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Abstract

This paper studies the dynamics of skill mismatch over the business cycle. We build a
tractable directed search model, in which workers differ in skills along multiple dimensions
and sort into jobs with heterogeneous skill requirements along those dimensions. Skill
mismatch arises due to information and labor market frictions. Estimated to the U.S.,
the model replicates salient business cyclic properties of mismatch. We show that job
transitions in and out of bottom job rungs, combined with career mobility of workers,
are important to account for the empirical behavior of mismatch. The predicted career
dynamics provide a novel narrative for the scarring effect of unemployment. The model
suggests significant welfare costs associated with mismatch due to learning frictions.
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“In a regime of ignorance, Enrico Fermi would have been a gardener, Von
Neumann a checkout clerk at a drugstore.” (Stigler, 1962)

1 Introduction

Over the business cycle, labor markets face a large amount of reallocation: firms create and
destroy vacancies, work-relationships are formed and resolved, and workers change jobs and
careers. In this paper, we investigate—theoretically and empirically—how business cycles
affect the skill allocation of workers to jobs.

Our theoretical framework is a version of the directed search model of Menzio and Shi
(2010, 2011), in which we incorporate two key features. First, workers differ along multiple skill
dimensions and sort into jobs with heterogeneous skill requirements along those dimensions.
The job search of workers encompasses a career choice, determining the type of skill that
workers seek to employ, and a vertical choice of task complexity, which entails varying ability
requirements on the employed skill. Second, workers and firms have incomplete information
about worker skills, which generates skill mismatch in equilibrium. Workers and firms revise
their beliefs about worker skills based on a noisy learning technology, with the important
assumption that learning is more accurate regarding skills currently used in production. In
equilibrium, workers reallocate both up and down job ladders within a given career path
(utilizing the same skill at varying complexities) and across different career paths (utilizing
different skills).

We estimate the framework using a combination of worker-level data from the NLSY79
and occupation-level descriptors of job requirements (O*NET).1 We find that the business
cyclicality of mismatch is determined by two opposing forces. On the one hand, we find
that in recessions underqualified workers are fired, specifically those that are occupied at
the bottom rungs of the job ladder, which reduces mismatch among ongoing work-relations.
On the other hand, we find that mismatch among new hires goes up in recessions, which is
caused by a simultaneous increase in over- and underqualification among workers hired for
low-complexity jobs. These patterns are consistent with direct evidence on the cyclicality of
mismatch, which we document among workers in the NLSY79.

The logic behind our theoretical findings is caused by a non-trivial interaction between
job mobility and mismatch: Whereas transitions within a given career path (to jobs that
employ similar skills) tend to reduce mismatch as workers re-sort among the respective job

1See Yamaguchi (2012), Lindenlaub (2017), and Lise and Postel-Vinay (2018) for related calibration
strategies using the same combination of NLSY79 and O*NET.
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ladder in response to belief revisions, transitions into new career paths (to jobs that employ
previously untried skills) tend to increase mismatch as a consequence of higher uncertainty.
Accordingly, the cyclicality of mismatch is closely entangled with the business cycle dynamics
of career mobility. Specifically, our model predicts that career mobility—using a task-based
definition—is countercyclical.2 This is because workers that are fired from the bottom rungs
of a given career path will optimally seek to find jobs utilizing a different skill set rather than
re-applying to jobs that they know to be underqualified for. In that sense, the two opposing
forces shaping the cyclicality of mismatch are in fact both manifestations of a cleansing of
underqualified workers, which increases career mobility in recessions and in turn causes the
increase in mismatch among new hires.

Our model provides a novel narrative for the “scarring effect of unemployment”, comple-
menting recent explanations by Jarosch (2015), Jung and Kuhn (2019), and Huckfeldt (2019).
In line with empirical evidence, workers that are displaced from their career suffer large and
persistent earnings losses, even after they have been re-employed. This is because rebuilding
a career in a new sector implies high levels of uncertainty, which slows down a worker’s climb
through the job ladder. In the calibrated model, this translates into persistent wage losses
that significantly outlast unemployment: While 10 years after displacement, unemployment
among displaced workers is less than 5 percent above the control group, wages among the
displaced continue to be depressed by about 17 percent.

We conclude our paper with two counterfactual exercises that evaluate the welfare cost
induced by information frictions in our model. First, we compute the cost associated with
“within-career” mismatch, due to a suboptimal allocation of workers to job-rungs. On average,
we find that labor productivity under the optimal rung-allocation is 7.0 percent higher than
in equilibrium. Decomposing this gains by business cycle state, the output gap amounts to
7.4 percent in expansions compared to 6.4 percent in recessions, indicating that mismatch is
dampening the business cycle. In the second counterfactual exercise, we quantify the implicit
friction on career mobility imposed by imperfect information regarding the gains of pursuing
a new career. We find that if workers were able to churn careers and instantaneously learn
the relevant skills, then in order to induce the same career-mobility pattern as in equilibrium
we would need to subject them to an explicit switching cost equivalent to 10 months of the
average output per worker.

2We verify this prediction using a model-consistent measure of career-mobility that is task-based. Kam-
bourov and Manovskii (2008) and Huckfeldt (2019) document similar patterns using occupation- and industry-
based measures of career-mobility.
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Related literature Our model combines ingredients from several strands of the literature.
Our formulation of the labor market is based on the directed search models of Menzio and
Shi (2010, 2011), Menzio, Telyukova and Visschers (2016) and Schaal (2017), which provide
us with the analytical framework to explore out of steady state dynamics in a model with
many degrees of heterogeneity.

The multidimensional modeling of skills is closely related to recent theoretical works by
Lise and Postel-Vinay (2018) and Lindenlaub and Postel-Vinay (2017) that also emphasize
the irreducibility of worker heterogeneity into a single unidimensional index. There are two
important differences with respect to our paper. First, both papers consider a random search
model of the labor market, effectively accounting for skill mismatch by an exogenous friction
that prevents workers from applying to the best-fitting jobs. In contrast, our approach
abstracts from such frictions by allowing search to be directed, and instead motivates skill
mismatch using incomplete information.3 Second, both papers focus on steady states, whereas
our framework allows for aggregate shocks and is tractable enough to explore out of steady
state dynamics, which is at the core of our exploration.

Finally, our model incorporates learning à la Jovanovic (1979, 1984). Our paper particularly
relates to more recent works, in which learning is about worker skills, rather than a match-
specific productivity term (e.g., Groes, Kircher and Manovskii, 2013, Papageorgiou, 2014,
and Wee, 2016). In our model, this implies that the assessment of future match qualities
varies with the prior work experience of workers and, in particular, leads to countercyclical
fluctuations in uncertainty. Relatedly, Acharya and Wee (2020) explore a complementary
mechanism that similarly gives rise to countercyclical uncertainty that reduces matching
efficiency in recessions.4

In support of the empirical relevance of skill uncertainty, we provide direct evidence
for imperfect information about worker skills exploiting worker forecasts about their own
future occupation. We document that the forecast errors entailed in these forecasts can be
systematically predicted by measures of worker ability that have been realized at the time
the forecasts are formed. The evidence complements recent work by Conlon et al. (2018) who
document substantial forecast errors in workers expectations regarding future labor market
outcomes using the Survey of Consumer Expectations of the NY Fed.5

3While labor market frictions by themselves do not cause mismatch to arise in our framework, they do
contribute to its persistence as they make reallocation costly. Related to the role of imperfect information in
our model, Guvenen et al. (2020) consider a similar approach as motivation for an empirical exploration of
multidimensional skill mismatch.

4See also Straub and Ulbricht (2012, 2014), Senga (2016), and Baley and Blanco (2019) for further
mechanisms, outside a labor market context, that give rise to countercyclical fluctuations in uncertainty at
the firm-level.

5Fredriksson, Hensvik and Skans (2018) also provide indirect evidence pointing to information frictions
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Our paper also contributes to an old debate on the cyclicality of worker–occupation
mismatch. On the one hand, matching models with endogenous separations suggest that
mismatch is procyclical due to a cleansing of unproductive matches (e.g., Mortensen and
Pissarides, 1994; see also, Lise and Robin, 2017 for a variant with ex ante heterogeneous
workers). On the other hand, others have argued that mismatch is countercyclical due to
various sullying forces (e.g., Barlevy, 2002; Moscarini, 2001; Barnichon and Zylberberg, 2019).
Our analysis provides a more nuanced view, suggesting that in fact both forces are present
among different sets of workers, although the cleansing effect unambiguously dominates at the
aggregate. Our evidence complements Crane, Hyatt and Murray (2018) who provide direct
evidence that overall sorting is countercyclical, and Bowlus (1995) who provides indirect
evidence that match quality of new hires is procyclical.

Layout The paper is organized as follows. In Section 2, we set up the model and characterize
equilibrium. In Section 3, we describe the calibration strategy used to quantify the model. In
Section 4, we describe the predicted business cycle dynamics of mismatch and contrast them
with the data. Section 5 explores the consequences of job displacement. Section 6 studies the
welfare consequences of information frictions. Section 7 concludes.

2 Model

We develop a directed search model of the labor market with endogenous sorting and aggregate
fluctuations in productivity. There are two key features. First, workers are characterized
by a high-dimensional vector of skill types and sort into jobs that are characterized by the
employed skill type and are further differentiated by the intensity they make use of a given
skill (“skill requirement”). Second, information about worker skills is imperfect and needs to
be inferred from noisy signals.

2.1 Environment

Population and technology Time is continuous and extends forever. There is a unit
mass of workers, indexed by i ∈ [0, 1], and an endogenous measure of one-vacancy firms with
free entry. Firms and workers are risk neutral and share the same discount rate ρ. Each
worker is characterized by a continuum of time-invariant abilities, {ai,k}k∈[0,1], where ai,k
are Normally distributed with mean a0 and variance S0 and are i.i.d. across skill types k

using Swedish administrative data.
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and across workers i. Abilities are not observed (directly), but their distribution is public
information.

Jobs are characterized by a unique skill type k ∈ [0, 1] utilized in production, and a skill
requirement or “task complexity” r ∈ R where R ⊂ R is compact. Henceforth, we label jobs
sharing the same skill type k as “career”, and refer to distinct levels of r within a given career
as “job-ladder”. The (log) output flow of worker i in job (k, r) is given by

log yi,k,r(t) = z(t) + ηr −max{r − ai,k, 0}. (1)

Here, z(t) is an aggregate productivity component, which follows a Poisson process that takes
two values, z(t) ∈ {zL, zH}, with switching intensities λzL

and λzH
; we normalize zL ≤ zH

and identify the first state with a recession. The second term in (1), ηr, defines the gains
in (potential) output associated with more complex tasks, whereas the third term captures
losses due to underqualification. We assume η ∈ (0, 1), so that the net return on raising the
skill requirement is positive if and only if the worker is skilled enough to operate the more
complex technology (ai,k > r).

Unemployed workers receive a constant utility flow b from home production.

Evolution of beliefs Agents learn about workers’ skills while producing. Specifically, in
each instant that a worker is employed, workers and firms update their beliefs about the
utilized skill, ai,k, based on the noisy signal

dsi,k(t) = ai,kdt+ σdWi,k(t),

where σ > 0 parametrizes the noisiness of the signal and Wi,k follows a standard Brownian
motion that is independent across all i and k. We assume that all learning is common knowledge
and no direct inference is made from yi,k,r (we view the signal si,k as an approximation to the
information that could be inferred if agents were to observe a noisy version of output6).

Specifically, the assumed process for si,k implies that for all i and k the posterior distribution
entertained about ai,k is Gaussian at all times. Let âi,k(t) and Σi,k(t) denote the first two
moments of this posterior. While employed in a job utilizing skill k, the posterior moments

6In fact, this interpretation could be made exact with two slight changes to the environment: (i) time is
discrete, (ii) the penalty on underqualification is given by g(r− ai,k −σεi,t) where εi,t ∼ N (0, 1) is i.i.d. across
i and t. Here g can be any smooth approximation to max{r − ai,k, 0} which sustains some arbitrary small
return on skills when ai,k > r. E.g., one could set g(x) = max{x, 0}+ βx with β > 0 small. As long as g is
monotonically increasing in ai,k, it holds that observing yi,k,r is informationally equivalent to observing a
noisy signal ai,k + σεi,t, demonstrating our claim.
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follow a diffusion given by the usual Kalman-Bucy filter,

dâi,k(t) = Σi,k

σ2 (dsi,k(t)− âi,kdt)

dΣi,k(t) = −
(

Σi,k

σ

)2

dt.

Upon switching to a previously untried skill type k, the belief is initialized at the objective
prior distribution, (âi,k,Σi,k) = (a0, S0).

Labor markets, vacancy creation, and separations The labor market is organized in
a continuum of submarkets indexed by the job characteristics (k, r), the relevant worker type
(âi,k,Σi,k), and a lifetime utility x implicit in the employment contracts offered by firms to
workers. Workers direct their search towards these submarkets. Specifically, unemployed
workers have the opportunity to search the labor market at rate 1 and can search any submarket.
For simplicity, we rule out recall of previously abandoned skill types but notice that the
assumption imposes little restrictions on workers’ search policies in practice.7 Employed
workers have the opportunity to search the labor market at rate κ ∈ [0, 1] and can search for
jobs within their current career path (i.e., the skill type k of the aspired job must match their
current job). Vacancies are created by an infinite supply of potential firms, which can open a
vacancy in any submarket ω ≡ (k, r, x, âk,Σk) at flow costs c.

Workers searching in the same submarket and vacancies posted in that submarket come
together through a frictional matching process. In particular, a worker searching in submarket
ω meets a vacancy at rate p(θt(ω, z)) where θt(ω, z) denotes the vacancy-to-worker ratio of
submarket ω. Similarly, a vacancy posted in submarket ω meets a worker at rate q(θt(ω, z)) =
p(θt(ω, z))/θt(ω, z). As usual, we assume that p is twice differentiable, strictly increasing and
concave; q is strictly decreasing; and p(0) = q(∞) = 0, p(∞) = q(0) =∞.

When a firm and a worker meet in a submarket, the firm offers the worker a wage contract
worth x in lifetime utility and hires the worker. Following Menzio and Shi (2010, 2011), we
assume that the underlying contract space is complete, so that separations are bilaterally
efficient. In particular, endogenous job separations as well as the search policies of employed
workers are taken so as to maximize the joint value of the relationship.

7The exception are workers that are exogenously forced to switch careers (introduced below), which would
otherwise prefer to re-apply to their old career. The reason why the no recall assumption does not pose much
of a restriction otherwise is that k lays in a continuum. In particular, absent aggregate shocks, workers would
never find it optimal to return to skill types that they have previously abandoned. The restriction therefore
merely rules out that career choices are dependent on the aggregate productivity state in a way where workers
prefer to explore a new career over a certain skill k for a given productivity z, but would prefer k over a new
career after a change in z.

6



In addition to an endogenous separation choice (further detailed below), worker–firm pairs
separate at an exogenous rate δ > 0. Moreover, every time a worker enters the unemployment
pool (endogenously or exogenously), she switches careers with an exogenous probability
ε ∈ (0, 1). If hit by such a career-shock, the worker is forever prevented from applying to any
submarket involving the skill type k of their previous career.

Remark on notion of careers In our terminology, the label career refers to a set of jobs
that utilize similar skills. Our definition differs from previous approaches that have defined
careers based on occupation- or industry-codes. While related, such definitions would be
misleading in our case as distinct occupations may share very similar skill mixes, whereas
others may bundle together jobs with distinct skills.8 For a consistent interpretation of the
model, one should therefore think of careers in terms of skill-mixes when mapping the model
to the data. Our calibration of the model in Section 3 aims to do so by employing a task-based
definition of careers.

2.2 Equilibrium Characterization

Notation To converse notation, we suppress i subscripts from all variables going forward.
All functions are indexed with a time subscript t to express their potential dependence on
the aggregate state (with the exception of aggregate productivity z, which is kept as explicit
argument).

Vacancy creation By free entry, the value of creating a vacancy must be zero in every
submarket. Let Jt(âk,Σk, r, z) denote the joint value of a worker–firm pair. The zero profit
condition reads c = q(θt(ω, z))(Jt(âk,Σk, r, z)− x). Rearranging, this pins down the market
tightness as a function of the firm’s share of the surplus, θt(ω, z) = fθ(Jt(âk,Σk, r, z) − x),
where

fθ(V ) ≡

q
−1 (c/V ) V ≥ 0

0 else.
(2)

Unemployed worker problem As there is no learning during unemployment, the belief
about an unemployed worker’s skills, {âk,Σk}k∈[0,1], remains at the same value at which she

8For instance, using the methodology described in Section 3, we find that the skill mix of an economist is
very similar to the ones of financial managers, actuaries, and loan counselors, which all constitute different
occupations at the 3-digit level. By contrast, career definitions based on 2-digit occupation codes, bundle
together many occupations with vastly different skill mixes.
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entered unemployment. The value of being unemployed conditional on searching for jobs of
skill type k, denoted by Ut(âk,Σk, z), is therefore given by:

ρUt(âk,Σk, z) = b+ max
x,r
{p(θt(ω, z)) (x− Ut(âk,Σk, z))}+

+ λz (Ut(âk,Σk,−z)− Ut(âk,Σk, z)) . (3)

The flow value of being unemployed is comprised of three terms: (i) the utility flow of home
production, (ii) the product between the job finding rate and the excess utility, x−U , promised
to the worker in the submarket she is searching (maximized subject to the θ–x frontier defined
by (2)), and (iii) the product between the arrival rate of aggregate productivity shocks and
the corresponding change in value (here, “−z” denotes the complementary state of z).

Intuitively, Ut(âk,Σk, z) measures an unemployed worker’s value of searching in career k.
It remains to solve for the optimal career choice of unemployed workers. Fortunately, the
problem is simplified by our assumption that k lays in a continuum, which implies that
the choice of skill types is stationary as workers never run out of new careers to explore.
Accordingly, unemployed workers effectively face the choice between searching within their
current career path, summarized by the belief (âk,Σk), or starting a new career k′ with
(âk′ ,Σk′) = (a0, S0). The unconditional value of being unemployed is then given by

Ut(âk,Σk, z) = max {Ut(âk,Σk, z), Ut(a0, S0, z)} . (4)

Joint surplus maximization Next, consider the worker–firm pair’s joint continuation
choice and the search policy of employed workers. As long as the relationship remains active,
its flow value is given by

ρJact
t (âk,Σk, r, z) = ez+ηr Et[e−max{r−ak,0}] + Λt(âk,Σk, r, z) +

+ max
x,r
{κp(θt(ω, z)) (x− Jt(âk,Σk, r, z))}+

+ δ (J sep
t (âk,Σk, z)− Jt(âk,Σk, r, z)) +

+ λz (Jt(âk,Σk, r,−z)− Jt(âk,Σk, r, z)) . (5)

Here the first term corresponds to the expected output flow of the worker–firm pair. Using
ak ∼ N (âk,Σk), we can explicitly compute the expected loss from underqualification as
Et[e−max{r−ak,0}] = ψ(âk − r,

√
Σk) with

ψ(x, s) ≡ ex+s2/2Φ (−x/s− s) + Φ (x/s) ,
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where Φ(·) is the standard Normal cdf. The second term in (5) captures how J changes as
uncertainty declines over the course of the relationship (first term of Λ) as well as how the
uncertainty-induced risk affects the value itself (second term of Λ),

Λt(âk,Σk, r, z) ≡
(

Σk

σ

)2 (
−∂Jt(âk,Σk, r, z)

∂Σk

+ 1
2
∂2Jt(âk,Σk, r, z)

∂â2
k

)
.

The third term in (5) captures changes in the joint value due to the worker moving to a
better-matched job (where the maximization is again subject to the θ–x frontier defined in
(2)). The forth term captures the change in value induced by exogenous separation, in which
case the worker–firm pair obtains the separation value J sep (defined below). Finally, the last
term captures the change in value induced by aggregate productivity shocks.

In the event of separation, the joint separation value is given by

J sep
t (âk,Σk, z) = εUt(a0, S0, z) + (1− ε)Ut(âk,Σk, z),

reflecting the possibility that the worker switches careers for exogenous reasons with probabil-
ity ε (the continuation value for the firm is zero given free entry). Combining, the joint value
of the worker–firm pair, as determined by the optimal continuation choice, is given by

Jt(âk,Σk, r, z) = max
{
Jact
t (âk,Σk, r, z), J sep

t (âk,Σk, z)
}
. (6)

Job ladder We now explore which jobs workers search for as a function of the belief (âk,Σk).
Substituting the θ–x frontier defined by the entry decision of firms (2) into (3) and (5), it is
immediate that the choice of task-complexity always maximizes the joint surplus,

r∗(âk,Σk, z) = arg max
r∈R

Jt(âk,Σk, r, z). (7)

For employed workers, this is a direct consequence of bilateral efficiency. For unemployed
workers, it is similarly in their best interest to maximize the joint surplus as the firms’ share
is fixed by the free entry condition, making the worker effectively residual claimant on the
surplus.

Figure 1 illustrates the resulting job ladder using the parametrization described in Section 3.
The figure displays the choice of r as a function of âk and Σk. As the search policies are
very similar for both realizations of aggregate productivity, we only plot them for the case
where z = zH . In the adopted parametrization, there is a 6-step job ladder corresponding to
R = {0.5, 1, 1.5 . . . , 3} × S1/2

0 . Workers pursuing a new career, search for jobs with the lowest
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Figure 1: Job ladder. Notes.—The graph shows the task complexity r∗ chosen as a function of expected
ability âk and uncertainty Σk. The red square marks the unconditional prior (a0, S0) for untried skill types.
âk, Σ1/2

k and r are denominated in units of S1/2
0 . The graph is plotted for z = zH ; the case where z = zL

looks similar. See Section 3 for a description of the parametrization.

complexity, r∗(a0, S0, zH) = 0.5S1/2
0 (indicated by the red square in the plot). As workers

become more optimistic regarding their skills in a given career k, they apply to more complex
jobs (indicated by lighter shades of green). Reflected in the downward-sloping thresholds,
there is generally an option value associated with higher uncertainty that induces workers
to apply to jobs for which they expect to be underqualified. This is because J(âk, ·, ·, ·) is
truncated below by the option to separate, whereas higher levels of âk generally increase J
as it reduces the likelihood of being underqualified.9 Relatedly, there is no search towards
job rungs below the one chosen by career-switchers, as such jobs would be dominated by the
option to pursue a new career.

It remains to characterize the value of x chosen by workers that are actively searching
for new jobs. From (2), x is decreasing in market tightness θ, creating a trade-off for the
worker to search in submarkets with higher job finding rates p versus searching in submarkets
with higher utility x. Maximizing (3) subject to the θ–x frontier defined by (2), the market
tightness chosen by unemployed workers is given by

θ = p′−1
(

c

Jt(âk,Σk, r∗, z)− Ut(âk,Σk, z)

)
(8)

9This prediction is consistent with our data on mismatch (introduced below), in which workers are on average
33 percent more underqualified than overqualifed. Our uncertainty-based account of this evidence complements
an existing body of work that explains overshooting of workers for difficult jobs with overconfidence (Dubra,
2004) and the anticipation of future skill acquisition (Lise and Postel-Vinay, 2018).
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Figure 2: Search and separation policies. Notes.—The figure shows search policies as a function of expected
ability âk, uncertainty Σk, and the employment state (unemployed/employed in job with complexity r).
Values are denominated in units of S1/2

0 (S0 for Σk). The figure is plotted for z = zH ; the case where z = zL

looks similar. See Section 3 for a detailed description of the parametrization.

with r∗ as in (7). Similarly, maximizing (5) subject to (2), the market tightness chosen by
employed workers is given by

θ = p′−1
(

c

Jt(âk,Σk, r∗, z)− Jt(âk,Σk, r, z)

)
. (9)

Note that by properties of p the last expression evaluates to zero whenever r = r∗. In words:
employed workers only search for jobs that are better matches (in expectations), which again
is an immediate implication of bilateral efficiency.

Figure 2 illustrates the search and separation policies of workers as a function of beliefs
(âk,Σk) and current employment status (unemployed or employed in job with complexity
r ∈ R). Unemployed workers change careers whenever âk is small (indicated by the red area
below the dotted threshold). Otherwise they search for jobs in their current career (with a
job finding rate that is increasing in âk; not indicated in the plot). Employed workers are
characterized by a separation threshold (black solid lines above the light red area), below
which they separate (with or without career switch). Workers in continuing relationships
actively search for better matched jobs whenever r 6= r∗(âk,Σk, z). Specifically, they aspire
to climb down the job ladder if âk falls into the blue area bordered by the separation region
below and the no-search region (in white) above. If âk falls into the upper blue area, they
aspire to climb up the job ladder instead.
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Distributional dynamics The aggregate state in this economy consists of the triplet
(z,Γ,Υ), where Γ is the distribution over active worker–firm pairs (â,Σ, r) and Υ is the
distribution over unemployed workers (â,Σ).10 Based on the search and separation policies
above, we can characterize two Kolmogorov forward equations, one for Γ and one for Υ,
which together with the process for z fully describe the dynamics in this economy. While the
construction of these equations is standard, their precise expression is slightly protracted. We
therefore confine their presentation to Appendix A.

Equilibrium and block-recursivity An equilibrium is a joint value function satisfying
equation (6), an unemployed value function satisfying equation (4), lifetime utilities x satisfying
the free entry condition (2), and a distribution of worker–firm pairs and unemployed workers
evolving according to equations (13) and (14) (stated in Appendix A).

As usual, directed search together with bilateral efficiency and free entry imply that the
unique equilibrium is block-recursive (e.g., Menzio and Shi, 2010, 2011; Schaal, 2017). This
is because free entry of firms implies that the market tightness in each submarket is only
a function of the joint surplus rather than depending on the distribution of workers across
submarkets (see equations (8) and (9)). Hence, given that job finding rates are independent
of cross-sectional distributions, so are the search problems of workers and the corresponding
value functions (3) and (5). Absent any other cross-sectional dependence, we conclude that
the only aggregate dependence of U and J is through z. On this account, we drop the
time-subscript t from all value functions going forward.

3 Calibration

This section describes the parametrization of the model. Following the literature, we use
a set of standard moments to identify parameters common to labor search models. To
inform ourselves about parameters unique to our model, we use a combination of moments
constructed using data from the U.S. Department of Labor’s O*NET project together with a
worker-level panel from the 1979 National Longitudinal Survey of Youth (NLSY79).

3.1 Measuring Careers and Mismatch in the Data

In the model, careers are each associated with a unique skill type. In the sequel, we argue that
when matched with an adequate empirical definition of careers, this simple notion of careers

10Due to the symmetry in k discussed above, there is no need to keep track of the distribution of workers
across k separately.
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is isomorphic to a more general version of our model, in which each job utilizes a mix of
different skill types. Specifically, provided that skill-mixes are orthogonal to one another for a
given career classification, such a more general model of skill utilization can always be reduced
to the simple model introduced in Section 2. Motivated by this observation, we measure
career-mobility in the data as job transitions between occupations that are characterized by
sufficiently orthogonal skill-mixes based on its O*NET descriptors.

Model-consistent measure of careers To guide our interpretation of the data, consider
the following generalization of our model, in which each job utilizes a mix of different skill
types. Output per worker–firm pair is given by

yi,k,r(t) = F (z(t), qk,r,ai),

where ai ≡ (ai,1, . . . , ai,J) defines a vector of skills for each worker i over J basic aptitudes.
Similarly, qk,r ≡ r · (wk,1, . . . , wk,J) defines a requirement vector over the same aptitudes for a
given job. As before, jobs are classified in terms of their task complexity r and a particular
skill mix, indexed by k ∈ {1, . . . , K}. The difference is that each k now maps into a vector of
weights (wk,1, . . . , wk,J) over the J basic aptitudes, normalized to sum to unity, as opposed to
a unique skill type.

The key observation here is that—with an appropriate classification of careers—the
more general model outlined here can be (approximately) collapsed into the one developed
in Section 2. Specifically, to make our simple model consistent with the more general
production technology outlined here, it suffices to classify occupations into careers so that
job requirements {qk,r} are (approximately) orthogonal across k.11 With this in mind, we
interpret two occupations observed in the data as different careers if their requirement vectors
are “sufficiently orthogonal”. Specifically, let ϕ : RJ ×RJ → [0, π/2], define the angle between
two skill vectors q1 and q2,

ϕ(q1, q2) = cos−1
(

q1 · q′2
‖q1‖ ‖q2‖

)
.

Then any job transition from a job with q1 to a job with q2 is treated as a career-switch if
and only if ϕ(q1, q2) ≥ ϕ̄ for some ϕ̄ (below, ϕ̄ is chosen so that the average correlation in
requirements for career-switches is zero).12 To account for variations in economic relevance

11Here we tacitly assume that K is sufficiently large so that workers do not “run out of careers” during
their lifetime. We also assume that F collapses to (1) when {qk,r} are orthogonal across k. See Appendix B
for two examples where skills are perfect complements and perfect substitutes.

12See also Gathmann and Schönberg (2011) for a similar approach used to measure occupational distance.
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Figure 3: Schematic illustration of empirical measure of careers for J = 2. Job transitions from q1 to jobs
within the ϕ̄-cone are interpreted as transitions up and down the same job ladder; transitions to jobs outside
the ϕ̄-cone are interpreted as career-switches.

across the J skill dimensions, we weigh them using a set of market-weights when computing
ϕ(q1, q2) in our empirical implementation.13

Figure 3 illustrates our empirical approach to measuring career switches for the case where
J = 2. Starting from job q1, transitions into jobs within the cone defined by ϕ̄ (depicted by
the red shaded area) are interpreted as transitions up and down the same job ladder (i.e.,
changes in r with a negligible variation in the skill-mix k). Transitions to jobs outside the
ϕ̄-cone are interpreted as career-switches (i.e., transitions with a significant change in the
skill-mix k).

Residual correlation in skills across careers A brief comment is in order before we
proceed to the empirical implementation of our approach. We have argued that an orthogonal
classification of careers allows for an exact mapping of our model to the data. One may
nevertheless ask: how does the model map to the data when there is some residual correlation
in skills across careers?

In theory, residual correlation would allow workers to learn about their ability to execute
previously untried careers (although their ability to do so is likely limited in practice14).

13Specifically, let v1, . . . , vJ denote a set of weights (further described below). Then ϕ(q1, q2) is computed
using the weighted dot product q1 · q′2 ≡

∑
j vjq1,jq2,j .

14In practice, the ability of a worker to predict performance across careers is likely to be impaired by a
lack of information regarding the precise importance of skills in each career. For instance, suppose skills are
perfect substitutes as in (16) in the Appendix; i.e., skills enter production through the linear index wka′i. In
this case, learning about the linear index wka′i is a sufficient statistic for the current career, but cannot easily
projected across careers without knowing both wk and wk′ .
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To the extend that workers can predict their performance in untried careers, we speculate
that workers would guide their search towards occupations for which they are best-qualified
based on prior work-experience. Using the notation of our model, we could capture this
by re-interpreting a0 as the conditional mean of the best-perceived career based on prior
information, and S0 as the residual uncertainty surrounding the required skill bundle. As
long as skills are not perfectly correlated, the model would still give rise to an increase in
uncertainty and mismatch after career-switches, not changing its fundamental dynamics. The
main addition compared to the uncorrelated skill case would be a likely increase of a0 (and
decrease of S0) throughout the lifetime of a worker (as workers become better at predicting
at which skills they excel). To the extend that we do not focus on life-cycle dynamics, but on
business cycle dynamics, we do not consider this a big abstraction.

Measuring skill requirements and careers Our empirical measure of skill requirements
is based on the O*NET project, which describes occupations using a list of 277 descriptors
relating to required worker attributes and skills. We follow the literature and reduce the large
set of descriptors to J = 4 dimensions using Principal Components (Guvenen et al., 2020;
Lise and Postel-Vinay, 2018), which we interpret as mathematics, verbal, social, and technical
skills.15 To make them comparable, we normalize each skill dimension in terms of percentile
ranks.16 See Appendix C.1 for details on the construction of our skill measure.

To identify career moves, we merge our skill measures with the NLSY79. Let qi,t =
(qi,t,1, . . . , qi,t,4) denote the four-dimensional skill measure associated with the job held by
worker i at date t.17 As detailed above, we associate a job transition from qi,t to qi,t+1 as a
career-switch if the angle between the two skill vectors, ϕ(qi,t, qi,t+1), is larger than ϕ̄. The
threshold ϕ̄ is chosen so that the average correlation in requirements (across skill dimensions)
is zero for career moves: ∑4

j=1 vjCorr(qi,t,j, qi,t+1,j) = 0, where {vj} is a set of market weights
described below.18 Using this strategy, we set ϕ̄ = 12.58◦ which implies that 44.1 percent of
all job transitions in the NLSY79 sample are career switches. The propensity to switch careers
is comparable to the numbers obtained by Fujita and Moscarini (2017), Carrillo-Tudela and

15Guvenen et al. (2020) and Lise and Postel-Vinay (2018) reduce worker requirements to only three
dimensions. We add the technical component as it has been shown to be an important determinant for labor
market outcomes (Prada and Urzúa, 2017).

16To make our measure of skill requirements comparable with our measure of worker skills (described
below), we compute the percentile ranks based on the distribution of requirements among jobs observed in
the NLSY79 sample.

17We map 2010 SOC codes used by O*NET to classify occupations into Census codes used by NLSY79
using standard crosswalk files.

18The small correlation in skills for career-switchers contrasts strongly with an average correlation of .94
among job-switchers that are classified as within-career transitions.
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Visschers (2014), Carrillo-Tudela et al. (2016), and Huckfeldt (2019).

Measuring worker skills and mismatch Following Guvenen et al. (2020) we define
mismatch based on the absolute difference in skill requirements and worker skills. For this
purpose, we measure worker skills based on six ASVAB scores available from the NLSY79
sample, individual scores on the Rotter locus-of-control scale, and the Rosenberg self-esteem
scale. We follow a similar procedure as for skill requirements to reduce those scores into a
four-dimensional measure of worker abilities in math, verbal, social and technical skills. See
Appendix C.3 for details.

Let ai = (ai,1, . . . , a1,4) denote the skill vector of worker i. The mismatch between worker i
and their current occupation is then given by:

mi,t ≡
4∑
j=1

vj |ai,j − qi,t,j| . (10)

Here vj are “market weights”, obtained from the regression coefficients on each of the four
mismatch dimensions in a Mincer regression (normalized so ∑4

j=1 vj = 1).19 Intuitively, the
weights ensure that our mismatch measure is not driven by skills that are economically
irrelevant. Similarly, we define positive mismatch, measuring overqualification, and negative
mismatch, measuring underqualification, as

m+
i,t ≡

4∑
j=1

vj max{ai,j − qi,t,j, 0} m−i,k ≡
4∑
j=1

vj max{qi,t,j − ai,j, 0}.

3.2 Parametrization of the Model

Assigned parameters We parametrize the model at a monthly frequency. The discount
rate ρ is set to log(1.05)/12 corresponding to an annual discount rate of 5%. We choose
isoelastic contact rate functions, p(θ) = θγ and q(θ) = θγ−1, where in line with the evidence
surveyed in Petrongolo and Pissarides (2001) the elasticity of matches to vacancies, γ, is set
to 0.4.

The relative search intensity of employed workers, κ, is set to 0.5, consistent with the
relative search effort documented in Holzer (1987) and Faberman et al. (2017).20 We choose
to set the relative search intensity κ based on direct evidence as opposed to targeting the

19Specifically, we regress log wagei,t on math, verbal, technical, and social mismatch, controlling for a
quadratic polynomial in age and worker fixed effects. The resulting weights are .58, .14, .09, .19 for math,
verbal, technical, and social, respectively.

20Holzer (1987) and Faberman et al. (2017) document a relative time spend on search activities of 0.48 and
0.51, respectively.
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job-to-job rate, because job-to-job transitions are clearly caused by many factors not present
in the model, including relocation shocks, rent seeking purposes, and random fluctuations
in match-quality. If we would force the model to match the empirical job-to-job rate, we
would effectively require learning about skills to account for these other forces, overstating
the importance of learning for job-to-job mobility.21

We specify the set of potential task-complexities, R, using a six-point grid given by
{0.5, 1, . . . , 3} · S1/2

0 , denoted in standard deviations of ak. The boundaries of the grid are
chosen so that adding additional grid points has no impact on the results.22 Worker abilities
are normalized around a0 = 0. We approximate beliefs about worker skills using a 64-point
grid for âk on [−3, 7] · S1/2

0 and a 21-point grid for Σk on [0, 1] · S0. Finally, we normalize
log productivity in recessions to 0, and choose transition rates for z in order to match the
monthly switching intensities between recessions and expansions in the U.S., where recessions
are periods with an unemployment rate above its unconditional average of about 6.5%.

Target moments We calibrate the remaining parameters jointly using the method of
moments with weights chosen to minimize the relative distance between model and empirical
moments. All model moments are computed at the ergodic distribution. As usual, all
parameters are identified jointly. In the following we provide a heuristic mapping from
moments to parameters to guide intuition.

Following the literature, we target worker flows in and out of unemployment as documented
by Shimer (2012) to identify the exogenous separation rate δ and the flow cost of vacancy
creation c. We identify b by targeting a replacement ratio of E[b/y] equal to .71 as found
by Hall and Milgrom (2008). Finally, we identify zH (relative to zL) from an average
recession–expansion difference in unemployment amounting to 2.8 p.p. in the US.

To identify the speed of learning, parametrized by σ, we target an average slope of the
empirical separation hazard over the first 18 months of employment, log(haz1/haz18), of .338
as found in the NLSY79 sample. Intuitively, a high speed of learning (low values of σ) allows
worker–firm pairs to quickly identify whether a match is profitable, implying a steep decline
in the separation hazard over time. By contrast, if learning is slow, worker–firm pairs will
keep revising their beliefs for a prolonged time, reflected in a flattening of the hazard curve.

Next, we use the exogenous career-shock ε to ensure consistency of the model with an
average propensity to switch careers of 44.1 percent, as documented above in the NLSY79.

21In our calibration, the monthly job-to-job worker flows are .011 compared to an empirical rate of .03,
suggesting that learning can account for roughly one third of the observed job-to-job mobility.

22Adding an extra grid point at 0 has no effect as no search is directed to such submarkets in our calibration.
Similarly, adding an extra grid point at 3.5 · S1/2

0 does not change the results as it attracts only a relative
mass of 0.004 workers at the ergodic distribution.
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Table 1: Targeted moments

Fitted Moments Data Model Origin

EL[U ]− EH [U ] .028 .027 BLS
E[UE rate] .425 .434 Shimer (2012)
E[EU rate] .035 .035 Shimer (2012)
E[b/y] .710 .712 Hall and Milgrom (2008)
E[log(haz1/haz18)] .338 .331 NLSY79
E[χ = 1] .441 .441 NLSY79, O*NET
EL[χ = 1]− EH [χ = 1] .069 .064 NLSY79, O*NET
E[|ak − r|] .280 .283 NLSY79, O*NET

Notes.—The notation E[·] denotes unconditional expectations, computed at
the ergodic distribution of the model. EL[·] and EH [·] denote expectations
conditional on the aggregate state being in a recession or expansion, respec-
tively. U denotes the aggregate unemployment rate, EU and UE are monthly
transition rates, y is output per worker–firm pair, hazx is the separation
hazard after x months of employment, and χ is an indicator evaluating to
unity if workers switch careers when entering the unemployment pool.

Similarly, we use the technology parameter η to match the empirical cyclicality in career
mobility, which we find to be 6.9 percentage points higher in recessions compared to expansions.

Finally, to identify the variance of skills, S0, we exploit a close relation between S0 and
the scale of mismatch. To see this link, suppose for a moment that output would be linear
(using the same specification as in (1), but with y on the left-hand side instead of log y). In
this case, we can express (zL, zH , b, c, σ) in units of S1/2

0 so that all policy functions become
scale-neutral: any change in S0 and an accordant rescaling of (zL, zH , b, c, σ) will simply
re-scale r and ak (and hence mismatch) but will not change any policy functions or any other
target moment. While this exact independence between S0 and the rest of our calibration
strategy breaks down in the log-linear model, the intuition that S0 is most closely related to
the scale of mismatch continues to hold. We therefore target the average mismatch in our
NLSY79 sample, given by .280, to identify S0.

Estimation results Table 1 reports the data targets alongside the corresponding moments
in the calibrated model. The model fits the data almost perfectly.

The calibrated parameters are listed in Table 2. The values of zH , b and c have immediate
interpretations given their calibration targets. The return on skills, η, is estimated to be
relatively high in the sense that it induces workers to err on the the side of being underqualified
when facing uncertainty about their skills. This is illustrated in panel (a) of Figure 4 where
we plot the ergodic distribution over âk − r (see also Figure 1).

The estimated standard deviation of skills is 0.476, which implies a significant amount of
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Table 2: Summary of parameters

Parameter Description Value

Assigned
ρ Monthly discount rate log(1.05)/12
γ Matching elasticity 0.4
κ Relative search intensity of employed 0.5
a0 Unconditional skill mean 0
zL Aggregate log-productivity in recessions 0
λzL , λzH Poisson rates of productivity shock 0.0128, 0.0172

Estimated
zH Aggregate log-productivity in expansions 0.138
b Home production utility 0.959
c Flow cost of vacancies 0.529
η Return on task complexity 0.720
S

1/2
0 Standard deviation of skills 0.476
σ Standard deviation of signal noise 5.776
δ Exogenous separation rate 0.021
ε Exogenous career-switch propensity 0.063

equilibrium dispersion in (log) value added per worker, seen in panel (c) of Figure 4.
The standard deviation of the signal is σ = 5.776, implying an median uncertainty amount-

ing to 0.35 · S0, or roughly one third of the prior uncertainty. The average uncertainty E[Σk]
amounts to 0.42 ·S0, so the distribution over Σk is right-skewed (see panel e). Not surprisingly,
however, despite the overall right-skew, the distribution of Σk has also a concentration of
mass at Σk = S0, reflecting the reset in learning after workers switch careers.

Interestingly, the distribution over beliefs is censored slightly below 0 (see panel d),
reflecting the option to switch careers whenever workers become pessimistic about their skills
(see also Figure 2). By comparison, the true distribution of skills in workers pursued careers
is much more dispersed as can be seen from the same plot. The dispersion is particularly high
around the truncation point at the left of the distribution over â, because â ≈ 0 is positively
correlated with high levels of uncertainty due to workers just having started their careers. By
contrast, the dispersion to the right of the distribution of âk is much lower, since high levels
of âk are correlated with low levels of uncertainty as extreme belief revisions are more likely
the more signals one obtains.23

Finally, the estimated value for δ is 0.021, so that exogenous separations account for 59%
23More formally, Var[âk − a0] is directly proportional to the measure of signals received, which is negatively

related to uncertainty. The negative correlation is further reinforced, because workers optimally stay with
careers that they think they are good at.
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(a) Expected mean mismatch (b) Task complexities (c) Output (in logs)

(d) Skills (e) Uncertainty

Figure 4: Ergodic distributions. Notes.—Apart from output, all variables are denominated in units of S1/2
0 .

of all separations. The estimated value for ε is 0.063, implying that exogenous career shocks
account for 14% of all career mobility.

3.3 Direct Evidence for Learning About Skills

We conclude this section by providing direct evidence for workers having imperfect information
about their skills as modeled here. We do so using a NLSY79 survey question that asks
workers about their expected occupation in 60 months. Based on the reported forecasts,
we construct forecast errors between a worker’s realized occupation in 60 months and their
prediction:

fei,t,j ≡ qi,t+60,j − q̂i,t+60,j,

where q̂i,t+60,j is the requirement in skill j associated with the predicted occupation. Suppose
an econometrician observes a noisy measure of a worker’s skills ai. Hypothesizing that skills
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are predictive of future occupations, E[qi,t+60|ai] = ai, one would then predict the forecast
error to be given by

pei,t,j ≡ ai,j − q̂i,t+60,j.

The main premise of our test is that under the null hypothesis that workers know their skills,
the forecast error should be orthogonal to the predicted error pei,t,j. Note that the null is a
direct implication of workers knowing their skills aside from being aware of their own forecast,
and holds regardless whether or not the econometric conjecture E[qi,t+60|ai] = ai is correct.
Moreover, while the goodness of our measure for worker skills affects the power of the test, it
is inconsequential for its validity.24

We assess the hypothesis of full information by estimating the following specification:

4∑
j=1

fei,t,j = β0 + β1

4∑
j=1

pei,t,j + εi,t. (11)

Our estimate for β1 is given by .550 with a standard error of .006. Table 3 further reports
variations of our test where we separately estimate (11) for each skill dimension,

fei,t,j = β0 +
4∑
j=1

βjpei,t,j + εi,t,j.

In all cases, we reject the null hypothesis that β1 = · · · = β4 = 0, which we interpret as
evidence in support of workers having to learn their own skills. In particular, we find that
both pei,t,j and pei,t,math are significantly correlated with fei,t,j for all skill dimensions j. The
findings are consistent with anecdotal evidence given in Guvenen et al. (2020), which suggests
that workers are unaware of the ASVAB test scores, and with recent work by Conlon et al.
(2018) who document substantial forecast errors regarding labor market outcomes using the
Survey of Consumer Expectations of the NY Fed.

4 Mismatch Cycles

In this section, we study the macro-dynamics of mismatch in the model and in the data.
We begin by presenting reduced-form evidence about the cyclicality of mismatch. We then
show that the model quantitatively captures the empirical impact of a recession on mismatch.
Finally, we use the model to explore the mechanism at work and demonstrate that job

24This is because any variable that is realized at date t should be orthogonal to workers’ expectation error
under full information.
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Table 3: Direct evidence for learning

Dependent variable:
∑
j fej femath feverb fetech fesoc
(1) (2) (3) (4) (5)∑

k pek .550***
(.006)

pemath .461*** .317*** .239*** .154***
(.034) (.035) (.035) (.037)

peverb .046 .192*** −.058* .132***
(.033) (.033) (.034) (.033)

petech .036 −.012 .309*** −.173***
(.032) (.032) (.032) (.034)

pesoc .032* .059*** −.039** .290***
(.019) (.019) (.019) (.017)

R-squared .311 .317 .288 .258 .183
Obs. 19203 19203 19203 19203 19203

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.

and career mobility at the bottom rungs of the job ladder are key for generating mismatch
dynamics in the model.

4.1 Mismatch Cycles in the Data

We first explore the relation between mismatch and the U.S. business cycle in the data. We
do so by estimating the following empirical specification:

mi,t = β0 + (β1 + β2JS i,t + β3UE i,t)× recessiont +

+ γ × (JS i,t,UE i,t, xi,t) + δi + δyt + δmt + εi,t. (12)

Here mi,t is the mismatch of worker i at time t as defined in Section 3.1; JS i,t and UE i,t are
dummies indicating job stayers and new hires from unemployment25; recessiont is an indicator
that evaluates to unity if the aggregate unemployment rate is above its long-run average
of about 6.5%; xi,t is a set of individual controls, including a quadratic polynomial in age,
the region of residence, and a full set of 1-digit occupation and industry dummies; and δi,
δmt , δyt are individual, month and 5-yearly fixed effects, respectively.26 Note that job-to-job

25Job stayers are defined as all workers that have the same employer at date t as in the previous month.
New hires are defined as all newly hired workers that reported to be not working, unemployed or out of the
labor force in the previous month.

26Notice that our specification of fixed effects implies some redundancy among our control variables; but as
usual in linear regression frameworks this does not bias our main coefficients of interest.
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Table 4: Cyclicality of mismatch in the data

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Job stayers (β1 + β2) −.315*** .010 −.325***
(.130) (.095) (.091)

New hires (β1 + β3) .589* .414* .175
(.315) (.227) (.207)

Total cyclicality −.270** .035 −.305***
(.130) (.095) (.090)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100).

transitions are the omitted category here and are absorbed by β1.27

Table 4 reports the estimated business cycle effects. Looking at job stayers, mismatch
declines in recessions by an average of .315 percentage points, which corresponds to 1.13%
of the unconditional average in mismatch. Decomposing the decline into positive and
negative mismatch (columns 2 and 3), we find that the decline is entirely driven by layoffs of
underqualified workers, whereas mismatch due to overqualification is acyclical.

The procyclicality of mismatch among job stayers stands in contrast to the cyclicality
among newly employed workers, which is countercyclical (.589 percentage points, or 1.93% of
the average mismatch among new hires). Specifically, we find that unemployed workers finding
a job in a recession are on average more overqualified and more underqualified compared to
workers findings jobs in expansions.

Looking at the total cyclicality (third row), we find that overall mismatch is procyclical.
Intuitively, even though new hires are significantly more mismatched during recessions, they
only constitute a small fraction of the labor force. Aggregate mismatch is, therefore, primarily
determined by the cleansing effect of recessions, comprising roughly acyclical dynamics of
overqualification and procyclical dynamics of underqualification.

4.2 Model vs Data

We now compare the estimated effects of a recession to their model analogue. Specifically,
we compute the impact of a recession on a variable as the difference in conditional means,
EL[·]− EH [·], computed at the ergodic distribution of the estimated model. The results are

27As our model does not imply any systematic cyclicality in mismatch among job-to-job movers, we do not
focus on job-to-job transitions here. In our regression, we do not find a significant cyclicality in mismatch
among job-to-job movers (see Table 8 in the Appendix for details).
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Table 5: Cyclicality of mismatch: model versus data

m+
i,t m−i,t

Data Model Data Model

Job stayers .010 −.049 −.325 −.361
(.095) (.091)

New hires .414 .430 .175 .525
(.227) (.207)

Total cyclicality .035 −.019 −.305 −.307
(.095) (.090)

Notes.—Data columns replicate the coefficients and standard errors reported in Table 4. The
model columns report the difference in conditional means, EL[·]− EH [·], computed at the ergodic
distribution of the estimated model. All coefficients are multiplied by 100 (so that mismatch ranges
from 0 to 100).

reported in Table 5 alongside their empirical counterparts.
Overall, the model does a fairly good job at replicating the estimated coefficients, the

exception being the cyclicality of m− among new hires where the model overpredicts the
increase in underqualification. Otherwise, the model closely matches the procyclicality in m−

and the acyclicality in m+ among job stayers. Similarly, the model closely matches the total
cyclicality in both m− and m+, and correctly predicts that the total cyclicality is by-and-large
driven by the cleansing effect. Finally, the model also matches the increase in overqualification
among new hires. With the aforementioned exception, all model moments are within a one
standard deviation of their empirical counterparts.

4.3 Understanding the Key Forces in the Model

We now use the model to simulate the response to a negative shock in aggregate productivity,
and use it to explore the forces driving mismatch in the model. To implement the simulation,
we consider an economy that has been in the high productivity state zH indefinitely and then
shifts to the low productivity state zL for the duration of our simulation (36 months). Panel
(a) of Figure 5 shows the response of average mismatch across workers (×100). The responses
are normalized relative to the steady state with z = zH , at which we initialize the simulation.

Cleansing In line with the ergodic moments, the overall response of mismatch is procyclical
(see dashed lines). Upon impact, negative mismatch declines by .22 percentage points, and
subsequently remains permanently reduced over the course of the recession. Intuitively,
the decline in negative mismatch elicits from a cleansing of underqualified workers whose
employment becomes unprofitable after the adverse shock to match surplus. In Figure 6
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Figure 5: Dynamic response to a negative productivity shock. Notes.—Panel (a) shows responses in overall
mismatch and mismatch among new hires (×100), normalized relative to the steady state where z = zH .
Panel (b) shows the response in the propensity to switch careers (left axis) and average uncertainty among
unemployed workers (right axis).

we decompose the resulting layoffs by job rung. Out of all layoffs in the first month of
the recession, 79.1% are from the bottom rung of the job ladder, and 95.6% are from the
bottom two rungs. Compared to the ergodic distribution (Figure 4b), cleansing is hence
disproportionately present among the bottom two rungs. This is because expected mismatch
is disproportionately high in those rungs as workers only move to higher rungs once there
is sufficient evidence for their qualification, at which point extreme revisions in beliefs are
unlikely.28

For a more explicit exposition, Table 6 further decomposes layoffs by beliefs and mismatch.
Workers that loose their job after the negative productivity shock have an average expected
skill of âk = .11 · S1/2

0 compared to an average skill requirement of r = .63 · S1/2
0 . At the same

time, they are characterized by an high average uncertainty of Σk = .81. In terms of mismatch,
this corresponds to a negative mismatch that is 8.60 percentage points larger than the average
mismatch at the z = zH steady state at which we initialized the simulation. Interestingly,
these layoffs are also characterized by a high positive mismatch (3.13 percentage points above
the z = zH steady state), which explains the initial decline in positive mismatch seen in
the left panel of Figure 5. The reason for the decline in positive mismatch is precisely the

28The logic goes back again to the negative correlation between uncertainty and expected skills/job rungs
discussed in Footnote 23. A low probability of large belief revisions in turn implies that r∗(âk,t+∆,Σk,t+∆, z)
is likely to be the same as r∗(âk,t,Σk,t, z), giving little cause for cleansing.
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Figure 6: Layoffs by job rung. Notes.—The figure shows the job-rung distribution of workers transitioning
from employment into unemployment within the first month of the recession.

Table 6: Beliefs and mismatch statistics for layoffs

Mean 25 percent 50 percent 75 percent

âi,t .11 .00 .00 .17
Σi,t .81 .95 .95 .95
∆m+

i,t 3.13 .74 4.70 4.70
∆m−i,t 8.60 8.86 8.90 8.91

Notes.—The table reports the mean and 25, 50, 75 percentiles for layoffs within the first month of
the recession. â and Σ are denoted in units of

√
S0 and S0. ∆m+ and ∆m− are multiplied by 100

and normalized relative to their respective steady state values where z = zH .

high uncertainty: Even though cleansed workers are expected to be underqualified, their skill
estimates are surrounded by enough uncertainty so that their true skills exceed r often enough
to result in above average overqualification. Unlike the persistent decline in underqualification,
the positive mismatch, however, rises again in the sequel as workers eventually end up in new
careers with initially positive signals regarding their skills, leading to the overall acyclical
response in m+ seen in the ergodic moments.

Sullying The procyclical response of overall mismatch stands in contrast to the counter-
cyclical response of mismatch among new hires from unemployment: Unemployed workers
that find a job in a recession are on average more overqualified and more underqualified
compared to workers finding jobs in expansions (see solid lines in Figure 5a). The driving force
that generates this “sullying” among new hires is precisely the cleansing of underqualified
workers. This is because workers that are cleansed out of the bottom rung of their job ladder
optimally direct their job search to a new career rather than re-applying to the same job
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ladder for which they are underqualified (see blue line in panel b). Cleansing therefore directs
unemployed workers to search for jobs that utilize unfamiliar skills, resulting in an increased
uncertainty among unemployed (red line in panel b), which in turn increases mismatch among
new hires.

4.4 Labor Productivity Puzzle

Before exploring further applications of our model, we point out an interesting implication of
the procyclical mismatch for labor productivity. To draw inference about labor productivity,
we need to take a stand on the nature of the aggregate “productivity” shock z. One possibility
is the literal interpretation as shock to productive efficiency, in which case overall labor
productivity is procyclical in our simulation. However, owing to the partial equilibrium
nature of the model, we can alternatively interpret z as demand shock to the real price of
labor output. In this case, aggregate labor productivity, Aeff

t ≡ e−ztyt/(1 − Ut), is entirely
determined by skill mismatch,

Aeff
t = 1

1− Ut

∫
employed

exp
(
ηri,t −max {ri,t − ai,kt , 0}

)
di,

which is countercyclical: Evaluated at the ergodic distribution, Aeff
t is .63% higher in recessions

than in expansions.
The finding suggests a new narrative for the “labor productivity puzzle”; namely the fact

that labor productivity has become less procyclical in the U.S., and actually rose in 2008-09
during the Great Recession (e.g., Mulligan, 2011; McGrattan and Prescott, 2012; Gali and van
Rens, 2019). Through the lens of the model, we would precisely expect such development when
productivity shocks are diminishing and business cycles become increasingly demand-driven,
consistent with the household balance sheet narrative of the Great Recession.

5 Scarring Effect of Unemployment

Previous literature has documented a large and persistent impact of a job loss on future
wages and earnings (e.g., Davis and von Wachter, 2011; Jarosch, 2015), specifically when
the job loss is accompanied by occupational displacement (Huckfeldt, 2019). In this section,
we offer a natural narrative for the “scarring effect of unemployment” based on the time it
takes displaced workers to rebuild their careers. In line with the evidence in Huckfeldt (2019),
earnings losses are in large realized through wage losses and are concentrated among workers
that are separated from their job and are displaced from their career.
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Figure 7: Effect of career displacement vs. job loss. Notes.—Panel (a) shows the earnings and wage losses
by workers displaced from their career at t = 0, conditional on the business cycle state at t = 0. All responses
are as a percentage relative to the counterfactual of no job loss. Panel (b) shows the corresponding average
job rungs (on a scale of 1 to 6) for workers displaced from their career, workers separated from their job
without career displacement, and workers without job loss.

Because wages are not uniquely determined by the bilaterally efficient labor contracts
explored so far, we first have to take a stand on the wage arrangement that firms use to
deliver a worker’s promised life time utility x. We do so by following Schaal (2017) and
choosing the unique wage scheme under which employed workers find it sequentially optimal to
pursue the contracted continuation and search policies, even in the absence of any contractual
commitment. The unique wage arrangement with this properties effectively pays workers
their expected marginal product, adjusted for the cost of recruitment which is loaded onto
workers at the instant of hiring (see Appendix D for details).

Career displacement vs. job loss Figure 7(a) shows the earnings and wage path of a
worker that is displaced from her current career at t = 0, conditional on the business cycle
state at t = 0. Relative to the counterfactual of no job loss, earnings are reduced by roughly
55 percent one year after the displacement, and continue to be depressed by about 20 percent
ten years later. While initially a significant share of the earnings loss is explained by a slow
rate of reemployment (after one year, 37 percent of the workers displaced during recessions
and 26 percent of the ones displaced during expansions are unemployed), most of the long-run
“scar” is due to a persistent decline in wages.

The reason behind this long-run “scar” on wages is that displaced workers—who previously
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occupied jobs at all rungs of the job ladder— must rebuild their careers in new sectors, which
in the model means exploring new abilities for which uncertainty is very high. Slowed down
by the time it takes to learn about these abilities, it therefore takes time for workers to
identify alternative career paths and learn where to locate on the new job ladder. Panel
(b) of Figure 7 illustrates this by plotting the average job rungs of displaced workers in the
sequel to their job loss. While workers that are separated from their job without career
displacement are able to immediately re-enter the labor market at their previous job rungs
(with little consequences for earnings29), workers that are displaced from their career enter
the labor market at the bottom job rung and take years to advance (on average) to their
previous rungs. The prolonged impact of this long climb through the job rungs on earnings is
able to fully account for the evidence in the literature, which 5–10 years after displacement
documents earnings losses relative to the control group ranging from 5–10 percent (Davis and
von Wachter, 2011; Huckfeldt, 2019) to 15–20 percent (Jarosch, 2015).

Aggregate response to a “China shock” Recent literature has also provided evidence
on the aggregate consequences of job displacement, using evidence from a trade shock that
led to mass layoffs in manufacturing due to increased competition from Chinese imports.
Similar to the evidence regarding the impact of job displacement at the micro level, the
literature has documented large and persistent effects of this aggregated displacement on
wages and productivity (e.g., Autor, Dorn and Hanson, 2013, 2016), whereas the impact on
unemployment has been transient (Bloom et al., 2019). To explore the aggregate consequences
of job displacement, we implement a “China shock” as an aggregate career displacement
shock for a random 1 percent of the labor force. Figure 8 shows that this shock generates a
persistent decline in aggregate productivity, which outlasts the direct impact on unemployment.
Interestingly, these productivity losses are realized in sectors not originally affected by the
shock. This is because displaced workers must rebuild their careers in new sectors, which
persistently reduces labor productivity below its long-run potential, even after re-employment.
This is in line with the evidence in Autor, Dorn and Hanson (2013), which documents that
the wage reductions following an aggregate displacement shock to manufacturing were not
realized in manufacturing, but indeed are concentrated outside that sector.

29There is a small and temporary earnings loss for workers that are separated without career displacement
due to the job loss itself and the recruiting cost that is loaded onto starting wages.
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Figure 8: Impact of an aggregate displacement shock. Notes.—The figure shows the impact of a career
displacement of 1 percent of the labor force on aggregate productivity (in percent) and unemployment (in
percentage points). Both responses are averages computed at the ergodic process for the aggregate productivity
state.

6 Welfare Consequences of Learning

This section quantifies the consequences of information frictions in terms of output losses,
cross-sectional distributions, aggregate volatility, and implicit frictions in career mobility. We
do so in two exercises. First, we study the gains from reallocating workers across job rungs
according to their true skills, keeping their employment status and career choice fixed. Second,
we study the implicit frictions imposed by learning on career mobility in the counterfactual
environment where workers can churn careers and learn skills instantaneously.

6.1 Reallocating Job Rungs

Our first benchmark eliminates mismatch along the job ladder by reallocating workers to the
job rung that maximizes output given their true skill, fixing employment statuses and career
choices at the baseline equilibrium. The optimal allocation of job rungs to workers is given by

rce(ak) =

r
−
ak

if ak ≤ ηr−ak
+ (1− η)r+

ak

r+
ak

else,
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Figure 9: Gains from eliminating “within-career” mismatch, decomposed by job rung and business cycle
state. Notes.—The figure shows the average output gain per worker from reallocating to the efficient job rung
rce(ak), while keeping fixed their employment status and career choice. The gains are denominated in terms
of unconditional average output per worker, E[yi,t]/E[1− Ut].

where r−ak
and r+

ak
define the lower and upper bound of ak in R.30 Figure 9 presents the output

gains per worker induced by such reallocation. The gains range from 4.4% for workers at the
top rung in recessions to 8.8% for workers at the bottom rung in expansions. Aggregating
across rungs and business cycle states, output under the optimal rung allocation is 7.0%
higher than in equilibrium.

Across the job ladder, the gains show a non-monotonic pattern, which is the consequence
of two opposing forces. On the one hand, uncertainty is negatively correlated with rungs,
implying that a larger fraction of workers is optimally reallocated at bottom rungs. On the
other hand, skills are complementary with task complexity, so that the output gains are larger
at higher rungs. (The gains at the top rung are limited due to the imposed upper bound on
R; see also Footnote 30.)

Interestingly, the gains are higher in expansions than in recessions across all rungs.
Aggregated across rungs, output under the optimal rung allocation is 7.4% higher in expansions
compared to 6.4% in recessions. In other words, efficiency losses due to learning have a
dampening effect on the business cycle. Intuitively, this is because cleansing reduces mismatch

30Here, we extend R beyond its lower boundary using the same grid as in the interior; i.e., we reallocate
workers to the task space {. . . ,−.5, 0, .5, 1, . . . , 3} · S1/2

0 . We do so to avoid constraining the gains by an
arbitrary lower bound on R (recall that the lower bound on R did not constrain equilibrium search). We do,
however, impose the same upper bound on R as in equilibrium, because—albeit being inconsequential until
now—this bound was indeed binding in equilibrium for a measure of .004 of workers. Efficiency gains from
reallocating workers beyond this bound would therefore be a mechanical consequence of broadening the task
space.
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in recessions so that there is less potential for reallocating workers across rungs.

6.2 Implicit Friction on Career Mobility

In the model, workers only slowly learn the return on pursuing a career as they first have to
find a job and then only learn from noisy signals about the relevant skill. Information frictions
therefore impose an implicit cost on exploring new careers that reduces career mobility.

We now assess the magnitude of this implicit cost on exploring new careers. We do so by
considering a fictitious career-switching problem in which workers can instantaneously churn
careers and learn the relevant skill at infinite speed subject to an explicit switching cost ξi,t.
For any given worker, we then calculate the magnitude of the explicit switching cost ξi,t that
keeps them indifferent between accessing the fictitious churning technology and sticking to
their equilibrium career choice. Intuitively, our approach replaces the implicit information
friction on career mobility by an explicit switching cost ξi,t, which we design so as to impose
the same career mobility patterns for all workers.

Specifically, let Xi,t denote the current value of a worker; U(âk,Σk, z) if unemployed, and
J(âk,Σk, r, z) if employed.31 Then the marginal benefit of exploring a new career and learning
the relevant skill instantaneously, (â,Σ) = (a, 0), is given by

ξ̃i,t =
∫ ∞
−∞

max {Ut(a, 0)−Xi,t, 0} dΦ
(
a− a0√
S0

)
.

To preempt workers from assessing the churning technology it hence suffices to set ξi,t = ξ̃i,t.
Table 7 reports the result (denominated in the economy-wide average monthly output per
worker). The implicit friction is largest for low-skilled workers as they benefit the most from
exploring new careers. It ranges from the equivalent of 18 months of output for workers
at the bottom rung of the job ladder to less than one fifth of monthly output at the top
rung.32 Averaged across workers and business cycle states, the implicit friction evaluates to
the equivalent of 10.02 months of average output per worker.

31We use the joint worker–firm value J for employed workers to be consistent with joint surplus maximization
as imposed throughout the paper.

32The implicit friction is slightly larger for workers at the bottom job rung than for unemployed workers
due to the presence of exogenously laid off workers among the unemployed who have strong incentives to
retain their current career.
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Table 7: Mobility Costs Implicit in Learning

Recession Expansion

Unemployed 16.03 15.37
r = 0.5 · S1/2

0 17.60 18.12
r = 1.0 · S1/2

0 12.85 13.27
r = 1.5 · S1/2

0 7.23 7.42
r = 2.0 · S1/2

0 2.91 2.96
r = 2.5 · S1/2

0 0.93 0.95
r = 3.0 · S1/2

0 0.18 0.19
Notes.—The table reports the implicit cost on career mobility induced by information frictions,
denominated in monthly average output per worker, E[yi,t]/E[1− Ut].

7 Conclusion

This paper studies the business cyclicality of worker–occupation mismatch in a quantitative
business cycle model with labor market and information frictions. We estimate the model
using U.S. data. We find that aggregate mismatch is procyclical among job stayers and
countercyclical among new hires, with the former force being overall dominating. These
patterns are consistent with direct evidence on the cyclicality of mismatch. We have also
shown that the model predicts a scarring effect of job displacement that is sufficiently large
to account for empirical evidence on the unemployment scar.

We have further used the model to quantify the welfare cost associated with information-
driven mismatch, concluding that the potential gains from eliminating such mismatch are
substantial. Moreover, our empirical results in Section 3.3 show that we—as researchers—can
systematically outpredict workers when it comes to their ability, suggesting that, at least in
part, these welfare gains can be feasibly implemented by some policy. We leave it to future
research to explore policies that could materialize the potential efficiency gains that we have
documented.

Our framework is among the first that incorporates multidimensional sorting into an equi-
librium model with labor market frictions (see also, Lise and Postel-Vinay, 2018; Lindenlaub
and Postel-Vinay, 2017). It is distinguished from the existing literature by its analytical
tractability, which opens the door to an analysis of aggregate shocks. Our framework delivers
rich predictions regarding job and career mobility, which may be interesting for further
investigation.
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A Kolmogorov Forward Equations

Let pU(â,Σ, z) and pE(â,Σ, r, z) define the job finding rates of unemployed and employed
workers as given by (8) and (9).

Active relationships The distribution over active relationships, Γt(â,Σ, r), is characterized
by the following PDE:

Γ̇t(â,Σ, r) = Γ̇learn
t (â,Σ, r) + Γ̇ee

t (â,Σ, r) + Γ̇ue
t (â,Σ, r)− Γ̇eu

t (â,Σ, r). (13)

Here, the first term defines distributional dynamics driven by changes in beliefs, given by

Γ̇learn
t (â,Σ, r) =

(
∂

∂Σ + 1
2
∂2

∂â2

)(Σ
σ

)2

Γt(â,Σ, r)
 .

The second term, defines reallocation dynamics due to job-to-job transitions,

Γ̇ee
t (â,Σ, r, z) = −pE(â,Σ, r, z)Γt(â,Σ, r, z) +

∑
r′∈R

pE(â,Σ, r′, z)Γt(â,Σ, r′, z) · 1r=r∗(â,Σ,z),

where 1C denotes the indicator function for a given condition C. The third term, defines the
incoming flow of new hires out of unemployment,

Γ̇ue
t (â,Σ, r) = pU(â,Σ, z)Λt(â,Σ) · 1r=r∗(â,Σ,z).

Finally, the fourth term defines separations into unemployment,33

Γ̇eu
t (â,Σ, r) =

δΓt(â,Σ, r) if Jact
t (â,Σ, r, z) > J sep(â,Σ, r, z)

limπ→∞ πΓt(â,Σ, r) else.

Unemployed Similarly, the distribution over unemployed workers, Υt(â,Σ), is characterized
by the following PDE:

Υ̇t(â,Σ) = Υ̇cs
t (â,Σ) + Υ̇eu

t (â,Σ)− Υ̇ue
t (â,Σ). (14)

33Note that for the endogenous separations case, the rate of outflows equals ∞ as long as Γt(â,Σ, r) 6= 0
for the corresponding states, implying that the only possible limit is Γt(â,Σ, r) = 0 for any states (â,Σ, r)
outside the continuation region.
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Here, the first term defines net changes in (current-career) beliefs due to agents switching
careers,34

Υ̇cs
t (â,Σ) = − lim

π→∞
πχ(â,Σ, z)Υt(â,Σ)+

+ lim
π→∞

π
∫∫

χ(â′,Σ′, z)Υt(â′,Σ′) d(â′,Σ′) · 1(â,Σ)=(a0,S0),

where χ(â,Σ, z) ∈ {0, 1} is an indicator evaluating to unity if workers switch careers
(Ut(a0, S0, z) > Ut(â,Σ, z)). The second term defines gross inflows into unemployment,
taking into account that workers switch careers at an exogenous probability ε,

Υ̇eu
t (â,Σ) = (1− ε)

∫
Γ̇eu
t (â,Σ, r) dr + ε

∫∫∫
Γ̇eu
t (â′,Σ′, r) d(â′,Σ′, r) · 1(â,Σ)=(a0,S0).

Finally, the third term defines the outflows from unemployment due to workers finding jobs,

Υ̇ue
t (â,Σ) = pU(â,Σ, z)Λt(â,Σ).

B Examples of General Production Function

This appendix provides two examples of a general production technology F (z, q,a) that
collapses into (1) when qk,r are orthogonal.

Complementary-skill case Let

F (z(t), qk,r,ai) ≡ exp
z(t) +

J∑
j=1

(
ηqk,r,j −max

{
qk,r,j −

qk,r,jai,j∑J
j=1 qk,r,j

, 0
}) . (15)

Substituting r = ∑J
j=1 qk,r,j and wk,j = qk,r,j/(

∑J
j=1 qk,r,j), we can rewrite (15) in more

accessible form
log yi,k,r = z(t) +

J∑
j=1

wk,j (ηr −max{r − ai,j, 0}) ,

34Note that the rate of workers switching careers equals ∞ as long as Υt(â,Σ) 6= 0 for the corresponding
states. The only possible limit is therefore given by Υt(â,Σ) = 0 for any states (â,Σ) in which workers switch
careers. Accordingly, the corresponding switching rates, defining the inflow into (a0, S0), equal the inflow into
the switching states from employment.
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which clearly collapses into (1) for an orthogonal weighting scheme; e.g.,35

[
w′1 w′2 · · · w′K

]
= IK .

Substitutible-skill case Let

F (z(t), qk,r,ai) ≡ exp
z(t) + η

J∑
j=1

qk,r,j −max


J∑
j=1

qk,r,j −
∑J
j=1 qk,r,jai,j∑J
j=1 qk,r,j

, 0


 , (16)

which can be rewritten more compactly as

log yi,k,r = z(t) + ηr −max

r −
J∑
j=1

wk,jai,j, 0

 .
Again, it is easy to verify that yi,k,r collapses into (1) for an orthogonal weighting scheme.

C Measuring Job Requirements, Employment Transi-
tions, and Worker Skills

This appendix details the measurement of job requirements, employment transitions, and
worker skills.

C.1 Job Requirements

Following Guvenen et al. (2020), we measure skill requirements using 26 O*NET descriptors
from the Knowledge, Skills and Abilities categories that were identified by the Defense
Manpower Data Center (DMDC) to be related to each ASVAB category, augmented by
six descriptors linked to social skills.36 As in Guvenen et al. (2020), we link those O*NET
descriptors to ASVAB test category based on the relatedness score provided by DMDC. The
verbal skill requirement is then defined as the first principal component of Word Knowledge and

35Here, we tacitly set K = J , for ease of exposition. Weighting schemes other than the identity scheme may
require a redefinition of skill types, but can equally be reduced to (1) for an appropriate definition of skills as
long as {ak} are orthogonal across the adopted career classification {k}.

36The descriptors used are the following: oral comprehension, written comprehension, deductive reasoning,
inductive reasoning, information ordering, mathematical reasoning, number facility, reading comprehension,
mathematics skill, science, technology design, equipment selection, installation, operation and control,
equipment maintenance, troubleshooting, repairing, computers and electronics, engineering and technology,
building and construction, mechanical, mathematics knowledge, physics, chemistry, biology, english language,
social perceptiveness, coordination, persuasion, negotiation, instructing, service orientation.
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Paragraph Comprehension, the math requirement is that of Math Knowledge and Arithmetic
Reasoning, and the technical requirement is the first principal component of Electronics Info,
General Science, and Mechanical comprehension. For the social dimension, we also collapse
the six O*NET descriptors into a single dimension defined by the first principal component.
Finally, we normalize all requirements by converting them into percentile ranks based on the
distribution of occupations in our NLSY79 sample (see below).

C.2 Employment Transitions

Employment histories We infer employment histories from the NLSY79 Work History
Data File, which is a nationally representative panel of workers who are followed from first
entry into the labor market. We aggregate the available employment data, which is recorded
at a weekly frequency, to a monthly frequency by focusing on the job for which an individual
worked the most hours in a given month.

Sample selection As the NLSY79 is well-known and requires little description, we focus
in the following on describing the sample selection used in this paper. We focus on the
subsample of males and females from the so-called cross-sectional sample, which is designed to
represent the non-institutionalized civilian segment of the U.S. in 1979.37 As is standard in the
literature, we drop individuals who were more than two years in the military force, individuals
with a weak labor market attachment (spending more than 10 years out of the labor force),
individuals that were already working in 1979, and those that do not have information on the
Armed Services Vocational Aptitude Battery (ASVAB) test scores.

C.3 Worker Skills and Mismatch

Worker skills We measure workers skills using ASVAB test scores available in the NLSY79
(see Appendix C.2 for a description of our subsample). The ASVAB is a general test that
measures knowledge and skills in 10 different components that was taken by survey participants
when first entering the survey.38 As in Guvenen et al. (2020), we focus on a subset of seven
components (arithmetic reasoning, mathematics knowledge, paragraph comprehension, word
knowledge, mechanical comprehension, general science and electronics information) which are

37The NLSY79 also contains supplemental samples that oversample ethnic minorities, economically disad-
vantaged people, and the military, none of which we include in our analysis.

38The components are arithmetic reasoning, mathematics knowledge, paragraph comprehension, word
knowledge, general science, numerical operations, coding speed, automotive and shop information, mechanical
comprehension, and electronics information.
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linked to math, verbal and technical skills, and are combined using Principal Components
Analysis. For the social dimension, we proceed in the same fashion using the individual scores
in two different tests provided by the NLSY79: the Rotter Locus of Control Scale and the
Rosenberg Self-Esteem Scale.39 To adjust for differences in test-taking age, before proceeding
with PCA, we normalize the mean and the variance of each test score according to their
age-specific values. Then, once we have the raw scores in each skill dimension, we convert
these into percentile ranks.

Mismatch We merge the panel of worker-level data with the occupation data using using
three-digit Census occupational codes. Note that O*NET uses SOC codes from 2010, which
are more detailed than the occupational codes in the NLYS79, based on the three-digit Census
occupation codes. Hence several occupations in NLSY79 have more than one score. Using
a crosswalk to identify each SOC code with a Census code, we take an unweighted average
over all the SOC codes that map to the same code in the census three-digit level occupation
classification. We then proceed to construct mismatch as defined in the main body of the
paper.

D Computing Wages Without Commitment by Work-
ers

This appendix details the computation of wages used for the exploration in Section 5.
Following Schaal (2017) we adopt the unique wage scheme that induces equilibrium search
and job continuation policies to be self-enforcing for workers (without requiring a contractual
commitment).

Let wt denote the wage of worker i at date t, and let Wt define the expected lifetime utility
of an employed worker that is delivered by the contracted process for {wt}. Notice that the
characterization so far only pins down Wt = xt during hiring but does not determine how
the promised hiring utility, xt, is delivered across states and throughout the duration of the
work-relationship. In analogue to (5), the expected utility flow of an active relationship is

39The Rotter Locus of Control Scale measures the degree of control individuals feel they possess over their
life, and the Rosenberg Self-Esteem Scale aims at reflecting the degree of approval or disapproval towards
oneself. These measures have been commonly used in previous works as measures of non-cognitive skills
(Speer, 2017; Lise and Robin, 2017; Guvenen et al., 2020). For more details, see Heckman, Stixrud and Urzua
(2006).
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given by

ρW act
t (âk,Σk, r, z) = wi,t + Λ̃t(âk,Σk, r, z) +

+ max
x,r
{κp(θt(ω, z)) (x−Wt(âk,Σk, r, z))}+

+ δ (J sep
t (âk,Σk, z)−Wt(âk,Σk, r, z)) +

+ λz (Wt(âk,Σk, r,−z)−Wt(âk,Σk, r, z)) , (17)

where

Λ̃t(âk,Σk, r, z) ≡
(

Σk

σ

)2 (
−∂Wt(âk,Σk, r, z)

∂Σk

+ 1
2
∂2Wt(âk,Σk, r, z)

∂â2
k

)

and
Wt(âk,Σk, r, z) = max

{
W act
t (âk,Σk, r, z), J sep

t (âk,Σk, z)
}
.

Here, the separation value for the worker equals the joint value of separation, J sep
t , as firms’

separation values are fixed at zero due to free entry. Absent contractual commitments,
workers’ on-the-job search maximizes (17) subject to (2). Rearranging the associated first-
order condition, we have

θ = p′−1
(

c

Jt(âk,Σk, r∗, z)−Wt(âk,Σk, r, z)

)
. (18)

Comparing (18) with (9), we conclude that for search to be self-enforcing, the worker value of
the relationship must match the joint value whenever she is actively searching. Accordingly,
the unique self-enforcing wage scheme is given by

wi,t = ez+ηrEt[e−max{r−ak,0}] = ez+ηrψ(âk − r,
√

Σk);

i.e., workers are compensated their marginal product at each instant of an ongoing work-
relationship. Moreover, because W act

t = xt must hold at hiring, workers must reimburse firms
for their recruitment cost at the instant of hiring, implying an one-time reduction in wages
equal to

J(âk,Σk, r, z)− x = c/q (θ(âk,Σk, r, z)) .

Finally, noticing that the described wage arrangement implies W act
t = Jact

t at any instant
of an ongoing relationship, we conclude that workers’ job continuation/separation choices are
also aligned with the bilaterally efficient ones observed under commitment.
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E Additional Tables

Table 8: Cyclicality in mismatch among job-to-job transitions in the data

Dependent variable (×100): mi,t m+
i,t m−i,t

(1) (2) (3)

Job-to-job transitions (β1) .376 .517** −.141
(.313) (.236) (.218)

Notes.—Standard errors clustered at the worker level are in parenthesis. Asterisks, *, **, ***,
indicate coefficients that are significantly different from 0 at the 10%, 5%, 1% level, respectively.
Dependent variables are multiplied by 100 (so mismatch ranges from 0 to 100).
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