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Abstract

According to the Lucas-Stokey result, a government can structure its debt ma-

turity to guarantee commitment to optimal fiscal policy by future governments. In

this paper, we overturn this conclusion, showing that it does not generally hold

in the same model and under the same definition of time-consistency as in Lucas-

Stokey. Our argument rests on the existence of an overlooked commitment problem

that cannot be remedied with debt maturity: a government in the future will not

tax on the downward sloping side of the Laffer curve, even if it is ex-ante optimal

to do so.
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1 Introduction

In a seminal paper, Lucas and Stokey (1983) consider a closed economy with no capital in

which the government finances exogenous spending with taxes and debt. They argue that

if the government can issue a sufficiently rich maturity of bonds, then the optimal policy

is time-consistent. That is, if given the opportunity to reevaluate policy ex-post, the gov-

ernment would choose the ex-ante optimal policy. This result has led to a large literature

that builds on this analysis and characterizes the optimal debt maturity structure, such

as Alvarez et al. (2004), Persson et al. (2006), and Debortoli et al. (2017), among others.

In this paper, we overturn this result, showing that it does not generally hold in the

same model and under the same definition of time-consistency as in Lucas-Stokey. Our

argument rests on the existence of an overlooked commitment problem that cannot be

remedied with debt maturity: a government in the future will not tax on the downward

sloping side of the Laffer curve, even if it is ex-ante optimal to do so. More specifically,

we construct an example in which the government wants to roll over some initial short-

term debt. If initial debt is small enough, optimal policy under commitment requires

future governments to choose low tax rates on the upward sloping side of the Laffer curve,

and the policy is time-consistent. In contrast, and more interestingly, if initial debt is

large enough, optimal policy under commitment requires future governments to choose

high tax rates on the downward sloping side of the Laffer curve. This is optimal ex-ante

since the reduction in future consumption (due to high future tax rates) decreases short-

term interest rates today, allowing today’s government to roll over debt at a lower cost.

However, a problem arises since the government tomorrow strictly prefers to repay any

rolled over debt with a lower tax rate on the upward sloping side of the Laffer curve,

as this maximizes consumption and welfare ex-post. Therefore, the optimal policy under

commitment cannot be sustained under lack of commitment: the government in the future

would never choose the preferred future tax rate of the government today, independently

of the inherited government debt maturity.

Our argument does not rely on the presence of non-concavities in the government’s

program and multiplicity of solutions at any date. Our example uses commonly applied

isoelastic preferences in which the program is concave and the constraint set is convex at

all dates. We show that under these preferences, the Lucas-Stokey procedure for guar-

anteeing time-consistency need not always work. More specifically, the procedure takes

the optimal commitment allocation and then selects a sequence of debt portfolios and

Lagrange multipliers (on future governments’ budget constraints) to satisfy future gov-

ernments’ first order conditions under this allocation. We illustrate that the sign of the
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Lagrange multiplier is a key part of the argument. Assuming future debt portfolios are

positive at all maturities, this procedure guarantees time-consistency if the constructed

future Lagrange multipliers are all positive. However, the procedure is invalid if some

constructed multipliers are negative, since the shadow cost of debt cannot be negative

along the equilibrium path. When the constructed multiplier is negative, today’s govern-

ment and the future government disagree as to which tax rate should be chosen to satisfy

the future budget constraint, and optimal policy is not time-consistent. From a practical

viewpoint, this observation means that implementation of the Lucas-Stokey procedure to

guarantee time-consistency may be valid, but it must be checked quantitatively. In some

economies, the procedure works, whereas in others—like in our example—it does not.1

The main contribution of this paper is to highlight the limitations of the Lucas-Stokey

analysis. Our work relates broadly to a literature on optimal government debt maturity

in the absence of government commitment. We depart from this literature in two ways.

First, we consider the optimal maturity without imposing arbitrary constraints on the

bonds available to the government.2 Second, our model is most applicable to economies

where the risk of default and surprise in inflation are not salient, but the government

is still not committed to a path of taxes and debt maturity issuance.3 In this regard,

our paper is related to the quantitative analysis of Debortoli et al. (2017), though in

contrast to that work, we follow Lucas-Stokey and do not arbitrarily confine the set of

bonds available to the government, and we consider a deterministic economy and ignore

the presence of shocks.4

We review the Lucas-Stokey model in Section 2. In Section 3, we solve for the optimal

policy under commitment, and we present conditions under which taxing on the downward

sloping side of the Laffer curve is optimal. In Section 4, we present and discuss our main

result. Section 5 concludes. The Online Appendix includes additional results not included

in the text.

1Our example suggests that validation should depend intuitively on the extent to which optimal taxes
are on the downward sloping part of the Laffer curve. See Trabandt and Uhlig (2011) for quantitative
work analyzing the shape of the Laffer curve in advanced economies.

2Krusell et al. (2006) and Debortoli and Nunes (2013) consider a similar environment to ours in the
absence of commitment, but with only one-period bonds, for example.

3Other work considers optimal government debt maturity in the presence of default risk, for example,
Aguiar et al. (2017), Arellano and Ramanarayanan (2012), Dovis (2019), Fernandez and Martin (2015),
and Niepelt (2014), among others. Bocola and Dovis (2016) additionally consider the presence of liquidity
risk. Bigio et al. (2017) consider debt maturity in the presence of transactions costs. Arellano et al. (2013)
consider lack of commitment when surprise inflation is possible.

4Angeletos (2002), Bhandari et al. (2017), Buera and Nicolini (2004), Faraglia et al. (2010, 2018),
Guibaud et al. (2013), and Lustig et al. (2008) also consider optimal government debt maturity in the
presence of shocks, but they assume full commitment.
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2 Model

We consider an economy identical to the deterministic case of Lucas-Stokey, and we follow

their primal approach to the evaluation of optimal policy.

2.1 Environment

There are discrete time periods t = {0, 1, ...,∞}. The resource constraint of the economy

is

ct + g = nt, (1)

where ct is consumption, nt is labor, and g > 0 is government spending, which is exogenous

and constant over time.

There is a continuum of mass 1 of identical households that derive the following utility:

∞∑
t=0

βtu (ct, nt) , β ∈ (0, 1) . (2)

u (·) is strictly increasing in consumption, strictly decreasing in labor, globally concave,

and continuously differentiable. As a benchmark, we define the first best consumption and

labor
{
cfb, nfb

}
as the values of consumption and labor that maximize u (ct, nt) subject

to the resource constraint (1).

Household wages equal the marginal product of labor (which is 1 unit of consumption),

and are taxed at a linear tax rate τt. bt,k R 0 represents government debt purchased by

a representative household at t, which is a promise to repay 1 unit of consumption at

t+ k > t. qt,k is the bond price at t. At every t, the household’s allocation and portfolio{
ct, nt, {bt,k}∞k=1

}
must satisfy the household’s dynamic budget constraint:

ct +
∞∑
k=1

qt,k (bt,k − bt−1,k+1) = (1− τt)nt + bt−1,1. (3)

Moreover, the household’s transversality condition is

lim
T→∞

q0,T

∞∑
k=1

qT,kbT,k = 0. (4)

Bt,k R 0 represents debt issued by the government at t with a promise to repay 1

unit of consumption at t+ k > t. At every t, government policies
{
τt, gt, {Bt,k}∞k=1

}
must
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satisfy the government’s dynamic budget constraint:

gt +Bt−1,1 = τtnt +
∞∑
k=1

qt,k (Bt,k −Bt−1,k+1) .5 (5)

The economy is closed, which means that the bonds issued by the government equal

the bonds purchased by households:

bt,k = Bt,k ∀t, k. (6)

Initial debt {B−1,k}∞k=1 = {b−1,k}∞k=1 is exogenous. The government is benevolent and

shares the same preferences as the households in (2).

2.2 Primal Approach

We follow Lucas-Stokey by taking the primal approach to the characterization of compet-

itive equilibria, since this allows us to abstract away from bond prices and taxes. Let

{ct, nt}∞t=0 (7)

represent a sequence of consumption and labor allocations. We can establish necessary

and sufficient conditions for (7) to constitute a competitive equilibrium. The household’s

optimization problem implies the following intratemporal and intertemporal conditions,

respectively:

1− τt = −un (ct, nt)

uc (ct, nt)
and qt,k =

βkuc (ct+k, nt+k)

uc (ct, nt)
. (8)

Substitution of these conditions into the household’s dynamic budget constraint implies

the following condition:

uc (ct, nt) ct + un (ct, nt)nt +
∞∑
k=1

βkuc (ct+k, nt+k) bt,k =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (9)

5We follow the same exposition as in Angeletos (2002) in which the government rebalances its debt
in every period by buying back all outstanding debt and then issuing fresh debt at all maturities. This
is without loss of generality. For example, if the government at t − k issues debt due at date t of size
Bt−k,k which it then holds to maturity without issuing additional debt, then this can equivalently be
implemented in our framework with all future governments at date t− k + l for l = 1, ..., k − 1 choosing
Bt−k+l,k−l = Bt−k,k, implying that Bt−1,1 = Bt−k,k.
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Forward substitution into the above equation and taking into account (4) implies the

following implementability condition:

∞∑
k=0

βk (uc (ct+k, nt+k) ct+k + un (ct+k, nt+k)nt+k) =
∞∑
k=0

βkuc (ct+k, nt+k) bt−1,k+1. (10)

By this reasoning, if a sequence in (7) is generated by a competitive equilibrium, then

it necessarily satisfies (1) and (10). Satisfaction of (1) and (10) is also sufficient for a

competitive equilibrium, as we show in the below lemma.

Lemma 1 (competitive equilibrium) A sequence (7) is a competitive equilibrium if

and only if it satisfies (1) ∀t and (10) at t = 0 given {b−1,k}∞k=1 .

Proof. The necessity of these conditions is proved in the previous paragraph. To prove

sufficiency, suppose a sequence (7) satisfies (1) ∀t and (10) at t = 0 given {b−1,k}∞k=1.

Let the government choose the associated level of debt
{
{bt,k}∞k=1

}∞
t=0

which satisfies (9)

and a tax sequence {τt}∞t=0 which satisfies (8). Let bond prices satisfy (8). (9) given

(1) implies that (3) and (5) are satisfied. Therefore household optimality holds and all

dynamic budget constraints are satisfied along with market clearing, so the equilibrium

is competitive.

3 Optimal Policy under Commitment

In this section, we solve for optimal policy in an example, and we show that, under some

conditions, future tax rates should be on the downward sloping side of the Laffer curve.

In the next section, we prove our main result: Applying the Lucas-Stokey definition of

time-consistency, we show that in the cases where optimal tax rates are on the downward

sloping side of the Laffer curve, optimal policy is not time-consistent, independently of

the government’s choice of maturities. In contrast, if tax rates are on the upward sloping

side of the Laffer curve, then optimal policy is time-consistent.

3.1 Preferences

Consider an economy with isoelastic preferences over consumption c and labor n, where

u (c, n) = log c− ηn
γ

γ
(11)
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for η > 0 and γ ≥ 1, which corresponds to a commonly used utility function for the

evaluation of optimal fiscal policy (e.g., Werning, 2007).6

Under these preferences, (1) and (8) imply that the primary surplus, τn− g, is equal

to c (1− η (c+ g)γ). To facilitate the discussion, define claffer as the level of consumption

that maximizes the primary surplus:

claffer = arg max
c
c (1− η (c+ g)γ) . (12)

claffer is the level of consumption associated with the maximal tax revenue at the peak

of the Laffer curve under tax rate τ laffer. We assume that g <
(

1
η

)1/γ
to guarantee that

claffer > 0. The primary surplus on the right hand side of (12) is depicted in Figure 1

for the quasilinear case with η = γ = 1 and g = 0.2.7 This is essentially the Laffer curve

except that the x-axis refers to consumption instead of taxes which are substituted out

in the primal approach. We refer to the upward and downward sloping sides of the Laffer

curve in reference to the original representation of the curve as revenue τn as a function

of the tax rate τ .

The primary surplus is strictly concave in c and equals 0 if c = 0 (100 percent labor

income tax) and −g if c = cfb (0 percent labor income tax). More broadly, if c > claffer,

then the tax rate is below the revenue-maximizing tax rate and the economy is on the

upward sloping side of the Laffer curve. If c < claffer, then the tax rate is above the

revenue-maximizing tax rate and the economy is on the downward sloping side of the

Laffer curve.

Observe that a primary surplus between 0 and claffer
(
1− η

(
claffer + g

)γ)
> 0 can be

generated by the government in two ways: either with a tax rate on the upward sloping

side of the Laffer curve (c > claffer) or with a tax rate on the downward sloping side of

the Laffer curve (c < claffer). Importantly, the tax rate on the upward sloping side of the

Laffer curve provides a strictly higher instantaneous welfare log c−η nγ
γ

, since consumption

is higher in that case. This is an important observation to keep in mind when considering

optimal policy under lack of commitment.

6These preferences imply that the implementability condition and the primary surplus are globally
concave in allocations, which provides us with analytical tractability. In the Online Appendix, we present
several numerical examples under other utility functions, and we reach the same conclusion that the
optimal policy is not always time-consistent.

7This parametrization implies that τ laffer = 60% in line with the values for the labor tax reported in
Trabandt and Uhlig (2011).
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Figure 1: Primary Surplus and Consumption

Notes: This figure depicts the primary surplus, τn−g, as a function of consumption,

c. We set η = γ = 1 and g = 0.2. The figure refers to the upward and downward

sloping sides of the Laffer curve in reference to the common representation of the curve

as revenue τn as a function of the tax rate τ . The upward sloping side corresponds

to the case where τ < τ laffer and the downward sloping side to the case where

τ > τ laffer.

3.2 Optimal Policy at Date 0

Using Lemma 1, we can consider the date 0 government’s optimal policy under commit-

ment, where we have substituted in for labor using the resource constraint (1):

max
{ct}∞t=0

∞∑
t=0

βt
(

log ct − η
(ct + g)γ

γ

)
(13)

s.t.
∞∑
t=0

βt
(

1− η (ct + g)γ − b−1,t+1

ct

)
= 0. (14)

Equation (14) represents the date 0 implementability condition, which is the present value

constraint of the government.

Suppose that b−1,1 > 0 and b−1,k = 0 ∀k ≥ 2. To guarantee the existence of a solution
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that satisfies (14), let b−1,1 ≤ b for

b = max
c̃

{
c̃

(
1

1− β
− η (c̃+ g)γ − β

1− β
ηgγ
)}

. (15)

b represents the highest value of b−1,1 for which (14) can be satisfied.8 We now characterize

the solution to (13)− (14) given our assumption on preferences and initial debt.

Lemma 2 (unique solution) The solution to (13)− (14) is unique.

Proof. Consider the relaxed problem in which (14) is replaced with

1− b−1,1
c0
− η (c0 + g)γ +

∞∑
t=1

βt (1− η (ct + g)γ) ≥ 0. (16)

We can establish that (16) holds as an equality in the relaxed problem, implying that

the relaxed and constrained problems are equivalent. We prove this by contradiction.

Suppose that (16) holds as an inequality in the relaxed problem. Then, the solution to

the relaxed problem would admit ct = cfb, which given (11) satisfies ηcfb
(
cfb + g

)γ−1
= 1.

Substitution of ct = cfb into (16) yields

1

cfb

(
−b−1,1 −

1

1− β
g

)
≥ 0

which is a contradiction since b−1,1 > 0. Therefore, (16) holds as an equality in the solution

to the relaxed problem and the solutions to the relaxed and constrained problems coincide.

Since the left hand side of (16) is concave in ct for all t ≥ 0 given that b−1,1 > 0 and since

the objective (13) is strictly concave, it follows that the solution is unique.

Since the solution is unique, we can characterize the solution using first order condi-

tions.

Lemma 3 (optimal policy) The unique solution to (13) − (14) satisfies the following

properties:

1. ct = c1 ∀t ≥ 1,

8This follows since ct ≥ 0 for all t, implying that (14) can be rewritten as

b−1,1 =

∞∑
t=0

βt (c0(1− η (ct + g)
γ
)) ≤ c0

(
1

1− β
− η (c0 + g)

γ − β

1− β
ηgγ
)

.

Letting c∗ correspond to the argument that solves (15), it follows that (14) can be satisfied for b−1,1 = b
and b−1,k = 0 ∀k ≥ 2 with c0 = c∗ and c1 = 0.
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2. c0 and c1 < c0 are the unique solutions to the following system of equations for some

µ0 > 0

1

c0
− η (c0 + g)γ−1 + µ0

(
b−1,1
c20
− ηγ (c0 + g)γ−1

)
= 0, (17)

1

c1
− η (c1 + g)γ−1 + µ0

(
−ηγ (c1 + g)γ−1

)
= 0, and (18)

1− b−1,1
c0
− η (c0 + g)γ +

β

1− β
(1− η (c1 + g)γ) = 0. (19)

Proof. Given Lemma 2, we can consider the relaxed problem, letting µ0 > 0 correspond

to the Lagrange multiplier on (16). The first order condition for c0 is (17). The first order

condition for ct for all t ≥ 1 is

1

ct
− η (ct + g)γ−1 + µ0

(
−ηγ (ct + g)γ−1

)
= 0. (20)

Since the left hand side of (20) is strictly decreasing in ct, it follows that the solution to

(20) is unique with ct = c1 ∀t ≥ 1, where (18) defines c1. It follows from the fact that

the program is strictly concave and constraint set convex that satisfaction of (17)− (19)

is necessary and sufficient for optimality for a given µ0 > 0. We are left to verify that

c0 > c1. Note that the left hand side of (17) is strictly increasing in b−1,1 and strictly

decreasing in c0 for a given µ0 > 0. Therefore, c0 is strictly increasing in b−1,1 for a given

µ0 > 0, where c0 = c1 if b−1,1 = 0. It follows then that since b−1,1 > 0, c0 > c1.

The first part of the lemma states that consumption—and therefore the tax rate—is

constant from date 1 onward. Since initial debt due from date 1 onward is constant (and

equal to zero), tax smoothing and interest rate smoothing from date 1 onward is optimal.

The optimal allocation is unique since the problem is concave.

The second part of the lemma characterizes the solution in terms of first order condi-

tions for a positive Lagrange multiplier µ0 on the implementability constraint (14). These

conditions are necessary and sufficient for optimality given the concavity of the problem.

Implicit differentiation of (17) and (18), taking into account second order conditions, im-

plies that initial consumption c0 exceeds long-run consumption c1, which means that the

initial tax rate is below the future tax rate. Back-loading tax rates is optimal since the

reduction in future consumption relative to present consumption allows the government

to roll over its initial short-term debt at a lower interest rate.

We can now prove the main result of this section, which establishes that taxes from

date 1 onward are on the downward sloping side of the Laffer curve—i.e., c1 < claffer—if
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and only if initial debt b−1,1 is large enough. To prove this result, we first establish that

c1 is strictly decreasing in b−1,1. We then show that there exists b∗ ∈ (0, b) that solves

the problem with c1 = claffer. We therefore obtain the result that if initial short-term

debt b−1,1 is above a threshold b∗, then future consumption c1 is below claffer, implying

that the future tax rate τ1 is above the revenue-maximizing tax rate at the peak of the

Laffer curve τ laffer. Otherwise, c1 is above claffer, and the future tax rate τ1 is below the

revenue-maximizing tax rate at the peak of the Laffer curve.

Proposition 1 (taxes relative to peak of Laffer curve) There exists b∗ ∈ (0, b)

such that the solution admits c1 > claffer if b−1,1 < b∗ and c1 < claffer if b−1,1 > b∗.

Proof. We prove this result in two steps.

Step 1. We establish that the solution to the system in (17) − (19) admits c1 that

is strictly decreasing in b−1,1. Let F 0 (c0, µ0, b−1,1) correspond to the function on the left

hand side of (17), let F 1 (c1, µ0) correspond to the function on the left hand side of (18),

and let I (c0, c1, b−1,1) correspond to the function on the left hand side of (19). Since

the solution to this system of equations is unique, we can apply the Implicit Function

Theorem. Implicit differentiation yields

dc1
db−1,1

=
−F 0

c0
Ib−1,1 + F 0

b−1,1
Ic0

F 0
c0
Ic1 +

F 0
µ0
F 1
c1
Ic0

F 1
µ0

. (21)

From the second order conditions for (17) and (18), F 0
c0
< 0 and F 1

c1
< 0. Moreover, by

inspection, Ic1 < 0 and F 1
µ0
< 0. Finally, note that F 0

µ0
Ic0 = [Ic0 ]

2 > 0. This establishes

that the denominator in (21) is positive. To determine the sign of the numerator, let

us expand the numerator by substituting in for the functions. By some algebra, the

numerator is equal to

1

c0

(
− 1

c20
− η (γ − 1) (c0 + g)γ−2

)
+µ0

[
−b−1,1

c40
− 1

c0
ηγ (γ − 1) (c0 + g)γ−2 − 1

c20
ηγ (c0 + g)γ−1

]
< 0.

This establishes that c1 is strictly decreasing in b−1,1.

Step 2. We complete the proof by establishing that there exists b∗ ∈ (0, b) for which

the solution to (17)−(19) admits c1 = claffer. We first establish that if b∗ exists, it exceeds

0. Note that if b−1,1 = 0 then the solution admits c1 > claffer. This is because (17)− (19)

imply that the solution admits c0 = c1. Substitution into (19) yields

c1 (1− η (c1 + g)γ)

1− β
= 0. (22)
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This equation admits two solutions: c1 = 0 and c1 = η−1/γ − g, and the optimal policy

satisfies c1 = η−1/γ − g, since welfare is arbitrarily low otherwise. Given the definition of

claffer in (12) and the strict concavity of the objective in (12), it follows that claffer must

strictly be between 0 and η−1/γ − g, which means that c1 > claffer.

We now establish that b∗ below b exist, where b∗ solves the system (17)−(19) for b−1,1 =

b∗ and c1 = claffer. To see that such a solution exists, note that 1
claffer

−η
(
claffer + g

)γ−1
>

0 since claffer < cfb. Therefore, a value of µ0 > 0 which satisfies (18) under c1 = claffer

exists. Multiply (17) by c0 and substitute (19) into (17) to achieve

1−ηc0 (c0 + g)γ−1+µ0

(
1− η (c0 (1 + γ) + g) (c0 + g)γ−1 +

β

1− β
(
1− η

(
claffer + g

)γ))
= 0.

(23)

Note that given the value of µ0 > 0 satisfying (18) for c1 = claffer, a solution to (23)

which admits c0 > 0 exists. This is because the left hand side of (23) goes to

1 + µ0

(
1− ηgγ +

β

1− β
(
1− η

(
claffer + g

)γ))
> 0

as c0 goes to 0, where we have used the fact that g <
(

1
η

)1/γ
. As c0 goes to infinity,

the left hand side of (23) becomes arbitrarily negative. Therefore a solution to (23) for

c0 > 0 exists. Given that b−1,1 enters linearly in (19), it follows that a value of b−1,1 which

satisfies the system also exists.

3.3 Taxation on the Downward Sloping Side of the Laffer Curve

According to Proposition 1, it may be optimal to choose a constant tax rate from date

1 onward on the downward sloping side of the Laffer curve. This result may appear

puzzling, and to better understand it, let’s consider the set of policies available to the

government under commitment.

An implication of Lemma 1 is that there are multiple maturity structures of debt is-

suance that are consistent with optimal policy. For example, suppose that the government

issues a flat maturity at date 1 and never rebalances its portfolio. Specifically, it chooses

some debt {b0,k}∞k=1, where b0,k = b ∀k ≥ 1 for some b > 0, while also choosing a smooth

path of consumption from date 1 onward, with ct = c1 ∀t ≥ 1 that satisfies its budget
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constraint (9), so that

c0 (1 + η(c0 + g)γ) +
β

1− β
c0
c1
b = b−1,1 and (24)

c1 (1− η (c1 + g)γ) = b. (25)

According to (25), the primary surplus from date 1 onward is constant and equal to

the issued debt at date 0, which is a consol of size b. The optimal policy satisfying

Lemma 3 can be implemented with this issued debt maturity structure. To understand

what drives optimal policy, we can consider how the economy—characterized by (24) and

(25)—changes under different values of b, given some initial b−1,1.

Suppose that at date 0 the government issues a given amount of debt b at date 0. It

then faces a trade-off at date 1 in its choice of how to repay the debt. On the one hand, it

could set low tax rates (on the upward sloping side of the Laffer curve), associated with

a high level of consumption and utility in date 1. On the other hand, it could collect

the same tax revenues setting high tax rates (on the downward sloping side of the Laffer

curve), thereby reducing consumption and utility at date 1. While the former strategy

clearly maximizes flow utility at date 1, the latter strategy actually maximizes the flow

utility at date 0, since it reduces the interest rate at date 0.

This policy trade-off is illustrated in Figure 2 for a case with quasilinear preferences

with η = γ = 1, g = 0.2, and β = 0.96. Panel A displays utility from date 1 onward,

log c1−η(c1+g)γ/γ and shows that for a given value of issued debt b, there are two possible

values of welfare: a higher value associated with a higher c1 on the upward sloping side

of the Laffer curve, and a lower value associated with a lower c1 on the downward sloping

side of the Laffer curve. Panel B in Figure 2 displays the gross interest rate at date 0,

R ≡ β−1c1/c0, as a function of issued debt b. For a given value of issued debt, there are

two possible interest rates: a higher interest rate associated with a higher c1 on the upward

sloping side of the Laffer curve, and a lower interest rate associated with a lower c1 on the

downward sloping side of the Laffer curve. As such, while taxing on the upward sloping

side of the Laffer curve increases welfare from date 1 onward, taxing on the downward

sloping side of the Laffer curve increases welfare at date 0, since it increases the price of

the issued debt.

As initial debt b−1,1 increases, the relative benefits of taxing on the upward sloping

side of the Laffer curve at date 1 decrease, since increasing the price of the issued debt

at date 0 becomes more important for the government. In other words, conditional on

the total amount of government borrowing at date 0, taxing on the upward sloping side

12



Figure 2: Future Utility and Current Interest Rate as a Function of Issued Debt

Notes: The x-axis in both panels is the issued debt at t = 0, b. The y-axis in Panel A is

utility from t = 1 onward, log(c1)− η(c1 + g)γ/γ. The y-axis in Panel B is the interest rate

at t = 0. We set η = γ = 1, β = 0.96, g = 0.2, and b−1,1 = 0.

of the Laffer curve increases the interest rate in date 0 and, therefore, consumption c0

declines. This effect through the interest rate is stronger the higher is b−1,1 because the

amount of debt being rolled over in date 0 is higher (see equation (24)). This is the logic

underlying Proposition 1. Once b−1,1 exceeds some value b∗, it becomes optimal to tax on

the downward sloping side of the Laffer curve at date 1.

Figure 3 displays optimal policy as a function of initial debt b−1,1, with Panel A

displaying tax revenue at date 1, Panel B displaying consumption at date 1, and Panel C

displaying the interest rate at date 0. As b−1,1 increases between 0 and b∗, the government

responds by issuing more debt at date 0, which it repays with higher taxes that generate

higher tax revenues from date 1 onward, while remaining on the upward sloping side of

the Laffer curve from date 1 onward. The result is a reduction in consumption and welfare

from date 1 onward, as well as a reduction in the interest rate faced at date 0, as implied

by the lower consumption at date 1. At b−1,1 = b∗, the issued debt at date 0 is maximized

and taxes from date 1 onward are chosen at the peak of the Laffer curve.

As b−1,1 increases beyond b∗, the comparative statics with respect to changing initial

13



Figure 3: Initial Debt and Optimal Policy

Notes: The x-axis in all panels is the initial debt at t = 0, b−1,1. The y-axis in Panel A is

revenue from t = 1 onward, τ1n1. The y-axis in Panel B is consumption from t = 1 onward,

c1. The y-axis in Panel C is the interest rate at t = 0. We set η = γ = 1, g = 0.2, and

β = 0.96.

conditions become very different. The government is now taxing on the downward sloping

side of the Laffer curve from date 1 onwards, as it prioritizes reducing the interest costs of

rolling over initial debt. In this case, a higher initial level of debt b−1,1 leads to a decrease,

as opposed to an increase, in b, the issued debt at date 0. In fact, a (marginal) increase

in b would require higher tax revenues in the future and—being on the downward sloping

side of the Laffer curve—a lower future tax rate. In turn, this would lead to higher future

consumption, and thus to an increase in the interest rate at date 0.9 This is why if initial

debt b−1,1 increases, the government decreases the issued debt b so as to increase future

tax rates and decrease future consumption in an effort to reduce the date 0 interest rate.

A natural question regards what factors drive the value of b∗, since a higher b∗ im-

plies a higher debt threshold for future taxes to be on the downward sloping side of the

Laffer curve. We performed numerically these comparative statics around the benchmark

9These effects can also be observed in Figure 2.
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quasilinear example of Figures 2 and 3. We find that b∗ is increasing in β. That is, taxes

from date 1 onward are more likely to be on the downward sloping side of the Laffer curve

if the government is relatively impatient. This is intuitive, since a lower β implies that

the government places more weight on boosting utility at date 0 versus the future, and

it therefore prioritizes reducing the cost of rolling over the initial debt debt. Moreover,

b∗ is decreasing in η, because a higher value of η implies a lower maximal tax revenue

claffer
(
1− η

(
claffer + g

)γ)
, and therefore a lower tax capacity for the government. This

diminished tax capacity at date 1 implies that the government at date 0 is more likely to

accommodate an increase in initial liabilities b−1,1 by reducing the cost of rolling over the

initial debt versus increasing taxation at date 1.

4 Time-Consistency of Optimal Policy

We now show that the policy under commitment may not be time-consistent. We follow

Lucas-Stokey and consider what happens if at date 1, policy is reevaluated and chosen by

a government with full commitment from date 1 onward. As in Lucas-Stokey, we define an

optimal policy as time-consistent if the government at date 1 chooses the same allocation

as the government at date 0.

4.1 Optimal Policy at Date 1

Given an inherited portfolio of maturities, the government at date 1 solves the following

problem:

max
{ct}∞t=0

∞∑
t=1

βt−1
(

log ct − η
(ct + g)γ

γ

)
(26)

s.t.
∞∑
t=1

βt−1
(

1− η (ct + g)γ − b0,t
ct

)
= 0. (27)

Letting µ1 represent the Lagrange multiplier on (27), first order conditions with respect

to ct are:
1

ct
− η (ct + g)γ−1 + µ1

(
b0,t
c2t
− ηγ (ct + g)γ−1

)
= 0 ∀t ≥ 1. (28)

An optimal policy is therefore time-consistent if the solution to (26)− (27) coincides with

the solution to (13)− (14).
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Proposition 2 (time-consistency of optimal policy) If b−1,1 < b∗, then the optimal

date 0 policy is time-consistent. If b−1,1 > b∗, then the optimal date 0 policy is not

time-consistent.

Proof. We consider each case separately.

Case 1. Suppose that b−1,1 < b∗. From Proposition 1, the date 0 solution admits

ct = c1 > claffer ∀t ≥ 1. To show that this solution is time-consistent, suppose that the

date 0 government chooses {b0,k}∞k=1 satisfying

b0,k = c1 (1− η (c1 + g)γ) > 0 ∀k ≥ 1 (29)

for c1 defined in (17) − (19). b0,k > 0 since the highest value of c1 > claffer is below

that associated with b−1,1 = 0 which satisfies (22), given the arguments in the proof of

Proposition 1. Now consider the solution to (26) − (27). Analogous arguments as those

in the proofs of Lemmas 2 and 3 imply that the unique solution satisfies (27) and (28)

for some µ1 > 0. Therefore, to check that the date 1 solution admits ct = c1 ∀t ≥ 1 for c1

which satisfies (18), it is sufficient to check that there exists some µ1 > 0 satisfying (28).

Using (29) to substitute in for b0,k in (28), we find that

µ1 = − 1− ηc1 (c1 + g)γ−1

1− η (c1 + g)γ − ηγc1 (c1 + g)γ−1
> 0, (30)

where we have appealed to the fact that c1 < cfb (from (18)) to assign a positive sign

to the numerator in (30) and the fact that c1 > claffer to assign a negative sign to the

denominator in (30). This establishes that the date 0 solution is time-consistent.

Case 2. Suppose that b−1,1 > b∗ and suppose by contradiction that the optimal

date 0 policy is time-consistent. This would require (28) to hold for ct = c1 ∀t ≥ 1 for

c1 < claffer which satisfies (18). For a given µ1, satisfaction of (28) thus requires that

b0,k = b0,1 ∀k ≥ 1. Equation (27) thus implies that (29) for b0,k > 0 holds, and substitution

of (29) into (28) implies that

µ1 = − 1− ηc1 (c1 + g)γ−1

1− η (c1 + g)γ − ηγc1 (c1 + g)γ−1
< 0, (31)

where we have appealed to the fact that c1 < cfb (from (18)) to assign a positive sign to

the numerator and the fact that c1 < claffer to assign a positive sign to the denominator.

However, conditional on {b0,k}∞k=1 for b0,k = b0,1 > 0 ∀k ≥ 1, the solution to (26) − (27)

must admit a positive multiplier µ1 > 0, and this follows by analogous arguments as those
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in the proofs of Lemmas 2 and 3, which contradicts (31). Therefore, the date 1 solution

does not coincide with the date 0 solution.

If b−1,1 < b∗, then the optimal date 0 policy can be sustained under lack of commitment

with the government at date 0 issuing a flat maturity distribution with b0,k = b0,1 ∀k ≥ 1.

Under such a flat distribution, the government at date 1 optimally chooses to smooth tax

rates into the future.10 Moreover, given that date 1 tax rates under commitment are on

the upward sloping side of the Laffer curve, the choice of such tax rates is time-consistent.

The date 0 and date 1 governments agree about the optimal tax rate to repay this debt.

If instead b−1,1 > b∗, then the optimal date 0 policy cannot be sustained under lack

of commitment. If the government at date 0 tried to induce the date 1 government

into a smooth policy from date 1 onward by issuing a flat maturity distribution with

b0,k = b0,1 ∀k ≥ 1, the date 1 government would never choose a value c1 < claffer and

τ1 > τ laffer and would instead repay the inherited debt with a value c1 > claffer and

τ1 < τ laffer. Choosing a lower tax rate on the upward sloping side of the Laffer curve

increases consumption and increases welfare ex-post. Thus, while the date 0 government

can commit the date 1 government to a smooth path of revenue and interest rates, it

cannot commit the date 1 government to a particular tax rate. As such, the optimal date

0 policy is not time-consistent.

4.2 Why the Lucas-Stokey Argument Fails

It is instructive to consider why the original arguments of Lucas-Stokey can fail in our ex-

ample. In developing their argument, Lucas-Stokey consider the optimal allocation under

commitment from the perspective of date 0, which satisfies the following first order condi-

tion for t ≥ 1 (the analog of (18) starting from any arbitrary initial maturity distribution,

under general utility functions, after suppressing some notation):

(uc,t+un,t)(1+µ0)+µ0

(
−(ucc,t + ucn,t)b−1,t+1

+(ucc,t + 2ucn,t + unn,t)ct + (ucn,t + unn,t)g

)
= 0 ∀t ≥ 1. (32)

Lucas-Stokey claim that the optimal policy under commitment at date 0 that satisfies

(32) could be made time-consistent at date 1. They argue that this is possible with the

appropriate choice of maturities that satisfy the date 1 implementability condition (27),

10This flat maturity structure is equivalent to a consol. The use of consols has been pursued historically,
most notably by the British government during the Industrial Revolution, when consols were the largest
component of the British government’s debt (see Mokyr, 2011). Moreover, the introduction of consols
has been discussed as a potential option in the management of U.S. government debt (e.g. Cochrane,
2015), an idea that is supported by the quantitative analysis of Debortoli et al. (2017).
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which can be rewritten more generally as

∞∑
t=1

βt−1((uc,t + un,t)ct + un,tg) =
∞∑
t=1

βt−1uc,tb0,t (33)

and the future government’s first order condition at date 1 (28), which can be rewritten

more generally as

(uc,t+un,t)(1+µ1)+µ1

(
−(ucc,t + ucn,t)b0,t

+(ucc,t + 2ucn,t + unn,t)ct + (ucn,t + unn,t)g

)
= 0 ∀t ≥ 1. (34)

for some Lagrange multiplier µ1. Their procedure thus combines (32) and (34) to yield:

b0,t = b−1,t+1 +
uc,t + un,t
ucc,t + ucn,t

(
1 + µ1

µ1

− 1 + µ0

µ0

)
∀t ≥ 1, (35)

which determines the issued maturity distribution at date 0 as a function of four objects:

the inherited maturity distribution, the optimal allocation, and the Lagrange multipliers

µ0 and µ1.

According to Lucas-Stokey logic, given an optimal allocation and value of µ0 from the

perspective of date 0, one can construct a value of µ1 and a portfolio of bonds {b0,k}∞k=1 that

satisfy (33) and (34), and accordingly, this implies that the policy is time-consistent. To

see why this logic is flawed, suppose for illustration that the constructed values of {b0,k}∞k=1

are all non-negative, so that the constraint represented by (33) must imply a positive

shadow value of debt. Then if the constructed value of µ1 that satisfies (33) and (34) is

negative, Lucas-Stokey logic fails and the optimal policy is not time-consistent. Intuitively,

the solution to the date 1 problem under a positive debt portfolio {b0,k}∞k=1 would never

admit a negative multiplier—since the shadow cost of inherited debt is positive.11

Our specific example illustrates a situation in which µ1 < 0 and the Lucas-Stokey

construction fails. (33) and (35) in our example can be written as

b0,1 = c1 (1− η (c1 + g)γ) , and (36)

b0,1 =

(
1− µ0

µ1

)
ηγc21 (c1 + g)γ−1 , (37)

respectively, for µ0 and c1 that satisfy (17)− (19). If b−1,1 < b∗, the solution to (36)− (37)

admits µ1 > 0, and the optimal policy is time-consistent. If instead b−1,1 > b∗, the

11If the implied value of µ1 is positive, then Lucas-Stokey logic holds with the optimal policy being
time-consistent, assuming that the date 0 and date 1 programs for the government are concave.
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solution to (36)− (37) admits µ1 < 0, and the optimal policy is not time-consistent, since

the shadow cost of debt cannot be negative.12

5 Concluding Remarks

An important literature on optimal fiscal policy without commitment has built on the

Lucas-Stokey conclusion that a government can structure debt maturity issuance to guar-

antee commitment by future governments. In this paper, we overturn this result, using

the same model and the same definition of time-consistency as Lucas-Stokey under stan-

dard assumptions on preferences. We show using an example that whether or not the

Lucas-Stokey conclusion holds depends on the environment.

There are three important points to note regarding our example. First, our example

does not rely on the presence of an infinite horizon, which we only choose here to be

consistent with Lucas-Stokey. A T -period version of this example would yield the same

conclusion, namely that in some cases, the optimal policy under commitment does not

coincide with that under lack of commitment.

Second, our example does not rely on the presence of non-concavities in the govern-

ment’s program and multiplicity of solutions at any date. Our isoelastic preferences imply

that the government’s welfare is concave and the constraint set is convex, which guarantees

that the solution to the government’s problem at dates 0 and 1 is unique. We conjec-

ture that considering cases with multiplicity (for instance examples with negative debt

positions, which may make the implementability condition no longer a convex constraint)

could make it even more challenging for today’s government to induce commitment by

future governments.

Finally, our paper provides a method of verifying whether or not the Lucas-Stokey

procedure holds in other environments with a different utility function or initial maturity

distribution of government debt. For example, take a model that satisfies standard dy-

namic programming properties with a globally concave program for the government at all

future dates t (so that first order conditions are necessary and sufficient to characterize

the solution from the perspective of date t), where the shadow value of debt is positive

at every date t. It then follows that if the Lagrange multipliers at all future dates t con-

structed by the Lucas-Stokey procedure—that is, the analogs of µ1 in (37)—are positive,

then the Lucas-Stokey procedure is valid. If instead some multipliers are negative, as is

12It is also straightforward to see that our example would work using the same logic if b−1,k = b̂,∀k ≥ 2

for some b̂ > 0 (rather than b̂ = 0) as well as in an economy with state-contingent bonds with a similar
decay structure.
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the case in our constructed example, then the Lucas-Stokey procedure is not valid since

the shadow cost of debt cannot be negative.

The Lucas-Stokey model has motivated an enormous literature that has extended

their framework to environments with incomplete markets, financial frictions, liquidity

frictions, and international flows. We have focused on a simple example to illustrate that

their conclusions cannot always be directly applied. Our analysis implies that any study of

optimal fiscal policy without commitment must move beyond the Lucas-Stokey definition

of time-consistency, since the optimal policy may not be time-consistent. Instead, future

work should consider the solution to a dynamic game between sequential governments,

taking into account that the commitment and no-commitment solution may not coincide.

References

Aguiar, M., M. Amador, H. Hopenhayn, and I. Werning (2017). Take the Short Route:

Equilibrium Default and Debt Maturity. Working Paper.

Alvarez, F., P. J. Kehoe, and P. A. Neumeyer (2004). The Time Consistency of Optimal

Monetary and Fiscal Policies. Econometrica 72 (2), 541–567.

Angeletos, G.-M. (2002). Fiscal Policy with Noncontingent Debt and the Optimal Matu-

rity Structure. The Quarterly Journal of Economics 117 (3), 1105–1131.

Arellano, C., Y. Bai, P. Kehoe, and A. Ramanarayanan (2013). Credibility and the

Maturity of Government Debt. Federal Reserve Bank of Minneapolis, Manuscript.

Arellano, C. and A. Ramanarayanan (2012). Default and the Maturity Structure in

Sovereign Bonds. Journal of Political Economy 120 (2), 187–232.

Bhandari, A., D. Evans, M. Golosov, and T. J. Sargent (2017). Fiscal Policy and Debt

Management with Incomplete Markets. The Quarterly Journal of Economics 132 (2),

617–663.

Bigio, S., G. Nuno, and J. Passadore (2017). A Framework for Debt-Maturity Manage-

ment. Manuscript.

Bocola, L. and A. Dovis (2016). Self-Fulfilling Debt Crises: A Quantitative Analysis.

Working Paper.

Buera, F. and J. P. Nicolini (2004). Optimal Maturity of Government Debt without State

Contingent Bonds. Journal of Monetary Economics 51 (3), 531–554.

20



Cochrane, J. H. (2015). A New Structure for US Federal Debt. In D. Wessel (Ed.), The

13 Trillion Question: Managing the U.S. Government’s Debt, pp. 91–146. Brookings

Institution Press.

Debortoli, D. and R. Nunes (2013). Lack of Commitment and the Level of Debt. Journal

of the European Economic Association 11 (5), 1053–1078.

Debortoli, D., R. Nunes, and P. Yared (2017). Optimal Time-Consistent Government

Debt Maturity. The Quarterly Journal of Economics 132 (1), 55–102.

Dovis, A. (2019). Efficient Sovereign Default. The Review of Economic Studies 86 (1),

282–312.

Faraglia, E., A. Marcet, R. Oikonomou, and A. Scott (2018). Government Debt Man-

agement: The Long and the Short of It. The Review of Economic Studies 86 (6),

2554–2604.

Faraglia, E., A. Marcet, and A. Scott (2010). In Search of a Theory of Debt Management.

Journal of Monetary Economics 57 (7), 821–836.

Fernandez, R. and A. Martin (2015). The Long and the Short of It: Sovereign Debt Crises

and Debt Maturity. Universitat Pompeu Fabra, Working Paper.

Guibaud, S., Y. Nosbusch, and D. Vayanos (2013). Bond Market Clienteles, the Yield

Curve, and the Optimal Maturity Structure of Government Debt. Review of Financial

Studies 26 (8), 1914–1961.

Krusell, P., F. Martin, and J.-V. Rı́os-Rull (2006). Time-Consistent Debt. Manuscript.

Lucas, R. E. and N. L. Stokey (1983). Optimal Fiscal and Monetary Policy in an Economy

without Capital. Journal of Monetary Economics 12 (1), 55–93.

Lustig, H., C. Sleet, and S. Yeltekin (2008). Fiscal Hedging with Nominal Assets. Journal

of Monetary Economics 55 (4), 710–727.

Mokyr, J. (2011). The Enlightened Economy: Britain and the Industrial Revolution,

1700-1850. Penguin UK.

Niepelt, D. (2014). Debt Maturity without Commitment. Journal of Monetary Eco-

nomics 68 (Supplement), S37–S54.

21



Persson, M., T. Persson, and L. E. O. Svensson (2006). Time Consistency of Fiscal and

Monetary Policy: A Solution. Econometrica 74 (1), 193–212.

Trabandt, M. and H. Uhlig (2011). The Laffer Curve Revisited. Journal of Monetary

Economics 58 (4), 305–327.

Werning, I. (2007). Optimal Fiscal Policy with Redistribution. The Quarterly Journal of

Economics 122 (3), 925–967.

22


