and 0.77. In the case of the P-rule, ĥt is

largely acyclical, suggesting a very limited contribution of heterogeneity to aggregate fluctuations

(the relative standard deviation is 1.07). The extent of amplification or dampening of output gap

volatility is related to the elasticity Φ. Thus, when the elasticity is positive (negative) the response

of ĥt amplifies (dampens) the effects of real rate shocks on the output gap. This is consistent with

the analysis in Werning (2015), who emphasized the role of the cyclicality of heterogeneity for

amplification or dampening of demand shocks.

Secondly, the "thinness" of the scatterplots points to a limited role of the changing wealth

distribution as a state variable (in addition to r̂t). This is particularly true for the P- and U-rules.
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That feature is also reflected in an autocorrelation of the output gap which, ranging from 0.53

to 0.63 is only slightly higher than the autocorrelation of the driving force itself (0.5). Note that

gap between the two can be viewed as a measure of the importance of endogenous persistence

mechanisms associated with heterogeneity.12

In Figure 2 we try to dig into the factors underlying the HANK-generated variations in ĥt,

by plotting also its three components against the output gap. Note that the gap component, ĥγt ,

appears to display the closest connection with the overall heterogeneity index ĥt, and to account for

much of the latter’s elasticity with respect to the output gap. On the other hand, and especially for

the W- and P-rules, the dispersion and share components, ĥθt and ĥλt , display much larger volatility

than ĥt, but are far less tightly connected to the output gap. This is not so much the case for

the U-rule. Most importantly, in all cases, ĥθt and ĥλt show a nearly-perfect negative correlation,

largely offsetting each other (as they lie close to the −45 line), as shown in the bottom panel of

the Figure. That feature largely neutralizes their combined effect on the output gap.

Figure 3 displays the same information as Figures 1 and 2, but conditional on each of the

three shocks introduced in the model: monetary, preference and technology. With few exceptions,

the observations made above under the assumption of an exogenous real rate shock carry over to

these additional shocks. In particular, the gap component, ĥγt , tracks reasonably well the overall

heterogeneity index ĥt, while the dispersion and share components, ĥθt and ĥλt , though they display

substantial variation, are highly negatively correlated and tend to neutralize each other.

4.1 Discussion

The cyclical properties of the heterogeneity index, ĥt, which in turn determine the extent of

amplification or attenuation of shocks relative to RANK, have been seen to depend critically on

the nature of the transfer rule considered. It is possible to explain, at least qualitatively, the cyclical
12In the RANK model, which has no endogenous state variables, the autocorrelation of the output gap is the

same as that of the driving forces.
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behavior of ĥt through the lens of the gap component, ĥγt . Thus, in the case of the W-rule, where

all profits are allocated to unconstrained agents, the reduction in the markup (and profit share)

brought about by an increase in the output gap implies a reallocation resources from unconstrained

to constrained households. That leads to a decrease in the consumption gap between the two types

(as measured by γt) with consequent increase in the gap component, ĥγt , and an amplification of

the effects of the shock. By contrast, in the case of a U-rule, the reduction in the profit share affects

all households uniformly, which in turn implies a larger relative impact for households with lower

labor income, a larger fraction of whom are constrained. As a result, the gap measure increases,

bringing down the gap component ĥγt and attenuating the impact of the shock. Finally, in the case

of the P-rule, (illiquid) profits are distributed in proportion to labor income, and hence affect all

households’ income in nearly the same proportion.13

What is the source of the systematic negative correlation between the dispersion and the share

components, ĥθt and ĥλt ? Consider, for sake of concreteness, an expansionary aggregate shock that

raises overall wealth and consumption. In response to that shock we would expect a decrease in λt,

the share of constrained households and, as a result, a procyclical response of the share component

ĥλt , as observed in Figure 3. In that environment, more households with relatively low idiosyncratic

shocks join the set of unconstrained households, increasing the consumption dispersion within that

set in a persistent fashion. That raises the anticipated values of θ̂t+k, for k = 1, 2, .. lowering

the dispersion component ĥθt , which has a dampening effect on output. Accordingly a negative

relation between ĥλt and ĥθt arises, which leads to a partial neutralization of their joint impact on

fluctuations.

The findings of the present section suggest that much of the observed cyclicality of ĥt is inher-
13Note that only a fraction 1 − δ of profits is distributed in proportion to wealth and, hence, accrues dispro-

portionately to unconstrained households. That should generate a negative elasticity of the gap component with
respect to the output gap. On the other hand tthere are factors other than the markup and the profit share that
influence the gap component in response to changes in real interest rates (such as the Fisher effect and the interest
rate exposure effect, as discussed in Auclert (2017))
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ited from the cyclical properties of the gap component, ĥγt . In other words, much of the role of

heterogeneity in shaping aggregate fluctuations has to do with the reallocation of resources between

constrained and unconstrained households in the wake of aggregate shocks. Interestingly, that is

the dimension of heterogeneity that Two-agent New Keynesian models (TANK) may potentially

capture. This motivates the next section, which lays out a version of a TANK model and compares

its properties to the HANK model analyzed above.

5 HANK vs TANK

The purpose of this section is to compare the predictions of the baseline HANK model analyzed in

the previous section with those of a Two-Agent New Keynesian (TANK) model, which we describe

briefly next. Again, the supply side of TANK is assumed to be identical to that of our baseline

HANK model, so we restrict our description below to the determinants of aggregate consumption.

5.1 The TANK model

Next we describe a version of a Two-Agent New Keynesian (TANK) model. A key advantage of

TANK models, relative to their richer HANK counterparts, is that one can generally derive an

analytical expression for the heterogeneity index ĥt and solve for the equilibrium in closed form.

Such a characterization will then be used to understand the role of (a particular dimension of)

heterogeneity for aggregate fluctuations.

The only source of heterogeneity in the class of TANK models considered here is the assumption

that a time-invariant subset of households do not participate in financial markets and just consume

their current income, in a hand-to-mouth fashion. Such TANK models have a long tradition in

macroeconomics, and have been used to account for a number of empirical observations which

are at odds with the predictions of the representative agent model.14 Our version of the TANK
14Campbell and Mankiw (1989) introduced the two-agent framework to account for empirical deviations from
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model is close to that in Bilbiie (2008), the main difference lying in our distinction between liquid

and illiquid components of firms’ profits, and the introduction of an explicit transfer rule, both of

which facilitate comparability with our HANK model.

We assume a continuum of households represented by the unit interval, with preferences as in

the HANK model above. There are two types of households. A fraction 1 − λ of households are

assumed to have unconstrained access to financial markets. We refer to them as "unconstrained"

households, and are assumed to constitute a time-invariant subset of all households. In particular,

unconstrained households can trade two types of assets: one-period nominally riskless bonds and

shares in an equity fund that owns claims to a fraction 1− δ of aggregate profits Dt. Their period

budget constraint is given by

1

Pt

∫ 1

0

Pt(i)C
U
t (i)di+

BU
t

Pt
+QtF

U
t =

BU
t−1(1 + it−1)

Pt
+WtN

U
t + [Qt + (1− δ)Dt]F

U
t−1 + TUt (24)

where the notation is analogous to that in the HANK model of the previous section, with the

superscript U referring to variables specific to unconstrained households.

The remaining fraction λ of households are assumed to consume their current labor income plus

transfers each period, possibly (but not necessarily) because they do not have access to financial

markets. We refer to those households as "constrained" or "Keynesian" and use a superscript K

to denote variables specific to their type. Formally their period budget constraint is given by

1

Pt

∫ 1

0

Pt(i)C
K
t (i)di = WtN

K
t + TKt (25)

Importantly, and in contrast with the HANK model above, households in the TANK model

do not face any form of idiosyncratic uncertainty. We assume that they take the wage as given

the permanent-income hypothesis. Galí et al. (2005, 2007) embedded that framework into a New Keynesian model
in order to re-examine the conditions for equilibrium uniqueness, and to account for the effects of government
purchases on consumption. Bilbiie (2008) analyzed the properties of a version of TANK closer to the one considered
here (i.e. without physical capital).
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and are willing to supply as much labor as demanded by firms. Labor demand is assumed to be

distributed uniformly among all households, thus implying NU
t = NK

t = Nt.

The intertemporal optimality condition for unconstrained households takes the form

Zt(C
U
t )−σ = β(1 + it)Et

{
Zt+1(CU

t+1)−σ(Pt/Pt+1)
}

while the price of shares in the equity fund must satisfy:

Qt = Et
{

ΛU
t,t+1(Qt+1 + (1− δ)Dt+1)

}
(26)

where ΛU
t,t+1 ≡ β(Zt+1/Zt)

(
CU
t+1/C

U
t

)−σ is the relevant stochastic discount factor, since only un-

constrained households own shares in the fund.

The following distribution/transfer rule determines how the illiquid component of profits, δDt,

is allocated:

TUt =

(
1 +

τλ

1− λ

)
δDt

TKt = (1− τ)δDt

Note that (1 − λ)TU + λTKt = δDt. Thus, when τ = 1 all profits, associated with both the

liquid and illiquid components of equity, end up in the hands of unconstrained households, a case

which should be viewed as corresponding to the "wealth-based" rule in the HANK model above.

On the other hand, the case of τ = 0 is associated with a uniform distribution of illiquid profits

across all households, and can be associated naturally to the "uniform" distribution case considered

in the HANK model, as well as the "productivity-based," given that there are no differences in

productivity across households in the TANK model.
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In the TANK model, the index of the consumption gap between unconstrained and constrained

households, γt ≡ 1− CKt
CUt

, is given by,

γt = 1− WtNt + TKt
WtNt + 1−δ

1−λDt + TUt

=
(1− δ(1− τ))Dt

(1− λ)WtNt + (1− δ(1− τ)λ)Dt

=
(∆p(Πt)Mp

t − 1)(1− δ(1− τ))

1− λ+ (∆p(Πt)Mp
t − 1)(1− δ(1− τ)λ)

Note that as long as δ(1 − τ) < 1 the gap variable γt is increasing in the price markup

Mp
t , reflecting the fact that a disproportionate amount of profits is allocated to unconstrained

households.

Log-linearizing the above relation around a zero inflation steady state we obtain:

γ̂t = Ψµ̂pt

= − (σ + ϕ) Ψỹt

where Ψ ≡ (1−λ)(1−δ(1−τ))
[1−λ+(Mp−1)(1−δ(1−τ)λ)]2

. Using the fact that Ct = CU
t (1− λγt) and taking a first order

approximation we can write:

ĉt = ĉUt −
λ

1− λγ
γ̂t

= ĉUt + Φỹt

where Φ ≡ λ(σ+ϕ)Ψ
1−λγ is assumed to be less than one.15

The previous relation can be combined with the log-linearized Euler equation for unconstrained

households, given by

ĉUt = Et{ĉUt+1} −
1

σ

(̂
it − Et{πt+1}

)
− 1

σ
Et{∆zt+1}

15The Φ > 1 is analyzed in Bilbiie (2008), who refers to it as "inverted aggregate demand logic".
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to obtain an Euler equation for aggregate consumption of the form:

ĉt = Et{ĉt+1} −
1

σ

(̂
it − Et{πt+1}

)
− 1

σ
Et{∆zt+1} − Et{∆ĥt+1}

where

ĥt = − λ

1− λγ
γ̂t

= Φỹt

Note that in the present model ĥt = ĥγt , i.e. the impact of heterogeneity on the Euler equa-

tion for aggregate consumption is now restricted to the presence of a gap component, which is

proportional to the output gap.

Combining the previous relations with the goods market clearing condition ĉt = ŷt one can

derive a "modified" dynamic IS equation:

ỹt = Et{ỹt+1} −
1

σ(1− Φ)

(̂
it − Et{πt+1} − rnt

)
(27)

where rnt is given by (21). Together with (16) and (17), equation (27) describes the equilibrium

dynamics of the TANK model. Note that such equilibrium dynamics are isomorphic to those of

a RANK model with the inverse elasticity of intertemporal substitution modified to be σ(1 − Φ)

instead of σ. Accordingly, under the (plausible) assumption that δ(1−τ) < 1 (implying 0 < Φ < 1),

the presence of constrained households (λ > 0) in the TANK model tends to make the output gap

more responsive to changes in real interest rates, as well as to shocks affecting the natural rate of

interest (for any given real rate). The reason for this is that an increase in the output gap leads to

a shift of resources towards constrained households, as a consequence of the resulting increase in

the labor income share and the fact that labor income accounts for a larger fraction of constrained

households’ income. Their higher marginal propensity to consume leads to an amplification of the

effects on the output gap.16

16See Bilbiie (2018) for a detailed discussion of that multiplier mechanism, as well as the decomposition between

28



5.2 HANK vs TANK: Main Findings

Next we report the main findings from the comparison of the properties of our TANK and HANK

models. For the sake of concreteness we restrict our analysis to the W-rule, since it is the one

for which the role of heterogeneity in the HANK model has been shown to be more important

quantitatively (and, arguably, the most realistic one as well). We calibrate the TANK model as

follows. Parameters that are common across the two models, including the coefficients of the New

Keynesian Phillips curve (16) and the interest rate rule (17), the autoregressive coefficients of the

exogenous driving forces, as well as σ are equated to their counterparts in HANK. As in our RANK

model, β is set to imply a 3 percent (annualized) interest rate in the steady state. Parameter λ

is set equal to the fraction of constrained households in the steady state of the HANK model.

Parameter τ is set to 1, in a way consistent with the W-rule.

The left panel of Figure 4 displays a scatterplot of the output gap ỹt and the heterogeneity

factor ĥt generated by a simulation of both HANK and TANK models, under the assumption of an

exogenous AR(1) process for the real interest rate r̂t, and over 10,000 periods. As the Figure makes

clear the TANK model is quite successful in replicating the cyclical patterns generated by HANK.

The right panel of Figure 4 displays the corresponding simulated times series for output generated

by HANK, TANK and RANK equilibria, for an arbitrary subsample of 100 periods. Note that the

TANK model tracks very closely the output fluctuations generated by HANK, though significant

differences with respect to RANK are observable.

Figure 5 shows identical information for our three alternative sources of fluctuations (monetary

policy, preference and technology shocks). Independently of the nature of the shock, the output

generated by the TANK model tracks very well its HANK counterpart.17 As shown in the first

column of Table 2 the standard deviations of output (relative to RANK) for both HANK and

direct and indirect effects of monetary policy, in TANK models.
17See the Appendix for the impulse responses of selected variables to the different shocks.
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TANK are very similar, and the correlation between the time series for output generated by the

two models is close to one. This finding remains true under the alternative transfer rules (P- and

U-rules), as reported in the second and third columns of the same Table. The larger differences

arise in the case of demand shocks (both monetary policy and preferences) under the U-rule, for

which the standard deviation of output implied by TANK is about 15 percent larger than its

HANK counterpart, while the correlation between the HANK and TANK model is close to one in

all cases.

As a final exercise, we examine the ability of the TANK and RANK models to capture the

predictions of HANK with regard to some changes in the environment. Figure 6 shows the cumu-

lative responses over 16 quarters of output to monetary, preference and technology shocks under

alternative settings for the interest rate rule coefficients φπ and φy (again, under a W-rule). We

see that the TANK model, and to a lesser extent the RANK model, generate similar predictions

about the effects of changes in the monetary policy rule. In particular, as the strength of the

anti-inflation stance of the central bank (as measured by φπ) is increased, the smaller (larger) is

the impact of demand (technology) shocks on output. On the other hand, increases in the output

coefficient φy are predicted to have a stabilizing influence on output by the three models, and

independently of the source of fluctuations.

Figure 7 displays analogous evidence, but focusing now on the effects of changes in the bor-

rowing constraint limit, ψ, the fraction of illiquid profits, δ, and the transfer rule parameter, τa.

Under HANK, an increase in the borrowing limit has a small effect on the cumulative responses of

output to the three shocks, despite the implied changes in the fraction of constrained households

(which ranges from 0.15 in the case of ψ = 1 to 0.28 when ψ = 0). The effects are similarly

small, though slightly more pronounced under TANK. In the case of changes in the fraction of

illiquid profits the TANK model is shown to capture pretty well the predictions of HANK. Note in

particular that as the fraction of illiquid profits becomes small, the possibilities for self-insurance
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in HANK increase, lowering the fraction of constrained households in the steady state, and making

its predictions closer to the RANK model. A similar phenomenon occurs in the TANK model,

as parameter λ is adjusted accordingly. Finally, both in HANK and TANK an increase in τa,

which implies that a larger fraction of profits is distributed to wealth-rich households, is shown to

amplify (dampen) the effects of demand (technology) shocks. This suggests that, in both models,

the amplification/dampening of aggregate shocks depends critically on the cyclical properties of

markups (or equivalently the labor share), and on the fraction of illiquid profits distributed to

households with high marginal propensity to consume.

6 Conclusions

We have identified three dimensions of heterogeneity dynamics that explain the differential behavior

of a HANK economy relative to its RANK counterpart: (i) changes in average consumption gap

between constrained and unconstrained households, (ii) changes in consumption dispersion within

the subset of unconstrained households, and (iii) changes in the share of constrained households.

Using a baseline HANK model we characterize the behavior of the three heterogeneity components.

Among other results, we show that the cyclical properties of those components and, as a result, the

extent to which heterogeneity amplifies or dampens aggregate fluctuations, depends substantially

on how illiquid profits are assumed to be distributed among households. While our analysis has

been restricted to an artificial HANK economy, we believe that shedding light on the empirical

properties of the different heterogeneity components should be useful for the development of future

HANK models.

We also show that a tractable two-agent (TANK) model, which only captures one dimension

of heterogeneity (the one which we refer to as the gap component), approximates reasonably well

the predictions of a baseline HANK model regarding the effects of aggregate shocks on aggregate

variables, as well as its predictions regarding the consequences of changes in the environment, once
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the fraction of constrained (and the transfer rule) are calibrated accordingly. The previous findings

notwithstanding, it should be clear that a simple TANK model will never be able to address many

other questions involving heterogeneity (such as the effects of monetary policy on income and

wealth distribution and, possibly, welfare) for which a richer HANK model is needed.

The TANK model used above can be extended along several dimensions while preserving its

relative tractability. Thus, one can introduce some form of idiosyncratic risk without departing

from the two-agent structure. One possibility is to consider that in each period a fraction of

Ricardian agent might become Keynesian, and viceversa, as e.g. in Nisticó (2016) and Bilbiie

(2017). That extension of the model could be useful to address the so-called “forward-guidance"

puzzle inherent in representative agent models, and that are also present in the current version of

our TANK model. Second, the comparison between TANK and HANK models could be extended

to alternative frameworks—e.g. models with capital, government debt and other assets (liquid

and illiquid)—to understand to what extent TANK models might be able to capture some of the

defining features of richer HANK models.
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Table 1: Parameter Values
Parameter Description Target/Source

Preferences and technology
σ = 1 Risk aversion standard
ϕ = 1 Frisch elasticity of labor supply standard

β =


0.9745 W − rule
0.9743 P − rule
0.9679 U − rule

Discount factor avg. real interest rate r̄ = 3%

ε = 10 Elasticity of substitution among goods profits share of 10%
ξ = 105.63 Price adjustment cost avg. price duration of 1 year (Calvo)

Asset markets
δ = 0.92 Fraction of illiquid assets / Total Assets Kaplan et. al. (2018)
ψ = 0.5 Borrowing limit Share of constr. households ~21%

Exogenous Processes
ρe = 0.9777 Persistence of idiosyn. shock persist. annual wage = 0.92
σe = 0.1928 Std. if innovation of idiosyn. shock std. of annual wage = 0.7
ρz = ρv = 0.5 Persist. of pref. and mon. pol. shocks standard
ρa = 0.9 Persist. of technology shock standard

Monetary Policy
φπ = 1.5, φy = 0.5/4 Interest rate rule coefficients Taylor (1993)

Transfer rule of illiquid profits
(i) τa = 0, τe = 1 labor-based Kaplan et. al. (2018)
(ii) τa = 1, τe = 0 wealth-based Gornemann et. al. (2016)
(iii)τa = 0, τe = 0 uniform McKay et. al. (2016)
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Table 2: Patterns of Fluctuations: HANK vs TANK
W-rule P-rule U-rule

Monetary Policy
σHy /σ

R
y 1.17 1.04 0.88

σTy /σ
R
y 1.31 1.02 1.03

ρ(yTt , y
H
t ) 0.99 0.99 0.99

Preference
σHy /σ

R
y 1.17 1.03 0.88

σTy /σ
R
y 1.31 1.02 1.03

ρ(yTt , y
H
t ) 0.99 0.99 0.99

Technology
σHy /σ

R
y 0.99 0.99 1.00

σTy /σ
R
y 0.99 1.00 1.00

ρ(yTt , y
H
t ) 0.99 0.99 0.99

Note: The table contains summary statistics corresponding to simulations of 10,000 periods of the
RANK, TANK and HANK model, in response to monetary policy, preference and technology shocks,
under the three transfer rule considered (W-, P- and U-rule, in columns).
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Figure 1: Output-gap and Heterogeneity Factor in HANK - Real Rate Shocks
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Note: The figure shows scatterplots of the output gap (horizontal axis) and the heterogeneity factor ĥ (vertical
axis) for the HANK models under the W-rule (first column), the P-rule (second column) and the U-rule (third
column), generated from a random simulation (of 10,000 periods) of the model in response to real rate shocks.
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Figure 2: Output-gap and Heterogeneity Components in HANK- Real Rate Shocks

Note: The first row shows scatterplots of the output gap (horizontal axis) and the heterogeneity components
(vertical axis) for the HANK models under the W-rule (first column), the P-rule (second column) and the U-rule
(third column), generated from a random simulation (of 10,000 periods) of the model in response to real rate shocks.
The second row shows the associated scatterplots for the share component ĥλ (horizontal axis) and the dispersions
component ĥθ (vertical axis).
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Figure 3: Output-gap and Heterogeneity Components in HANK - Demand and Supply Shocks

Note: The figure shows scatterplots of the output gap (horizontal axis) and the heterogeneity factor ĥ (vertical
axis) for the HANK models under the W-rule (first column), the P-rule (second columns) and the U-rule (third
column), generated from random simulations (of 10,000 periods) of the model in response to monetary policy (first
row), preference (second row) and technology (third row) shocks.
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Figure 4: HANK vs TANK - Real Rate Shock
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Note: The left panel shows a scatterplot of the output gap (horizontal axis) and the heterogeneity factor ĥ (vertical
axis) for the HANK, TANK and RANK models under the W-rule, generated from a random simulation (of 10,000
periods) of the models in response to real rate shocks. The right panel shows the corresponding path of output for
a subsample of 100 periods.
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Figure 5: HANK vs TANK - Demand and Supply Shocks
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Note: The first column shows scatterplots of the output gap (horizontal axis) and the heterogeneity factor ĥ
(vertical axis) for the HANK, TANK and RANK models generated from random simulations (of 10,000 periods) of
the model in response to monetary policy (first row), preference (second row) and technology (third row) shocks.
The second columns shows, for each shock, the corresponding path of output for a subsample of 100 periods.
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Figure 6: Changes in Environment - Monetary Policy Rule
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Note: The figure compares the cumulative response of output over 16 quarters under alternative values for the
interest rule parameters φπ(first row) and φy (second row), for the RANK, TANK and HANK models under the
W-rule, conditional on monetary policy (first column), preference (second column) and technology (third column)
shocks.
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Figure 7: Changes in Environment - Fraction of Illiquid Assets, Borrowing Limit and Transfer
Rule
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Note: The figure compares the cumulative response of output over 16 quarters under alternative values for the
fraction of illiquid assets δ (first row), the borrowing limit ψ (second row) and the transfer policy τa (third row), for
the RANK, TANK and HANK model, conditional on monetary policy (first column), preference (second column)
and technology (third column) shocks.
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Appendix

A. An Organizing Framework: Derivations
A second-order approximation

∫
s∈Ut(Ct+1(s)/CU

t+1|t)
−σds around a symmetric allocation where

Ct+1(s) = CU
t+1|t for all s ∈ Ut is given by

∫
s∈Ut

(Ct+1(s)/CUt+1|t)
−σds '

∫
s∈Ut

1− σ
(
Ct+1(s)

CU
t+1|t

− 1

)
+
σ (1 + σ)

2

(
Ct+1(s)

CU
t+1|t

− 1

)2
 ds

= (1− λt)

1 +
σ (1 + σ)

2

1

1− λt

∫
s∈Θt

(
Ct+1(s)

CU
t+1|t

− 1

)2

ds


' (1− λt)

[
1 +

σ (1 + σ)

2
vars|t{ct+1(s)}

]
.

where vars|t{ct+1(s)} ≡ 1
1−λt

∫
s∈Ut

(
ct(s)− cUt

)2
ds and where in the last step we have use the fact

that up to a second order approximation
(
Ct+1(s)

CU
t+1|t

− 1

)2

'
(
ct(s)− cUt+1|t

)2

'
(
ct(s)− cUt

)2 where

cUt ≡ 1
1−λt

∫
s∈Ut ct(s)ds.

Similarly, we can show that up to a second order approximation,∫
s∈Ut

(Ct(s)/C
U
t )−σds ' (1− λt)

[
1 +

σ (1 + σ)

2
vars|t{ct(s)}

]
Hence, ∫

s∈Ut(Ct+1(s)/CU
t+1|t)

−σds∫
s∈Ut(Ct(s)/C

U
|t )−σds

=
2 + σ (1 + σ) vars|t{ct+1(s)}
2 + σ (1 + σ) vars|t{ct(s)}
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B. Impulse Responses to Aggregate Shocks

Figure B.1: Impulse Responses to a Real Rate Shock (W-rule)
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Note: The figure compares the cumulative response of output over 16 quarters under alternative values for the
fraction of illiquid assets δ (first row), the borrowing limit ψ (second row) and the transfer policy (τe), for the
RANK, TANK and HANK model, conditional on monetary policy (first column), preference (second column) and
technology (third column) shocks.
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Figure B.2: Impulse Responses to a Monetary Shock (W-rule)

0 5 10 15

time

0

0.2

0.4

Output

0 5 10 15

time

-1

0

1

Real Interest Rate

0 5 10 15

time

0

0.1

0.2

0.3

Heter. factor (h)

0 5 10 15

time

0

0.1

0.2

0.3

Gap comp. (h )

0 5 10 15

time

0

0.1

0.2

0.3

Share comp. (h )

0 5 10 15

time

-0.3

-0.2

-0.1

0

Dispersion comp. (h )

0 5 10 15

time

0

0.5

Inflation

RANK TANK HANK

0 5 10 15

time

-0.4

-0.2

0
Monetary Policy Shock        

Note: The figure compares the cumulative response of output over 16 quarters under alternative values for the
fraction of illiquid assets δ (first row), the borrowing limit ψ (second row) and the transfer policy (τe), for the
RANK, TANK and HANK model, conditional on monetary policy (first column), preference (second column) and
technology (third column) shocks.

47



Figure B.3: Impulse Responses to a Preference Shock (W-rule)
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Note: The figure compares the cumulative response of output over 16 quarters under alternative values for the
fraction of illiquid assets δ (first row), the borrowing limit ψ (second row) and the transfer policy (τe), for the
RANK, TANK and HANK model, conditional on monetary policy (first column), preference (second column) and
technology (third column) shocks.
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Figure B.4: Impulse Responses to a Technology Shock (W-rule)
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Note: The figure compares the cumulative response of output over 16 quarters under alternative values for the
fraction of illiquid assets δ (first row), the borrowing limit ψ (second row) and the transfer policy (τe), for the
RANK, TANK and HANK model, conditional on monetary policy (first column), preference (second column) and
technology (third column) shocks.

49


