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Abstract

In a simple exchange economy we propose a bargaining procedure that leads to a Walrasian outcome
as the agents become increasingly patient. The competitive outcome therefore obtains even if agents have
market power and are not price-takers. Moreover, where in other bargaining protocols the final outcome
depends on bargaining power or relative impatience, the outcome here is determinate and depends only
on preferences and endowments. Our bargaining procedure involves bargaining over prices and maximum
quantity constraints, and it guarantees convergence to a Walrasian outcome for any standard exchange
economy. In contrast, without quantity constraints we show that equilibrium is generically inefficient.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Price-taking behavior is typically invoked as a necessary requirement to obtain the competi-
tive outcome. In this paper, we propose a bargaining foundation for the Walrasian equilibrium
in a small exchange economy where agents are not price-takers. The bargaining procedure we
analyze relates to those studied in Binmore [2] and Yildiz [17]. More specifically, in our set-up
each agent alternatingly offers a price and a maximum amount to be exchanged, and the respon-
dent either accepts and chooses the quantities to be traded at the terms of the offer, or rejects
and makes an offer in the next period in which utilities are discounted. We show in this set-up
that the competitive outcome obtains when bargaining frictions vanish, even without price-taking
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behavior. This convergence result holds for any standard exchange economy. Moreover, the out-
come does not depend on details such as relative impatience and bargaining power or outside
options. Paradoxically, by explicitly introducing price-setting as a strategic variable in an oth-
erwise standard bargaining environment, the competitive outcome is restored. Price-taking is
therefore not a necessary requirement for attaining a perfectly competitive outcome.

The main implication of the convergence result is that, as discounting frictions vanish, the
bargaining outcome does not depend on the exact specification of time preferences. Instead, the
bargaining outcome converges to a Walrasian allocation which is determined by the preferences
and endowments of the agents. It seems natural after all that the bargaining outcome is not
exclusively determined by relative patience (or by exogenous bargaining power in axiomatic
Nash bargaining) as is the case in the alternating-offers bargaining of Rubinstein [11] or Ståhl
[16]. There, the relatively patient agent obtains a proportionally larger share of the surplus (see
for example Binmore, Rubinstein and Wolinsky [1]). Rather, in many economic environments the
bargaining outcome may depend, at least in part, on preferences and endowments, for example
on the degree of substitutability between the goods consumed.

The bargaining procedure with price offers that guarantees our convergence results necessarily
involves maximum trade constraints. This indicates that the details of the bargaining procedure are
important (see also Binmore [2]). We show that the conditions for convergence obtained in Yildiz
[17] for a bargaining procedure over prices without maximum trade constraints are too strong
in the sense that almost no economy satisfies the assumptions made in Yildiz [17]. In general,
for any economy in an open and dense subset of the set of standard exchange economies there
will exist at least one stationary equilibrium of the bargaining game without quantity constraints
that converges to an inefficient outcome. This inefficient outcome leaves each agent indifferent
between two distinct allocations. The utility obtained when accepting a price offer on her own
offer curve is the same as the utility obtained from her own price offer. In the latter case, her
accepted offer induces the other agent to choose an allocation on his own offer curve.

Intuitively, the maximum constraint provides a credible tool for the offering agent to induce the
outcome to be efficient. Without the constraint, the two agents may get locked into an inefficient
outcome in which each agent is indifferent between accepting an unfavorable price now while
choosing the quantity, and having a favorable price accepted tomorrow letting the quantity to be
chosen by the other agent. The proposer of a price cannot prevent the responder from asking for
his demand at this price, so that no agent can deviate by offering a Pareto-improving outcome
within the lens formed by the indifference curves corresponding to the inefficient levels of utility.
In contrast, the maximum trade constraint allows the offering agents to undo this inefficient
outcome with a deviating offer of a price and maximum trade that induces the responder to accept
and ask for an allocation within this lens of Pareto-improving allocations. This highlights the
role played by the maximum quantity constraints in order to obtain efficiency. Such maximum
constraints are common in commodity markets, limit orders in stock transactions, and wage
bargaining.

The importance of maximum trade constraints is first established by Binmore [2] in the context
of axiomatic bargaining. He is the first in the modern bargaining literature to connect the compet-
itive equilibrium to bargaining outcomes in two person economies. He presents a modified Nash
demand game with minimum prices and maximum quantity constraints and shows that the (large)
set of Nash equilibria of this game includes the Walrasian allocation. 1

1 See also Serrano and Volij [13] for the relation between axiomatic bargaining and Walrasian allocations.
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In the next section, we lay out the model. In Section 3, we present in Theorem 1 the main result
of convergence to a Walrasian allocation. We obtain first the result for equilibria in which there
is immediate acceptance by showing that, without discounting, every stationary subgame perfect
(SSP) equilibrium allocation is Walrasian and conversely. Then the convergence result in the
second part of the theorem follows from the upper hemicontinuity of the equilibrium correspon-
dence. We also establish that SSP equilibria with delay do not exist, from which the convergence
result in Theorem 1 for every SSP equilibrium follows. We then study non-stationary subgame
perfect equilibria. When there is a unique Walrasian allocation, Theorem 2 establishes that any
non-stationary SP equilibrium converges to the Walrasian allocation. In Section 4 we consider
the same bargaining procedure but without maximum trade constraints, as in Yildiz [17]. In this
case, Theorem 3 shows the generic existence of asymptotically inefficient SSP equilibria, and the
theorem also shows the impossibility of a unique SSP equilibrium converging to a Walrasian out-
come. Section 5 provides a discussion. Section 6 finishes with some concluding remarks. Proofs
and some propositions and lemmas are relegated to the appendix.

2. The model

Consider an exchange economy with two agents A and B, each with endowments eA and eB of
n goods over which they have preferences represented by utility functions uA and uB satisfying
Assumption A1.

Assumption A1.

(1) For all i = A, B, ui is R+-valued; continuous in Rn+; differentiable in Rn++; monotonous in
the sense that Dui (x) ∈ Rn++ always; strictly differentiably quasi-concave in the sense that
D2ui(x) is always negative definite in the normal space of Dui (x); and well-behaved at the
boundary in the sense that (ui)−1(a) ⊂ Rn++ for any a ∈ ui(Rn++).

(2) eA, eB ∈ Rn++.

In general, for given endowments, the allocation is not Pareto-efficient and therefore there exist
gains from trade. This paper addresses whether all gains from trade are realized and, if so, which
efficient allocation is obtained.

Since the price-taking assumption is not easily justified in a two-person economy, we propose
a bargaining procedure in which agents set prices that allow them to realize completely the gains
from trade. More specifically, we consider an alternating-offers bargaining game in which, in any
given period, one of the agents offers to the other a vector of relative prices at which he is willing
to trade up to some maximum amount (the maximum trade constraint henceforth). Thus an offer
by say A consists of a vector of prices pA (in terms of say good 1) and a quantity constraint qA.
Without loss of generality, we assume the quantity constraint is on the amount traded of any of
the goods. Upon the reception of an offer, the recipient, i.e., B in this case, can either accept the
offer or reject it. If she accepts, she then chooses her most preferred consumption x̃B(pA, qA)

at the offered price, without violating the maximum trade constraint expressed in the offer, i.e.,
x̃B(pA, qA) solves

max
xB

uB(xB)

s.t. pA(xB − eB)�0,

|xB − eB |�qA, (1)
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where the norm used is the sup norm. If B rejects the offer, then B counter-offers another pair
(pB, qB) with new prices and a new maximum trade constraint. The utility of both agents A and
B is discounted for every iteration by positive discount factors �A and �B not bigger than 1. Not
reaching an agreement entails a zero utility to both agents.

An SSP equilibrium with immediate acceptance of this game is characterized by a pair of offers
(pA, qA) and (pB, qB) such that, in every subgame where A is called to make an offer, A offers
(pA, qA) and this offer solves

max
p,q

uA(e − x̃B(p, q))

s.t. uB(x̃B(p, q))��BuB(e − x̃A(pB, qB)), (2)

given (pB, qB) (where e = eA + eB denotes the total endowments) and similarly for (pB, qB)

given (pA, qA). From subgame perfection, once B decides to accept any offer (p, q) from A, she
will choose the consumption bundle x̃B(p, q) that maximizes her utility subject to the terms of the
offer. Therefore, knowing that upon acceptance B chooses x̃B(p, q), A decides to make an offer
(pA, qA) that maximizes his utility of consuming e− x̃B(p, q), provided that the offer induces B

to accept it. This requires that B obtains at least as much utility from accepting the offer (pA, qA),
i.e., uB(x̃B(pA, qA)), as she would get from rejecting the offer and waiting for her equilibrium
offer (pB, qB) to be accepted in the next period, which gives her a utility �BuB(e− x̃A(pB, qB)).

It turns out that there is no loss of generality in focusing on the SSP equilibria with immediate
acceptance. We focus first on equilibria with immediate acceptance, and then we show that there
are no SSP equilibria with delay whenever the agents are impatient.

3. The main result

In this section, we establish that the limit of every convergent sequence of allocations of SSP
equilibria with immediate acceptance of the bargaining over prices and maximum trades is a Wal-
rasian allocation. The key insight of the argument is that in exchanging price and quantity offers,
the agents are actually bargaining over some allocations. Given subgame perfection, any agent
making an offer anticipates the optimal acceptance behavior by the recipient, and therefore an offer
(pA, qA) amounts to offering the allocation (e − x̃B(pA, qA), x̃B(pA, qA)), where x̃B(pA, qA)

is the consumption chosen by B given the prices pA and the maximum trade constraint qA.
This allows us to characterize the allocations that might be accepted at an SSP equilibrium

with immediate acceptance. Note first that in the absence of a maximum trade constraint qA (or
equivalently, when the constraint is slack), B’s response to A’s offer is to choose her demand
xB(pA) at the prices pA. Note also that by means of the maximum trade constraint qA, agent
A can prevent agent B from attaining xB(pA), forcing her to a lesser trade. Nevertheless, in no
instance can A force B to exchange more than necessary to attain her desired demand xB(pA)

at those prices. As a consequence, an offer by A that is responded with an optimal acceptance
decision by B results in an allocation (e − xB, xB) such that

DuB(xB)(xB − eB)�0. (3)

As shown by Lemma A1 in the appendix, condition (3) characterizes the set of solutions to
maximization problems of the class (1) above. It holds with equality if the maximum trade
constraint does not effectively constrain B’s choice and with strict inequality otherwise. A similar
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condition holds for offers made by B that might be accepted by A at an SSP equilibrium with
immediate acceptance.

As a consequence an SSP equilibrium with immediate acceptance of the alternating-offers
bargaining over prices and maximum trades can be characterized by two feasible allocations
(xA

A, xB
A) and (xA

B , xB
B )—where (xA

A, xB
A) denotes the allocation resulting from the acceptance of

A’s offer, and similarly for (xA
B , xB

B )—such that (xA
A, xB

A) solves

max
xA,xB

uA(xA),

DuB(xB)(xB − eB)�0,

uB(xB)��BuB(xB
B ),

xA + xB = eA + eB, (4)

given (xA
B , xB

B ), and likewise for (xA
B , xB

B ) given (xA
A, xB

A). Condition (4) is thus equivalent to
condition (2).

This characterization allows us to establish in part (1) of Theorem 1 below that, for infinitely
patient agents (i.e., �A = �B = 1), every Walrasian allocation is the allocation of an SSP
equilibrium with immediate acceptance and conversely. As a consequence of this and of the upper
hemicontinuity of the correspondence associating the SSP equilibrium allocations to the discount
factors (whenever the latter is not empty-valued in some neighborhood of (�A, �B) = (1, 1)) it
follows in part (2) of Theorem 1 that every convergent sequence of allocations of SSP equilibria
with immediate acceptance, as the agents become arbitrarily patient, converges to a Walrasian
allocation. The proof of Theorem 1 is provided in the appendix. Lemma A3 in the appendix
establishes that no equilibrium with delay exists, so that the result in part (2) holds for all SSP
equilibria. Proposition 1 in the appendix provides sufficient conditions for equilibrium existence.

Theorem 1. For any economy satisfying A1,

(1) for infinitely patient agents, the set of Walrasian allocations and the set of SSP equilibrium
allocations with immediate acceptance of the alternating-offers bargaining over prices and
maximum trades coincide,

(2) the limit, as the agents become arbitrarily patient, of every convergent sequence of SSP
equilibrium allocations of this bargaining is a Walrasian allocation.

Theorem 1 considers only stationary strategies, therefore ruling out the use of non-stationary
threats. Merlo and Wilson [10] show that such non-stationary strategies can lead to a continuum
of SP equilibria. 2 In the light of such indeterminacy, stationarity is often invoked as a natural
selection criterion because it acts as focal point within the set of SP equilibria, or because it
requires a minimal number of states for automata to implement an SP equilibrium.

Nonetheless, for economies in which the Walrasian allocation is unique, it follows from
Theorem 1 that every SSP equilibrium allocation converges to the unique Walrasian allocation.
Theorem 2 below then follows from this convergence result and Theorem 8 in Merlo and
Wilson [10]. The proof is provided in the appendix. 3 This result requires the following
additional assumption:

2 Yildiz [17] also analyzes non-stationary strategies in the case of bargaining over prices without quantity constraints.
We discuss his results in detail in the next section.

3 We are grateful to Antonio Merlo for pointing us to their result in Merlo and Wilson [10].
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Assumption A2. For all (i, j) ∈ {A, B}2, the set

f i ≡
{
(vi, vj ) ∈ R2+|(vi, vj ) = (

ui(xi(p)), uj (e − xi(p))
)
, for some p ∈ Rn++

}
(5)

is single-peaked.

Theorem 2. If an economy {ui, ei}i=A,B satisfying A1 and A2 has a unique Walrasian equilib-
rium, then all the SP equilibria of the bargaining over prices and maximum trades converge to
the Walrasian equilibrium.

4. Bargaining over prices only

As the agents exchange price offers in the bargaining protocol considered above, the maximum
trades they express in their offers are essential for the convergence result to obtain. If the agents
bargain over prices only (as in Yildiz [17]), then generically there exist SSP equilibria whose
payoffs to the agents remain bounded away from the Pareto frontier, even in the limit as their
discount factors �A and �B converge to 1. Acceptance is as before, and an offer now consists only
of a price p.

The existence of an inefficient SSP equilibrium can be discerned, as in Yildiz [17], by looking
at how the SSP equilibrium payoffs behave in the space of utilities as �A and �B converge to 1 in
this case. 4 Note first that at an SSP equilibrium necessarily the only constraints the agents face
making their offers (namely, the acceptability of their offers) must be binding, i.e.,

uA(xA(pB)) − �AuA(e − xB(pA)) = 0,

uB(xB(pA)) − �BuB(e − xA(pB)) = 0. (6)

Equivalently, the payoffs of an SSP equilibrium of the bargaining over prices only must be
intersections in the space of utilities of two curves f A

�B , f B

�A parameterized by the relative price p

and defined as

f A

�B (p) = (uA(xA(p)), �BuB(e − xA(p))),

f B

�A(p) = (�AuA(e − xB(p)), uB(xB(p))). (7)

These curves are, for discount factors �A and �B close to 1, slightly continuous deformations of
their counterparts f A, f B for �A, �B = 1 represented in Fig. 1 below.

The typical pattern of f A, for instance, is that as A’s utility increases when we move away
from the endowment point along A’s offer curve, B’s utility initially increases too, but eventually
decreases. 5 And similarly for f B with the roles of the axes reversed. The two curves f A and f B

intersect at any profile of Walrasian utilities like (uA∗, uB∗) on the Pareto frontier (in dashes) in

4 The analysis in Yildiz [17] is developed entirely in the space of utilities. As a matter of fact, even the assumptions
in Yildiz [17] are assumptions made directly on derived concepts in this space, such as the “offer curves” in the space
of utilities, instead of being made on the fundamentals of the economy. Unfortunately, it turns out that the assumptions
in Yildiz [17] made this way are actually satisfied jointly only by a degenerate set of economies. Our analysis in the
previous section has been made instead in the space of allocations and taking into account explicitly the fundamentals of
the economy in order to avoid this problem.

5 Note that the curve needs not be single-peaked in general. The single-peakedness stated in assumption A2 is only
needed in Theorem 2.
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Fig. 1.

Fig. 1. Also it follows from the differentiability of both f A and f B , and of the Pareto frontier
itself that all the three curves are tangent at any Walrasian profile of utilities such as (uA∗, uB∗). 6

The intersection of f A and f B at a Walrasian intersection (uA∗, uB∗) has another important
property, illustrated in Fig. 1 and stated in Lemma 1 below. That property plays a crucial role in
showing the existence of SSP equilibria of the alternating-offers bargaining over prices (without
quantity constraints) that remain inefficient even as �A, �B → 1. The proof is provided in the
appendix. In Lemma 1, and for the remainder of the paper, a property will be said to hold
generically, or to be generic, in the space of economies satisfying A1 whenever it is satisfied
within an open and dense set of this space with respect to the topology of Cn uniform convergence
on compacts in the space of utility functions, for n�2, and the usual topology in the space of
endowments.

Lemma 1. In the space of economies {ui, ei}i=A,B satisfyingA1, the intersection without crossing
of the curves f A and f B at any Walrasian profile (uA∗, uB∗) is a generic property.

A short discussion is at this point in order. If one assumes on the contrary that f A and f B

do actually cross at a unique Walrasian intersection (uA∗, uB∗), then it can be proved that the
alternating-offers bargaining over prices has only one SSP equilibrium that moreover necessarily
converges to the Walrasian equilibrium as �A and �B converge to 1. This has been established
in Yildiz [17] under his assumptions A3 (both monopolistic outcomes are dominated by some
allocation attainable along an offer curve) and A4 (there is a unique crossing of f A and f B

within the interval defined by the profiles of utilities attained at the monopolistic outcomes).
Nevertheless, while each of the two assumptions A3 and A4 in Yildiz [17] are not degenerate on
their own, the requirement of both of them to hold simultaneously amounts to having a crossing
of f A and f B at a Walrasian profile of utilities which, according to Lemma 1 above, makes them
a degenerate set of assumptions.

Other results in Yildiz [17] do not rely on A3 and A4 holding simultaneously. Theorem 6 in
Yildiz [17] establishes under general assumptions that as �A, �B → 1 the SP equilibrium payoffs
of the bargaining only over prices are within an arbitrarily small distance of the rectangle defined

6 See Proposition 9 in Dávila and Eeckhout [4] for a proof of this property.
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by the smallest and biggest coordinates of the crossings of f A and f B . Still, as a consequence of
our Theorem 3 below, this rectangle is generically “big’’, i.e., it has a non-empty interior, even
if the Walrasian equilibrium is unique. Convergence to the Walrasian outcome without quantity
constraints cannot unfortunately be guaranteed then on the basis of Theorem 6 in Yildiz [17].

Lemma 1 has strong implications for the existence of asymptotically inefficient SSP equilibria
of the alternating-offers bargaining over prices. Note for instance that Lemma 1, along with the
behavior of f A and f B at the boundary, implies the existence of an intersection of f A and f B

like (ûA, ûB) in Fig. 1. This intersection does not correspond to a Walrasian equilibrium since it is
inefficient. Note also that, as the discount factors �A and �B depart slightly from 1, by continuity
a nearby intersection (ûA, ûB)�A

,�B of f A

�B and f B

�A still exists. This intersection (ûA, ûB)�A
,�B

not only satisfies the necessary conditions for an SSP equilibrium of the bargaining over prices,
but actually corresponds to such an equilibrium whenever both f A

�B and f B

�A have a negative

slope there, which is the case for �A and �B close enough to 1, by continuity, for a non-empty
open set of economies. 7 Finally, note that the intersection (ûA, ûB)�A

,�B converges necessarily

to (ûA, ûB) as �A and �B converge to 1. As a consequence, the corresponding SSP equilibrium
of the alternating-offers bargaining over prices is not only inefficient for every �A and �B close
to 1, but it also remains bounded away from the Pareto frontier as �A and �B converge to 1.

The existence of asymptotically inefficient SSP equilibria of the alternating-offers bargaining
over prices is a generic property of these economies. Theorem 3 below establishes this and its proof
can be found in the appendix. It also addresses the issue of whether there still exist SSP equilibria
of the bargaining over prices that do converge to a Walrasian equilibrium as the discount factors
�A and �B converge to 1. This actually depends on how �A and �B approach 1. But whenever that
is the case, there will be a multiplicity of such equilibria.

Theorem 3. In the space of economies {ui, ei}i=A,B satisfying A1,

(1) generically there exists an SSP equilibrium of the bargaining over prices for �A, �B → 1
that remains bounded away from efficiency, and

(2) for anyWalrasian allocation (xA∗, xB∗), either there are multiple SSP equilibrium allocations
converging to (xA∗, xB∗), or no SSP equilibrium allocation converges to (xA∗, xB∗).

The necessity of maximum quantity constraints. We illustrate the existence of asymptotically
inefficient SSP equilibria of the bargaining over prices without maximum quantity constraints in

a simple Cobb–Douglas setup. Let ui(x1, x2) = x
1
2
1 x

1
2
2 , for i = A, B. The total resources are

e = (1, 1) and the distribution of initial endowments between A and B is eA = (0.9, 0.3) and
eB = (0.1, 0.7). In this example, the contract curve is the diagonal of the Edgeworth box. 8

An SSP equilibrium with immediate acceptance must satisfy the necessary conditions in (6)
above. When there is no discounting, pA and pB being equal to the Walrasian relative price p∗ = 1
leading to the allocation xA∗ = (0.6, 0.6), xB∗ = (0.4, 0.4), is a solution to Eqs. (6). Fig. 2 below

7 A crossing where either f A or f B is positively sloped leaves room for a mutually beneficial deviation that undoes
the candidate equilibrium.

8 The fact that the result in Yildiz [17] is non-generic translates here into the fact that only the economies with
initial endowments on the anti-diagonal between the upper-left and lower-right corners of the Edgeworth box satisfy the
assumptions made in Yildiz [17]. Any small deviation away from the endowments on the anti-diagonal, or a perturbation
in the preferences, gives rise to asymptotically inefficient SSP equilibria.
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Fig. 2.

shows another solution to the system (6) with �A = �B = 1, namely (pA, pB) = (1.750, 1.333)

leading to the allocations x̄ and x̂ on A’s and B’s offer curves, respectively, with

x̄A = (x̄A
1 (pB), x̄A

2 (pB)) = (0.5625, 0.75),

x̂A = (e − x̂B
1 (pA), e − x̂B

2 (pA)) = (0.75, 0.5625), (8)

and the complementary bundles for agent B. Note that, unlike the Walrasian solution, this other
solution is not Pareto-efficient. Moreover, (pA, pB) = (1.750, 1.333) are indeed SSP equilibrium
prices since no agent can profitably deviate at any stage of the game. 9

By continuity, for �A and �B close to 1, there exists as well a solution (pA

�A�B , pB

�A�B ) to

the system of equations (6) close to (pA, pB) = (1.750, 1.333). That solution is still an SSP
equilibrium. Note that as �A, �B → 1, (pA

�A�B , pB

�A�B ) converges to (pA, pB) = (1.750, 1.333)

and hence remains bounded away from efficiency.

5. Discussion

In this section, we provide first some intuition for the conjecture that, not only every SSP
equilibrium outcome converges to a Walrasian outcome as stated in Theorem 1, but also every
Walrasian outcome is reachable as an SSP equilibrium outcome as �A, �B → 1. Then we provide
an example illustrating the need for some of the assumptions in order to obtain the results. We
consider an economy with non-differentiable utility functions where bargaining with quantity
constraints does not necessary imply convergence to the Walrasian equilibrium, which stresses
the importance of the differentiability conditions.
Is every Walrasian allocation reachable as an SSP equilibrium allocation as �A, �B → 1?
We have established in Theorem 2 that the limit of every convergent sequence of SSP equilibrium
allocations of the alternating-offers bargaining over prices and maximum trades must be a Wal-
rasian allocation as �A, �B → 1. However another question one might be interested in is whether
every Walrasian allocation is reachable as an SSP equilibrium allocation this way. This question

9 This is a consequence of the fact that no allocation on the offer curves Pareto-improves upon x̂, x̄.
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Fig. 3.

is, however, not addressed by the previous results. Still the intuition that this conjecture holds true
is supported by the behavior of the SSP equilibrium payoffs as �A, �B → 1.

From agent A’s problem in Eq. (4) and the corresponding problem for B, it follows that
at an SSP equilibrium the feasible allocations (xA

A, xB
A) and (xA

B , xB
B ) resulting from the of-

fers by A and B, respectively, the second constraint of each agent’s problem must be binding,
i.e., uA(xA

B ) = �AuA(xA
A) and uB(xB

A) = �BuB(xB
B ). That is to say (uA(xA

B ), �BuB(xB
B )) and

(�AuA(xA
A), uB(xB

A)) must denote the same point of the intersection of the sets f̃ A

�B and f̃ B

�A of
utility profiles that can be attained through an acceptance by A or B, respectively (these are slight
continuous deformations of f̃ A and f̃ B in Fig. 3 for the case �A = �B = 1). 10

In the case �A = �B = 1, the point (uA(xA
B ), �BuB(xB

B )) = (�AuA(xA
A), uB(xB

A)) must be
in the vertically and horizontally shaded area in Fig. 3 that is the intersection of f̃ A and f̃ B .
Nevertheless, note that not all the utilities in that area can be SSP equilibrium payoffs. Every
profile Pareto-dominated by some point in either f̃ A

�B or f̃ B

�A corresponds to a situation in which
there is room for a mutually beneficial deviation by some agent. The only profiles of utilities
that are not Pareto-dominated this way, and correspond hence to SSP equilibrium payoffs, are
the crossings of the boundaries of f̃ A

�B and f̃ B

�A . In the case �A = �B = 1, these crossings

correspond to the Walrasian payoffs. 11 By continuity, for any �A and �B converging to 1 there
exists an undominated crossing of the boundaries of f̃ A

�B and f̃ B

�A converging to each Walrasian

equilibrium crossing of the boundaries of f̃ A and f̃ B that corresponds to SSP equilibrium payoffs
for discount factors close enough to 1.

10 Note that whenever A’s desired trade at some prices pB by B is smaller than B’s desired trade at those same prices,
there is no way in which B can obtain a bigger trade than that resulting from A’s demand at the prices pB . Hence the
utilities in f̃ A attainable through A’s acceptance are bounded above by the profiles along A’s offer curve to the left of the
Walrasian profile (uA∗, uB∗). On the contrary, whenever A’s desired trade is bigger than B’s, efficiency can be imposed
by B by means of the maximum trade constraint of his offer (which explains that to the right of (uA∗, uB∗) the upper
boundary of f̃ A is the Pareto frontier). And similarly for f̃ B . See the proof of Theorem 1 for a formal definition of f̃ A

and f̃ B .
11 Note that, while Lemma 1 establishes that f A and f B do not cross generically at the Walrasian payoffs, the boundaries

of f̃ A and f̃ B do necessarily cross at (uA∗, uB∗).
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Fig. 4.

Fig. 5.

A counter-example in the case of non-differentiability. Consider an economy represented in
the Edgeworth box in Fig. 4: eA = (0.9, 0.1), eB = (0.1, 0.9), uA(x1, x2) = min{x1, x2},
uB(x1, x2) = x

1
2
1 x

1
2
2 . Its unique Walrasian equilibrium allocation is x̄A = x̄B = ( 1

2 , 1
2

)
, supported

by the relative price p̄ = 1.
In this economy, the relevant part of A’s offer curve coincides with the contract curve, which

is the diagonal of the Edgeworth box (Fig. 4). When making an offer, A can impose a maximum
constraint on B and therefore any offer that would induce B to consume more than the Walrasian
equilibrium amount of good 2 will lead to an offer accepted on the contract curve. Therefore,
offers accepted by B exactly coincide with offers accepted by A. The thick line segment on the
diagonal in Fig. 4 represents those coinciding allocations. In the space of utilities in Fig. 5 below,
this translates into a continuum of undominated intersections of the boundaries of f̃ A

1 and f̃ B
1

corresponding to utility levels uA ∈ [0, 1/2], uB ∈ [1/2, 1] such that uA +uB = 1. Each element
in this continuum of intersections corresponds then to an SSP equilibrium with �’s equal to 1.
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With discounting, when �A = �B < 1 and therefore the discount factors converge to 1 at the
same rate, there is still a continuum of SSP equilibria. Clearly these equilibria need not converge
to the Walrasian one as � approaches 1. For �’s converging to 1 with �A/�B bounded away from 1,
the SSP equilibrium converges either to the Walrasian allocation or to the corner solution where
B extracts all the surplus from trade.

6. Concluding remarks

In this paper, we have proposed a simple bargaining procedure that achieves the competitive
equilibrium allocation without assuming price-taking behavior. It relates to procedures studied
in Binmore and Yildiz [2,17]. Extending the use of the quantity constraints of the Nash demand
game in Binmore [2] to an alternating-offers bargaining game as in Yildiz [17], we obtain a
convergence result for general economies as opposed to for the degenerate subset of economies
characterized in Yildiz [17]. The procedure is commonly observed, in the sense that negotiating
parties often bargain over a price with a quantity constraint, and then choose the quantity of trade
separately. An interesting property of the main result of this paper is that, by always obtaining the
Walrasian equilibrium, the outcome of the bargaining does not depend on specifics such as relative
bargaining powers or impatience, but only on primitives, i.e., preferences and endowments.

In the context of the Nash demand game, Binmore [2] stresses the importance of quantity
constraints. Bargaining procedures with maximum quantity constraints capture the main aspects
of several existing price setting mechanisms. For example, in commodity future markets, the seller
of future contracts will typically announce to a candidate buyer the price for the contract and how
many contracts he has on offer. The candidate buyer can accept the price offer and choose the
number of future contracts as long as it does not exceed the quantity constraint that was offered
initially. The same is true for limit orders when selling stock. Your limit order guarantees a certain
price for the stock, but you cannot be sure that the order will be filled. Only if there is sufficient
demand at that price will your order be filled (either partially or completely). In addition, our
bargaining procedure involves separation of the price-setting by the proposer from the quantity
decision by the recipient. This price-quantity separation is obviously well known in negotiations
and has common applications in several economic environments such as union-wage bargaining in
the labor economics literature, 12 and standard buy-out provisions in two-person partnerships. 13

Finally, Gale [7] (see also Kunimoto and Serrano [9]) establishes a bargaining foundation for
the Walrasian equilibrium outcome in general exchange economies with a continuum of traders
and random pairwise matching. The possibility of being matched later on to another agent offering
better terms drives the convergence to the competitive outcome. That argument does not apply in
a small economy like ours. Therefore, our results contribute to extending a bargaining foundation
for Walrasian equilibrium to economies with a small number of agents. Despite the (only two)
agents being price-setters, the perfectly competitive outcome still obtains. We conjecture that our
results extend to the case of an arbitrarily finite number of agents. In the extreme case in which
the number of agents increases to a continuum and pairs are formed through random matching,
then the bargaining procedure proposed in Gale [7] leads to the Walrasian equilibrium outcome.

12 See Solow and MacDonald [15] and Farber [5] amongst others who study and document such bargaining over wages
where the union negotiates the wage and the employer chooses the level of employment.

13 Cramton et al. [3], and Fiesseler et al. [6] model such buy-out provisions. When partners decide they want to separate,
the provision prescribes that one partner chooses the price of the shares, and the other partner chooses the quantity traded,
i.e., whether to buy or sell.
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Appendix A.

Lemma A1. If u and e satisfy A1 and x ∈ Rn++ solves

max u(x),

p(x − e)�0,

‖x − e‖�q, (9)

where ‖ · ‖ stands for the Euclidean norm, 14 then

Du(x)(x − e)�0, (10)

and, conversely, if x satisfies (10), then there exist p, q for which x solves (9).

Proof. Assume x �= e, otherwise (10) is trivially satisfied. Since x solves (9), then necessarily
for some �, ��0

Du(x) = �p + �(x − e),

�p(x − e) = 0,

�[(x − e)(x − e) − q2] = 0. (11)

Therefore

Du(x)(x − e) = �p(x − e) + �(x − e)(x − e)

= �(x − e)(x − e)�0. (12)

Conversely, assume x satisfies (10). If x satisfies Du(x)(x − e) = 0, let

� = 1,

� = 0,

p = Du(x),

q2 = (x − e)(x − e). (13)

If x satisfies Du(x)(x − e) > 0 (which implies in particular that x �= e), let

� > 0,

� = Du(x)(x − e)

(x − e)(x − e)
,

p = 1

�

[
Du(x) − Du(x)(x − e)

(x − e)(x − e)
(x − e)

]
�0,

q2 = (x − e)(x − e), (14)

14 In Eq. (1) the maximum trade constraint was expressed using the sup norm. It is clear that any such constraint can be
expressed equivalently as in (9).
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where the weak inequality in (14) follows from Lemma A2 below. In both cases, then (10)
holds. �

Lemma A2. If a ∈ Rn++ and b /∈ Rn+ are such that ab > 0, then

a − a · b

b · b
b�0. (15)

Proof. It suffices to establish the claim in R2, since the general case can then be established in
the 2-dimensional space spanned by the vectors a and b.

Since a ∈ R2++ and ab > 0, then b /∈ −R2+. Since b /∈ −R2+ and b /∈ R2+, then b1b2 < 0.
Assume, without loss of generality that b1 < 0 and b2 > 0.

Note first that, for all a ∈ R2++, the inequality a − a·b
b·b b�0 holds if, and only if,

a

‖a‖ − b

‖b‖ cos âb�0. (16)

Since a ∈ R2+, ab > 0, and b1 < 0, then it trivially holds

a1

‖a‖ − b1

‖b‖ cos âb�0. (17)

Moreover, since b1 < 0, then

b1

(
a1

‖a‖ − b1

‖b‖ cos âb

)
�0 (18)

but since, for any a, b ∈ R2, it holds

2∑
i=1

bi

‖b‖
(

ai

‖a‖ − bi

‖b‖ cos âb

)
= 0, (19)

then

b2

(
a2

‖a‖ − b2

‖b‖ cos âb

)
�0 (20)

and finally, since b2 > 0, hence

a2

‖a‖ − b2

‖b‖ cos âb�0. � (21)

Proof of Theorem 1. Part (1): Let (xA
A, xB

A) (respectively, (xA
B , xB

B )) be the feasible allocation
resulting from B’s (resp., A’s) acceptance of A’s (resp., B’s) offer of a price and maximum trade at
an SSPE with immediate acceptance for infinitely patient agents, that is to say such that (xA

A, xB
A)

solves

max
xA,xB

uA(xA),

DuB(xB)(xB − eB)�0,

uB(xB)�uB(xB
B ),

xA + xB = eA + eB, (22)
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given (xA
B , xB

B ), and similarly for (xA
B , xB

B ) given (xA
A, xB

A). Then necessarily there exist �A, �A,
�B , �B �0 and �A

i , �B
i , for all i = 1, . . . , n, such that the following 2n equations are satisfied(

DuA(xA
A)

0

)
+ �A

(
0

DuB(xB
A)

)

+�A

(
0

DuB(xB
A) + D2uB(xB

A)(xB
A − eB)

)
+

n∑
i=1

�A
i

(
ei

ei

)
= 0, (23)

where ei stands for the ith vector of the canonical basis of Rn, or equivalently

DuA(xA
A) = �ADuB(xB

A) + �A
[
DuB(xB

A) + D2uB(xB
A)(xB

A − eB)
]

(24)

and similarly for B’s problem.
Assume that (xA

A, xB
A) �= (xA

B , xB
B ). Since at an SSP equilibrium the second constraint in (22) is

binding (and similarly for B’s problem), 15 both allocations are on the same indifference surface
for both agents. Moreover, given that uA and uB are strictly differentiably quasi-concave, these
two indifference surfaces determine strictly convex upper contour sets. As a consequence, neither
(xA

A, xB
A) nor (xA

B , xB
B ) can be efficient whenever distinct. In particular, for some i, j it must hold

Diu
A(xA

A)

DjuA(xA
A)

>
Diu

B(xB
A)

DjuB(xB
A)

(25)

since otherwise (xA
A, xB

A) would be efficient. But then (24) above cannot hold for a non-negative
�A. 16 In effect, �A, �A must solve (24) above, and in particular(

Diu
B(xB

A) Diu
B(xB

A) + Diiu
B(xB

A)(xB
Ai − eB

i ) + Diju
B(xB

A)(xB
Aj − eB

j )

Dju
B(xB

A) Dju
B(xB

A) + Djiu
B(xB

A)(xB
Ai − eB

i ) + Djju
B(xB

A)(xB
Aj − eB

j )

)

×
(

�A

�A

)
=
(

Diu
A(xA

A)

Dju
A(xA

A)

)
(26)

from which

�A =

∣∣∣∣∣ Diu
B(xB

A) Diu
A(xA

A)

Dju
B(xB

A) Dju
A(xA

A)

∣∣∣∣∣∣∣∣∣∣ Diu
B(xB

A) Diu
B(xB

A) + Diiu
B(xB

A)(xB
Ai − eA

i ) + Diju
B(xB

A)(xB
Aj − eA

j )

Dju
B(xB

A) Dju
B(xB

A) + Djiu
B(xB

A)(xB
Ai − eA

i ) + Djju
B(xB

A)(xB
Aj − eA

j )

∣∣∣∣∣
. (27)

15 Since (xA
A

, xB
A

) satisfies the constraints of B’s maximization problem (in particular DuA(xA
A

)(xA
A

− eA)�0 since
A will never choose at equilibrium to trade more than necessary to attain his demand at the implicit prices), necessarily
uB(xB

A
)�uB(xB

B
). Hence it cannot be that uB(xB

A
) > uB(xB

B
).

16 If the inequality (25) holds in the opposite direction, it is B’s FOCs which cannot hold for a non-negative �B and the
following argument applies with the obvious changes.
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Since (25) implies that the numerator is positive, the denominator is strictly positive as well,
which amounts to

(−Dju
B(xB

A) Diu
B(xB

A)
) ( Diiu

B(xB
A) Diju

B(xB
A)

Djiu
B(xB

A) Djju
B(xB

A)

)(
xB
Ai − eB

i

xB
Aj − eB

j

)
> 0. (28)

But D2uB(xB
A) is negative definite in the space orthogonal to DuB(xB

A), and hence for any
(0, . . . , 0, xB

Ai − eB
i , 0, . . . , 0, xB

Aj − eB
j , 0, . . . , 0) orthogonal to DuB(xB

A), i.e., such that

Diu
B(xB

A)(xB
Ai − eB

i ) + Dju
B(xB

A)(xB
Aj − eB

j ) = 0 (29)

or equivalently collinear to (−Dju
B(xB

A), Diu
B(xB

A)), the left-hand side of (28) should be nega-
tive!

Therefore, at any SSP equilibrium both allocations coincide, i.e., (xA
A, xB

A) = (xA
B , xB

B ) =
(xA, xB), whenever �A = �B = 1. Since xB must solve

max
x̃B

uA(e − x̃B),

DuB(x̃B)(x̃B − eB)�0,

uB(x̃B)�uB(e − xA), (30)

given xA, should the first constraint not be binding at xB , then xB would solve as well

max uA(e − x̃B),

uB(x̃B)�uB(e − xA), (31)

given xA, because uA is strictly monotone and uB is strictly quasi-concave. Hence for some � > 0,
DuA(xA) = �DuB(xB). Since DuB(xB)(xB − eB) > 0, then 1

�DuA(xA)(xA − eA) < 0 which
contradicts that xA solves

max uB(e − x̃A),

DuA(x̃A)(x̃A − eA)�0,

uA(x̃A)�uA(e − xB), (32)

given xB . Therefore, necessarily DuB(xB)(xB − eB) = 0 and similarly DuB(xA)(xA − eA) = 0,
i.e., at the allocation (xA, xB) each agent gets his demand at the implicit prices, and hence (xA, xB)

is a Walrasian allocation.
Conversely, let (xA, xB) be a Walrasian allocation supported by p∗. Let pA = p∗ = pB and

qA, qB be slack. Then (xA, xB) = (x̃A(pB, qB), x̃B(pA, qA)) and, since (pA, qA) and (pB, qB)

are such that they solve Eq. (2) for �A = 1 = �B , the Walrasian allocation (xA, xB) is the outcome
of the following SSP equilibrium profile of strategies:

(1) A offers always pA, qA and accepts only offers p, q such that uA(x̃A(p, q))�uA(x̃A

(pB, qB)).
(2) B offers always pB, qB and accepts only offers p, q such that uB(x̃B(p, q))�uB(x̃B

(pA, qA)).

There are only four types of subgames in which either A makes an offer, or A replies to an offer
and similarly for B. For instance, if it is A’s turn to make an offer and A sticks to the strategy
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above, then B will accept and A will get utility uA(e − x̃B(pA, qA)). While if A deviates, in any
possible way, 17 then

(1) either they disagree forever,
(2) or A ends up accepting pB, qB at the earliest one period later,
(3) or B ends up accepting now or at any future period some p, q such that uB(x̃B(p, q))�

uB(x̃B(pA, qA)).

None of the possible outcomes after deviation in this exhaustive list makes A better off when
pA = p∗ = pB and qA, qB are slack. In case (2) A gets the utility uA(x̃A(pB, qB)) which equals
the no-deviation utility uA(e − x̃B(pA, qA)). In case (3) A gets the utility uA(e − x̃B(p, q))

for some p, q such that uB(x̃B(p, q))�uB(x̃B(pA, qA)), which is again not bigger than the
no-deviation utility because of the strict quasi-concavity of uA and uB .

If it is A’s turn to respond, and A sticks to the strategy above, then A will accept (pB, qB) and
will get the utility uA(x̃A(pB, qB)). While if A deviates, in any possible way, then

(1) either they disagree forever,
(2) or A accepts pB, qB now or at any future period,
(3) or B ends up accepting at the earliest next period some p, q such that uB(x̃B(p, q))�

uB(x̃B(pA, qA)).

Once more, none of the possible outcomes makes A better off when pA = p∗ = pB and qA, qB

are slack. In case (2) A gets the no-deviation utility. In case (3) A gets the utility uA(e− x̃B(p, q))

for some p, q such that uB(x̃B(p, q))�uB(x̃B(pA, qA)), which is again not bigger than the no-
deviation utility because of the strict quasi-concavity of uA and uB .

Part (2): Consider � such that

�(xA
A, xB

A, xA
B , xB

B ; �A, �B) = arg max
0�xA,xB

uA(xA)× arg max
0�xA,xB

uB(xB)

DuB
(xB)(xB−eB)�0, DuA

(xA)(xA−eA)�0,

uB(xB)��B
uB(xB

B ), uA(xA)��A
uA(xA

A),

xA+xB=eA+eB, xA+xB=eA+eB,

given (xA
B ,xB

B ) given (xA
A,xB

A ). (33)

Note that, by the theorem of the maximum each of the arg max’s on the right-hand side of
Eq. (33) is a compact-valued, upper hemicontinuous correspondence that depends (in some cases
trivially) on xA

A, xB
A, xA

B , xB
B , �A and �B . 18 And similarly for agent A’s problem. Therefore, � is

17 Observe that by allowing any deviation, this standard argument does not rely on the one-shot deviation principle,
which does not apply when � = 1 since the game is not continuous in this case.

18 Since, for instance, uA depends continuously on xA and also trivially on xA
A

, xB
A

, xA
B

, xB
B

, �A, �B , and the correspon-
dence defined by the constraints

�A(xA
A, xB

A , xA
B , xB

B , �A, �B) = {(xA, xB) ∈ R2n|DuB(xB)(xB − eB)�0,

uB(xB)��BuB(xB
B ),

xA + xB = eA + eB }

is continuous and compact-valued.
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the cartesian product of compact-valued, upper hemicontinuous correspondences, and hence it is
compact-valued and upper hemicontinuous itself.

Consider � such that

�(�A, �B) =
{
(xA

A, xB
A, xA

B , xB
B , ) ∈ R2(2n)|

(xA
A, xB

A, xA
B , xB

B , ) ∈ �(xA
A, xB

A, xA
B , xB

B ; �A, �B)
}

. (34)

Since � is compact-valued and upper hemicontinuous, then by Lemma A3 below, the correspon-
dence mapping to each pair (�A, �B) the fixed points of �(·, ·, ·, ·, �A, �B) is upper hemicontin-
uous.

Finally, note that � is the correspondence of SSP equilibrium allocations (without delay). Since
this correspondence is upper hemicontinuous in particular at (�A, �B) = (1, 1) and, according to
Theorem 1, �(1, 1) is the set of Walrasian allocations, then the claim follows. �

Lemma A3. If X, Y are metric spaces and � ∈ P(X)X×Y is compact-valued and upper hemi-
continuous, then � ∈ P(X)Y such that

�(y) = {
x ∈ X| x ∈ �(x, y)

}
(35)

is upper hemicontinuous.

Proof. Assume that � is not upper hemicontinuous at some y. Then there exist {yn} → y, x and
{xn} → x such that xn ∈ �(yn) for all n ∈ N, while x /∈ �(y). That is to say, for all n ∈ N,
xn ∈ �(xn, yn) while x /∈ �(x, y). As a consequence, since � is compact-valued, then � is not
upper hemicontinuous at (x, y)! �

Lemma A4. If {ui, ei}i=A,B satisfies A1 and the agents are impatient (that is to say, �A, �B < 1),
then there does not exist any SSP equilibrium with delay.

Proof. Consider a candidate SSP equilibrium (pA, qA, pB, qB) in which, for instance, B rejects
and A accepts. Let (xA

A, xB
A) = (e−x̃B(pA, qA), x̃B(pA, qA)) and (xA

B , xB
B ) = (x̃A(pB, qB), e−

x̃A(pB, qB)) be the allocations resulting from A’s and B’s offers if accepted. Then it must be the
case that

(1) B’s offer is rational, that is to say B is interested in A’s acceptance since he obtains more
utility this way than from A’s offer one period later, i.e.,

uB(xB
B ) > �BuB(xB

A) (36)

and also B’s offer is his most preferred acceptable to A, i.e.,

(xA
B , xB

B ) ∈ arg max
xA,xB

uB(xB),

DuA(xA)(xA − eA)�0,

uA(xA)��AuA(xA
A),

xA + xB = eA + eB, (37)

given (xA
A, xB

A), and
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(2) A’s offer is rational, that is to say A is interested in B’s rejection since A obtains more utility
from B’s offer one period later, i.e.,

�AuA(xA
B )�uA(xA

A) (38)

and accordingly makes an unacceptable offer to B, i.e.,

uB(xB
A) < �BuB(xB

B ), (39)

which guarantees B’s rejection.

Therefore, from (28) and the fact that (xA
B , xB

B ) solves (37) above, it follows that whenever
�A < 1, necessarily

uA(xA
B ) > �AuA(xA

B )�uA(xA
A) > �AuA(xA

A), (40)

i.e., the second constraint in (37) is not binding. Since uB is strictly monotone (and hence the
solution cannot be interior), then necessarily the first constraint in (37) must be binding, i.e.,
DuA(xA

B )(xA
B − eA) = 0. As a consequence, x̃A(pB, qB) = xA(pB), that is to say qB does

not actually constrain A’s demand (in the 2 goods case, (xA
B , xB

B ) is on A’s offer curve in the
Edgeworth box).

Since uA is strictly differentiably quasi-concave, then (xA
B , xB

B ) is not efficient. Since the normal
direction to A’s offer curve (manifold, in general) is DuA(xA

B ) + D2uA(xA
B )(xA

B − eA), this is
collinear to DuA(xA

B ) (which is necessary for ((xA
B , xB

B )) to be efficient) only if

(1 − r)DuA(xA
B ) + D2uA(xA

B )(xA
B − eA) = 0 (41)

for some r > 0. But since DuA(xA
B )(xA

B − eA) = 0 and uA is strictly differentiably quasi-concave
in the space normal a DuA(xA

B ), that would imply that

0 > (xA
B − eA)tD2uA(xA

B )(xA
B − eA)

= (1 − r)(xA
B − eA)tDuA(xA

B ) + (xA
B − eA)tD2uA(xA

B )(xA
B − eA)

= (xA
B − eA)t

[
(1 − r)DuA(xA

B ) + D2uA(xA
B )(xA

B − eA)
] = 0! (42)

As a consequence, since (xA
B , xB

B ) is not efficient, there is room for A deviating and making an
offer that is Pareto improving with respect to xB and that B would accept. 19 �

Proposition 1. If {ui, ei}i=A,B satisfies A1 and, for i = A, B, ui is strongly concave, 20 then
there exists an SSP equilibrium with immediate acceptance of the alternating-offers bargaining
over prices and maximum trades, for any �A, �B ∈ [0, 1].

19 At any rate, for weaker assumptions on uA (e.g. just differentiable quasi-concavity), if it was efficient, then A could
deviate offering himself B’s offer instead, since he will accept it anyway later, saving the cost of the delay in reaching an
agreement.

20 In the sense that

det

⎧⎪⎨⎪⎩2D2ui(x) +
⎡⎣ n∑

k=1

Dhkj ui (x)(xk − eh
k )

⎤⎦
hj

⎫⎪⎬⎪⎭
does not change sign. This guarantees that the offer curve (or surface in general) does not ever change curvature (i.e., has
no inflexion points) and hence the constrained domain delimited by the offer curve is convex. This condition is satisfied
whenever the substitution effect dominates largely the wealth effect, and in particular by every CES utility function.



288 J. Dávila, J. Eeckhout / Journal of Economic Theory 139 (2008) 269–294

Proof. An SSP equilibrium is characterized by two allocations (xA
A, xB

A) and (xA
B , xB

B ) solving
Eq. (4) for both agents. Then letting �A(xA

A, xB
A, xA

B , xB
B ) be the set of maximizers solving (4)

for A, and similarly �B(xA
A, xB

A, xA
B , xB

B ) for B, an SSP equilibrium of the bargaining game is
a fixed point of the correspondence �A × �B that associates to every (xA

A, xB
A, xA

B , xB
B ) the set

�A(xA
A, xB

A, xA
B , xB

B ) × �B(xA
A, xB

A, xA
B , xB

B ).
Since by the theorem of the maximum both �A and �B have closed graphs, so does �A × �B .

Also, since uA and uB are strongly concave, then Dui (xi)(xi −ei)�0, for i = A, B, and the other
constraints define a convex domain, so that �A and �B are both convex-valued and therefore so
is �A × �B .

The closed-graph, convex-valued correspondence �A × �B takes values in the nonempty,
compact, convex set of ordered pairs of feasible allocations. Then by Kakutani’s fixed point
theorem, a fixed point of �A ×�B exists that corresponds to an SSP equilibrium of the bargaining
game. �

Proof of Theorem 2. Letting ūA, ūB be, respectively, the maximizers of the offer curves in the
space of utilities f A, f B defined in assumption A2, note that ūA and ūB bound from below the
SSP equilibrium payoffs of, respectively, A and B, since any positively sloped point of f A or
f B allows for mutually beneficial deviations that undoes any would-be equilibrium there. Also,
letting for all (i, j) ∈ {A, B}2, f̃ i be the set of utilities attainable through the acceptance of
price-quantity offers, i.e.,

f̃ i ≡
{
(vi, vj ) ∈ R2+|(vi, vj ) = (

ui(x̃i(p, q)), uj (e − x̃i (p, q))
)
,

for some p ∈ Rn++, q ∈ R+
}

(43)

the restrictions to R2+ + {(ūA, ūB)} of f̃ A and f̃ B (and hence by continuity those of f̃ A

�B and f̃ B

�A ,

for �A, �B close to 1 as well) satisfy the assumption A1 in Merlo and Wilson [10]. Now, Theorem
8 in Merlo and Wilson [10] establishes under their assumption A1 21 that the extreme payoffs of
the set of SP equilibria are stationary, and that all SP equilibrium payoffs are contained within
those extreme SSP payoffs.

Since there is a unique Walrasian equilibrium and every SSP equilibrium converges to it, these
extreme payoffs (and hence every SP equilibrium payoff) converge to the Walrasian payoffs. The
strict convexity of the preferences implies that the convergence takes place also in allocations and
prices. �

Proof of Lemma 1. Let x̄ be an allocation on A’s offer curve close to the Walrasian allocation
x∗. Let x̂ be the allocation distinct from x̄ giving A and B the same utilities as x̄. Then x̄ and x̂

are characterized by the equations (in terms of A’s consumptions)

uA(x̂A) − uA(x̄A) = 0,

uB(eA + eB − x̂A) − uB(eA + eB − x̄A) = 0,

�(x̄A) = 0,

(p, 1)(x̄A − eA) = 0, (44)

21 There is a typo in the statement of Theorem 8 in Merlo and Wilson [10]: “given (A2) and k = 2 . . .’’ should be “given
(A1) and k = 2 . . .’’. We thank the authors for the confirmation of this typo.
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Fig. 6.

for some relative price p, where �A(x̄A) = DuA(x̄A)(x̄A − eA) and hence �A(x) = 0 is the
equation of A’s offer curve. The system (44) defines implicitly x̂ as a differentiable function of p

in a neighborhood of the Walrasian price p∗, so that as p varies or, equivalently, as x̄ runs along
A’s offer curve, x̂ follows a smooth path that goes through x∗ for p = p∗, for which x̄ = x̂ = x∗
(see Fig. 6).

The function that determines x̂A for each p in the system (44) is the composition of the function

�̄
A

associating x̄A to each p that is implicitly defined by the last two equations in (44) and the

function �̂
A

associating x̂A to each x̄A that is implicitly defined by the first two equations in (44).

In order to see this, regarding D�̄
A
(p) note first that in the Jacobian of the left-hand side of the

last two equations in (44)(
D1�

A(x̄A) D2�
A(x̄A) 0

p 1 x̄A
1

)
(45)

the first two columns are linearly independent, even at the Walrasian equilibrium allocation x∗, 22

and hence

D�̄
A
(p) = −

∣∣∣∣∣D1�
A(x̄A) D2�

A(x̄A)

p 1

∣∣∣∣∣
−1 (−D2�

A(x̄A)x̄A
1

D1�
A(x̄A)x̄A

1

)
. (46)

As for D�̂
A
(xA∗), note that, although the Jacobian of the left-hand side of the first two equations

in (44)(
D1u

A(x̂A) D2u
A(x̂A) −D1u

A(x̄A) −D2u
A(x̄A)

−D1u
B(x̂B) −D2u

B(x̂B) D1u
B(x̄B) D2u

B(x̄B)

)
(47)

drops rank at the Walrasian allocation x∗, the first two equations in (44) still define x̂A as a function
of x̄A since, for strictly convex preferences and any given point x̄, there exists a unique x̂ where

22 This is a consequence of the strictly differentiably quasi-concavity of uA.
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the two indifference curves through x̄ cross each other again (if x̄ happens to be efficient, then x̂

actually coincides with x̄). This function is not only differentiable off the contract curve (where
the Jacobian is full rank and the implicit function theorem does apply), but also at x∗ since, as x̄

departs slightly from an efficient allocation x∗ on the contract curve, the lens formed by the two
indifference curves going through x̄ cross again (almost) at a point x̂ across the contract curve in
the direction of the line supporting x∗ as a Walrasian equilibrium (see Fig. 7).

The linear mapping approximating this function is

D�̂
A
(xA∗) =

(
p∗ −1
1 p∗

)(
1 0
0 −c∗

)(
p∗ −1
1 p∗

)−1

(48)

for some c∗ > 0 that depends on the curvature of A’s and B’s indifference curves at x∗. 23

Therefore, since dx̂A

dp
(p∗) = D�̂

A
(xA∗)D�̄

A
(p∗) it follows that

dx̂A
2

dx̂A
1

(xA∗
1 ) =

dx̂A
2

dp
(p∗)

dx̂A
1

dp
(p∗)

= (1 − c∗p∗2)D1�
A(xA∗) − (1 + c∗)p∗D2�

A(xA∗)
(c∗ − p∗2)D2�

A(xA∗) + (1 + c∗)p∗D1�
A(xA∗)

. (49)

If, as shown in Fig. 6, the slope of the path followed by x̂ is at x∗ smaller than the slope of
B’s offer curve, then around the Walrasian allocation, for any given level of utility uA close to
uA∗ = uA(xA∗), agent B attains on B’s offer curve a higher utility than on A’s, and hence around
(uA∗, uB∗) the curve f B is above the curve f A, as shown in Fig. 1. And conversely if, on the
contrary, the path followed by x̂ had at x∗ a slope bigger than B’s offer curve. Only in the case
in which the path followed by x̂ had at x∗ a slope equal to that of B’s offer curve, i.e., only if the
equation

− D1�
B(xB∗)

D2�
B(xB∗)

= (1 − c∗p∗2)D1�
A(xA∗) − (1 + c∗)p∗D2�

A(xA∗)
(c∗ − p∗2)D2�

A(xA∗) + (1 + c∗)p∗D1�
A(xA∗)

(50)

23 In words, D�̂
A

(xA∗) consists of the composition of (i) a change to an orthogonal basis containing the price vector
(p∗, 1), (ii) a jump across the first axis of that basis, and (iii) the undoing of the change of basis.
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holds, could a crossing of f A and f B occur at (uA∗, uB∗). Note that Eq. (50) imposes a constraint
on the second-order partial derivatives of the utility functions uA and uB at the Walrasian alloca-
tion x∗. Since the Walrasian allocation is completely characterized just by the first-order partial
derivatives of the utility functions uA and uB , there exists arbitrarily close to uA and uB in any
topology of Cn uniform convergence on compacts, for n�2, utility functions vA, vB with the
same first-order partial derivatives at x∗ as uA, uB but different second-order partial derivatives
so that the equilibrium equations are still satisfied but Eq. (50) does not hold. This establishes
the density of the no-crossing property. The openness follows from the fact that for any pair of
utility functions within a sufficiently small open neighborhood of (vA, vB) Eq. (50) does not hold
either. 24 �

Proof of Theorem 3. Given a Walrasian equilibrium allocation x∗ of an economy {ui, ei}i=A,B ,
consider a sequence {uA

n }n such that (i) the corresponding sequence of paths followed by {x̂n}n as
defined in Lemma 1 above converges pointwise to the path followed by x̂ of {ui, ei}i=A,B around
x∗, and (ii) all x̂n have a common slope at x∗ that reverses its order with respect to the slope of
B’s offer curve xB at x∗ so that each x̂n intersects B’s offer curve (see Fig. 8).

The pointwise convergence of
{
x̂n

}
to x̂ guarantees the pointwise convergence within a compact

of the associated offer curves 25
{
xA
n (pB)

}
to xA(pB). Also the (piecewise) monotone and point-

wise convergence of
{
xA
n (pB)

}
within a compact guarantees that their convergence to xA(pB) is

uniform indeed. As a consequence, the utility functions uA
n generating these offer curves xA

n (pB)

converge in the topology of C1 convergence on compacts toward the utility function uA that
generates the offer curve xA(pB).

For such a sequence {uA
n }n to exist, it suffices that the slope

dx̂A
2

dx̂A
1
(xA∗

1 ) of x̂ at x∗ (the right-hand

side of (51) below) 26 may be made equal to the slope of B’s offer curve at x∗ (the left-hand side

24 The perturbation need not always be made in the space of utility functions. For instance, in the case of the symmetric
Cobb–Douglas example we provide in Section 4 this condition is satisfied only for initial endowments on the anti-diagonal
of the Edgeworth box, i.e., in a closed and nowhere dense subset of endowments space for the given Cobb–Douglas utility
functions.

25 Not depicted in Fig. 7 for the sake of readability.
26 An injective function of the slope of A’s offer curve at x∗ with range of R \ { 1−c∗p∗2

(1+c∗)p∗ }.
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of (51) below) without inducing new Walrasian equilibria, i.e.,

− D1�
B(xB∗)

D2�
B(xB∗)

= (1 − c∗p∗2)D1�
A(xA∗) − (1 + c∗)p∗D2�

A(xA∗)
(1 + c∗)p∗D1�

A(xA∗) + (c∗ − p∗2)D2�
A(xA∗)

. (51)

This is possible because the slope of A’s offer curve can be perturbed as little as required in the
C1 topology for uA in such a way that the pair of offer curves slopes at the Walrasian allocation(
−D1�

A(xA∗)
D2�

A(xA∗)
, −D1�

B(xB∗)
D2�

B(xB∗)

)
is on the graph of

g(z) = (1 − c∗p∗2)z + (1 + c∗)p∗

(1 + c∗)p∗z − (c∗ − p∗2)
(52)

in Fig. 9 below (for the case c∗ = 1 and 1 < p∗2) 27 without ever crossing the boundaries (in
short dashes) between the regions ai , i = 1, . . . , 4, which would imply new crossings of the offer
curves that would correspond to new Walrasian equilibria (excluding a5 and a6 where A’s and
B’s demand are simultaneously upward-sloped for both goods). 28

Far enough in the sequence
{
x̂n

}
, A’s marginal rate of substitution at the intersection of x̂n

with B’s offer curve is close to p∗, and hence not bigger than the slope of B’s offer curve at x∗.
By continuity, the same is true for �A and �B close to 1. This guarantees that this intersection
corresponds to an SSP equilibrium.

27 The relevant property is that, since for any c∗, p∗ > 0, it holds true that −p∗ <
c∗−p∗2

(1+c∗)p∗ and −p∗ <
1−c∗p∗2

(1+c∗)p∗
always, the asymptotes of g∗ (and hence g∗ itself) intersect every region ai in Fig. 9, except for a5, a6 see footnote 28
about these excluded cases.

28 That is to say, in a5, a6, for i = A, B, it holds
dxi

1
dp

> 0 and
dxi

2
dp−1 > 0 simultaneously for some range of prices. We

think of this case in which demand increases for the good that is becoming more expensive and decreases for the good
that is becoming cheaper as a non-observed pathological case. Note that this does not prevent backward-bending offer
curves, and hence that any good may be inferior for some range of prices. It just excludes the possibility of both goods
being inferior for the same range of prices.
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We now establish the second part of the theorem concerning convergence to Walrasian alloca-
tions. Note first that since a Walrasian allocation is efficient, f B is invertible around the profile
of Walrasian utilities (uA∗, uB∗). Hence so is �Af B around uA∗ for �A close enough to 1.

For given �A, �B close to 1, should (�Af B)−1(uA∗) be smaller (respectively, bigger) than
�Bf A(uA∗), and f A(uA)�(f B)−1(uA∗) for every uA close enough to uA∗, then there would
exist two other (respectively, no other) intersections of �Bf A and �Af B . 29

Now, clearly �Bf A(uA∗) = �BuB∗. As for (�Af B)−1(uA∗), let f̃ B(uB, �A) = �Af B(uB).
Linearizing f̃ B around (uB∗, 1) it follows that (�Af B)−1(uA∗) is the level of utility uB for B

such that 0 ≈ f B′(uB∗)(uB − uB∗) + f B(uB∗)(�A − 1), i.e.,

(�Af B)−1(uA∗) ≈ uB∗ + uA∗

f B′(uB∗)
(1 − �A). (53)

Therefore (�Af B)−1(uA∗) < �Bf A(uA∗) holds for �A, �B smaller but close to 1 if, and only if,

uB∗ + uA∗

f B′(uB∗)
(1 − �A) < �BuB∗, (54)

i.e., if, and only if,

uB∗

uA∗ < − 1

f B′(uB∗)
1 − �A

1 − �B
. (55)

Note that the range of values taken by 1−�A

1−�B in every neighborhood of (�A, �B) = (1, 1) in

(0, 1) × (0, 1) is R++. Therefore there always exist discount factors �A, �B arbitrarily close
to 1 for which the condition (55) holds, as well as discount factors �A, �B arbitrarily close to
1 for which the reversed inequality holds. Since, generically, either f A(uA)�(f B)−1(uA∗) or
f A(uA)�(f B)−1(uA∗) holds for all uA close enough to uA∗, the conclusion follows. �
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