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A Various long-run and optimal inflation rates considered

Table A.1: Various notions of long-run and optimal inflation in the model

s Any inflation target, used to define the “inflation gap” that enters the Taylor rule

E(7t:) Average realized inflation, might differ from 7 due to ZLB

™(0) Inflation target that minimizes the loss function given a structural parameters 6

*(0) 7T assuming parameters at post. mean

* (median(#)) 7* assuming parameters at post. median

™ average of 77%(6) over the posterior distribution of 6, i.e., [, 77*(0)p(6|Xr)d6

Median(rt*) Median of 77*(0) over the posterior distribution

T Inflation target that minimizes the average loss function over the posterior distribution of 6
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B Illustrating model properties: moments, IRF to monetary policy shock

This section illustrate basic properties of the estimated baseline model.

Table B.1: Moments of key variables

Data 1985Q2-2008Q3

Variable Inflation 4-Quarter -Inflation Output gap Output growth Interest rate
Std. dev. 0.22 0.73 — 0.54 2.20

Simulated Model (with ZLB constraint)

Variable Inflation 4-Quarter -Inflation Output gap Output growth Interest rate

Std. dev. 0.43 1.53 0.58 0.99 2.15
(0.11) (0.41) (0.14) (0.14) (0.14)

Note: In percent. Inflation is quarterly inflation (not annualized). Interest rate is annualized. 4-Quarter
inflation is the year-on-year growth rate of the price index. The model moments are based on 1000
simulations at the posterior mean. At each simulation, shocks are drawn (with replacement) from the
historical shocks. The figures in parentheses are the standard deviation across bootstrap simulations.

Figure B.1: Response to a monetary policy shock
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Note: Plain line : response to a monetary policy shoxk leading to -25 basis point cut in the nominal interest on impact. Inflation is
the annualized quarterly growth rate of the price index. Interest rate is annualized.



C Illustrating the “lower for longer” property of the model policy rule

Figure C.1: Interest rate, inflation and output path in a recession with ELB scenario
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Note: Plain line : actual model policy rule. Dashed line: illustrative interest rule featuring actual rate lagged term rather than
lagged “notional rate” term. The latter rule has no feedback on the model.

In this section, we illustrate how the “lower for longer” property of the model policy rule works in
practice. To this end, we assume that the model starts in steady state and is hit by a series of unexpected
risk-premium shocks that drive the economy to the ZLB. Given the implied path for inflation 7t;, the output

gap %, and the notional rate 7}, we reconstruct the path of an alternative interest rate 7; that would obey

f? = Piftfl + (1 - Pi)(aﬂﬁf + ﬂyft) + gR’t

it = max{%, —(p= +p+ m)}.

In this alternative specification, the notional rate does not depend on its lagged value but rather on the
lagged value of the nominal interest rate. Away from the ZLB, this has no discernible effect. However,
when the economy hits the ZLB, 7}’ will mechanically increase sooner than 7}'. Figure C.1 reports the out-
come of this simulation. The solid blue line shows the paht of iy while the dashed line shows the implied

path for 7.



D The distribution of ZLB spells duration

Figure D.1: Distribution of ZLB spells duration at the posterior mean
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Note: Histograms are based on a simulated sample of 500,000 quarters. Simulations are carried out assuming in turn that the
inflation target is the estimated inflation target ; and then that the inflation target is the optimal inflation target obtained using the
mean of the posterior density of estimated parameters

E The distribution of optimal inflation targets

Figure E.1: Posterior Distribution of 77*
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Note: Plain curve: PDF of 77*; Dashed vertical line : Average value of 77* over posterior distribution; Dotted vertical line : Optimal
inflation at the posterior mean of #; Dashed-dotted vertical line : Bayesian-theoretic optimal inflation



F The welfare cost of inflation

Following a standard approach when assessing alternative policies, we complement our characterization
of optimal inflation by providing measures of consumption-equivalent welfare gains/losses of choosing a

suboptimal inflation target.

Let #/ (7r) denote welfare under the inflation target 7. It is defined as

N ~ 1
W () =Eg Y B % log(Ci(m) — nCiq(m)e %) — %/0 Nt(n,h>””dh] + Yo (pz, Cz)-
t=0

Importantly, the welfare function is stated in terms of detrended consumption. The term ¥, captures the

part of welfare that depends exclusively on y, and (. and is not affected by changes in the inflation target.

Let us now consider a deterministic economy in which labor supply is held constant at the undistorted
steady-state level N,, and in which agents consume the constant level of detrended consumption C (7). We

seek to find the C(7r) such that this deterministic economy enjoys the same level of welfare as above. Thus

#() = Ea 1B [log (1~ 1)) — 2N |+ ¥0(,0)

Direct manipulations thus yield

#(0) = 1 [log (1= €) - 20N + a0

Consider now an economy with 71 = 7* and another one with 77 = 7 # 7*. Imagine that in the latter,
consumer are compensated in consumption units in such a way that they are as well off with 7T as with 77*.
Let 1 + ¢(71) denote this percentage increase in consumption. Thus ¢(7r) is such that

W () =Ee Y B log (14 9)(1 - 1)C()) — ~ 2 NI**| 4+ ¥y (u2,0)
= 1+v

_ log(1+ (7))
=—1op 7V

It then follows that
(1) = exp{(1 = p)[# (") = # ()]} - 1.
In practice, welfare is approximated to second order.

We compute ¢(77) under two alternative steady-state interest rate scenarios. In the first scenario, we set
r* to the baseline estimated value, corresponding to the posterior mean of y, + p. In the second scenario,
we consider a downward shift in y, by one percentage point (in annual terms), resulting in a lower steady-
state real rate. The results are reported in Figure F.1. The blue lines show ¢(7) in the first scenario and the
red lines show ¢(7) under a lower real interest rate. For ease of interpretation, the dashed, vertical lines

indicate the optimal values of inflation under the two alternative interest rate scenarios.



Figure F.1: Welfare cost of inflation at the posterior mean
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Note: The figure reports the welfare cost of inflation stated as a percentage of steady-state consumption in the optimal setting.

Figures F.1 suggests that in the baseline scenario, the welfare cost of raising or lowering the inflation
target by one percentage point is relatively mild. However, this conclusion is not robust to a lower real
interest rate. As the red line shows, with a one percentage rate lower r*, the welfare cost of inflation is
asymmetric. It would be much costlier to lower the inflation target than to raise it in the neighborhood of
the optimal target. In particular, keeping the inflation target unchanged when faced with a one-percentage

point decline in 7* give rise to a 1.5% consumption loss.



G Further illustrations of the (r*, r*) relation
G.1 When y, varies

Figure G.1: (r*, 7*) locus when y, varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; : parameters set
at the posterior mode. Memo: r* = p + p,. Range for p,: 0.4% to 10% (annualized) .

G.2 When p varies

Figure G.2: (r*, 7*) locus when p varies
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Note: Blue: parameters set at the posterior mean; light blue: parameters set at the posterior median; : parameters set
at the posterior mode. Memo: r* = p + p,. Range for p,: 0.4% to 10% (annualized) .



H Nominal and Real Interest Rates

Figure H.1: (r*,7*) locus (at the posterior mean)
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Note: the blue dots correspond to the (r*,i*) locus when r* varies with yi; the red dots correspond to the (r*,i*) locus when r*
varies with p

I The probability of ZLB under large shocks

Figure I.1: Relation between probability of ZLB at optimal inflation and r* (at the posterior mean)
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inflation value.



J Distribution of 77* following a downward shift of the distribution of r*

Figure J.1: Counterfactual - US
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Note: The dashed vertical line indicates the mean value, i.e. Eg(71*(8)).

K Model Solution

K.1 Households
K.1.1 First Order Conditions

The Lagrangian associated with the program (1) under constraint (2) is

= 1
L =E ), IBS{GQ"“ log(Crts = 1Cts-1) — % ; ebnt+s (Npys () dh
s=0

o At+s
Pt+s

1
|:Pt+sct+s + QtpsBrise b1t + Py staxyps — /0 Wiis(h)Niys(h)dh — Byys—q — Pt+sdin+s:| },

The associated first-order condition with respect to bonds is

0% _ Niq
0o AOebr — BE K.1
0B; 0= ArQre PE: {Ht-H ’ (K.1)

and the first-order condition with respect to consumption is

aa% eéc,t { egc,t+1 }
- — O <:> — — A]E _— = A . K.2
aC; Ct —71Cr PIE: Ciy1 — G t (K-2)

where Il; = P;/P;_1 represents the (gross) inflation rate, and



We induce stationarity by normalizing trending variables by the level of technical progress. To this end,

we use the subscript z to refer to a normalized variable. For example, we define

Ci

Ct = Z Nyt = A2y,

where it is recalled that
Zt = e*
with
zp = Pz +2Zp—1 + Qo

We then rewrite the first order condition in terms of the normalized variables. Equation (K.2) thus

rewrites
eéc,t

éf,t+1
— ByE; {e—éz,m € } = Ay, (K.3)

Cot — 17Cy g0 8t Copi1 — 1CypeCarnt

Similarly, equation (K.1) rewrites

A
AZ,tQteigq't — 'BefﬂzIEt {eéz,Hl Z’H_l} , (K4)
t+1
where we defined
n = fe .
Let us define i; = —log(Q;) and for any generic variable X;

xy =log(Xs), Xr=x—x
where x is the steady-state value of x. Using these definitions, log-linearizing equation (K.3) yields

St + BE{ i1} — (14 Br°)ér + 61 — 11(Cop — BE {Topin}) = 07 'As (K.5)
where we defined

o' =(1-pn)(1—n),

& = (1 =n)(Zer — PTEA{ci1})-

Similarly, log-linearizing equation (K.4) yields
At =0 + Ee{ A1 — i1 — Copa )+ Qo (K.6)
K.2 Firms

Expressing the demand function in normalized terms yields

Yzi(f) = (Ptg)) " Y4,

In the case of a firm not drawn to re-optimize, this equation specializes to (in log-linear terms)

Depas(f) = Prrs = Op(Riprs — 6} s — PF(F)). (K.7)

10



K.2.1 Cost Minimization

The real cost of producing Y;(f) units of good of f is

Wi = (D)’ (K8)

The associated real marginal cost is thus

p—1
Si(f) = P?;t (Ytg )> (K.9)

It is useful at this stage to restate the production function in log-linearized terms:

924 (f) = A (f) (K.10)

K.2.2 Price Setting of Intermediate Goods: Optimization

Firm f chooses P} (f) in order to maximize

00 VP P*(f)
Z ,lep At+s { 1 + Tp,t—o—s)%;;it

t+s

Yt’,(tjts (f) =S (Yt,t+s (f))} ’ (K-ll)

subject to the demand function

6

Vi (f) = (W) *’ Vi
t+s

and the cost schedule (K.8), where A; is the representative household’s marginal utility of wealth, and

E/{-} is the expectation operator conditional on information available as of time t. That A; appears in the

above maximization program reflects the fact that the representative household is the ultimate owner of

firm f.

The associated first-order condition is

1-6 . 9
VirPi (f) ’ Yoo — Mp s Wt—i—s(P VEPE(F)\ 7 Yias
Prys 1+ Tp Py Py

MS

(Bap)® Ass <

s:

where

This rewrites

<p;<f> )”9’“("’—” _ My Ky
1 + Tp Fp,t

where
¢

. Cures Wett Vi o
K..—=F s )SA s ZATS _birs Y.
- t s;()(‘B P) e Pt+s ¢ Ht,t+s whts

11



and

0o Vp 1—9p
F,;=FE ay) A s Y, iis,
pt t;}(ﬁ p) z,T (Ht,t+s z,t+s

where I'l; ;15 = Piys/ Py

Notice that

W. L))\ 9%
Kp,t = (PAZ,teg”’t PZt’t (Yz,t)¢ + ,B‘XpIEt <(t))> Kp,t-i—lr

and

]_—I ')/p 179’;
Fp/t = AZ,tYZ,t + ﬁapIEt (<H:i1 > Fp’t+1'

With a slight abuse of notation, we obtain the steady-state relation

E 146, (¢—1) _ My ¢%y¢_11 _ IBIXP(H)(l*’Yp)(f?p*l)
P 1+77 P % 11— Ba,(IN)#0(0-7)

Log-linearizing yields

[1+ Op(¢p — DI(pi —pt) = IA‘p,t _fp,t

kpt = (1 — wip) Azt + @ + ¢zt + Quitl + wr pEelkp i1 + 90, (R — vp7te) ),
and
for = (1= wrp)(Ass 4 924) + wppBe{ fpi1 + (0 — 1) (i1 — vpi) }

where we defined the de-trended real wage

and the auxiliary parameters

and
wr,p = 5“p(n)(1 7p)(6p—1)
Finally, notice that
1-6, ! 1-6
P = [ Ry
1
= (1= w) (Bt [ ()7 Ba (] .

Thus

P* 179’; H _ f)/p 1—9;;
1=(1—a,) (Pi) +a, [( tni) ] .

P* 1-6p _ 1— ap(n)(l—'rp)(%—l)
P 1—a, '

The steady-state relation is

Log-linearizing this yields
. WEp

Pt = B—wr, _wFp(th —YpTti-1)-

12



K.3 Unions
K.3.1 Wage Setting

Union & sets W} (h) so as to maximize

= A
E: ) (Baw)’ {(1 + T0) STV N () Nypys () — 25— efhass (N (h))ﬁv} '

where

VS YW W (h —0y
Nitis(h) = < ;\'/HS i )>
t+s

The associated first-order condition is

1-6,
> W eV Wi (h ’
Er Y (Baw)® ARy T F(h)
s=0 Pt+S H

tt+s Wt+5

L —(1+v)0y
_ M el =V s WY () Nl
1 + Tw H?,}tJrs Wt+s t+s 7

where ITf},  ; = Wi s /W

Rearranging yields

< ?(M)He“’”: Mo Koy
W; 1+ 7w Fuy’

where

0 g eyzyzs‘/tzli+s 7(14’1/)97,{7 .

s s ,

Kw,t = E; Z(:B“w) xeshits v Nt_:_sv ’
s=0 tE+s

Hw

1-0y
o0 S w
Wi s eTH=EVE L
For =B Y (Baw)® { Apys——Nigs | ——= ,
s=0 + t,t+5

and where I = Wiis/ Wt

Notice that

1—[ Yw —(1+V)9w
Kw,t — Xeéh,thl'i_V _|_ ,BIXwIEt e’YZ,”Z i KZU 1 ,
Lo 41 '

and

W, I1,) 70\ %
Fw,t = Az,t Pz,t N; + ,B“w]Et { <e%ﬂz(t)> Fw,t-i—l} .
t w,t+1

The associated steady-state relations are

( W* ) 1+9wV ]/lw Kw

w I

XNlJrv
= 1 _‘B“w[e(1*7z)#z(H)1*7w](1+V)9w'

Ky

13



Fy 1
Log-linearizing the above equations finally yields

(1 + 0uv) (W} — w4) = kuy — fout,

]%w,t = (1 - wK,w) [(1 + V)ﬁf + gh,t] + wK,let{i%w,t-i-l + (1 + V)Gw(ﬁw,t-i-l - ’Ywﬁt)}/

fop = (1= wpo)(Ass + @t + 1) + Wk B fopr1 + 0w — 1) (Ruwis1 — Torte) },

where we defined

Wi = Poug[e 11 (IT) 1-72)] (140)6e

wF,w — ‘B[xw [e(l_’YZ)VZ (H) (1_710)]910_1'

To complete this section, notice that
W* 1-6y [Ht—l]%" 1—06y
1=(1- _t Yapz Tt
(1—ay) (Wt) + ag (e i )
and

WEF,w N

wt* — Wt = ,B—Tp(ﬂw't - 'waft—l)-
W

K.4 Market Clearing

The clearing on the labor market implies

Let us define

so that
——0
Nt = (Yzltdp,tp)(p.

Hence, expressed in log-linear terms, this equation reads

iy = 47(]?Z,t - Qp‘:p,t)-

14



Notice that o0 o0
_ A AL IL_ .17\ %% _
519 = 1 () iy (1)
' P I, P

The associated steady-state relation is

—g6, (1—ap) (P*> 74)9”.

Py ,Xp(n)(lfw)wp P

—
[
—

Log-linearizing the price dispersion yields

Ept = (1—we)(pr — pr) + welépr1 — (e — yp7ti-1))]

where we defined

Wz = &y (H) (1_%)4’91{

]

K.5 Natural Rate of Output

The natural rate of output is the level of production that would prevail in an economy without nominal
rigidities, i.e. a, = &, = 0 and without cost-push shocks (i.e., {,; = 0). Under such circumstances, the
dynamic system simplifies to

w;l,t + (QD - 1)?2,1‘ =0,

AN __An AN
vity + Cpp = )\z,t + Wy,

ﬁ’t1 = gbyf/t,

St + BB 1} — (L4 By 0o + 1921 — 1ot — BB Zap1}) = ¢ AL,
where the superscript n stands for natural.

Combining these equations yields

[p(1+ Br?) + Wity — oPTEADL 1} — o192 1 = @8t — Tne — o1l

where we defined

w=vp+¢—1,

and

0o =Cot — BEH{Co 141}

15



K.6 Working Out the Steady State

The steady state is defined by the following set of equations

1-By _
a—pc

e = pe 117},

K 1+9P(¢71) _ ]/lp &
P 1+7, F’

_ ALY
"1 pay (I’

. ALY,
P 1— ‘Bap(n)(l—’hv)(ep_l)’

4

P 1-6, 1 2, (IT) (1=1) 6 =1)

(W) 140,V e Ky

4 B 1+ 7 E,
Y1 — Bag[e 72k (TT) =70 | (LH0)8
W,
Fw AzTH

- 1 — Bay [e(l—vz)yz<n)1—7w]9w—1’

<W*>1_9w 1 — g [e(l—’)/z)]/lz (H)(l—')/w)]ew—l

W 1—ay !
I_Iw - I_Ie‘uz
We can solve for i and I, using
I_Iw - I_Ie‘uz

1=pe el !,

Standard manipulations yield

146p(9—1)
1—wky (,3(1 - "‘p)) =t Hp %qul
1-— wF,P ﬁ — (,Up,p z !

147" P

16



where we used

Similar manipulations yield

1+0wv
1—wkw (,3(1 — ocw)> N xNV
1- WF,w ﬁ — WFrw 141 Az%,

where we used

Wi = Pag[e1 7 (TT) (1-70) | (141)6

wF,w — ﬁaw[e(l—')/z)l’lz(H)(l—’)/w)]ew—l

Combining these conditions yields

1+6v 1+0p(p-—1)
1—wkw <5(1 — “w)) @1 1 —wkp (/3(1 - "‘p)> Tt pe Hp 17

1—wpw \ B~ wrw 1—wpy \ B—wrp 1+ TltT 1By

PAN"Y?

Now, recall that
(V.5,")? =N

Then, using

[x]

_4)9}9 _ 1_“’7 P* 74)9’7
P 1—wz \ P ’

0 v
¢ ( 1—ap <5(1 - "‘p))gb””pl) (14v)¢
NYYY = y{+ve

and

we end up with

1-— w= ;B - wp,p

so that
Ho Hp 1—7 (14+v)¢
— Y.

1+Tw1—|—Tp1—ﬁ174)Xz ’

Where 1+0wv w v
Q- 1—wkw <ﬁ(1—1xw)> a1 1 —wg, <ﬁ(1—o¢p)> Op—1 (1—w5>
1-— WE w ﬁ — WFw 1- WE,p ,B — WEp 1- Kp

Recall that we defined the natural rate of output as the level of production that would prevail in an
economy without nominal rigidities, i.e. ay = ay = 0, and no cost-push shock. Under such circumstances,
the steady-state value of the (normalized) natural rate of output Y obeys

Ho Hp 1—7

_ nyg(1+v)
1+Twl+Tp1—lBﬂ¢X(YZ) .

17



It follows that the steady-state distortion due to sticky prices and wages (and less than perfect indexa-

Y, $(14v)
(nn) -0

tion) is

L Welfare

Let us define for any generic variable X;

e S
x T2

2 +0(1211°)

Xy — X"
Xn

Lo 1
=+ %+ O([Z])
Below, we repeatedly use the following two lemmas:

Lemma 1. Let g(-) be a twice differentiable function and let X be a stationary random variable. Then
1
E{g(X)} = g(B{X}) + 58" (E{X})V{X} + O(|[X|]").
Lemma 2. Let g(-) be a twice differentiable function and let x be a stationary random variable. Then

V{g(X)} = [§'(B{X}PV{X} + O(|IX] ).

In the rest of this section, we take a second-order approximation of welfare, where we consider the
inflation rate as an expansion parameter. It follows that we consider the welfare effects of non-zero trend

inflation only up to second order.

L.1 Second-Order Approximation of Utility
Consider first the utility derived from consumption. For the sake of notational simplicity, define
U(Czt = nCrp—1e™") = log(Ca — 7Crp1e”*)

We thus obtain

Ci —CI\  (Cpen —CF
cr "\
11 (cz,t —c;1>2+ 1 (cz,t —C§> <cz,t_1 —cg> 1P (cz,t_l —c;>2
2(1—7) cr (T—1) cr cr 2(1—1) cr
C.i—Cl Copq —Cl U C.i—Cl 0 Cop1 — CF
tha (B ) it (S5 ) -l (M) iyt (P

+tip+O([Z]]),

18



where t.i.p stands for terms independent of policy.

Then, using

C,—C 1.
e =Gt oUlP)
we obtain
Cet =0t 1 x ~ 1 5 2
et U(Cpp —nCyp1e o) = Ty Cop — NCzp1 + E(Cz,t —1¢-1)
1 1 L 1 1
- imcit + 1217Cz,tcz,t—1 - Eﬂzﬂcg,t—l

+ Lor(Car = 1) = 1 GaalCar = Eop) | + tip o+ O(IEIP),

Using
gl =(1-pp1-n)

we obtain
Cet —Cat) — 1 i " 1 2 72
e U(Cat = Capae ™) = o Wt = Mzt + 5 (Fap = 1Tz1)
1 ) o~ 1 2 ~2
— 5 (= Pn)eizs + 1 (1= P1)@Yzifzi—1 — 51" (1 = Bi1) @Yz,

+ Cet(Fzt — NFzp-1) — (1 = B11) @Top (Tt — Pop—1) | +tip + O(|[C] |3),

where we imposed the equilibrium condition on the goods market.

Similarly, taking a second-order approximation of labor disutility in the neighborhood of the natural

steady-state N" yields

h) — N" h) — N" 2
: jc—veéh,t(Nt(h))Hv _ X(Nn)lJrv <Nt( I)\]n N ) + %XV(Nn>1+v (Nt( Zz]n N >
xm (BB g, v eip o+ 01K
Now, using N - )
)N ) + () + O(1€1)
we get
e (N, (1) = (N [00) + 5 (1 v)0)? + ()] + tip+ OGP,

Integrating over the set of labor types, one gets

/0 1 e (N ()l = X (N [y ()} + %(1 ) B {7ty ()2} + By {7 (1) Yt + tiop + O(12] ).
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Now, since
Vi {fie(h)} = Ep{fie(h)*} — By {7 (h)}

the above relation rewrites

[ e (N ) = (N B () + 31+ 0) (Vi i) + B (1))
+ By {7ig (1)} | + tip + O(/[2]P).

We need to express E;{7i;(h)} and V;{7i;(h)} in terms of the aggregate variables. To this end, we first

establish a series of results, on which we draw later on.
L.2 Aggregate Labor and Aggregate Output

o nt—log</0<Nn dh | .

Then, applying lemma 1, one obtains

=1y —2 frp—1
ﬁt:Eh{ﬁt<h>}+§6w9illﬁh{(N{V(f)) } vh{(N{éf)) ' }+0<||§||3>.

Then, notice that

Notice that

Ow—1
Ni(h)\ o
v (N
so that, by applying lemma 2, one obtains

(M)

Similarly

J=vefor o-aes ()]}

} = (165" exp (1 - 0B (1)} ) Wi {e(h)) + O(IIZ]P).

E, { (M) } = 5, {orp [(1 - 60|}

so that, by applying lemma 1 once more, one obtains

s {0

Then combining the previous results

} = exp [(1 - 6 ()} (1+ 51 652V} ) + O(E] ),

N 11 (1 -0,V {71;(h)}
21— 651 (1 +10- egl)zw{fzt(h)})

fir = By {7 (h)} 5+ O(1Z11%).
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It is convenient to define
Apy = Vi {ii(h)}

so that finally
N . 1—01
i = Ep {7 (1)} + Qop + 5 QualBne — &) + O(IIZ])-
where we defined
1-0;1
7B
QO,h = 2
[1 +la- 9;1)2An}
and . .
1—5(1—-06,4)°A
Ql,h = 2( = ) u 3
[1 +1l1- 9;1)2An}

Applying the same logic on output and defining
Ny = Ve{7(f)}

one gets
1— -1
Vot = Ep{724(f)} + Qoy + TPQW(AW —Ay) +0(|2]]%).
where we defined
A,

Qo= [1+101- 9;1)2Ay}2

1-3(1-6,1)%,

and
Quy = 3
[1+ 11— 6572,
Then recall that
1 1
N; = /0 Li(f)df = /0 Yo (f)Pdf
which implies
N7 0 Yr
where we used N = (Y')?.
This relation rewrites ’
. LY (f)
nt—log</0 < Yo ) df
This expression is of the form
Y. ¢
ﬁtzlog<IEf{< Z;Elf)> })
z

Using lemmas 1 and 2, we obtain the following three approximations
¢
_ . 1 Y { Cﬁf)) } 3
iy =Er{@(For(f) —20)} + 5 5 +OIZIF),
2 (g ()
(%)




¢
v { (%) } = o D (7= DNV A=A + O,

¢
K, { (1) } = e (7.0} (14 302V 709} ) + OU1IIP),

Combining these expressions as before yields
V f {yz,t (f )}
(1+2¢°V {74 (H)})

it = OB (74(F)} + 57 > +0(IgIP)

We finally obtain

1
iy = ‘PIEf{]?z,t(f)} + PO,y + E‘Pzpl,y(Ay,t - Ay) + O(]|§H3),

where we used

VAG DY A I Aol
~ 2 2 3 ’
(1+3¢°Ve{74(N})" (1+39%4))°  (1+3¢%4,)
and defined 1,2
P, = 3974y
) 2
(1+ 3¢%4,)
and 1.2
Py, — —29°Ay

L.3 Aggregate Price and Wage Levels

The aggregate price index is

and the aggregate wage index is

1
thff)w — <A Wt(h)l—ewdh> .

From lemma 1 and the definitions of P; and W;, we obtain

1 1 VH{P(f) %}
216, Ef{P(f) % }2

pe=Ee{p:(f)} + +0(I1P),

and
1 1 Wh{Wt(h)l‘GW}

wy = IEh{ZUt(h)} + 51— 0 IEh{Wt(h)lfoz"}z

+0(/I1P).

Then, from lemma 2, we obtain

VA{P(f)' 7%} = V{exp[(1 - 6,)p:(f)]}

= (1-6,)exp[(1 — 0,) pu]*Aps + O(IIZ]]),
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and

Vi {We(h)' =%} = Vi {exp[(1 — 0u)wi ()]}
= (1= 0u)? exp[(1 = 0u)W:]*Au + O(|IZIP),

where we defined

pr=Ee{p:(f)}, @ =Ep{wi(h)},

Dpi =Ve{pi(f)}, Bup = Vi{wi(h)}.
Applying lemma 1 once again, we obtain
Ef{P:(f)'~"} = E¢{exp[(1—0,)p:(f)]}

= expl(1- 0,7 (1 31— 6,70,

and
Ep{Wi(h)' "%} = Ej{exp[(1 — 0u)w:(h)]}
— exp|(1 — 6] <1 + %(1 - 9w)2Aw,t>

Combining these relations, we obtain

1 3
pr=7pPr+ = 5+ O(IZIP),
2 [1+3(1—6,)2Ap]
and
1 1—06,)A
w =t B o)
[1 + j(l - Qw)zAw,t]
Thus
pr = pr + Qop + U Ql,p(AP,t —Ay) +O(]IZ]17),
and
1-6
wy = wt + QO,w + Tle,w(Aw,t - Aw) + O(||€||3)
where we defined e Lo
JA - wA
Qop = 2 1 Qow = 2 2

1+30-6,28,]" 77 [1+31-6.)%00]

and

1-1(1-16,)%4, 1—3(1—64)*Aw
Ql,w =

Qup = [1+1(1-6,24,]" [141(1-6,)%A,]

3
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Remark that the constant terms in the second-order approximation of the log-price index can be rewrit-

ten as
1-6, (1—-6,)°A;
QO,p - TQl,pAp -

1
2114 11-0,)28,]%

Finally, using the demand functions, one obtains

T2t (f) = =0p[pe(f) — ptl + Gzt

from which we deduce that

_n2
Ays =020,

and

2
Ah,t = GwAw,t'

L.4 Price and Wage Dispersions
We now derive the law of motion of price dispersion. Notice that
Dpi = Vi{p:(f) = pra}
Immediate manipulations of the definition of the cross-sectional mean of log-prices yield
pr— i1 = apypmti1 + (1 —ap)[pf — Pr-1].
Then, the classic variance formula yields
Apr = Ep{{pi(f) = P} = [Ep{pe(f) — pra})?
Using this, we obtain
Aps = apEp{[pr-1(f) = pro1 +ypmal?} + (1= ap) [pf = praal® = [pe = pral?

Notice that
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Using this in the above equation yields

Kp

App = 0B {[p—1(f) = Pro1 + vpmul*} — aplypm)® + [Pt — Pr—1 — vpr)?

1-— oy
Now, notice also that
B {[pr-1(f) — -1’} = B {[pr-1(f) — Pr1 + vpre*} — aplypme)?

It then follows that

o
Dpi = apBe{[pea(f) — P’} + 7 _p“p [t — pr—1 — vpru)?
Hence
Kp o 2
Ap,t = ‘XpAp,t—l + 1—x [Pt — Pt—1 — ')’prft]
P
Using
1—-6
pr=pr+Qop+ Tle,p(Ap,t —Ap) +O(|[2]P),
we obtain
B B 1-6, 3
Pt — Pt—1 = T — TQl,p(Ap,t — A1) +O([[C]]7).
Hence

2
o 1-6
1_;7“ T — 2le,p<Ap,t_Ap,t71)_')/Pn'tfl +O(H€H3)~
P

Ap,t = D‘pAp,tfl +

The steady-state value of A is thus

Ap = A=)y m?

We obtain finally

ap R N ]. — 919 2 3
Ap,t = (XpAp,t—l + 1— Oép [(1 - ’)/p)n"k Tty — ’)’pnt—l - TQl,p(Ap,t - Ap,t—l)] + O(‘ |§H )

For sufficiently small 7, price dispersion A, ; is second-order.

We now derive the law of motion of wage dispersion. Following similar steps as for price dispersion,
notice that

Awp = Vi{wi(h) — @11}
Immediate manipulations of the definition of the cross-sectional mean of log-wages yield
W — W1 = g (Vapz + Yomti—1) + (1 — ag) [} — Wp_1]. (L.2)
Then, the classic variance formula yields
Duwt = Ep{[wi(h) — @r-1]*} — [Ep{wi(h) — @p-1})?
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Using this, we obtain

Aw,t = “wIEh{[wt—l(h) — W1+ Y24z + ')/wnt—l]z} + (1 - (Xw) [w? — wt—l]z - [wt — ZDt—l]z
Notice that
_ 1 _ _ Ky
wt — Wi = 1_ Ny (wt - wt—l) - 1_ X [')’z,uz + 'Ywnt]
so that
(1—ay) [w? - ZDl‘fl]z - [th - wtfl]z
« 2
= (1= ) | g (@1 = @) = = epie ]| — [ = @

4%
1 - DC{U

2
[wt — W1 — [’Yzﬂz + ’Ywnt]} — Ay ['YZVZ + 'Ywﬂt]2
Using this in the above equation yields

Aw,t = “w]Eh{[wt—l(h) — Wi—1+ Yzl + ')’wﬂt]z}

Ay

~ il log(1+ )+ 1

2
[wt — W1 — ['Yz,uz + ')’wﬂt]}
Now, notice also that
DCwIEh{ [wt—l (h) - wt—l]z} == “w]Eh{[wt—l(h) - wt—l + 72,”2 + ')/wnt]z} — Ay [')’z,uz + 'erft]z

It then follows that

« 2
Buos = B [wr1 (h) = D]} + 7= [ = D1 — [yapiz + 770
w
Hence
Ny T _ 2
Aw,if - ‘XwAw,t—l + 1 [wt — W1 — [’Yz,uz + ’)’wnt]j|
which, in turn, implies
Awt = Dy i1+ fw [wt — W1 — Vzhz — lywnt—l]z .
’ wr 1—apw
Using
o 1— 0y 3
w = Wt + Qo,w + TQLw(Aw,t — Aw) + O(1Z]1°),
we obtain
1-06
W — ?Dt,1 = Tyt — Tle,w(Aw,t - Aw,tfl) + O(‘ ’Q ’3>
Hence
o 1-0
Ayt = “wAw,tfl + 1 = TCw,t — JQl,w(Aw,t - Aw,tfl)
— Oy 2

2
— Yzlhz — YwTlt—1 +O(||€||3)
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The steady-state value of Ay, is thus

. Xy 2
Ay = m[(l = ¥2)pz + (1= 7o) 7]
We obtain finally
Xy A .
Aw,t = awAw,tfl + 1—_ & [(1 - ')’z),uz + (1 - 'Yw)ﬂ + TCw,t — YwTT—1
w
1-6 2
— QB — Aus)| +O(IZIP).

For sufficiently small 7t and y,, wage dispersion Ay is second-order.

Because the steady-state value of A, is of second-order, many of the expressions previously derived

considerably simplify. In particular, we now obtain

1-0
pt = pr + TpAp,tJrO(HQﬂH?’)I

1-6
wy = W + @

Buwt +O(I2, %))

Now, because A, and A, are proportional to A, and Ay, respectively, and because A, and A, are both

proportional to 772, we also obtain

. _ 1—6,!
e = B ()} + —57 B + O(IIE, 7).

i = BT ()} —21) + 567y + O 7),

_p-1
e =Be{g:(f)} + 2p Ay +O(12, 7 P),)-

Thus, for sufficiently small inflation rates, we obtain formulas resembling those derived in ?.

Finally, price and wage dispersions rewrite

4 . R 2
Apt = apDp 1+ ﬁ {(1 - 'Yp)” + 7t — ')’pntfl] +O(]lZ, 7TH3)/ ).

Aw,if = lwaw,t—l +

2
[ g (1= )+ A — i)+ O ), ).
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L.5 Combining the Results

Combining the previous results, we obtain

1 1
/ X et (Np(h))Fdh = y(N™)M+ [ﬁt + (1 +v)ii? + iy
o 1+v 2

+ 5 (L vB0)udae | + tip +O(IZ, 7). ).

N —

In turn, we have
. o1
= ¢7: + 59l(¢ = 1), + 116,48, + O([1, 7).,

so that

1
[ e (N ) = g (N (51— 20) + 5 (14 V)7 +

(¢ —1)8, +1]0,0,, + %(1 + v9w)4>’19wAw,t} +tip+O(g, 7|?),).

NI —

+

Then, using

(- o)A = vy,

where we defined
1+tl+T

Hw Hp

1—-®=

we obtain

E ) p [ e umy-an} =

(1—¢ 1 'TIE Zﬂ[ 5 1+V)4’yt+yt€ht

(¢ —1)0p + 110,40, + %(1 + VQW)(P_leAw,t} +tip+O(||Z, 7|]*),).

N —

_|_

Assuming the distortions are themselves negligible, this simplifies further to

Eogﬁ {2 o) an} =

1-— s 1
_517 Eo) B [(1 — )7+ 5 (1+ )77 + Ti
-7 "3 2

+2[(¢—1)8, +1]0,0,, + %(1 + v@w)cp’leAw,t} +tip+O(g, 7|?),).

NI —

We now deal with the first term in the utility function. To that end, notice that

Zﬁatl—a 1+ﬁ2,3t1 1=a_ 1+[52‘Bat

t=
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Using this trick, we obtain

[ee] B 1 _ (o] N 1 N N _
Eo Z(;)ﬁteg” log(Cz — 7Cypqe &) = T _ﬁ 1;7 Eo) B [yz,t —5le(1+ Bn?) — 172, + 19721
t= t=0

+ @817zt — 190L =t | +tip+ O(|T]1),

where we defined

¢t =(1—pn)(1—n),

=1 —n)(Cct — BTEH{ct+1}),
so that

(1= Bn)egt = (Get — BUEALc 1))
and

Q,t = gz,t - ﬁIEf{gz,Hl}

Combining terms, we obtain

1-pn

oo _ 1 N _ N
Yo =7 _iﬂ Eo) B | @zt — 501+ Br?) + Wl + 19247201
t=0

+ (@8t — Cne — PN 1)t

1 1
= 319 = 18y + 110p8ps — 5 (1+v60)p~ Outbers] +tip +O(IZIF),

where, as defined earlier

w=1+v)p—-1
Now, recall that

[p(1+ Br®) + w]§y — 9BNE {921} — @nils 1 = @8t — Cny — 915,

Using this above yields
1- s _ 1 _ o
Uo=3—" -5 ,7'7 Eo ) B 7z — 5[o(1+ Br?) + @I + 19Tz ¥zt
t=0

+ [@(1+ B®) + w02 Tzt — PIIE 1Tzt — PUIL 1Tz

1 1
- E[(‘P - 1)9;7 + 1]9PAW - 5(1 + ng)(f’_lgwAw,t} +tip + O(|[C] |3),
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1— & 1
Uo = _ﬁ:]Eo > B @7 — Slp(1+ B) + Wit + 197
t=0

+ [w + (1 + By 0T — PG aTe — oIt 1T

1 .
S(1+ v80)¢ 00 | +tip + O(J|E, 7|]°)

1
— 510 =18, + 11,8, — 5

2

To simplify this expression, we seek constant terms dy, 6 and x* such that
Eo Zﬁ { - *50 (Gt = 97) = 0(Fr1 —Fi-1) — x*]z}

o1 PR
=Eo) F [<I>yt = 5l + ) + wWlF + negidia

+[w + @1+ By*)|7:dt — BnFedia — onyedi_y | +tip
Developing yields

ST, . . B N «12
= |G =9 = 61 — 9iy) — ']
1 o o o -
= —5(50?? + 007Y; + 6007tt—1 — 606771 — 600Yt—1Y}

= 50001 + 008 1§i1 + 00(Fe — 07e-1)2" + tip

Thus
& t S0 11 ~ ~11 %12
Eo 25 - E[(yt —9f) = 6(Fr—1 — Piq) — X7
t=0
d 1
= ]EO Z ﬂt{(SQ(l - ﬁé)f*gt - *5()(1 + ,Béz)yt + (Sofsytyt 1
t=0
+60(1 + BE*)7ig1 — 60671971 — 5055?t??+1} +tip

Identifying term by term, we obtain

50(1 — /Sé)x* = @,
So(1+ B6*) = [w+ (1 + py?)],

600 =119,
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Recall that the steady-state subsidy rates 7, and T,, are chosen to neutralize markups. Then, it follows that
P =x"=0.

Combining these relations, we obtain

7o — W+(P)/§1P+,3’72)5+175—1 —0,

or equivalently

P(x) =B 15 — xxe+4* =0,

where

.}

2
_wte+pyT)
[51%
Notice that

P(0) =#5* >0,

w
1)=——<0

(1) Bo

so that the two roots of IP(r) = 0 obey
0<q <1< .

In the sequel, we focus on the larger root and define

%:%2:/;()(+\/7(2T172ﬁl> > 1.

0<s<ny<l.

Since 0 = 1/, we have

Thus, given the obtained value for s, we can deduce 6 from which we can compute Jy.

We thus obtain

1 . o0 5 B R - A *
_fﬁnlEo Y B EO[(yt—y?)_‘s(yf—l_y?*l)_x ’
T =

N —

+—K¢—n%+u@@¢+;m+ww¢1%mw}+mp+om;ﬂmg

The last step consists in expressing price and wage dispersions in terms of squared price and wage

inflations.

Recall that

o . . 2
Bps = tplpia [ ) A= i+ O 7))
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Iterating backward on this formula yields

a t

Ay = ot L 10 = )t A = el tip £ O 7))
5=0
It follows that
[e5) , 0‘17 [eS) ; . . 5 ‘ 3
Ay = 1— )+ 7y — v t—1|” + tip+ O[T, |]°),).
tZ:(:)’B p.t (1_0‘p)(1_ﬁ0‘p) ;)ﬁ [( P) t p/tt 1] P (H H ) )
and by the same line of reasoning
3 At = al " BH[(1 Dz + (1= 90) 7T+ s — Yoti—1)* + tip + O(||, 7| P),).
LB ot = Ty (1= gy I P 1 = ¥+ (L= )+ g = o+ tip + O 14, 7))
Thus, defining
/\yE(SQ
A Eapep[(¢—1)9p+1]
¢ (1—ap)(1— Bay)
A :aw¢*19w(1+v9w)

(1= aw)(1— Baw)

Using this and recalling that x* = 0, the second order approximations to welfare rewrites

U =

11— oo o ) ) )
3= _517’7 Eo ) B { Myl — 81 + (1= 8T + A [(L— 1)+ 1 — i
t=0

+ Aw[(1 =72 pz + (1 = y) 7T+ Rt — 'Ywﬁt—l]z} + tip + O(|[, | ‘3)/

where we defined
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