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SORTING AND DECENTRALIZED PRICE COMPETITION

BY JAN EECKHOUT AND PHILIPP KIRCHER!

We investigate the role of search frictions in markets with price competition and
how it leads to sorting of heterogeneous agents. There are two aspects of value cre-
ation: the match value when two agents actually trade and the probability of trading
governed by the search technology. We show that positive assortative matching obtains
when complementarities in the former outweigh complementarities in the latter. This
happens if and only if the match-value function is root-supermodular, that is, its nth root
is supermodular, where n reflects the elasticity of substitution of the search technology.
This condition is weaker than the condition required for positive assortative matching
in markets with random search.

KEYWORDS: Competitive search equilibrium, directed search, two-sided matching,
decentralized price competition, complementarity, root-supermodularity, sorting.

1. INTRODUCTION

WE ADDRESS THE ROLE OF SEARCH FRICTIONS in the classic assignment prob-
lem when there is price competition. We are interested in a simple condition
for positive assortative matching (PAM) that exposes the different forces that
induce high types to trade with other high types. In the neoclassical benchmark
(Becker (1973), Rosen (1974)), there is full information about prices and types,
and markets clear perfectly. Supermodularity of the match value then induces
PAM. At the other extreme, Shimer and Smith (2000) assumed that there are
random search frictions, and agents cannot observe prices and types until after
they meet. They derived a set of conditions that ensure PAM and that jointly
imply that the match value is log-supermodular. In this paper, we consider a
world with search frictions, yet there is information about prices and types. This
circumvents the feature of the random search model that agents necessarily
meet many trading partners that they would rather have avoided. Heteroge-
neous sellers compete in prices for buyers, and we find that sorting is driven by
a simple efficiency trade-off between the gains from better match values and
the losses due to no trade. The former are captured by complementarities in
the match value, which have to offset complementarities in the search tech-
nology as measured by the elasticity of substitution. This economic trade-off
establishes that PAM occurs for all type distributions if and only if the match
value is root-supermodular, that is, its nth root is supermodular where » de-
pends on the elasticity of substitution of the search technology. This condition
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is weaker than log-supermodularity and has a transparent economic interpre-
tation.

The key ingredients of our model are diversity, market frictions, and price
competition. Diversity is the hallmark of economic exchange. People have dif-
ferent preferences over goods and are endowed with diverse talents. Such di-
verse tastes and endowments lead to different market prices that are driven
by the supply and demand of each variety. Spatially differentiated goods like
houses, for example, are priced depending on the characteristics of the occu-
pants, location, and the dwelling itself. Assets in the stock market are differ-
entiated depending on many characteristics, most notably mean and variance.
In labor markets, salaries vary substantially depending on the experience and
skill of the worker and on the productivity and safety of the job. While cen-
tralized price setting (see Rosen (2002), for an overview) adequately captures
environments such as the stock market, in many other environments trading is
decentralized and frictions are nonnegligible. In the labor market, for exam-
ple, unemployment is a natural feature; in the housing market, several months
delay in finding a buyer is usual.

To captures these features, we consider a decentralized market framework
with search frictions, yet with price competition. This framework is known as
directed search or competitive search. Sellers have one unit for sale and buy-
ers want to buy one unit. Think of “locations” or “submarkets” indexed by
the quality of the product and the trading price. Sellers of a particular qual-
ity choose the location with the price they want to obtain. Buyers observe the
sellers at the various locations and decide at which location they would like to
trade, that is, which quality—price combination to seek. At each location there
remain search frictions that prevent perfect trade: When the ratio of buyers to
sellers at a location is high, then the probability of trade is high for the sellers
and low for the buyers. Observe that the location metaphor is used for simplic-
ity but is not crucial (e.g., in Peters (1991, 1997a) buyers choose an individual
seller with the desired quality-price announcement, but sometimes multiple
buyers choose the same seller and not all can trade). Prices guide the trading
decisions just like in the Walrasian model of Becker (1973) and Rosen (1974),
only now the possibility that a person cannot trade remains an equilibrium fea-
ture that is taken into account in the price setting. One novelty of our setting
relative to the earlier directed search literature is that it is designed to handle
rich (continuous) type distributions on both sides of the market.

We identify the economic forces that drive the sorting pattern, and provide a
necessary and sufficient condition on the strength of supermodularity that en-
sures positive assortative matching. The key economic insight is that the cre-
ation of value can be decomposed into two sources: the complementarity in
the match value upon trading and the complementarity in the search technol-
ogy. In the Walrasian framework, only the first source is present. When both
are present, they trade off against each other: the first leads toward positive
assortative matching; the second leads toward negative assortative matching.
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If the former outweighs the latter, positive assortative matching obtains. We
can summarize the necessary and sufficient condition required for PAM by
root-supermodularity of the match-value function, that is, the nth root of the
match-value function is supermodular. The magnitude of » is determined by
the upper bound of the elasticity of substitution of the search technology. Sim-
ilarly, match values that are nowhere n-root-supermodular lead to negative
assortative matching (NAM), where n now denotes the lower bound of the
elasticity of substitution in the search technology.

The economic intuition of this trade-off between frictions and complemen-
tarities in match values is transparent in terms of the fundamentals of the econ-
omy. In the absence of any complementarities, sorting is not important for the
creation of match value. The key aspect is “trading security,” that is, to ensure
trade and avoid frictions. High-type buyers would like to trade where few other
buyers attempt to trade. This allows them to secure trade with high probabil-
ity and they are willing to pay for this. While sellers know that they might be
idle if they attract few buyers on average, some are willing to do this at a high
enough price. The low-type sellers are those who find it optimal to provide this
trading security, as their opportunity cost of not trading is lowest. This results
in negative assortative matching: high-type buyers match with low-type sellers.
In the directed search literature, Shi (2001) was the first to highlight for a spe-
cific search technology that supermodularity is not enough to ensure positive
assortative matching. Here, we address in a general context the extent of the
complementarities required for positive assortative matching and we isolate
the economic forces that govern such sorting.?

How much supermodularity is needed—how fast marginal output changes
across different matched types—depends on how fast the probability of match-
ing changes when moving across different types with different buyer-to-seller
ratios. The change in the matching probability is captured by the elasticity of
substitution of the search technology. The elasticity of substitution measures
how many more matches are created as the ratio of buyers to sellers increases.
If it is high, then matching rates are very sensitive to the buyer-seller ratio and
submarkets with lots of low-type sellers make it easy for the high-type buyers to
trade, while submarkets with lots of low-type buyers make it easy for the high
seller types to trade. The “trading-security” motive is important since the gains
from negative sorting are large, and positive sorting only arises if the match
value improves substantially when high types trade with high types rather than
low types. If the elasticity of substitution in the search technology is low, then
it is difficult to generate additional matches for the high types and even moder-
ate strength of the match value motive will offset the tendency to seek trading
security.

The exact level of supermodularity required for positive sorting can be ex-
pressed by requiring a concave transformation of the match value to be su-

2We relate our findings to Shi’s (2001) insight in greater detail in Section 6.
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permodular. In particular, it can be summarized by the (relative) Arrow—Pratt
measure of the transform, which has to be as large as the elasticity of substi-
tution of the search technology. The latter is in the unit interval, so the as-
sociated transform is the nth root, where n depends on the exact magnitude
of the elasticity of substitution. The root-supermodularity condition therefore
neatly summarizes the trade-off between complementarity in match value and
the elasticity of substitution of the search technology.

For PAM our condition is weaker than log-supermodularity required in ran-
dom search models such as Shimer and Smith (2000)* and Smith (2006). The
key difference is that our framework allows agents to seek the quality and
price they desire. This leads to a rather simple and straightforward condi-
tion for sorting. It requires a lower degree of complementarity in the match
value to overcome the search frictions. Only when the search technology ap-
proaches perfect substitutability is log-supermodularity needed. Our condition
for positive assortative matching therefore falls in between those for friction-
less trade of Becker and random search. Yet, when it comes to negative assor-
tative matching, our results differ substantially. Match values that are nowhere
n-root-supermodular induce negative sorting. In particular, this is the case
for any weakly submodular match-value function. If the matching technology
never approaches perfect complementarity (this excludes the urn-ball search
technology), then there are strictly supermodular match-value functions such
that negative sorting arises for any distribution of types. To our knowledge,
this is new in the literature on sorting with or without frictions. In compari-
son, negative assortative matching obtains only under stronger conditions both
in the frictionless case (strict submodularity) and with random search (log-
submodularity).

Our requirement of root-supermodularity is necessary and sufficient to en-
sure positive assortative matching if we allow for any distribution of types. It is
binding when the buyer-seller ratio in some market induces the highest possi-
ble elasticity of substitution of the search technology. For some distributions,
this is not a binding restriction, and in this case there are match value functions
with less complementarity that nonetheless induce positive assortative match-
ing. In that sense, our condition is one of weak necessity. Likewise, the condi-
tion that ensures negative assortative matching for any distribution of types is
stringent, requiring, for example, the absence of any complementarities for the
case of urn-ball matching. Again, we show that for many search technologies
(such as urn-ball) there exist particular distributions for which weaker require-
ments suffice.

3The models are not immediately comparable partly because random search requires a
set based notion of assortative matching, while the frictionless benchmark and our model do
not. Note also that the conditions in Shimer and Smith (2000) include log-supermodularity
even of first and cross-partial derivatives, but not log-supermodularity. However, coupled with
monotonicity as assumed throughout our model, log-supermodularity is implied by their condi-
tions. We discuss the relation to Shimer and Smith (2000) and other work in Section 6.
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Our results hold for very general search technologies and match values. Yet,
it turns out that a large class of widely used search technologies has a common
condition, that of square-root-supermodularity. This is the case for any search
technology that has bounds on its derivatives at zero and some curvature re-
striction, for example, the urn-ball search technology. In this class, the value
of the elasticity at zero is always one-half. In contrast, the constant elasticity of
substitution (CES) search technology satisfies the Inada conditions and, there-
fore, does not have bounded derivatives. Because its elasticity of substitution
is constant, it separates the range of positive and negative sorting exactly.

Finally, we establish existence of a sorting equilibrium and show efficiency,
that is, the planner’s solution can be decentralized. While the efficiency prop-
erties of directed search models are well known (see, e.g., Moen (1997), Ace-
moglu and Shimer (1999b), and Shi (2001)), we discuss in particular the con-
nection of our condition to the well known Hosios condition. Hosios’ (1990)
original contribution considers identical buyer and seller types, and relates the
first derivative of the aggregate search technology to the match value. In our
setting, this holds for each submarket. With heterogeneity, agents have a choice
of which submarket to join. Our root-supermodularity condition ensures effi-
cient sorting across submarkets by relating the elasticity of substitution of the
aggregate search technology to the complementarities in the match value.

In the discussion section, we relate our model to existing results in the search
literature. We discuss directed and random search, and the relationship of our
model to the large literature on the foundations of competitive equilibria as
limits of matching games with vanishing frictions. We consider a convergent
sequence of search technologies in our static economy such that, in the limit,
the short side of the market gets matched with certainty. To our knowledge,
considering vanishing frictions as the limit of a sequence of static search tech-
nologies is new in this literature on foundations of competitive equilibrium. In
the conclusions, we also highlight that our results do not only apply to search
markets, but also shed some initial light on sorting in many-to-many matching
markets.

2. THE MODEL

We cast our model in the context of a generic trading environment between
buyers and sellers, as is often done in the directed search literature. This en-
vironment includes the labor market and many other markets with two-sided
heterogeneity and search frictions. Our setup is chosen to be as general as pos-
sible and to encompass a broad class of different search technologies.

Players: There is a mass of heterogeneous sellers who are indexed by a type
y € Y that is observable. Let S(y) denote the measure of sellers with types
weakly below y € V. We assume Y = [y,y] C R, and that S(y) denotes the
overall measure of sellers. Each seller has one good for sale. On the other

This content downloaded from 130.91.174.5 on Thu, 25 Jul 2013 13:55:50 PM
All use subject to JSTOR Terms and Conditions



http://www.jstor.org/page/info/about/policies/terms.jsp

544 J. EECKHOUT AND P. KIRCHER

side of the market there is a unit mass of buyers. Buyers differ in their val-
uation for the good, which is private information. Each buyer draws his type
x independently and identically distributed (i.i.d.) from distribution B(x) on
X =[x,%X] CR,. S and B are C?, with strictly positive derivatives s and b, re-
spectively. It is convenient to think of a continuum of agents of each type, and
of b(x) and s(y) as the size of the group of type x buyers and type y sellers.

Preferences: The value of a good consumed by buyer x and bought from seller
yis given by f(x, y), where f is a strictly positive function f :R? ->R,,. Condi-
tional on consuming and paying a price p, the utility of the buyer is f(x, y) — p
and that of the seller is p. That is, agents have quasilinear utilities. We discuss
broader preferences for the seller in the conclusion. We assume that f is twice
continuously differentiable in (x, y). We consider indices x and y that are or-
dered such that they increase the utility of the buyer: f, > 0, f, > 0. The utility
of an agent who does not consume is normalized to zero. Clearly, no trade
takes place at prices below zero and above f(X,y), and we define the set of
feasible prices as P = [0, f(x, y)]. All agents maximize expected utility.

Search Technology: The model is static.* There are search frictions in the
sense that with positive probability, a buyer does not get to match with the
seller he has chosen. The extent of the frictions depends on the competition
for the goods. We capture this idea of competition by considering the ratio of
buyers to sellers, denoted by A € [0, oo], and refer to it as the expected queue
length. This ratio varies in general with the quality of the good offered and
the price posted. When a seller faces a ratio of A, then he meets (and trades
with) a buyer with probability m(A). The idea that relatively more buyers make
it easier to sell is captured by assuming that m:[0, co] — [0, 1] is a strictly
increasing function. Analogously, buyers who want to trade at a price-quality
combination that attracts a ratio A of buyers to sellers can buy with probability
q(A), where q:[0, oo] — [0, 1] is a strictly decreasing function: when there are
relatively more buyers, it becomes harder for them to trade. Trading in pairs
requires that g(A) = m(A)/A. We additionally impose the standard assumption
that m is twice continuously differentiable, strictly concave, and has a strictly
decreasing elasticity.

Examples of Search Technologies: There are many ways to interpret and pro-
vide a microfoundation for the search technology. The most common one
arises when buyers directly choose a seller but use an anonymous strategy in
their selection. That means that once they decide on the quality—price com-
bination, they choose one of the sellers with these characteristics at random.
In a large market with many buyers and sellers, the probability that a seller
has at least one buyer and can trade is approximately m;(A) =1 — e~*. This
search technology was first proposed by Butters (1977) (see also Peters (1991),
Shi (2001), Shimer (2005)). Variations of this specification arise naturally, for

“We discuss our findings for steady states of a repeated model in the conclusion. See also our
working paper version.
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example, when a fraction 1 — B of the buyers gets lost on the way to the sellers,
we have m,(A) =1 — e #*, Alternatively, if, at each price—quality combination,
agents form pairs randomly, but trade only occurs when a seller is paired with
a buyer (in the spirit of Kiyotaki and Wright (1993)), the matching probability
is my(A) = A/(1+A).

Extensive Form and Trading Decisions: The extensive form of the market in-
teraction has two stages. In stage 1, all sellers simultaneously post a price p at
which they are willing to sell the good. In stage 2, after observing the sellers’
qualities and their posted prices (y, p), buyers simultaneously decide where
to attempt to buy, that is, each buyer chooses the quality—price combination
(y, p) that she seeks. A buyer for whom all the prices p are too high can al-
ways choose the option of no trade, denoted by @.> A buyer who gets matched
consumes the good and pays the posted price. Whether a buyer gets matched
with a seller is determined by the search technology. This two-stage extensive
form is in the spirit of, for example, Peters (1991, 2000) and Acemoglu and
Shimer (1999a, 1999b). We denote by G(y, p) and H(x, y, p) the distribution
of trading decisions of sellers and buyers, that is, G(y, p) is the measure of
sellers who offer a quality—price combination below (y, p), and H(x, y, p) is
the measure of buyers with types below x who attempt to buy a quality—price
combination that is below (y, p).

For many subsequent discussions, the marginals of these distributions are
important; we denote them with subscripts. For example, H x(x) is the fraction
of buyers with type below x and Hy»(y, p) is the fraction of buyers that search
for a quality below y at a price below p. We impose the following two require-
ments. First, we require Gy, = S and H, = B, that is, the measure of traders
coincides with the distribution in the population. Second, we require Hyp to
be absolutely continuous with respect to G, which means that if there are no
sellers who have chosen prices in some set, then no buyers will try to buy from
that set. This will enable us to use the Radon-Nikodym derivative below.

Equilibrium: Our equilibrium concept follows the literature on large games
(see, e.g., Mas-Colell (1984)), where the payoff of each individual is deter-
mined only by his own decision and by the distribution of trading decisions
G and H in the economy, which in turn have to arise from the optimal deci-
sions of the individual traders.® To define the expected payoffs for each agent
given G and H, let the function Agy:) x P — [0, oo] denote the expected
queue length at each quality-price combination. Along the support of the
sellers’ trading distribution G it is given by the Radon-Nikodym derivative

5To make the choice of no trade consistent with the rest of our notation, let @ = (¢, 8,), where
@, < y denotes a nonexistent quality and #, < 0 denotes a nonexistent price, and the trading
probability at @ is zero.

%We are grateful to Michael Peters for pointing out to us this approach, which brings the com-
petitive search model in line with the standard game theoretic approach to large markets.
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Agy =dHyp/dG." Along the support of G, we can define the expected payoff
of sellers as

)] w(y, p, G, H) =m(Agu(y, p))p

and the expected pay off of buyers as

(2 u(x,y, p,G,H)=q(Acu(y, p)If(x,y) — pl.

So far the payoffs are only determined on the path of play, since the buyer—
seller ratio Ay is only well defined there. We extend the payoff functions by
extending the queue length function Agy to all of Y x P. A seller who con-
templates a deviation and offers a price different from all other sellers, that
is, (y, p) ¢ supp G, has to form a belief about the queue length that he will
attract. We follow the literature (e.g., McAfee (1993), Acemoglu and Shimer
(1999b), Shimer (2005)) by imposing restrictions on beliefs in the spirit of sub-
game perfection: the seller expects a queue length Agy(y, p) larger than zero
only if there is a buyer type x € X who is willing to trade with him. Moreover,
he expects the highest queue length for which he can find such a buyer type,
which means that he expects buyers to queue up for the job until it is no longer
profitable for them to do so. Formally, that means that

(3) Agu(y, p) = Sup[/\ eR,:

Ix; g M[f(x,y)—P]1> max u(x,y,P,G, H)]

(¥, p')esuppG

if that set is nonempty and Agy(y, p) = 0 otherwise. This extension defines
the queue length and thus the matching frictions and payoffs on the entire
domain.® Here the queue length function Agy acts similar to Rosen’s (1974)
hedonic price schedule in the sense that individuals take this function as given,
and an equilibrium simply states that all trading decisions according to G and
H are indeed optimal given the implied queue lengths.

DEFINITION 1: An equilibrium is a pair of trading distributions (G, H) such
that the following conditions hold:
(i) Seller Optimality: (y, p) € supp G only if p maximizes (1) for y.

"On the support of G, the Radon-Nikodym derivative is well defined, up to a zero measure
set: any two derivatives coincide almost everywhere. To achieve everywhere well defined payoffs
in (1) and (2), assume some rule that selects a unique Agy on supp G for each (G, H). For our
existence proof, we require the selection to be continuous and differentiable wherever possible
on supp G, as this will select the derivative that we construct.

8For particular microfoundations of the matching function in an economy with one-sided het-
erogeneity, Peters (1991, 1997a, 2000) showed that the specification of the matching frictions in
(3) indeed arises the equilibrium path after a deviation by an individual seller.
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(ii) Buyer Optimality: (x, y, p) € supp H only if (y, p) maximizes (2) for x.

Assortative Matching: Our main focus is on the sorting of buyers across sell-
ers. In ex ante terms, an allocation is not one-to-one since the ratio of buy-
ers to sellers is, in general, different from 1. Therefore, we define sorting in
terms of the distribution of visiting decisions of buyers H. Consider active
buyer types x who choose to be in the market rather than taking their outside
option ((x, ) ¢ supp H). We say that H entails assortative matching if there
exists a strictly monotone function v that maps these buyer types into ) such
that H x, (x, v(x)) = B(x) for all active buyer types. This means that v(x) is the
seller type with which buyer type x would like to trade. We say that matching
is positive assortative if » is strictly increasing and is negative assortative if it
is strictly decreasing. Since v is strictly monotone, it is uniquely characterized
by its inverse u = v~', where u(y) denotes the buyer type that visits seller y.
Throughout we will consider this inverse and call it the assignment.

3. THE MAIN RESULTS

In equilibrium, an individual seller of type y takes the trading distributions
G and H as given, and according to part (i) of the equilibrium definition, his
pricing decision solves max, m(Agu(y, p))p. This seller can set a price that
does not attract any buyers (Agy(y, p) = 0) or he can set a price that attracts
buyers (Agy(y, p) > 0) and we can substitute (3), which holds by assumption
outside the support of G and also by equilibrium condition (ii) on the support
of G. Therefore, the seller’s problem can be written as

n}e!l,X{m(A)p:/\ =sup{X':3x; g(N)[f(x,y) — pl = U(x,G, H)}},

where we introduced U (x, G, H) = maxy p)euppc U(X, Y, p’, G, H) to denote
the highest utility that a buyer of type x can obtain. By equilibrium condition
(i), U(x, G, H) is continuous. Therefore, for sellers who trade with positive
probability, this problem is equivalent to

4 glfg{m()t)p:q(/\)[f(x,y) - pl=U(x,G,H)}.

This maximization problem has a natural interpretation that is common to
much of the literature on competing mechanism design. It states that a seller
can choose prices and trading probabilities as well as the buyer type that he
wants to attract, as long as the utility for this buyer is as large as the utility
that he can get by trading with other sellers. Note also that (x, y, p) cannot
be in the support of the buyers’ equilibrium trading strategy H if there does
not exist a A such that (x, A, p) solves (4) for y, since the price and associated
queue length offered by y will not allow buyer x to obtain his expected equilib-
rium utility U(x, G, H). To simplify notation in what follows, we suppress the
dependence of the variables on G and H when there is no danger of confusion.
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We will now derive a necessary condition for assortative matching. For ex-
positional purposes, we focus on a particular class of equilibria in this deriva-
tion that fulfill a number of differentiability conditions. Consider a candidate
equilibrium (G, H) that is assortative, that is, it permits a strictly monotone
assignment u(y), and has a unique price p(y) offered by seller type y, with
both u(y) and p(y) differentiable.” The focus on a differentiable equilibrium
is just for convenience of exposition in the main body. The formal proofs do
not assume differentiability a priori.

For any seller y who trades at an interior queue length, we can use the con-
straint to substitute out the price in (4). Since m(A) = Ag(A), this yields

(5 maxm)f(x,y) - AU).

Along the equilibrium path, seller y’s assigned buyer type u (i.e., w(y)) and his
queue length A (i.e., A(y, p(y))) solve this program and are characterized by
its first-order conditions

The first-order conditions only characterize an optimal choice if the second-
order condition is satisfied. To verify the second-order condition, we derive the
Hessian along the equilibrium path:

( m'(A)f(u, y) m' (A) fe(p, y) = U'(w) )
m' (A fe(p, y) = U'(w)  m(A) fux(p, y) = AU" () )

The term m”(A) f(u, y) is strictly negative and the point (A, ) is a local max-
imum only if the determinant of the Hessian is positive:

9 m"(A) f(w, y)(m(A) fox(m, y) — AU" (W)
— (M'(A) — m(A)/AY fr(, ¥)* > 0,

where in the last term of this inequality we have substituted U’ from (7). Totally
differentiating (7) with respect to y and using (7) yields the expression

®)

A
10)  U'(w)= #fnm,n

1 m(A)

, dA
+ Aw ((m (A4) - —A—)fx(,u, y)d—y + m(A) foy (1, y)).

9We require this only for those types that trade with strictly positive probability. A unique
price p(y) means that (y, p(y)) € suppG and (y, p’) ¢ supp G for any other p’ # p(y). Finally,
we note that u(y) and p(y) are differentiable only if U(x, G, H) is twice differentiable in x and
A(y, p(y)) is totally differentiable in y, as shown in (10) and (11) below.
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Totally differentiating (6) with respect to y and substituting (7) yields an ex-
pression for the change of the queue length along the equilibrium path:

aA 1
dy — m'(A)f(u,y)

A
X [(m’(/l) - #)fx(ﬂu)’)#/ +m'(A) f,(u, y)]~

(11)

Substituting (10) and (11) into (9) allows us to cancel terms, and after rear-
ranging and multiplying by u'(y)?, we are left with

m'(A)(Am'(A) — m(A)) f(m, y) fy(w, }’)]
Am"(A)m(A) f(p,y)
To satisfy the second-order condition, both terms in (12) must have identical

signs. Under PAM (u’ > 0), the term in square brackets has to be positive;
under NAM (u’ < 0), it has to be negative. Defining

>0

(12) u’(y)[fxy(u, y) —

(13)  a(n)= m'(A)(m'(A)A —m(A))
- Am(Mm'(A)

the following lemma follows immediately.

LEMMA 1: In any differentiable equilibrium that satisfies positive assortative
matching,

fxy(lu', y)f(,u, y)
SN P A
R AT R

has to hold along the equilibrium path, with the opposite sign in any differentiable
equilibrium with negative assortative matching.

(14)

This condition is stronger than standard supermodularity, because our as-
sumptions on the search technology imply that a(A) € [0, 1] for all A.1° A re-
lated but different condition was reported by Shi (2001) for a specific directed
search model. His condition arises as a special case of (14), as we discuss in
more detail in Section 6. The benefit of expression (14) is that it provides a

190ne can rewrite (13) as a(A) = m'(A)q'(A)/(m”(A)q(A)), and our assumptions on the search
technology immediately yield a(A) > 0 for all A € (0, co). Furthermore, some straightforward al-
gebra shows that a strictly decreasing elasticity of m implies that a(A) < 1 for all A € (0, 0c0). More
details are presented in the published working paper version. All results in this paper obtain even
without the standard assumption that the elasticity of m is decreasing, only that the right-hand
side of condition (14) might be larger than 1, which requires stronger supermodularity conditions.
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clear economic interpretation of the trade-offs for sorting in markets in which
both search frictions and complementarities in values are present.

The economic insight of Lemma 1 becomes transparent when we interpret
condition (14) in terms of the aggregate search technology M. This aggregate
search technology is defined as the total number of matches that arise when 8
buyers are in a market with o sellers, that is, M (B, o) = om(B/0). Substitut-
ing for M in (14) delivers the condition

fxy(/"'a )’)f(l‘«, J’) > Mb(A’ 1)MS(A7 1)
fx(/-"’ y)fy(/-‘” }’) - Mbs(A, I)M(A’ 1)

The right-hand side measures the elasticity of substitution of the aggregate
search technology M denoted by ES,.!'! When f is constant returns, the left-
hand side measures the inverse of the elasticity of substitution of the match
value function f denoted by ES; (see Hicks (1932)). The condition highlights
the nature of the trade-off between match value and trading security. To ob-
tain PAM, the inverse of the elasticity of substitution of the surplus func-
tion ES; must exceed the elasticity of substitution of the search technology
ESy: ESJI1 > ESy.

If different markets are very substitutable (high ESy/), then x and y have
to be strong complements (high f, and, therefore, low ES;). The latter cor-
responds to the gain in match value due to complementarity and reflects the
marginal increase in output from increasing both types. That degree of com-
plementarity must offset the gains from using additional low types to help high
types trade. If the elasticity of substitution ESy is large, additional low types
are very efficient in providing such trading security. Therefore, complemen-
tarities in production have to be strong to nevertheless induce PAM. For ag-
gregate search technologies with a constant elasticity of substitution, the right-
hand side of (14) is constant and determines the degree of supermodularity
required of f. In general, the supremum and infimum of that elasticity become
of importance. Let @ = supa()); a = infa(A). Both lie in [0, 1]. We discuss
some specific search technologies in depth in the next section, after presenting
the main results on sorting.

To state our main result, we first introduce a notion of the degree of super-
modularity. Clearly, for condition (14) to hold, it does not suffice that func-
tion f is simply supermodular. For any two buyer and seller types x, > x; and
¥, > y1, supermodularity means that the total value when the high types trade
and when the low types trade is higher than when there is cross-trade (low
with high and vice versa): f(x,, y2) + f(x1, y1) = f(x2, y1) + f(x1, y»). This also
means that the extreme values (very high f and very low f) on the left-hand
side of the inequality are jointly higher than the intermediate values on the

(15)

"We are grateful to John Kennan for pointing out that a(A) is equal to the elasticity of substi-
tution of the aggregate search technology ES,,.
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right. The equivalent condition when f(x, y) is differentiable is that the cross-
partial is positive: f,,(x,y) > 0. Such a condition only includes the gains if
agents trade, but in our setting we also need to consider the losses if agents
do not trade. These losses especially affect the high types and gives them extra
incentives to ensure trade by attracting (many) low types. We therefore need a
stronger condition for positive sorting, and the idea that assortative matching
becomes harder can be captured by strengthening the supermodularity con-
dition as follows. Let g be a concave function and require that g o f be su-
permodular, that is, g o f(x2, y2) + g o f(x1, 1) = g o f(x2, y1) + &0 f(x1, y2).
Concavity affects extreme values on the left of the inequality more than inter-
mediate values on the right, which makes this condition of assortative matching
more difficult to fulfill. This is easiest to see in the differential version of this
inequality: 3°g(f(x, y))/dx dy > 0 or, equivalently,

fosNfxy) 8" (f O yNf(x, )
fx(x,)’)fy(x,)’) - g/(f(X,}’)) ’

Exactly how much more difficult it is to sustain this inequality is captured by
the (relative) Arrow-Pratt measure of the transform g on the right-hand side
of (16). For example, this measure is 0 if g is a linear transformation and it is 1
if g is a log-transformation. Compare this inequality with (14). By virtue of the
sup (or inf) of a, the right-hand side of (14) is a constant in the unit interval.
A constant right-hand side of (16) with similar magnitude is exactly induced by
the transformation g(f) = \/f. We say that function f is n-root-supermodular
with coefficient n € (1, 00) if {/f is supermodular. By (16), this requires that
the cross-partial derivative of f is sufficiently large, that is,

FoeoNfOLy)
fe i y) ~

This captures standard supermodularity when n = 1 and approaches log-
supermodularity as n — oo. We can now state the main result:

(16)

THEOREM 1: For any type distributions B and S any equilibrium is positive
assorted if and only if function f is n-root-supermodular, where n = (1 — @)™
For any type distributions B and S any equilibrium is negative assorted if and only
if function f is nowhere n-root-supermodular, where n = (1 — a)~!.

See the Appendix for the proof.

The proof focusses on positive assortative matching and consists of two parts.
First, we show that (strict) n-root-supermodularity implies positive assortative
matching. Since we want to rule out other equilibria that might be nonassor-
tative, we cannot work with a monotone differentiable assignment u; there-
fore, we deploy a different proof technique than in the derivation of condition
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(14). Second, we show that positive assortative matching for all type distribu-
tions implies that f has to be (weakly) n-root-supermodular. Here the proof
works by contradiction: If f is not n-root-supermodular at some point (x, y)
in the domain, then we can construct a type distribution such that types in the
neighborhood of (x, y) trade at a queue length A with a()) close enough to
a and, therefore, larger than the degree of root-supermodularity of f. This
directly contradicts the condition for PAM in Lemma 1 for differentiable equi-
libria, and a similar contradiction can be derived for nondifferential equilib-
ria. Key here is that the result holds for all distributions. For a particular
type distribution, PAM may arise with less complementarities, because the
value of @ might not be attained in equilibrium. The proofs in the case of
negative assortative matching are completely analogous and are omitted for
brevity.

The theorem establishes a dividing range between positive and negative sort-
ing. This dividing range collapses to a line when a = a (see also Section 4
where we discuss constant elasticity of substitution matching technologies).
Such a sharp cutoff is also a feature of Becker’s (1973) frictionless theory, but
our cutoff is shifted toward larger complementarities. In our environment, the
fact that low types are valuable because they can help facilitate trade for the
high types has the novel implication that under a > 0, for all type distributions,
NAM obtains even if f is strictly supermodular as long as it is nowhere n-root-
supermodular (n = (1 — a)7'). On the other hand, if a < @, then the areas of
positive and negative sorting are not as sharply divided. This is the case specifi-
cally for those search technologies such as urn-ball technology that have a = 0.
Still, any f that is weakly submodular (f,, < 0) induces NAM."

The conditions in Theorem 1 are particularly strong so as to ensure sort-
ing under any possible type distribution. This gives us useful bounds, but these
bounds might not be necessary for given type distributions. If the elasticity
of substitution is not constant, it may be the case that neither the supremum
a nor the infimum g are reached on the equilibrium path. This explains the
weaker notion in an example by Shi (2001), who considered the urn-ball search
technology and a given seller type distribution. His Example 5.2 has nega-
tive sorting despite f,, > 0 and @ = 0. We formalize this in the next proposi-
tion.

PROPOSITION 1: Consider a search technology such that a(-) is not constant:

(1) There exist distributions B and S and functions f that are nowhere n-root-
supermodular (n = (1 — a@)™') such that any equilibrium exhibits positive assorta-
tive matching.

2In general, negative assortative matching has to arise under the strict inequality f,, <
af.f.f~'. The case of a = 0 is special because negative assortative matching is ensured even
when f,, = 0, since in this case our assumptions on the search technology still imply a(A) > 0
whenever A € (0, 0o). Therefore, for all types that trade with positive probability (A # 0, 00), the
elasticity is strictly positive and the proof technique immediately extends to this case.
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(ii) There exist distributions B and S and strictly n-root-supermodular (n =
(1 — a)™!) functions f such that any equilibrium exhibits negative assortative
matching.

See the Appendix for all proposition proofs.

Finally, we establish existence of a (differentiable) equilibrium. Existence in
our setup is more complicated than in frictionless matching models because we
cannot employ the standard measure-consistency condition. In our setup, it is
possible that more agents from one side attempt to trade with the other, and
this imbalance is absorbed through different trading probabilities.”® The sys-
tem retains tractability when we impose the sufficient conditions for assorta-
tive matching (either PAM or NAM), in which case we can exploit differential
equation (11) to construct the equilibrium path along the first-order condition
and use the sufficient conditions to show that deviations are not profitable.

PROPOSITION 2: If the function f satisfies n-root-supermodularity for n = (1 —
@)~ (or nowhere n-root-supermodularity for n = (1 — a)™"), then for any type
distributions B and S, there exists a differentiable equilibrium.

4. CHARACTERIZATION

In this section we discuss the characterization of the equilibrium. We con-
sider two particular classes of commonly used search technologies that allow
particularly sharp bounds on the degree of supermodularity: those that are
bounded and imply square-root-supermodularity, and those that have a con-
stant elasticity of substitution. We then investigate the properties of the equi-
librium price schedule.

4.1. Common Search Technologies

Square-root-supermodularity is the property that applies to a large class of
search technologies, including those that are built on microfoundations, such
as the example search technologies m,, m,, and m; outlined above. The class is
characterized by technologies with local bounds on the derivatives and enough

31n frictionless one-to-one matching models with a continuum of agents, existence can be
proven by considering the efficient allocation, which can be characterized by a linear program for
which existence is proven by Kantorovich (1958). The efficient allocation in our setting resembles
Kantorovich’s optimal transportation problem, with the one major difference that it is not a linear
program since the buyer—seller ratio enters the objective (see (18)). Interpretation of a submarket
as a coalition of many buyers and sellers in the spirit of the many-to-many matching literature still
does not allow us to adopt existence proofs from this literature, since the proofs we are aware of
rely on finite coalitions of bounded size, whereas in our setting submarkets with uncountably
many buyer and seller arise.
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curvature. To lay this out formally, it will be convenient to consider the match-
ing probability g(A) of the buyers, which is linked to the matching probability
of the sellers via m(A) = Ag(A).

PROPOSITION 3—Square-Root-Supermodularity: Let [|¢'(0)] > 0 and
|q"(0)| < 0o, and let 1/q be convex. For any type distributions B and S any equi-
librium exhibits PAM if and only if f(x, y) is square-root-supermodular.

Understanding what drives the sorting pattern is motivated by the relation
between the complementarities in match value and the elasticity of substitu-
tion of the search technology. It is then somewhat striking that in such a large
class of search technologies—arguably the most relevant ones—all depend ex-
actly on that same condition: square-root supermodularity. The explanation
for this is entirely driven by the value of the elasticity of substitution at zero.
The bounds on the derivatives imply that it is necessarily pinned down at one
half, which turns out to be a general property of homothetic functions as can
be seen in the proof. This makes square-root-supermodularity necessary. The
curvature restriction is equivalent to the requirement that the elasticity of sub-
stitution does not exceed one-half at some point other than zero and, therefore,
square-root-supermodularity is sufficient.

Constant elasticity of substitution (CES) matching technologies are often as-
sumed for their simplicity. Since the elasticity of substitution is invariant, they
can be represented by m(A) = (1 + kA™")"Y", where r > 0 and k > 1. The as-
sociated aggregate CES search technology for a given number of buyers and
sellers B and o is defined as (see, among others, Menzio (2007)):

M(B,0)=(B + ko) " Bo.

The elasticity of substitution is given by ES,; = (1 + r)~!. The CES matching
technologies do not fall into the previous category because either the bounds
at zero are violated or the curvature restriction does not hold. The exception is
the knife-edge case with » = 1 that corresponds to (a variation of) the matching
technology m; = A/(A + k) that is CES.

The CES search technology nonetheless gives very sharp predictions on the
necessary and sufficient conditions for positive and negative assortative match-
ing: PAM arises when f(x, y) is n-root-supermodular and NAM arises when
f(x,y) is nowhere n-root-supermodular, where n = (1 + r)/r is the same in
both cases. It is important to stress here that n-root-supermodularity is a nec-
essary condition for positive assortative matching even if we consider only a
particular type distribution. This is stronger than our Theorem 1, and arises
exactly because the elasticity is constant and we do not have to worry whether
the supremum is actually realized on the path of play. Moreover, since Theo-
rem 1 ensures NAM for any given distribution, it also provides direct evidence
that NAM will arise for any type distributions even if the match value function
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is (moderately) supermodular, since the elasticity of substitution is bounded
away from zero. The class of CES search technologies spans the entire range
of n-root-supermodularity, from supermodularity to log-supermodularity, as
stated in the next corollary to Theorem 1.

COROLLARY 1: Let the search technology be CES with elasticity ESy. Then a
necessary and sufficient condition for PAM is one of the following cases:
(i) Supermodularity if ESy >~ 0 (Leontief).
(ii) Square-root-supermodularity if ESy = 1 (m3).
(iii) Log-supermodularity if ES) ~ 1 (Cobb—Douglas).

4.2. The Equilibrium Price Schedule

Our results are cast in terms of the monotonicity of the allocation, offering
sharp predictions on assortative matching. In contrast, equilibrium does not
provide equally general predictions in terms of the monotonicity of the price
schedule. Equilibrium prices can be both increasing and decreasing in type,
because agents are compensated through both prices and trading probabilities.
This is not the case in the frictionless model of Becker (1973). There, p'(y) =
fy > 0, that is, the slope of the price schedule is equal to the marginal product
of being matched with a better seller. For our setting, we derive the equilibrium
price schedule in the Appendix. It satisfies

(17) P/(}’)=fy+ll[(1 _nm)fx#’/—nmfy]y

where 71,, = Am'/m is the elasticity of m, a is the elasticity of substitution,
and u’ is the change of trading partner along a differentiable equilibrium. This
price schedule decentralizes the efficient allocation (Proposition 4 below). It
reflects the marginal benefit conditional on matching, but additionally reflects
the marginal benefit from the change in the probability of a match. In this
world with trading frictions, sellers can be rewarded through higher prices or
better trading probabilities. Higher seller types obviously have to make higher
equilibrium profits, yet this increase may be due more to the second source
than to the first and equilibrium prices can actually be declining. For this to
happen, the trading probabilities have to rise substantially, though, which is
only possible under negative assortative matching.

Inspection of equation (17) immediately reveals that under PAM (with
' > 0), the price schedule is increasing in firm type. The effect introduced by
the search frictions can never be so strong that prices actually decrease: both a
and 7, are in [0, 1], and as a result the aggregate sign on the f, term as deter-
mined by (1 — amn,,) is positive. This is not necessarily true under NAM, where
< 0. Prices can then be decreasing, for example, consider some fixed type
distributions and f, sufficiently small. Then sellers must make nearly identical
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profits. If buyer types remain important (f, > 0), high buyer types obtain sub-
stantially higher equilibrium utility than low buyer types. Therefore, in equilib-
rium, low seller types leave high utility to their (high-type) customers and ob-
tain low queue length since dA /dy in equation (11) is positive under NAM. To
make nearly equal profits according to (4), the low seller types have to charge
a higher price in equilibrium. Since the price change (17) does not depend di-
rectly on the cross-partial, particularly simple examples of this phenomenon
can be constructed with modular match values (f;, = 0).

Finally, it is instructive to consider the price function in a symmetric world.
Suppose there is symmetry between buyers and sellers in the match value func-
tion f(x, y) and in the aggregate search technology M (B, o), and the type dis-
tributions are identical for buyers and sellers. Then it is straightforward to show
that under root-supermodularity and, therefore, PAM, a “symmetric” equilib-
rium exists with u(y) = x and a constant queue length A =1 along the equi-
librium path. Since symmetry of M implies that 7,, = 1/2, the pricing function
reduces exactly to the marginal value of Becker (1973), that is, p’ = f,. This
highlights the fact that the effect on prices due to search frictions is only preva-
lent in the presence of asymmetries. In a positively assorted equilibrium, under
symmetry, the effects of frictions exactly cancel out.

5. EFFICIENCY OF THE DECENTRALIZED ALLOCATION

Consider a planner who chooses trading distributions (G, H) to maximize
the surplus in the economy, subject to the same search technology. The planner
maximizes

(18) max / q(Agu(y, p))f(x,y)dH
(19) st. Gy=8,Hy=B,Agy=dHy»/dG,

where the constraints correspond to the restrictions in the decentralized econ-
omy. Prices simply constitute transfers between agents and, therefore, they do
not enter the planner’s objective directly. They do allow the planner to let
identical sellers trade at different queue lengths A(y, p) and A(y, p’) with po-
tentially different buyers, which is also possible in the decentralized economy.
Since in the planner’s problem prices play no direct role, we could as well have
indexed the queue length by some other label such as a “location” instead of
prices.

PROPOSITION 4: If f is strictly n-root-supermodular with n = (1 — a)™!
(nowhere n-root-supermodular with n = (1 — a)™'), then any solution to the plan-
ner’s problem is positive (negative) assorted and can be decentralized as an equi-
librium.
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This result is in line with the efficiency properties of directed search models
in general; see for example, Moen (1997), Acemoglu and Shimer (1999b), and
Shi (2001). It is worth highlighting this efficiency property, because it allows us
to interpret our sorting condition from an efficiency point of view.

Our result provides a condition that augments the standard Hosios (1990)
condition for efficiency by relating different submarkets. The Hosios (1990)
condition holds for a particular (x, y) market and equates the social contribu-
tion to match formation with the split of the surplus between buyer and seller.
In our decentralized equilibrium, substituting (6) into (5) yields the Hosios
condition, which can be rewritten to say that seller y’s equilibrium profits are
M (A, 1)f(x, y) and reflect his marginal contribution to match creation. With
two-sided heterogeneity, the issue of efficiency hinges on which (x, y) combi-
nations trade in equilibrium. Our contribution is to show that this is governed
not by the derivative of the aggregate matching technology M, but by its elas-
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