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Abstract

We study optimal transport networks in spatial equilibrium. We develop a framework con-

sisting of a neoclassical trade model with labor mobility in which locations are arranged on a

graph. Goods must be shipped through linked locations, and transport costs depend on con-

gestion and on the infrastructure in each link, giving rise to an optimal transport problem in

general equilibrium. The optimal transport network is the solution to a social planner’s problem

of building infrastructure in each link. We provide conditions such that this problem is globally

convex, guaranteeing its numerical tractability. We also study cases with increasing returns to

transport technologies in which global convexity fails. We apply the framework to assess optimal

investments and inefficiencies in the road networks of European countries.
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1 Introduction

Trade costs are a ubiquitous force in international trade and economic geography, as they shape

the spatial distributions of prices, real incomes, and trade flows. Transport infrastructure is a key

determinant of trade costs.1 Governments, international organizations, and private companies rou-

tinely invest large amounts of resources to improve transport networks within and across countries.

How should these investments be allocated? Are observed transport networks suboptimal, and if

so how important are these inefficiencies?

In this paper, we develop and apply a framework to study optimal transport networks in general

equilibrium spatial models. We solve a global optimization over the space of networks, given any

primitive fundamentals, in a general neoclassical framework. In contrast to the standard approach,

here trade costs are an outcome rather than a primitive, endogenously responding to fundamentals

such as resource endowments and geographic frictions through optimal investments in the transport

network. We apply the framework to European road networks, where we assess the aggregate and

regional impacts of optimal infrastructure growth, the inefficiencies of observed networks, and the

optimal placement of roads as a function of observable regional characteristics.

The point of departure for the framework is a neoclassical economy with multiple goods, fac-

tors, and locations, nesting standard trade models (such as the Ricardian, Armington, and factor-

endowment models) and allowing for either a fixed spatial distribution of the primary factors (as in

international trade models) or for labor to be perfectly mobile (as in economic geography models).

The key methodological innovation is that locations are arranged on a graph and goods can only

be shipped through connected locations subject to transport costs that depend both on how much

is shipped (e.g., because of congestion or decreasing returns to shipping technologies) and on how

much is invested in infrastructure (e.g., the number of lanes or the quality of the road). We tackle

the planner’s problem of simultaneously choosing the transport network (i.e., the set of infrastruc-

ture investments), the allocation of production and consumption, and the gross trade flows across

the graph.

Solving this problem may be challenging because of dimensionality—the space of all networks

is large—and interactions—an investment in one link asymmetrically impacts the returns to invest-

ments across the network. It is also complicated by the potential presence of increasing returns due

to the complementarity between infrastructure investments and shipping. We exploit the fact that

the planner’s subproblem of choosing gross trade flows is an optimal flow problem on a network,

a well understood problem in the operations research and optimal transport literatures. A key

insight from these literatures is that the optimal flows derive from a “potential field”—prices in our

context—that can be efficiently solved numerically using duality techniques. We make assumptions

such that the full planner’s problem, involving the general equilibrium allocation and the network

investments alongside the optimal transport, inherits the tractability of optimal flow problems. Our

assumptions, including a continuous mapping from infrastructure investments to trade costs and

1See Limao and Venables (2001) and Atkin and Donaldson (2015). For a review of various determinants of trade
costs see Anderson and Van Wincoop (2004).
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curvature in the technology to transport goods, ensure that the full planner’s problem is convex

and that the set of optimal infrastructure investments can be expressed as a function of equilibrium

prices. As a result, we solve the full planner’s problem while avoiding a direct search in the space of

networks. Instead, we optimize in the space of equilibrium prices applying the numerical methods

typically used for optimal transport problems.

While strong enough congestion in transport guarantees the convexity of the planner’s problem

and enables the use of a duality approach, our framework can also be used when congestion is weak

or absent—a case that implies increasing returns in the transport technology. We numerically ap-

proximate the global solution in non-convex cases by combining the duality approach to obtain the

optimal flows with global-search numerical methods that build upon standard simulated annealing

techniques. Even though in non-convex cases we only find local optima, the ensuing networks dis-

play the qualitative features that one would expect in the presence of economies of scale, such as

more concentration in fewer links and a larger amount of zeros.

The framework has enough flexibility to be matched to data on actual transport networks. The

quantification relies on two steps. First, the model’s fundamentals can be calibrated such that the

solution to the planner’s optimal allocation of consumption, production, and gross flows matches

spatially disaggregated data on economic activity given an observed transport network. This step

is enabled by the fact that, given the transport network, the welfare theorems hold assuming

Pigouvian taxes to correct congestion externalities. Second, assuming a specific technology to

build infrastructure makes it possible to undertake counterfactuals involving the optimal network.

We apply these steps in the context of European road networks. We calibrate the productivity

and the endowment of non-traded goods such that the model reproduces the observed population

and value added at a high spatial resolution separately for each of the 24 countries in our data.

We construct a measure of the road infrastructure linking any two contiguous cells in the data and

entertain different assumptions on labor mobility and on the returns to infrastructure, encompassing

both convex and non-convex cases. We either assume that the observed road network is the outcome

of the full planning problem—allowing us to back out these costs from the first-order conditions

of the planner’s problem—or use existing estimates for how building costs vary with observable

geographic features.

Our counterfactuals in the benchmark parametrization with convex costs imply that, across

countries, the average welfare gain from an optimal 50% expansion in the observed road networks

and the average welfare loss from road misallocation are on average 2% and range between 0.1% and

7%. The optimal expansion or reallocation of roads reduces regional inequalities in real consump-

tion, reflecting that optimal infrastructure investments reduce dispersion in the marginal utility of

consumption of traded commodities. We illustrate the alternative road investment plans implied

by the different assumptions and counterfactuals by considering two of the largest economies in

our data, France and Spain. We conclude with an exercise involving multiple countries in Western

Europe, which highlights the importance of trade across borders and international coordination in

infrastructure policy.
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The rest of the paper proceeds as follows. Section 2 discusses the connection to the literature.

Section 3 develops the framework, establishes its key properties, and discusses the numerical im-

plementation. Section 4 presents simple illustrative examples. Section 5 applies the model to road

networks in Europe. Section 6 concludes. We relegate proofs, additional derivations, details of the

quantitative exercise, tables, and figures to the appendix.

2 Relation to the Literature

A quantitative literature in international trade and spatial economics studies the role of trade

costs in rich geographic settings. Eaton and Kortum (2002) and Anderson and Van Wincoop (2003)

developed quantitative versions of the Ricardian and Armington trade models, respectively, allowing

counterfactuals with respect to trade costs in multi-country competitive equilibrium. A standard

approach to study the gains from market integration is to fit these models to data on the geo-

graphic distribution of economic activity, and then ask what would happen if trade costs between

specific locations were to change by some predetermined amount.2 We develop a different approach

to implementing counterfactuals. We first pinpoint the best set of infrastructure investments in

a transport network, and then ask what would happen if trade costs were to change in the way

implied by the efficient transport network.

Recent studies undertake counterfactuals with respect to the cost of shipping across specific

links in models where traders choose least cost routes to ship goods.3 Allen and Arkolakis (2014)

measure the aggregate effect of the U.S. highway system, Donaldson and Hornbeck (2016) calculate

the historical impact of railroads on the U.S. economy, and Redding (2016) compares the impact

of infrastructure changes in models with varying degrees of increasing returns. Alder (2019) sim-

ulates counterfactual transport networks in India, Nagy (2016) studies how the development of

U.S. railways affected city formation, and Sotelo (2016) simulates the impact of highway invest-

ments on agricultural productivity in Peru. Other recent studies allowing for factor mobility and

trade frictions within countries include Bartelme (2015), Caliendo et al. (2017) and Ramondo et al.

(2016).

Some papers feature an optimization over transport networks. Alder (2019) applies a heuristic

algorithm that adds or removes links in a specific order based on their contribution to net aggregate

income.4 Felbermayr and Tarasov (2015) study optimal infrastructure investments by competing

planners in an Armington model where locations are arranged on a line. Allen and Arkolakis (2019)

compute the welfare gradient with respect to reductions in the cost of shipping across specific links

2Costinot and Rodŕıguez-Clare (2013) review the quantitative gravity literature on changes in trade costs focused
on measuring gains from international trade. Redding and Rossi-Hansberg (2017) review a body of research using
similar frameworks to study counterfactuals involving changes in infrastructure within countries. See Donaldson
(2015) and Redding and Turner (2015) for reviews of empirical analyses of actual changes in transport infrastructure,
as well as the literature review below for additional references.

3Chaney (2014a) studies endogenous networks of traders in contexts with imperfect information. For a review of
recent literature on the role of various types of networks in international trade see Chaney (2014b).

4See Section D of the Supplementary Material for a comparison with the Alder (2019) algorithm.
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in an Armington model with spillovers.5 Their approach is suitable to compute the first-order

welfare impact of infrastructure investments around an initially observed allocation.

We solve instead a global optimization over the space of networks in a neoclassical framework.

Both our model and the studies cited above include an optimal transport problem, defined as the

trader’s problem of choosing least-cost routes across pairs of locations.6 In most of the studies

cited above, the optimal transport problem does not include congestion and can therefore be solved

independently from the general equilibrium. In our context, congestion in transport renders the in-

frastructure investment problem convex, enabling the search for the global optimum. The least-cost

route optimization from the applications of the gravity trade models discussed before corresponds

to the solution of our optimal transport problem in the special case without congestion.

As mentioned in the introduction, the planner’s subproblem of choosing how to ship goods

given demand, supply and infrastructure formally defines an optimal transport problem. Optimal

transport problems were studied early on by Monge (1781) and Kantorovich (1942).7 Because we

analyze the optimal route problem instead of the direct assignment of sources to destinations, our

approach is more closely related to optimal flow problems on a network as in Chapter 8 of Galichon

(2016).8 Our problem differs from this literature in two important aspects. First, in our model,

consumption and production are endogenous because they respond to standard general-equilibrium

forces. Instead, the aforementioned optimal flows problems map sources with fixed supply to sinks

with fixed demand.9 Second, our ultimate focus is on the optimal network investments in the

presence of general-equilibrium forces, whereas this literature usually takes the transport costs

between links as a primitive. In that regard, the problem that we study is akin to the optimal

transport network problems in non-economic environments analyzed in Bernot et al. (2009).

Despite these differences, our model inherits key appealing properties of optimal transport

problems. While the optimal transport literature shows that strong duality holds under weak

conditions, it holds under some conditions in our model as a special case of convex duality. Hence,

our way of embedding an optimal transport problem into a general neoclassical equilibrium model

extended with a network design problem does not preclude the validity of key earlier insights from

the optimal transport literature. The main benefit of duality, in our context, is a reduction of the

search space and substantial gains in computation times.10

A large body of research estimates how actual changes in transport costs impact economic

activity. For instance, Fernald (1999) estimates the impact of road expansion on productivity

5Swisher IV (2015) and Trew (2016) allow for endogenous transport costs in different historical contexts.
6Note that “optimal transport” refers to the optimal shipping of goods throughout the network. This is one of

the subproblems embedded in our framework, alongside the optimal network design problem.
7See Villani (2003) for a textbook treatment of the subject.
8See also Bertsekas (1998) for a survey of algorithms and numerical methods for optimal flow and transport

problems on a network.
9See Beckmann (1952) for an early continuous-space example of such an optimal transport problem in economics.

See Carlier (2010) and Ekeland (2010) for lecture notes on optimal transport and its connection to economics.
10A network-design and planning literature in operations research studies related network-design problems in

telecommunications and transport without embedding them in general-equilibrium spatial models. See Ahuja et al.
(1989).
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across U.S. industries; Chandra and Thompson (2000), Baum-Snow (2007) and Duranton et al.

(2014) estimate the impact of the U.S. highways on various regional economic outcomes; Donaldson

(2018) estimates the impact of access to railways in India; and Faber (2014) estimates the impact

of connecting regions to the expressway system in China.11 Our application measures the aggregate

country-level welfare gains from optimally expanding current road networks in European countries.

In the counterfactuals, we inspect the relationship between optimal infrastructure investment and

population growth across regions.

As we apply the model to measure the potential losses from misallocation of roads, the paper is

broadly related to studies of the aggregate effects of misallocation such as Restuccia and Rogerson

(2008) and Hsieh and Klenow (2009). Desmet and Rossi-Hansberg (2013), Brandt et al. (2013),

Asturias et al. (2016), Fajgelbaum et al. (2018), and Hsieh and Moretti (2019) among others focus

on geographical misallocation arising from frictions or spatial policies.

3 Model

3.1 Environment

Preferences The economy consists of a discrete set of locations J = {1, .., J}. We let Lj be the

number of workers located in j ∈ J , and L be the total number of workers. We entertain cases with

and without labor mobility. Workers consume a bundle of traded goods and a non-traded good in

fixed supply, such as land or housing. Utility of an individual worker who consumes c units of the

traded goods bundle and h units of the non-traded good is

u = U (c, h) , (1)

where the utility function U is homothetic and concave in both of its arguments. In location j,

per-capita consumption of traded goods is cj = Cj/Lj, where Cj is the aggregate demand of the

traded goods bundle in location j.

There is a discrete set of tradable sectors n = 1, .., N , combined into Cj through a homogeneous

of degree 1 and concave aggregator (e.g., a CES aggregator),

Cj = Dj

(
D1

j , . . . ,D
N
j

)
, (2)

where Dn
j is sector n’s output used in location j.

Production The supply-side corresponds to a standard neoclassical economy. In addition to

labor, there is a fixed supply Vj =
(

V 1
j , . . . , V

M
j

)′

of primary factors m = 1, ..,M in location j.

These factors are immobile across regions but mobile across sectors. The production process may

11See also Coşar and Demir (2016) and Martincus et al. (2017) for empirical studies of how infrastructure invest-
ments impact international shipments.

5



also use goods from other sectors as intermediate inputs. Output of sector n in location j is:

Y n
j = Fn

j

(
Ln
j ,V

n
j ,X

n
j

)
, (3)

where Ln
j is the number of workers, Vn

j =
(

V 1n
j , . . . , V Mn

j

)′

is the quantity of other primary factors,

and Xn
j =

(

X1n
j , . . . ,XNn

j

)

is the quantity of each sector’s output allocated to the production of

sector n in location j. The production function Fn
j is either neoclassical (constant returns to scale,

increasing and concave in all its arguments) or a constant (endowment economy).

Underlying Graph The locations J are arranged on an undirected graph (J , E), where E de-

notes the set of edges (i.e., unordered pairs of J ). For each location j there is a set N (j) of

connected locations, or neighbors. Goods can only be shipped through connected locations; i.e.,

goods shipped from j can be sent to any k ∈ N (j), but to reach any k′ /∈ N (j) they must transit

through a sequence of connected locations. The transport network design problem will consist of

determining the level of infrastructure linking each pair of connected locations. A natural interpre-

tation is that j is a geographic unit such as county, N (j) are its bordering counties, and shipments

are done by land. More generally, the neighbors in the model do not need to be geographically

contiguous, since it could be possible to ship directly between geographically distant locations by

land, air or sea. The fully connected case in which every location may ship directly to every other

location, N (j) = J for all j, is one special case.

Transport Technology In the model, goods transit through several locations before reaching

a point where they are consumed or used as intermediate input. We let Qn
jk be the quantity of

goods in sector n shipped from j to k ∈ N (j), regardless of where the good was produced. We

adopt two alternative specifications for transport costs: iceberg costs without congestion across

commodities, and a case with cross-goods congestion. For simplicity of exposition, we discuss

the former case here. In section 3.7 we discuss congestion across goods, which will also be the

benchmark specification in our applications. Appendix A presents the model in a general case

encompassing both formulations.

Transporting each unit of good n from j to k requires τnjk units of the good n itself, so that

1 + τnjk corresponds to the iceberg cost. This per-unit cost is specified as a function of the total

quantity Qn
jk of good n shipped along the link jk and of the level of infrastructure Ijk:

τnjk = τjk
(
Qn

jk, Ijk
)
. (4)

The per-unit cost of shipping is increasing in the quantity of commodities shipped:

∂τjk (Q, I)

∂Q
≥ 0. (5)

This assumption allows for decreasing returns in the shipping sector. We refer to these decreasing
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returns as congestion, with the understanding that this concept encapsulates several real-world

forces whereby an increase in shipping activity leads to higher marginal transport costs. These

forces may include higher travel times or road damage, as well as decreasing returns to scale in

transportation due to land-intensive fixed factors such as warehousing or specialized inputs. In

short, the more is shipped, the higher the per-unit shipping cost.12

We interpret Ijk as capturing features that lead to reductions in the cost of transporting goods.

For example, when shipping over land, Ijk may correspond to whether a road linking j and k is

paved, its number of lanes or the availability of roadside services. Hence, we assume:

∂τjk (Q, I)

∂I
≤ 0.

The transport technology τjk (·) is allowed to vary by jk, capturing variation in shipping costs

across links for the same quantity shipped and infrastructure. This variation may reflect geographic

characteristics such as distance or ruggedness. The per-unit cost function τjk (Q, I) may also depend

on the direction of the flow; e.g., if elevation is higher in j than k and it is cheaper drive downhill

then τjk (Q, I) < τkj (Q, I).

Flow Constraint In every location there may be tradable commodities being produced, as well

as coming in or out. The balance of these flows requires that, for all locations j = 1, .., J and

commodities n = 1, .., N ,

Dn
j +

∑

n′

Xnn′

j +
∑

k∈N (j)

(
1 + τnjk

)
Qn

jk

︸ ︷︷ ︸

Consumption +Intermediate Use+ Exports

≤ Y n
j +

∑

i∈N (j)

Qn
ij

︸ ︷︷ ︸

Production + Imports

. (6)

The left-hand side of this inequality is location j’s consumption Dn
j of good n, intermediate-input

use Xnn′

j by each sector n′, exports to neighbors Qn
jk and inputs to the transport sector τnjkQ

n
jk.

These flows are bounded by the local production Y n
j and imports from neighbors Qn

ij. In standard

minimum-cost flow problems this restriction is known as the conservation of flows constraint.

We let Pn
j be the multiplier of this constraint. This multiplier reflects society’s valuation of a

marginal unit of good n in location j. In the decentralized allocation, this multiplier will equal the

price of good n in location j. Therefore, we refer to Pn
j as the price of good n in location j.

Network Building Technology We define the transport network as the distribution of infras-

tructure {Ijk}j∈J ,k∈N (j). The network-design problem will determine this distribution. We assume

that building infrastructure requires a resource (“concrete” or “asphalt”) in fixed aggregate supply

12For a review of the early literature on production-function estimates of returns to scale in the transport sector see
Winston (1985). Newbery (1988) theoretically studies road damage externalities, whereby the road damage caused
by one vehicle increases the operating costs of subsequent vehicles. Maibach et al. (2013) lists higher travel times,
higher accident rate, and road damage as reasons why increased road use may impact transport costs. Other social
costs include environmental damage and noise.
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K, which can be freely shipped across locations and cannot be used for other purposes. This as-

sumption represents a situation where an amount of resources has been sunk into network-building

but must still be allocated across the network. When characterizing the planner’s problem, it will

lead to the intuitive property that the opportunity cost of building infrastructure in any location

is only foregoing infrastructure elsewhere.

The cost of setting up infrastructure may vary across links jk. Specifically, building a level of

infrastructure Ijk on the link jk requires an investment of δIjkIjk units of K. The network-building

constraint therefore is:
∑

j

∑

k∈N (j)

δIjkIjk ≤ K. (7)

We allow the network-design problem to take place when some lower bound for infrastructure Ijk

is already in place. We also allow for an upper bound Ijk to how much can be built, possibly

representing geographic constraints on the capacity to build on a specific link. While the graph

(J , E) is undirected, the infrastructure matrix {Ijk} defines a weighted directed graph, as there is

no need to impose symmetry in investments or costs between connected locations.

While both the transport technology τjk (Q, I) in (4) and the infrastructure building cost δIjk
may vary across links jk, each type of variation reflects different forces. Variation in τjk (Q, I) by

jk captures how features of the terrain impact per-unit shipping costs given quantity shipped and

infrastructure, whereas δIjk captures the marginal cost of setting up infrastructure. In the planner’s

problem below, δIjk will not impact the allocation other than through infrastructure Ijk.

3.2 Planner’s Problem

We solve the problem of a utilitarian social planner who maximizes welfare under two extreme

scenarios: labor is either immobile or freely mobile. In the former case, we let ωj be the planner’s

weight attached to each worker located in region j. We define each problem in turn.

Definition 1. The planner’s problem with immobile labor is

W = max
cj,hj ,{Ijk}k∈N(j)

,
{

Dn
j ,Ln

j ,V
n
j ,X

n
j ,{Qn

jk}k∈N(j)

}

n

∑

j

ωjLjU (cj , hj)

subject to:

(i) availability of traded commodities,

cjLj ≤ Dj

(
D1

j , .., D
N
j

)
for all j;

and availability of non-traded commodities,

hjLj ≤ Hj for all j;
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(ii) the balanced-flows constraint,

Dn
j +

∑

n′

Xnn′

j +
∑

k∈N (j)

(
1 + τjk

(
Qn

jk, Ijk
))

Qn
jk ≤ Fn

j

(
Ln
j ,V

n
j ,X

n
j

)
+
∑

i∈N (j)

Qn
ij for all j, n;

(iii) the network-building constraint,

∑

j

∑

k∈N (j)

δIjkIjk ≤ K,

subject to a pre-existing network,

0 ≤ Ijk ≤ Ijk ≤ Ijk ≤ ∞ for all j, k ∈ N (j);

(iv) local labor-market clearing,
∑

n

Ln
j ≤ Lj for all j;

and local factor market clearing for the remaining factors,

∑

n

V mn
j ≤ V m

j for all j and m; and

(v) non-negativity constraints on consumption, flows, and factor use,

Cn
j , cj , hj ≥ 0 for all j ∈ N (j) , n

Qn
jk ≥ 0 for all j, k ∈ N (j) , n

Ln
j , V

mn
j ≥ 0 for all j,m, n.

If labor is freely mobile then the problem is defined as follows.

Definition 2. The planner’s problem with labor mobility is

W = max
u,cj,hj ,{Ijk}k∈N(j)

,Lj,
{

Dn
j ,Ln

j ,V
n
j ,Xn

j ,{Qn
jk}k∈N(j)

}

n

u

subject to restrictions (i)-(v) above; as well as:

(vi) free labor mobility,

Lju ≤ LjU (cj , hj) for all j; and

(vii) aggregate labor-market clearing,
∑

j

Lj = L.

This formulation restricts the planner’s problem to allocations satisfying utility equalization

across locations, a condition that must hold in the competitive allocation. Since U is strictly

increasing, restriction (vi) implies that the planner will allocate u = U (cj , hj) across all populated

locations, and cj = 0 otherwise.

We stop for a moment to discuss the generality achieved in the previous definitions. The

9



case without labor mobility corresponds to international trade models. The production structure

encompasses neoclassical trade models.13 When labor mobility is allowed, the model nests urban

economics model with a single homogeneous tradeable good in the tradition of Roback (1982).

Since we have assumed neoclassical production functions, this formulation does not encompass

new economic geography models such as Krugman (1991) and Helpman (1998) nor quantitative

extensions with increasing returns (Allen and Arkolakis, 2014; Redding, 2016). In Section 3.7 we

discuss how to implement some cases with increasing returns and provide some examples.

The planner’s problem from Definition 1 can be expressed as nesting three problems:

W = max
Ijk

max
Qn

jk

max
{cj ,hj ,D

n
j ,L

n
j ,V

n
j ,X

n
j }

∑

j

ωjLjU (cj , hj)

subject to the constraints. The innermost maximization problem is a standard allocation problem

of choosing consumption and factor use subject to the production possibility frontier and the

availability of goods in each location. In what follows we refer to it as the “optimal allocation”

subproblem. We now discuss some intuitive features of the solution to optimal flows subproblem

over Qn
jk and the network design problem over Ijk.

Optimal Flows The optimal flow problem that determines the gross flows Qn
jk combines an

optimal transport problem—how to map production sources to destinations—and a least-cost route

problem with congestion. Under the assumption that domestic absorption Dn
j and production Y n

j

are taken as given, this problem is well known in the optimal transport literature (see, for instance,

Chapter 8 of Galichon (2016) or Chapter 4 of Santambrogio, 2015) and in operations research

(Bertsekas, 1998). A general lesson from these literatures is that these problems are well behaved

and admit strong duality. In other words, while the least-cost route and the optimal coupling

of sources to destinations may appear to be high-dimensional problems, the solution boils down

to finding a “potential field”, meaning one Lagrange multiplier (or price) for each location-good

pair, and then expressing the flows as a function of the difference between the multipliers across

locations.

The optimal flow problem in our model shares these properties as a special case of convex

duality. To understand the solution, remember that Pn
j is the multiplier of the flows constraint

(ii), equal to the price of good n in location j in the market allocation according to Proposition

4 below. The first-order condition (A.1) from the planner’s problem in Appendix (A.1) gives the

following equilibrium price differential for commodity n between j and k ∈ N (j):

Pn
k

Pn
j

≤ 1 + τnjk +
∂τnjk
∂Qn

jk

Qn
jk, = if Qn

jk > 0. (8)

13The Armington model (Anderson and Van Wincoop, 2003) corresponds to N = J (as many sectors as regions)
and Fn

j = 0 for n 6= j, so that Y j
j is region j’s output in the differentiated commodity that (only) region j produces.

The Ricardian model corresponds to labor as the only factor of production and linear technologies, Y n
j = znj L

n
j . The

specific-factors and Hecksher-Ohlin models are also special cases.
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Figure 1: Example of Optimal Flows as a Function of the Price Field

Notes: The picture shows an example of optimal flows in a 15×15 square network with uniform infrastructure across

links and one good produced at the origin (blue circle) and consumed in 10 other locations (orange circles). The

price in each location is indicated by the z-axis coordinate, and corresponds to a solution of the optimal flow problem

given production, consumption and population. The density of flows is represented by the thickness of links and their

direction is indicated by the arrows.

Condition (8) is a no-arbitrage condition: the price differential between a location and its neighbors

must be less than or equal to the marginal transport cost. From the planner’s perspective, this

marginal cost takes into account the diminishing returns due to congestion. In the absence of

congestion, ∂τnjk/∂Qjk = 0, the price differential would be bounded by the trade cost.

This expression has a number of intuitive properties. Given the network investment, it identifies

the trade flow Qn
jk as a function of the price differential, as long as the right-hand side can be

inverted. The inversion is possible if the total transport cost Qn
jkτ

n
jk is convex in the quantity

shipped. In that case, the gross trade flow Qn
jk is increasing in the price differential. Condition

(8) also implies that goods in each sector flow in only one direction, although a link may have

flows in opposite directions corresponding to different sectors. In addition, not all goods need to be

shipped and some links may be unused despite having positive infrastructure. This may occur if

the price gap is not large enough at zero trade to justify shipping. To help visualize the geometric

properties of the problem, Figure 1 illustrates how a price field can implement the optimal flows

given consumption and production in an example with a single traded commodity. In the example,

the good is produced in the location at the origin (blue circle) and demanded in ten locations (red

circles). This example uses the functional form for τjk in (10), which implies that there are some

shipments in every link although they become negligible in regions far away from the points of

production and consumption. The prices, represented on the z-axis, attain their lowest value at

the point of production, and gradually increase with the distance to that point. The optimal flows

follow the price gradient according to equation (8) under equality. The consumption locations are

local peaks of the price field as long as they do not re-ship the good.

11



The least-cost route optimization present in the applications of gravity trade models discussed

in the literature review corresponds to the solution to this optimal transport problem assuming

no congestion. In that case, the optimal transport problem can be solved independently from

the rest of the model. In our case, determining the least-cost routes requires information about

the flows, the supply, and the demand for each good, which are endogenously solved as part of

the allocation. Therefore, the optimal transport problem must be solved jointly with the optimal

allocation problem.

Optimal Network Consider now the outer problem of choosing the transport network Ijk for

all j ∈ J and k ∈ N (j). Letting PK be the multiplier of the network-building constraint (iii) (in

other words, the shadow price of asphalt), and as long as the (possibly infinite) upper bound Ijk

is not binding, the planner’s choice for Ijk implies

PKδIjk
︸ ︷︷ ︸

Marginal Building Cost

≥
∑

n

Pn
j Q

n
jk

(

−
∂τnjk
∂Ijk

)

︸ ︷︷ ︸

Marginal Gain from Infrastructure

, (9)

with equality if there is actual investment, Ijk > Ijk. This condition compares the marginal cost

and benefits from investing on the link jk. The left-hand side is the opportunity cost of building

an extra unit of infrastructure along jk, equal to the marginal value of the scarce resource K in

the economy (the multiplier PK of the network building constraint (7)) times the rate δIjk at which

that resource translates to infrastructure. The gain from the additional infrastructure, on the right

hand side of (9), is the reduction in per-unit shipping costs, −∂τjk/∂Ijk, applied to the value of

the goods used as inputs in the transport technology.14

Importantly, the network investment problem inherits the properties that make the optimal

transport problem tractable. Substituting the solution for Qn
jk as a function of the price differentials

Pn
k /P

n
j into (9) implies that the optimal infrastructure Ijk between locations j and k is only a

function of prices in each location. Hence, rather than searching in the very large space of all

networks, this condition allows us to solve for the optimal investment link by link given the smaller

set of all prices. Similar properties can be attained in a case with cross-goods congestion, as

described in Appendix Section 3.6.

3.3 Properties

Convexity We establish conditions for the convexity of the planner’s problem, which guarantee

its numerical tractability.

14Various papers measure the first-order impact of changes in bilateral trade costs on world welfare
(Atkeson and Burstein, 2010; Burstein and Cravino, 2015; Lai et al. 2015; Allen et al., 2019) or in trade costs in
specific links of a transport network on country-level welfare (Allen and Arkolakis, 2019) around an observed equi-
librium. The right-hand side of (9) could be used for a similar purpose, given a specific set of changes in trade
costs.
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Proposition 1. (Convexity of the Planner’s Problem) (i) Given the network {Ijk}, the joint op-

timal transport and allocation problem in the fixed (resp. mobile) labor case is a convex (resp.

quasiconvex) optimization problem if Qτjk (Q, Ijk) is convex in Q for all j and k ∈ N (j); and (ii)

if in addition Qτjk (Q, I) is convex in both Q and I for all j and k ∈ N (j), then the full planner’s

problem including the network design problem from Definition 1 (resp. Definition 2) is a convex

(resp. quasiconvex) optimization problem. In either the joint transport and allocation problem, or

the full planner’s problem, strong duality holds when labor is fixed.

The first result establishes that the joint optimal allocation and optimal transport subproblems,

taking the infrastructure network {Ijk} as given, define a convex problem for which strong duality

holds under the mild requirement that the transport technology Qτjk (Q, Ijk) is (weakly) convex

in Q. This property ensures that our specific way of introducing an optimal-transport problem

into a general neoclassical economy is tractable. Specifically, it guarantees the existence of La-

grange multipliers that implement the optimal allocation and transport subproblems and ensures

the sufficiency of the Karush-Kuhn-Tucker (KKT) conditions, in turn allowing us to apply a du-

ality approach to solve the model numerically—an approach which, as discussed in Section 3.6,

substantially reduces computation times. Even if the full problem, including the network design,

is not convex due to increasing returns to the network building technology (i.e., if part (ii) of the

proposition fails but part (i) holds), a large subset of the full problem can still be solved using these

efficient numerical methods.

The second result establishes the convexity of the full planner’s problem, including the network

design, under the stronger requirement that the transport cost function Qτjk (Q, Ijk) is jointly

convex in Q and I.15 This condition restricts how congestion in shipping and the returns to

infrastructure enter in the transport technology in each link through τjk (Q, I). In the absence of

congestion (i.e., if ∂τjk/∂Q = 0), convexity fails unless τjk is a constant. The intuition for this

convexity requirement is that the model features two complementarity forces between infrastructure

investments and commodity shipments: the higher the investment in a link, the lower the transport

costs and the higher the flows. In turn, higher shipments lead to more congestion and to more

incentives to develop its infrastructure. The global convexity of the transport cost function ensures

that the congestion forces eventually dominate and that the solution to the investment problem is

interior and stable. Section E of the Supplementary Material develops this point more formally.

Log-Linear Parametrization of Transport Costs A convenient parametrization of (4) is the

constant-elasticity transport technology,

15The proof of Proposition 1 is immediate: given the neoclassical assumptions, the objective function is concave
and the constraints are convex, except possibly for the balanced-flows constraint; convexity of the transport cost
Qτjk (Q, Ijk) ensures convexity of that constraint as well. In the case with labor mobility, the planner’s problem
can only be recast as a quasiconvex optimization problem, but the Arrow-Enthoven theorem for the sufficiency of
the Karush-Kuhn-Tucker conditions under quasiconvexity, requiring that the gradient of the objective function is
different from zero at the optimal point, is satisfied (Arrow and Enthoven, 1961).
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τjk (Q, I) = δτjk
Qβ

Iγ
with β ≥ 0, γ ≥ 0. (10)

If β > 0, this formulation implies congestion in shipping: the more is shipped, the higher the per-

unit shipping cost; when β = 0, the marginal cost of shipping is invariant to the quantity shipped,

as in the standard iceberg formulation. In turn, γ captures the elasticity of the per-unit cost to

infrastructure. The scalar δτjk captures the geographic frictions that affect per-unit transport costs

given the quantity shipped Q and the infrastructure I.

When the transport technology is given by (10), many of the preceding results admit intuitive

closed-form formulations. First, the restriction that Qτjk (Q, I) is convex in both arguments from

Proposition 1 holds if and only if β ≥ γ. This inequality captures a form of diminishing returns

to the overall transport technology: the elasticity of per-unit transport costs to investment in

infrastructure is smaller than its elasticity with respect to shipments.

Second, from the no-arbitrage condition (8), we obtain the following solution for total flows

from j to k as function of prices:

Qn
jk =

[

1

1 + β

Iγjk
δτjk

max

{

Pn
k

Pn
j

− 1, 0

}] 1
β

. (11)

This solution naturally implies that better infrastructure is associated with higher flows given prices

and geographic trade frictions. It also shows that the total flows fall with congestion β and increase

with the average price differentials. Third, using the log-linear transport technology (10), the

optimal level of infrastructure is

Ijk = min
[
max

(
I∗jk, Ijk

)
, Ijk

]
, (12)

where I∗jk is the optimal infrastructure (9) arising from the unconstrained optimal-network problem

(Ijk = 0 and Ijk = ∞) ,

I∗jk =

[

γ

PK

δτjk

δIjk

(
∑

n

Pn
j

(
Qn

jk

)1+β

)] 1
1+γ

. (13)

Given the prices at origin, the optimal infrastructure increases with gross flows. Given these flows,

infrastructure also increases with prices at origin, as a higher sourcing cost implies a higher marginal

saving from investing. Conditioning on these outcomes, infrastructure increases with δτjk, reflecting

that the optimal investments offset geographic trade frictions, and decreases with δIjk, reflecting that

the investment is smaller where it is more costly to build. Because it satisfies the Inada condition,

the log-linear specification (10) implies that the solution to the planner’s problem features a positive

investment whenever the price of any good varies between neighboring locations, Pn
j 6= Pn

k for any

n.

Combining (11) with (13), we reach an explicit characterization of the optimal infrastructure
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in each link as a function of prices, elasticities and geographic frictions:

I∗jk =






γ

PKδIjk

(

δτjk

) 1
β




1

1 + β

∑

n:Pn
k >Pn

j

Pn
j

(

Pn
k

Pn
j

− 1

) 1+β
β










β
β−γ

. (14)

where the multiplier PK is such that the network-building constraint (7) is satisfied.

Proposition 2. (Optimal Network in Log-Linear Case) When the transport technology is given by

(10), the full planner’s problem is a convex (resp. quasiconvex) optimization problem if β ≥ γ. The

optimal infrastructure is given by (12).

Under a general formulation of the transport technology τjk (Q, I) and in the absence of a pre-

existing network (Ijk = 0) the solution to the full planner’s problem may feature no infrastructure

(and therefore no trade) in some links, even if prices vary between the nodes connected by those

links. However, when the transport technology takes the loglinear form (10), this possibility arises

if and only if there are no incentives to trade (Pn
j = Pn

k for all n) due to the Inada condition on Ijk

in the transport technology (10) and the property that the marginal shipping costs are zero when

no shipping is done as long as β ≥ 0, respectively.

Other Convex Transport Technologies We provide two additional tractable transport tech-

nologies and the conditions that satisfy their convexity.

1. Exponential: Qτjk (Q, I) = δτjkmax (exp (βQ− γI)− 1, 0), convex for all β ≥ 0, γ ≥ 0;

2. CES: Qτjk (Q, I) = δτjkmax
(
Qβ − ζIγ , 0

) 1
γ , ζ ≥ 0, convex for 0 ≤ γ ≤ 1 and β ≥ γ.

Non-Convexity: the Case of Increasing Returns to Transport When the condition guar-

anteeing global convexity in Proposition 1 fails, the constraint set in the planner’s problem is not

convex and the sufficiency of the first-order conditions is not guaranteed. We may nonetheless

implement these cases numerically, as we discuss in Section 3.6. Focusing on the log-linear spec-

ification (10) introduced above, such nonconvexities arise when the transport technology features

economies of scale, γ > β. We now show in a simple special case how the qualitative properties of

the optimal network are affected by such economies of scale. In particular, increasing returns to

investment in infrastructure create an incentive for the planner to concentrate flows on few links.

As a result, the optimal network may take the form of a tree, a property already highlighted in

other applications of optimal transport such as formation of blood vessels, irrigation or electric

power supply systems (Banavar et al., 2000; Bernot et al., 2009).

Proposition 3. In the absence of a pre-existing network (i.e., Ijk = 0, Ijk = ∞), if the transport

technology is given by (10) and satisfies γ > β, and if there is a unique commodity produced in a

single location, the optimal transport network is a tree.
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A tree is a connected graph without loops. Intuitively, under the conditions of the proposition,

it is always better to remove alternative paths linking pairs of nodes and concentrate infrastructure

investments in fewer links. As a result, in the optimal network a single path connects any two

locations, a defining characteristic of a tree. This property is guaranteed to hold when there is only

one source for one commodity. In the general case, it may still be optimal to maintain loops but the

incentives to concentrate flows on fewer but larger routes remain. In Section 4 we present examples

with multiple goods and multiple production locations where, if γ > β, the optimal network is

sparser and concentrated on fewer links relative to cases with γ ≤ β.

3.4 Decentralized Allocation Given the Network

We establish that the planner’s optimal allocation (maxcj ,hj,D
n
j ,L

n
j ,V

n
j ,X

n
j
) and optimal transport

(maxQn
jk
) subproblems given the network {Ijk} correspond to a decentralized competitive equilib-

rium. For this decentralization, we do not take a stand on whether the network is the result of a

planner’s optimization.

Given the network, the decentralized economy corresponds to the perfectly competitive equi-

librium of a standard neoclassical economy where consumers maximize utility given their budget,

producers maximize profits subject to their production possibilities, and goods and factor markets

clear. The only less standard feature is the existence of a transport sector with congestion. We

assume free entry of atomistic traders into the business of purchasing goods in any sector at ori-

gin o and delivering at destination d for all (o, d) ∈ J 2. The traders are price-takers and use a

constant-returns to scale shipping technology. Each trader has a cost equal to τnjkq
n
jk of delivering

qnjk units of good n from j to k ∈ N (j) and takes the iceberg trade cost τnjk as given, although this

trade cost is determined endogenously through (10) as function of the aggregate quantity shipped.

As long as there is congestion in shipping, the traders will engage in an inefficient amount

of shipping. We assume that the market allocation features policies that correct this externality.

Specifically, the shipments of commodity n over link jk are subject to ad-valorem taxes ετQ,jknτ
n
jk

on their value at j. Consider then a trader purchasing good n at location o and delivering it to

location d. This company maximizes profits by optimizing over the route r = (j0, . . . , jρ) ∈ Rod,

where j0, . . . , jr is a sequence of nodes from o to d and Rod is the set of all such routes. The optimal

route rnod maximizes the per-unit profits:

πn
od = max

r=(j0,...,jρ)∈Rod

pnd − pno
︸︷︷︸

Sourcing Costs

−

ρ−1
∑

k=0

pnjkτ
n
jkjk+1

︸ ︷︷ ︸

Transport costs

−

ρ−1
∑

k=0

pnjkt
n
jkjk+1

︸ ︷︷ ︸

Taxes

, (15)

where pnj is the price of good n in location j in the market allocation. A shipper from o to d

purchases each unit at price pno and obtains the price pnd . In addition, shippers must pay the

transport costs pnjkτ
n
jkjk+1

as well as the “toll” pnjkt
n
jkjk+1

on each segment. In the absence of tolls,

the shipping cost from o to d would equal the total iceberg cost, and the solution would correspond
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to a standard least-cost route optimization.

To define the competitive equilibrium, we must also allocate the returns to factors other than

labor. Under no labor mobility we assume that, in addition to the wage, each worker in location

j receives a transfer tj such that
∑J

j=1 tjLj = Π, where Π is an aggregate portfolio including

ownership of fixed factors and government transfers. Hence, workers are rebated all tax revenues

and own the primary factors and non-traded goods in the economy. This formulation allows for

trade imbalances, which are needed to implement the planner’s allocation.

Since they are standard, we relegate the definitions of the competitive allocation with and

without labor mobility to Definition 3 in the appendix. Using that definition, we establish that the

welfare theorems given the transport network hold.

Proposition 4. (First and Second Welfare Theorems) If the tax on shipments of product n from

j to k is

tnjk = ετQ,jknτ
n
jk,

where ετQ,jkn = ∂ log τnjk/∂ logQn
jk, then:

(i) if labor is immobile, the competitive allocation coincides with the planner’s problem under

specific planner’s weights ωj. Conversely, the planner’s allocation can be implemented by a market

allocation with specific transfers tj ; and

(ii) if labor is mobile, the competitive allocation coincides with the planner’s problem if and only

if all workers own an equal share of fixed factors and tax revenue regardless of their location, i.e.,

tj =
Π
L
.

In either case, the price of good n in location j, pnj , equals the multiplier on the balanced-flows

constraint in the planner’s allocation, Pn
j .

These results are useful for bringing our model to the data. Under the assumption that the ob-

served allocation corresponds to the decentralized equilibrium, the first welfare theorem enables us

to calibrate the model using the planner’s solution to the optimal allocation and optimal transport

subproblems given the network. In Section 3.7, we discuss how to calibrate the model assuming

that the observed market allocation does not feature policies correcting the externality.. We note

that the optimal allocation can be equivalently implemented by per-unit toll θnjk = pnjkε
τ
Q,jknτ

n
jk.

3.5 Decentralization of Network Investments

We now discuss a market structure that efficiently decentralizes the infrastructure investments.

Consider a decentralized allocation as in Definition 3, including tolls. Suppose that, in addition, Ijk

is endogenously determined by a link-specific builder who is granted the right to build infrastructure

and receives in exchange a per-unit toll θnjk. Builders can purchase the “asphalt” K at a price pK ,

the stock of K may be initially owned by the government or by private individuals, and the price

pK adjusts such that the market for K clears. The builders will solve the problem

max
Ijk

∑

n

θnjkQ
n
jk (Ijk)− pKδIjkIjk,
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where Qn
jk (Ijk) is the quantity of good n consistent with zero profits of shipping companies on the

link jk given infrastructure Ijk and prices. The builders internalize that by adding infrastructure

they can increase the flow of goods through their link, but we assume that they do not internalize

general-equilibrium impacts on commodity prices. Now, the specific transfers tj exhaust a portfolio

Π which, in addition to fixed factors and government transfers, also includes ownership of K and

net profits of builders.

We then obtain the following result.

Proposition 5. If the global convexity condition of Proposition 1 is satisfied and the toll θnjk is

consistent with the optimal Pigouvian tax (θnjk = Pn
j ε

τ
Q,jknτ

n
jk), then the decentralized infrastructure

choice implements the optimal network investment.

This result echoes the self-financing theorem of Mohring and Harwitz (1962) who showed that

revenues from optimal congestion taxes are sufficient to cover capital costs of roads when the

transport cost can be expressed as a function of the ratio Q/I. Our result is not restricted to

the case in which the transport cost function is homogeneous of degree 0. The global convexity

condition of Proposition 1 ensures the sufficiency of the first-order conditions in implementing the

optimal allocation. In this general case, however, lump-sum transfers to builders may be needed to

ensure participation.

3.6 Numerical Implementation

In this section we broadly discuss our numerical implementation and relegate details to Section
D of the Supplementary Material.16

Convex Cases Under the conditions of Proposition 1, the full planner’s problem is a convex

optimization problem and the KKT conditions are both necessary and sufficient. The system of

first-order conditions is, however, a large system of non-linear equations with many unknowns.

Gradient-descent based algorithms make large-scale convex optimization problems like ours numer-

ically tractable, meaning that these algorithms are guaranteed to converge to the unique global

optimum (Boyd and Vandenberghe, 2004).17

Our problem can be tackled numerically using two equally valid approaches. The first one is

to feed the numerical solver the primal problem, meaning the full planner’s problem exactly as

written in Definition 1. Specifically, letting L be the Lagrangian of the planner’s problem as a

function of the controls x =
(

cj, hj ,D
n
j , L

n
j ,V

n
j , Q

n
jk, . . .

)

and the multipliers λ =
(

Pn
j , . . .

)

, the

primal consists of solving the saddle-point problem

sup
x

inf
λ≥0

L (x,λ) .

16AMatlab toolbox implementing our model with detailed documentation and examples is available on the authors’
websites.

17We use the open-source large-scale optimization package IPOPT (https://projects.coin-or.org/Ipopt) which is
based on an interior point method and is able to handle thousands of variables as long the problem is sufficiently
sparse. The software converges in polynomial time (Nesterov and Nemirovskii, 1994).
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The second approach, preferred in the optimal transport literature, is to solve instead the dual

problem obtained by inverting the order of optimization, i.e.,

inf
λ≥0

sup
x

L (x,λ) .

In our context, the convexity of the full planner’s problem without labor mobility ensures that

the dual coincides with the primal (Proposition 1), i.e., strong duality holds. The advantage of

the dual is that we can use the first-order conditions from the optimal transport and the optimal

investment problems, (8) and (13), as well as those from the neoclassical allocation problem, to

express the control variables as functions of the multipliers, x (λ). The remaining minimization

problem, infλ≥0L (x (λ) , λ), is a convex minimization problem over fewer variables, subject to

non-negativity constraints only.

Non-Convex Cases When the condition stated in Proposition 1 fails, the full planner’s problem

is no longer globally convex, and the method described above is not guaranteed to find the global

optimum. To solve for such non-convex cases, we exploit the property, stated at the beginning of

Proposition 1, that the joint neoclassical allocation and optimal transport problem nested within

the planner’s problem is convex as long as Qτjk (Q, Ijk) is convex in Q. This condition is weaker

and holds under the log-linear specification as long as β ≥ 0, including the standard case without

congestion (β = 0). We combine the primal and dual approaches to solve for the joint neoclassi-

cal allocation and optimal transport problems with an iterative procedure over the infrastructure

investments. Specifically, starting from a guess on the network investment Ijk, we solve for the

optimum over cj , hj , D
n
j , L

n
j , V

n
j and Qn

jk, and then use the optimal network investment condition

(9) to obtain a new guess over Ijk, and then repeat until convergence. We then refine the solution

using a simulated annealing method that perturbs the local optimum and gradually reaches better

solutions. Appendix D provides details.

3.7 Alternative Assumptions

Congestion Across Goods We have assumed that congestion only applies within good types.

A natural assumption is that congestion takes place across goods. A simple way to incorporate

this feature while preserving the convexity of the problem is to assume that the per-unit cost τnjk is

denominated in units of the bundle of traded goods aggregated through Dj (·) rather that in units

of the good itself. We assume that transporting each unit of good n from j to k ∈ N (n) requires

τnjk = mnτjk (Qjk, Ijk) (16)

units of the traded goods bundle, wheremn measures product-specific characteristics such as weight

or volume, and Qjk =
∑N

n=1m
nQn

jk is the total weight or volume transported from j to k. Then,

the number of units of the traded goods bundle Dj used to transport goods from j to its neighbors
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is

Tj =
∑

k∈N (j)

τjk (Qjk, Ijk)Qjk.

After properly adjusting the resource constraints in the definition of the planner’s problem, the

convexity of the full planner’s problem is preserved under the same conditions stated in Proposition

1.

Appendices A.1 and A.2 present the definition and first-order conditions of the planner’s problem

in a general case encompassing iceberg costs with own-good congestion, as well as this alternative

formulation with congestion across goods. As it is more realistic, we adopt the case with congestion

across goods as the benchmark in our application.

Externalities and Inefficiencies in the Market Allocation In Section 3.4, we assumed that

the decentralized allocation is efficient. However, in some cases it may be desirable to consider an

inefficient market allocation. For example, a standard formulation with agglomeration spillovers

is to assume that the production technology is Y n
j = Fn

j

(

Ln
j ,V

n
j ,X

n
j ;Lj

)

, where the spillover

from the total number of workers Lj on output Y n
j is not internalized in the market allocation.

Another common formulation is to assume externalities in the consumption of amenities entering

through utility, U (cj , hj ;Lj). Similarly, without the Pigouvian taxes tnjk correcting the congestion

externality in shipping, the market allocation is inefficient. In these cases, it is in principle still

possible to calibrate the model and undertake counterfactuals using a “fictitious” planner who

ignores the dependence of Y n
j on Lj or of τnjk on Qn

jk. For example, in the case of production

spillovers, the fictitious planner’s problem is defined as in Definition 2 under the assumption that

the vector of aggregate population levels L =
{
Lj

}
in Y n

j = Fn
j

(

Ln
j ,V

n
j ,X

n
j ;Lj

)

is taken as

given.18 As long as Fn
j (·) is neoclassical given Lj , the statement in part (i) of Proposition 1,

establishing convexity of the planner’s problem given the network, remains the same given Lj .

However, this approach requires solving an additional loop imposing that the vector of population

L = {Lj} that solves the fictitious planner’s problem coincides with the aggregate distribution

L taken as given by the planner. Every distribution of population L satisfying this fixed point

problem corresponds to a market allocation and vice-versa.19 An important caveat, however, is

that we can no longer establish the general convexity of the problem corresponding to part (ii) of

Proposition 1. Section F of the Supplementary Material explains how to implement these cases

along with a method to derive the optimal infrastructure gradient and conduct local optimization.

18The fictitious planner problem is defined exactly as in Definition 2 with U
(
cj , hj ;Lj

)
in the case of consumption

externalities, taking Lj as given, or with τjk
(

Qn
jk, Ijk

)

in the case of congestion externalities, taking the shipments

Q̄ =
{

Qn
jk

}

j,k,n
as given.

19Whether such a fixed point exists depends on the specifics of the environment. It is beyond the scope of
this paper to determine the conditions under which that is the case, but we note that, given the network {Ikl},
our environment can accommodate the specific parametric assumptions that guarantee existence or uniqueness of an
inefficient decentralized allocation found in the previous literature. E.g., see Allen and Arkolakis (2014) for conditions
that lead to existence and uniqueness in an Armington model with labor mobility and size spillovers.
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4 Illustrative Examples

In this section we implement examples that illustrate the basic economic forces captured by the

framework and its potential uses. All the figures can be found in Section C of the Supplementary

Material. We start with an endowment economy without labor mobility and only one traded and

one non-traded good in a symmetric graph. Then, we progressively move to more complex cases

with multiple locations in asymmetric spaces, multiple sectors, labor mobility, and heterogeneous

building costs due to geographic features. Throughout the examples, we illustrate the contrast

between the globally optimal networks in convex cases, where the congestion forces dominate the

returns to network building, and the approximate optimal networks in cases where global convexity

of the planner’s problem fails. In all the examples, preferences are CRRA over a Cobb-Douglas

bundle of traded and non-traded goods, U =
(
cαh1−α

)1−ρ
/ (1− ρ) with α = 1

2 and ρ = 2. There is

a single factor of production, labor, and all technologies are linear. We adopt the constant-elasticity

functional forms (10) for the transport and network-building technologies.

4.1 One Good on a Regular Geometry

Comparative Statics over K in a Symmetric Network To start we impose β = γ = 1,

which lies at the boundary of the parameter space guaranteeing global convexity. We assume a

single good, no labor mobility and no geographic frictions, δτjk = δIjk = Distancejk.

Figure A.3 presents a network with 9 × 9 locations uniformly distributed in a square, each

connected to 8 neighbors. All fundamentals except for productivity are symmetric: (Lj,Hj) =

(1, 1). Labor productivity is zj = 1 at the center and 10 times smaller elsewhere.

Figure A.4 shows the globally optimal network when K = 1 (panel (a)) and when K = 100

(panel (b)). The upper-left figure in each panel displays the optimal infrastructure network Ijk

corresponding to (13). The optimal network investments radiate from the center, and so do ship-

ments. The bottom figures in each panel display the multipliers of the flows constraint (6)—the

prices in the market allocation—and consumption. Because tradable goods are scarcer in the out-

skirts, marginal utility is higher and so are prices. As the aggregate investment grows from K = 1

to K = 100, the network grows into the outskirts and the differences in the marginal utility shrink.

Panels (c) and (d) display the spatial distribution of prices and consumption. As the network

grows, relative prices and consumption converge, and spatial inequalities are reduced.

Randomly Located Cities and Non-Convex Cases We now explore more complex networks

and non-convex cases. Figure A.5 shows 20 “cities” randomly located in a space where each location

has six neighbors. Population is Lj = 1 in each city and 0 otherwise. Productivity is again ten

times larger at the center. The top panel shows the infrastructure and commodity flows in the

optimal network. The optimal network radiates from the center to reach all destinations. Due to

congestion, some destinations are reached through multiple routes. However, to reach some faraway

locations such as the one in the northwest, only one route is built.
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The middle panel inspects the same spatial configuration but assumes γ = 2. Now, the sufficient

condition for global convexity from Proposition 1 fails. We see a qualitative change in the shape

of the network. Due to increasing returns to network building, fewer roads are built but each has

higher capacity. In particular, there is now only one route linking any two destinations, consistent

with the no-loops result in Proposition 3.

Because in the non-convex network we can only guarantee convergence to a local optimum, we

refine the solution by applying the numerical approach discussed in Supplementary Material Section

D involving simulated annealing. The bottom panel compares the non-convex network before and

after the annealing refinement. The refined network economizes on the number of links, leading to

a welfare increase but preserving the no-loops property.

4.2 Many Sectors, Labor Mobility, and Non-Convexity

We now further introduce multiple traded goods and labor mobility. We allow for 11 traded

commodities, one “agricultural” good (good 1) that may be produced everywhere outside of “cities”

(z1j = 1 in all “countryside” locations) and ten “industrial” goods, each produced in one random

city only (znj = 1 in only one city j and znj = 0 otherwise). These goods are combined via a constant

elasticity of substitution aggregator with elasticity of substitution σ = 2. Labor continues to be

the sole factor of production, but is now mobile. The supply of the non-traded good is uniform,

Hj = 1 for all j.

Figure A.6 shows the convex case (β = γ = 1). The first panel shows the optimal network. In

the figure, each circle’s size denotes the population share. The remaining figures show the shipments

of each good, with the circle sizes representing the shares in total production for the corresponding

good. Figure A.7 shows the optimal network with annealing in the nonconvex case when γ = 2.

In these examples, we observe complex shipping patterns. There are bilateral flows over each

link, now involving several commodities. Overall, the optimal network in the first panel reflects the

spatial distribution of comparative advantages. Since industrial goods are relatively scarce, wages

and population are higher in the cities that produce them. Due to the need to ship industrial

goods to the entire economy and to bring agricultural goods to the more populated cities, the

transport network has better infrastructure around the producers of industrial products. As Panel

(a) of each figure illustrates, the optimal network links the industrial cities through wider routes

branching out into the countryside. The agricultural good, being produced in many locations,

travels short distances and each industrial city is surrounded by its agricultural hinterland.

The comparison between Figures A.6 and A.7 confirms the intuition that, in the presence of

economies of scale in transportation, the optimal network becomes more skewed towards fewer

but wider “highways”. Note, however, that the tree property from Proposition 3 no longer holds

because there are multiple goods.
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4.3 Geographical Features

We now show how the framework can accommodate geographical features like mountains and

rivers. To highlight the role of these frictions we revert to a case with a single good and no factor

mobility. Panel (a) of Figure A.8 shows 20 cities randomly allocated in a space where each location

is connected to 8 other locations. Population equals 1 in all cities and productivity is the same

everywhere (equal to 0.1) except in the central city, displayed in red, where it is 10 times larger.

Each city’s size in the figure varies in proportion to consumption.

As implied by condition (13), the optimal infrastructure in a given link depends on the link-

specific building cost δIjk. In panel (a) we show the optimal network under the assumption that the

cost of building infrastructure is proportional to the Euclidean distance:

δIjk = δ0Distanceδ1jk. (17)

As in our first set of examples, the optimal network radiates from the highest-productivity city to

alleviate differences in marginal utility.

In panel (b), we add a “mountain” by adding an elevation dimension to each link and re-

configuring the building cost as

δIjk = δ0Distanceδ1jk

(

1 + |∆Elevation|jk

)δ2
. (18)

Because it is more costly to build through the mountain, the optimal network circles around it to

reach the cities in the northeast. Because more resources are invested in that region, the network

shrinks elsewhere.

In the subsequent figures, we either increase or decrease the cost of building the network in

specific links. Specifically, we allow for the more general specification:

δIjk = δ0Distanceδ1jk

(

1 + |∆Elevation|jk

)δ2
δ
CrossingRiverjk
3 δ

AlongRiverjk
4 . (19)

In panel (c) we include a river and assume that δ3 = δ4 = ∞, so that investing in infrastructure

either across or along the river is prohibitively costly. The optimal network linking cities across

the river can only be built through the patch of dry land. In that natural crossing there is a

“bottleneck” and a large infrastructure investment takes place.

In panel (d) we assume instead that no dry patch exists but that building bridges is feasible,

1 < δ3 < ∞. Now, the planner builds two bridges, directly connecting the pairs of cities across the

river. Panel (e) further allows for transport capacity along the river (δ4 < ∞). The planner retains

the bridges, but now faraway locations in the southeast are reached by water instead of via ground

transport.

Finally, panel (f) shows the non-convex case, γ = 2 > β, implemented through the combination

of first-order conditions and simulated annealing described in Section 3.6. Now, a unique route

links any two cities and fewer roads are built.
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5 Road Network Expansion and Misallocation in Europe

We apply the framework for quantitative analysis of road networks in European countries. We

start by describing the steps to represent data on economic activity and road networks in terms of

the graph of our model. Then we choose the fundamentals to match the observed distribution of

economic activity within each country. We conclude by implementing counterfactuals involving the

optimal transport network. We implement the calibrations and counterfactuals country by country.

In a final exercise, we also implement the analysis simultaneously for a connected set of countries

in continental Europe.

5.1 Data

Sources We combine geocoded data on road networks, population, and income across Euro-

pean countries. The road network data is from EuroGlobalMap (EGM) by EuroGeographics.20

The dataset combines shapefiles on the road network from each European country’s mapping and

cadastral agencies, and it includes all major highways and roads connecting populated areas.21 For

example, the French road network is represented by 38668 segments of active roads connecting

159258 geographic points with a total length of about 130000 km.

We perform the calibration and counterfactual analysis separately for each of the 24 countries

included in EGM for which data on number of lanes is available. This set includes rich and poor

countries, as well as geographically large and small. Table A.1 in Appendix B reports the list of

countries with summary statistics about the size and average features of their road networks, the

number of cells, and features of their discretized road networks.

An appealing feature of this dataset is that each segment of a road network has information

about objective measures of road quality including type of road use (national, primary, secondary,

or local), number of lanes, and whether it is paved or includes a median. National roads encompass

each country’s highway system.22 On average across the countries in our data, national roads

represent 10% of the road network, feature twice as many lanes per kilometer as other types

of roads, are always paved (while 94% of the non-national networks are), and are more likely to

include a median (87% relative to 4% of non-national networks). Since the roads labeled as primary,

secondary and tertiary have very similar characteristics along these dimensions, we bundle them

into a single “non-national roads” category.

We use population data from NASA-SEDAC’s Gridded Population of the World (GPW) v.4

and value added from Yale’s G-Econ 4.0. Both datasets correspond to the year 2005. The GPW

population data is reported for 30 arc-second cells (approximately 1 kilometer) and the G-Econ

20This product includes Intellectual Property from the European National Mapping and Cadastral Authorities and
is licensed on behalf of these by EuroGeographics. Original product is available for free at www.eurogeographics.org.
Terms of the license are available at https://eurogeographics.org/services/open-data/topographic-data/.

21We use GlobalMap data v8, corresponding to the year 2016, which is the earliest year we have access to. We
only use road segments that are reported as “operational”.

22E.g., roads labeled as national in the data include the Autobahn highway system in Germany, autovias and
autopistas in Spain, and the autoroute system in France.
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value-added data is reported for 1 arc-degree cells (approximately 100 km). To implement the

model we must take a stand on the geographic units corresponding to each node. To strike a balance

between the high spatial resolution of the EGM and GPW datasets and the coarser resolution of

the G-Econ dataset, in most countries we use 0.5 arc-degree cells (approximately 50 km by 50 km)

as benchmark. We adopt squares as geographic units so that the boundaries of the geographic

units in the G-Econ dataset coincide with ours. We allocate population to each 0.5-degree cell by

aggregating the smaller cells in GPW and we apportion income from the G-Econ cells according

to the GPW-based population measure. In a few countries we use smaller or larger cells in order

to allow for either a significant number of cells or avoid having a very large number.23 We denote

the population and value added observed in each cell j of each country by Lobs
j and GDP obs

j .

The resulting number of cells in each country is reported in Table A.1. In the 19 countries

where the NUTS subdivision of geographic units is available, the number of cells is larger than

the number of level-2 NUTS regions. In most countries it is also larger than the number of level-3

NUTS.24

Underlying Graph Using these data we construct empirical counterparts to the underlying

geography (J , E) corresponding to the locations and links in the graph of our model, as well as an

observed measure of infrastructure Iobsjk for each link.

To define the set of nodes J in each country, we use the GPW data to locate the population

centroid of each cell. The population centroids are usually very close to a node on the road network.

We relocate each population centroid to the closest point on a national road crossing through the

cell, or on other types of roads if no national roads cross through the cell.25 We define the observed

population and income of each node j ∈ J to be equal to the total income GDP obs
j and the

population Lobs
j of the cell that contains it.

In turn, we define the set of edges E as all the links between nodes in contiguous cells. This

step defines a set of up to 8 neighbors N (j) for each node j ∈ J : the 4 nodes in horizontal or

vertical neighbors and the 4 nodes along the diagonals.

Discretized Road Network To construct a measure of infrastructure corresponding to Ijk in

our model, we first aggregate the observed attributes of the road network over the actual roads

linking each j ∈ J and k ∈ N (j). We use information on whether each segment s on the actual

23We use the default 0.5 arc-degree cells in 17 countries (Austria, Belgium, Czech Republic, Denmark, Georgia,
Hungary, Ireland, Latvia, Lithuania, Macedonia, Moldova, Netherlands, Northern Ireland, Portugal, Slovakia, Slove-
nia and Switzerland). Whenever assuming 0.5 arc-degree cells would lead to more than 200 cells, we use 1 arc-degree
cells (Finland, France, Germany, Italy and Spain); and whenever doing so would lead to less than 20 cells, we use
0.25 arc-degree cells (Luxembourg and Cyprus).

24NUTS (Nomenclature of Territorial Units for Statistics) is a standard developed by the European Union to divide
the territory. NUTS 2 correspond to “basic regions for the application of regional policies”, and NUTS 3 correspond
to “small regions for specific diagnoses” (https://ec.europa.eu/eurostat/web/nuts/background). Excluding overseas
territories, Spain has 15 level-2 NUTS (autonomous communities) and 47 level-3 NUTS (provinces), whereas our
partition has 61 cells. In France there are 21 level-2 NUTS (regions) and 94 level-3 NUTS (departments), whereas
our partition has 74 cells.

25On average across countries, the relocation across all cells within a country is 5.3 km.
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road network belongs to a national road and its number of lanes. We define the average number of

lanes and average road type for the link between j and k as follows:

lanesjk =
∑

s∈S

ωjk (s) lanes (s) ,

natjk =
∑

s∈S

ωjk (s)nat (s) ,

where lanes (s) is the number of lanes on each segment s on the actual road network S, nat (s)

indicates whether segment s belongs to a national road, and ωjk (s) is the weight attached to the

infrastructure of each segment when computing the level of infrastructure from j to k. The weights

ωjk (s) should be larger on segments of the road network that are more likely to be used when

shipping from j to k, and equal to zero for all s ∈ S if no direct route exists linking j and k. We

define ωjk (s) based on the fraction of the cheapest path P (j, k) from j to k corresponding to that

segment:

ωjk (s) =







length(s)∑
s′∈P(j,k) length(s

′) s ∈ P (j, k)

0 s /∈ P (j, k)

where length (s) is the length of segment s and P (j, k) is the cheapest path from j to k on the

actual road network.26 We follow these steps as long as the cheapest path does not stray from the

cells containing j and k.27 When that happens, we assume that no direct path from j to k exists

in the actual road network, P (j, k) = �, in which case ωjk (s) = 0 for all segments s ∈ S.

We define the observed measure of infrastructure Iobsjk for each j ∈ J and k ∈ N (j) by letting

Iobsjk = lanesjk for national roads and Iobsjk = lanesjk × κ for non-national roads, where κ < 1

captures the smaller cost of non-national roads. We set κ = 1/5, which corresponds to the cost

of road construction and maintenance per kilometer on trunk roads relative to federal motorways

in Germany in 2007, as reported by Doll et al. (2008). We impose Iobsjk = Iobskj , implying that

infrastructure applies equally in either direction. In sum, we construct the observed infrastructure

Iobsjk as the average number of national road lanes over the path from j to k on the actual road

network, if a direct path exists.28

Examples: France and Spain Figures 2 and 3 represent each of the steps described above for

two large countries in our data, France and Spain. Panel (a) of each panel shows the discretized

map and associated population. Brighter cells are more populated, corresponding to higher deciles

26This step does not use the model. In this step, for each pair of nodes j ∈ J and k ∈ N (j) we ask: what are
the average characteristics (number of lanes and type of road) of the existing route connecting these two locations in
the real world? To do this, we must choose some route connecting the pair of locations in the real world. We use the
cheapest-route criterion as a way to choose this route. The cheapest path is constructed by weighting each segment
s by its road user cost based on data from Combes and Lafourcade (2005) and other sources. See Appendix B for
details.

27We classify a path from j to k as straying from the cells containing j and k if more than 50% of the path steps
over cells that do not contain j or k.

28Across connected nodes in the discretized network, there is a correlation of 0.67 between Iobsjk and the speed on
the quickest path according to GoogleMaps.
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Figure 2: Discretization of the French Road Network

(a) Population (b) Nodes and Edges

(c) Actual Road Network (d) Discretized Road Network

Notes: Panel (a) shows total population from GPW aggregated into 0.5 arc-degree (approximately 50 km) cells.

Panel (b) shows the nodes J corresponding to the population centroids of each cell in Panel (a), reallocated to their

closest point on the actual road network, and the edges E corresponding to all the vertical and diagonal links between

cells. Panel (c) shows the centroids and the actual road network. Green segments correspond to national roads, red

segments are all other roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows

the same centroids and the edges as the baseline graph in Panel (b), where each edge is weighted proportionally to

the average number lanes on the cheapest path between each pair of nodes on the road network. The color shade

ranges from red to green according to the fraction of the shortest path traveled on a national road.

of the population distribution across cells. The (b) panels display the cells, the centroids (light blue

circles) and the edges (red segments) of the underlying graph. The (c) panels show the centroids and

the full road network. Green segments correspond to national roads and red segments correspond

to other roads. The width of each road is proportional to its number of lanes.

Finally, the (d) panels show the infrastructure in the discretized road network. Each of the

edges from the (b) panels is now assigned a width depending on the average number of lanes,

lanesjk, and a color ranging from red to green depending on the likelihood of using a national road,

natjk. The width and color scale are the same as in panel (c). When no direct link from j to k is

identified by our procedure, no edge is shown. The resulting discretized networks on the baseline

grids clearly mirror the actual road networks for both countries, but they are now expressed in

terms of the nodes and edges of our model and therefore allow us to quantify it.
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Figure 3: Discretization of the Spanish Road Network

(a) Population (b) Nodes and Edges

(c) Actual Road Network (d) Discretized Road Network

Notes: Panel (a) shows total population from GPW aggregated into 0.5 arc-degree (approximately 50 km) cells.

Panel (b) shows the nodes J corresponding to the population centroids of each cell in Panel (a), reallocated to their

closest point on the actual road network, and the edges corresponding to all the vertical and diagonal links between

cells. Panel (c) shows the centroids and the actual road network. Green segments correspond to national roads, red

segments are all other roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows

the same centroids and the edges as the baseline graph in Panel (b), where each edge is weighted proportionally to

the average number lanes on the cheapest path between each pair of nodes on the road network. The color shade

ranges from red to green according to the fraction of the shortest path traveled on a national road.

5.2 Parametrization

We discuss the specific parametric assumptions to implement the general model described in

Section 3.

Preferences and Technologies The individual utility over traded and non-traded goods defined

in (1) is assumed to be Cobb-Douglas,

U = cαh1−α,
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while the aggregator of traded goods (2) is CES:

Cj =

(
N∑

n=1

(
Cn
j

)σ−1
σ

) σ
σ−1

(20)

where σ > 0 is the elasticity of substitution. Labor is the only factor of production and the

production technologies (3) are assumed to be linear:

Y n
j = znj L

n
j .

We assume α = 0.4 to match a standard share of non-traded goods in consumption and σ = 5

which corresponds to a central value of the demand elasticities reported by Head and Mayer (2014)

across estimates from the international trade literature. As we discuss below, the calibrated model

gives a reasonable prediction for the distance elasticity of trade, which is closely linked to σ.

Labor Mobility We undertake the country-by-country analysis of misallocation for the cases in

which labor is fixed and in which it is perfectly mobile. In this way, we accommodate that internal

rates of labor mobility may be different across countries. In the absence of data to discipline this

assumption, we opt for reporting the results in these polar cases. For the multi-country application

of the last section, we allow in addition for a partial-mobility case where labor is mobile within

countries but not across countries.

Transport Technology We adopt the log-linear transport technology (10) with cross-good con-

gestion as described in Section 3.7. We must parametrize the congestion parameter β and the

returns to infrastructure parameter γ. Ideally, we would like to set these parameters to elasticities

of total trade costs with respect to trade flows and infrastructure. Since such elasticities are not

readily available, we narrow the focus to the impact of shipping time on trade costs. Several studies

point to a relevant value of time in international shipping.29 Since the majority of inland shipments

in the EU are done via road, they likely include goods that are time-sensitive.30

We assume that: i) trade costs are a linear function of shipping time; ii) shipping speed is a log-

linear function of the number of vehicles and road lane kilometers; and iii) the number of vehicles is

a linear function of the quantity shipped. As shown in Appendix B, under these assumptions we can

calibrate β and γ to match the empirical relationship between speed, roads, and vehicles estimated

by Couture et al. (2018) in U.S. data. Their estimates imply β = 0.13 and γ = 0.10, suggesting

29Anderson and Van Wincoop (2004) calculate 9-percent tax equivalent of the average ocean shipping time cost
in the US over the second half of the 20th century. Hummels and Schaur (2013) quantify that one additional day in
transit is equivalent to 0.6 to 2.1 percent tariff and Djankov et al. (2010) argue that each additional day of delay is
equivalent to a country distancing 70km from its trade partner. Firth (2017) shows that the time delays caused by
congestion of railroads impact firm-level outcomes in India, and Brancaccio et al. (2019) argues, using a structurally
estimated search model of ships and exporters, that congestion in ports leads to costly delays for exporters.

3075% of the tonne-kilometer shipped via inland transport modes (rail, waterways or road) within the EU-28 are
done by road. The share is 50% when considering all transport modes. See https://ec.europa.eu/eurostat/statistics-
explained/index.php/Freight transport statistics - modal split%20.
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decreasing returns to scale.31 We use these parameters as a benchmark and also implement the

analysis in a case with increasing returns. Specifically, we consider a higher value of γ such that

the ratio between γ and β is the mirroring case, γ/β = 0.13/0.10 for β = 0.13.

Productivities, Endowments, and Geographic Frictions We must impose values for the

productivities znj and the endowment of non-traded services Hj. In the case with perfect labor

mobility we interpret
(

Lobs
j , GDP obs

j

)

as outcomes of the planner’s solution for the optimal alloca-

tion and optimal flows problems discussed in Section 3.2 taking the observed network Iobsjk as given,

and use this information to back out the fundamentals
(

znj ,Hj

)

. In the case with fixed labor, we

interpret GDP obs
j as the outcome of the planner solution and use this information to back out the

productivities znj , normalizing non-tradeable consumption per capita Hj/L
obs
j to 1 and setting the

planner’s weights ωj = 1 everywhere.

Since our data only include aggregate measures of economic activity for each cell, we assume

that each location produces only one tradable good. We allow for N + 1 different sectors: N

differentiated goods, and one homogeneous good. As a benchmark, we assume that each of the

differentiated goods is produced in each of the N cells with the largest observed population, and

that the homogeneous good is produced by all the remaining cells. We assume 10 different sectors

and explore the robustness to alternative values of N . We also implement an alternative calibration

where the differentiated products are allocated to the N largest level-2 NUTS regions within each

country.

This approach leaves us with J productivity parameters zj , each corresponding to the produc-

tivity of a different location. We choose each location’s productivity (and supply of non-traded

goods, when allowing for labor mobility) such that, taking the observed network Iobsjk as given, the

planner’s solution to the optimal allocation and optimal flows problems from Definition 2 reproduces

the observed value added (and population, when allowing for labor mobility).32

We must also determine the values of the geographic trade frictions δτjk entering in the transport

technology (10). We assume that all goods have the same weight (mn = 1) and that frictions depend

on distance, δτjk = δτ0distjk. To calibrate δτ0 , we target the level of intra-regional trade in Spain,

where regional-level trade data is available. We estimate δτ0 jointly with the other fundamentals

so that the model matches the 44% share of intra-regional trade in intra-national trade among

31Couture et al. (2018) find decreasing returns to scale across their specifications, although the difference between
the two parameters is typically small (see Tables 5 and 6 of their paper). They refer to this result as suggesting
“modest decreasing returns to scale”. Their preferred estimate, used for our calibration, is column 6 of table 5 of
their paper.

32To compute GDP, we invoke the second welfare theorem from Proposition 4 to recover the prices in the calibrated
allocation as the multipliers of the various constraints in the planner’s problem. In the solution of the planner’s
problem each location’s value added in tradeable and non-tradeable sectors is P

n(j)
j zjLj +P

H
j Hj , where n (j) denotes

the good produced by location j, Pn
j is the price of good n in location j (i.e., multiplier of the flows constraint for

good n in j in the planner’s problem), and PH
j is the price of non-traded services in sector j (i.e., the multiplier of

the availability of non-traded goods constraint in the planner’s problem). Value added in the transport sector is not
attached to specific nodes and often corresponds to links connecting near empty locations. For accounting purposes,
we allocate the national value added in the transport sector proportionally to value added in other sectors, so that
regional variation in measured GDP is driven by goods and services.

30



tradeable sectors across the 15 continental level-2 NUTS regions of Spain from 2001-2005, according

to from Spain’s C-Intereg Dataset (Llano et al., 2010). To generate model-based regional trade

flows, we aggregate the bilateral node-to-node trade flows in differentiated goods to the bilateral

region-to-region level.33 We then use this value of δτ0 in the remaining countries when calibrating

fundamentals.

Figure A.1 in Appendix B shows the results of the calibration for the convex case of the param-

eters (β = 0.13, γ = 0.10). Similar relationships hold for the non-convex case (β = 0.13, γ = 0.169).

Panels (a) and (b) show the model-implied population and income shares of each location against

the data, over all locations in the 24 countries. Except for a few locations, both population and

income shares are matched with high precision. The internal trade share for Spain is also precisely

matched.34

Panels (c) and (d) show the calibrated fundamentals (productivity and endowment of non-

traded good) in the vertical axes against income and population shares in the data, respectively,

for the case with labor mobility. Both fundamentals are strongly correlated with observables. A

similar positive relationship between productivity and income shares holds in the calibration of the

model with fixed labor.

Cost of Building Infrastructure To implement the optimal transport network in counterfac-

tual scenarios, we must parametrize the cost of infrastructure along each edge, δIjk. We follow two

approaches. In the first approach, we interpret the observed infrastructure Iobsjk as the outcome of

the planner’s problem, under the assumption that it is equally costly to build in either direction.

In this case the observed network, Iobsjk , is consistent with the planner’s first-order condition for Ijk

in (13) under the assumption that Ijk = 0. Imposing symmetry on that first-order condition we

then recover the cost of infrastructure as a function of outcomes from the calibrated model (see

Appendix A.2). We refer to this measure as the “FOC-based” measure of building costs, δI,FOC
jk .

Our second approach is agnostic about whether the observed network results from any sort

of optimization, but takes a stand about how the building costs depend on geographic features.

Specifically, we rely on data from Collier et al. (2016), who estimate highway building costs from

World Bank infrastructure investment projects across the world, and then relate these costs to

a host of geographic and non-geographic frictions.35 We assume that δIjk is a function of two

geographic features included in their study, distance and ruggedness of the terrain and refer to this

building-cost measure as the “geographic” measure, δI,GEO
jk . We interpret an improvement to the

connection between any pair of nodes in our counterfactuals as an infrastructure project. In our

33The model does not make a prediction for bilateral flows of homogeneous goods. Since this good is produced
in every region, most of its production is not traded across region boundaries. In the calibration, the intra-regional
trade share of this sector is 93%.

34Across the 24 countries the average internal trade share is 38%, with a standard deviation of 12%. We calibrate
0.00156 in the benchmark convex case with mobile labor and 0.00164 in the non-convex case.

35The investment projects in their data are concentrated in low- and middle-income countries, of which three
(Lithuania, Georgia, and Macedonia) are in our data. The coefficients from their study introduced in our equation
(21) correspond to the average of the coefficients over the distance dummy and the ruggedness index across the 6
specifications in Tables 4 and 5 of their paper.
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notation, their estimates imply:

ln

(

δI,GEO
jk

distjk

)

= ln
(
δI0
)
− 0.11 × (distjk > 50km) + 0.12× ln (ruggedjk) , (21)

where distjk is the distance between j and k and ruggedjk is the average ruggedness over locations

j and k, constructed as detailed in Appendix B. Hence, it is more costly to build on rugged terrain,

but less costly per kilometer to build on longer links. We assume that the elasticity of building

costs with respect to features of the terrain is the same across all countries.

These steps give two alternative measurements of δIjk up to scale in each country. We set K = 1

and choose δI0 to satisfy the network-building constraint with equality in each country.

5.3 Model-Implied Trade Flows and Congestion

We check the model predictions for bilateral trade flows. We use bilateral trade data across

Spanish regions defined at the level-2 NUTS subdivision from Spain’s C-Intereg Dataset. Excluding

islands, this gives 15 Spanish regions. Panel (a) of Figure 4 shows observed and model-based trade

flows in differentiated products for the calibration where each differentiated good is allocated to

a different region. Own-region trade flows are shown as red crosses. The model implied bilateral

flows have a correlation of 0.79 with the data.

Another way to assess the implied trade flows is to look at the gravity implications. The

standard gravity model posits a log-linear relationship between bilateral trade shares and trade

costs. The gravity model typically gives a good fit of the international data (Head and Mayer,

2014), and is often applied within countries (Allen and Arkolakis, 2014). A common approach is

to parametrize bilateral trade costs as a function of geographic frictions. In our parametrization,

bilateral trade costs among locations depend on the distance through the network, but also on the

equilibrium levels of congestion, the observed levels of infrastructure, and the calibrated values of

β and γ. We can compare the relationship between trade flows and distance implied by the model

using the previous aggregation to the level-2 NUTS subdivision in Spain. Panel (b) of Figure 4

shows the bilateral import share among level-2 NUTS and the log of distance in the model and in

the data, after controlling for exporter fixed effects.36 A linear regression yields elasticities of −0.91

in the model and −1.37 in the data. Overall, the figures suggest that the model makes reasonable

predictions for the distribution of trade flows.37

We examine the congestion taxes needed to implement the allocation. Due to the log-linear

36We run, in both model-generated and observed data, the regression ln
(
λNUTS
jk

)
= δ ln (distjk)+ψj + εjk, where

λjk is the import share and distjk is the bilateral distance between the level-2 NUTS divisions. The figure shows
both the import share and distance as residuals from exporter fixed effects. Distance is computed between geographic
centroids. We exclude zero flows and flows to the own region.

37The results are similar in calibrations that assign differentiated products to the largest locations in the country,
with correlations around 0.8 between model-based non-zero bilateral trade flows and the data. They are also similar
in calibrations that assign one good to each region but assume away the homogeneous product. The relationship
between trade and distance is very similar for France, suggesting that the key gravity properties are dictated by
elasticity parameters rather than by the distribution of fundamentals.
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Figure 4: Actual and Predicted Trade
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Note: The left panel shows the model-based flows across level-2 NUTS regions of continental Spain against the data

in the calibration assigning a differentiated product to the largest city within each level-2 NUTS region. The right

panel shows the log of the model-implied and observed import shares against distance as residuals from exporter

fixed effects. Linear regression slope (robust SE) is: -0.908 (0.069) in the model and -1.368 (0.058) in the data. Trade

flows to the same region appear as red crosses in the first panel.

specification of the transport technology, Proposition 4 implies that the taxes are a fraction β = 13%

of the transport costs in every link. Given the total transport costs, we obtain numerically that the

mean ad valorem tax across locations is about 0.6% in the cases with and without labor mobility.

The total taxes paid represent 0.3% of GDP in both cases.38

5.4 Optimal Expansion and Reallocation

We simulate two types of counterfactuals. First, we compute the aggregate gains from an

optimal expansion of the observed road network within each country. We assume that the total

resources K are increased by 50% relative to the observed network, constraining the planner to

build on top of the existing network, Iobsjk . In the notation of restriction (iii) in definitions 1 and

2, this means that Ijk = Iobsjk . Second, we compute the losses due to misallocation of current

roads within each country. We assume that the total resources K are the same as in the observed

network, without constraining the planner to build on top of the existing network, Iobsjk . In the

notation of restriction (iii) in Definitions 1 and 2, this means that Ijk = 0. We set the upper bound

on infrastructure Ijk to be 50% above the largest level of infrastructure observed in each country.

In short, the first “optimal expansion” counterfactual amounts to optimally expanding the

network on top of what is already observed, while the second “optimal reallocation” counterfactual

38In simulations of the calibration for Spain where we randomly increase capacity in random links, we find an elas-
ticity of quantity flows Qjk to infrastructure Ijk of 0.503 (0.0202) in the benchmark calibration (γ < β), 0.799 (0.0330)
in a calibration that imposes γ = β, and 1.296 (0.0395) in the non-convex calibration (γ > β). Duranton and Turner
(2011) report IV estimates of the relationship between total vehicles-kilometers traveled and road capacity across
U.S. cities between 0.68 and 1.33 (in their Table 6), with many of these estimates close to 1.
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amounts to optimally reallocating the existing roads. The first counterfactual is more policy-

relevant, as it prescribes where new roads should be built and yields the aggregate gains of those

investments. The second counterfactual is unfeasible in reality, but gives a sense of the losses from

misallocation of existing roads.

We implement the optimal expansion under the two measures of building costs, the FOC-based

measure δI,FOC
jk and the geographic measure δI,GEO

jk . The optimal reallocation is only meaningful

under the geographic measure, since the observed network is optimal by construction under δI,FOC
jk .

We implement each of these counterfactuals for each of the two values of γ, assuming both fixed

and mobile labor, separately for each of the 24 countries. We re-calibrate the model for each value

of γ, assumption on labor mobility, and country.

Regional Impact Within Countries We inspect first the within-country regional implications

for two large countries in our data, Spain and France. Figure 5 depicts the pattern of investment

and population change under the geographic measure of building costs δI,GEO. Panels (a) and

(b) show the optimal expansion and panels (c) and (d) show the optimal reallocation under labor

mobility. Panels (e) and (f) reproduce the optimal reallocation assuming that labor is not mobile.

The thickness of each link increases with the absolute value of the investment, defined as the

difference between the counterfactual and the observed infrastructure, I∗jk−Iobsjk . In the reallocation

counterfactual, links with negative investment, I∗jk−Iobsjk < 0, are shown in red, while all other links

are shown in green. In turn, with labor mobility, green nodes denote positive population change,

and red nodes denote negative population change. Brighter nodes represent a larger absolute value

of population change.

In the optimal reallocation counterfactual, we observe positive investments radiating away from

some areas with higher economic activity in the case of France, but a more dispersed investment

pattern in Spain. As we compare panels (a) and (b) with panels (c) and (d), we recognize similar

investment patterns in the optimal reallocation and expansion counterfactuals within each country:

the links identified as having too much infrastructure, shown in red in panels (c) and (d), typically

feature no expansion in panels (a) and (b). The comparison between panels (c)-(d) and panels (e)-

(f) reveals that allowing labor mobility does not fundamentally affect the optimal infrastructure

investments.

In the cases of optimal expansion and optimal reallocation, the population is reallocated to

the same set of regions within each country. Due to the labor mobility constraint in the planner’s

problem, changes in labor are perfectly correlated with changes in consumption of traded commodi-

ties per worker, cj .
39 For the cases without labor mobility, there is a similar consistency across the

counterfactuals in the changes in consumption of traded commodities per capita cj across locations.

We inspect, across the 24 countries, how a few typically observable regional outcomes map to

infrastructure investment. Panel (a) of Table 1 reports results from regressions of infrastructure

39The labor mobility constraint (vi) from Definition 2 implies α∆ ln cj = (1− α)∆ lnLj + ∆ ln u, where ∆ lnx
denotes the difference in the log of variable x between the counterfactual and calibrated allocations.
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Figure 5: Optimal Network Reallocation and Expansion: Spain and France

(a) Optimal Network Expansion with Labor

Mobility, France

(b) Optimal Network Expansion with Labor

Mobility, Spain

(c) Optimal Network Reallocation with Labor

Mobility, France

(d) Optimal Network Reallocation with Labor

Mobility, Spain

(e) Optimal Network Reallocation with Fixed

Labor, France

(f) Optimal Network Reallocation with Fixed

Labor, Spain

Notes: All counterfactuals use the geographic measure of building cost, δI,GEO and the benchmark parametrization

of β and γ. Graph nodes aggregate data from 0.5 arc-degree (approximately 50 km) cells. The width and brightness

of each link is proportional to the difference between the optimal counterfactual network and the observed network,

I∗jk − Iobsjk , for each link jk ∈E shown in panel (b) of Figures 2 and 3. The color scale is the same as in Figure 2.

Red links represent negative investment. With labor mobility, brighter green (red) nodes represent larger population

increase (decrease).

growth on each location’s initial population and tradeable income per capita. We report here

results corresponding to the case with labor mobility and the benchmark parametrization of γ and
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β, but the qualitative features we discuss are similar under alternative specifications. Optimal

road investments are directed to locations with initially lower levels of infrastructure, reflecting

decreasing returns to infrastructure at the link level. The investments are also more intensely

directed to locations with initially higher levels of population and income per worker. Since the

model implies a complex mapping from the fundamentals to the investments, these observable

outcomes guide only a fraction of the optimal investment decisions (R2 in the order of 24-39%

under geographic measure of trade costs and only 4% under the FOC measure).

Table 1: Optimal Infrastructure Investment, Population Growth and Local Characteristics

Panel A: Dependent Variable: Infrastructure Growth

(1) (2) (3)

Reallocation Expansion (GEO) Expansion (FOC)

Population 0.343∗∗∗ 0.125∗∗∗ 0.002

Tradeable Income per Capita 0.151 0.071 0.007∗

Infrastructure -0.418∗∗∗ -0.235∗∗∗ -0.010

Observations 868 868 868

Adjusted R-squared 0.29 0.24 0.04

Panel B: Dependent Variable: Population Growth

(1) (2) (3)

Reallocation Expansion (GEO) Expansion (FOC)

Population -0.001 -0.000 -0.000

Tradeable Income per Capita 0.008 0.008 0.001

Consumption per Capita -0.061∗∗∗ -0.060∗∗∗ -0.008∗∗∗

Infrastructure -0.001 -0.001 -0.000

Infrastructure Growth 0.002∗∗ 0.002∗ -0.001

Differentiated Producer 0.010∗∗∗ 0.010∗∗∗ 0.002∗∗∗

Observations 868 868 868

Adjusted R-squared 0.53 0.54 0.80

Each column corresponds to a different regression pooling all locations across the 24 countries in the benchmark

parametrization of γ and β, assuming mobile labor and N=10. All regressions include country fixed effects. Standard

errors are clustered at the country level. ***=1% significance, **=5%, *=10%. Dependent variables: population

growth is defined as ∆ lnLj , where ∆x = x′−x denotes the difference between variable x in the counterfactual (x’) and

in the calibrated allocation (x). Investment growth is defined as the difference over the average, ∆Ij/
(
1
2

(
Ij + I ′j

))
,

where total infrastructure at the node level is defined as Ij =
∑

k∈N (j) Ijk. Independent variables correspond to the log

of the level of each variable in the calibrated model. Population and income per capita are the two outcomes matched

by the calibration. Consumption per capita corresponds to traded goods cj in the calibrated model. Differentiated

producer is a dummy for whether the location is a producer of differentiated goods in the calibration.

In Panel (b), the dependent variable is population growth. To understand the patterns of

optimal reallocation of population, in addition to the variables from the previous regression we also

include infrastructure growth, consumption per capita, and a dummy for whether a location is a

differentiated producer. The handful of variables in the regression explain between 50% and 80%

36



of the population changes. Infrastructure growth in a location has a positive impact on population

in the counterfactuals that use the geographic measure of trade costs. The magnitude of the effect

and its explanatory power on the distribution of population changes is small, reflecting that growth

in a location depends on investments in other locations.

Consumption of traded goods per capita is a strong determinant, with a negative elasticity

of population growth with respect to initial consumption in the order of 1%-7%. If consumption

per capita was excluded, then the coefficient on income per capita would become negative and

significant, with a negative elasticity of growth with respect to income per capita of 1% across the

three counterfactuals. Hence, the impact of initial income on population growth in the optimal

investment plan operates through the level of consumption.

This reallocation pattern reflects that the goal of the optimal investments is to reduce variation

in the marginal utility of consumption of traded commodities across locations. Since changes

in population and consumption per capita between the counterfactual and initial allocation are

perfectly correlated, the optimal investment plan leads to an increase in consumption of traded

commodities in locations where consumption per capita is initially low. We conclude that the

optimal investment in infrastructure reduces spatial inequalities, although different assumptions

on building costs imply different ways of achieving this goal by changing the optimal placement of

infrastructure, as implied by our previous discussion.

Aggregate Impact Across Countries We now show the aggregate welfare effects. Table 2

shows the average welfare gain for each counterfactual across the 24 countries in our data. Tables

A.2 and A.3 in Appendix B show the results for each country with fixed and mobile labor, respec-

tively. In the benchmark parametrization of γ and β, using the geographic measure of building costs

we find average welfare gains across countries of 1.7% − 1.8%. The effects are much smaller under

the FOC-based measure because in that case the optimal expansion does not address a suboptimal

placement of existing roads. The average gains are increasing in the returns to scale γ, with the

average welfare gains increasing to between 2.4% and 2.9% under geographic measure of building

costs. These effects vary considerably across countries, ranging from around 0.1% to 8%. There is

no clear relationship between misallocation and country size or income. Some Eastern European

countries such as Georgia, Lithuania, and Latvia appear with relatively high misallocation in the

benchmark case (3.0% to 3.6% relative to a mean of 2.4%), and so do Denmark (7.8%), France

(3.4%) and Spain (4.7%). Belgium, Luxembourg and Macedonia appear as the least misallocated

countries.

This distribution of welfare gains across countries is in general stable regardless of the parametriza-

tion of γ, the assumption on labor mobility, the parametrization of the building costs δI , or the

type of counterfactual. For example, across the parametrizations of γ and labor mobility, the corre-

lation between the gains from optimally expanding the network under the two measures of building

costs, δI,GEO and δI,FOC , is between 0.76 and 0.92. Therefore, the answers to the questions of

which countries would gain more from optimally expanding their current road networks and which
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Table 2: Average Welfare Gains Across Countries

Returns to Scale: Benchmark Non-Convex

Labor: Fixed Mobile Fixed Mobile

Optimal Reallocation

δ = δI,GEO 1.7% 1.8% 2.4% 2.5%

Optimal Expansion

δ = δI,GEO 1.7% 1.8% 2.8% 2.9%

δ = δI,FOC 0.3% 0.3% 0.9% 1.3%

Each element of the table shows the average welfare gain in the corresponding counterfactual across the 24 countries.

countries suffer larger losses from misallocation of current roads is robust across these cases.

Alternative Assumptions The analysis was implemented assuming N = 10 sectors. We also

implement the calibration and counterfactuals assuming different numbers of sectors. Table A.4

in Appendix B reports the coefficients from column (2) of Table 1 corresponding to the optimal

expansion under calibrations that assume N = 5 or N = 15. In these alternative cases, the patterns

described above remain unchanged, and the magnitude of most of the coefficients does not exhibit

large variation.

Similarly, Table A.5 reproduces Table 2 for the benchmark and for N = 15. The aggregate

gains change little with the number of sectors. The correlation between the aggregate welfare

effects across countries under N = 15 and under N = 10 is above 0.9 for each possible type of

counterfactual and assumptions on labor mobility and value of γ. The table also reports average

welfare effects under an alternative calibration where each of the largest N regions in each country,

defined as level-2 NUTS political subdivisions, is assigned a differentiated product. The correlation

in welfare gains across countries between the benchmark case and this alternative allocation is

above 0.8 across assumptions of labor mobility, number of goods, and type of counterfactual.

Finally, Table A.6 replicates the benchmark case under the assumption of no congestion across

goods. We find very similar average welfare effects in the two cases.

5.5 Application to Multiple Countries within Europe

Our previous applications considered each country in isolation. We now implement the analysis

for a region of western Europe.40 Appendix Figure A.2 shows the baseline map and the discretized

network for this connected set of countries. We assume that each country produces a country-

specific differentiated product, in addition to a homogeneous good and use the same parameters as

in the benchmark. We re-calibrate the fundamentals assuming that the 5 largest locations in terms

of observed population within each country produce the differentiated product of that country,

40We include 11 countries: Austria, Belgium, Switzerland, Germany, Denmark, Spain, France, Italy, Luxembourg,
Netherlands, and Portugal. We use 1 degree by 1 degree cells, resulting in 261 cells.
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while the remaining locations produce the homogeneous product. We now also implement a case

with partial mobility where labor is mobile within countries but not across countries, recalibrating

the fundamentals each time.

Figure 6: Optimal Network Expansion: Europe

(a) Full Mobility (b) Labor Mobility within Countries

(c) No Mobility (d) Discretized TEN-T Network

Notes: All counterfactuals use the geographic measure of building costs, δI,GEO and the benchmark parametriza-

tion of β and γ. The width and brightness of each link is proportional to the difference between the optimal

counterfactual network and the observed network, I∗jk − Iobsjk , for each link jk ∈E shown in panel (b) of Figure

A.2. The color scale is the same as in Figure 2. Red links represent negative investment. With labor mobility,

brighter green (red) nodes represent larger population increase (decrease). Panel (d) shows a discretized version of

the TEN-T Core Network Corridors of the Trans-European Transport Network, based on information available at

http://ec.europa.eu/transport/infrastructure/tentec/tentec-portal/site/en/maps.html .

Figure 6 shows the optimal network expansion under different assumptions of labor mobility.

The counterfactuals highlight the areas where European investments would be more profitable. The

investments are concentrated in Benelux countries, France, Germany, and Northern Italy. Within

Spain, the optimal expansion looks quite different from what we found in panel (b) of Figure

5, reflecting the European planner’s incentives to deal with international trade. The European

planner prioritizes two corridors connecting Spain to the north of Portugal and the center of Spain
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to France, whereas the Spain-level planner chose a higher density of investment in the south of

the country. Within France, the pattern of investments radiating from Paris is similar to the case

in (a) of Figure 5, but now we see optimal investments in the connection with Spain, as well as

investments in the northeast to connect with neighboring countries.

The optimal network expansion is very similar in the three cases of labor mobility and the

welfare gains are close to 2.5% in the three cases. When labor is mobile across Europe, the optimal

network investment reallocates workers to southern Spain and Portugal, much like in the country-

by-country analysis we found reallocation to areas with relatively lower income per worker. As in

the previous cases, these changes in population do not correlate very strongly with the investments.

To conclude, we ask whether these patterns are approximately comparable with the Trans-

European Transport Network (TEN-T), a European Commission policy that supports the develop-

ment of Europe-wide transport networks. The network includes roads, air and inland waterways.

The TEN-T defines a core network of “strategic importance” for future investments based on cri-

teria such as eliminating bottlenecks or following suggestions from member states.41 Panel (d)

of Figure 6 shows these corridors for the area of Europe covered by our counterfactual. Broadly

speaking, our planning problem identifies some priorities for investment which appear to be sim-

ilar to what real-world planners have decided, such as the high density of investment in Benelux

countries and Germany; the international corridor from Paris to the southwest of France, north of

Spain, and Portugal; and the connection between Germany and Denmark. However, we also see

some differences, as the solution to our planning problem does not identify the need to invest in

roads connecting the southeast of France to the south of Spain and Portugal.

6 Conclusion

In this paper, we develop a framework to study optimal transport networks in spatial equilibrium

models. The framework combines a neoclassical environment where each location is a node in a

graph, an optimal transport problem subject to congestion in shipping across commodities, and

an optimal network design. It nests standard neoclassical trade models and it allows for either

fixed or mobile factors across space. We provide conditions such that the full planner’s problem,

involving the optimal flow of goods as well as the general-equilibrium and network-design problems,

is globally convex and numerically tractable using standard numerical methods typically applied

to tackle optimal transport problems.

In the application, we match the model to data on road networks and economic activity across

European countries. Using the calibrated model, we compute the gains from road expansion and

losses from misallocation. Across countries, we find real consumption losses in the order of 2%

associated with misallocation of roads.

41See https://ec.europa.eu/transport/themes/infrastructure/ten-t-guidelines/maps en. The planning guidelines
are mentioned in the European Commission working document, available in https://eur-lex.europa.eu/legal-
content/EN/TXT/PDF/?uri=CELEX:52013SC0542&from=EN.
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Our approach using a global planner is particularly well suited for environments where agglom-

eration spillovers may not be too strong. We have also shown how in principle the model could be

used in cases with spillovers. Due to current limitations in computing power and given the level of

geographic detail that we handle, we have only applied the model to cases with a limited number

of commodities.

We expect the framework to serve as basis for future work. It could be used to study political-

economy issues associated with infrastructure, such as spatial competition among planning author-

ities. We have refrained from identifying sources of misallocation, but it would be interesting to

know the role of regional characteristics such as institutional quality. Our application was limited

to European countries, but low-income economies are likely to benefit more from infrastructure

investment and are perhaps more prone to inefficient investments due to their institutional envi-

ronments.

The persistence of transport networks also raises interesting issues. The model could be ex-

tended to study inefficient network lock-in due to past investments corresponding to dated economic

fundamentals. We have also abstracted from decision-making under uncertainty, but it would be

interesting to study a planner who decides in anticipation of changing conditions about technology

or fundamentals. In the spirit of Barjamovic et al. (2019), who use the prediction of gravity models

to infer the location of cities, the model could be used to infer the location of roads in historical

data. The framework might also be used to construct instruments for investments in transport

infrastructure.

Finally, a number of forces such as commuting or dynamic adjustment were left out of our

analysis. We believe these are all interesting avenues to pursue in future research.
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Fajgelbaum, P. D., E. Morales, J. C. Suárez Serrato, and O. Zidar (2018). State taxes and spatial misallo-
cation. The Review of Economic Studies 86 (1), 333–376.

Felbermayr, G. J. and A. Tarasov (2015). Trade and the spatial distribution of transport infrastructure.

Fernald, J. G. (1999). Roads to prosperity? assessing the link between public capital and productivity.
American Economic Review , 619–638.

Figueroa, C., B. Fotsch, S. M. Hubbard, and J. Haddock (2013). Assessment procedures for paved and gravel
roads. Technical report, Purdue University School of Civil Engineering.

Firth, J. (2017). I’ve been waiting on the railroad: The effects of congestion on firm production.

Galichon, A. (2016). Optimal Transport Methods in Economics. Princeton University Press.

Head, K. and T. Mayer (2014). Gravity equations: Workhorse, toolkit, and cookbook. Handbook of Inter-
national Economics, Vol. 4 .

Helpman, E. (1998). The size of regions: transport and housing as factors in agglomeration. In D. Pines,
E. Sadka, and I. Zilcha (Eds.), Topics in Public Economics, pp. 33–54. Cambridge University Press
Cambridge.

Hsieh, C.-T. and P. J. Klenow (2009). Misallocation and manufacturing TFP in China and India. The
Quarterly Journal of Economics 124 (4), 1403–1448.

Hsieh, C.-T. and E. Moretti (2019). Housing constraints and spatial misallocation. American Economic
Journal: Macroeconomics 11 (2), 1–39.

Hummels, D. L. and G. Schaur (2013). Time as a trade barrier. American Economic Review 103 (7), 2935–59.

Kantorovich, L. V. (1942). On the translocation of masses. In Dokl. Akad. Nauk SSSR, Volume 37, pp.
199–201.

Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy 99 (3),
483–499.

43



Lai, E. L.-C., H. Fan, and H. S. Qi (2015). Global gains from reduction of trade costs.

Limao, N. and A. J. Venables (2001). Infrastructure, geographical disadvantage, transport costs, and trade.
The World Bank Economic Review 15 (3), 451–479.
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Online Appendix



A Appendix to Section 3 (Model)

A.1 Planner’s Problem

In this section we present the first-order conditions to the planner’s problem. We refer to these conditions in some

of the characterizations in the text and in the proofs below. We present the problem adopting a formulation of the

transport technology that nests the approach with own-good congestion in which the transport cost is denominated

in units of the good being shipped, as well as the approach with congestion across goods in which the transport

cost is denominated in units of the bundle of traded goods (discussed in Section 3.7). In the formulations below,

the parameter χ ∈ {0, 1} takes a value of 0 in the case with own-good congestion and a value of 1 with cross-good

congestion. The case χ = 0 corresponds to the equations presented in the body of the paper.

Immobile Labor

The Lagrangian of the problem in Definition 1 is

L =
∑

j

ωjLjU (cj , hj)−
∑

j

PD
j
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cjLj + χ
∑

k∈N (j)
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−
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Qn
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j
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ij


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where Qjk =
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n=1m
nQn
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l
j , PK , ζIjk, ζ

Q
jkn, ζ
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V
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jn, ζ

c
j , ζ

h
j are the multipliers

of all constraints implied by (i)-(v) in Definition 1. The first-order conditions with respect to consumption and

production are:
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The first-order condition with respect to flows is:

[
Qn

jk

]
− χPD

j

(

τnjk (Qjk, Ijk) +
∂τnjk (Qjk, Ijk)

∂Qjk
Qjk

)

− (1− χ)Pn
j

(

τnjk
(
Qn

jk, Ijk
)
+
∂τnjk

(
Qn

jk, Ijk
)

∂Qn
jk

Qn
jk

)

+ Pn
k − Pn

j + ζQjkn = 0 (A.1)
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which, along with the complementary slackness condition for Qn
jk, implies (8) in the main text.

Finally, the first order condition with respect to the network investment is

[Ijk] χ
N∑

n=1

PD
j Q

n
jk

(

−
∂τnjk (Qjk, Ijk)
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(
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jk, Ijk
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)
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ζ
I
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)

= PKδ
I
jk (A.2)

which, along with the complementary slackness condition for Injk, implies (9) in the text.

Mobile Labor

The Lagrangian of the problem in Definition 2 is
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where, in addition to the previous notation for the multipliers, in the first line we have defined ω̃j and WL as the

multipliers of constraints (vi) and (vii) in Definition 2.

The first-order conditions with respect to consumption of traded services
[
Cn

j

]
, factor allocation within locations

[
Ln

j

]
,
[
V n
j

]
and

[
Xn

j

]
, optimal transport

[
Qn

jk

]
, and optimal investment [Ijk] are the same as in the problem without

labor mobility. The first-order conditions with respect to u and Lj are:

[u] 1 =
∑

j

Ljω̃j

[Lj ] PD
j cj + PH

j hj − ω̃j [U (cj , hj)− u] =Wj −WL

where from monotonicity of U (cj , hj) it follows that

U (cj , hj) =







u if Lj > 0,

0 if Lj = 0.

In addition, the first-order conditions with respect to consumption of traded and non-traded services, [cj ] and [hj ],

are the same as in the problem without labor mobility replacing the planner’s weights ωj with the multipliers of the

mobility constraint ω̃j . Combining [Lj ] with [cj ] and [hj ] gives the multiplier on the labor-mobility constraint. For

populated locations:

ω̃j =
Wj −WL

UC (cj , hj) cj + UH (cj , hj)hj
.
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A.2 Symmetry in Infrastructure Investments

For the applications in Section 5 we impose symmetry in infrastructure levels as an additional restriction in the

planner’s problem, i.e., Ijk = Ikj . This section provides the first-order condition for Ijk in that case. The first-order

condition with respect to Ijk is

[Ijk] − χ

N∑

n=1

(

PD
j Q

n
jk

∂τnjk (Qjk, Ijk)

∂Ijk
+ PD

k Q
n
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∂Ijk

)

− (1− χ)
N∑

n=1

(
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j Q

n
jk

∂τnjk
(
Qn
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)
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k Q
n
kj
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(
Qn

jk, Ijk
)

∂Ijk

)

+
(

ζ
I
jk − ζIjk

)

= PK

(

δIjk + δIkj

)

. (A.3)

Assuming symmetry leaves all the remaining first-order conditions presented in Section A.1 unchanged. Under

the log-linear specification (10) of the transport technology, the optimal infrastructure investment, conditional on

Ijk ∈
(

ζ
I
jk, ζ

I
jk

)

, is

I∗jk =




γ

PK

(

δIjk + δIkj

)

(
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(

δτjkP
D
j Q
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D
k Q

1+β
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)
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(
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n
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n
k

(
Qn
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)



1
1+γ

.

(A.4)

As discussed in Section 5.2, to build δI,FOC
jk we use (A.4) under the symmetry assumption δIjk = δIkj . Setting

I∗jk = Iobsjk , δI,FOC
jk can be backed out as function of calibrated parameters, the observed network IOBS

jk , and the

equilibrium prices generated by the calibrated model. Note that, to generate these prices, we use the model calibrated

given the network IOBS
jk , as discussed in Section 5.2.

A.3 Proofs of the Propositions

Proposition 1. (Convexity of the Planner’s Problem) (i) Given the network {Ijk}, the joint optimal transport and

allocation problem in the fixed (respectively mobile) labor case is a convex (respectively quasiconvex) optimization

problem if Qτjk (Q, Ijk) is convex in Q for all j and k ∈ N (j); and (ii) if in addition Qτjk (Q, I) is convex in both Q

and I for all j and k ∈ N (j), then the full planner’s problem including the network design problem from Definition

(1) (resp. Definition (2)) is a convex (respectively quasiconvex) optimization problem. In either the joint transport

and allocation problem, or the full planner’s problem, strong duality holds when labor is fixed.

Proof. Consider the planner’s problem from Definition 1. We can write it as

max
{

Cj ,

{

Dn
j
,
{

Qn
jk

,Ijk

}

k∈N(j)

}}

∀j

f =
∑

j

ωjLjU

(
Cj

Lj
,
Hj

Lj

)

subject to: (i) availability of traded commodities,

g1j = Cj + χ
∑

k∈N (j)

τjk (Qjk, Ijk)Qjk −Dj

(

D1
j , .., D

N
j

)

6 0 for all j;

(ii) the balanced-flows constraint,

g2jn ≡ Dn
j +

∑

k∈N (j)

Qn
jk

[
1 + (1− χ) τjk

(
Qn

jk, Ijk
)]

− Fn
j

(
Ln

j ,V
n
j ,X

n
j

)
−
∑

i∈N (j)

Qn
ij ≤ 0 for all j, n;

(iii) the network-building constraint,
∑

j

∑

k∈N (j)

δIjkIjk ≤ K;

and conditions (iv)-(v) in the text. Since constraints (iii)-(v) are linear, we need f to be concave and g1j and g2jn to
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be convex. Since U is jointly concave in both its arguments, f is concave. Dj

({
Dn

j

})
is concave, hence g1j is convex.

If Qτjk (Q, I) is convex then g2jn is the sum of linear and convex functions, hence it is convex. To show that this

problem admits strong duality, a constraint qualification is required. Note first that constraints g1j and g2jn must hold

with equality at an optimum and therefore can be substituted into the objective function. The remaining constraints

(iii)-(v) are all linear and thus satisfy the Arrow-Hurwicz-Uzawa qualification constraint (Takayama (1985), Theorem

1.D.4). Hence, the global optimum must satisfy the KKT conditions and the duality gap is 0.42

Consider now the planner’s problem with labor mobility from Definition 2. Because U is homothetic, we can

express it as U = G (U0 (c, h)), where G is an increasing continuous function and U0 is homogeneous of degree 1.

Therefore, imposing the change of variables ũ = G−1 (u), the planner’s problem can be restated as maximizing ũ

subject to the convex constraints (i)-(v) and Lj ũ 6 U0 (Cj ,Hj). To make the latter constraint convex, let us denote

Uj = Lj ũ and replace ũ in the objective function by minj|Lj>0

{
Uj

Lj

}

,43 so that the problem becomes

max
Cj ,

{

Dn
j
,Ln

j
,Vn

j
,
{

Qn
jk

,In
jk

}

k∈N(j)

}

,Uj ,Lj

min
j|Lj>0

{
Uj

Lj

}

subject to the convex restrictions (i)-(v) above as well as

Uj ≤ U0 (Cj ,Hj) for all j.

The objective function is quasiconcave because Uj/Lj is quasiconcave and the minimum of quasiconcave functions is

quasiconcave. In addition, all the restrictions are convex. Arrow and Enthoven (1961) then implies that the Karush-

Kuhn-Tucker conditions are sufficient if the gradient of the objective function is different from zero at the candidate

for an optimum, and here the gradient never vanishes.

Proposition 2. (Optimal Network in Log-Linear Case) When the transport technology is given by (10), the full

planner’s problem is a convex (resp. quasiconvex) optimization problem if β ≥ γ. The optimal infrastructure is given

by (12).

Proof. First, note that if β ≥ γ then Qτ (Q, I) ∝ Q1+βI−γ is convex in Q ∈ R+ and I ∈ R+. To see that, note that

the determinant of the Hessian of Q1+βI−γ is (1 + β) γ (β − γ)Q2βI−2(γ+1), which is positive for Q ∈ R+ and I ∈ R+

if β ≥ γ ≥ 0. Next, from the first-order condition for optimal infrastructure (9), if the solution to the planning problem

implies Ijk = Ijk so that there is no investment, then:

PK ≥ −
1

δIjk

∑

n

Pn
j Q

n
jk

∂τnjk
∂Ijk

∣
∣
∣
∣
Ijk=Ijk

≥ γ
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n P
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j
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≥
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) 1
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n:Pn
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>Pn

j
Pn
j
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Pn
k

Pn
j

− 1
) 1+β

β

I
β−γ
β

jk

,

where the second line follows from (10) and the third line follows from (11). The last inequality is equivalent to

Ijk ≥ I∗jk for I∗jk defined in (14). Therefore, if Ijk < I∗jk then Ijk > Ijk and Ijk = I∗jk. Moreover, if there is any n

such that Pn
k 6= Pn

j then I∗jk > 0.

42Despite having substituted constraints g1j and g2jn into the objective function, the multipliers for these constraints,
PD
j and Pn

j , can be recovered from the above KKT conditions such that ωjUC (cj , hj) = PD
j and PD

j ∂C
T
j /∂C

n
j = Pn

j .
43Since the objective function is strictly increasing in ũ and because ũ only shows up in the constraints Lj ũ 6

U0 (Cj ,Hj) for all j, it is necessarily the case that ũ = minj|Lj>0 Uj/Lj .
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Proposition 3. (Tree Property) Assume that lim
c→0+

UC (c, h) = ∞. In the absence of a pre-existing network (i.e.,

Ijk = 0), if the transport technology is given by (10) and satisfies γ > β, and if there is a unique commodity produced

in a single location, then the optimal transport network is a tree.

Proof. See Section G of the Supplementary Material.

Definition 3. The decentralized equilibrium without labor mobility consists of quantities cj , hj , Dj , D
n
j , L

n
j ,V
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n
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n
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)
at prices

{
pnj
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n
and tj is a transfer per worker located in j. The set of transfers satisfy
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where Π adds up the aggregate returns to the portfolio of fixed factors and the government tax revenue,

Π =
∑

j

pHj Hj +
∑

j

∑

m

rmj V
m
j +

∑

j

∑

k∈N (j)

∑

n

tnjkp
n
kQ

n
jk;

(i)(b) firms optimize:

{
Ln

j ,V
n
j ,X

n
j

}
= argmax

L̂n
j
,V̂n

j
,X̂n

j

pnj F
n
j

(

L̂n
j , V̂

n
j , X̂

n
j

)

−wjL̂
n
j −

∑

m

rmj V̂
mn
j ;

(i)(c) the transport companies optimize,

πn
od = max

r=(j0,...,jρ)∈Rod

pnd − pno −

ρ−1
∑

k=0

(

χPD
jk
mnτjkjk+1 + (1− χ)Pn

jk
τnjkjk+1

)

−

ρ−1
∑

k=0

pjk+1t
n
jkjk+1

,

for all (o, d) ∈ J 2, where Rod =
{
(j0, . . . , jρ) ∈ J ρ+1, ρ ∈ N | j0 = o, jρ = d, jk+1 ∈ N (jk) for all 0 ≤ k < ρ

}
is the

set of routes from o to d, and there is free entry to delivering products from every source to every destination: πn
od ≤ 0

for all (o, d) ∈ J 2, = if good n is shipped from o to d.

(i)(d) producers of final commodities optimize:

{
Dn

j

}
= argmax

D̂n
j

Dj

({

D̂n
j

})

−
∑

j

pnj D̂
n
j ;

as well as the market-clearing and non-negativity constraints (i), (ii), (iv), and (v) from Definition 1.

If, in addition, labor is mobile, then the decentralized equilibrium also consists of utility u and employment {Lj}

such that

u = Uj (cj , hj)

whenever Lj > 0, and the labor market clearing condition (vii) from Definition 2 holds.

Proposition 4. (First and Second Welfare Theorems) If the tax on shipments of product n from j to k, denom-

inated in the same unit as transport costs, is tnjk = χmnετQ,jkτjk (Qjk, Ijk) + (1− χ) ετQ,jknτ
n
jk

(
Qn

jk, Ijk
)

where

εnQ,jk = ∂ log τnjk/∂ logQ
n
jk (χ = 0) and εQ,jk = ∂ log τjk/∂ logQjk (χ = 1), then: (i) if labor is immobile, the

competitive allocation coincides with the planner’s problem under specific planner’s weights ωj and, conversely, the
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planner’s allocation can be implemented by a market allocation with specific transfers tj; and (ii) if labor is mobile,

the competitive allocation coincides with the planner’s problem if and only if all workers own an equal share of fixed

factors and tax revenue, i.e., tj = Π
L
. In either case, the price of good n in location j, pnj , equals the multiplier on

the balanced-flows constraint in the planner’s allocation, Pn
j .

Proof. Equivalence of the First-order Conditions. Condition (i)(c) from the definition of the market allocation

implies that the free entry condition of shippers holds for every pair of neighbors; i.e., for every j ∈ J and k ∈ N (j),

pnk ≤ pnj + (1− χ) pnj
(
τnjk + tnjk

)
+ χPD

j

(
mnτjk + tnjk

)
, = if Qn

jk > 0. (A.5)

This condition is consistent with the first-order condition (8) from the planner’s problem if and only if the tax scheme

is defined as in the proposition. We must further show that, under this tax scheme, a route is the solution to (i)(c)

if and only if it is used in the solution to the planner’s problem, which we establish at the end of this proof.

Without labor mobility, the rest of the allocation corresponds to a standard neoclassical economy with con-

vex technologies and preferences where the welfare theorems hold. Specifically, the first-order conditions from the

consumer and firm optimization problems (i)(a) and (i)(b) yield:

[ĉj ]

(
1

λj

)

UC (cj , hj) = pDj

[

ĥj

] (
1

λj

)

UH (cj , hj) = pHj

[

D̂n
j

]

pDj
∂Dj

∂Dn
j

= pnj

[

L̂n
j

] ∂Y n
j

∂Ln
j

Pn
j ≤ wj ,= if Ljn > 0

[

V̂ mn
j

] ∂Y n
j

∂V mn
j

Pn
j ≤ rmj ,= if Vmn

j > 0.

Since the market clearing constraints are the same in the market’s and the planner’s allocation, the planner’s allocation

coincides with the market if the planner’s weights are such that the planner’s FOC for cj coincide with the market.

This is the case if the weight ωj from the planner’s problem equals the inverse of the multiplier on the budget

constraint from the consumer’s optimization problem (i)(a) in the market allocation. To find that weight, using that

U is homothetic we can write U = G (U0 (c, h)), where U0 is homogeneous of degree 1. Then, the planner’s allocation

coincide with the market’s under weights

ωj =
ej

G′ (U0 (cj , hj))U0 (cj , hj)
,

where ej is the expenditure per worker and cj , hj are the consumption per worker of the traded and non-traded

good in the market allocation. If U is homogeneous of degree one, then ωj = PU
j , where PU

j is the price index

associated with U (cj , hj) at the market equilibrium prices pDj , p
H
j . In the opposite direction, given arbitrary weights

ωj , the market allocation implements the planner’s under the transfers tj = PD
j cj + PH

j hj −Wj constructed using

the quantities {cj , hj} from the planner’s allocation and the multipliers
{
PD
j , P

H
j

}
and Wj corresponding to the

constraints (i) and (iv) of the planner’s problem, respectively.

For the case with labor mobility, note that, for populated locations, the planner’s first-order condition with

respect to Lj implies:

PD
j cj + PH

j hj =Wj −WL.

Therefore, the market allocation and the planner’s solution coincide if and only if in the market allocation expenditure

per worker in location j takes the form ej = wj + Constant for all j. The only transfer scheme delivering the same

transfer per capita is tj = Π
L
.

Equivalence of Least Cost Routes. We want to establish that any route used in the planner’s problem is a
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solution to (i)(c) in Definition 3 under the proposed tax scheme. Fix good n. We introduce the following notation:

for a given route r = (j0, . . . , jρ) ∈ Rod, we denote by fn
r the matrix of flows

fn
r (j, k) =







1 if ∃l, 0 6 l 6 ρ− 1 and j = jl, k = jl+1

0 otherwise
.

Consider an optimal route from o to d, r∗ =
(
j∗0 , . . . , j

∗
ρ∗
)
∈ Rod, i.e., such that Qn

j∗
k
j∗
k+1

> 0 at the optimum of the

planner’s problem (ζQj∗
k
j∗
k+1

= 0). We now consider redirecting a marginal amount of goods ε > 0 from r∗ to some

other route r = (j0, . . . , jρ) ∈ Rod. In other words, denoting Qn =
(
Qn

jk

)

j∈J ,k∈N (j)
, we consider the perturbation

Qn + εfn
r − εfn

r∗ . The first-order effect of the deviation around the optimum must reduce the Lagrangian:

L (Qn + εfn
r − εfn

r∗)− L (Qn) ≤ 0.

To translate this condition into a minimum cost route problem we decompose the first-order impact on the Lagrangian,

L (Qn + εfn
r − εfn

r∗)− L (Qn) = ∇QL (Qn) · (fn
r − fn

r∗) ε+ o (ε) ,

and evaluate each term separately. The first deviation term,

∇QL (Qn) · fn
r =

ρ−1∑

l=0

[

−Pn
jl
+ Pn

jl+1
+ ζQjljl+1n

− χPD
jl

(

mnτnjljl+1
+Qjljl+1m

n ∂τjljl+1

∂Qjljl+1

)

− (1− χ)Pn
jl

(

τjljl+1 +Qn
jljl+1

∂τnjljl+1

∂Qn
jljl+1

)]

,

simplifies to

∇QL (Qn) · fn
r =

[

Pn
d − Pn

o +

ρ−1∑

l=0

ζQjljl+1n
−

ρ−1∑

l=0

(

χPD
jl
mnτjljl+1 + (1− χ)Pn

jl
τnjljl+1

)

−

ρ−1
∑

l=0

(

χPD
jl
Qjljl+1m

n ∂τjljl+1

∂Qjljl+1

+ (1− χ)Pn
jl
Qn

jljl+1

∂τnjljl+1

∂Qn
jljl+1

)]

.

Using the definition of the optimal tax, we have that

tnjk = χQjkm
n ∂τjk
∂Qjk

+ (1− χ)Qn
jk

∂τnjk
∂Qn

jk

.

Substituting into the previous deviation term, we obtain

∇QL (Qn) · fn
r =

[

Pn
d − Pn

o −

ρ−1∑

l=0

(

χPD
jl
mnτjljl+1 + (1− χ)Pn

jl
τnjljl+1

)

−

ρ−1
∑

l=0

(

χPD
jl

+ (1− χ)Pn
jl

)

tnjljl+1
+

ρ−1
∑

l=0

ζQjljl+1n

]

.

By assumption, the total deviation Qn+εfn
r −εfn

r∗ has a negative impact on the Lagrangian for the feasible deviation
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ε > 0, so that ∇QL (Qn) · (fn
r − fn

r∗) ≤ 0. Using that ζQj∗
l
j∗
l+1

n = 0 , we get:

Pn
o +

ρ∗−1
∑

l=0

(

χPD
j∗
l
mnτj∗

l
j∗
l+1

+ (1− χ)Pn
j∗
l
τnj∗

l
j∗
l+1

)

+

ρ∗−1
∑

l=0

(

χPD
j∗
l
+ (1− χ)Pn

j∗
l

)

tnj∗
l
j∗
l+1

≤ Pn
o +

ρ−1∑

l=0

(

χPD
jl
mnτjljl+1 + (1− χ)Pn

jl
τnjljl+1

)

+

ρ−1∑

l=0

(

χPD
jl

+ (1− χ)Pn
jl

)

tnjljl+1
−

ρ−1∑

l=0

ζQjljl+1n

≤ Pn
o +

ρ−1
∑

l=0

(

χPD
jl
mnτjljl+1 + (1− χ)Pn

jl
τnjljl+1

)

+

ρ−1
∑

l=0

(

χPD
jl

+ (1− χ)Pn
jl

)

tnjljl+1
.

Hence, the optimal route r∗ is solution to the least-cost route problem

min
r=(j0,...,jρ)∈Rod

Pn
o +

ρ−1∑

l=0

(

χPD
jl
mnτjljl+1 + (1− χ)Pn

jl
τnjljl+1

)

+

ρ−1∑

l=0

(

χPD
jl

+ (1− χ)Pn
jl

)

tnjljl+1
,

where we recognize condition (i)(c) of Definition 3.

Finally, that the minimum cost route problem in the case of own-good congestion (χ = 0) is equivalent to

min
r=(j0,...,jρ)∈Rod

Pn
o

ρ−1
∏

l=0

(

1 + τnjljl+1

)

+

ρ−1
∑

l=0

Pn
jl+1

tnjljl+1

ρ−1
∏

k=l

(

1 + τnjkjk+1

)

,

since Pn
jl+1

=
(

1 + τnjljl+1

)

Pn
jl
+ Pn

jl+1
tnjljl+1

along any used path.

Proposition 5. If the global convexity condition of Proposition 1 is satisfied and the toll is consistent with the

optimal Pigouvian tax ( θnjk = χPD
j m

nετQ,jknτjk + (1− χ)Pn
j ε

τ
Q,jknτ

n
jk) then the decentralized infrastructure choice

implements the optimal network investment.

Proof. To ease notation we focus on the case with own-good congestion (χ = 0), but the case with cross-goods

congestion (χ = 1) can be derived following similar steps. Consider the problem of a regulated monopoly on link jk

allowed to charge a per-unit toll θnjk on good n. The monopolist can purchase asphalt at price pK . We assume that

the government forbids entry on unused links or sets a price too low for entry, allowing us to focus on links used at

the social optimum
(
Qn

jk > 0 for some n, Ijk > 0
)
. Free-entry of shipping companies on link jk yields

pnk ≤ pnj
(
1 + τnjk

(
Qn

jk, I
n
jk

))
+ θnjk,= if Qn

jk > 0.

Under the assumption that τnjk is strictly increasing in Qn
jk, the demand for transport at any level of infrastructure

Ijk given prices is

Qn
jk (Ijk; p) = invQτjk

(
pnk − pnj − θnjk

pnj
, Ijk

)

for pnk ≥ pnj + θnjk, (A.6)

where invQτ (Q, I) denotes the inverse of function τ with respect to Q. The monopoly solves the profit maximization

problem

max
Ijk

∑

n

θnjkQ
n
jk (Ijk)− pKδ

I
jkIjk

subject to (A.6). It can be shown that convexity of τ (Q, I) in Q and I is sufficient for the problem to be concave.

The first-order condition over infrastructure is

∑

n

∂

∂Ijk

[

invQτ

(
pnk − pnj − θnjk

pnj
, Ijk

)]

θnjk = pKδ
I
jk.

From the implicit function theorem, we have that ∂
∂Ijk

[

invQτjk
(

pnk−pnj −θnjk
pn
j

, Ijk
)]

= −
∂τjk
∂Ijk

/
∂τjk
∂Qn

jk
. In turn, imple-
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menting the efficient flows Qn
jk requires the toll θnjk corresponding to the Pigouvian congestion tax from Proposition

4, that is

θnjk = pnj t
n
jk = pnj ε

τ
Q,jknτjk

(
Qn

jk, Ijk
)
= pnjQ

n
jk

∂τnjk
∂Qn

jk

.

Combining the last two expressions, the monopolist’s first-order condition thus becomes the same as (13), except for

the price of asphalt pK . Imposing market clearing in K, the set of conditions in the decentralized allocation coincide

with the planner, implying that pK equals the Lagrange multiplier PK and other prices equal their corresponding

multipliers, pnj = Pn
j and pDj = PD

j . Moreover, under the global convexity condition from Proposition 1, first-order

conditions of the builders are sufficient, which demonstrates the result.

B Appendix to Section 4 (Calibration and Counterfactuals)

Construction of P (j, k) The definition of the weights ωjk (s) assigned to the construction of Iobsjk involves

the cheapest path P (j, k) for all j ∈ J and k ∈ N (j) in every country. To find P (j, k), we first convert the shapefile

with all the road segments from EuroGeographics into a weighted graph, where each edge corresponds to a segment

s on the road network. We define P (j, k) as the shortest path between j and k under the segment-specific weights

lengths ∗ lanes
−χlane
s ∗ χ1−nats

use ∗ χ1−paveds
paved ∗ χ1−medians

median , where lengths is the length of the segment, laness is the

number of lanes, nats equals 1 if the segment belongs to a national road, paveds equals 1 if the segment is paved,

and medians equals 1 if the segment has a median. When information on number of lanes is missing we assign a

number of lanes equal to the minimum of 1 observed in the data. When the information is missing we define the

road use as non-national. We parametrize χlane, χuse, χpaved, and χmedian based on the extent by which adding a

lane, using a national road, using paved road, or using a road with a median reduces road user costs. Table 4 of

Combes and Lafourcade (2005) reports that, in France, the reference cost per km. in a national road with at least 4

lanes is 25% higher than in other national roads. In our road network data for France, the average number of lanes

in national roads with at least 4 lanes is 4.43, and the average number of lanes in national roads with less than 4

lanes is 1.9. From this, we infer that adding 2.5 lanes on top of 2 lanes, a 125% increase in the number of lanes,

reduces costs by 25%, implying an elasticity of user costs with respect to number of lanes of χlane = 25%
125%

= 0.2 in

absolute value. In addition, Table 4 in Combes and Lafourcade (2005) reports that the total reference cost is about

7% higher on “secondary roads” relative to “other national roads”, from which we infer χuse = 1.07. According to

Figueroa et al. (2013), road user costs are 35% higher on gravel relative to paved roads, implying χpaved = 1.35, and

according to Tay and Churchill (2007), adding a median increases speed by 5%, implying χmedian = 1.05.

Calibration of β and γ To parametrize β and γ we assume that: i) trade costs are a linear function of

shipping time, τjk = aτjk
distjk
Sjk

; ii) shipping speed is a log-linear function of the number of vehicles and road lane

kilometers,

Sjk = aSjkI
γ
jkV

−β
jk ; (A.7)

and iii) the total number of vehicles is a linear function of the quantity of goods that is shipped, Vjk = aDjkQjk. These

assumptions are consistent with the functional form 10 for τjk (Q, I). To recover the parameters γ and β, one would

ideally like to estimate the relationship between speed, roads, and vehicles in (A.7) across links. This relationship

is estimated by Couture et al. (2018) across cities.44 Equation (2) in their paper assumes a log-linear relationship

44Couture et al. (2018) estimate the parameters from data on movements of vehicles, regardless of the trip purpose
(i.e., it may include transport of passengers or goods). We assume that the speed of vehicles transporting goods
responds to traffic and to highway lanes similarly to vehicles transporting passengers, and that the total number of
vehicles Vjk is a linear function of the number vehicles transporting goods. Data from the 2015 E-Road traffic census
in Europe shows a correlation of 0.81 between the average daily traffic of all vehicles and of vehicles used to transport
goods across measuring posts in European highways. On average across measuring stations, 16% of all vehicles are
used for transport.
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between speed, roads, and vehicle travel time, defined as vehicle-kilometers (i.e., vehicles times distance) over speed.

To measure roads they use the log of lane-kilometers of interstate highways in the U.S., which corresponds to our

measure of Ijk. Assuming that their estimates would hold at the level of a connection between populated areas in

our data, in our notation equation (2) of their paper can be written:45

lnSjk = αCDT ln Ijk − θCDT ln

(
Vjk ∗ distjk

Sjk

)

+ εjk, (A.8)

where we use αCDT and θCDT to refer to α and β in their paper. These parameters translate to ours as follows:

αCDT ≡ γ
1+β

and θCDT ≡ β
1+β

. When αCDT < θCDT there are decreasing returns to scale in the provision of vehicle

kilometers traveled. Couture et al. (2018) find decreasing returns to scale (αCDT < θCDT→γ < β) across all their

specification (Tables 5 and 6 of their paper) using a variety of OLS and IV approaches. Their preferred estimate

(column 6 of table 5) yields αCDT = 0.09 and θCDT = 0.13, implying γ = 0.10 and β = 0.13.

Construction of Ruggedness Measure We use elevation data from the ETOPO1 Global Relief Model.

The ETOPO1 dataset corresponds to a 1 arc-minute degree grid. We construct ruggedness for each cell as the

average ruggedness across the 900 arc-minute cells from the ETOPO1 dataset contained in each 0.5 arc-degree cell

in our discretized maps. We use the standard ruggedness index by Riley et al. (1999). Letting J etopo (j) be the set

of cells in ETOPO1 contained in each cell j ∈ J of our discretization and N etopo (i) be the 8 neighboring cells to

each cell in ETOPO1, this index is defined as: ruggedj =
(
∑

i∈J etopo(j)

∑

k∈Netopo(i) (elevi − elevk)
2
)1/2

; i.e., it is

the standard deviation of the difference in elevation across neighboring cells. Then, we define ruggedjk in (21) as

ruggedjk = 1
2
(ruggedj + ruggedk).
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Table A.1: Summary Statistics of Actual and Discretized Road Network by Country

Note: Columns (1) to (3) report statistics from EuroGlobalMap, and Columns (4) to (6) report statistics from the

discretization of road networks described in Section 5.1.

45In their notation, vehicle travel time (number of vehicles times time of travel) is V TTi =
V KTi

Si
where V KT is

vehicle kilometers (number of vehicles times distance) and Si is speed (distance over time of travel). In our notation,
therefore, V KTi = Vjk × distjk.
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Figure A.1: Calibration of Population and Income Shares, all Locations and Countries

(a) Population Shares in Model and Data
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(b) Income Shares in Model and Data
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(c) Fundamentals and Income Shares, Mobile Labor
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(d) Fundamentals and Population Shares, Mobile Labor
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Notes: The figures pool the 868 cells across the 24 countries in the convex case of the parameters for the calibration

with 10 differentiated goods. Similar relationships hold for the non-convex case. In the panels (c) to (e), log-

productivity and log-endowment of the non-traded good per capita are demeaned within each country.
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�Ç��µ� íXñ9 ìXò9 íXï9 íXì9 ìXî9 íXì9

�Ì��Z�Z��µ�o]� íXò9 ìXó9 íXï9 íXì9 ìXî9 íXì9

��vu��l ôXï9 íXì9 óXô9 ðXï9 ìXð9 ðXï9

&]vo�v� ñXï9 íXî9 ðXó9 îXò9 ìXð9 îXï9

&��v�� ðXì9 íXì9 ïXð9 îXó9 ìXð9 îXñ9

'�}�P]� ïXð9 íXï9 ïXí9 îXî9 ìXï9 îXî9

'��u�vÇ îXó9 íXî9 îXï9 íXô9 ìXï9 íXó9

,µvP��Ç ïXí9 ìXõ9 îXó9 íXó9 ìXî9 íXó9

/��o�v� îXô9 ìXõ9 îXð9 íXô9 ìXï9 íXó9

/��oÇ îXñ9 íXî9 íXõ9 íXò9 ìXð9 íXï9

>��À]� ðXì9 ìXõ9 ïXò9 îXñ9 ìXï9 îXó9

>]�Zµ�v]� ïXð9 íXì9 ïXì9 îXð9 ìXï9 îXï9

>µÆ�u�}µ�P ìXî9 ìXî9 ìXí9 ìXî9 ìXí9 ìXí9

D����}v]� íXì9 ìXò9 ìXõ9 ìXñ9 ìXí9 ìXñ9

D}o�}À� íXô9 ìXò9 íXñ9 íXì9 ìXî9 ìXõ9

E��Z��o�v�� íXò9 ìXñ9 íXð9 íXî9 ìXî9 íXí9

E}��Z��v�/��o�v� íXî9 ìXò9 íXì9 ìXô9 ìXí9 ìXô9

W}��µP�o îXò9 ìXõ9 îXí9 íXð9 ìXï9 íXî9

^o}À�l]� îXó9 íXï9 îXï9 íXõ9 ìXï9 íXõ9

^o}À�v]� íXô9 ìXò9 íXò9 íXð9 ìXî9 íXð9

^��]v ñXò9 îXï9 ðXó9 ïXó9 ìXñ9 ïXñ9

^Á]�Ì��o�v� íXô9 ìXó9 íXñ9 íXì9 ìXî9 ìXõ9

�À���P� îXô9 ìXõ9 îXð9 íXó9 ìXï9 íXó9

E}vr�}vÀ�Æ �}vÀ�Æ
/��

Table A.2: Welfare Gains From Optimal Reallocation or Expansion of Current Networks, Fixed Labor
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�Æ��v�]}v�~'�K� �Æ��v�]}v�~&K�� D]��oo}���]}v �Æ��v�]}v�~'�K� �Æ��v�]}v�~&K�� D]��oo}���]}v

�µ���]� ïXð9 íXõ9 îXô9 îXð9 ìXð9 îXñ9

��oP]µu íXì9 ìXñ9 ìXô9 ìXò9 ìXí9 ìXñ9

�Ì��Z�Z��µ�o]� íXò9 íXï9 íXï9 íXí9 ìXî9 íXí9

��vu��l õXò9 íXô9 ôXõ9 ðXñ9 ìXð9 ðXñ9

&��v�� ðXï9 îXî9 ïXð9 ïXí9 ìXñ9 îXõ9

'��u�vÇ îXð9 îXí9 îXï9 îXì9 ìXï9 íXô9

,µvP��Ç ïXí9 íXí9 îXó9 íXô9 ìXï9 íXô9

/��o�v� îXô9 íXñ9 îXï9 íXô9 ìXï9 íXó9

&]vo�v� òXð9 íXò9 ñXó9 ïXí9 ìXð9 îXô9

/��oÇ îXò9 îXð9 îXì9 íXò9 ìXð9 íXï9

>��À]� ðXì9 íXí9 ïXò9 îXñ9 ìXï9 îXò9

>]�Zµ�v]� ïXô9 íXí9 ïXï9 îXò9 ìXï9 îXò9

D}o�}À� íXô9 ìXò9 íXò9 íXí9 ìXî9 íXì9

>µÆ�u�}µ�P ìXî9 ìXí9 ìXí9 ìXí9 ìXí9 ìXí9

D����}v]� ìXõ9 ìXò9 ìXô9 ìXñ9 ìXí9 ìXð9

E}��Z��v�/��o�v� íXí9 ìXò9 ìXõ9 ìXô9 ìXí9 ìXô9

E��Z��o�v�� íXò9 ìXñ9 íXï9 íXð9 ìXî9 íXï9

^o}À�l]� ïXí9 íXõ9 îXó9 îXî9 ìXï9 îXî9

W}��µP�o îXð9 íXï9 îXí9 íXï9 ìXï9 íXí9

^o}À�v]� íXó9 ìXó9 íXñ9 íXï9 ìXí9 íXð9

^Á]�Ì��o�v� íXó9 ìXõ9 íXð9 íXí9 ìXî9 íXì9

^��]v ñXî9 ïXî9 ðXò9 ðXì9 ìXò9 ïXô9

'�}�P]� ïXò9 íXò9 ïXî9 îXï9 ìXï9 îXð9

�Ç��µ� íXñ9 ìXñ9 íXï9 íXì9 ìXî9 ìXõ9

�À���P� îXõ9 íXï9 îXñ9 íXô9 ìXï9 íXô9

/��
E}vr�}vÀ�Æ �}vÀ�Æ

Table A.3: Welfare Gains From Optimal Reallocation or Expansion of Current Networks, Mobile Labor
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Table A.4: Optimal Infrastructure Investment, Population Growth and Local Characteristics for
Different Number of Sectors

(1) (2) (3) (4) (5) (6)

Investment Investment Investment Pop. Growth Pop. Growth Pop. Growth

Population 0.114∗∗∗ 0.125∗∗∗ 0.125∗∗∗ -0.000 -0.000 -0.000

Tradeable Income per Capita 0.146∗∗ 0.071 0.083 0.013∗ 0.008 0.011

Infrastructure -0.214∗∗∗ -0.235∗∗∗ -0.236∗∗∗ -0.001 -0.001 -0.001

Consumption per Capita -0.064∗∗∗ -0.060∗∗∗ -0.065∗∗∗

Infrastructure Growth 0.000 0.002∗ 0.002∗

Differentiated Producer 0.009∗∗∗ 0.010∗∗∗ 0.010∗∗∗

Observations 868 868 868 868 868 868

Adjusted R-squared 0.22 0.24 0.25 0.56 0.54 0.57

Each column corresponds to a different regression pooling all locations in the optimal expansion counterfactual

across the 24 countries in the convex case with mobile labor and δ = δI,GEO. The dependent variable is investment

in columns (1)-(3) and population growth in columns (4)-(6). All regressions include country fixed effects. Standard

errors are clustered at the country level. ***=1% significance, **=5%, *=10%. Dependent variables: population

growth is defined as ∆ lnLj , where ∆x denotes the difference between variable x in the counterfactual and in the

calibrated allocation. Investment growth is defined as the difference over the average, ∆Ij/
(
1
2
(Ij +∆Ij)

)
, where

total infrastructure at the node level defined as Ij =
∑

k∈N (j) Ijk. Independent variables correspond to the log of

the level of each variable in the calibrated model. Population and income per capita are the two outcomes matched

by the calibration. Consumption per capita corresponds to traded goods, cj in the calibrated model. Differentiated

producer is a dummy for whether the location is a producer of differentiated goods in the calibration.

Table A.5: Average Welfare Gains for Different Number and Allocation of Differentiated Goods

Allocation of goods Benchmark Within NUTS

Number of Sectors N=10 N=15 N=10 N=15

Labor: Fixed Mobile Fixed Mobile Fixed Mobile Fixed Mobile

Optimal Reallocation

δ = δI,GEO 1.7% 1.8% 1.7% 1.8% 1.8% 1.9% 2.2% 2.2%

Optimal Expansion

δ = δI,GEO 1.7% 1.8% 1.8% 1.8% 1.9% 2.0% 2.3% 2.3%

δ = δI,FOC 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.4% 0.4%

Each element of the table shows the average welfare gain in the corresponding counterfactual across the 24 countries

for the convex case.
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Table A.6: Average Welfare Gains with and without Congestion across Goods

Congestion Across Goods Own Good (Iceberg)

Labor: Fixed Mobile Fixed Mobile

Optimal Reallocation

δ = δI,GEO 1.7% 1.8% 1.5% 1.4%

Optimal Expansion

δ = δI,GEO 1.7% 1.8% 1.6% 1.5%

δ = δI,FOC 0.3% 0.3% 0.2% 0.2%

Each element of the table shows the average welfare gain in the corresponding counterfactual across the 24 countries

for the convex case with N=10 goods.

Figure A.2: Discretization of the European Road Network

(a) Population on the Discretized Map (b) Nodes and Edges in the Baseline

Graph

(c) Nodes in the Actual Road Network (d) Actual Road Network on the Baseline

Graph

Notes: Panel (a) shows total population from GPW aggregated into 1 arc-degree (approximately 100 km) cells. Panel

(b) shows the nodes J corresponding to the population centroids of each cell in Panel (a), reallocated to their closest

point on the actual road network, and the edges E corresponding to all the vertical and diagonal links between

cells. Panel (c) shows the centroids and the actual road network. Green segments correspond to national roads, red

segments are all other roads, and the width of each segment is proportional to the number of lanes. Panel (d) shows

the same centroids and the edges as the baseline graph in Panel (b), where each edge is weighted proportionally to

the average number lanes on the cheapest path between each pair of nodes on the road network. The color shade

ranges from red to green according to the fraction of the shortest path traveled on a national road.
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C Appendix to Section 4 (Illustrative Examples)

Figure A.3: A Simple Underlying Geography

(a) Population

(b) Productivity

Notes: On panel (a), each circle represents a location. The links represent the underlying network, i.e., links upon

which the transport network may be built. Population and housing are uniform across space, normalized to 1. On

panel (b), the size of the circles represent the productivity of each location.
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Figure A.4: The Optimal Network for K = 1 and K = 100

(a) K=1

(b) K=100

Notes: On each panel, the thickness and color of the segments reflects the level of infrastructure built on a given

link. Thicker and darker colors represent more infrastructure. On the bottom panels, the heat map represents the

level of prices and consumption, normalized to 1 at the center. Lighter color represents higher values for prices and

consumption. Prices and consumption levels are linearly interpolated across space to obtain smooth contour plots.
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Figure A.5: Optimal Network with Randomly Located Cities

(a) Convex Case: γ = β = 1

(b) Non-Convex Case: γ = 2 > β = 1

(c) Optimal Network Before and After Annealing Refinement in Non-Convex Case

Notes: On each panel, the thickness and color of the segments reflects the level of infrastructure built or the shipment

sent on a given link. Thicker and darker colors represent higher infrastructure or quantity.
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Figure A.6: Optimal Network with 10+1 Goods, Convex Case (β = γ = 1), Labor Mobility

Notes: On panel (a), the thickness and color of the segments reflects the level of infrastructure built on a given link,

and the size of each circle is the population share. On the other panels, the segments represent the quantity shipped

through each link and the circles represent the location of producers.
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Figure A.7: Optimal Network with 10+1 Goods, Nonconvex Case (β = 1,γ = 2), Labor Mobility

Notes: On panel (a), the thickness and color of the segments reflects the level of infrastructure built on a given link,

and the size of each circle is the population share. On the other panels, the segments represent the quantity shipped

through each link and the circles represent the location of producers. This figure represents a local optimum.
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Figure A.8: The Optimal Transport Network under Alternative Building Costs

(a) Baseline Geography (b) Adding a Mountain

(c) Adding a River and a Bottleneck Access by Land (d) Allowing for Endogenous Bridges

(e) Allowing for Water Transport (f) Non-Convex Case (γ = 2; β = 1) with Annealing

Notes: The thickness and color of the segments reflect the level of infrastructure built on a given link. Thicker and

darker colors represent more infrastructure and quantities. The circles represent the 20 cities randomly allocated

across spaces. The larger red circle represents the city with the highest productivity. The different panels vary in

the parametrization of the cost of building infrastructure. In panel (a), it is only a function of Euclidean distance.

In panel (b), we add a mountain and assume that the cost also depend on difference in elevation. In panel (c), we

add a river with a natural land crossing and assume that the cost of building along or across the river is infinite. In

panel (d) there is no natural land crossing but allow for construction of bridges. In panel (e) we additionally allow

for investment in water transport. Panel (d) makes the assumptions as Panel (e) but assumes increasing returns to

network building.
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D Numerical Implementation

In this section, we provide a more detailed explanation of the numerical algorithms we use to solve the model. A

Matlab toolbox implementing our model with detailed documentation and a few examples is available on the authors’

websites.46

D.1 Resolution method

Convex case and duality approach

As explained in section 3.6, our preferred approach to solve the model relies on solving the dual Lagrangian

problem of the planner. We provide, here, a simple example of how to solve the joint optimal allocation and

transport problem taking the infrastructure network {Ijk} as given. This example can easily be generalized to the

full problem, including the network design problem, in the convex case, but is also part of our resolution method for

the nonconvex case. We focus on the case studied in the quantitative part of the paper, in which: i) we use the log-

linear specification of transport costs, τnjk = δτjk
(
Qn

jk

)β
I−γ
jk (own-good congestion, χ = 0) or τnjk = mnδτjk (Qjk)

β I−γ
jk

with Qjk =
∑N

n=1m
nQn

jk (cross-good congestion, χ = 1); ii) labor is the sole production factor, Fn
j

(
Ln

j

)
= znj

(
Ln

j

)a
;

and iii) CT is a CES aggregator with elasticity of substitution σ. We consider the case with immobile labor.47

We write the Lagrangian of the problem

L =
∑

j

ωjLjU (cj , hj)−
∑

j

PD
j



cjLj + χ
∑

k∈N (j)

δτjk

(
N∑

n=1

mnQn
jk

)1+β

I−γ
jk −

(
∑

n

(
Dn

j

)σ−1
σ

) σ
σ−1





−
∑

j

∑

n

Pn
j



Dn
j +

∑

k∈N (j)

(

Qn
jk + (1− χ) δτjk

(
Qn

jk

)1+β
I−γ
jk

)

− znj
(
Ln

j

)a
−
∑

i∈N (j)

Qn
ij





−
∑

j

Wj

[
∑

n

Ln
j − Lj

]

+
∑

j,k,n

ζQjknQ
n
jk +

∑

j,n

ζLjnL
n
j +

∑

j,n

ζCjnD
n
j +

∑

j

ζcj cj .

Recall that the dual problem consists of solving

inf
λ≥0

sup
x

L (x,λ) .

We start by expressing our control variables x =
(
cj , D

n
j , Q

n
jk, L

n
j

)
as functions of the Lagrange multipliers λ =

(

PD
j , P

n
j ,Wj , ζ

Q
jkn, ζ

L
jn, ζ

C
jn, ζ

c
j

)

. Using the optimality conditions, one obtains the following expressions:

cj = U−1
c



ω−1
j

(
∑

n′

(

Pn′

j

)1−σ
) 1

1−σ

, hj





Dn
j =






Pn
j

(
∑

n′

(
Pn′

j

)1−σ
) 1

1−σ






−σ

cjLj + χ
∑

k∈N (j)

δτjk

(
N∑

n=1

mnQn
jk

)1+β

I−γ
jk





Ln
j =

(
Pn
j z

n
j

) 1
1−a

∑

n′

(
Pn′

j zn
′

j

) 1
1−a

Lj .

46Latest version available at https://sites.google.com/site/edouardschaal/

OptimalTransportNetworkToolbox.zip.
47In the mobile labor case, we can only show that the planner’s problem is a quasi-convex optimization problem.

Hence, a duality gap may exist. We therefore adopt a (slower) primal approach in that case.
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In the case of own-good congestion (χ = 0), the flows can be easily inverted,

Qn
jk =

[

1

1 + β

Iγjk
δτjk

max

(
Pn
k

Pn
j

− 1, 0

)] 1
β

,

but in the case of cross-good congestion, one first needs to invert the aggregate flows Qjk =
∑N

n=1m
nQn

jk, which is

sufficient to evaluate the Lagrangian at any point,48

Qjk = max
n

(

Pn
k − Pn

j

(1 + β)PD
j m

nδτjkI
−γ
jk

) 1
β

.

As these expressions illustrate, we have been able to eliminate a large number of the multipliers directly, so that

the only remaining Lagrange multipliers are λ =
(
Pn
j

)

j,n
. We may now compute the inner part of the saddle-point

problem:49

L (x (λ) ,λ) =
∑

j

ωjLjU (cj (λ) , hj)−
∑

PD
j



cj (λ)Lj + χ
∑

k∈N (j)

δτjkQ
1+β
jk (λ) I−γ

jk





−
∑

j

∑

n

Pn
j



Dn
j (λ) +

∑

k∈N (j)

(

Qn
jk (λ) + (1− χ) δτjk

(
Qn

jk (λ)
)1+β

I−γ
jk

)

− znj
(
Ln

j (λ)
)a

−
∑

i∈N (j)

Qn
ij (λ)



 .

The dual problem then consists of the simple unconstrained, convex minimization problem in J ×N unknowns:50

min
λ>0

L (x (λ) ,λ) .

This problem can be readily fed into numerical optimization software. Faster convergence can be achieved by providing

the software with an analytical gradient and hessian. Note that, as a direct implication of the envelope theorem, the

gradient of the dual problem is simply the vector of constraints:

∇L (x (λ) ,λ) = −









...

Cn
j (λ) +

∑

k∈N (j)

(

Qn
jk (λ) + δτjk

(
Qn

jk (λ)
)1+β

I−γ
jk

)

− znj
(
Ln

j (λ)
)a

−
∑

i∈N (j)Q
n
ij (λ)

...









.

Nonconvex cases

When the conditions for convexity fail to obtain, the full planner’s problem is not a convex optimization problem.

It is, however, easy to find local optima by using the following iterative procedure. We then search for a global

maximum using a simulated annealing method that we describe below.

Finding Local Optima Despite the failure of global convexity for the full planner’s problem, the joint optimal

allocation and transport problems, taking the network as given, is always convex as long as β > 0. We thus use our

duality approach to solve for
(
cj , D

n
j , Q

n
jk, L

n
j

)
for a given level of infrastructure Ijk, and then iterate on the (necessary)

first order conditions that characterize the optimal network. The procedure can be summarized in pseudo-code as

follows.

48The specific values Qn
jk can be recovered at the end of the optimization by inverting the linear system (for given

multipliers λ) which corresponds to the balanced-flows constraints, the constraints Qjk (λ) =
∑N

n=1m
nQn

jk and the

complementary slackness conditions, ζQjknQ
n
jk = 0.

49Note that, due to complementary slackness, we can drop the constraints that correspond to all the Lagrange
multipliers that we were able to solve by hand. As a result, only the balanced flows constraints remain.

50Dual problems are always convex, by construction, even when the primal problem is not.
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1. Let l := 1. Guess some initial level of infrastructure
{

I
(1)
jk

}

that satisfies the network building constraint.

2. Given the network
{

I
(l)
jk

}

, solve for
(
cj , D

n
j , Q

n
jk, L

n
j

)
using a duality approach.

3. Given the flows Qn
jk and the prices Pn

j , get a new guess I
(l+1)
jk =

[

γ
PK

δτjk

δI
jk

(

PD
j Q

1+β
jk

)] 1
1+γ

for χ = 1 (or

I
(l+1)
jk =

[

γ
PK

δτjk

δI
jk

(
∑

n P
n
j

(
Qn

jk

)1+β
)] 1

1+γ

for χ = 0) and set PK such that
∑
δIjkI

(l+1)
jk = K.

4. If
∑

j,k

∣
∣
∣I

(l+1)
jk − I

(l)
jk

∣
∣
∣ 6 ε, then we have converged to a potential candidate for a local optimum. If not, set

l := l + 1 and go back to (2).

Simulated Annealing In the absence of global convexity results, the above iterative procedure is likely to end

up in a local extremum. Unfortunately, there exists to our knowledge few global optimization methods that would

guarantee convergence to a global maximum in a reasonable amount of time.51 We opt for the simple but widely

used heuristic method of simulated annealing, which is a very popular probabilistic method to search for the global

optimum of high dimensional problems such as, for instance, the traveling salesman problem. Simulated annealing

can be described as follows:

1. Let l := 1. Set the initial network
{

I
(1)
jk

}

to a local optimum from the previous section and compute its welfare

v(1). Set the initial “temperature” T of the system to some number.

2. Draw a new candidate network
{

Îjk
}

by perturbing
{

I
(l)
jk

}

(see below). (Optional: deepen the network.)

Compute the corresponding optimal allocation and transport
{
cj , D

n
j , Q

n
jk, L

n
j

}
. Compute associated welfare

v̂.

3. Accept the new network, i.e., set I
(l+1)
jk = v̂ and v(l+1) = v̂ with probability min

[

exp
((

v̂ − v(l)
)

/T
)

, 1
]

, if

not keep the same network,
{

I
(l+1)
jk

}

=
{

I
(l)
jk

}

and v(l+1) = v(l).

4. Stop when T < Tmin. Otherwise set l := l + 1 and T := ρTT and return to (2),

where ρT < 1 controls the speed of convergence. Note that we allow to “deepen” the network in step (2), meaning

that we additionally apply the iterative procedure from the previous section for a pre-specified number of iterations

so that the candidate network
{

Îjk
}

is more likely to be a local optimum.

Drawing Candidate Networks The performance of the simulated annealing depends on how new candidate

networks are drawn. Because of the complex network structure, purely random perturbations are likely to be rejected

and the algorithm may easily fail to improve the initial network. We propose the two different perturbation methods

that have consistently produced the best results throughout our simulations.

Algorithm #1 “Rebranching” This algorithm exploits the structure of the problem to make educated guesses

for the candidate networks. The algorithm builds on the idea that, under increasing returns, a welfare improvement

can be achieved by directly connecting locations to more central locations. Since a lower price level indicates that

a location has higher relative availability of goods produced anywhere in the economy, we use the price level as a

proxy for centrality. We thus construct candidate networks where random locations are better connected to their

lowest-price neighbors. The algorithm can be described as follows:

1. Given an initial network I
(l)
jk , draw a random set of locations I ⊂ J for “random rebranching” or set I = J

for “deterministic rebranching”.

51Techniques such as the branch-and-bound method are guaranteed to converge to the global optimum, but remain
heavy to implement and computationally intensive.
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2. For each j ∈ I , identify m (j) as the neighbor with the lowest price index for the bundle of tradable goods,

m (j) = argmin
k∈N (j)

PD
k , and n (j) as the “parent” with the highest level of infrastructure, n (j) = argmax

k∈N (j)|Pn
k
6Pn

j

Ikj .

3. For each j ∈ I , define the candidate network I
(l+1)
jk by switching the infrastructure levels of m (j) and n (j):

I
(l+1)
kj =







I
(l)
m(j)j if k = n (j) , j ∈ I

I
(l)
n(j)j if k = m (j) , j ∈ I

I
(l)
kj if j /∈ I or (j ∈ I and k /∈ {m (j) , n (j)}) ,

which, by construction, satisfies the network building constraint.

Algorithm #2 “Hybrid Alder-FS” This algorithm attempts to implement the spirit of the algorithm proposed in

Alder (2019), while exploiting the continuity of infrastructure investments and differentiability of the problem. The

algorithm can be described as follows:

1. Compute the welfare gradient with respect to infrastructure investments and some given price of asphalt PK .

Delete the 5% links that correspond to the lowest elements of the gradient.

2. Compute the new economic allocation given the new network.

3. Compute the new welfare gradient and add a predefined quantity of asphalt to the link that has the highest

element in the welfare gradient among inactive links.

4. Rescale the network so that the total quantity of asphalt is used and make sure that the network is connected

(otherwise add the most beneficial link).

D.2 Numerical Evaluation of the Nonconvex Algorithm

We evaluate our simulated annealing approach in the nonconvex case in a range of random economies for which

one can compute or approximate the global optimum.

Brute Force Approach An important caveat when running this performance evaluation is that infrastructure

investments are continuous, so that the space of feasible networks is infinite. There is, unfortunately, no readily

available brute force algorithm that guarantees finding the global optimum in this case. We explore every discrete

combination of bilateral links (on/off), which we then use as initial conditions to iterate on the first-order conditions

that characterize optimal infrastructure investment in our model. This brute force algorithm can only be used for

small economies with a limited number of locations, as the number of combinations 2n(n−1)/2 explodes rapidly.

Alder (2019) We also compare the performance of our algorithm to Alder (2019), who proposes another heuristic

algorithm in a spatial economic model. Since the Alder algorithm is discrete in nature (locations are connected or not,

and there is no intensive aspect to infrastructure investments), there is no obvious way to perform the comparison.

We propose two approaches.

In the first approach, which we refer to as “Alder”, we implement a simple version of the Alder (2019) algorithm in

our model. Specifically, we restrict infrastructure investments to be discrete (0 or I), where I is constant across links

and chosen such that the asphalt budget constraint is satisfied with equality. Under this constraint, we implement

every step of the Alder algorithm, that is: 1) start from the full network, 2) compute welfare by removing each link

one by one, 3) remove the 5% least profitable links, 4) add the most profitable link, 5) make sure that the network in

connected, and iterate over (2)-(5) until no further step improves welfare. As a final step, we use the outcome of the

Alder algorithm as initial condition in the first-order condition iteration from our model, making sure that welfare
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keeps improving along the way. As a result we obtain a continuous version of the optimal network that is comparable

to ours.

A caveat in the first approach is that the first part of the algorithm is constrained by the discreteness of invest-

ments. We thus devise a new algorithm that combines the appealing aspects of Alder (2019) with our continuous-

investment approach which relies on differentiation and on the simulated annealing to escape local optima. We refer

to this second approach as “Hybrid Alder-FS”. To be more precise, we modify our simulated annealing algorithm

described in the previous section so that the stage in which we perturb the network is done in the spirit of the Alder

algorithm. Specifically, the network is perturbed in the following way: 1) compute the welfare gradient with respect

to infrastructure investment, 2) remove the 5% links with the lowest welfare gradient, 3) recompute the welfare and

welfare gradient in the network after removal, 4) add the link that has the highest welfare gradient among non-

existing links, and 5) make sure that the network is connected. The rest of the algorithm is kept identical to ours.

In particular, it iterates on the first-order conditions associated with infrastructure investment before accepting the

perturbation. In that sense, the intensive dimension of infrastructure investment is preserved throughout.

Note finally that the original Alder (2019) algorithm is designed to maximize aggregate income net of the dollar

value of infrastructure investments. In this comparison, we change the objective function so that it maximizes welfare

instead, subject to a fixed asphalt budget.

Simulated annealing There are many ways one can perturb the network in each loop of the simulated annealing

method. To explore the role of the perturbation stage, we experiment with various ways to perturb the network:

1) purely random perturbations, 2) deterministic rebranching, and 3) random rebranching. “Rebranching” refers

to the algorithm that we described in the previous section. In the deterministic version, all nodes are selected for

rebranching every loop (i.e., reconnected to their best neighbors), while they are picked at random in the random

version. This comparison allows us to evaluate the importance of randomness in the perturbation process as a way

to escape local optima.

Small random economies

To perform the algorithm comparison, we draw random geographies for a given number of replications Nreps.

Specifically, for each geography, we draw n locations from a uniform distribution over [0, 1]× [0, 1]. The underlying

network is fully connected. We parametrize the transport cost parameters δτjk and network building costs δIjk to be

the euclidean distance between each pair of locations. To ease comparison with Alder (2019), who uses a gravity

model without labor mobility, we study an Armington version of our model in which each location produces its variety

with fixed labor. The rest of the model is otherwise identical to the one described in section 3. In particular, there is

congestion in the transport technology, that is β > 0 using technology (10). We focus exclusively on nonconvex cases

with γ > β.52

Table A.7 below reports the performance of the various numerical approaches for several numbers of locations

and replications. Due to the computation time of the brute force algorithm, we must restrict ourselves to 6 locations

at most.

Before starting the individual comparison of each algorithm, it should be noted that the welfare losses are

overall quite small with numbers in the magnitude of 10−4 in consumption equivalent. This suggests that, all

things considered, each of these algorithms perform quite well for small economies. Looking at their individual

performance, we find that the simple Alder algorithm is the least effective method with a welfare loss of about 0.02-

0.03% in consumption equivalent compared to the brute force algorithm in most cases. A potential reason is that

the discreteness constraint heavily distorts the search for the optimum in an economy with continuous investments.

Turning to the other algorithms, our findings suggest that the random version of our “rebranching” algorithm and

the Hybrid Alder-FS algorithm get the best results with average welfare losses of about 0.004% or less. The Hybrid

52In the convex case β ≥ γ, a simple iteration over our model’s first-order conditions or descent along the gradient
suffice to find the global optimum quickly, so the algorithm comparison is irrelevant.
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Alder-FS algorithm does slightly better in our simulations with 5 locations, but the random rebranching algorithm

has the edge in the 6 locations case. In terms of computation time, the Hybrid algorithm requires slightly more time

than the FS algorithm due to an additional evaluation of the equilibrium during the updating process. The Alder

algorithm is the fastest algorithm given the small amount of locations, but the difference quickly reverts when we

increase their number, as we show next.

Large random economies

We extend our comparison to economies with more locations. Unfortunately, we can no longer use the brute force

algorithm, but we can still compare the performance between the other algorithms. In this last exercise, we focus on

the version of our model used for the European road exercise in Section 5. Namely, we consider w × h rectangular

networks with Moore neighborhood (each location is connected to its immediate horizontal, vertical and diagonal

neighbors). Since we study economies with a large number of locations, we limit the number of traded goods to 2.

As we did in the European exercise, we assume that one of the goods is a homogeneous “agricultural” good that can

be produced in any location. The other good is a differentiated variety that can only be produced in a number of

locations Ncities drawn uniformly among all locations. The rest of the model is otherwise identical to the previous

section.

The results of this exercise, in Table A.8 below, are reported in terms of the welfare gains with respect to

the local optimum that results from iterating over our model’s first-order conditions without using annealing. Our

findings suggest larger differences between the algorithms as spatial complexity increases. While the Hybrid Alder-FS

algorithm seems to perform quite well overall (and definitely better than random perturbations), our “rebranching”

algorithm, in its deterministic and random versions, yields the best results in all cases. The random version performs

the best with welfare improvements ranging between 0.01% and 0.1%. The simple (discrete) Alder algorithm does

not do as well, most likely for the reason mentioned before.
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Table A.7: Comparison of the welfare losses for small economies

Simulated annealing

#locations Nreps Alder Random Rebranching

(deterministic)

Rebranching

(random)

Hybrid Alder-FS

4 100 -0.0360% -0.0036% -0.0036% -0.0020% -0.0020%

5 100 -0.1281% -0.0046% -0.0047% -0.0043% -0.0032%

6 10 -0.0216% -0.0016% -0.0019% 0.0004% -0.0019%

Notes: This table reports welfare in percentage consumption equivalent for the optimal network resulting from each algorithm compared to the brute force

algorithm. The parameters chosen for the simulation are β = 1, γ = 2, K = 1, σ = 5, uniform amenities, productivity and population, no cross-good congestion,

Cobb-Douglas utility with share α = 0.5 on traded goods.
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Table A.8: Comparison of the welfare gains for large economies

Simulated annealing

#locations Ncities Nreps Alder Random Rebranching

(deterministic)

Rebranching

(random)

Hybrid Alder-FS

25 10 100 -0.0272% 0.0000% 0.0122% 0.0153% 0.0035%

64 20 100 -0.0133% 0.0000% 0.0378% 0.0431% 0.0017%

64 40 100 -0.0068% 0.0003% 0.0057% 0.0061% 0.0012%

100 20 100 -0.0033% 0.0011% 0.0858% 0.0954% 0.0024%

100 40 100 -0.0062% 0.0015% 0.0259% 0.0303% 0.0018%

100 60 100 -0.0048% 0.0005% 0.0042% 0.0061% 0.0008%

Notes: This table reports the welfare gain in percentage consumption equivalent compared to the outcome of our approach in non-convex cases without simulated

annealing, simply obtained by iterating over the first-order conditions of our model starting from a full network. The parameters chosen for the simulation are

β = 1, γ = 2, K = 1, σ = 5, uniform amenities, productivity and population, no cross-good congestion, and Cobb-Douglas utility with share α = 0.5 on traded

goods.
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E Intuition for Global Convexity Condition

We show that the infrastructure investment and shipping decisions can be viewed as the outcome of a game

between a decentralized planning agency and a shipping company. Due to the complementarity between infrastructure

and trade, an investment in infrastructure in a link leads to an increase in commodity flows. These additional flows

in turn encourage further investments. The convexity condition on the transport technology determines whether this

“race” is stable or divergent. When the transport technology is convex, each additional increase in investment or

flow becomes smaller until convergence to a non-trivial interior point.

For clarity, we focus on the single good case. We focus on a link (o, d) from origin o to destination d. We

first consider the problem of a shipping company who takes prices and infrastructure as given and fully internalizes

the congestion externality. From section 3 that this is equivalent to having the shipping company not internalize

the congestion externality while facing an appropriately defined Pigouvian tax. The problem faced by the shipping

company is

max
Q≥0

PdQ− PoQ (1 + τ (Q, I)) ,

where Pi is the price in location i = o, d. The first-order condition is

Pd − Po − Po
∂ (Qτ )

∂Q
≤ 0 with equality if Q > 0. (A.9)

This first-order condition is identical to (8) from the full planning problem. Denote Q∗ (I) the optimal amount of

commodity flow Q that solves equation (A.9).53 Consider now the problem of a myopic decentralized agency. It

is myopic in the sense that it takes the trade flow Q as given and does not internalize the fact that Q responds to

infrastructure in equilibrium, and decentralized in the sense that it solely invests in link (o, d), taking as given the

price PK of asphalt (that is, the Lagrange multiplier of the asphalt budget constraint in the full planning problem)

and the price of commodities. The objective of the planning agency is to minimize the sum of the market value of

transport costs and the cost of asphalt. We write the problem as follows

min
I≥0

PoQτ (Q, I) + PKδ
II,

where δI is the marginal cost of investing infrastructure in the link. We obtain the following first-order condition,

Po
∂ (Qτ )

∂I
+ PK ≥ 0 with equality if I > 0. (A.10)

This condition is identical to equation (9) in the main text. We denote I∗ (Q) the optimal infrastructure investment

that solves equation (A.10).54

Figure A.9 shows the two best response functions Q∗ (I) and I∗ (Q) for the convex and nonconvex cases using

the functional form τ (Q, I) = δτQβI−γ .55 As the figure illustrates, there are two equilibria: the null equilibrium and

an interior equilibrium with I > 0 and Q > 0. The reason why the game features two equilibria even in the convex

case is that the planning agency is myopic and takes the commodity flow Q as given. In the full model and in the

convex case, the social planner internalizes the response in Q and never chooses the null equilibrium under the Inada

conditions.

The curve Q∗ (I) crosses I∗ (Q) from above in the convex case (β ≥ γ) and from below otherwise. In the convex

case, only the interior equilibrium is stable, as a small increase (resp. decrease) in infrastructure prompts an increase

53Under the requirement that Qτ is convex in Q and satisfies some Inada conditions lim
Q→0

∂(Qτ)
∂Q

= 0 and

lim
Q→∞

∂(Qτ)
∂Q

= ∞, the solution Q∗ (I) exists and is unique.

54Under the assumption that Qτ is convex in I and satisfies the Inada conditions lim
I→0

∂(Qτ)
∂I

= −∞ and lim
I→∞

∂(Qτ)
∂I

=

0, I∗ (Q) exists and is unique.

55In this case we obtain: Q∗ (I) =
(

1
1+β

1
δτ

Pd−Po

Po

) 1
β
I

γ
β and I∗ (Q) =

(
γ

PK

δτ

δI
Po

) 1
1+γ

Q
β+1
γ+1 .
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Figure A.9: Nash equilibria of the infrastructure investment game

(a) Convex case β ≥ γ

0

Q

I

Q∗(I)
I∗(Q)

(b) Nonconvex case γ > β

0

Q

I

Q∗(I)
I∗(Q)

Note: Stable equilibria indicated by a black dot, unstable equilibria by a white dot.

(resp. decrease) in Q, but the response is limited due to the strong congestion forces. In turn, the moderate increase in

flows justifies reducing (resp. increasing) the level of infrastructure back to the interior equilibrium. In the nonconvex

case, the interior equilibrium is no longer stable but the null equilibrium is.

This discussion shows that the convexity property on the transport technology controls the complementarities

between the planning agency and the private economy. In the nonconvex case, complementarities are strong. The

convex case corresponds to weak complementarities: a deviation by one player is accompanied by a deviation by the

other player in the same direction (they remain complements) but the response is too weak to push the economy

away from the interior equilibrium. The interior equilibrium is stable when Q∗ (I) crosses (I∗)−1 (I) from above, that

is
∂Q∗

∂I
≤

(
∂I∗

∂Q

)−1

. (A.11)

Differentiating the first-order conditions (A.9) and (A.10), we have ∂Q∗

∂I
= − ∂2(Qτ)

∂Q∂I
/∂2(Qτ)

(∂Q)2
and ∂I∗

∂Q
= − ∂2(Qτ)

∂Q∂I
/∂2(Qτ)

(∂I)2
.

The stability condition (A.11) is thus equivalent to

∂2(Qτ)
∂Q∂I

∂2(Qτ)

(∂Q)2

·

∂2(Qτ)
∂Q∂I

∂2(Qτ)

(∂I)2

≤ 1. (A.12)

In turn, (A.12) is equivalent to det (Hess (Qτ )) ≥ 0, which along with the maintained assumption that Qτ is convex

in each individual argument, ∂2(Qτ)

(∂Q)2
≥ 0 and ∂2(Qτ)

(∂I)2
≥ 0, is equivalent to requiring that the total transport costs

Qτ (Q, I) is jointly convex over Q and I .

F Dealing with Inefficiencies

We show how to extend our approach to deal with cases with externalities in which Pigouvian taxes are not

available or incorrectly set. We provide an example with partially internalized congestion in transport as well as

externalities in production and amenities.
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F.1 Environment

We modify the environment by introducing agglomeration externalities or spillovers in production

Y n
j = F

(
Ln

j ,V
n
j ,X

n
j ;Lj

)

where Lj captures the production spillovers. Lj is taken as given by firms and equals total employment in the

location,

Lj =
∑

n

Ln
j .

We continue assuming that Fn
j (·) has constant returns to scale in its first three arguments, and is increasing and

concave in each. Similarly, we allow for externalities in amenities by assuming that utility is given by

U
(
cj , hj ;Lj

)
.

Finally, we assume that the congestion externalities in transport are only partially internalized by shipping companies.

We focus on the convex case studied in our numerical exercise with mobile labor and cross-good congestion, but the

analysis can be easily applied to the other cases. Specifically, we assume that the transport technology is given by

τnjk
(
Qjk, Ijk;Qjk

)
= mnδτjk

(
Qjk

)β−β̃
(Qjk)

β̃ I−γ
jk , β ≥ γ, β ≥ β̃ ≥ 0,

where Qjk =
∑N

n=1m
nQn

jk. In this specification, the total congestion externalities amount to a total exponent of

β, but shipping companies only internalize them up to exponent β̃, taking the aggregate flow Qjk as given.56 In

equilibrium, the perceived flow on a given link Qjk is required to satisfy Qjk = Qjk.

F.2 Fictitious planning approach

Solving for the economic allocation
{
cnj , L

n
j , ...

}
and trade flows

{
Qn

jk

}
given an infrastructure network {Ijk} is

an important step in the optimization. The method described in the main text involves solving for the allocation

and flows jointly using a planning approach. Unfortunately, the presence of externalities does not allow us to invoke

the First Welfare Theorem directly. We nonetheless propose an approach in which a “fictitious planner” does not

internalize the effect of her decisions on Lj and Qjk.

The fictitious planning problem for our economy can be characterized as the solution of a fixed-point problem.

We first define the problem faced by the fictitious planner given
{
Lj , Qjk

}
:

W
({
Lj , Qjk

}

j∈J ,k∈N (j)
; {Ijk}

)

= max
u, cj , hj , Lj , D

n
j ,

Ln
j ,V

n
j ,X

n
j , Qjk, Q

n
jk

u (A.13)

subject to (i) availability of traded commodities,

cjLj +
∑

k∈N (j)

τjk
(
Qjk, Ijk;Qjk

)
Qjk ≤ Dj

(

D1
j , . . . , D

N
j

)

for all j,

where Qjk =
∑N

n=1m
nQn

jk, and non-traded commodities,

hjLj ≤ Hj for all j;

56This example is akin to having congestion taxes set to a fraction β̃/β of the efficient Pigouvian taxes relative to
unit transport costs.
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(ii) the balanced-flows constraint,

Dn
j +

∑

n′

Xnn′

j +
∑

k∈N (j)

Qn
jk ≤ Fn

j

(
Ln

j ,V
n
j ,X

n
j ;Lj

)
+
∑

i∈N (j)

Qn
ij for all j, n;

(iii) local factor market clearing,
∑

Ln
j ≤ Lj for all j;

and
∑

n

V mn
j ≤ V n

j for all j,m;

(iv) free labor mobility,

Lju ≤ LjU
(
cj , hj ;Lj

)
for all j;

(v) aggregate labor market clearing,
∑

j

Lj = L;

and (vi) non-negativity constraints on consumption, flows and factors.

For a given Lj and Qjk, the above fictitious planning problem is a well-behaved convex problem under the same

conditions as in the main text and can be efficiently solved using a convex solver. Imposing that Lj = Lj and

Qjk = Qjk in equilibrium, the first-order conditions of this planning problem are identical to that of the competitive

equilibrium. We are now ready to define a solution to the fictitious planning problem.

Definition 4. An allocation Ω =
{
u, cj , hj , Lj , D

n
j , L

n
j ,V

n
j ,X

n
j , Qjk, Q

n
jk

}

j∈J ,k∈N (j),1≤n≤N
is a solution to the

fictitious planning problem of this economy for a given infrastructure network {Ijk} if it is a solution of the problem

(A.13),

Ω ∈ argmax W
({
Lj , Qjk

}
; {Ijk}

)

and satisfies

Lj = Lj for all j,

Qjk = Qjk for all j, k ∈ N (j) .

A fictitious planning allocation is thus the solution of a fixed point problem over Lj and Qjk, which can be solved

using an iterative procedure.57 This solution yields the competitive equilibrium of an economy with spillovers. In

cases where uniqueness of the competitive equilibrium is guaranteed, there is an equivalence between the competitive

equilibrium and the fictitious planning economy. In cases when uniqueness is not guaranteed, the fictitious planning

approach remains a tractable way to compute candidate equilibria.

F.3 Infrastructure gradient

After solving for the economic allocation and trade flows given a certain infrastructure network {Ijk}, we are now

ready to compute the welfare gradient with respect to infrastructure investments from the point of view of an overall

planner who internalizes that the allocation corresponds to the solution to the fictitious planning problem and is

therefore not generically efficient. To achieve this, we use the fact the competitive equilibrium is locally characterized

as the solution to the fictitious planner’s first-order conditions. We then differentiate these first-order conditions to

evaluate the local impact of infrastructure changes.

We consider the case studied in our numerical exercise from section 5 with (i) labor as the only factor of production,

(ii) Dj is a CES aggregator with elasticity of substitution σ, (iii) a unique good produced in each location (there is

57In practice, we start with a guess on
{
Lj , Qjk

}
, solve problem (A.13), update our guess and repeat until

convergence. We do not have any proof guaranteeing the convergence of this procedure, but our experience has
shown that it converges most of the time for reasonable externality parameters.
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at most a unique n (j) such that z
n(j)
j > 0 for each j) and the production function is given by Y n

j = znj L
n
j L

ε
j where

ε governs the production externality and (iv) partially internalized transport externality (0 ≤ β̃ < β). In that case,

the fictitious planning problem described in (A.13) simplifies to

max
Ω=

(

u,cj,hj ,Lj ,D
n
j
,Qn

jk

)

u

subject to

Lju 6 LjU
(
cj , hj ;Lj

)
,∀j [×ωj ] (A.14)

cjLj +
∑

k∈N (j)

δτjkQ
β−β

jk

(
∑

n

mnQn
jk

)1+β

I−γ
jk 6

(
∑

n

(
Dn

j

)σ−1
σ

) σ
σ−1

,∀j
[

×PD
j

]

(A.15)

hjLj 6 Hj ,∀j
[

×PH
j

]

(A.16)

Dn
j +

∑

k∈N (j)

Qn
jk 6 znj LjL

ε
j +

∑

k∈N (j)

Qn
kj ,∀ (j, n)

[
×Pn

j

]
(A.17)

∑

j

Lj = 1 [×W ] (A.18)

Qn
jk > 0, Lj > 0

[
×νnjk, ξj

]

where the variables in brackets denote the associated Lagrange multipliers. Constraints (A.14)-(A.18) will bind in

equilibrium and define a system of 2 + 3J + J ×N equations that we summarize as

Gcons

(
Ω;Qjk, Lj , Ijk

)
= 0.

The first-order conditions of the above problem are

[u] 1−
∑

j

ωjLj = 0

[cj ] ωjLjUc

(
cj , hj ;Lj

)
− PD

j Lj = 0

[hj ] ωjLjUh

(
cj , hj ;Lj

)
− PH

j Lj = 0

[Lj ] − ωj (u− U (cj , hj))− PD
j cj − PH

j hj + P
n(j)
j znj L

ε
j −W + ξj = 0

[Djn] PD
j D

1
σ
j

(
Dn

j

)− 1
σ − Pn

j = 0

[
Qn

jk

]
− PD

j m
n (1 + β) δτjkQ

β−β

jk Qβ
jkI

−γ
jk − Pn

j + Pn
k + νnjk = 0

along with the complementary slackness conditions

νnjkQ
n
jk = 0

ξjLj = 0.

Together with the complementary slackness conditions, the first-order conditions define a system of 1+4J +J ×N +

4× nlinks ×N equations, which we denote by

GFOC

(
Ω;Qjk, Lj , Ijk

)
= 0.

Imposing Qjk = Qjk and Lj = Lj , the constraints and first-order conditions jointly define the system

G (Ω;Qjk, Ijk) =

(

Gcons (Ω;Qjk, Ijk)

GFOC (Ω;Qjk, Ijk)

)

= 0

of 2 + 7J + 2J ×N + 4× nlinks×N equations in 2 + 4J + 2J ×N + 4× nlinks×N unknowns (more precisely, the
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allocation u, cj , hj , Lj , D
n
j , Q

n
jk and the multipliers ωj , P

D
j , PH

j , Pn
j , W , νnjk, ξj).

By differentiating our equilibrium conditions around a solution to the fictitious planning problem described above,

we can now compute how each element of the allocation Ω is affected by a change in infrastructure. Using the implicit

function theorem, we obtain

JI (Ω) = − [JΩ (G)]−1 JI (G) ,

where JX (F ) denotes the Jacobian of some function F with respect to some vector of variables X. Since welfare

u is one of the variables in the allocation Ω, the gradient of welfare with respect to a change in infrastructure Ijk

assuming a shadow value PK for asphalt/concrete is simply given by

du

dIjk
− δIjkPK .

With this welfare gradient, it is possible to optimize over the infrastructure network using a simple gradient-

descent algorithm. There are, however, two new caveats in comparison to the efficient case covered in the main text:

i) the computations can be quite time-consuming since the fictitious planning problem needs to be solved at every

step of the optimization, ii) Proposition 1 on the convexity of the overall planning problem no longer applies and the

resulting network has no guarantee to be the global optimum.

F.4 Numerical comparison

To quantitatively evaluate the importance of inefficiencies, we return to the benchmark case of Spain in our main

quantitative exercise.58 We put aside agglomeration externalities in production and consumption to focus on partially

internalized congestion in transport as the only source of inefficiency. The model parameters are those estimated in

the calibration and we simply vary the perceived congestion parameter β̃ while keeping the overall level of congestion

β constant. We consider three cases: β̃ = 0.25β, 0.5β and 0.75β,which correspond to having the Pigouvian taxes set

to 25%, 50% and 75% of what would be their optimal level relative to transport costs.

Table A.9 reports some summary statistics. Unsurprisingly, overall welfare resulting from the fictitious planner is

lower compared to the efficient planner the less shipping companies internalize congestion (lower β̃). The difference is

nonetheless quite small with welfare differences in the order of 10−4 in consumption equivalent terms. Similarly, we

find that the resulting equilibrium trade flows Qjk and infrastructure gradients are almost identical, with correlations

close to 1 between the efficient and inefficient allocations.

β̃ Welfare corr(Qefficient
jk ,Qinefficient

jk ) corr( dW
dIjk

efficient
, dW
dIjk

inefficient
)

Efficient 0 1 1

0.75β -0.0057% 0.9999 0.9951

0.5β -0.0235% 0.9998 0.9902

0.25β -0.0545% 0.9996 0.9862

Notes: dW/dIjk denotes the welfare gradient. Welfare is stated in percentage deviation from the efficient benchmark

in consumption equivalent.

Table A.9: Statistical comparison between efficient and inefficient allocations

Since shipping companies fail to internalize their impact on congestion, we find that the inefficient allocation

tends to feature larger trade flows the less the externality is internalized in comparison to the efficient one (Figure

A.10). The left panel of Figure A.12 shows that the difference in flows are especially important around Madrid,

Barcelona and Valencia. The discrepancies between the welfare gradients in infrastructure do not show a systematic

pattern, as Figure A.11 illustrates. The right panel of Figure A.12 shows nonetheless a tendency for the planner to

58More precisely, we consider the case β = 0.13, γ = 0.10 with labor mobility and cross-good congestion.
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invest in infrastructure, in the inefficient case, in alternative routes around the most congested centers in order to

alleviate congestion on the main axes. This is most easily seen in the cases of Madrid and Valencia.
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Figure A.10: Comparison of trade flows Qjk between efficient and inefficient cases
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Figure A.11: Comparison of infrastructure gradients between efficient and inefficient cases
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Notes: The differences are plotted in green when higher in the inefficient allocation and in red when higher in the

efficient allocation. The figure displays the case β̃ = 0.5β.

Figure A.12: Comparison of infrastructure gradients between efficient and inefficient cases

G Supplementary Material to Proposition 3

G.1 Definitions

Let G = (I, E) be an undirected graph. We say that a path of length n ∈ N
∗ from a node a ∈ I to b ∈ I is a

finite sequence of nodes (i1, . . . , in) such that ik ∈ I for 1 ≤ k ≤ n, i1 = a and in = b and {ik, ik+1} ∈ E . A simple

path is a path that contains no repeated node, i.e., ik 6= il for all 1 ≤ k, l ≤ n and k 6= l. A cycle of length n is a

path p = (i1, . . . , in) such that i1 = in. A simple cycle of length n is a cycle that contains no repeated node other

than the starting and ending nodes, i.e., ik 6= il for 1 6 k, l 6 n− 1 and k 6= l. A tree is a connected graph that has

no simple cycle. Equivalently, in a tree, there is a unique simple path connecting any two nodes.

G.2 Propositions and Lemmas

Proposition 3. (Tree Property) Assume that lim
c→0+

UC (c, h) = ∞. In the absence of a pre-existing network (i.e.,

Ijk = 0), if the transport technology is given by (10) and satisfies γ > β, and if there is a unique commodity produced

in a single location, then the optimal transport network is a tree.

Proof. To establish the result, we focus on the case with fixed labor.59 Note further that in the case with a unique

traded commodity the own-good and cross-good congestion cases are identical. We assume WLOG that production

Yj is exogenous (endowment economy) since there is only one commodity and factors are immobile. To fix ideas, let

us assume that I = {0, 1, . . . , J − 1} and Y0 > 0 but Yj = 0 for j ≥ 1. We write down the Lagrangian of the problem

L =
∑

j

ωjLjU (cj , hj)−
∑

j

Pj



Ljcj +
∑

k∈N(j)

(

1 + δτjk
Qβ

jk

Iγjk

)

Qjk − Yj −
∑

k∈N(j)

Qkj





− PK




∑

j

∑

k∈N(j)

δIjkIjk −K



+
∑

j,k

ζQjkQjk +
∑

j,k

ζIjkIjk, ζQjk > 0, ζIjk > 0.

Despite being a nonconvex optimization problem, there must exist a vector of Lagrange multipliers such that the

KKT conditions hold.60 As a preliminary step, we eliminate the infrastructure investment Ijk using (13), so that

Ijk =

(

γ
PK

δτjk

δI
jk

PjQ
1+β
jk

) 1
γ+1

whenever Qjk > 0, otherwise Ijk = 0. Solving for the multiplier PK such that (7) is

59In the labor mobility case, an identical argument can be made by taking the optimal allocation of Lj as given
and replacing the Pareto weights ωj with the Lagrange multipliers of the constraints Lju ≤ LjU (cj , hj).

60The resource constraint can be substituted in the objective function to yield Pj = ωjUC (cj , hj). The Arrow-
Hurwicz-Uzawa theorem (Takayama (1985), Theorem 1.D.4) implies that, the remaining constraints being affine,
there must exist a vector of Lagrange multipliers such that the KKT conditions hold.
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satisfied, we reformulate the problem with allocations and flows only as follows

L =
∑

j

ωjLjU (cj , hj)−
∑

j

Pj



Ljcj +
∑

k∈N(j)

Qjk − Yj −
∑

k∈N (j)

Qkj





−K−γ




∑

j,k

(

δIjk/δ
τ
jk

) γ
γ+1

(

PjQ
1+β
jk

) 1
γ+1





γ+1

+
∑

j,k

ζQjkQjk, ζQjk > 0. (A.19)

The source of nonconvexities is the term

[
∑

j,k

(
δIjk/δ

τ
jk

) γ
γ+1

(

PjQ
1+β
jk

) 1
γ+1

]γ+1

, which is convex when β ≥ γ,

but neither convex nor concave when γ > β. Let us now assume that (c∗,Q∗) with c∗ = (c∗0 , . . . c
∗
J−1)

′ and Q∗ =
(
Q∗

jk

)

j,k∈N (j)
is a local optimum, i.e., it satisfies the FOCs and SOCs of the Lagrangian (A.19). We are going to

show that the graph associated with Q∗ is a tree. Define the (undirected) graph associated to Q∗ as the tuple (I, E∗)

such that E∗ ⊂ E is a subset of the edges of the underlying geography such that

E∗ =
{
{j, k} ∈ E | Q∗

jk > 0
}
.

Note that since Ijk is non-zero whenever Qjk > 0 or Qkj > 0, the support of graph (I, E∗) coincides with that of the

transport network {Ijk}. After this preparatory work, we now refer the reader to the Proposition 6 that follows.

Proposition 6. E∗ is a tree.

Proof. Because node 0 is the unique productive center and there is an Inada condition in consumption, there must

exist a path connecting each node to 0. Hence, E∗ must be connected. It remains to show that E∗ cannot have simple

cycles. We proceed by contradiction. Assume there exists a simple cycle p = (i1, . . . , in). Figure A.13 illustrates

the different types of cycles that can arise. Case (i) is a cycle with circular flows that run in only one direction.

Lemma 1 tells us that such a cycle cannot arise if (c∗,Q∗) is locally optimal, as they inefficiently waste goods in

transportation. Cases (ii) and (iii) correspond to cycles along which flows run into different directions. Lemma 3

establishes that whenever there is a cycle of type (iii), then there must exists a cycle of type (ii). We conclude with

Lemma 4 by showing that cycles of type (ii) cannot arise if (c∗,Q∗) is locally optimal. The reason is that one is

better off redirecting flows into one of the two branches because of economies of scale in the transport technology

when γ > β. Hence, simple cycles may not exist and E∗ is a tree.

a

b

a

b

a

b

c

0

Case (i) Case (ii) Case (iii)

Figure A.13: Different types of simple cycles

Lemma 1. If (c∗,Q∗) is a local optimum with (I, E∗) its associated graph, then there exists no simple cycle

p = (i1, . . . , in) such that Q∗
ik,ik+1

> 0 for all 1 6 k 6 n− 1.
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Proof. Case (i) in Figure A.13 presents the type of cycle with circular flows that cannot exist in a local optimum.

By contradiction, assume that there exists such a cycle p = (i1, . . . , in). Then, for ε > 0 small, consider the allocation

of flows

Qε
jk =







Qjk − ε if ∃l, 1 6 l 6 n− 1, such that j = il and k = il+1

Q∗
jk elsewhere

.

If ε 6 min
16k6n−1

Qik,ik+1 , then
(
{cj} ,

{
Qε

jk

})
is a feasible allocation that is strictly preferable to ({cj} , Q

∗) since it

yields the same utility at a lower transport cost. Hence, the gradient of the Lagrangian with respect to ε is strictly

greater than 0 (recall that Pj = uc (cj , hj) > 0), contradicting the assumption that (c∗,Q∗) is a local optimum.

Lemma 2. For every node a ∈ I distinct from the productive center 0 ∈ I and such that La > 0, there exists a

simple path p = (i1, . . . , in) that connects 0 to a such that Qik,ik+1 > 0 for 1 6 k 6 n− 1.

Proof. The proof is constructive. We build a simple path p = (i1, . . . , in) with i1 = a, ik 6= il for all 1 ≤ k, l ≤ n

and k 6= l such that Qik,ik−1 > 0. We proceed by recursion on the length of path p, which we denote by |p| = n. We

start the recursion by setting i1 = a. Because of the Inada conditions in the utility function and La > 0, we know

that caLa > 0. The balanced flow constraint in a,

caLa =
∑

k∈N (a)

Qka −
∑

k∈N (a)

Qak

[

1 + δτak
Qβ

ak

Iγak

]

> 0,

tells us that location a must be a net recipient of goods from its neighbors. Hence, there exists k ∈ N (a) such that

Qka > 0. Let i2 = k. If i2 = 0, then we have found a simple path connecting a to 0 with positive flows from 0 to a.

If not, we now have a path p2 = (i1, i2) of length 2 such that i1 = a, i1 6= i2 6= 0 and Qi2i1 > 0. Assume now that

n > 2 and, by recursion hypothesis, that we have a path pn = (i1, . . . in) with i1 = a, ik 6= il 6= 0 for all 1 6 k, l 6 n

and k 6= l and such that Qik,ik−1 > 0. Consider location in. The balanced flow constraint at in tells us that

cinLin =
∑

k∈N (in)

Qk,in −
∑

k∈N (in)

Qin,k

[

1 + δτin,k

Qβ
in,k

Iγin,k

]

≥ 0.

Since we know by recursion hypothesis that Qin,in−1 > 0, then there exists a k ∈ N (in) such that Qk,in > 0. We

know that k 6= il for all 1 ≤ l ≤ n because otherwise there would exists a cycle with circular flows, which is ruled

out by Lemma 1. If k = 0, then we have found a path pn+1 = (i1, . . . , in, 0) that connects a to 0 with only positive

flows from 0 to a. If not, then set in+1 = k. We then have a path pn+1 = (i1, . . . in+1) with i1 = a, ik 6= il 6= 0 for all

1 ≤ k, l ≤ n+ 1 and k 6= l and such that Qik,ik−1 > 0.

We conclude as follows. Since I is finite, the above recursion must finish in a finite number of iterations. Since

the recursion only stops after finding a path that ends in 0, then there must exist a simple path p of size n < |I|

with p = (i1, . . . , in) such that i1 = a, in = 0 and Qik,ik+1 > 0 for 1 6 k 6 n − 1. By construction, the path

p̃ = (in, in−1, . . . , i1) proves the statement.

Lemma 3. Assume there exists a simple cycle p = (i1, . . . , in). Then, there exists (a, b) ∈ I2, a 6= b, such that

there exists two distinct simple paths from a to b, p1 =
(
i1k
)

1≤k≤n1
and p2 =

(
i2k
)

1≤k≤n2
with i11 = i21 = a and

i1n1
= i2n2

= b, such that the flows are strictly positive from a to b along both paths, i.e., Q∗
il
k
,il
k+1

> 0 for l ∈ {1, 2}

and 1 ≤ k ≤ nl − 1.

Proof. The objective of this lemma is to establish that if there exists a simple cycle, then there must exist a cycle

of type (ii) as illustrated on Figure A.13.

Consider the simple cycle p = (i1, . . . , in). For convenience of notation, denote i0 = in−1 and in+1 = i2. Denote

Q̃ik,ik+1 = Q∗
ik,ik+1

− Q∗
ik+1,ik

the net flow from ik to ik+1 for 0 6 k 6 n, which can be either strictly positive or
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strictly negative. We know from Lemma 1 that the net flows Q̃ik,ik+1 cannot have the same sign, otherwise we would

have a cycle with circular flow, violating the local optimality condition of (c∗, Q∗). Hence, there must exist 1 6 k 6 n

such that Q̃ik−1,ik > 0 and Q̃ik,ik+1 < 0. Node k is a location that receives goods from its two neighbors on the

cycle, as illustrated by node c in case (iii) of Figure A.13. Set a = 0 and b = ik. We know from Lemma 2 that there

exists a path p1 =
(
j11 , . . . , j

1
n1

)
such that j11 = a = 0, j1n1

= ik−1 and Q̃j1
l
,j1

l+1
> 0 for all 1 6 l 6 n1. Similarly, there

exists a path p2 =
(
j21 , . . . , j

2
n2

)
such that j21 = a = 0, j2n2

= ik+1 and Q̃j2
l
,j2

l+1
> 0 for all 1 6 l 6 n2. We now argue

that the paths p̃1 =
(
j11 , . . . , j

1
n1
, b
)
and p̃2 =

(
j21 , . . . , j

2
n2
, b
)
are two distinct simple paths from a to b with strictly

positive flows. By construction, we know that Q̃j1n1
,ik

> 0 and Q̃j2n2
,ik

> 0 so that the flows are strictly positive

along both paths. We must only check that they are simple paths, i.e., that the nodes are not repeated. Let us treat

the case of p̃1. The other one follows symmetrically. We must show in particular that there is no l with 1 6 l 6 n1

such that j1l = b. If this was the case, then
(
b, , j1l+1 . . . , j

1
n1
, b
)
would be a cycle with circular flows running in the

same direction, which Lemma 1 rules out. Hence, p̃1 is a simple path.

Lemma 4. For all (a, b) ∈ I2, a 6= b, if there are two simple paths p1 and p2 connecting a to b, i.e., p1 =
(
i1k
)

1≤k≤n1

and p2 =
(
i2k
)

1≤k≤n2
with i11 = i21 = a and i1n1

= i2n2
= b, such that Qil

k
,il
k+1

> 0 for l ∈ {1, 2} and 1 ≤ k ≤ nl, then

p1 = p2.

Proof. The objective of this lemma is to show that cycles of the type (ii) in Figure A.13 cannot exist. Assume

by contradiction that such a cycle exists and that p1 6= p2. Note that we can assume WLOG that i1k 6= i2l for all

1 < k < n1 and 1 < l < n2. To see this, let k = min
{
k|i1k+1 6= i2k+1

}
and k1 = min

{
k > k|∃l > k, i1k = i2l

}
and k2

be such that i1
k1

= i2
k2
. By construction, the path p′1 =

(

i1k, . . . , i
1
k1

)

and p
′

2 =
(

i2k, . . . , i
2
k2

)

are two paths such that

i1k = i2k, i
1
k1

= i2
k2
, and i1k 6= i2l for all k < k < k1 and k < l < k2 .

a

b

a

b

Q∗ − ε

Q∗ + ε

(a) Initial (b) After redirection

Figure A.14: Redirecting the flows to one branch

We are now going to show that p1 6= p2 leads to a contradiction. The idea behind the proof is illustrated in

Figure A.14. We are going to show that if there exists two distinct simple paths with positive flows going from a to

b, then it would be strictly preferable to redirect the flows from one branch to the other due to the non-concavity of

the Lagrangian, violating the local optimality of (c∗,Q∗). Consider the allocation Qε =
{
Qε

jk

}
for ε ∈ R such that

Qε
jk =







Q∗
jk + ε if ∃l such that j = i1l and k = i1l+1

Q∗
jk − ε if ∃l such that j = i2l and k = i2l+1

Q∗
jk elsewhere.

In other words, Qε
jk corresponds to the pattern of flows Q∗

jk where a volume ε of the flows going through path 2

are redirected through path 1. By construction, Qε
jk is feasible (we are redirecting a fraction of flows that were

running through locations on path 2 but not serving any of these locations). In particular, it leaves the value of the

Lagrangian (A.19) unchanged except through the term

[
∑

j,k δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1

]γ+1

where δ̂jk = δIjk/δ
τ
jk.
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Consider the derivative of the Lagrangian with respect to ε:

∂L

∂ε
= − (1 + β)




∑

j,k

δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1





γ 


∑

16k6n1−1

δ̂
γ

γ+1

i1
k
i1
k+1

P
1

γ+1

i1
k

Q
1+β
1+γ

−1

i1
k
i1
k+1

−
∑

16k6n2−1

δ̂
γ

γ+1

i2
k
i2
k+1

P
1

γ+1

i2
k

Q
1+β
1+γ

−1

i2
k
i2
k+1





which satisfies ∂L

∂ε
= 0 by assumption (local optimum). Let us examine the second order condition:

∂2
L

∂ε2
= − (1 + β)

(
1 + β

1 + γ
− 1

)



∑

j,k

δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1





γ

×




∑

16k6n1−1

δ̂
γ

γ+1

i1
k
i1
k+1

P
1

γ+1

i1
k

Q
1+β
1+γ

−2

i1
k
i1
k+1

+
∑

16k6n2−1

δ̂
γ

γ+1

i2
k
i2
k+1

P
1

γ+1

i2
k

Q
1+β
1+γ

−2

i2
k
i2
k+1





− (1 + β)2
γ

γ + 1




∑

j,k

δ̂
γ

γ+1

jk

(

PjQ
1+β
jk

) 1
γ+1





γ−1

×









∑

16k6n1−1

δ̂
γ

γ+1

i1
k
i1
k+1

P
1

γ+1

i1
k

Q
1+β
1+γ

−1

i1
k
i1
k+1

−
∑

16k6n2−1

δ̂
γ

γ+1

i2
k
i2
k+1

P
1

γ+1

i2
k

Q
1+β
1+γ

−1

i2
k
i2
k+1

︸ ︷︷ ︸

=0









2

.

Hence, we see that ∂2
L

∂ε2
> 0 when γ > β. Therefore, the point under consideration cannot be a local maximum. A

tiny deviation in either direction for ε would increase welfare, thereby yielding a contradiction.
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