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A Theory of Optimal Random Crackdowns 

By Jan Eeckhout, Nicola Persico, and Petra E. Todd* 

An incentives based theory of policing is developed which can explain the 

phenomenon of random "crackdowns 
" 

i.e., intermittent periods of high inter 

diction/surveillance. For a variety of police objective functions, random crack 
downs can be part of the optimal monitoring strategy. We demonstrate support 
for implications of the crackdown theory using traffic data gathered by the 

Belgian Police Department and use the model to estimate the deterrence effect 
of additional resources spent on speeding interdiction. (JEL K42, R41) 

Police often engage in "crackdowns" on crime, which are intermittent periods of high inten 

sity policing. This paper develops a theoretical framework for modeling police monitoring 
behavior and individuals' decisions to engage in crime. Within this framework, we show that 
there are situations where it will be optimal for a crime-minimizing police agency to engage 
in random crackdowns. When they occur, crackdowns also provide a way of estimating the 
deterrence effect of policing. We illustrate the application of the model in analyzing a speed 
deterrence program used by police in Belgium. In particular, we estimate the deterrence effect 
of additional resources spent on ticketing speeders and assess whether the current level of 
deterrence is socially optimal. 

Two features characterize our notion of random crackdowns. First, they are arbitrary, in the 
sense that they subject certain groups (identified by presence in a particular time or place, or 

by other observable characteristics) that are not notably different from other groups in criminal 

propensities, to higher intensity police monitoring. Second, they are publicized, i.e., those who 
are subjected to crackdowns are informed about them before they engage in criminal activity.1 
Crackdowns are employed in a number of policing situations. Some examples include drunk 

driving interdiction accomplished using sobriety checkpoints, crackdowns on speeding achieved 

through announced greater police presence on certain highways, or crackdowns on drug traffick 

ing aimed at particular neighborhoods.2 
Criminologists sometimes rationalize the use of crackdowns by appealing to psychologi 

cal theories according to which the impression created by the temporary show of force (the 
crackdown) is a psychological "bluff" that leads potential criminals to overestimate the risk of 
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1 
Our definition of crackdown is different from the conventional use of the term in the literature on policing (see, 

e.g., Rafael Di Telia and Ernesto Schargrodsky 2002, 2004) because we require that crackdowns be arbitrary. We will 
return to this point when we discuss the related literature. 

2 For example, operation "safe streets" in Philadelphia, which puts heavy law enforcement on particular city blocks, 
received extensive media coverage. Other examples of crackdowns include the NHTSA campaign "You Drink and 
Drive. You Lose," which instituted highly visible enforcement against drunk driving. Another example is "Checkpoint 
Tennessee," Tennessee's statewide sobriety checkpoint program. 
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detection during noncrackdown periods.3 This view relies on the potential criminals' expecta 
tions being systematically wrong and therefore is inconsistent with rationality. In this paper, 
we take a different approach and develop a model in which potential criminals are not fooled 
about the odds of detection and yet the crime-minimizing police find it optimal to employ crack 
downs. In our model, crackdowns arise as a rational (indeed, optimal) response of both police 
and citizens' incentives. They also arise under a variety of ways of specifying police objectives, 
for example, if the police minimize total crime, or undetected crime, or if they solve the social 

planner problem of trading off the costs and benefits of crime. 
We next illustrate the main idea behind this result through a simple example where the police 

minimize crime subject to a resource constraint. 

Example.?Consider a population of 100 citizens, half of whom would never commit a crime, 
and half of whom would commit a crime unless they are certain that they will be caught. A citi 
zen's propensity to commit a crime is unobservable to the police. The police resources are such 
that they can check only 50 citizens. Suppose that the police check citizens at random (note that 
all citizens look the same to police), so that each citizen has a probability Vi of being checked. 

Then, only the high propensity citizens will commit a crime, giving rise to a crime rate of Vi. 

Suppose now that half of the citizens have blue eyes, half have brown eyes and that eye color is 
known to be independent of the propensity to commit a crime. Nevertheless, suppose that police 
crack down on brown eyed citizens and check them all and completely ignore the blue eyed citi 
zens. Then no brown eyed ever commits a crime because they are sure that they would be caught, 
and only those blue eyed citizens commit a crime who have high criminal propensity. Thus, the 
crime rate with a crackdown on brown eyed persons is lA, which is lower than the crime rate of 
Vi obtained without crackdowns. 

This thought experiment shows that crackdowns can reduce crime by introducing disparate 
treatment within a population of observably identical individuals. We have not proved that the 

specific way in which citizens are divided and policed (blue eyed versus brown eyed) is the opti 
mal one for reducing crime, though this is indeed the case. We show later in the paper that given 
any distribution (continuous or discrete, unimodal or multimodal) of the propensity to commit 
a crime, the crime-minimizing policing scheme involves dividing the population into no more 
than two groups, not necessarily of equal size. Our theory allows for citizens to be heterogeneous 
in their propensity to commit the crime. The example also highlights an important maintained 

assumption of our theory: for crackdowns to be effective, it is important that criminals can 
not easily arbitrage between crackdown and noncrackdown groups. In the example, citizens are 
assumed to be unable to change their eye color. 

Let us now return to the example to consider how crackdowns make it possible to estimate the 
deterrence effect of policing. 

Using Crackdowns to Identify the Deterrence Effect of Policing.?Consider now an increase 
in police manpower to 51 checks. How does the optimal policing scheme change? It can be 
shown that the optimal policing scheme involves moving one person from the noncrackdown 

group to the crackdown group. That is, police would pick a blue eyed citizen, force him to wear 
brown contact lenses, and then check with probability one all those who appear to have brown 

eyes. The remaining citizens (with blue eyes) are never checked. We can calculate the expected 
decrease in the crime rate that follows from an increase in manpower of one check: it is the 

3 
Lawrence W. Sherman (1990), H. Lawrence Ross (1984). Sherman, p. 11, recommends that crackdowns be highly 

publicized and be followed by secret "backdowns," and warns of the risk of exhausting the bluff through overuse. 
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decrease in crime that obtains from moving a random citizen from the noncrackdown group to 
the crackdown group. Because the average crime rate in both groups is observed, we can readily 
compute the expected decrease in the crime rate?in this case, the expected crime rate goes from 
25 percent to 24.5 percent. 

In this paper, we develop a model of policing in which a police chief is given an incentive to 
reduce crime and a certain amount of resources. Under a variety of assumptions about police 
goals and constraints, the optimal monitoring strategy can take the form of random crackdowns. 
As in the above example, our analysis provides a methodology for estimating the deterrence 
effect of policing. 

We apply our policing model to analyze the effectiveness of resources spent on speeding 
interdiction. Although the decision to speed is rarely studied by economists,4 it has great eco 
nomic relevance, both in the United States and worldwide. According to data from the National 

Highway Traffic Safety Administration (NHTSA), speeding is a factor in 30 percent of all fatal 
crashes in the United States.5 In 2001, more than 12,000 people died in speed related crashes 
on American roads, at an economic cost to society of more than $40 billion.6 Worldwide, traffic 

injuries rank second to HIV/AIDS as the leading cause of ill health and premature death among 
the 15-44 age group. Because the number of vehicles per capita is rapidly growing in developing 
countries, traffic injuries are projected to be one of the leading public health issues over the next 
few decades.7 

To deter speeding, police in several countries have adopted programs of announced radar 
controls that publicize the location and approximate time of operation of radar controls.8 The 
data analyzed in this paper were gathered in the Belgian province of Eastern Flanders during 
the years 2000-2003. We have observations on all radar controls in that time period affecting 
6.5 million cars and resulting in 206,146 tickets issued. The announced controls in the data are 

observed to rotate in a fairly mechanical fashion across different sections of the roads and time 

periods. The police plan the announcement schedule at least one month in advance, and the tim 

ing of announcements does not appear to be systematically related to speeding propensity. We 

interpret the announced controls as crackdowns on particular groups of motorists, those traveling 
on the announced section of the road at the announced time. We measure the deterrence effect 
of the increased probability of detection by comparing decisions to speed within the crackdown 
and noncrackdown groups. Using implications of the theoretical model, we are able to calcu 
late the effect of increasing the level of resources devoted to speeding interdiction. In conjunc 
tion with value-of-life estimates, our results indicate that at the current level of interdiction, the 

marginal benefit, in terms of statistical lives saved, is close to the marginal cost of interdiction. 

Importantly, our analysis demonstrates that the rational theory of optimal interdiction can have 
not only normative implications (how the police should behave), but can even generative positive 
predictions about actual police behavior (how some police actually behave). 

The paper develops as follows. Section II presents a theoretical model that we use to study 
the conditions under which crackdowns emerge as an optimal policing strategy when the goal of 

police is to minimize crime subject to a resource constraint. The model allows for unobserved 

heterogeneity in the benefits citizens get from breaking the law, under the assumption that the 

4 With some notable exceptions which will be discussed later: see Sam Peltzman (1975), Steven D. Levitt and Jack 
Porter (2001), and Orley Ashenfelter and Michael Greenstone (2004). 5 

See Traffic Safety Facts 2001: Speeding. US Department of Transportation. 6 
Over 80 percent of the economic cost is attributable to lost workplace and household productivity. See Lawrence 

J. Blincoe et al. (2002). 7 
See the WHO publication on traffic safety: http://www.who.int/world-health-day/2004/en/traffic_facts_en.pdf. 8 For example, the Netherlands, Belgium, Germany, and Australia. 
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police know the distribution of the unobserved variable. The model is extended to the case where 
the police are constrained in terms of the number of successful interdictions, which is the case 
in our application to speeding. Section III applies the model developed in Section II to data that 

we obtained from the Belgian police department. Section IV provides a discussion of alternative 
theories of deterrence and some further extensions. Section V concludes. 

I. Related Literature 

The idea that deterrence may be improved by focusing interdiction on arbitrary subsets of 
the population is present in the literature on racial profiling (see Nicola Persico 2002). Recently, 
Edward P. Lazear (2006) develops a related idea in the context of designing educational tests, 
where the question is how much of the test content to reveal to the test takers ahead of the test.9 
In the nutrition literature, there is a related idea in connection with nutrition curves. For example, 
Sangeeta Pratap and Tridib Sharma (2002) argue that, in the presence of limited amounts of 

food, maximization of family survival and resources may entail an unequal distribution of nutri 
tional resources, i.e., focusing resources on a subset of the family. Relative to these strands of 

literature, the contribution of this paper is (i) to pose a general policing problem and to charac 
terize the optimal policing strategy; (ii) to point out that crackdowns (in our terminology) allow 
the researcher to infer the deterrence effect of policing; and (iii) to empirically illustrate the 

methodology within a policy relevant application, speeding. 
Our work is also part of the literature on bureaucratic incentives. The most relevant papers in 

the economics literature are Canice Prendergast (2001) and Lan Shi (2005). These papers look 
at the effect of bureaucratic oversight on policing, with special reference to race disparities. Our 

paper also compares the strategies adopted by police under different incentive schemes, although 
that is not the main focus. 
More broadly, the issue of deterrence in a traffic context is a subset of the vast literature on 

crime.10 Of direct relevance to this paper is the literature concerned with traffic enforcement 

(speeding, drunk driving, and seatbelt wearing), which is reviewed by Dominic Zaal (1994). 
Much of the literature on speeding attempts to quantify the effects of a change in the speed limit 
on accidents.11 There is also a literature directly concerned with police enforcement and with 

estimating the deterrence effect of increased policing and of greater penalties on speeding.12 
Parallel literatures deal with the deterrence effect of increased policing and greater penalties on 
drunk driving and on seatbelt wearing.13 Also related is the literature that studies the connec 
tion between risk taking behavior (speeding, drunk driving) and accidents (see Levitt and Porter 

2001). A paper by Ashenfelter and Greenstone (2004) uses changes in the speed limit across 
US states to estimate the value of a statistical life. They also provide a rich summary of econom 
ics papers in this area. 
We acknowledge that our use of the term "crackdown" is somewhat different from the way the 

term is occasionally used to refer to increases in interdiction that are not deliberate randomiza 

tions, but rather may be considered exogenous increases in resources in the sense that they are 

caused by events unrelated to the crime that is the object of study. For example, Di Telia and 

Schargrodsky (2002, 2004), study the effect of crackdowns on bureaucratic corruption and on 

9 
Coincidentally, Lazear (2006) also cites speeding as a potential application in developing his argument, but his and 

our work are independent. We discuss his paper in detail below in Section A. 
10 
See Gary Becker's seminal (1968) paper. Also, see Levitt (1997) for a recent study of deterrence in law enforcement. 

11 
See, for instance, Sandy Balkin and J. Keith Ord (2001). 12 
See, e.g., Donald A. Redelmeier et al. (2003), Ross J. Hornel (1988a), Ross and Gonzalez (1988). 13 
See, e.g., Ross (1984) for drunk driving and B. J. Campbell (1988), Peltzmann (1975) for seatbelt use. 
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crime. Our work complements this line of inquiry by pointing out that "random" crackdowns can 

be expected to arise endogenously as part of the optimal policing strategy. 

II. Policing Model 

In this section, we characterize optimal monitoring strategies in a model in which the police 
minimize crime subject to a budget constraint. One may think of this problem as originating 
from an agency relationship in which a principal (a politician, a bureaucrat, or a high level police 
administrator) is faced with the problem of giving incentives for an agent (the police chief) 
to allocate resources effectively towards achieving some socially desirable outcome, such as 
a lower crime rate.14 Citizens, who differ unobservably in their propensity to commit a crime, 
choose whether to commit a crime. We assume that the agent knows the distribution of the 

propensity to commit crimes across the population, but the principal only observes the realized 
crime rate (which depends on police behavior) and therefore gives the police chief incentives to 
minimize crime subject to a resource constraint. We also assume that the police chief receives 
some amount of resources (e.g., manpower), and that he can commit to choosing which citizens 
to police and with what intensity. 

In Section C, we explore several variants of this problem, including one in which the agent 
takes into account individual benefits from crime. 

A. The Model 

There is population of size 1 that is heterogeneous in the benefit x from committing a crime, 
assumed to be unobservable by the police. Let x be distributed across this population according 
to a cumulative distribution function F, and let p denote the probability that the citizen is moni 
tored. If a citizen commits a crime and is monitored, he is caught and receives penalty T.15 We 
assume that p G [Q,p ], which implies that a citizen can be monitored with probability no greater 
than some p < 1. 

A citizen with benefit x commits a crime if 

(1) x - 
pT > 0. 

If a group of citizens is policed with intensity /?, the fraction of criminals is 

1 - F(pT). 

The police minimize the crime rate. One possible policing strategy is to monitor every citizen 
with the same probability. Alternatively, the police can divide the population into subgroups and 

police them at different intensities. Of course, this division matters only if the citizens know that 

they are policed with different intensities, so we will assume that each citizen knows the intensi 

ty.16 We denote by p(p) the size of the group policed at intensity p. Because the total size of the 

population is 1, it must be p(p)dp 
= 1. 

14 
Besides crime reduction, the principal might have other objectives. For example, a principal might want to allow 

some citizens who get the highest value to commit crimes. We explore this point in an online Appendix. 15 Here we assume that the citizen's utility functions are linear and that committing the crime is a discrete decision, 
but in Section IV we relax these assumptions. Also, for the moment we take Tas given. We will return to this issue in 

Section IV. 
16 In practice, this means that the police must inform citizens of the intensity with which they are policed. 
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The contribution of group p(p) to total crime is p(p){\ 
- 

F(pT)), and aggregating over all 

groups gives the total number of criminals: 

p 

(2) fp(p)(l 
- F(pT))dp. 

0 

In this section, we assume that the police's goal is to minimize the number of criminals. 
Alternative specifications of the objective function are studied in Section C, where we also look 
at the social planner's problem. 

Let us now turn to the resource constraint. The police chief is assigned some amount of 
resources (such as officer-hours). Monitoring a group of size p with intensity p is assumed to 

require police resources in the amount of pp. If total resources of P per capita are available for 

policing, the aggregate police resource constraint is 

p 

(3) \?{p)pdp 
< P. 

0 
We refer to this constraint as a time constraint. An alternative way of specifying the constraint on 

police resources is explored in Section C. The police choose a probability measure u to minimize 
the number of criminals (2) subject to the resource constraint (3). 

B. Analysis 

We next provide an intuitive characterization of the properties of the solution to the police 
problem previously described. These properties are summarized in Propositions 1 and 4. The 

propositions are a consequence of Theorem 1, which is stated and proved in Appendix A. 
Let us start by supposing that the solution to the police problem entails policing all citizens 

with the same intensity. By the resource constraint, this intensity must equal P. In terms of our 

model, this policing strategy corresponds to p(p) equal 1 if p = P, and equal zero otherwise. 

Substituting this choice of p into the objective function (2) we see that the number of criminals 

equals S = 1 ? F(PT). This situation is depicted in the left-hand panel of Figure 1. 
As seen in the right panel of the Figure 1, the number of criminals can be reduced if resources 

are allocated differently. If some citizens were policed with intensity pL and the rest were policed 
with intensity pH, then it would be possible to bring the number of criminals down to S' < S. 

Citizens who are policed with intensity pH are said to be subject to a crackdown. Figure 1 shows 
that crackdowns help "iron out" the inward bumps of the function 1 ? F(pT), thus enabling the 

police to maintain policing intensity on the efficient frontier. More precisely, by using crack 
downs the police elicit a response function from citizens that corresponds to the convex hull of 
the epigraph (i.e., of the area above) of the function 1 ? F(pT). 
More formally, this crackdown strategy corresponds to choosing p(p) > 0 if p = pL, pH, and 

equal to zero otherwise. The fraction p(pH) is optimally chosen to be the largest possible com 

patible with satisfying the resource constraint (3), which therefore reads 

(1 
~ 

Vh)Pl + VhPh = ?> 

Of course, crackdowns are not always part of the optimal policing strategy. If, for example, 
the function 1 ? F(pT) is globally convex, as depicted in Figure 2, then crackdowns would not 
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Figure 1. A Crackdown is Optimal 

be optimal. Even in Figure 1, if P were smaller than pL or larger than pH, crackdowns would not 
be optimal. In those cases, the most efficient use of resources is to police every citizen with the 
same intensity. 
When crackdowns are optimal, it is because the function 1 ? F(pT) is not convex. Given that 

crackdowns play a "convexifying" role, there is no additional gain in dividing the population 
into more than two groups. In fact, given any function 1 ? F(pT), any point in its convex hull 
can be achieved as a convex combination of at most two points in its epigraph. A three-group 
crackdown, therefore, which would entail three different policing intensities, can achieve noth 

ing more than a two-group crackdown. The following proposition actually takes this logic a bit 
further in stating that "generically," three-group crackdowns are strictly suboptimal. 

PROPOSITION 1: Given a homogeneous population with a generic distribution of propensity to 
commit a crime, the optimal policing strategy involves either monitoring everyone at the same 

rate, or dividing the population into at most two groups to be monitored with different intensities. 

This proposition follows from Theorem 1, which is proved in Appendix A.17 

An extreme form of crackdowns arises when 1 ? F is globally concave. In this case, the con 
vex hull is given by the segment that connects the points (0,1 

? 
F(0)) and (p, 1 

? 
F{pT)\ which 

means that for any P we have pL = 0,pH = p. Thus, the optimal policy entails the use of extreme 
crackdowns: one group of citizens will be monitored as intensely as possible; the rest will not be 
monitored at all.18 This observation gives rise to the following remark. 

REMARK 1: If F is convex on its domain, then for any P G (0,p) the optimal policing strategy 
involves monitoring one group of citizens with maximal intensity, and not monitoring the others 
at all. 

17 Theorem 1 in Appendix A is a general formulation of the problem we solve here. It allows for different variations, 
including those we explore further in the paper. By proving the result for the general case, all our results follow for each 
of the specific cases considered. 

18 
This is the case described in the example in the introduction. 

PROOF: 
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Figure 2. Crackdowns are Not Optimal 

It is worth pointing out that crackdowns are generally optimal for some P unless/is monotoni 

cally decreasing on its support. 

REMARK 2: Unless F is concave on {0,p T), there exists some P such that the optimal policing 

strategy involves random crackdowns. 

We now turn to the comparative static result that deals with increases in the police budget in 

the presence of crackdowns. The intuition behind the result can be explained using Figure 1. 

Suppose that P, the amount of resources available to the police, is increased slightly. Although 
the fraction of citizens who are subjected to a crackdown is now higher because more resources 

are available, the optimal police strategy still entails a crackdown with intensities pH and pL. In 

other words, only the sizes of the two groups change, but not the intensity with which they are 

monitored. This simple but important point, which we note in Proposition 2, is important to 

being able to use crackdowns to infer the effect of relaxing the resource constraint. 

PROPOSITION 2: Given total police resources of P, suppose the optimal policing strategy 
involves dividing the population into a crackdown group of size pH monitored with intensity pH 
and a noncrackdown group of size pL monitored with intensity pL. Consider an increase in total 

police resources to P G (P,pH). In the new optimal strategy the crackdown group is larger than 

before, {i.e., pH> pH and thus pL < pL, the noncrackdown group is smaller), but the intensities 

with which the two groups are monitored remain unchanged {they are still pH and pL). 

PROOF: 
This proposition follows from Theorem 1, which is proved in Appendix A. 

Proposition 2 provides a way of forecasting the deterrence effect of an increase in police resources. 

Crucially, the approach does not require knowledge of the shape of the function 1 - F{pT). Refer 

again to Figure 1. Graphically, increasing P results in the crime rate S' sliding down along the 

linear segment. The slope of the linear segment, therefore, determines the degree to which crime 

decreases as resources increase. This slope can be calculated based on the formula 

[1 
- 

F(pHT)} 
- 

[1 
- 

F(pLT)} 
Ph~ Pl 
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Multiplying this slope by P ? P provides a way of estimating the expected decrease in crime due 
to a hypothetical increase in police resources from P to P. Thus, 

The terms in the numerator on the right-hand side (the crime rates with and without crackdown) 
as well as those in the denominator (the intensity of monitoring) would be observable in most 

applied settings in which crackdowns are observed. 
To see why observing crackdowns is necessary to carry out this computation, consider the 

no-crackdown primitives depicted in Figure 2. We are interested in forecasting 1 ? F(PT), the 
crime rate after the increase in the budget. Absent any information on the shape of the function 
1 - F(pT), there is no way to compute 1 ? F(PT) based on the available information, which 
is only the knowledge of 1 - F(PT), the initial crime rate. This is why most of the literature on 
deterrence focuses on identifying sources of exogenous variation in P, which allows one to trace 
out (or at least locally approximate) the function 1 ? F(PT) as P varies. However, in the presence 
of crackdowns there is no need to identify sources of exogenous variation in P to identify the 
deterrence effect. One can think of crackdowns as being a case where exogenous variation in P 
arises as part of the optimal policing strategy. 

If, in addition to observing crackdowns, one also has access to exogenous variation in total 

police resources P, then Proposition 2 yields a testable implication of the model. The implication 
is that, as P increases (between pL and pH ), the optimal monitoring intensity should not change, 
but the size of the group subjected to crackdowns should increase. In Section D, we consider this 

implication in the context of speeding interdiction. 

In the empirical application of Section III, the Belgian police are given a constraint on the total 
amount of tickets that they are allowed to write, rather than a constraint on manpower. In this 
section we adapt the model to the problem faced by the Belgian police. 

As before, we assume that the goal of the police is to minimize the crime rate subject to a con 
straint. The resource constraint is now given in terms of the number of successful interdictions 
rather than in terms of time resources. That is, monitoring criminals has a cost to the police, but 

monitoring honest citizens is costless. This captures environments in which interdiction is cheap 
relative to the cost of processing violations. This happens to be the case in our speeding applica 
tion of Section III, where the police are administratively restricted in the number of tickets that 

they can issue in a year.19 
The term (1 

- 
F(pT))p represents the number of successful interdictions from a population 

that is policed with intensity p. To capture the constraint on successful interdictions we modify 
the constraint (3) to read 

ACrime 
AP 

(crime rate\pH) 
- 

(crime rate\pL) 
Ph~ Pl 

C. Constraint on Successful Interdictions 

p 

(4) 
0 

The police minimize expression (2) subject to the constraint (4). 

19 This makes sense because detecting speeders with automatic radar machines is almost costless relative to process 

ing a traffic ticket. More on this in Section III. 
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To rule out trivial cases where the resource constraint is not binding, we assume that C is such 

that the police could not afford to monitor everyone with maximal probability. This assumption, 
which will be maintained throughout, is 

ASSUMPTION: C < (1 
- 

F{pT))p. 

The present problem shares a key formal similarity with the benchmark model: both program 

ming problems are linear in p. As a consequence, even though constraint (4) and constraint (3) 
are quite different, Propositions 1 and 2 continue to apply. In constraint (4), for example, the 

kernel of the integral is not necessarily increasing in p: higher monitoring intensity does not nec 

essarily entail more successful interdictions. Yet, at the optimal solution, one can show that more 

resources (successful interdictions) must be expended per capita on the crackdown group than 
on the other group. One can also show that whenever crackdowns are optimal in the benchmark 

model for all values of P, then they are also optimal when police are ticket constrained. These 

results are collected in the following proposition. 

PROPOSITION 3: Consider a monitoring problem in which police minimize crime under the 
constraint that successful interdictions not exceed C. Then: 

a) The optimal monitoring strategy involves either monitoring everyone at the same rate 
or dividing the population into at most two groups, which are monitored at different 
intensities. 

b) Given C, suppose the optimal policing strategy involves dividing the population into a 

crackdown group of size pH monitored with intensity pH and a noncrackdown group of size 

pL monitored with intensity pL. Consider an increase in C to C G (C, (7 
? 

F(pHT))pH). 
In the new optimal strategy the crackdown group is larger than before, (i.e., pH> pH 
and thus pL < pL), and the noncrackdown group is smaller, but the intensities with 
which the two groups are monitored remain unchanged (they are still pH and pL). 

c) At the optimal monitoring strategy, the expected number of successful interdictions per 

capita (the probability that there will be monitoring multiplied by the fraction of motor 

ists who speed) is larger in the crackdown group than in the noncrackdown group. 

d) Crackdowns are optimal for all values of C if they are optimal in the benchmark model 

for all values of P. The converse is not true. 

PROOF: 

a), b): see Theorem 1. 

c) Suppose not. Then if one perturbed the optimal strategy by shifting a small mass of 

citizens from the noncrackdown group to the crackdown group, the resource constraint 

would continue to be satisfied, and the crime rate would decrease. This contradicts opti 

mally of the original strategy. 

d) Let P denote the maximal feasible policing intensity when all motorists are policed with 

the same probability. This is the monitoring intensity that minimizes crime among all 

feasible noncrackdown strategies. For future reference, observe that feasibility implies C 
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? 
P(l 

- 
F(PT)). Consider now the ancillary problem, which is to minimize crime sub 

ject to the constraint (2). Let ^uPl^h^Ph denote the optimal crackdown probabilities in 
the ancillary problem. By definition, this crackdown policy generates a lower crime rate 
than if all citizens were policed with intensity P. We now show that the same crackdown 

strategy is feasible in the original problem. This will prove that equal policing is domi 
nated by crackdowns in the original problem. 

To verify feasibility in the original problem, write the following chain of inequalities: 

where the inequality reflects the concavity of the function x [ 1 
? 

F(xT)}. This function is concave 

because F is convex, which we know because crackdowns are optimal for all values of P in the 

ancillary problem (refer to Remark 1). 

Part d) of the above proposition suggests that crackdowns can be optimal when the police are 

ticket constrained even in cases where they are not optimal in the benchmark model. The intu 
ition for crackdowns when the police face constraint (4) is as follows. In a crackdown, the high 
interdiction group commits little crime, while the group that is more prone to committing crime 
is rarely policed. This tends to reduce the number of tickets that are written relative to the case 

in which both groups are policed at the same rate. Thus, besides helping satisfy the objective 
function, engaging in crackdowns has beneficial effects on constraint (4). The second effect was 
not present in the benchmark problem. 

Part (b) of Proposition 3 yields a useful formula for computing the effect of an increase in 

police resources on the crime rate. Because this formula will be used in the empirical work in 
Section III, we derive it here. The crime rate given C equals 

(note that there is no tilde over the p's in light of Proposition 5 part (b)). To obtain the change 
in crime, subtract from this expression the analogous expression when resources equal C. This 

yields 

C = P(l 
- 

F{PT)) 

= I1 
- F ((VlPl + VhPh)T)} (VlPl + P>hPh) 

> - 
F{pJ)) + VhPhQ 

- 
F(pHT)\ 

- 
F(pLT)) + p{pH){\ 

- 
F{pHT)) 

(5) ACrime = [p(pL) 
- 

p(pL)}(\ 
- 

F(pLT)) + [p(pH) 
- 

p(pH)](l 
- 

F(pHT)) 

= [?(/>*) 
~ 

p(pHW(pLT) 
- 

F(pHT)). 

The optimal policing strategy pH = fi{pH) must meet the budget constraint, and so 

C = (1 
- 

??)(\ 
- 

F{pJ))pL + ?H(\ 
- 

F(p?T))pH. 

Isolating ?H yields 

?H 
= 

C - (1 
- 

F{pLT))pL 
{\-F{pHT))pH-{\-F(pLT))pL 
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The optimal policing strategy before the increase in resources must also meet the budget con 

straint, and so 

C-(l 
- 

F(pLT))pL 

(1 
- 

F(pHT))pH 
- 

(1 
- 

F(pLT))pL 
' 

Substituting into (5) we get 

(6) ACrime = (C 
- 

C) 
F{piX) 

~ 
F(pHT) 

(1 
- 

F(pHT))pH 
- 

(1 
- 
%%J 

AC (crime rate | pH) 
? 

(crime rate | pL) 

[_ (crime rate | pH)pH 
- 

(crime rate \pL)pLj 

All the terms in the right-hand side brackets are observable when the resource level equals C. 

Thus, the decrease in crime rate due to an increase in resources can be computed even without 

observing any variation in the data in the level of police resources. In Section III this slope is 

calculated in the context of highway speeding interdiction. 

HI. Empirical Application: Speeding Interdiction 

In this section we apply our theoretical model of policing to study speeding interdiction in 

Belgium. As discussed in the introduction, speeding interdiction is an important policy issue 

because traffic accidents are a leading cause of death and disability worldwide.20 Our goal in 

this section is to estimate the deterrence effect of resources devoted to speeding interdiction by 

directly applying the theoretical framework developed in Section II.21 Then, in conjunction with 

value of life estimates taken from the literature, we consider whether the marginal benefit, in 
terms of statistical lives saved, warrants the marginal cost. Our estimates indicate that the cur 

rent level of interdiction is close to socially optimal. 

A. The Environment and the Data 

Our data come from the administrative records of the Belgian police department. In three 

Belgian provinces (Eastern Flanders, Liege and Luxembourg), the police put extensive effort 
into publicizing announced radar controls, through different media that include newspapers, 
radio, internet, local stores and restaurants.22 Our analysis samples cover the province of Eastern 

Flanders, which has two major highways and one minor highway, each of them connecting to the 

city of Gent.23 The two major highways are divided into four sections: A14-North, A14-South, 

20 In 1990, for example, traffic accidents represented the fourth leading cause of loss of DALYs (disability adjusted 
life years) in developed countries. Worldwide, accidents were the third cause of loss of DALYs for ages 15-44. By 

comparison, war was only the seventh leading cause for those ages. 
21 

The application of the theoretical model to speeding interdiction has the advantage that the issue of incapacitation 
does not play a significant role. Speeders do not often receive prison sentences, although they may temporarily get their 

license revoked. Crime rates can be reduced by deterring potential criminals or by incapacitating them, and the models 

we examined in Section II dealt only with deterrence. 
22 The controls are announced, for example, on the Web site: http://www.federalepolitie.be. 
23 The East-West highway A10 connects Gent with Brussels to the East and with Bruges to the West, and the North 

South highway A14 connects Gent with Antwerp and the Dutch border to the North, and with the French border to the 

South. Both highways are of approximately equal length and cover around 60-65km within the province of Eastern 

Flanders. The third highway, R4, is a short section of highway connecting Gent with its port to the North. 
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AlO-East, and A10-West. In total there are five sections, each of which is of roughly equal length 
(30-40km). The province has two radar control machines that can be placed along roads or high 

ways to record the speed of drivers passing along that road and to take photographs of cars that 
are speeding, which are then issued tickets.24 

An announcement merely says that a section of one highway (for example, A14-North) will 
be subjected to increased monitoring in a time period (for example, between the hours of 6 a.m. 
12 noon). The announcement does not specify the direction of the road on which the machine 
is placed, nor, of course, its exact location. In fact, the police generally hide the position of the 
radar machine, so as to avoid the possibility that drivers may slow down in the proximity of 
the machine and then pick up their speed again.25 The announcement also does not specify the 

length of time for which monitoring will take place, which is typically less than the six-hour 
interval. The announced controls in the data are observed to rotate across different sections of 
the roads and time (more on this later). On any given day, the police either make no announce 

ment or, when they announce, they keep one of the machines in reserve to possibly monitor some 

other section in an unannounced way. 

The data we use for the empirical analysis record the date, time of day, and location of the 
machine and whether the radar control was announced, as well as information directly recorded 

by the machine, such as the number of vehicles passing by the machine, the fraction of cars and 
trucks that were driving in excess of the speed limit (the limit differs for cars and trucks) and the 
fraction of vehicles exceeding the speed limit by 15 km/h.26 

In what follows, we will use the following terminology. A monitoring event refers to each of the 

possible time-space combinations in which the police set out the radar. There are a total of 5,475 

monitoring events: 3 time periods (6 a.m-12, 12-6 p.m., and 6 p.m.-midnight) per day for 365 

days, and 5 comparable, equidistant sections of road (2 on A10,2 on A14, and 1 on R4). Our choice 
of the time period is natural given the police announce controls within those six-hour time periods, 
and for comparability, we use the same unit of account for unannounced controls. We refer to a 

monitoring interval as the actual duration of monitoring during any six-hour monitoring event. In 
the data there is variation in the monitoring intervals, with an average of three hours. 

During announcement events, drivers know that monitoring can happen on the specified sec 
tion during part of the six-hour time period and in either of the two directions. Within our 

model, this allows the driver to form beliefs about the likelihood of being monitored. When no 
announcement is made, the driver knows that there can nonetheless be monitoring and, within 
our model, forms a different belief about the probability of monitoring. 

Police Objective and Constraints.?The police department explicitly states that its goal in issu 

ing tickets is to deter speeding. Maximizing the revenue from traffic tickets is not an objective, and 

24 Radar control machines record speeds and take photographs of speeding vehicles. The license information 
obtained from the photo and information recorded on the speed is used to issue the tickets. If the driver passes a radar 
machine while exceeding the speed limit by a certain threshold, the probability is close to one of receiving a ticket. It 
is not equal to one, because, rarely, sun glare makes the photo unreadable. The radar control machines are mobile and 
are typically moved to several locations throughout the day. 25 

Only in rare cases (less than one percent of our data) is the radar machine not hidden. Even then, it does not seem 
to be easily detectable by drivers: we verified that the probability of speeding does not decrease in those cases. The 
same finding was independently reported to us by the police, based on experiments they have done positioning a second 
radar machine several kilometers after the first radar. 

26 
A major speeding violation is defined in the law as traveling at a speed of ten km/h or more over the speed 

limit. In addition, the margin of error of the radar is ?3 percent, or four km/h at the maximum speed on highways, 
which is 120 km/h. It is police discretion when to issue a ticket for major violations, and currently, police consider 
a major violation to be traveling at a speed of 136 km/h or higher on highways. During the time period covered by 
our data, tickets were not issued systematically for minor violations (over the speed limit, but less than 136km/h) as 
a result of the radar data collected. 
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in fact, the police do not get to keep the revenue from the tickets they write. Through conversations 
with the police, we learned that they face a binding constraint on the total number of tickets. The 

primary cost of issuing a speeding ticket is the administrative processing cost, which is estimated 
to be about US $0.50. The police are given a total budget at the beginning of the year (allocated 
by the legislature), so they know how many tickets can be issued during the year within this bud 

get.27 The budget determines in large part the total number of ticketed speeders per year; that is 

reported in Table 1 A. To avoid issuing too many tickets, police do not make use of the radar con 
trol machines every day. On days when no announcement is made, police may or may not use the 

machines. On days with announcements, police make use of at least one machine on the announced 
road and may also use the other machine on the same or another road unannounced. 

Following organizational reforms within the police, in 2002 and 2003 there was a sharp 
increase in the number of tickets that the police were allowed to issue on highways.28 The size 
of the budget constraint more than doubled, from 33,951 tickets in 2000 to 78,136 tickets in 
2002. Based on conversation with the police, this reallocation of funds was not triggered by any 

perceived change in the motorists' propensity to speed, but rather resulted from broader organi 
zational changes.29 We will therefore treat this change in the police budget as exogenous, and we 
will use this change as an additional way of examining support for the model. 

Monitoring Policy.?The monitoring policy is determined at least one month in advance of 
the actual radar control. For this reason, the officer who schedules the times and locations of 
announced and unannounced controls does not react to short term changes in circumstances, 
such as unpredictable weather conditions. The planned radar controls appear to be always imple 

mented. Table 1A shows the number and percentage of vehicles subject to announced and unan 
nounced radar control on the three major highways for years 2000-2003. Table IB shows the 
number of drivers issued speeding tickets. Table 1C reports the number of monitoring events 
on each road, where a monitoring event is defined as the machine being placed on a road and 

recording information for some time interval. Highway A14 has the highest level of monitoring, 
followed by A10 and then the shorter highway, R4. Table Bl in the online Appendix tabulates 
the number of announced and unannounced monitoring events by month of year. There is no 

systematic pattern, except that monitoring is more frequent in the month of December. Table B2 
tabulates monitoring and announcement events by day of the week and shows that monitoring is 

more frequent on weekend days in 2000 and 2001. 

Driver's avoidance.?One potential concern in applying our model to the data is whether driv 
ers who hear the radar control announcements can select an alternate route to avoid detection, 
which would mean that the speeding response of people who choose to remain on the announced 
road could no longer be compared to the response of drivers in the absence of the announcements. 

27 
This institutional arrangement raises at least two questions, (i) Why not let the police choose the number of tickets 

and allow them to keep a fraction of the proceeds? The likely reason is that politicians and the police want to avoid 
the appearance of a monetary incentive to write more tickets because the public does not want police who are revenue 

maximizers. In fact, the statutory objective of the traffic police is to minimize speeding, and not to maximize fine rev 
enues, (ii) Why not relax the constraint on the number of tickets? Our calculation (Section E below) does not indicate a 
clear welfare reason for wanting to relax the constraints, so it is not immediately clear that the politicians are imposing 
an inefficiency by limiting the number of tickets. 

28 
Prior to the reforms, the state police monitored both highway and nonhighway roads. After the reforms, there was 

a change in the jurisdiction so that state police monitored only highway roads and local police monitored nonhighway 
roads, and the number of tickets that the state police could issue on highways increased. We do not know what hap 
pened to the level of resources on nonhighway roads, as they are not recorded in our dataset, which comes from the 
state police department. 29 This change occurred, in part, because resources previously used to monitor both highways and some smaller 
roads were, from 2002 on, earmarked for highways only. 

This content downloaded from 84.89.158.36 on Mon, 09 Mar 2015 09:50:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1118 THE AMERICAN ECONOMIC REVIEW JUNE 2010 

Table 1A?Number and Percentage of Vehicles Subject to 
Announced or Unannounced Monitoring by Year 

2003 (first 
_2000_2001_2002_half 

of year) 
Announced 266,240 394,540 1,746,340 1,777,977 

(39.5%) (55.2%) (76.8%) (60.9%) 
Unannounced 406,941 319,650 526,422 1,139,428 

(60.5%) (44.8%) (23.2%) (39.1%) 
Total 673,181 714,190 2,272,762 2,917,405 

Note: Based on daily observations on the number of vehicles, as recorded by the radar control machines. 

Table IB?Number of Ticketed Speeders by Year and Announced or 

Unannounced Monitoring (percentage of total ticketed each year shown in parentheses) 

2003 (first 
_2000_2001_2002_half 

of year) 
Announced Number ticketed 12,677 20,039 55,804 32,079 

(37.3%) (44.3%) (71.4%) (69.4%) 
Unannounced Number ticketed 21,274 25,225 22,332 14,140 

(62.7%) (55.7%) (28.6%) (30.6%) 

Note: Based on daily observations on vehicles passing by the radar control machines and on their speeding status, as 

recorded by the machine. 

Table 1C?Number of Announced (Ann) and Total Monitoring Events by Highway and Year 

2003 (first 
2000 

2001_ _2002_ half of year) 
Ann Total Ann Total Ann Total Ann Total 

??? 18 46 23 52 181 214 125 ?58~ 
A14 38 138 51 105 156 244 150 218 
R4 10 34 1 24 0 5 0 0 

Total 66 218 75 181 337 463 275 376 

0.012 0.014 0.062 0.100 

Note: ph is calculated as the number of announced monitoring events divided by the total number of potential monitor 

ing events (5,475 in 2000-2002 and 2,715 in the first half of year 2003), which includes intervals when monitoring took 

place as well as intervals in which no monitoring took place). 5,475 is calculated as number of road segments (5) times 
the number of intervals per day (3) times the number of days per year (365). 

Because our data pertain only to major highways, the potential problem of route selectivity is 

mitigated. If a motorist wants to avoid a highway with announced radar controls, she will neces 

sarily have to take country roads, with relatively low speed limits (between 50 and 90 km/h) and 
with traffic lights. On the basis of time cost, a driver should prefer to take the highway rather than 
a country road. Aside from spatial avoidance, one might be concerned about temporal avoidance: 

anticipating or postponing one's travel to avoid monitoring. However, the length of an announced 

monitoring interval is six hours, and drivers do not know exactly when the monitoring will take 

place. A driver whose ideal driving time is in the middle of this interval would have to anticipate 
or postpone his travel by three hours. Although there will be some drivers who can engage in some 

avoidance with little change to their ideal driving schedule, that only applies to those who are 
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ideally driving at the very beginning or very end of the six-hour interval. In fact, we computed that 
if monitoring induces a driver to reduce his speed by 20 km/h, then the time loss on the 40-km 

length of our section is about three minutes. According to this calculation, the concern about tem 

poral avoidance is limited to a small fraction of the monitored population. 

B. Constructing the Variables and Fit to the Model 

The theoretical model presented in Section II assumed that individuals are heterogeneous in 
their propensities to speed and that the heterogeneity is unobserved by the police. In reality, the 

population driving on the road may vary in some observable as well as unobservable ways. For 

example, police may be aware that speeding is more common during certain times of the year or 
on weekends. We denote the set of characteristics that are observable to police by Z and assume 
that the theoretical model applies conditional on a set of observables Z. Table 2 reports the sum 

mary statistics of the variables used in the analysis. 

Estimation of the expected probability of monitoring.?Recall that in the theory pL and pH 
represent drivers' perceived probabilities of being caught speeding on unannounced (low) and on 
announced (high) monitoring days. On announcement days, police monitor the announced road 
with probability one. A typical announcement specifies the section of road being monitored and 
the length of time (for example, one hour in the morning). The driver's perceived probability of 

being caught speeding is typically less than one, because police do not monitor the entire length 
of time of the announced control, and they only monitor one of the two driving directions. We 
assume that drivers form expectations about the probability of being subject to monitoring, and 
that they may use characteristics of the day in forming their expectations. We therefore allow 

pL(Z) and pH(Z) to depend on Z. For example, a driver may know that the police tend to do more 

monitoring on weekends or on holidays.30 
On days with announcements, monitoring is announced within three separate time 

intervals, corresponding roughly to morning (6 a.m.-12 p.m.), midday (12 p.m.-6 p.m.) 
and evening (6 p.m.-12 a.m.). We therefore divide each day of the year into three poten 
tial monitoring intervals. For each year, we therefore have a total of 5,475 monitor 

ing events: 365 days, 3 time intervals per day, 5 sections of road (2 on A10 and A14 
and 1 on R4). Let m be an indicator for whether any monitoring takes place during 
a monitoring interval, and let a indicate whether the monitoring was announced. On 
announcement days, some monitoring definitely occurs during the stated interval, so 

Pr(m 
= 1 |a 

= 
1,Z) 

= 1. On days without announcements, drivers form a belief about the 

probability that any monitoring takes place during a monitoring interval, Pr(m 
= 

11 a 
= 

0,Z), 
potentially taking into account factors such as the day of the week, the month of the year, 
whether the particular road was recently subject to monitoring, whether there has been an 
announcement on another road or whether it is a holiday. We estimate Pr(m 

= 
11 a 

= 
0,Z) by 

a logistic regression, using as the estimation sample all potential monitoring events in which 
there was no announcement.31 

30 
Because the police hide the location of the radar machine, a driver's belief about the probability of being moni 

tored should be constant along a section of highway. In reality, not all motorists travel along the entire section?some 
make shorter trips. We will show below that, for our purposes, there is no loss in generality in treating shorter trips in 
the same way as longer trips. 31 This estimation includes all potential monitoring events (365 days of the year times 3 intervals per day). The data 
record only events in which monitoring took place, but we could infer the characteristics of the events during which 
there was no monitoring (day of week, time of day, month of year, holiday, whether there was recent monitoring). 
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Table 2?Means of Variables 

Variable Mean (standard error) 
Fraction speeding 

Fraction vehicles traveling on highway A10 

Fraction vehicles traveling on highway A14 

Fraction vehicles traveling on highway R4 

Quarter 1 (January, February, March) 

Quarter 2 (April, May, June) 

Quarter 3 (July, August, September) 

Quarter 4 (October, November, December) 

Year 2000 

Year 2001 

Year 2002 

Year 2003 

Heavy traffic density 

Medium traffic density 

Moderate traffic density 

Light traffic density 

Weekday morning rush hour 

Weekday evening rush hour 

Holiday 

0.04 

(0.004) 
0.43 

(0.010) 
0.56 

(0.01) 
0.02 

(0.003) 
0.31 

(0.009) 
0.34 

(0.010) 
0.15 

(0.007) 
0.21 

(0.008) 
0.11 

(0.006) 
0.11 

(0.006) 
0.40 

(0.01) 
0.37 

(0.01) 
0.02 

(0.003) 
0.001 

(0.0007) 
0.006 

(0.002) 
0.97 

(0.003) 
0.02 

(0.003) 
0.29 

(0.009) 
0.08 

(0.005) 

Notes: Observations are monitoring intervals. Means are weighted by the number of vehicles 
in each interval. There are 1,238 total monitoring intervals (see Table 1C for breakdown by 
year). 

On both announced and unannounced monitoring days, to arrive at a perceived probability 
of being monitored, drivers also have to form an expectation about the number of hours that the 

monitoring will take place. Using data on the actual length of monitoring during the event, we 
estimate a regression in which the dependent variable is numbers of hours spent monitoring. The 

independent variables indicate the day of week, month of year, holiday, and whether there were 

recent monitoring activities on that road. Using these ingredients, the predicted probability on 

announcement days, pH{Z), is obtained by 

pH(Z) 
= 

0.5E(Ji-\m=ia= 1,Z), 

This content downloaded from 84.89.158.36 on Mon, 09 Mar 2015 09:50:00 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


VOL. WO NO. 3 EECKHOUT ET AL.: A THEORY OF OPTIMAL RANDOM CRACKDOWNS 1121 

where H represents the number of hours of monitoring, and TH is the total time of the announced 

monitoring event. The multiplication by 0.5 accounts for drivers' uncertainty about which direc 
tion of the road will be subject to the monitoring. 

The corresponding probability on unannounced days, pL(Z), is 

pL(Z) 
= 

0.5Pr(m 
= 

\\a 
= 

0,Z) x 
E(^-\m= 1,? = 0,Z). 

pL(Z) is typically much lower than pH(Z), because Pr(m 
= 

11 a 
= 

0,Z) is much less than l.32 
We estimate the predicted probabilities of being monitored, pH(Z) and pL(Z), by estimating 

the components: E((H/TH) \ m= \,a,Z) for a ? 0,1, and Pr(m 
= 

11 a 
? 

0,Z). For this estimation, 
we make use of data on the length of time spent monitoring within the monitoring event. Tables 
B3 and B4 in the online Appendix report the estimated regression coefficients for the estimation 
of the predicted probability of monitoring on unannounced days and for the predicted length of 
time spent monitoring. As can be seen in Table B3, there are few systematic predictors of moni 

toring. It appears that the roads are more likely to be monitored unannounced if there was some 
unannounced monitoring in the previous week. Table B4 in the online Appendix shows that few 
of the conditioning variables have any predictive power in explaining the length of time police 
spend monitoring. There is some indication that the time spent monitoring differs across quarters 
of the year, but there is no systematic pattern across all highways. 

Finally, a note about the interpretation of p. In the theoretical model of Section A, p represents 
the probability that a motorist traveling along an entire sector is monitored, equation (1) must 
therefore be interpreted as a "per sector" equation. Thus, we take x to represent the "per sector" 
benefit of speeding.33 A motorist who traveled only a fraction m of a sector would speed if mx ? 

mpT > 0, or equivalently, if x ? pT > 0. Thus, the motorist's decision problem is invariant to the 
fraction of the sector traveled. This formulation allows us to aggregate trips of different lengths, 
which is convenient because we do not observe the length of each individual trip. 

Computing p.?p{pH) represents the fraction of monitoring effort devoted to high intensity 
interdiction (announced monitoring in our model). It is calculated as follows: in the denominator 
are all the 5,475 possible monitoring events (365 days, 3 time blocks per day, 5 sections of road); 
in the numerator are the number of announced monitoring events (then p(pL) 

= 1 ? p(Ph))- The 
values of p(pH) are reported in Table 1C. For example, in 2000, p(pH) 

= 
66/5,475 

= 1.21 percent. 

Crime rate.?Our theory requires us to compute F(pLT) and F(pHT), the fractions of speeders 
with and without a crackdown (see equation (6)), which we can obtain directly from the data. 

C. The Randomness of Crackdown 

One of the premises of our theory is that crackdowns are random. That is, the theory assumes 

that the difference in monitoring intensity between crackdowns and noncrackdowns (pH and 

32 
For days without announcements, we set TH 

? 16, because we do not observe in the data any monitoring during 
nighttime. For roads A14 and A10, we make an additional adjustment (multiply by 0.5) to the estimated probabilities 

pL{Z) to take into account drivers' uncertainty about which section of road is subject to the monitoring. On announce 

ment days, drivers learn the section of road from the announcements, but on unannounced days they do not know 
the section of road where monitoring will take place. On the shorter road R4, there is only one section, so no further 

adjustment is necessary. 
33 We can think of x as reflecting a time benefit from speeding over some interval, and we would expect the value of 

time to differ across individuals. 
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Figure 3: Probability of being monitored, highway A14 

pL) reflects a nonconvexity in F, rather than the police's adapting their monitoring intensity to 
several convex F's, reflecting shifts in the propensity to speed that are observable to the police 
but unobservable to us. Figure 3 shows that the distributions of the pH's and pL's are bunched in 

proximity of their respective means, and the two distributions have literally no overlap (there are 
no monitoring events with intensity between 0.05 and 0.15). The distribution of unobservables 
would have to be very peculiar to generate this "bimodal" pattern of monitoring intensities. That 

is, we would require the existence of a characteristic of drivers on a particular road segment that 
is observed by the police but unobserved in our data, which sharply and discontinuously shifts 
their propensity to speed in a way that explains the bimodality. To the best of our knowledge 
from conversations with the police, there is no such characteristic, and the bimodality is better 

explained by a nonconvexity in F. 
There is, moreover, evidence that the police do not attempt to strategically condition announce 

ments on factors that might influence the propensity to speed. First, the police commit to their 
announcement schedule at least one month in advance, and in so doing they forgo the opportu 
nity to fine tune their announcements to factors that might influence speeding (such as unsea 
sonable weather, road conditions or traffic density). Second, the announcement schedule is a 

fairly mechanical rotation, and in personal communication, the police indicated that they were 

attempting to make the announcement schedule as random as possible. 
There is thus ample anecdotal evidence that in our context crackdowns are random. To further 

explore this question, Table B6 in the online Appendix reports the estimated coefficients from a 

logistic regression of the probability of an announcement. The independent variables are charac 
teristics of the day, such as whether it is a holiday and the quarter of the year, and information on 
recent monitoring events. We also include as a potential predictor variable the percentage speed 
ing on the same road on an unannounced day, as a proxy for the underlying speeding propensities 
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of motorists on that road.34 Almost all the variables, including the speeding measure, do not 

predict the announcements, which is generally supportive of the announcements being random.35 
Even if there seems to be no clear evidence of targeted announcements, our estimation strat 

egy allows for potential systematic variation in monitoring behavior based on a set of observables 
Z that police and drivers might plausibly use. 

D. Examining Support for the Model 

Ideally, we would like to be able to estimate the empirical counterpart of the distribution of 

propensities to speed, as depicted in Figure 1, and look for a concave part in order to justify a 

crackdown. However, if the theory is correct, then we should observe only two points on the 
function F(pLT) and F{pHT\ and there will not be any variation in the data to trace out the shape 
of the function. In the absence of a direct test on the shape of the distribution of propensities to 

speed, we turn to our model, and in particular to Proposition 5, for other kinds of predictions that 
can be used to examine the empirical support for the model.36 

Implication #L Partitioning into Two Groups.?One implication of the theory (Proposition 3 

part (a)) is that the optimal policing scheme partitions the population in at most two groups. The 

optimal monitoring strategy involves either monitoring everyone at the same rate or dividing 
the population into at most two groups that are monitored at different intensities. The fact that 

police announce crackdowns on some roads on some days naturally gives rise to three different 

groups: (i) highway sectors with crackdowns; (ii) sectors without crackdowns on days in which 
crackdowns are announced on other sectors, and (iii) sectors on nonannouncement days. 

Figure 3 plots the histogram of the estimated probabilities with which police monitor drivers, 
obtained by the procedure described in Section B (the plot refers to road A14; the histograms 
for A10 and R4 are similar and available upon request). The columns of the figures refer to year 
2000, 2001 and 2002, and the mean of the probabilities in each year is shown in the jc-axis label. 
For each year, the figure in the first row displays the distribution of the probabilities if there 
was an announced control (i.e., of pH(Z) ). The mean of this distribution is around 25 percent 
because, during an announced control, the police choose to keep the machine out for about 3 
hours on average within an announced six-hour time window, on 1 of 2 possible driving direc 

tions, so 3/6 x 1/2= 0.25. 
The middle row depicts the distribution of probabilities if there was no announcement on that 

road (A 10), but there was an announcement simultaneously on another road. The bottom figure 
corresponds to the case without announcements on that road (A 10) or on any other road. Groups 
(ii) and (iii) are monitored with similar intensities, and with sharply lower intensity than group 

(i), which is consistent with the prediction of the theoretical model. However, a statistical test of 

equality of the estimated probabilities in groups (ii) and (iii) rejects the hypothesis at five percent 

significance level. The probability of being monitored on a given road is slightly less when there 
is announced monitoring on another road. 

34 An anonymous referee pointed out this strategy for testing the randomness of crackdown. We are grateful for 
this suggestion. 35 We expect the year effects to be statistically significant, given that the operating budgets are annual and the num 

ber of announcements increases over time. 
36 To estimate the empirical counterpart of the distribution of propensities to speed, one might look for variation in 

the day to day monitoring probabilities (the jc-axis in Figure 1) that is (i) exogenous to the propensity to speed, and (ii) 
anticipated by drivers. Unfortunately, this is difficult. Weather and traffic density, for example, are sources of variation, 
but they are likely to affect the drivers' underlying propensity to speed, thus shifting the curve in Figure 1. Thus, these 
are not sources of exogenous variation. In fact, we account for these factors in the empirical analysis by introducing 
them as conditioning variables. 
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Implication #2. Effect of an Exogenous Increase in Resources on Monitoring Probabilities.? 
The theory (Proposition 3 part (b)) predicts that with an increase in the number of tickets there 
will be an increase in announced controls (pH increases, with a corresponding decrease in pL) but 
no change in the monitoring probabilities. In 2002 and 2003, there were large increases in police 
resources that were arguably exogenous with respect to the speeding propensities of the drivers. 
The predictions of the model that the probabilities remain stable and that announcements occur 
more frequently seem to be borne out in the figures. Table 1C shows a very significant increase 
in pH in 2002, to 6.15 percent, more than five-fold compared to 2000. A simple comparison of 
the histograms in the first, second, and third columns of Figure 3 reveals that as the number of 
tickets issued nearly doubled in 2002, the number of vehicles subject to monitoring increased 

dramatically, but the monitoring probabilities remained roughly the same. The stability in the 

probability of monitoring across years can also be seen in Table B3, where the estimated year 
effects are generally not significant determinants of the probability of monitoring, as well as in 
Table B5, which shows the average predicted probability of monitoring for each of the years. 

Implication #3. More tickets during crackdowns.?The model predicts that the expected 
number of successful interdictions per capita is larger in the crackdown group than in the non 

crackdown group (Proposition 3 (c)). The expected number of successful interdictions per cap 
ita equals the probability that there is monitoring multiplied by the fraction of motorists who 

speed. On days with announcements, the probability of monitoring increases substantially. If 
the fraction speeding went down enough to offset the increased probability of monitoring, then 
it is conceivable that the number of successful interdictions could go down. The data are, how 

ever, consistent with the model, and the number of successful interdictions per capita increases 
with announcements. For example, on highway A10 the expected number of tickets per capita 
on announcement days is 0.505 percent, whereas on unannounced days it is 0.026 percent.37 
Likewise on A14 (1.010 percent and 0.083 percent respectively) and R4 (1.041 percent and 0.038 

percent). This test of the model is arguably weak, because the only way the test could fail is if 
the announcements had a great deterrence effect and motorists were about ten times less likely 
to speed during announced periods. 

Overall, we conclude that the data broadly support the key predictions of Proposition 3. We 
next use the model to infer the deterrence effect of resources devoted to speeding interdiction. 

E. The Deterrence Effect of Announced Controls 

The main goal of our empirical analysis is to estimate the deterrence effect of a change in 
the number of tickets issued by the police. The simplest approach would be to measure deter 
rence by the change in total crime before and after a reform that exogenously changes the level 
of resources. We do not, however, have total crime in our data, which record information only 
during monitoring events, so this simple approach is not feasible.38 Our model provides an 

37 This calculation is based on estimates of pL and pH and of the percentage speeding with and without announce 
ments that are estimated by the method described in the next section and are reported in Table 4 (the first column and 
the column labeled (3)). 38 

Following this simple approach would require us to know total crime, i.e., the number of vehicles on the road and 
the speeding rates on all days and times of day when there was no monitoring, which is something we do not know. In 
the absence of this information, we could impute the number of vehicles and the speeding rates on the days with no 

monitoring. A difficulty with this imputation is that there are some observables that we do not know for days when there 
was no monitoring, such as traffic density and weather. With our model, we obtain the same objective, i.e., a way to get 
from the two crime rates to the deterrence effect. In addition to the fact that we do not need to know the total level of 

speeding vehicles, the model also allows us to examine policy changes that are not observed, i.e., any change in tickets 
different from the increase of 32,872 observed in 2002-2003. 
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alternative way of estimating the deterrence effect that requires knowing only the speeding rates 

during crackdown and noncrackdown periods. 
The theoretical model implied that relaxing the budget constraint should lead to an increase in 

the number of announced controls. Drivers who take to the roads on announcement days are subject 
to a higher probability of being caught speeding and are therefore viewed as the group subject to 
a crackdown. Here, the criteria by which the crackdown group is distinguished are time and day 
of traveling on the road.39 To estimate the deterrence effect, we compare the speeding response on 

days with announcements (days with pH) to the speeding response on no announcement days (with 
/?L). The maintained assumption is that announcements (crackdowns) are random conditional on 
the observed covariates. The theoretical model of Section II assumed that monitoring intensity is 
the only observable factor affecting speeding decisions, but in reality other likely important fac 
tors are weather conditions, traffic density, day of the week, month of the year, time of the day and 
whether it is a holiday. We therefore include those additional variables as potential determinants of 

speeding decisions. To examine sensitivity to the set of included covariates (Z), we report results 
with and without conditioning on the additional covariates. 

We estimate a discrete choice logistic model for drivers' decisions to speed, where the speeding 
decision is assumed to depend on the probability of monitoring and on the other covariates. Table 3 

presents the estimated coefficients for three different specifications. In specification (1) the speeding 
decision is assumed to be a function solely of the monitoring probability. Specification (2) adds the 

conditioning variables that may also be relevant to the speeding decision: indicators for different lev 
els of traffic density, an indicator for poor visibility on the road, an indicator for morning and evening 
rush hour weekday traffic, an indicator for whether the day is a holiday, and fixed effects for days of 

week, months of year, and year. Specification (3) includes the same set of conditioning variables, but 
the speeding decision is now assumed to depend only on whether there is an announcement, without 

taking into account the information contained in the length of the monitoring event. This would be 
the appropriate specification if driver's expectations about the probability of being monitored depend 
only on whether an announcement was made and not on other day specific factors.40 

As seen in Table 3, speeding decreases during announcement periods and is a decreasing 
function of the probability of monitoring. This result is robust to the inclusion of condition 

ing variables, although a comparison of the estimated coefficients across specifications shows 
that the estimated deterrence effect is smaller in the specifications that include the covariates. 

Controlling for covariates especially affects the estimated coefficient associated with the prob 
ability of monitoring on highway R4. As expected, individuals are more likely to speed when 
traffic density is lower. Speeding also tends to be higher during weekday rush hour times, on 

holidays, and on Sundays. 
Using the estimated coefficients from Table 3, we estimate for each person the probability of 

speeding, evaluated at pH and pL values that are set at the average over all the observed values. 
The average pH and pL values for each road are reported in the first column of Table 4. Column 

(1) of Table 4 reports the average predicted decrease in speeding on each road that can be attrib 
uted to the announcements for the same three model specifications that were shown in Table 3.41 

39 The observed policy of rotating announcements across space and time is not the unique optimal policy in our 

theoretical model. Alternatively the police could focus all resources on one particular road (for example always monitor 
one section of A10 intensely and always monitor all other sections with low intensity). We believe that a plausible reason 

(outside our model) for rotating announcements is to allocate the burden of interdiction "fairly." 40 The results in the third column are robust to any potential misspecification in the model for the probability of 

monitoring. 41 
That is, we obtain a predicted decrease in speeding for each driver and then take the average over all drivers. The 

predicted decrease is driver specific in the specifications where pL(Z) and pH(Z) depend on covariates Z, which are 

driver specific (such as day and month of travel). 
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Table 3?Estimated Coefficents from Logistic Regression of 
Probability of Speeding3 

Dependent Var: Indicator for Whether Speeding 

(standard error shown in parentheses) 

Model sp?cification 

Variable_(1)_(2)_(3) 
Intercept -3.43 -3.46 -3.41 

(0.007) (0.02) (0.02) 
Indicator for highway A14 0.58 0.27 0.19 

(0.009) (0.008) (0.008) 
Indicator for highway R4 0.35 -0.16 -0.23 

(0.02) (0.02) (0.02) 
Announcement on highway A10 -0.18 

(0.009) 
Announcement on highway A14 ?0.11 

(0.006) 
Announcement on highway R4 -0.04 

(0.05) 
Probability of monitoring-A10b -0.93 -0.28 

(0.04) (0.04) 
Probability of monitoring-A14b -0.96 -0.39 

(0.02) (0.02) 
Probability of monitoring-R4b -0.38 -0.08 

(0.15) (0.15) 
Medium traffic density0 -0.28 -0.25 

(0.06) (0.06) 
Moderate traffic density0 0.24 0.27 

(0.03) (0.03) 
Light traffic density0 0.22 0.24 

(0.01) (0.01) 
Indicator for weekday morning rush hour -0.45 -0.44 

(0.02) (0.02) 
Indicator for weekday evening rush hour 0.02 -0.02 

(0.006) (0.006) 
Indicator for holiday 0.51 0.49 

(0.007) (0.007) 
Includes fixed effects for days of week No Yes Yes 
Includes fixed effects for months of year No Yes Yes 
Includes fixed effects for year No Yes Yes 

Number of vehicle observations 5,641,522 5,641,522 5,641,522 
Percent correctly classified under the model 44.0% 48.02% 48.3% 

Notes: 
aThe unit of observation is a vehicle passing by the radar control machine. The speeding 

status is recorded by the machine. 
b The probability of monitoring was obtained using the procedure described in the text, 

which takes into account the expected probability of monitoring, the expected length of time 

spent monitoring, and uncertainty about the direction of the road being monitored. 
?The omitted category is high traffic density. 

As noted above, the estimated deterrence effects are smaller when additional covariates are 

included in the specification. We focus on the coefficients that include the covariates (reported in 
columns (2) and (3)), because they are likely to be important determinants of speeding decisions. 
On highway A10, the estimated coefficients imply that announcements reduce the fraction of 
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Table 4?Decrease in Speeding Attributable to a Crackdown 
and the Deterrence Effect of Increasing the Number of Tickets 

Average monitoring 
probability3 

Model specification 

(i) (2) (3) 
Highway A10 

pH = 0.2007 

pL = 0.0084 

Predicted percent speeding on days 3.1 3.0 3.1 
without announcements (a) 
Decrease in percent speeding due to 0.20 0.15 0.48 
the announcement (b)b 
Percentage decrease in rate of 6.5 percent 5.0 percent 15.5 percent 
speeding0 

Implied slope of 1 ? Fd ?1.04 percent ?0.78 percent ?2.50 percent 
Effect of additional 10,000 tickets on -3,597 -2,743 -9,603 
number of speeders6 

Highway A14 

pH = 0.2441 

pL = 0.0167 
Predicted percent speeding on days 5.4 5.0 5.0 
without announcements (a) 
Decrease in percent speeding due to 1.01 0.40 0.48 
the announcement (b)b 
Percentage decrease in rate of 18.7 percent 8.0 percent 9.6 percent 
speeding0 

Implied slope of 1 ? Fd ?4.44 percent ?1.76 percent ?2.11 percent 
Effect of additional 10,000 tickets on -10,291 -3,849 -4,707 
number of speeders6 

Highway R4 

pH = 0.2441 

pL = 0.0167 

Predicted percent speeding on days 4.4 4.3 4.2 
without announcements (a) 
Decrease in percent speeding due to 0.38 0.08 0.16 
the announcement (b)b 
Percentage decrease in rate of 8.6 percent 1.9 percent 3.8 percent 
speeding0 
Implied slope of 1 ? Fd ?1.53 percent ?0.32 percent ?0.64 percent 
Effect of additional 10,000 tickets on -3,817 -763 -1,596 
number of speeders6 

Notes: 
aThe monitoring probabilities pH and pL are derived following the procedure described in the text, which takes into 

acccount the probability of monitoring, the expected length of time spent monitoring, and uncertainty about the direc 
tion of the road being monitored. /?# is the average probability of being monitored during an announcemnet period and 

pL is the probability of being monitored when there was no announcement. 
b 
Change in speeding rate implied by the estimated coefficents from the logistic regression model (Table 3) when the 

monitoring probability increases from pL to pH. 

?(b)/(a) x 100 
dSlope 

= 
(b)/(/?L-/?H) 6 

As described in the text. 

drivers speeding on average by 5.0-15.5 percent. For highway A14, estimates range from 8.0 per 
cent-18.7 percent, and for highway R4, from 1.9 percent-8.6 percent. 

These estimates can now be used to compute the deterrence effect of a hypothetical increase 
in police resources in the form of an increase in the number of tickets issued. The effect of an 

increase of 10,000 tickets is reported in Table 4 for each of the highways. It is easiest to under 
stand the computation in the context of a specific example. Consider model specification (1) for 

Highway A10. The expected number of tickets written per car on an unannounced day is given 
by the probability that a car speeds (0.031 from the first row, labeled (a)) times the probability 
that it is monitored {pL 

= 
0.0084): 

1(0.031)(0.0084) 
- 2.604 x 10"4. 
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On an announcement day, the probability that a car speeds is 6.5 percent lower (from the third 

row), and the probability that it is monitored is equal to 20.07 percent. The expected number of 
tickets written per car is therefore: 

1 x (0.031)(1 
- 

0.065) x (0.2007) 
= 5.8203 x 10~3. 

Therefore, an increase in the budget of 10,000 tickets allows subjecting to announcement 

10,000 L7986 x 1()6 
5.8203 x 10~3 - 2.604 x 10~4 

additional cars. Without an announcement, 3.1 percent would speed. Of these, 6.5 percent are 
deterred from speeding by the announcement. Thus, 

1.7986 x 106 x 0.031 x 0.065 - 3,597 

drivers will be deterred as a result of writing 10,000 more tickets which will be issued on addi 
tional announcement days. The same calculation is performed to obtain "Effect of additional 

10,000 tickets" in Table 4. Depending on the model sp?cification, the reduction in the number of 

speeders ranges from 2,743 to 9,603 on highway A10, from 3,849 to 10,291 on highway A14, and 
from 763 to 3,817 on R4. 

There is a large literature documenting the effect of speeding on accidents, injuries and traf 
fic deaths.42 We can use estimates from the literature of the impact of speeding on fatalities 

along with our estimates of how additional resources reduce speeding to evaluate whether the 

police optimally trade off the costs and benefits of speeding interdiction. We take an average of 
the estimated deterrence effects of 10,000 tickets, found in Table 4 to be about 4,000 speeders. 
Assuming that each deterred motorists travels the length of a sector (about 40 km), 160,000 km 
are traveled by deterred motorists. The expected number of deaths on 160,000 traveled kilome 
ters is around (1.3/100000000) x 160000 = 0.00208.43 In our data, deterred motorists reduce 
their speed by about 8 km/h.44 Assuming the probability of injury and death increases by five 

percent per km/hour,45 the additional interdiction is expected to reduce the number of deaths by 
40 percent, or by 0.00208 x 0.4 = 8.32 x 10~4. 

On the cost side, writing 10,000 more tickets costs $5,000 in administrative costs and, we 

assume, wastes about 1 minute per deterred driver, or a total of about 67 hours. Given a wage of 

$10/h (the opportunity cost of time), the total cost of interdiction is $5,000 + $670. 
If the police were resolving optimally the trade off between marginal cost of interdiction and 

marginal benefits, in terms of statistical lives saved, then the implied value of a statistical life 
is 5,670/(8.32 x 10~4) 

= 6.8 million dollars. This value is within the range of commonly used 

42 
For the United States, the National Highway and Traffic Safety Administration (NHTSA) provides estimates of 

speed related crashes. 
43 We impute the expected number of deaths at 1.3 per 100 million km traveled (see Carolyn DiGuiseppi et al. 1998). 

For comparison, in the United States the expected number of deaths was 1.51 per 100 million of highway miles traveled 
in 2002 (see Motor Vehicle Traffic Crash Fatality Counts and Injury Estimates for 2003). 44 

Average speeds among speeders are 142 and 144 respectively for A10 and A14. Assuming that deterred motorists 
travel at the maximal nonticketed speed (135km/h), deterred motorists reduce their speed by 7-9km/hr. 45 This estimate is given in D. J. Finch et al. (1994), which presents a meta-analysis of before-after studies of speed 
limit changes in some western European countries. This estimate was used by the Belgian police in an internal memo 

randum to evaluate the impact of speeding on casualties. 
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estimates of the value of a statistical life, indicating that the use of resources in policing may be 
close to efficient.46 

IV. Discussion and Some Extensions 

This section discusses some other existing theories of crackdowns and mentions some exten 
sions and variants of the base model. 

A. Alternative Theories of Deterrence 

As noted in the introduction, Lazear (2006) independently analyzes an auditing model which 
is close to the one analyzed here and therefore deserves careful discussion. The main focus in 
Lazear's paper is on academic testing as an incentive for pupils to study a subject. The test can 
include only a given number of questions, so it has only a limited power to incentivize. This 

power can be spread thinly across the entire subject matter or focused on specific areas. Unlike 

us, Lazear (2006) does not investigate the optimal testing strategy. Instead, that work focuses on 
the following specific strategy: the students are told that a fraction (1 

? 
q) of the subject matter 

will not be tested at all and that the test will cover only the remaining q of the material. Note that 
if q < 1 this scheme induces, in our language, a special type of crackdown policy with pL = 0. 

An auditing policy of this type is, in general, suboptimal because it constrains pL to be zero. 
The effects of this restriction can be seen in Figure 4 where for a given P the optimal crackdown 
intensities (marked by pL and pH) are compared to the constrained crackdown intensities (indi 
cated by 0 and lH). As expected, under the optimal crackdown the crime rate (S) is lower than 
under the restricted crackdown (Si). 

Observe that restricting the no-crackdown probability to zero also distorts the crackdown 

probability (lH) relative to the optimal one. Indeed, it is easy to see that, regardless of the shape 
of F, it must be ///</?#. We may also note that in Lazear's treatment, crackdowns are inefficiently 
rare, in the sense that crackdowns are adopted for fewer values of P than is optimal (again, this 
follows by inspection of Figure 4). For values of P when crackdowns arise in Lazear's frame 

work, the estimated deterrence effect as computed using Lazear's crackdowns exceeds the deter 
rence effect in the optimal scheme (in Figure 4, the slope of the "Lazear crackdown" is steeper 
than the slope of the optimal crackdown). Finally, under the optimal policing scheme the deter 
rence effect of additional resources is subject to the law of diminishing returns: as P increases, its 

marginal effect on crime never increases (the deterrence effect is given by the slope of the lower 

envelope of the function 1 ? F(pT)). In Lazear's treatment, the law of diminishing returns does 
not hold: deterrence is generally nonmonotonic in P.47 

Despite the difference in approach, it is reassuring that in one respect the two analyses give 
the same prediction: as the budget constraint is relaxed, both approaches imply that the fraction 

q of the material subjected to high intensity testing increases, and that the per unit-of-material 

intensity of testing remains unchanged (even though the latter is suboptimal in Lazear 2006). 

46 For example, Kevin M. Murphy and Robert H. Topel (2003) report a range of $3 million to $7 million. The 
Environmental Protection Agency in the United States uses an estimate of $4.5 million (Murphy and Topel 2003). If we 

do the same calculation using an estimated effect of 12,000 vehicles deterred per 10,000 tickets, which is at the upper 
range of our estimates, we get an implied value of a statistical life of $2.86 million. 

47 
Practical reasons do not often, in our view, dictate that we restrict attention to a scheme where pL = 0. The Belgian 

police, for example, spend considerable resources on noncrackdown interdiction, thus making pL > 0. In the context 

of academic testing, the optimal scheme could readily be implemented by telling students that a fraction (1 
- 

q) of the 

subject matter is less likely to be tested, but not necessarily out of bounds. 
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Turning to other theories of deterrence, we acknowledge that crackdowns could be rational 
ized based on some form of nonstandard (at least from an economist's viewpoint) estimate of 

probabilities. For example, suppose that absent a crackdown, the probability of monitoring is so 
small as to be ignored by the driver, and that crackdowns raise the driver's awareness of moni 

toring. If this increased awareness extends to periods when a crackdown is not in force, crack 
downs help reduce speeding.48 Criminologists have justified crackdowns using a different theory 
of deterrence based on subjective risk assessment. This theory, developed in Ross (1984) and 
Sherman (1990), highlights the distinction between risk (which is accurately perceived by*motor 
ists) and uncertainty (which is not accurately perceived). According to this theory, an effective 

policing strategy would leave motorists in as much in doubt as possible as to the location and 

timing of the crackdowns, in order to maximize their uncertainty. 

B. Extensions 

The analysis of Section II extends to somewhat more general environments, namely: the case 
in which the utility from committing a crime is nonlinear, and the case in which the decision to 
violate the law is not discrete (yes/no) but rather continuous (how much to speed). All the quali 
tative features of the solution to the original problem carry over to these extensions, as explained 
in a Web Appendix. 

In the Web Appendix we also discuss two scenarios which are formally similar to the ones 
discussed in this paper. One is the case in which the social goal is the minimization of undetected 

48 In our speeding application, this theory of deterrence would suggest that motorists on announcement days would 
be reminded of the possibility of being monitored and therefore slow down. According to this theory, speeding should 
also go down even on roads that are not monitored due to the increased alertness from announcements on other roads. 
This implication, however, is refuted by our data, because we find that the fraction of speeders on nonmonitored roads 
does not decrease during monitoring days (see Table A4). 
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crime.49 The other is the case in which monitoring by an agency generates inefficiencies due to 
the exclusion of some consumers.50 

V. Conclusions 

This paper introduced and analyzed a model of police interdiction. Within this model, we have 

fully characterized the optimal interdiction strategy. We have shown that even if all citizens look 
identical to the police, it may be rational for the police to divide the population into two (but no 

more) groups and monitor the groups at different intensities. For this division to be effective in 

curtailing crime, it is important that the group subjected to the crackdown be made aware when 

they are being monitored at the higher rate. This explains why police would announce when 
and where crackdowns will occur. Our analysis provided a rational choice explanation for pre 
announced police crackdowns, which are regarded in the criminology literature as exploiting a 
nonrational perception of risk on the part of the citizens. 

The model provides a behavioral setting in which monitoring intensities could differ across 
locations or groups in a way that is totally random, thus potentially providing a rigorous basis 
for using the observed variations in monitoring intensities in observational data to estimate the 
deterrence effect without having to worry about endogeneity. 

We applied our theoretical model to study speeding interdiction in Belgium. The data provide 
support for several implications of the model. Among these are, first, that the announcement 

strategy of the police indeed amounts to dividing the population into exactly two groups, and, 
second, that when police resources are increased, the frequency of crackdowns increases but the 

probability of being policed during a crackdown does not change. We used the model to estimate 
the deterrence effect of additional resources devoted to speeding interdiction in the form of 

10,000 additional speeding tickets. Our calculations suggest that the marginal benefit, in terms 
of statistical lives saved, is close to the marginal cost of deterrence (it is exactly equal if we take 
the value of a statistical life to be $6.85 million). Thus, the current level of speeding interdiction 
is arguably in line with socially optimal use of resources. 

The standard theoretical approach we adopted?set up a stylized model and derive the opti 
mal policy?turns out to be remarkably successful in explaining the policing behavior of a 

police department. What is remarkable is that the optimal interdiction strategy in our model 
has some features (crackdowns) which are unlikely to be put in place by chance, and which 
are found in the Belgian data. Thus, the rational theory of optimal interdiction can have not 

only normative implications, but even positive correlates in practical policework. If apparently 
abstract models can capture the behavior of complex real world institutions such as police 
departments, then this is good news for the vast theoretical literature dealing with optimal 
enforcement. 

49 
Consider for example the problem of minimizing the amount of drugs, or illegal firearms, that make it to the 

retail market without being intercepted by patrol officers. Similarly, in tax auditing a plausible objective is to minimize 
undetected tax evasion. 

50 The analysis is developed within the real world context of auditing by Radiotj?nst, a private corporation that 
administers the Swedish TV fee and checks that people are actually paying the fee. This agency implements widely 
publicized crackdowns, called special fee controls, in three to five predetermined areas every year. 
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Mathematical Appendix 

Appendix A: Proofs 

THEOREM 1: Let the function f: [0,5] ?? [0,1] be continuous and strictly increasing. Let the 

function g : [0,5] ?? R be continuous. Let V* denote the set of probability distributions defined 
on the interval [0,5] that solve the following linear problem 

(7) m?xJo f(PMP)dP 

s t. 
Jo g(p)p(p)dp<C. 

For given f let Tg denote the set of all functions fwith the property that all p G V* place all the 

probability on one or two points in [0,5]. Then, the set !Fg is dense in the set of all continuous 

functions g equipped with the supnorm. 
If, moreover, the solution requires that probability mass be placed on two points in [0,5], 

then the same two points receive all the probability when C is slightly increased. 

Proof: Consider first the easy case in which the constraint is not binding at the optimal solu 
tion. In that case, a generic /will have exactly one strict maximum, and so the optimal p will 

put mass one on exactly one point (the strict maximum). 
Let us now consider the more difficult case in which the constraint is binding at the optimal 

solution. In that case, there exists a number ? > 0 such that p* maximizes the Lagrangean 

?(//, A) = fo lf(p) - \g(p)Mp) dp + AC. 

We will show that, if p G V* puts positive mass on more than two points, then fis nongeneric. 
To this end, let A denote the set of p's that is defined by 

A = arg max[/(p) 
- 

\g(p)]. p 

By definition of A, there is a number M such that 

AP)-*8(P)=M forpeA 

f(p)-Xg(p)<M fovp^A. 

If p* puts positive mass on more than two points, then the cardinality of A would have to exceed 
2. Consider the transformation ip(p) 

= 
f~\p/S). The function (p is a one-to-one mapping of [0,5] 

onto itself. We can therefore write 

f(<p(p)) 
- 

Xg(<p(p)) = M for <p{p) e A 

f&(p)) 
- 

Xg^(p)) < M for <p{p) ? A, 
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or, with the obvious meaning of symbols, 

^-\g&(p))=M 
for pe^-\A) 

%-\g(<p(p))<M 
for pffi<p-\A). 

Note that the set ^p~\A) has the same cardinality of A. Thus, if A has cardinality greater than 2, 
it means that the two numbers ? and M are such that the negatively sloped straight line identified 

by (l/X)((p/S) 
- 

M) is tangent to the function g{f~\p/S)) at more than two points and never 
exceeds it. This means that there is a tangent hyperplanes to the set 

Y={(p,y):y<g(f-\p/S))} 

which makes contact with the set Fat more than two points and has negative slope. We now show 
that the set of fs such that this property does not hold is dense. To this end, and without loss of 

generality, let us assume that 5=1. Our task, then, is to show that if a negatively sloped tangent 
hyperplanes to F make contact with Yin more than two points, there is a function/close to/with 
the property that no tangent hyperplane has more than two contact points. Let H denote the set 
of hyperplanes that have more than-two contact points with Y. Elements of H are identified by 
their slope h. For every hyperplane he H, take the sup and the inf of the first dimension of all its 
contact points and call those ah and bh. Consider now a continuous function dg(p) which is equal 
to 0 for every p unless p G {ah,bh) for some h G H, in which case dg(p) assumes values strictly 
between zero and 1. Let/?(/?) 

= 
[1 + edg(p)]f(p). For any e > 0, the set Y? 

? 
{(p,y) : y < f?(p)} 

has exactly the same set of tangent hyperplanes as Y. This follows from the fact that since the 

functions/and g are continuous, hyperplane h makes contact with Y at ah and bh. Moreover, by 
construction no hyperplane is tangent to Ye at more than two points. Since the function f?(p) can 
be made arbitrarily close to f(p) in the supnorm by choosing e to be small, the set Tg is dense. 

Let us now turn to the second part of the statement. For given C, suppose that the solution 

requires placing probability mass on two points pL < pH. Then, the constraint must be binding. 
To see this, define 

Pm = arg min f(p) 

pM EE arg max f(p). 
P {PH,Pl} 

Since fis strictly monotone, f(pM) > f{pm)> and the only reason why it is optimal to place any 

probability mass on pm is to help satisfy the constraint. It must therefore be g(pM) > C > g(pm). At 

the optimal solution, moreover, it cannot be optimal to place anything but the smallest probability 
mass on pm so that the constraint is just satisfied (with equality). Denote by ?* the Lagrange mul 

tiplier associated to this programming problem. Since fis strictly monotone, ?* > 0. 

Suppose now that the constraint is relaxed slightly, by increasing C to C ? C + e with e a 

small positive number. The solution to the programming problem is a saddle point (p, A) for the 

Lagrangean. We now proceed to construct this saddle point. We start by keeping the Lagrange 
multiplier unchanged, A = A*. Because of this choice, the p that maximizes the Lagrangean still 

places probability mass on pM and pm only, which is what we wanted to prove. To conclude the 

proof we need to finish the construction of the saddle point. To this end, observe that in order 
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for ? = ? > 0 to minimize the Lagrangean, the Lagrangean must be constant with respect to ?, 
which is equivalent to 

(8) g(Pm)?(Pm) + 2>(Pm)&{Pm) = C . 

Since g(pM) > C > g{pm), for e sufficiently small also g(pM) > C > g(pm). Therefore, it is 

possible to choose p(pm) and p(pM) 
= 1 ? fi(pm) so that equation (8) is satisfied. Choosing p 

accordingly concludes the proof. 

COROLLARY 2: Iff is increasing and the solution requires that probability mass be placed on 
two points in [0,5], the probability mass placed on the largest point increases when C is slightly 
increased. 

PROOF: 
> From the proof of Theorem 1 we know that the constraint (7) is binding both at C and at 

C + s. This means that for c = C, C + ?, the probability mass pc placed on pH must solve 

8(Ph)P>c + 
- 

P>c) 
= c 

Since/is increasing, pM = pH and thus g(pH) > g(pi). The result follows. 
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