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SORTING AND DECENTRALIZED PRICE COMPETITION 

By Jan Eeckhout and Philipp Kircher1 
We investigate the role of search frictions in markets with price competition and 

how it leads to sorting of heterogeneous agents. There are two aspects of value cre- 
ation: the match value when two agents actually trade and the probability of trading 
governed by the search technology. We show that positive assortative matching obtains 
when complementarities in the former outweigh complementarities in the latter. This 
happens if and only if the match-value function is root-supermodular, that is, its nth root 
is supermodular, where n reflects the elasticity of substitution of the search technology. 
This condition is weaker than the condition required for positive assortative matching 
in markets with random search. 

Keywords: Competitive search equilibrium, directed search, two-sided matching, 
decentralized price competition, complementarity, root-supermodularity, sorting. 

1. INTRODUCTION 

We address the role of search frictions in the classic assignment prob- 
lem when there is price competition. We are interested in a simple condition 
for positive assortative matching (PAM) that exposes the different forces that 
induce high types to trade with other high types. In the neoclassical benchmark 
(Becker (1973), Rosen (1974)), there is full information about prices and types, 
and markets clear perfectly. Supermodularity of the match value then induces 
PAM. At the other extreme, Shimer and Smith (2000) assumed that there are 
random search frictions, and agents cannot observe prices and types until after 
they meet. They derived a set of conditions that ensure PAM and that jointly 
imply that the match value is log-supermodular. In this paper, we consider a 
world with search frictions, yet there is information about prices and types. This 
circumvents the feature of the random search model that agents necessarily 
meet many trading partners that they would rather have avoided. Heteroge- 
neous sellers compete in prices for buyers, and we find that sorting is driven by 
a simple efficiency trade-off between the gains from better match values and 
the losses due to no trade. The former are captured by complementarities in 
the match value, which have to offset complementarities in the search tech- 
nology as measured by the elasticity of substitution. This economic trade-off 
establishes that PAM occurs for all type distributions if and only if the match 
value is root-supermodular, that is, its nth root is supermodular where n de- 
pends on the elasticity of substitution of the search technology. This condition 
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is weaker than log-supermodularity and has a transparent economic interpre- 
tation. 

The key ingredients of our model are diversity, market frictions, and price 
competition. Diversity is the hallmark of economic exchange. People have dif- 
ferent preferences over goods and are endowed with diverse talents. Such di- 
verse tastes and endowments lead to different market prices that are driven 
by the supply and demand of each variety. Spatially differentiated goods like 
houses, for example, are priced depending on the characteristics of the occu- 
pants, location, and the dwelling itself. Assets in the stock market are differ- 
entiated depending on many characteristics, most notably mean and variance. 
In labor markets, salaries vary substantially depending on the experience and 
skill of the worker and on the productivity and safety of the job. While cen- 
tralized price setting (see Rosen (2002), for an overview) adequately captures 
environments such as the stock market, in many other environments trading is 
decentralized and frictions are nonnegligible. In the labor market, for exam- 
ple, unemployment is a natural feature; in the housing market, several months 
delay in finding a buyer is usual. 

To captures these features, we consider a decentralized market framework 
with search frictions, yet with price competition. This framework is known as 
directed search or competitive search. Sellers have one unit for sale and buy- 
ers want to buy one unit. Think of "locations" or "submarkets" indexed by 
the quality of the product and the trading price. Sellers of a particular qual- 
ity choose the location with the price they want to obtain. Buyers observe the 
sellers at the various locations and decide at which location they would like to 
trade, that is, which quality-price combination to seek. At each location there 
remain search frictions that prevent perfect trade: When the ratio of buyers to 
sellers at a location is high, then the probability of trade is high for the sellers 
and low for the buyers. Observe that the location metaphor is used for simplic- 
ity but is not crucial (e.g., in Peters (1991, 1997a) buyers choose an individual 
seller with the desired quality-price announcement, but sometimes multiple 
buyers choose the same seller and not all can trade). Prices guide the trading 
decisions just like in the Walrasian model of Becker (1973) and Rosen (1974), 
only now the possibility that a person cannot trade remains an equilibrium fea- 
ture that is taken into account in the price setting. One novelty of our setting 
relative to the earlier directed search literature is that it is designed to handle 
rich (continuous) type distributions on both sides of the market. 

We identify the economic forces that drive the sorting pattern, and provide a 
necessary and sufficient condition on the strength of supermodularity that en- 
sures positive assortative matching. The key economic insight is that the cre- 
ation of value can be decomposed into two sources: the complementarity in 
the match value upon trading and the complementarity in the search technol- 
ogy. In the Walrasian framework, only the first source is present. When both 
are present, they trade off against each other: the first leads toward positive 
assortative matching; the second leads toward negative assortative matching. 
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If the former outweighs the latter, positive assortative matching obtains. We 
can summarize the necessary and sufficient condition required for PAM by 
root-supermodularity of the match-value function, that is, the nth root of the 
match-value function is supermodular. The magnitude of n is determined by 
the upper bound of the elasticity of substitution of the search technology. Sim- 
ilarly, match values that are nowhere n-root-supermodular lead to negative 
assortative matching (NAM), where n now denotes the lower bound of the 
elasticity of substitution in the search technology. 

The economic intuition of this trade-off between frictions and complemen- 
tarities in match values is transparent in terms of the fundamentals of the econ- 
omy. In the absence of any complementarities, sorting is not important for the 
creation of match value. The key aspect is "trading security," that is, to ensure 
trade and avoid frictions. High-type buyers would like to trade where few other 
buyers attempt to trade. This allows them to secure trade with high probabil- 
ity and they are willing to pay for this. While sellers know that they might be 
idle if they attract few buyers on average, some are willing to do this at a high 
enough price. The low-type sellers are those who find it optimal to provide this 
trading security, as their opportunity cost of not trading is lowest. This results 
in negative assortative matching: high-type buyers match with low-type sellers. 
In the directed search literature, Shi (2001) was the first to highlight for a spe- 
cific search technology that supermodularity is not enough to ensure positive 
assortative matching. Here, we address in a general context the extent of the 
complementarities required for positive assortative matching and we isolate 
the economic forces that govern such sorting.2 

How much supermodularity is needed - how fast marginal output changes 
across different matched types - depends on how fast the probability of match- 
ing changes when moving across different types with different buyer-to-seller 
ratios. The change in the matching probability is captured by the elasticity of 
substitution of the search technology. The elasticity of substitution measures 
how many more matches are created as the ratio of buyers to sellers increases. 
If it is high, then matching rates are very sensitive to the buyer-seller ratio and 
submarkets with lots of low-type sellers make it easy for the high-type buyers to 
trade, while submarkets with lots of low-type buyers make it easy for the high 
seller types to trade. The "trading-security" motive is important since the gains 
from negative sorting are large, and positive sorting only arises if the match 
value improves substantially when high types trade with high types rather than 
low types. If the elasticity of substitution in the search technology is low, then 
it is difficult to generate additional matches for the high types and even moder- 
ate strength of the match value motive will offset the tendency to seek trading 
security. 

The exact level of supermodularity required for positive sorting can be ex- 
pressed by requiring a concave transformation of the match value to be su- 

2We relate our findings to Shi's (2001) insight in greater detail in Section 6. 

This content downloaded from 130.91.174.5 on Thu, 25 Jul 2013 13:55:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


542 J. EECKHOUT AND P. KIRCHER 

permodular. In particular, it can be summarized by the (relative) Arrow-Pratt 
measure of the transform, which has to be as large as the elasticity of substi- 
tution of the search technology. The latter is in the unit interval, so the as- 
sociated transform is the nth root, where n depends on the exact magnitude 
of the elasticity of substitution. The root-supermodularity condition therefore 
neatly summarizes the trade-off between complementarity in match value and 
the elasticity of substitution of the search technology. 

For PAM our condition is weaker than log-supermodularity required in ran- 
dom search models such as Shimer and Smith (2000)3 and Smith (2006). The 
key difference is that our framework allows agents to seek the quality and 
price they desire. This leads to a rather simple and straightforward condi- 
tion for sorting. It requires a lower degree of complementarity in the match 
value to overcome the search frictions. Only when the search technology ap- 
proaches perfect substitutability is log-supermodularity needed. Our condition 
for positive assortative matching therefore falls in between those for friction- 
less trade of Becker and random search. Yet, when it comes to negative assor- 
tative matching, our results differ substantially. Match values that are nowhere 
fl-root-supermodular induce negative sorting. In particular, this is the case 
for any weakly submodular match-value function. If the matching technology 
never approaches perfect complementarity (this excludes the urn-ball search 
technology), then there are strictly supermodular match-value functions such 
that negative sorting arises for any distribution of types. To our knowledge, 
this is new in the literature on sorting with or without frictions. In compari- 
son, negative assortative matching obtains only under stronger conditions both 
in the frictionless case (strict submodularity) and with random search (log- 
submodularity). 

Our requirement of root-supermodularity is necessary and sufficient to en- 
sure positive assortative matching if we allow for any distribution of types. It is 
binding when the buyer-seller ratio in some market induces the highest possi- 
ble elasticity of substitution of the search technology. For some distributions, 
this is not a binding restriction, and in this case there are match value functions 
with less complementarity that nonetheless induce positive assortative match- 
ing. In that sense, our condition is one of weak necessity. Likewise, the condi- 
tion that ensures negative assortative matching for any distribution of types is 
stringent, requiring, for example, the absence of any complementarities for the 
case of urn-ball matching. Again, we show that for many search technologies 
(such as urn-ball) there exist particular distributions for which weaker require- 
ments suffice. 

3The models are not immediately comparable partly because random search requires a 
set based notion of assortative matching, while the frictionless benchmark and our model do 
not. Note also that the conditions in Shimer and Smith (2000) include log-supermodularity 
even of first and cross-partial derivatives, but not log-supermodularity. However, coupled with 
monotonicity as assumed throughout our model, log-supermodularity is implied by their condi- 
tions. We discuss the relation to Shimer and Smith (2000) and other work in Section 6. 
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Our results hold for very general search technologies and match values. Yet, 
it turns out that a large class of widely used search technologies has a common 
condition, that of square-root-supermodularity. This is the case for any search 
technology that has bounds on its derivatives at zero and some curvature re- 
striction, for example, the urn-ball search technology. In this class, the value 
of the elasticity at zero is always one-half. In contrast, the constant elasticity of 
substitution (CES) search technology satisfies the Inada conditions and, there- 
fore, does not have bounded derivatives. Because its elasticity of substitution 
is constant, it separates the range of positive and negative sorting exactly. 

Finally, we establish existence of a sorting equilibrium and show efficiency, 
that is, the planner's solution can be decentralized. While the efficiency prop- 
erties of directed search models are well known (see, e.g., Moen (1997), Ace- 
moglu and Shimer (1999b), and Shi (2001)), we discuss in particular the con- 
nection of our condition to the well known Hosios condition. Hosios' (1990) 
original contribution considers identical buyer and seller types, and relates the 
first derivative of the aggregate search technology to the match value. In our 
setting, this holds for each submarket. With heterogeneity, agents have a choice 
of which submarket to join. Our root-supermodularity condition ensures effi- 
cient sorting across submarkets by relating the elasticity of substitution of the 
aggregate search technology to the complementarities in the match value. 

In the discussion section, we relate our model to existing results in the search 
literature. We discuss directed and random search, and the relationship of our 
model to the large literature on the foundations of competitive equilibria as 
limits of matching games with vanishing frictions. We consider a convergent 
sequence of search technologies in our static economy such that, in the limit, 
the short side of the market gets matched with certainty. To our knowledge, 
considering vanishing frictions as the limit of a sequence of static search tech- 
nologies is new in this literature on foundations of competitive equilibrium. In 
the conclusions, we also highlight that our results do not only apply to search 
markets, but also shed some initial light on sorting in many-to-many matching 
markets. 

2. THE MODEL 

We cast our model in the context of a generic trading environment between 
buyers and sellers, as is often done in the directed search literature. This en- 
vironment includes the labor market and many other markets with two-sided 
heterogeneity and search frictions. Our setup is chosen to be as general as pos- 
sible and to encompass a broad class of different search technologies. 

Players: There is a mass of heterogeneous sellers who are indexed by a type 
y e y that is observable. Let S(y) denote the measure of sellers with types 
weakly below y e y. We assume y = [y, y] c R+ and that S(y) denotes the 
overall measure of sellers. Each seller has one good for sale. On the other 
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side of the market there is a unit mass of buyers. Buyers differ in their val- 
uation for the good, which is private information. Each buyer draws his type 
x independently and identically distributed (i.i.d.) from distribution B(x) on 
X = [x_, ~x] e R+. S and B are C2, with strictly positive derivatives s and b, re- 
spectively. It is convenient to think of a continuum of agents of each type, and 
of b(x) and s(y) as the size of the group of type x buyers and type y sellers. 

Preferences: The value of a good consumed by buyer x and bought from seller 
y is given by f(x, y), where / is a strictly positive function / : M^.->]R++. Condi- 
tional on consuming and paying a price p, the utility of the buyer is f(x, y)- p 
and that of the seller is p. That is, agents have quasilinear utilities. We discuss 
broader preferences for the seller in the conclusion. We assume that / is twice 
continuously differentiable in (x, y). We consider indices x and y that are or- 
dered such that they increase the utility of the buyer: fx > 0, fy > 0. The utility 
of an agent who does not consume is normalized to zero. Clearly, no trade 
takes place at prices below zero and above f(x,~y), and we define the set of 
feasible prices as V = [0, f(x, y)]. All agents maximize expected utility. 

Search Technology: The model is static.4 There are search frictions in the 
sense that with positive probability, a buyer does not get to match with the 
seller he has chosen. The extent of the frictions depends on the competition 
for the goods. We capture this idea of competition by considering the ratio of 
buyers to sellers, denoted by A € [0, oo], and refer to it as the expected queue 
length. This ratio varies in general with the quality of the good offered and 
the price posted. When a seller faces a ratio of A, then he meets (and trades 
with) a buyer with probability m{ A). The idea that relatively more buyers make 
it easier to sell is captured by assuming that m : [0, oo] -> [0, 1] is a strictly 
increasing function. Analogously, buyers who want to trade at a price-quality 
combination that attracts a ratio A of buyers to sellers can buy with probability 
#(A), where q : [0, oo] -> [0, 1] is a strictly decreasing function: when there are 
relatively more buyers, it becomes harder for them to trade. Trading in pairs 
requires that q(') - m(A)/A. We additionally impose the standard assumption 
that m is twice continuously differentiable, strictly concave, and has a strictly 
decreasing elasticity. 

Examples of Search Technologies: There are many ways to interpret and pro- 
vide a microfoundation for the search technology. The most common one 
arises when buyers directly choose a seller but use an anonymous strategy in 
their selection. That means that once they decide on the quality-price com- 
bination, they choose one of the sellers with these characteristics at random. 
In a large market with many buyers and sellers, the probability that a seller 
has at least one buyer and can trade is approximately mi (A) = 1 - e~x. This 
search technology was first proposed by Butters (1977) (see also Peters (1991), 
Shi (2001), Shimer (2005)). Variations of this specification arise naturally, for 

4We discuss our findings for steady states of a repeated model in the conclusion. See also our 
working paper version. 
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example, when a fraction 1 - ß of the buyers gets lost on the way to the sellers, 
we have m2(A) = 1 - e~ßx. Alternatively, if, at each price-quality combination, 
agents form pairs randomly, but trade only occurs when a seller is paired with 
a buyer (in the spirit of Kiyotaki and Wright (1993)), the matching probability 
is/n3(A) = A/(l + A). 

Extensive Form and Trading Decisions: The extensive form of the market in- 
teraction has two stages. In stage 1, all sellers simultaneously post a price p at 
which they are willing to sell the good. In stage 2, after observing the sellers' 
qualities and their posted prices (y, p), buyers simultaneously decide where 
to attempt to buy, that is, each buyer chooses the quality-price combination 
(y, p) that she seeks. A buyer for whom all the prices p are too high can al- 
ways choose the option of no trade, denoted by 0.5 A buyer who gets matched 
consumes the good and pays the posted price. Whether a buyer gets matched 
with a seller is determined by the search technology. This two-stage extensive 
form is in the spirit of, for example, Peters (1991, 2000) and Acemoglu and 
Shimer (1999a, 1999b). We denote by G(y, p) and H(x, y, p) the distribution 
of trading decisions of sellers and buyers, that is, G(y, p) is the measure of 
sellers who offer a quality-price combination below (y, p), and H(x, y, p) is 
the measure of buyers with types below x who attempt to buy a quality-price 
combination that is below (y, p). 

For many subsequent discussions, the marginals of these distributions are 
important; we denote them with subscripts. For example, Hx(x) is the fraction 
of buyers with type below x and Hyv (y , p) is the fraction of buyers that search 
for a quality below y at a price below p. We impose the following two require- 
ments. First, we require Gy = S and Hx = B, that is, the measure of traders 
coincides with the distribution in the population. Second, we require Hyv to 
be absolutely continuous with respect to G, which means that if there are no 
sellers who have chosen prices in some set, then no buyers will try to buy from 
that set. This will enable us to use the Radon-Nikodym derivative below. 

Equilibrium: Our equilibrium concept follows the literature on large games 
(see, e.g., Mas-Colell (1984)), where the payoff of each individual is deter- 
mined only by his own decision and by the distribution of trading decisions 
G and H in the economy, which in turn have to arise from the optimal deci- 
sions of the individual traders.6 To define the expected payoffs for each agent 
given G and H, let the function AGH : y x V -> [0, oo] denote the expected 
queue length at each quality-price combination. Along the support of the 
sellers' trading distribution G it is given by the Radon-Nikodym derivative 

5To make the choice of no trade consistent with the rest of our notation, let 0 = (0r, 0P), where 
0y < y denotes a nonexistent quality and 0P < 0 denotes a nonexistent price, and the trading 
probability at 0 is zero. 

6We are grateful to Michael Peters for pointing out to us this approach, which brings the com- 
petitive search model in line with the standard game theoretic approach to large markets. 
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AGH = dHyv/dG.7 Along the support of G, we can define the expected payoff 
of sellers as 

(1) ir(y, p, G, H) = m(AGH(y, p))p 

and the expected pay off of buyers as 

(2) u(x, y, p, G, H) = q(AGH(y, p))[f(x, y) - p'. 

So far the payoffs are only determined on the path of play, since the buyer- 
seller ratio AGH is only well defined there. We extend the payoff functions by 
extending the queue length function A GH to all of y x V. A seller who con- 
templates a deviation and offers a price different from all other sellers, that 
is, (y, p) £ suppG, has to form a belief about the queue length that he will 
attract. We follow the literature (e.g., McAfee (1993), Acemoglu and Shimer 
(1999b), Shimer (2005)) by imposing restrictions on beliefs in the spirit of sub- 
game perfection: the seller expects a queue length AGH(y, p) larger than zero 
only if there is a buyer type x e X who is willing to trade with him. Moreover, 
he expects the highest queue length for which he can find such a buyer type, 
which means that he expects buyers to queue up for the job until it is no longer 
profitable for them to do so. Formally, that means that 

(3) AGH(y,p) = sup{'eR+: 

3jc; <7(A)[/(x, y)-P]> max u(x, /, F, G, H) 1 
(/,//)esuppG J 

if that set is nonempty and AGH(y, p) = 0 otherwise. This extension defines 
the queue length and thus the matching frictions and payoffs on the entire 
domain.8 Here the queue length function AGH acts similar to Rosen's (1974) 
hedonic price schedule in the sense that individuals take this function as given, 
and an equilibrium simply states that all trading decisions according to G and 
H are indeed optimal given the implied queue lengths. 

Definition 1: An equilibrium is a pair of trading distributions (G, H) such 
that the following conditions hold: 

(i) Seller Optimality: (y, p) € supp G only if p maximizes (1) for y. 

7 On the support of G, the Radon-Nikodym derivative is well defined, up to a zero measure 
set: any two derivatives coincide almost everywhere. To achieve everywhere well defined payoffs 
in (1) and (2), assume some rule that selects a unique Agh on supp G for each (G, H). For our 
existence proof, we require the selection to be continuous and differentiable wherever possible 
on supp G, as this will select the derivative that we construct. 

8 For particular microfoundations of the matching function in an economy with one-sided het- 
erogeneity, Peters (1991, 1997a, 2000) showed that the specification of the matching frictions in 
(3) indeed arises the equilibrium path after a deviation by an individual seller. 

This content downloaded from 130.91.174.5 on Thu, 25 Jul 2013 13:55:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SORTING AND DECENTRALIZED PRICE COMPETITION 547 

(ii) Buyer Optimally: (x, y, p) e supp// only if (y, p) maximizes (2) for x. 

Assortative Matching: Our main focus is on the sorting of buyers across sell- 
ers. In ex ante terms, an allocation is not one-to-one since the ratio of buy- 
ers to sellers is, in general, different from 1. Therefore, we define sorting in 
terms of the distribution of visiting decisions of buyers //. Consider active 
buyer types x who choose to be in the market rather than taking their outside 
option (O, 0) £ supp//). We say that H entails assortative matching if there 
exists a strictly monotone function v that maps these buyer types into y such 
that Hxy(x, v{x)) = B(x) for all active buyer types. This means that v{x) is the 
seller type with which buyer type x would like to trade. We say that matching 
is positive assortative if v is strictly increasing and is negative assortative if it 
is strictly decreasing. Since v is strictly monotone, it is uniquely characterized 
by its inverse /x = v'1, where /x(j) denotes the buyer type that visits seller y. 
Throughout we will consider this inverse and call it the assignment. 

3. THE MAIN RESULTS 

In equilibrium, an individual seller of type y takes the trading distributions 
G and H as given, and according to part (i) of the equilibrium definition, his 
pricing decision solves maxp m(AGH(y, p))p. This seller can set a price that 
does not attract any buyers (AGH(y, p) = 0) or he can set a price that attracts 
buyers (AGH(y, p) > 0) and we can substitute (3), which holds by assumption 
outside the support of G and also by equilibrium condition (ii) on the support 
of G. Therefore, the seller's problem can be written as 

max{m(A)/?: A = sup{À! :3x' q('')[f(x, y) - p]>U(x,G, //)}}, ',p 

where we introduced U(x, G, H) = max^^gsuppo u(x, /, p ', G, //) to denote 
the highest utility that a buyer of type x can obtain. By equilibrium condition 
(ii), U(x, G,//) is continuous. Therefore, for sellers who trade with positive 
probability, this problem is equivalent to 

(4) max[m(Á)p:q(Á)[f(x9y) - p] = U(x, G, //)}. 
x,',p 

This maximization problem has a natural interpretation that is common to 
much of the literature on competing mechanism design. It states that a seller 
can choose prices and trading probabilities as well as the buyer type that he 
wants to attract, as long as the utility for this buyer is as large as the utility 
that he can get by trading with other sellers. Note also that (x, y, p) cannot 
be in the support of the buyers' equilibrium trading strategy H if there does 
not exist a A such that (jc, A, p) solves (4) for y, since the price and associated 
queue length offered by y will not allow buyer x to obtain his expected equilib- 
rium utility U(x, G, //). To simplify notation in what follows, we suppress the 
dependence of the variables on G and H when there is no danger of confusion. 
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We will now derive a necessary condition for assortative matching. For ex- 
positional purposes, we focus on a particular class of equilibria in this deriva- 
tion that fulfill a number of differentiability conditions. Consider a candidate 
equilibrium (G, H) that is assortative, that is, it permits a strictly monotone 
assignment /¿(y), and has a unique price p(y) offered by seller type y, with 
both /¿(y) and p(y) differentiate.9 The focus on a differentiable equilibrium 
is just for convenience of exposition in the main body. The formal proofs do 
not assume differentiability a priori. 

For any seller y who trades at an interior queue length, we can use the con- 
straint to substitute out the price in (4). Since m(A) = Àg(À), this yields 

(5) maxm(A)/(jc, y) - 'U(x). 
jc,A 

Along the equilibrium path, seller y's assigned buyer type /jl (i.e., ¡x(y)) and his 
queue length A (i.e., A(y, p(y))) solve this program and are characterized by 
its first-order conditions 

(6) m'(A)f(fjL,y)-U(fjL) = O, 

(7) m(A)fx(tL,y)-AU'(ti) = O. 

The first-order conditions only characterize an optimal choice if the second- 
order condition is satisfied. To verify the second-order condition, we derive the 
Hessian along the equilibrium path: 

/ m"(A)f(^y) m'(A)/*0*,)0 -£/'(/*) ' 
U 

'm'(A)fx(VL,y)-Uf(n) m(A)fxx(fi,y)-AUff(fi))' 
The term m"(A)f(fjL, y) is strictly negative and the point (A, jjl) is a local max- 
imum only if the determinant of the Hessian is positive: 

(9) m"(A)/(/¿, y)(m(A)fxx(fi, y) - A £/"(/*)) 
- (ni (A) - m(A)/A)2fx(fJi, y)2 > 0, 

where in the last term of this inequality we have substituted U' from (7). Totally 
differentiating (7) with respect to y and using (7) yields the expression 

(10) £T(/i) = ^/xx(/*,)0 

9We require this only for those types that trade with strictly positive probability. A unique 
price p(y) means that (y, p(y)) e suppG and (y, p') £ suppG for any other p' ̂  p{y). Finally, 
we note that ¡¿{y) and p(y) are differentiable only if U(x, G, H) is twice differentiable in x and 
My, P(y)) is totally differentiable in y, as shown in (10) and (11) below. 
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Totally differentiating (6) with respect to y and substituting (7) yields an ex- 
pression for the change of the queue length along the equilibrium path: 

OD v ; dA =  I  OD v ; dy 
=  

m"(A)f(ix,y) 
 

x'(m'A)-^^'fx(fi,y)ii' + mXA)fy(fi,y)'. 

Substituting (10) and (11) into (9) allows us to cancel terms, and after rear- 
ranging and multiplying by ¡x'iy)2, we are left with 

L Am"{A)m{A) f(v>,y) J 

To satisfy the second-order condition, both terms in (12) must have identical 
signs. Under PAM (/x/ > 0), the term in square brackets has to be positive; 
under NAM (/x' < 0), it has to be negative. Defining 

n~ fl(A)" fl.  m'(A)(m'(A)A-m(A))  n~ (13) fl(A)" fl.  
Am(A)m»(A) 

 ' 

the following lemma follows immediately. 

LEMMA 1: In any differentiable equilibrium that satisfies positive assortative 
matching, 

(14) ^^^>a(A) 

has to hold along the equilibrium path, with the opposite sign in any differentiable 
equilibrium with negative assortative matching. 

This condition is stronger than standard supermodularity, because our as- 
sumptions on the search technology imply that a{') e [0, 1] for all A.10 A re- 
lated but different condition was reported by Shi (2001) for a specific directed 
search model. His condition arises as a special case of (14), as we discuss in 
more detail in Section 6. The benefit of expression (14) is that it provides a 

10One can rewrite (13) as a(') = ni '')q' '(À) / '(m" (')q(')) , and our assumptions on the search 
technology immediately yield a(') > 0 for all À e (0, oo). Furthermore, some straightforward al- 
gebra shows that a strictly decreasing elasticity of m implies that a ( A) < 1 for all A e (0, oo). More 
details are presented in the published working paper version. All results in this paper obtain even 
without the standard assumption that the elasticity of m is decreasing, only that the right-hand 
side of condition (14) might be larger than 1, which requires stronger supermodularity conditions. 
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clear economic interpretation of the trade-offs for sorting in markets in which 
both search frictions and complementarities in values are present. 

The economic insight of Lemma 1 becomes transparent when we interpret 
condition (14) in terms of the aggregate search technology M. This aggregate 
search technology is defined as the total number of matches that arise when ß 
buyers are in a market with a sellers, that is, M(/3, a) = am(ß/a). Substitut- 
ing for M in (14) delivers the condition 

(15) fxy(li,y)f(ti,y) > Mb(A,l)Ms(A,l) 
fx(fL,y)fy(tL,y)- Mbs(A,l)M(A9iy 

The right-hand side measures the elasticity of substitution of the aggregate 
search technology M denoted by ESM.n When / is constant returns, the left- 
hand side measures the inverse of the elasticity of substitution of the match 
value function f denoted by ES/ (see Hicks (1932)). The condition highlights 
the nature of the trade-off between match value and trading security. To ob- 
tain PAM, the inverse of the elasticity of substitution of the surplus func- 
tion ES/ must exceed the elasticity of substitution of the search technology 

If different markets are very substitutable (high ESM), then x and y have 
to be strong complements (high fxy and, therefore, low ES/). The latter cor- 
responds to the gain in match value due to complementarity and reflects the 
marginal increase in output from increasing both types. That degree of com- 
plementarity must offset the gains from using additional low types to help high 
types trade. If the elasticity of substitution ESM is large, additional low types 
are very efficient in providing such trading security. Therefore, complemen- 
tarities in production have to be strong to nevertheless induce PAM. For ag- 
gregate search technologies with a constant elasticity of substitution, the right- 
hand side of (14) is constant and determines the degree of supermodularity 
required of /. In general, the supremum and infimum of that elasticity become 
of importance. Let ã = supa(À); a = inf a{'). Both lie in [0, 1]. We discuss 
some specific search technologies in depth in the next section, after presenting 
the main results on sorting. 

To state our main result, we first introduce a notion of the degree of super- 
modularity. Clearly, for condition (14) to hold, it does not suffice that func- 
tion / is simply supermodular. For any two buyer and seller types x2 > xx and 
yi > yu supermodularity means that the total value when the high types trade 
and when the low types trade is higher than when there is cross-trade (low 
with high and vice versa): f(x2, y2) + f(xi,yi) > f(x2, y') + f(xu y2). This also 
means that the extreme values (very high / and very low /) on the left-hand 
side of the inequality are jointly higher than the intermediate values on the 

11 We are grateful to John Kennan for pointing out that a(') is equal to the elasticity of substi- 
tution of the aggregate search technology ESm . 

This content downloaded from 130.91.174.5 on Thu, 25 Jul 2013 13:55:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


SORTING AND DECENTRALIZED PRICE COMPETITION 55 1 

right. The equivalent condition when f(x, y) is differentiate is that the cross- 
partial is positive: fxy(x,y) > 0. Such a condition only includes the gains if 
agents trade, but in our setting we also need to consider the losses if agents 
do not trade. These losses especially affect the high types and gives them extra 
incentives to ensure trade by attracting (many) low types. We therefore need a 
stronger condition for positive sorting, and the idea that assortative matching 
becomes harder can be captured by strengthening the supermodularity con- 
dition as follows. Let g be a concave function and require that g o f be su- 
permodular, that is, g o f(x2, y2) + g o f(xuyx) >go f(x2, y') + g o f(xuy2). 
Concavity affects extreme values on the left of the inequality more than inter- 
mediate values on the right, which makes this condition of assortative matching 
more difficult to fulfill. This is easiest to see in the differential version of this 
inequality: d2g(f(x, y))/dxdy > 0 or, equivalently, 

(16) U(x,y)f(x,y) > g"(f(x,y))f(x,y) 

Exactly how much more difficult it is to sustain this inequality is captured by 
the (relative) Arrow-Pratt measure of the transform g on the right-hand side 
of (16). For example, this measure is 0 if g is a linear transformation and it is 1 
if g is a log-transformation. Compare this inequality with (14). By virtue of the 
sup (or inf) of a, the right-hand side of (14) is a constant in the unit interval. 
A constant right-hand side of (16) with similar magnitude is exactly induced by 
the transformation g(f) = jff. We say that function / is rc-root-supermodular 
with coefficient n e (1, oo) if iff is supermodular. By (16), this requires that 
the cross-partial derivative of / is sufficiently large, that is, 

fxy(x,y)f(x,y) ^ rc_t 
fx(x,y)fy(x,y) 

~ 

This captures standard supermodularity when n = 1 and approaches log- 
supermodularity as n -> oo. We can now state the main result: 

Theorem 1: For any type distributions B and S any equilibrium is positive 
assorted if and only if function f is n-root-supermodular, where n = (1 - a)"1. 
For any type distributions B and S any equilibrium is negative assorted if and only 
if function f is nowhere n-root-supermodular, where n = (1 - a)~l. 

See the Appendix for the proof. 
The proof focusses on positive assortative matching and consists of two parts. 

First, we show that (strict) n-root-supermodularity implies positive assortative 
matching. Since we want to rule out other equilibria that might be nonassor- 
tative, we cannot work with a monotone differentiate assignment ¡jl; there- 
fore, we deploy a different proof technique than in the derivation of condition 

This content downloaded from 130.91.174.5 on Thu, 25 Jul 2013 13:55:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


552 J. EECKHOUT AND P. KIRCHER 

(14). Second, we show that positive assortative matching for all type distribu- 
tions implies that / has to be (weakly) n-root-supermodular. Here the proof 
works by contradiction: If / is not rc-root-supermodular at some point (x, y) 
in the domain, then we can construct a type distribution such that types in the 
neighborhood of (jc, y) trade at a queue length A with a{') close enough to 
ã and, therefore, larger than the degree of root-supermodularity of /. This 
directly contradicts the condition for PAM in Lemma 1 for differentiable equi- 
libria, and a similar contradiction can be derived for nondifferential equilib- 
ria. Key here is that the result holds for all distributions. For a particular 
type distribution, PAM may arise with less complementarities, because the 
value of ã might not be attained in equilibrium. The proofs in the case of 
negative assortative matching are completely analogous and are omitted for 
brevity. 

The theorem establishes a dividing range between positive and negative sort- 
ing. This dividing range collapses to a line when a = ã (see also Section 4 
where we discuss constant elasticity of substitution matching technologies). 
Such a sharp cutoff is also a feature of Becker's (1973) frictionless theory, but 
our cutoff is shifted toward larger complementarities. In our environment, the 
fact that low types are valuable because they can help facilitate trade for the 
high types has the novel implication that under a > 0, for all type distributions, 
NAM obtains even if / is strictly supermodular as long as it is nowhere zi-root- 
supermodular (n = (1 - a)~l). On the other hand, if a < ã, then the areas of 
positive and negative sorting are not as sharply divided. This is the case specifi- 
cally for those search technologies such as urn-ball technology that have a = 0. 
Still, any / that is weakly submodular (fxy < 0) induces NAM.12 

The conditions in Theorem 1 are particularly strong so as to ensure sort- 
ing under any possible type distribution. This gives us useful bounds, but these 
bounds might not be necessary for given type distributions. If the elasticity 
of substitution is not constant, it may be the case that neither the supremum 
~ã nor the infimum a are reached on the equilibrium path. This explains the 
weaker notion in an example by Shi (2001), who considered the urn-ball search 
technology and a given seller type distribution. His Example 5.2 has nega- 
tive sorting despite fxy > 0 and a = 0. We formalize this in the next proposi- 
tion. 

Proposition 1: Consider a search technology such that a(-) is not constant: 
(i) There exist distributions B and S and functions f that are nowhere n-root- 

supermodular (n = (1 - a)'1) such that any equilibrium exhibits positive assorta- 
tive matching. 

12 In general, negative assortative matching has to arise under the strict inequality fxy < 
afxfxf~x> The case of a = 0 is special because negative assortative matching is ensured even 
when fxy = 0, since in this case our assumptions on the search technology still imply a(') > 0 
whenever A e (0, oo). Therefore, for all types that trade with positive probability (A ̂ 0, oo), the 
elasticity is strictly positive and the proof technique immediately extends to this case. 
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(ii) There exist distributions B and S and strictly n-root-supermodular (n = 
(1 - a)~l) functions f such that any equilibrium exhibits negative assortative 
matching. 

See the Appendix for all proposition proofs. 
Finally, we establish existence of a (differentiable) equilibrium. Existence in 

our setup is more complicated than in frictionless matching models because we 
cannot employ the standard measure-consistency condition. In our setup, it is 
possible that more agents from one side attempt to trade with the other, and 
this imbalance is absorbed through different trading probabilities.13 The sys- 
tem retains tractability when we impose the sufficient conditions for assorta- 
tive matching (either PAM or NAM), in which case we can exploit differential 
equation (11) to construct the equilibrium path along the first-order condition 
and use the sufficient conditions to show that deviations are not profitable. 

Proposition 2: If the function f satisfies n-root-supermodularity for n = (l- 
fl)"1 (or nowhere n-root-supermodularity for n = (1 - a)~l), then for any type 
distributions B and S, there exists a differentiable equilibrium. 

4. CHARACTERIZATION 

In this section we discuss the characterization of the equilibrium. We con- 
sider two particular classes of commonly used search technologies that allow 
particularly sharp bounds on the degree of supermodularity: those that are 
bounded and imply square-root-supermodularity, and those that have a con- 
stant elasticity of substitution. We then investigate the properties of the equi- 
librium price schedule. 

4.1. Common Search Technologies 

Square-root-supermodularity is the property that applies to a large class of 
search technologies, including those that are built on microfoundations, such 
as the example search technologies mu m2, and m3 outlined above. The class is 
characterized by technologies with local bounds on the derivatives and enough 

13In frictionless one-to-one matching models with a continuum of agents, existence can be 
proven by considering the efficient allocation, which can be characterized by a linear program for 
which existence is proven by Kantorovich (1958). The efficient allocation in our setting resembles 
Kantorovich's optimal transportation problem, with the one major difference that it is not a linear 
program since the buyer-seller ratio enters the objective (see (18)). Interpretation of a submarket 
as a coalition of many buyers and sellers in the spirit of the many-to-many matching literature still 
does not allow us to adopt existence proofs from this literature, since the proofs we are aware of 
rely on finite coalitions of bounded size, whereas in our setting submarkets with uncountably 
many buyer and seller arise. 
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curvature. To lay this out formally, it will be convenient to consider the match- 
ing probability q{X) of the buyers, which is linked to the matching probability 
of the sellers via ra(A) = kq{'). 

Proposition 3- Square-Root-Supermodularity: Let 'q'(Q)' > 0 and 
I #"(0)1 < oo, and let '/q be convex. For any type distributions B and S any equi- 
librium exhibits PAMif and only if f(x, y) is square-root-supermodular. 

Understanding what drives the sorting pattern is motivated by the relation 
between the complementarities in match value and the elasticity of substitu- 
tion of the search technology. It is then somewhat striking that in such a large 
class of search technologies - arguably the most relevant ones - all depend ex- 
actly on that same condition: square-root supermodularity. The explanation 
for this is entirely driven by the value of the elasticity of substitution at zero. 
The bounds on the derivatives imply that it is necessarily pinned down at one 
half, which turns out to be a general property of homothetic functions as can 
be seen in the proof. This makes square-root-supermodularity necessary. The 
curvature restriction is equivalent to the requirement that the elasticity of sub- 
stitution does not exceed one-half at some point other than zero and, therefore, 
square-root-supermodularity is sufficient. 

Constant elasticity of substitution (CES) matching technologies are often as- 
sumed for their simplicity. Since the elasticity of substitution is invariant, they 
can be represented by ra(A) = (1 + k'~r)~1/r, where r > 0 and k > 1. The as- 
sociated aggregate CES search technology for a given number of buyers and 
sellers ß and a is defined as (see, among others, Menzio (2007)): 

M (j8, a) = (ßr + karyl/rß(T. 

The elasticity of substitution is given by ESM = (1 + r)~l. The CES matching 
technologies do not fall into the previous category because either the bounds 
at zero are violated or the curvature restriction does not hold. The exception is 
the knife-edge case with r = 1 that corresponds to (a variation of) the matching 
technology m3 = A/(A + k) that is CES. 

The CES search technology nonetheless gives very sharp predictions on the 
necessary and sufficient conditions for positive and negative assortative match- 
ing: PAM arises when f(x, y) is n-root-supermodular and NAM arises when 
f(x9y) is nowhere n-root-supermodular, where n - (1 + r)/r is the same in 
both cases. It is important to stress here that n-root-supermodularity is a nec- 
essary condition for positive assortative matching even if we consider only a 
particular type distribution. This is stronger than our Theorem 1, and arises 
exactly because the elasticity is constant and we do not have to worry whether 
the supremum is actually realized on the path of play. Moreover, since Theo- 
rem 1 ensures NAM for any given distribution, it also provides direct evidence 
that NAM will arise for any type distributions even if the match value function 
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is (moderately) supermodular, since the elasticity of substitution is bounded 
away from zero. The class of CES search technologies spans the entire range 
of /2-root-supermodularity, from supermodularity to log-supermodularity, as 
stated in the next corollary to Theorem 1. 

Corollary 1: Let the search technology be CES with elasticity ESM- Then a 
necessary and sufficient condition for PAM is one of the following cases : 

(i) Supermodularity if ES M - 0 (Leontief), 
(ii) Square-root-supermodularity if ES m = ' (w3). 
(iii) Log-supermodularity if ES m - 1 (Cobb-Douglas). 

4.2. The Equilibrium Price Schedule 

Our results are cast in terms of the monotonicity of the allocation, offering 
sharp predictions on assortative matching. In contrast, equilibrium does not 
provide equally general predictions in terms of the monotonicity of the price 
schedule. Equilibrium prices can be both increasing and decreasing in type, 
because agents are compensated through both prices and trading probabilities. 
This is not the case in the frictionless model of Becker (1973). There, p'(y) = 
fy > 0, that is, the slope of the price schedule is equal to the marginal product 
of being matched with a better seller. For our setting, we derive the equilibrium 
price schedule in the Appendix. It satisfies 

(17) p'(y) = fy + fl[(l - rjm)fxfxf - Vmfyl 

where 17 m = km' /m is the elasticity of m, a is the elasticity of substitution, 
and /x/ is the change of trading partner along a differentiable equilibrium. This 
price schedule decentralizes the efficient allocation (Proposition 4 below). It 
reflects the marginal benefit conditional on matching, but additionally reflects 
the marginal benefit from the change in the probability of a match. In this 
world with trading frictions, sellers can be rewarded through higher prices or 
better trading probabilities. Higher seller types obviously have to make higher 
equilibrium profits, yet this increase may be due more to the second source 
than to the first and equilibrium prices can actually be declining. For this to 
happen, the trading probabilities have to rise substantially, though, which is 
only possible under negative assortative matching. 

Inspection of equation (17) immediately reveals that under PAM (with 
¡x' > 0), the price schedule is increasing in firm type. The effect introduced by 
the search frictions can never be so strong that prices actually decrease: both a 
and rim are in [0, 1], and as a result the aggregate sign on the fy term as deter- 
mined by (1 - ar]m) is positive. This is not necessarily true under NAM, where 
fif < 0. Prices can then be decreasing, for example, consider some fixed type 
distributions and fy sufficiently small. Then sellers must make nearly identical 
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profits. If buyer types remain important (fx ̂> 0), high buyer types obtain sub- 
stantially higher equilibrium utility than low buyer types. Therefore, in equilib- 
rium, low seller types leave high utility to their (high-type) customers and ob- 
tain low queue length since dA/dy in equation (11) is positive under NAM. To 
make nearly equal profits according to (4), the low seller types have to charge 
a higher price in equilibrium. Since the price change (17) does not depend di- 
rectly on the cross-partial, particularly simple examples of this phenomenon 
can be constructed with modular match values (fxy = 0). 

Finally, it is instructive to consider the price function in a symmetric world. 
Suppose there is symmetry between buyers and sellers in the match value func- 
tion /(x, y) and in the aggregate search technology M(ß, er), and the type dis- 
tributions are identical for buyers and sellers. Then it is straightforward to show 
that under root-supermodularity and, therefore, PAM, a "symmetric" equilib- 
rium exists with ¡i(y) = x and a constant queue length A = 1 along the equi- 
librium path. Since symmetry of M implies that r'm = 1/2, the pricing function 
reduces exactly to the marginal value of Becker (1973), that is, p' = fy. This 
highlights the fact that the effect on prices due to search frictions is only preva- 
lent in the presence of asymmetries. In a positively assorted equilibrium, under 
symmetry, the effects of frictions exactly cancel out. 

5. EFFICIENCY OF THE DECENTRALIZED ALLOCATION 

Consider a planner who chooses trading distributions (G,H) to maximize 
the surplus in the economy, subject to the same search technology. The planner 
maximizes 

(18) max / q(AGH(y, p))f(x, y) dH 
G,H J 

(19) s.t. Gy = S,Hx=B,AGH = dHyv/dG, 

where the constraints correspond to the restrictions in the decentralized econ- 
omy. Prices simply constitute transfers between agents and, therefore, they do 
not enter the planner's objective directly. They do allow the planner to let 
identical sellers trade at different queue lengths A(y, p) and A(y, p') with po- 
tentially different buyers, which is also possible in the decentralized economy. 
Since in the planner's problem prices play no direct role, we could as well have 
indexed the queue length by some other label such as a "location" instead of 
prices. 

Proposition 4: If f is strictly n-root-supermodular with n = (1 - a)'1 
(nowhere n-root-supermodular with n = (l- a)'1), then any solution to the plan- 
nef s problem is positive (negative) assorted and can be decentralized as an equi- 
librium. 
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This result is in line with the efficiency properties of directed search models 
in general; see for example, Moen (1997), Acemoglu and Shimer (1999b), and 
Shi (2001). It is worth highlighting this efficiency property, because it allows us 
to interpret our sorting condition from an efficiency point of view. 

Our result provides a condition that augments the standard Hosios (1990) 
condition for efficiency by relating different submarkets. The Hosios (1990) 
condition holds for a particular (x, y) market and equates the social contribu- 
tion to match formation with the split of the surplus between buyer and seller. 
In our decentralized equilibrium, substituting (6) into (5) yields the Hosios 
condition, which can be rewritten to say that seller y's equilibrium profits are 
MS(A, 1)/(jc, y) and reflect his marginal contribution to match creation. With 
two-sided heterogeneity, the issue of efficiency hinges on which (jt, y) combi- 
nations trade in equilibrium. Our contribution is to show that this is governed 
not by the derivative of the aggregate matching technology M , but by its elas- 
ticity of substitution a(k). 

The Hosios condition is usually associated with the elasticity r'm of the in- 
dividual search technology m since Ms = 1 - r]m. A similar connection exists 
in our setting between the elasticity of substitution of M, denoted by a, and the 
elasticity j]m of the individual matching technology m. To see this, observe that 

(2Q) { ] a{ }~ s 
m'(A)(/w'(A)A-m(A)) = 1 

- ym(X) (2Q) { ] a{ }~ s 
Am(A)m"(A) 

= 
t^(A) 

The first equality is the condition we derived above in equation (13). The sec- 
ond equality follows immediately after rearranging terms, where r¡ denotes the 
elasticity of the subscripted function: y)m - ^- and i'm, - ^-. As with the Ho- 
sios condition, the condition here depends on the elasticity via 1 - r]m, which 
captures the marginal effect on the search technology. In addition, it depends 
on r]m>, which captures the second degree marginal effect on the search tech- 
nology. This effect governs how the matching probability changes as we move 
across different matched pairs. The latter effect is obviously absent with ho- 
mogeneous types and, therefore, in the standard Hosios condition. 

6. DISCUSSION OF RELATED LITERATURE 

We relate our findings to models and results from three distinct literatures. 

6.1. Directed Search 

There is an extensive literature on directed search with and without two- 
sided heterogeneity. Contributions range from work that provides a rationale 
for unemployment in the labor market and waiting times in the product market 
(for example, Peters (1991, 1997b, 2000, 2007), Acemoglu and Shimer (1999a, 
1999b), Bürde«, Shi, and Wright (2001), Shi (2001), Mortensen and Wright 
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(2002), Galenianos and Kircher (2009), Kircher (2009), and Delacroix and 
Shi (2006)) to work that models more elaborate trading mechanisms (such as 
McAfee (1993), Peters (1997a), Shi (2002), Shimer (2005), and Eeckhout and 
Kircher (2010)). 

Here we focus our attention on specific aspects of the most closely related 
paper by Shi (2001). Shi was the first researcher to show that, in an environ- 
ment with directed search, supermodularity is not sufficient to attain PAM. He 
assumed that firms can freely enter with type y if they pay some entry cost 
C(y). He derived a condition that requires fxy to be sufficiently large that is 
seemingly different from ours. Here we show that our findings are consistent. 
His condition is 

K ,2n ' fU > Cfy(fy-Cy) K ,2n ' 
fjy 

> 
CyifCy-CfyY 

The strength of this condition (i.e., the magnitude of the right-hand side) can- 
not readily be evaluated. Moreover, this condition seems not to depend on 
the search technology m, which is in apparent contradiction with our results. 
Our results imply that sorting depends on the elasticity of substitution of the 
search technology. It turns out, even though it is not directly visible, that con- 
dition (21) depends crucially on the feature of the urn-ball search technology 
assumed in Shi (2001). In particular, the right-hand side (RHS) will look dif- 
ferent when the search technology is not urn-ball. A simple example is the case 
of CES where the RHS is a constant. 

Recall that our condition (14) gives a condition for PAM for a given type 
distribution. To see that condition (21) arises as a special case of this, we now 
derive the equilibrium conditions in Shi (2001) with free entry and for a general 
search technology. Equilibrium profits can be obtained by substituting (6) into 
(5). If, after entry, seller type y trades with buyer type /x(y) at queue length 
A(y) (more precisely, A(y, p(y))), the free entry condition requires 

(22) [m(A(y)) - A(y)mf(A(y))]f(^(y), y) = C(y). 

Differentiating (22), after eliminating terms that add to zero by (7), and us- 
ing the derivative of (6), we obtain that m(A(y))fy(fi(y)9 y) = Cy(y). For the 
special case of the urn-ball search technology mi, these two equations coin- 
cide with Shi's (2001) characteristic equations. We can invert these to obtain 
an analytic expression of A(y) as a function of the entry cost, and substitution 
into the RHS of (14) recovers Shi's (2001) result.14 Still the right-hand side of 
(14) depends crucially on the elasticity of substitution for the specific search 

14For mi (A) = 1 - e~A, we obtain a nice analytic expression for the elasticity of substitution: 
a(A) = A"1 + e~k/{' - e~x). There are a multitude of ways to use the entry cost to substitute 
out the queue length along the equilibrium path. Observe that mi(A(y))fy(fjL(y), y) = Cy(y) im- 
plies A(y) = - ln(l - Cy(y)/fy(fji(y), y)). Using this, one could write the elasticity of substitution 
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technology in question, as can easily be seen when the RHS of (14) is constant 
and, therefore, the level of entry plays no role. For urn-ball, the elasticity of 
substitution is nonconstant and indirectly depends on the entry cost. By vary- 
ing the entry cost, any seller type distribution can be sustained (by setting the 
entry cost equal to the equilibrium profits) and by Proposition 3, square-root- 
supermodularity provides the relevant bound on the strength of (21). 

In our setting, entry does not simplify the analysis because inverting the free 
entry conditions yields A{y) as a function of the inverse of the search tech- 
nology, which for general search technologies does not have a nice analytic 
representation. Our approach, therefore, relies directly on the second-order 
conditions of the seller's optimization problem (4). Using a general search 
technology allows us to derive the fundamental economic trade-off between 
complementarities in match value and complementarities in the search tech- 
nology, and to obtain explicit bounds on the strength of supermodularity that 
hold for any type distribution. 

6.2. Random Search 

In the Introduction, we compared our root-supermodularity condition to the 
conditions in the random search model of Shimer and Smith (2000). It is worth 
noting first that random search models adopt a notion of positive assortative 
matching that differs from the notion in this paper and in the frictionless en- 
vironment of Becker (1973). In random search, sellers meet many different 
buyer types and the probability of meeting any particular buyer type is zero. 
Therefore, sellers are willing to accept matches from some set of buyer types. 
For a given seller, the set of buyers for which matching is mutually agreeable 
is then called the matching set. Positive assortative matching means that any 
element in the acceptance set of a lower type is either included or strictly below 
any element in the acceptance set of a higher type. 

The conditions in Shimer and Smith (2000) derived their economic meaning 
from the fact that they ensure connectedness of these matching sets. The ex- 
act conditions are supermodularity of /, log-supermodularity of fx and fy, and 
log-supermodularity of fxy. Unlike our match value function, theirs is a sym- 
metric function / such that f(x, y) = f(y, x). They also assumed that / > 0 
and fy(0, y) < 0 < fy(i, y) for all y. These assumptions do not directly include 
log-supermodularity of /, which we used as a lower bound to compare the 
strength of our condition to theirs. We now show that log-supermodularity is 

and thus the RHS of (21) as a(A(y)) = -ln(l - Cy(y)/fy(ti(y)9y)r1 + 1 - fy(ti(y),y)/Cy(y). 
Alternatively, one could use both entry conditions to express the elasticity of substitution as 

. C(y)fy(fji(y), y)lfy(ß(y),y) - Cy(y)ì 
y 

Cy(y)[f(ix.(y),y)Cy(y)-C(y)fy(,^y),y)Y 
which exactly recovers the RHS of (21). 
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implied under the additional monotonicity restriction imposed in our model, 
that is, fy(x, y)>0 (and by symmetry, fx(x, y) > 0). 

Assume that the conditions of the previous paragraph hold. A function / is 
log-supermodular if log/ is supermodular or, equivalently, if for all (x, y), the 
condition fxyf - fxfy > 0 holds (where we suppress the arguments). Obviously 
this condition holds whenever fx = 0 because of supermodularity (fxy > 0) 
and / > 0. Now we establish that it holds even at points with fx > 0. First, 
observe that log-supermodularity trivially holds at (0, 0) under the assump- 
tions above. Then it is sufficient to show that at any (x,y) at which log- 
supermodularity holds, the left-hand side of the condition increases in x. The 
argument applies symmetrically for increases in y, which establishes the re- 
sult that log-supermodularity holds at all (x, y). The left-hand side of the log- 
supermodularity condition increases in x if 

(23) fx2yf + fxyfx - Ufy - fxfxy > 0. 

Log-supermodularity of fx was assumed, which implies fxiyfx - fxifxy > 0. 
From this inequality, we can now substitute for fxiy in (23) and also substi- 
tute for fxy from the inequality of the log-supermodularity condition to get 
the more demanding inequality fxify + fxyfx - fxijy - fxfxy > 0, which holds 
trivially. 

We have, therefore, established that the conditions in Shimer and Smith 
(2000) together with monotonicity imply log-supermodularity. Although the 
reverse is not true (not every log-supermodular function fulfills the conditions 
in Shimer and Smith (2000); not all log-supermodular functions also have first 
and cross-partial derivatives that are log-supermodular), at least this result 
gives us a useful lower bound for the strength of supermodularity required 
under random search that can be used for comparison with our setting. 

6.3. Vanishing Frictions and Convergence to the Walrasian Equilibrium 
The competitive benchmark of the Walrasian economy (Becker (1973), 

Rosen (1974)) induces positive sorting under mere supermodularity. There 
are no frictions in a competitive setting. Such a lack of frictions can be cap- 
tured in our setup by assuming that agents can perfectly match into pairs. This 
leads to a benchmark search technology represented by mB(') = min{A, 1} 
(see the kinked, solid line ra(A) in Figure 1). The short side of the market 
always matches with probability 1 while those types on the long side get ra- 
tioned in proportion to the buyer-seller ratio. We can now consider vanishing 
frictions to be a sequence of matching functions that converges to mB and in- 
vestigate whether the condition for sorting reduces to mere supermodularity 
as required in the Walrasian benchmark. 

This approach of considering the limit economy as frictions vanish ties in 
with the large literature that validates Walrasian trade as the limit of match- 
ing and bargaining games (see, among many others, Rubinstein and Wolinsky 
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m(A) 

1 

^ m(';ön) 

y' '<J„->1 

1 ï T 
Figure 1. - Vanishing frictions for the static search technology. 

(1985), Gale (1986), and more recently, Lauermann (2007)). This literature 
generally studies dynamic games and shows convergence as trading becomes 
more frequent. While this approach can be replicated with similar success in 
a dynamic extension of our setting,15 our contribution here is to take a differ- 
ent perspective by modeling vanishing frictions directly through changes in the 
search technology. 

We obtain immediately an apparent discrepancy between the idea of 
convergence to Becker's (1973) supermodularity condition and the n-root- 
supermodularity condition as implied by Theorem 1. For example, the class of 
logarithmic search technologies m{') = 1 - ln(l + e(1-A)/(1-ô))/ln(l + e1/(1~ô)) 
with 8 € (0, 1) fulfills the premise of Proposition 3 and, therefore, requires 
square-root-supermodularity for any level of 8 to induce assortative matching. 
Yet it converges uniformly to the competitive benchmark mB(') as 8 -> 1, 
where we would expect the weaker condition of supermodularity (Becker 
(1973)) to apply. 

To resolve this apparent discrepancy, observe that our condition for sorting 
entails the elasticity of substitution a(', 8) that depends on the search tech- 
nology through the parameter S.16 While m -> mB uniformly as 8 -> 1, the 
elasticity of substitution does not converge to zero uniformly. In particular, in 
markets with few buyers, the elasticity of substitution remains close to one- 

15 The working paper version of this paper incorporates the fully dynamic extension of the 
model, including results on the convergence of our condition. We further discuss the dynamic 
model in the Conclusion. 

16Some algebra establishes that a(A, 8) = (1 + exp(^))1^ - exp(^)(ln(l + exp(l/(l - 

ô)))-ln(l + exp(^f)))-1. 
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half. With vanishing frictions, the strength of the square-root-supermodularity 
condition comes only from the submarkets with few buyers (À ̂  0), that is, 
when at least some sellers match with very low probabilities due, for example, 
to an aggregate imbalance where the overall mass of sellers exceeds the mass 
of buyers. If this is not the case, that is, if all sellers can trade with probabil- 
ity bounded away from zero along a sequence of S's such that m-+ mB, then 
the standard supermodularity condition emerges: some tedious application of 
l'Hopital's rule reveals that Iim5_i a(Á, S) = 0 for all A > 0. More generally 
this means that the set of seller types that trade with positive probability but 
for whom Becker's condition does not (approximately) govern the matching 
pattern includes only those sellers with queue length around zero (i.e., those 
that can hardly trade) as frictions vanish. Becker's (1973) insight is, therefore, 
recovered for vanishing frictions as it applies to all types that have nonvanish- 
ing trading prospects. 

A special case is that of the CES search technology, because the only way to 
get convergence to mB is by changing the elasticity of substitution a -> 0. By 
construction, there is then not only uniform convergence of m, but also uni- 
form convergence of a, and as a result, the necessary and sufficient condition 
for PAM converges to mere supermodularity for all matched pairs. 

CONCLUSION 

In the presence of search frictions in a market with two-sided matching, 
price competition gives rise to two distinct and opposing forces that deter- 
mine sorting. The degree of complementarity in the match value is a force 
toward positive assortative matching, whereas search frictions embody a force 
toward negative assortative matching. We identify a condition based on the 
elasticities of substitution of the match value function and that of the search 
technology that summarizes this trade-off. It tells us exactly how much ad- 
ditional complementarity above and beyond mere supermodularity - namely 
root-supermodularity - is needed in terms of the match value to induce posi- 
tive sorting, where the exact root depends on the elasticity of substitution in 
the search technology. 

This elasticity condition also augments the standard Hosios (1990) condition 
for efficiency by relating different submarkets. In addition to the split of the 
surplus for a given pair of buyer-seller types as analyzed by Hosios, the novel 
determinant of efficiency here is which types are matched in equilibrium. Then 
not only is the derivative of the aggregate search technology important (as in 
Hosios), but also is the elasticity of substitution across different pairs. 

In this work, we have made various simplifying assumptions. Some of them 
we relaxed in the working paper version of this paper. If seller preferences de- 
pend on the price and additionally their own type - for example, due to oppor- 
tunity costs that depend on the seller's own type - our results still obtain, only 
now the match value is the sum of the buyer's and the seller's valuation: If the 
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sellers' preferences are of the form fs (y) + p, then our conditions on the match 
value function refer to f(x, y) + fs(y). Our results further generalize if sellers 
also care about the buyer's type, provided they are able to specify the desired 
buyer type together with the price so as to avoid problems of adverse selection. 
Alternatively, our results apply if the seller posts a payoff he wants to obtain 
(rather than a price), which makes the buyer the residual claimant. In addi- 
tion to the preferences, we also relax the time structure. We consider steady 
states in a repeated interaction and show that n-root-supermodularity still en- 
sures positive assortative matching. The condition of n-root-supermodularity 
(n = 1 - fl"1) is still sufficient, though a weaker root that depends on the dis- 
count factor may also suffice.17 

We conclude with a final thought on the connection to many-to-many match- 
ing markets for which the literature yet lacks a characterization of the sorting 
patterns. While our setup requires each seller to trade a single unit with at 
most one buyer, it does resemble a particular kind of two-sided many-to-many 
matching market. When ß buyers of type x and a sellers of type y form a coali- 
tion, they produce output M(/3, (r)f(x, y). Instead of buyers and sellers, the 
sides can be interpreted as teachers and students, where a coalition is a school, 
or machines and workers, where a coalition is a factory. Given the similarity in 
structure, we expect our results to apply to this setting as well. 

APPENDIX 

Proof of Theorem 1: We prove the result for case (i), positive assortative 
matching. An analogous derivation establishes the result for negative assorta- 
tive matching. The proof for PAM consists of two parts, one for the sufficient 
condition, and one for the necessary condition. 

Proposition Al - Sufficiency: // the function f(x,y) is strictly n-root- 
supermodular where n = (1 - 5)"1, then any equilibrium entails positive assor- 
tative matching under any type distributions B(x), S(y). 

Proof - By Contradiction: Consider a (candidate) equilibrium (G, H) that 
does not entail positive assortative matching. Then there exist (x,y, p) and 
O' y , pf) on the support of H such that x > x' but y < y' . Then x has to be 
part of the solution to the seller's optimization problem (4) for y, and x' has 
to be part of the solution to (4) for y' , given U(,G,H). We contradict this in 
four steps. 

17For the search technologies in Proposition 3, square-root-supermodularity remains neces- 
sary, while for CES matching technologies, weaker conditions apply that depend on the discount 
factor. Note that these results assume the existence of a steady state, which can be assured under 
a "cloning" assumption that we make in the working paper. 
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Step 1 - Reformulating the sellers' maximization problem. The optimization 
problem (4) of seller y can be written as 

(24) max{m(A)/7 : q(')[f(x, y)-p] = U(x, G, H)} 

<S> max{m(')f(x,y)-'U(x,G,H)} 
X,' 

O maxII(x,y'U(,G,H)), 
X 

where 77 in the last line is defined as 

(25) II(x, y'V(.)) = maxm(A)/(jt, y) - XV(x) 
à 

for any positive and continuous function V(-). The following obvious property 
will be useful later: 

(I) For any two positive and continuous functions V{>) and JV(-), and any 
seller type x, the inequality II(x, y'V(-)) < FI(x, y'W(-)) holds if and only if 
V(x) > W(x). 

We have achieved the desired contradiction if the maximizer of (24) for y 
is smaller than for /. Defining F(y'V(-)) = argmaxx77(;c, y'V(-)), this means 
that we have achieved the contradiction if 

(26) max r(y'U(., G, H)) < minr(y|£/(-, G, //)). 

Step 2- Introducing differentiability through auxiliary buyer utility V(-). To 
show (26), it will convenient to have FI differentiable. To achieve this, we do 
not directly work with buyers' equilibrium utility U(,G,H), but rather we 
work with a particular auxiliary function K(-) that we define implicitly as 

(27) n(x, y'V(.)) = # (x, y' £/(•, G, H)) 

for all x < h = max r(y'U(; G, //)), and V(x) = U(x, G, H) otherwise. This 
means that if seller y has to leave utility V(x) to the buyers, he is indifferent 
between all types that are below x, that is, F(y'V) = [x, x]. Equation (27) 
defines V(x) uniquely by property (I) established in the previous step. Note 
that V(x) is differentiable by construction since the implicit function theorem 
delivers 

A 

where A takes the value that maximizes the right-hand side of (25). Since k 
is a maximizer of IJ(x,y'U(',G,H)), property (I) also establishes another 
property: (II) V(x) < U(x, G, H) everywhere. 

Step 3 - Positive cross-partials. Now consider seller y' > y in a neighborhood 
of y. Taking the cross-partial of II (x, y''V) and incorporating that V is defined 
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by (27) together with (25), we obtain, after some tedious algebra, for all x e 
[x, x] that 

(28) v ; 
mX^V) 

(28) v ; âx ay y=y 
I" m'{')('m'(')-m{'))fx{x,y)fy{x,y)'' = 'jxy(X,y) 

 "  T77T  7TT  JZ 
 "  "HA), 

L Àm"(À)m(À) 
T77T 7TT 

f(x,y) JZ J 

where A takes the value that maximizes the right-hand side of (25). This cross- 
partial evaluated at y = y is strictly positive since the RHS of (28) is strictly 
positive by strict fl-root-supermodularity of /. Hence for y' slightly larger 
than y, the cross-partial remains strictly positive by continuity. On [x, x] we 
have II(x,y'V) = II(x'9y'V) by construction and, therefore, II(x,y'V) < 
ri(xf, y'V) when x < x'. Therefore, any x that maximizes II has to lie above 
x, and we obtain a third property: (IH) min F(y''V) > x. 

Step 4 - Reintroducing U(,G,H) instead of the auxiliary buyer utility V(-). 
By construction, V(x) = U(x, G, H) for x > x and, by (II), it holds that 
V(x) < U(x,G,H) everywhere. Therefore, by (I) we have II(x,y'V) = 
II(x,y'U(,G,H)) for x > x and II(x,y'V) > f[(x,y'U(,G,H)) every- 
where. Since by (III), min F(y'V) > x, this implies immediately that min F(y'' 
U(,G,H))>k. By the definition of x, this implies (26). Q.E.D. 

Proposition A2 - Necessity: If any equilibrium is positive assorted under any 
type distributions B(x) and S(y), then f(x,y) is weakly n-root-supermodular 
where n - (1 - a)~l. 

Proof: By contradiction. Suppose there exists some (x,y), such that the 
match value function is not n-root-supermodular, but there exists an equilib- 
rium that exhibits PAM for any distributions B, S. We will contradict this in 
four steps; the main insights are in the first three steps. 

Step 1 - Construct a set Ze around (jc,j>), where f is nowhere n-root- 
supermodular. By the smoothness properties of /, there exists s > 0 such that 
/ is not root-supermodular anywhere on Ze = [Je - s, x + s] x [y - s, y + e]. 
We can choose e such that 

, , v fx(x,y)fy(x9y) f»ix>y)-a , , v 
f(x,y) 

<0 

for all (x, y) e Ze for some a < ~ã. By continuity of ß(A), there exists Ài , À2 such 
that a{') > a for all A e [Ai, A2]. If buyer and seller types are in Ze and they 
trade at queue lengths in [Ài, A2], the lack of sufficient supermodularity means 
that PAM cannot be sustained, as we formalize in the next steps. 

Step 2 - Let Ze shrink so that types are similar. Consider a sequence {£*}£Li, 
0 < sk < £, that monotonically converges to zero. Let Bk and Sk be associated 
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sequences of distributions of buyer and seller types. Let Bk be uniform with 
support on Xk - [x - ek9 x + sk] and unit mass Bk(x + sk) = 1. Let Sk be 
uniform with support on yk = [y - sky y + sk] with mass Sk(y + sk) = 2/('i + 
A2), that is, the aggregate ratio of buyers to sellers remains constant at the 
average of Ài and A2, independent of k. By construction, the buyer-seller types 
that trade are within Ze for any k. 

Step 3 - For some k, all buyers and sellers trade at queue lengths in (Àl5 A2). 
Consider an equilibrium (Gk,Hk) for each k. Note first that the difference 
in expected buyer utilities converges to zero, in the sense that for every 
£ > 0, there exists k such that 'U(xu Gk,Hk) - U(x2, Gk,Hk)' < £ for any 
xux2 € Xk and any k > k. This notion of convergence is used throughout 
this proof. It can be shown based on equilibrium condition (ii), which ensures 
that 'U(xuGk,Hk) - U(x2,Gk,Hk)' < maxAG[0,oo] max^ q(')'f(xuy) - 
f(x2, y)'. Assuming without loss of generality that xx > x2, the right-hand side 
of the inequality is bounded by f(xu y + ek) - f(x2, y - ek), and this term 
vanishes since xx - x2 < 2ek -> 0 and y + ek - (y - sk) = 2ek -> 0 and / is 
continuous. Given that the differences in buyer utility vanish with large k and 
given that the distance in types vanishes, it is easy to show that the distance 
between the highest queue length that is part of a solution to (4) for some 
y € yk and the lowest queue length that is part of a solution to (4) for some 
y' e yk converge to zero. (Also the differences in the value to program (4) 
across seller types in yk vanish with increasing k, as used in the next step.) 
Since the differences in queue lengths across sellers vanish, but the aggregate 
buyer seller ratio is (Ai + A2)/2, all sellers trade at queue lengths in (Ài, A2) 
for k sufficiently large. If we restrict attention only to differentiable equilibria, 
this immediately contradicts the assumption that the equilibria are PAM, since 
condition (14) in Lemma 1 is violated. 

Step 4 - Nondifferentiable equilibria. Finally, we rule out that equilibria are 
PAM but nondifferentiable. Let irk(y) = maxp7r(y, p, Gk,Hk) denote the 
equilibrium profit of seller y, that is, the value of program (4). In the pre- 
vious proof of Proposition Al, the indifference condition (27) which defines 
auxiliary utility Vk(x) can be restated as TI(x, y'Vk(-)) = irk(y) or 

(29) maxm(A)/(jc, y) - 'Vk(x) = irk(y). 

Note that the maximizer of the left-hand side (LHS) of (29) is used in (28) in 
the previous proof. We are done if we can show that there exists k such that the 
maximizers of the LHS of (29) lie in [Ài , A2] for all x e Xk and any y e yk . Then 
analogous arguments as in the proof of Proposition Al establish that there has 
to be negative assortative matching since the cross-partial in (28) is negative, 
ruling out PAM. 

To show the missing part, recall that the equilibrium profits irk(y) across 
sellers in yk becomes nearly identical for large k (see previous Step 3). Since 
profits lie in a bounded set, there exist limit point tt^ and a subsequence such 
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that for any £, the distance between the equilibrium profit 7rk(y) of any y e yk 
and TToo are less than £, as k becomes sufficiently large. This convergence of 
the RHS of (29) and the vanishing differences between buyer types mean that 
there is a subsequence for which Vk{x) approaches some limit value Vœ arbi- 
trarily close for all x e Xk and any y e yk. Since Vk{x) converges to Vœ and 
the support of buyer types shrinks to x, the queue lengths that maximize the 
LHS of (29) have to converge. Finally, observe that they have to converge to 
a value within [Ài, À2] as we will now show. The profit irk(y) can by (5) be 
written as maxXtxm(')f(x,y) - XU(x, Gk,Hk). Let (x*k, ÀJ) be the equilib- 
rium type and equilibrium queue length which maximize this expression. Since 
equilibrium queue lengths lie in [Ài, À2] for large k as shown in Step 3, we have 
ÀJ e (Ài, À2) for k large enough. Since all maximizers of the LHS of (29) con- 
verge, and Á*k is such a maximizer (for x*k), all maximizers converge to the limit 
of À* that lies within (Ài, À2). Q.E.D. 

Proof of Proposition 1: (i) Given search technology ra, let a' - '~ã + 'a_ 
and a2 = §5+ 'a. Choose Ài and À2 such that a{') <e [aÌ9 a2] for all À e [Ài, À2]. 
Consider f(x, y) = (x + y + l)^+n2)/2 This function is ̂ -root-supermodular 
but nowhere n-root-supermodular, where n2 = (1 - a2)~l and n = (1 - a)"1. 
Now consider a sequence of distributions Bk and Sk with support on [0, ek], 
with Bk{ek) = ' and Sk{sk) = 2/(Ài + À2). Analogous arguments as in Steps 2- 
4 in the proof of Proposition A2 show that all agents desire trade at a queue 
lengths in (Ài, À2), and /í2-root-supermodularity implies PAM. This establishes 
the first part. Part (ii) can be established analogously, with preference function 
f(x, y) = (x + y + iyn+n^29 where nx = (1 - axyl and n = (l- a)~l. Q.E.D. 

Proof of Proposition 2: We prove the result for positive sorting; the 
proof for negative sorting is analogous. We construct a positively assorted dif- 
ferentiable equilibrium (G, H) in three steps: First we explore necessary con- 
ditions that restrict the connection between the queue length, the assignment, 
and the price that different seller types face in equilibrium. Then we "reverse- 
engineer" the associated equilibrium (G, //), and, finally, we check that the 
equilibrium conditions are indeed met. 

Step 1 - Exploiting necessary conditions. Rather than consider equilibrium 
distributions (G, H) directly, we reverse-engineer them by exploiting first some 
necessary conditions about the relationship between the queue length A(y) 
[formally A(y, p(y))], the assignment¿i()0, and the price p(y) in a differen- 
tiate equilibrium. 

First, the buyer-seller ratio integrated over a range of seller types equals the 
number of buyers that choose these types (as required by the Radon-Nikodym 
derivative), which relates Ato /jl via fy A(-)dS = f*(y) dB. This yields 

(30) jjLf(y) = s(y)A(y)b(fi(y)yl. 
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568 J. EECKHOUT AND P. KIRCHER 

Second, A and ¡i are linked via the first-order conditions given in (6) and 
(7) for some positive and increasing function U(y). From (6) and (7) we can 
derive (11), which together with (30) yields 

(31) A'y) = 
-m,Wy))filL{y)9y) 

¡(A(y)m'A(y))-m(A(y)))s(y). x L 
 

iwyñ  fAMyhy) 

+ mf(A(y))fy(fi9y)'. 

Third, A and ¡a are linked via two boundary conditions. Intuitively, the lowest 
active seller type, that is, the lowest type x0 that does not take the outside 
option, has to obtain at least as much utility as the outside option of zero and 
has to get exactly zero if x0 > x; otherwise, lower types would get more by 
becoming active. A similar logic holds for the lowest seller type y0 that trades 
in equilibrium. Therefore, the boundary buyers' equilibrium utility [given in 
(6)] and the boundary sellers' equilibrium profits [given by (6) substituted into 
(5)] have to satisfy 

(32) mf(A(yo))f(fji(yo),yo)>O with equality if /¿0>o) > x, 

(33) [m(A(y0)) - A(yo)mf(A(yo))]f(n(yo), y0) > 0 

with equality if y0 > y. 

Equations (30) and (31) together constitute a differential equation system 
in A,/¿. One initial condition is /ji(y) = x. Given a second initial condition 
on the queue length at the top seller, A(y) = A e (0, oo), the system uniquely 
determines A(y) and ¡x{y) (in the direction of lower y) at all y down to some 
limit point )>o(A). This limit point is characterized either by }>o(A) = y, or by 
/¿(>b(Ã)) = x, or by lim^^ A(y) = 0, or by lim^^X) A(y) = oo, whichever 
arises first. Since the lower bound has to satisfy (32) and (33), this imposes 
restrictions on the free parameter A. We can show (the proof is available in the 
working paper version of the paper) that there exists an initial condition Ã e 
(0, oo) such that the resulting y0W, A(jo(Ã)), and jJL(yo(X)) fulfill boundary 
conditions (32) and (33). For the following discussion, consider such a A, which 
fixes the associated solutions A and jjl to (30) and (31), and fixes associated 
boundary types y0 and x0 = fi(y0) uniquely. 

The price function p(y) for each type y > y0 can then be reconstructed 
since the profit m(A(y))p(y) has to equal the constructed profits given 
by (6) substituted into (5), yielding after division by m(A(y)) that p(y) = 
[1 - A(y)m'(A(y))/m(A(y))]f(fji(y),y). For types below y0, note that y0 > 
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y implies by (32) that A(y0) = lim^^ X(y) = 0, which implies p(yo) = 

lim^^ p(y) = 0 since limA^om(A)/A = mf(0) and, therefore, lim^^ A(y) x 
m'(A(y))/m(A(y)) = 1. Note that the finite limit 'imA^om(A)/A = m'(0) 
indeed exists: finite m'(') exists by assumption for A > 0, is monotone 
(by m"(') < 0), and is bounded (by ra'(A) < 1, as otherwise limA^0<7(A) = 
limA_>o^(A)/A = limx_+omf(') > 1, which violates q(') g [0, 1]). The bound- 
ary seller does not obtain any buyers even at a zero price, and all types below 
him also obtain no buyers independent of the price they charge because their 
quality is also too low. So we can set p(y) = 0 for all y < y0. 

Step 2 - Recovering the equilibrium (G,H). The equilibrium distributions 
(G, H) can now be constructed from the /x, and p functions derived in the 
first step. Consider the sellers first. We integrate all of them that offer prices 
below p as derived in the previous step: 

ry 

G(y,p)= / s(y)I[pCy)<p]dy, 
ho 

where / is an indicator function that takes the value of 1 if the qualifier in 
square brackets it true and takes the value 0 otherwise. Clearly, Gy - S by 
construction, as required. Next consider the buyers. Types below xq choose 
their outside option 0. That is, at any price p > 0 these types trade below (by 
our convention in footnote 5) and, therefore, have mass B(x). Therefore, for 
all x < x0 we have H(x, y, p) = B(x) for all (y, p) e (y x V) U {0}. For all 
buyers with x > x0 we have H(x, 0) = B(x0) and for all other (y, p) e y xP, 

fy 
(34) H(x, y,p)= / b{^{y))I[txCy)sx]I[pCy)<p] dy + B(x0). 

Jyo 

Clearly Hx = B, as required. 
Step 3 - Checking the equilibrium conditions. By construction, the function 

A(y) as constructed in the first step coincides with a Radon-Nikodym deriva- 
tive AGH(y, p) of G with respect to H along all (y, p{y)). Also, the function 
£/(•) in the first step coincides with £/(•, G, H) by construction. To check that 
(G, H) is indeed an equilibrium, we can extend AGH to the entire domain by 
(3) and check the equilibrium conditions (i) and (ii). 

Condition (i) amounts to verifying that no seller y wants to deviate and offer 
a different price than p(y) constructed above (because (y, p(y)) are the only 
combinations in the support of G), which is equivalent to checking that no 
seller has a profitable deviation from (/Li(y), A(y), p(y)) in (4). Additionally, 
condition (ii) requires us to check that no buyer ¡x{y) wants to deviate and 
trade at some combination other than (y, p(y)) (again (fji(y), y, p{y)) are the 
only combinations in the support of H, except for those buyers below x0 for 
which we have to check that they do not want to trade at all). 

The verification is facilitated by the observations that if sellers do not have 
an incentive to deviate, then buyers have no incentive to deviate. This follows 
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directly from the fact that a profitable deviation for buyers means that, in pro- 
gram (4), sellers can make higher profits. (Another way to see this is that (31) 
is exactly the buyers' envelope condition.) Moreover, for the sellers, we only 
have to consider types in [y0, J], If there are seller types below y0, these types 
do not have a profitable deviation because, by boundary condition (33), type y0 
makes zero profits and we will verify that he does not have a profitable devia- 
tion despite being a higher type. 

For types in [yo,y] we know that (n(y), A(y),p(y)) constructed above is 
indeed a local maximum in (4), because n-root-supermodularity implies that 
the Hessian (8) is negative definite. We now establish that the solution is a 
global maximum. Consider a seller y with assigned buyer type x, that is, x = 
¡¿(y). Now suppose there is another buyer x' = /¿(/), different from x, which 
is optimal for y, that is, x' satisfies the necessary first-order conditions (6) and 
(7) for optimality for seller y (together with for some queue length).18 Since 
(x', y) fulfill both (6) and (7), they satisfy the generalization of (6), 

(35) q(q(x' y))fx(x' y) - £/'(*') = 0, 

where ç(*', y) is defined as the queue length such that A(y) = g(xf, y) solves 
m'(A(y))f(xf, y) - U(xf) = 0 in analogy to (7). Now suppose that x' > x, which 
implies y > y; the opposite case is analogous. Since fi(yf ) = x' these types also 
fulfill (6) and (7) by our construction in Step 1; therefore, they fulfill also 

(36) q(ç(x' /))/,(*', y') - U'xf) = 0. 

We rule out that both (35) and (36) are satisfied simultaneously by showing 
that q(ç(x', y))fx(x' y) is strictly increasing in y. The derivative of this expres- 
sion with respect to y, together with implicit differentiation of (7) to recover 
<M*'> y)/ày> is strictly positive if and only if 

fxy(x', y) > a(s(x' y))fy(x' y)fx(x', y)f(x' y)~' 

which is ensured by n-root-supermodularity (where n - (1 - a)"1). This im- 
plies that the solution to the first-order condition in (6) and (7) is a global 
maximum. Q.E.D. 

Proof of Proposition 3: Trade in pairs requires 'q(X) = m(A). There- 
fore, q"(') = [m"(A) - 2<7'(A)]A"1. Then |<f (0)| < oo implies m"(0) = 2^(0). 
Together with ̂ (0) ^ 0, this implies ra"(0) # 0. Use À#(À) = m(À) to 
write (13) as a{k) = m'(')q'(')/(m"{'.)q(k)) and substitute to get a(0) = 
m'(0)/(2q(0)). Since <?(()) = limÁ_+om(')/' = mr(0), one obtains a(0) = 1/2. 

18This argument assumes x' satisfied x' = ¡x{y') for some /, which does not hold if x' < x0. 
Note that in the case x' < x0, both types x' and jc0 obtain zero utility (see (32)), and seller y is at 
least as well off according to (4) by attracting jc0 as by attracting x '. For x0 it holds that /x(y0) = x0. 
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Further, a(X) < 1/2 for all A if and only if q(Á)~l is convex: since q{')~x = 
Ara(A)"1, we have (suppressing the argument of m) (Am"1)'' = '2m~3[-m"q + 
2m' q']. This is positive if and only if -m"q + 2m q' > 0 or, equivalently, 
fl(A) = m'q'/{m"q) < 1/2. Q.E.D. 

Proof of Proposition 4: We first show that the planner's assignment co- 
incides with the equilibrium assignment if it is positive assort ative. Then we 
sketch why root-supermodularity implies the associated direction of sorting by 
showing that it induces the direction locally (the full proof for global assorta- 
tive matching is available on request). 

Assume that H in the planner's solution is assortative, that is, it permits /jl 
that is strictly monotone. Since Hxy{^{y), y) = B(y) and Hx = B, all the mass 
is concentrated only on (/x(y), y) pairs. For a given (/x(y), y) pair, the concav- 
ity of the matching function implies that it is optimal if all of these agents trade 
at the same queue length A(y) [formally, A(y, p(y)) for some p(y)].19 Since 
all mass is only concentrated on (¡¿(y), y) pairs, the constraints can be conve- 
niently summarized by a single constraint fyA(-) dS = 1 - J5(/x(y)) in case of 

positive sorting and f A(-) d S = B{¡x{y)) in case of negative sorting. For given 
(G, //), there is almost everywhere a unique A fulfilling this constraint, and a 
given A yields unique ¡x and, thus, a unique (G, H) [for the given p(y)] as can 
be seen by the analogous construction in Step 2 of the existence proof. The 
planner can, therefore, directly control A, which by the constraint governs the 
assignment /x, leading to the much simpler control problem 

(37) max f s(y) • m(A(y)) • f(li(y),y)dy, A^ Jy0 
s.t. ¡jLf(y) = ±s(y)A(y)/b(iL(y)), 

where the sign on the constraint is positive for positive sorting and negative for 
negative sorting, y0 denotes the lowest type that is assigned to buyers by the 
planner. 

The Hamiltonian to problem (37) is: 

(38) H(y, A, /i) = s(y) • m(A) • /(/*, y) + 4>- s{y)A/b{^), 

where <f> is the multiplier. 

19Formally, the objective in (18) can be written as maxGiH f q{AGH(y, p))f(fi(y),y)dHyv, 
which is equivalent to maxG)// f m(AGH(y, p))f(jJL(y), y)dG by the third constraint. This prob- 
lem is equivalent to maxG,// / m(A(y))f(iJL(y), y) dGy, such that Gy = S,HX = B and A = 
dHy/dGy where A(y) := f AGH(y, p)dG(p'y), since the concavity of m always makes it op- 
timal to assign the average queue length. 
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The optimality conditions of the Hamiltonian satisfy: 

A: ?a=m>(A).nv.,y) dA + -£-=0, d(/jl) dA d(/jl) 

fi: ^ = s(y) • m(A) • fxfr, y) - cf> • s(y)A^- = -</>'. 

Defining A(/ji(y)) = - *(J° , the optimality conditions can be written a 

(39) m'(AOO) • /(MOO, y) = ^0*00), 

(40) ?(A(>0) - /,(/*(*), y) = A'(p(y)). 

These equations are identical to first-order conditions (6) and (7) of the de- 
centralized economy with appropriate reinterpretation of the variables. 

To establish that the solution to this program is identical to the solution of 
the decentralized economy, focus on the case of positive sorting (the alter- 
native case follows analogous steps). The planner's boundary conditions are 
the following: at the upper bound, assortative matching means that /¿(y) = x; 
at the lower bound, observe that it is never optimal to assign lower types if 
higher types have matching probability zero. Therefore, A(y) = 0 or A(y) = oo 
only at y = y0. Moreover, obviously y0 > y and fi(yo) > x. Therefore, the plan- 
ners' problem has the same boundary conditions as the decentralized equilib- 
rium. In the proof of existence (Proposition 2), we showed that under n-root- 
supermodularity for n = (1 - a)~l any solution of these first-order conditions 
and the boundary solutions constitutes an equilibrium when integrated up to 
the corresponding distributions (G, //). 

Finally, we sketch why the planner's solution is positive assortative if / is 
n-root-supermodular with n = (1 - 5)"1. Assume that the planner's solution 
locally yields a differentiable assignment: on some subset of X x y, the dis- 
tribution H fulfills HXy(/jL(y), y) = B(x) for some function ¡jl that is differen- 
tiable. Optimality still requires that ¡x! satisfies (38) and associated optimality 
conditions (39) and (40). Yet to maximize the Hamiltonian, the second-order 
condition must be satisfied: (39) and (40) are identical to (6) and (7) under 
appropriate relabeling of variables, and the second-order condition therefore 
reduces to (14), which requires positive sorting. This rules out locally decreas- 
ing assignments. A tedious proof that extends this logic globally is available 
from the authors. Q.E.D. 

Proof of the Equilibrium Price Schedule: In a differentiable as- 
sortative equilibrium with price function p(y), assignment function fi(y), 
and queue length A(y) [formally A(y, p(y))]9 the equilibrium buyer utility 
U(fji(y)) = q(A(y))[f(fji(y), y) - p(y)] can be totally differentiated to get 

(41) Uy = A'q'[f - p] + q{fxlL' + fy - p'), 
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where we suppressed all arguments. Note further that firms' equilibrium prof- 
its can be recovered by substituting (6) into (5), yielding [m - Am']f. Equat- 
ing this to the definition of expected profits as trading probability times price 
(i.e., mp), we obtain the price schedule p(y) along the equilibrium path as 
p = [1 - Am' /m]f = [1 - r}m]f. Substituting this and (6) into (41), we get af- 
ter canceling terms that 0 = q'r'mAff + q[fy - p']. We can solve this for p'' 
use (11) to substitute out A'f and use the fact that a = m'q' /(m"q) to get, af- 
ter rearranging, that p' = fy + a[fxfif(m/A - mf)r)m/mf - (1 - Vm)fyl Since 
[m/A - m'}7]m/m' = 1 - rym, we obtain (17). Q.E.D. 
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