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I Theory

This section provides supplementary material to Sections 4.1, 6 and 8. Sections I.1 and
I.2 supplement Section 4.1 by defining the equilibrium of the model as well as deriving
the model equations that characterize cities’ equilibrium land use, wages, populations
and shipping flows, respectively. Section I.3 supplements Section 6.1 by showing how
we invert the equilibrium conditions to back out amenities, productivities and exoge-
nous port costs as a function of observed population, wages and the value of shipments.
Section I.4 describes how we simulate the model for the counterfactuals of Sections
6 and 8. Section I.5 describes the benchmark models we use to decompose the ag-
gregate welfare effects of containerization in Section 6.4. Finally, Sections I.6 and I.7
present two extensions to the baseline model of Section 4.1: one in which transship-
ment requires both labor and land (Section I.6), and one in which landlords engage in
monopolistic competition in the transshipment sector (Section I.7).

I.1 Equilibrium of the model

We define the equilibrium of the model as follows.

Definition 1. Given structural parameters α, γ, η, σ, θ, λ, the number of cities S

and the subset of port cities P ⊆ {1, ..., S}, country populations Nc, city amenities

a : {1, ..., S} → R, productivities A : {1, ..., S} → R, exogenous transshipment costs

ν : P → R, inland and sea shipping costs as a function of distance φς , φτ : R → R
and endogenous transshipment costs as a function of port share ψ : (0, 1) → R, an

equilibrium of the model is a set of city populations N : S → R, nominal wages

w : S → R, land rents R : S → R, employment levels n : S → R, port shares F :

S → [0, 1), port-level shipping flows Shipping : P → R, the prices of transshipment

services O : P → R, the prices of goods p : S2 → R and the quantities of goods

q : S2 → R such that

1. workers choose their consumption of goods and city of residence within their

country to maximize their utility (3), taking prices and wages as given;

2. landlords in each city r choose their consumption of goods and land use to max-

imize their utility

uL (r) =

[
S∑
s=1

qL (s, r)
σ−1
σ

] σ
σ−1

(S.1)

taking prices, land rents and shipping flows as given;1

1We assume that landlords do not enjoy city amenities and do not have idiosyncratic tastes
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3. competition among landlords drives the price of transshipment services down to

marginal cost, (4), and landlords’ profits from transshipment down to zero;2

4. firms in each city r choose their production, employment and land use to maxi-

mize their profits

max
n(r),1−F (r)

p (r, r) Ã (r)n (r)γ (1− F (r))1−γ − w (r)n (r)−R (r) (1− F (r))

(S.2)
taking prices, land rents and wages as given, where p (r, r) is the factory gate

price of the good produced by the firm, and choose the shipping route to each

destination to maximize their profits;

5. competition among firms drives their profits down to zero;

6. there is no possibility of arbitrage, implying that the price of good r at s equals

the expected iceberg cost over the factory gate price,

p (r, s) = p (r, r)E [T (r, s)] ; (S.3)

7. the market for labor clears in each city r, implying n (r) = N (r);

8. national labor markets clear, implying
∑

r∈cN (r) = Nc in each country c;

9. the market for land clears in each city;

10. the market for transshipment services clears in each port city;

11. the market for each good clears worldwide.

Note that this equilibrium definition implies that we do not give landlords the right
to choose the amount of transshipment they conduct. In other words, landlords can-
not refuse the provision of transshipment services to anyone at the market price. This
assumption is needed for computational tractability, as it allows us to abstract from a
corner solution in which the supply of transshipment services is zero. In line with this
logic, we can relax the assumption and allow landlords to choose any positive amount
of transshipment, but not zero transshipment. Generalizing the model this way does not
change the equilibrium as landlords’ profits are linear in the amount of transshipment

for cities. As landlords are immobile, this assumption does not have any consequence on their
optimal choices and is therefore without loss of generality.

2We relax this assumption in the monopolistic competition version of the model, presented
in Section I.7.
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and zero in equilibrium, hence landlords are indifferent between transshipping any two
amounts as long as they are both positive.3

I.2 Equilibrium land use, wages, city populations and shipping flows

This section uses the equilibrium conditions of Section I.1 to characterize cities’ equi-
librium land use, wages, populations and shipping flows. To obtain these, we proceed as
follows. Section I.2.1 solves for workers’ optimal location choices. Section I.2.2 solves
the landlords’ problem for the optimal allocation of land between production and trans-
shipment. Section I.2.3 solves the firms’ problem, while Section I.2.4 uses equilibrium
prices, the price index and market clearing to obtain the equations characterizing cities’
equilibrium wages and population. Finally, Section I.2.5 derives the value of shipments
flowing through any port in equilibrium.

I.2.1 Workers’ optimal location choices

The utility function of workers, (3), implies that the indirect utility of a worker living in
city r equals

uj (r) =
w (r)

P (r)
a (r) bj (r)

wherew (r) is the nominal wage and P (r) is the CES price index of consumption goods
in the city.

We assume that bj (r) is distributed Fréchet with scale parameter one and shape
parameter 1/η:

Pr (bj (r) ≤ b) = e−b
−1/η

from which we obtain that the worker’s indirect utility is also distributed Fréchet with

scale parameter
[
w(r)
P (r)

a (r)
]1/η

:

Pr (uj (r) ≤ u) = e−[w(r)
P (r)

a(r)]
1/η

u−1/η

and hence, by the properties of the Fréchet distribution, the probability with which a
worker chooses to live in city r is given by

Pr (uj (r) ≥ uj (s) ∀s 6= r) =

[
w(r)
P (r)

a (r)
]1/η

∑
s∈c

[
w(s)
P (s)

a (s)
]1/η

.

3In the monopolistic competition version of the model (Section I.7), we do not need to make
this assumption. In that model, landlords have market power and therefore choose both the price
and the quantity of transshipment in a way that maximizes their profits.
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In equilibrium, the fraction of workers choosing to live in city r coincides with this
probability, implying

N (r)∑
s∈cN (s)

=

[
w(r)
P (r)

a (r)
]1/η

∑
s∈c

[
w(s)
P (s)

a (s)
]1/η

. (S.4)

I.2.2 Landlords’ optimal land use

Landlords earn income from providing transshipment services and from renting out
land to firms that produce the city-specific good. Their utility function, (S.1), implies
that the indirect utility of a landlord in city r equals her nominal income divided by the
price index,

uL (r) =

[
O (r)− (ν (r) + ψ (F (r)))Shipping (r)λ

]
Shipping (r) +R (r) (1− F (r))

P (r)

where O (r) is the price of transshipment services in city r (taken as given by the land-
lord), ν (r) is the exogenous part of transshipment costs, F (r) is the share of land
allocated to the port, Shipping (r) is the value of shipments flowing through the port,
excluding the price of transshipment services (hence, total demand for transshipment
services, again taken as given by the landlord), R (r) is the land rent prevailing in the
city, and 1 − F (r) is the share of land rented out to firms. That is, the first term in the
numerator corresponds to the landlord’s net nominal income from providing transship-
ment services, while the second term corresponds to her nominal income from renting
out land to firms.

The landlord decides on the allocation of land, captured by the single variable F (r),
to maximize her utility. As she cannot influence the price index P (r), this is equivalent
to maximizing her nominal income:

max
F (r)

[
O (r)− (ν (r) + ψ (F (r)))Shipping (r)λ

]
Shipping (r) +R (r) (1− F (r))

The first-order condition to this maximization problem is

−ψ′ (F (r))Shipping (r)1+λ −R (r) = 0

from which, by rearranging,

− ψ′ (F (r)) =
R (r)

Shipping (r)1+λ
. (S.5)
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I.2.3 Firms’ problem

Recall that the representative firm operating in city r faces the production function

q (r) = Ã (r)n (r)γ (1− F (r))1−γ

and maximizes its profits, (S.2), by choosing its employment and land use. The first-
order conditions to the firm’s profit-maximization problem imply

R (r) =
1− γ
γ

w (r)N (r)

1− F (r)
(S.6)

where we have used labor market clearing, which implies n (r) = N (r). Plugging
this back into the firm’s cost function and production function, we obtain that the firm’s
marginal cost of production is equal to

γ−γ (1− γ)−(1−γ) Ã (r)−1w (r)γ R (r)1−γ

which, by perfect competition among firms, equals the factory gate price in equilibrium:

p (r, r) = γ−1A (r)−1 (1− F (r))−(1−γ) N (r)1−γ−αw (r) (S.7)

where we have used (S.6) again, together with the fact that Ã (r) = A (r)N (r)α.
Finally, equation (S.6) also implies that total factor payments in city r equal

Y (r) = w (r)N (r)+R (r) (1− F (r)) = w (r)N (r)+
1− γ
γ

w (r)N (r) =
1

γ
w (r)N (r) .

(S.8)

I.2.4 Equilibrium wages and populations

From the workers’ and landlords’ problems, we can derive the constant-elasticity de-
mand for the city-r good in city s as

q (r, s) = p (r, s)−σ P (s)σ−1 Y (s)

where p (r, s) is the price paid by the consumer, which includes the shipping cost be-
tween r and s. Demand in value terms is equal to

p (r, s) q (r, s) = p (r, r)1−σ P (s)σ−1 Y (s)E [T (r, s)]1−σ

where we have used equation (S.3).
Market clearing for the good produced in city r implies that total factor payments
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in r equal worldwide demand for the good (in value terms):

1

γ
w (r)N (r) =

S∑
s=1

p (r, r)1−σ P (s)σ−1 1

γ
w (s)N (s)E [T (r, s)]

where we have used equation (S.8) to substitute for total factor payments on both sides.
Plugging (S.7) into this equation yields

w (r)N (r) =γσ−1A (r)σ−1 (1− F (r))(1−γ)(σ−1)N (r)−(1−γ−α)(σ−1) ·

w (r)1−σ
S∑
s=1

P (s)σ−1w (s)N (s)E [T (r, s)]1−σ .
(S.9)

The CES price index in city r takes the form

P (r)1−σ =
S∑
s=1

p (s, r)1−σ =
S∑
s=1

p (s, s)1−σ E [T (s, r)]1−σ .

Plugging factory gate prices (S.7) into this equation yields

P (r)1−σ = γσ−1

S∑
s=1

A (s)σ−1 (1− F (s))(1−γ)(σ−1)w (s)1−σN (s)−(1−γ−α)(σ−1) E [T (s, r)]1−σ .

(S.10)
Rearranging equation (S.4) yields the following expression for the price index:

P (r) = ã (r)w (r)N (r)−η (S.11)

where ã (r) can be obtained by scaling amenities a (r) according to

ã (r) = ℵca (r) =

 ∑
s∈cN (s)∑

s∈c

[
w(s)
P (s)

a (s)
]1/η


η

a (r) .

Plugging equation (S.11) into (S.9) yields

A (r)1−σ (1− F (r))−(1−γ)(σ−1)w (r)σN (r)1+(1−γ−α)(σ−1) =

γσ−1

S∑
s=1

ã (s)σ−1w (s)σN (s)1−η(σ−1) E [T (r, s)]1−σ
(S.12)
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while plugging equation (S.11) into (S.10) yields

ã (r)1−σ w (r)1−σN (r)η(σ−1) = γσ−1·
S∑
s=1

A (s)σ−1 (1− F (s))(1−γ)(σ−1) w (s)1−σN (s)−(1−γ−α)(σ−1) E [T (s, r)]1−σ .

(S.13)

Note that our assumptions on trade costs guarantee symmetry and hence E [T (r, s)]1−σ =

E [T (s, r)]1−σ. Given this, we can show that equations (S.12) and (S.13) can be sim-
plified further. To see that this is the case, guess that wages take the form

w (r) = ã (r)ι1 A (r)ι2 (1− F (r))ι3 N (r)ι4 .

That is, they only depend on local amenities, productivity, land available for production,
and population. Inspecting equations (S.12) and (S.13), one can verify that this guess is
indeed correct if

ι1 = − σ − 1

2σ − 1
,

ι2 = ι3 = (1− γ)
σ − 1

2σ − 1

and
ι4 = [η − (1− γ) (1− α) (σ − 1)− 1]

1

2σ − 1

as (S.12) and (S.13) reduce to the same equation if the guess is correct with these values
of ι1, ι2, ι3 and ι4. Thus, wages in city r are given by

w (r) = ã (r)−
σ−1
2σ−1 A (r)

σ−1
2σ−1 (1− F (r))(1−γ) σ−1

2σ−1 N (r)[η−(1−γ−α)(σ−1)−1] 1
2σ−1 .4

(S.14)
Finally, plugging (S.14) back into either (S.12) or (S.13) gives us an equation that de-
termines the distribution of population across cities:

N (r)[1+ησ+(1−γ−α)(σ−1)] σ−1
2σ−1 = γσ−1ã (r)

σ(σ−1)
2σ−1 A (r)

(σ−1)2

2σ−1 (1− F (r))(1−γ)
(σ−1)2

2σ−1 MA (r)

(S.15)
where

MA (r) =
S∑
s=1

ã (s)
(σ−1)2

2σ−1 A (s)
σ(σ−1)
2σ−1 (1− F (s))(1−γ)

σ(σ−1)
2σ−1 N (s)[1−η(σ−1)−(1−γ−α)σ] σ−1

2σ−1

E [T (r, s)]σ−1

4We can freely choose the intercept of this equation as we have not normalized any price yet.
We choose it to be equal to one.
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is the market access of city r.

I.2.5 Equilibrium shipping flows

This section derives the equilibrium value of shipping flows through any port. To obtain
these, we first need to introduce further notation. Let Z be an S + P by S + P matrix,
where P denotes both the set and the number of ports in the model.5 Each of the first S
rows and columns of Z corresponds to a city, while each of the last P rows and columns
of Z corresponds to a port. Let us call a city or a port a location; that is, each row and
column in Z corresponds to one location. We assume that an entry z (i, `) of Z is zero
if locations i and ` are not directly connected, or if i = `. Otherwise, z (i, `) is defined
as

z (i, `) =
[
T̄ (i, `) [1 +O (`)]

]−θ
where T̄ (i, `) is the common cost of shipping from i to ` directly, and O (`) is the price
of transshipment services at `. If ` is a port belonging to port city r, then this price is
given by equation (4). If ` is not a port but a (port or non-port) city, then we define
O (`) = 0.6

Following Allen and Arkolakis (2019), we can show that the expected cost of ship-
ping from city r to s can be written as

E [T (r, s)] = Γ

(
θ + 1

θ

)
x (r, s)−1/θ

where x (r, s) is the (r, s) entry of the matrix

X = (I − Z)−1

and I is the S + P by S + P identity matrix.
Similarly, we can show that, if a good is shipped from city r to s, the probability

that it is shipped through port k is given by

π (k|r, s) =
x (r, k)x (k, s)

x (r, s)
. (S.16)

and therefore the total value of goods shipped through port k from city r to city s

5Recall that S is the total number of (port or non-port) cities.
6For computational reasons, we need to add a small iceberg cost of shipping between each

port and its own city. This cost equals 1.03 in both the inversion and the model simulations.

9



(excluding the price paid for transshipment services at k) equals

Shipping (k|r, s) = [1 +O (k)]−1 p (r, s)1−σ P (s)σ−1 1

γ
w (s)N (s) π (k|r, s) .

Combining this with equations (S.3), (S.7), (S.11) and (S.16) yields

Shipping (k|r, s) = γσ−2 [1 +O (k)]−1A (r)σ−1 (1− F (r))(1−γ)(σ−1)N (r)−(1−α−γ)(σ−1) ·

w (r)1−σ ã (s)σ−1N (s)1−η(σ−1)w (s)σ E [T (r, s)]1−σ
x (r, k)x (k, s)

x (r, s)

and therefore the total value of shipping through port k is given by

Shipping (k) = γσ−2 [1 +O (k)]−1
∑
r

D1 (r)x (r, k)
∑
s

D2 (s)
E [T (r, s)]1−σ

x (r, s)
x (k, s)

(S.17)
where

D1 (r) = A (r)σ−1 (1− F (r))(1−γ)(σ−1)N (r)−(1−α−γ)(σ−1)w (r)1−σ

and
D2 (s) = ã (s)σ−1N (s)1−η(σ−1)w (s)σ .

I.3 Inverting the model

This section describes how we invert the equilibrium conditions of the model to back out
amenities, productivities and exogenous transshipment costs as a function of observed
population, wages and the value of shipments. As a first step, we use the observed data
to back out port shares in the model. To this end, we combine equations (S.5) and (S.6)
to obtain port shares as a function of wages w (r), population N (r) and the value of
shipments Shipping (r) in each port city r:

− ψ′ (F (r)) (1− F (r)) =
1− γ
γ

w (r)N (r)

Shipping (r)1+λ
(S.18)

Given the assumptions we made on ψ′, the left-hand side of equation (S.18) is strictly
decreasing in F (r). Moreover, the left-hand side takes every real value between zero
and infinity as ψ′ is continuous, limF→1 ψ

′ (F ) = 0 and limF→0 ψ
′ (F ) = −∞. This

guarantees that solving equation (S.18) identifies a unique value of F (r) ∈ (0, 1) for
every port city.

The second step consists of solving for ã (r), A (r) and ν (r) for the observedN (r),
w (r) and Shipping (r), as well as the F (r) recovered in the previous step. This is done
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using an algorithm that consists of an outer loop and an inner loop. In the inner loop,
we obtain the values of ã (r) that solve the system of equations

ã (r)1−σ w (r)1−σN (r)η(σ−1) = γσ−1

S∑
s=1

ã (s)σ−1w (s)σN (s)1−η(σ−1) E [T (r, s)]1−σ

(S.19)
derived from equations (S.12) and (S.13) for a fixed set of exogenous transshipment
costs ν (r), and hence for fixed E [T (r, s)]. For any E [T (r, s)], this system yields a
unique solution for ã (r). Rearranging equation (S.14), we can then uniquely express
productivity A (r) as a function of the recovered ã (r):

A (r) = ã (r) (1− F (r))γ−1w (r)
2σ−1
σ−1 N (r)−[η−(1−γ−α)(σ−1)−1] 1

σ−1 (S.20)

In the outer loop, we search for the set of ν (r) for which the value of shipments
implied by equation (S.17) – hence, by N (r), w (r), F (r) and the recovered ã (r)

and A (r) – rationalize the shipping flows observed in the data. In practice, we start
from a uniform guess of ν (r) = ν̄, then perform a large number of iterations in which
we update ν (r) gradually to get closer to satisfying equation (S.17). We also update
E [T (r, s)] in every iteration step. Even though we cannot prove that this procedure
identifies a unique set of ν (r), the algorithm has been converging to the same fixed
point for various different initial guesses on ν (r), even when guessing non-uniform
distributions of ν (r) initially.

I.4 Counterfactual simulation

This section describes how we perform counterfactual simulations in the model. First,
we need to choose the absolute level of amenities a (r) in each city r, as the inversion
only identifies amenities up to a country-level scale, ã (r) = ℵca (r). Unfortunately,
nothing in the data guides us with this choice. Hence, we make the simplest possible
assumption by assuming that average amenities are the same across countries and are
equal to one:

1

Cc

∑
r∈c

a (r) =
1

Cc

∑
r∈c

ã (r)

ℵc
= 1

where Cc denotes the number of cities in country c. Rearranging yields

ℵc =
1

Cc

∑
r∈c

ã (r)

11



and hence we can obtain the absolute level of amenities in each city r as

a (r) =
ã (r)

ℵc
=

Cc∑
s∈c ã (s)

ã (r) .

Second, we solve for the counterfactual equilibrium of the model using an algorithm
that consists of three loops embedded in each other. In the innermost loop, we obtain
the distribution of population N (r) that solves equation (S.15) for a fixed set of ℵc,
F (r) and Shipping (r) (implying that E [T (r, s)] are also fixed). For any ℵc, F (r)

and Shipping (r), equation (S.15) can be shown to have a unique positive solution if

α < 1− γ + η

which holds under the assumptions made in Section 4.1. Moreover, the solution can be
obtained by simply iterating on equation (S.15), starting from any initial guess onN (r).
The proof of these results follows directly from the proof of equilibrium uniqueness in
Allen and Arkolakis (2014).

In the middle loop, we solve for the set of country-specific ℵc that guarantee that
the sum of city populations equals total country population in each country:∑

r∈c

N (r) = Nc

where Nc denotes the exogenously given population of country c. We also solve for
wages using equation (S.14) and for rents using equation (S.6).

In the outermost loop, we iterate on the distribution of port shares and shipping
flows that satisfy both equations (S.5) and (S.17), also updating E [T (r, s)] in every
step. We use the distributions of port share and shipping obtained in the inversion as
our initial guesses. Even though we cannot prove that this procedure yields a unique
equilibrium, we have been converging to the same distribution of endogenous variables
for different initial guesses as well.

I.5 Benchmark models used to decompose the aggregate welfare effects of con-
tainerization

This section provides a description of the two benchmark models (Benchmark 1 and
Benchmark 2) used to decompose the aggregate welfare gains from containerization.
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I.5.1 Benchmark 1: No land use in transshipment

In Benchmark 1, we abstract from endogenous (land-dependent) transshipment costs.
Thus, the cost of handling one unit of a good at port pm is given by

ν (pm)Shipping (pm)λ

and, by perfect competition, the price of transshipment services equals this cost:

O (pm) = ν (pm)Shipping (pm)λ (S.21)

As production is the only sector in which land can be productively used in this model,
landlords optimally set the fraction of production land to one: 1 − F (r) = 1. The
remaining assumptions are the same as in the baseline model. Naturally, equation (S.5)
does not hold in Benchmark 1, since all port shares are equal to zero.

Taking Benchmark 1 to the data. Taking Benchmark 1 to 1990 data follows similar
steps as taking our baseline model to the data. We keep the structural parameters and
the inland and sea shipping costs unchanged relative to the baseline model. To back out
amenities, productivities and exogenous transshipment costs after containerization, we
invert Benchmark 1 using 1990 data on population, wages and the value of shipments.
This inversion procedure differs from the inversion of the baseline model in that we do
not need to solve equation (S.5) for equilibrium port shares. As a result, we can skip
the first step of the inversion procedure and immediately start with what we labeled as
the second step in Section I.3.

In particular, we solve an algorithm that consists of an outer loop and an inner loop.
In the inner loop, we obtain the values of city amenities ã (r) that solve equation (S.19),
which holds in Benchmark 1 as well, for a fixed set of ν (r), hence for fixed E [T (r, s)].
Once we have ã (r), we can obtain city productivitiesA (r) from equation (S.20), which
also holds in Benchmark 1, such that we set 1− F (r) = 1.

In the outer loop, we search for the set of ν (r) such that shipments implied by equa-
tion (S.17) equal the shipping flows observed in the data. Equation (S.17) also holds in
Benchmark 1, except that we need to use 1 − F (r) = 1 and equation (S.21) instead
of equation (4) to calculate transshipment prices. In practice, we start from a uniform
guess of ν (r) = ν̄, then perform a large number of iterations in which we update ν (r)

gradually to get closer to satisfying equation (S.17). We also update E [T (r, s)] in every
iteration step.

Counterfactual simulation of Benchmark 1. When conducting the no-containerization
counterfactual in Benchmark 1, we again try to stay as close as possible to our base-
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line model. We offset the relationship between log ν (r) and port depth, and increase
all log ν (r) by a constant νCF such that we have the same increase in international
trade to world GDP (4.7 pp) as in the baseline model (Section 6.2). We also use the
same procedure to obtain a (r) from ã (r) (Section I.4). When conducting the targeted
port development counterfactual, we decrease exogenous transshipment costs in the 24
targeted ports by 10%, as in the baseline model.

We solve for counterfactual equilibria using an algorithm that consists of three loops
embedded in each other. In the innermost loop, we obtain the distribution of population
N (r) that solves equation (S.15) for a fixed set of ℵc and Shipping (r) (implying that
E [T (r, s)] are also fixed). Equation (S.15) is unchanged relative to the baseline model,
except that we need to use 1− F (r) = 1. We follow the same iterative procedure as in
Section I.4 to solve equation (S.15).

In the middle loop, we solve for the set of country-specific ℵc such that the sum
of city populations equals total country population in each country. We also solve for
wages using equation (S.14), which is the same as in the baseline model, except that
1− F (r) = 1.

In the outermost loop, we iterate on equation (S.17) to obtain equilibrium shipping
flows, also updating E [T (r, s)] in every step. In contrast to the baseline model, we use
1 − F (r) = 1 and equation (S.21) instead of equation (4) in this process. We use the
1990 shipping flows as our initial guess.

I.5.2 Benchmark 2: Land use in transshipment identical across port cities

In Benchmark 2, we allow for endogenous (land-dependent) transshipment costs. This
implies that transshipment prices are given by equation (4), just like in our baseline
model. However, we restrict transshipment land use to be identical across port cities.
More precisely, we set the 1990 port share of each port city equal to the average 1990
port share in the baseline model. Similarly, we set the counterfactual port share equal
to the average port share in the counterfactual of our baseline model. The remaining
assumptions are the same as in the baseline model. Similar to Benchmark 1, equation
(S.5) does not hold in this model since port shares are set exogenously through the
above procedure, rather than optimally by port city landlords.

Taking Benchmark 2 to the data. We keep the structural parameters and the inland and
sea shipping costs unchanged relative to the baseline model. To back out amenities, pro-
ductivities and exogenous transshipment costs after containerization, we invert Bench-
mark 2 using 1990 data on population, wages and the value of shipments. Just like in
Benchmark 1, we do not need to solve equation (S.5) for equilibrium port shares. As a
result, we can skip the first step of the inversion procedure and immediately start from
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the second step. This second step, in turn, is conducted exactly as in the baseline model
(see Section I.3 for details), except that we use the average 1990 port share in the base-
line model as F (r) in each port city.

Counterfactual simulation of Benchmark 2. In the no-containerization counterfactual
simulation of Benchmark 2, we change transshipment cost parameter β in the same way
as in the counterfactual of the baseline model; offset the relationship between log ν (r)

and port depth; and increase all log ν (r) by a constant νCF such that we have the same
increase in international trade to world GDP (4.7 pp) as in the baseline model (Section
6.2). We also use the same procedure to obtain a (r) from ã (r) (Section I.4).

Finally, we solve for the counterfactual equilibrium using an algorithm that consists
of three loops embedded in each other. In the innermost loop, we obtain the distri-
bution of population N (r) that solves equation (S.15) for a fixed set of ℵc, F (r) and
Shipping (r) (implying that E [T (r, s)] are also fixed). We use the average port share
in the counterfactual of the baseline model as F (r) in each port city. We follow the
same iterative procedure as in Section I.4 to solve equation (S.15).

In the middle loop, we solve for the set of country-specific ℵc such that the sum
of city populations equals total country population in each country. We also solve for
wages using equation (S.14), which is the same as in the baseline model. We again use
the same F (r) in each port city.

In the outermost loop, we iterate on equation (S.17) to obtain equilibrium shipping
flows, also updating E [T (r, s)] in every step. We again use the same F (r) in each port
city. We use the 1990 shipping flows as our initial guess.

I.6 A model with labor used in transshipment

This section presents a generalization of our baseline model in which the provision of
transshipment services may require not only land, but also potentially labor. We show
that, as long as the share of labor relative to land in transshipment is sufficiently low, this
more general framework delivers predictions on port development and city populations
that are extremely similar to the predictions of our baseline model. On the other hand, if
the share of labor in transshipment is high, the model’s predictions are in contrast with
the empirical facts we document in Sections 3 and 5, as we describe below.

We now present the setup of the model with transshipment labor. Assume that the
cost of transshipping one unit of a good in port city r equals

(
ν (r) + ψ

(
nP (r)γP F (r)1−γP ))Shipping (r)λ

where 0 ≤ γP ≤ 1. That is, γP is labor’s share and 1− γP is land’s share in transship-
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ment services. Our baseline model is a special case in which γP = 0. The remaining
model assumptions are the same as in the baseline model.

We now show how our model predictions – more precisely, the three propositions of
Section 4.2 – change in this more general framework. To obtain the first two proposi-
tions, note that the first-order conditions to the landlord’s problem with respect to nP (r)

and F (r) together imply

nP (r) =
γP

1− γP
R (r)

w (r)
F (r) . (S.22)

On the production side, the first-order conditions to the firm’s problem imply

n (r) =
γ

1− γ
R (r)

w (r)
(1− F (r)) . (S.23)

Adding equations (S.22) and (S.23) yields total demand for labor in the city,

N (r) =
γ

1− γ
R (r)

w (r)
(1− γ̃F (r)) (S.24)

where γ̃ = γ/(1−γ)−γP /(1−γP )
γ/(1−γ)

. Combining equation (S.24) with equation (S.22), we
obtain labor used for transshipment as

nP (r) =
γP

1− γP
1− γ
γ

N (r)
F (r)

1− γ̃F (r)

and hence the landlord’s first-order conditions imply

− ψ′
([

γP
1− γP

1− γ
γ

N (r)

]γP F (r)

(1− γ̃F (r))γP

)
= γ̂

w (r)γP R (r)1−γP

Shipping (r)1+λ
(S.25)

where γ̂ is a constant. Equation (S.25) allows us to state the following two propositions.

Proposition 4. Assume γP ≤ γ. Then land allocated to the port is increasing in the

amount of shipping flows.

Proof. γP ≤ γ implies γ̃ > 0. As a consequence, the argument inside the function −ψ′

is increasing in land allocated to the port, F (r). Given the convexity of ψ, this means
that the left-hand side of equation (S.25) is decreasing in F (r). This, together with
the fact that the right-hand side of (S.25) is decreasing in shipping flows Shipping (r),
yields the result.

Proposition 5. Assume γP ≤ γ. Then land allocated to the port is decreasing in land

rents.
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Proof. The proof follows the exact same steps as the proof of Proposition 4.

Propositions 4 and 5 are the counterparts of Propositions 1 and 2 of Section 4.2. As
the comparison of Propositions 4 and 5 to Propositions 1 and 2 clarifies, the sufficient
condition under which the model with transshipment labor yields the same predictions
as our baseline model is γP ≤ γ. That is, labor’s share in transshipment may be positive
but needs to be below labor’s share in the production of the city-specific good. This
result is intuitive. Higher demand for transshipment, or a lower opportunity cost of
transshipment, triggers an expansion of transshipment services in the city. As long as
land’s share in transshipment is higher than land’s share in the rest of the economy,
standard Heckscher–Ohlin logic dictates that this expansion is reached through more
land used for transshipment and less in the rest of the economy.

If labor’s share in transshipment is higher than labor’s share in the production of the
city-specific good, the model no longer yields clear-cut predictions on land allocation
between the two sectors of the economy. In the extreme case in which land is not used
in transshipment at all (γP = 1), port activity naturally does not depend on land rents
whatsoever. This is clearly in contrast with our empirical facts documented in Section
3, and in particular, with the result that containerization increased shipping more in low
land-rent cities.

To derive the counterpart of Proposition 3, note that land rents in the model with
transshipment labor can be obtained from equation (S.24) as

R (r) =
1− γ
γ

w (r)N (r)

1− γ̃F (r)

whereas total income in city r is given by

1

γ
w (r)n (r) =

1

γ

1− F (r)

1− γ̃F (r)
w (r)N (r) .

Using these results in the derivation of the equilibrium conditions, we obtain that
the population of city r is the solution to the following equation:

N (r)[1+ησ+(1−γ−α)(σ−1)] σ−1
2σ−1 =γσ−1ã (r)

σ(σ−1)
2σ−1 A (r)

(σ−1)2

2σ−1 (1− γ̃F (r))[1+(1−γ)(σ−1)] σ−1
2σ−1 ·

(1− F (r))−
σ−1
2σ−1 MA (r)

(S.26)
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where

MA (r) =
S∑
s=1

ã (s)
(σ−1)2

2σ−1 A (s)
σ(σ−1)
2σ−1 (1− F (s))

σ−1
2σ−1 (1− γ̃F (s))[(1−γ)σ−1] σ−1

2σ−1 ·

N (s)[1−η(σ−1)−(1−γ−α)σ] σ−1
2σ−1 E [T (r, s)]1−σ .

Equation (S.26) allows us to state the following proposition, which is the counterpart
of Proposition 3 in Section 4.2.

Proposition 6. If γP < 1, then an increase in the share of land allocated to the port

in city in r, F (r), decreases shipping costs E [T (r, s)], thus increasing MA (r). Ev-

erything else fixed, an increase in MA (r) increases the population of the city (market

access effect). Holding MA (r) fixed, if γP ≥ γ, an increase in F (r) draws additional

people into the city (crowding-in effect). If 0 < γP < γ, an increase in F (r) may

trigger either a crowding-in effect or migration out of the city (crowding-out effect), de-

pending on the values of structural parameters γ, γP and σ. If and only if γP = 0 (our

baseline model), the model implies a crowding-out effect irrespectively of the values of

structural parameters.

Proof. The results follow directly from equation (S.26).

According to Proposition 6, an expansion of port activity has different implications
on city population depending on labor’s share in transshipment. Besides the standard
market access effect, port development affects city population in two ways. First, it
draws people into the transshipment sector as long as labor’s share in the sector is dif-
ferent from zero. Second, it decreases the amount of land available for the production of
the city-specific good, which induces workers in this sector to leave the city. If labor’s
share in the transshipment sector is sufficiently high, the first effect always dominates
the second one (crowding in). This implies that the population of the city should in-
crease even more than what is implied by the standard market access effect. Such a
crowding-in effect, however, is not consistent what we find in the data (Section 5), in
particular, with the negative and significant coefficient on shipping once we control for
market access.

To sum up, the model presented in this section sheds light on two facts. First, if
the share of labor in transshipment is too high, the model with transshipment labor
has different implications than our baseline framework. These implications, however,
are in clear contrast with the empirical findings of Sections 3 and 5. Second, if the
share of labor in transshipment is sufficiently low, the model with transshipment labor
is more complex in its structure but delivers predictions that are extremely similar to
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the predictions of our baseline framework.

I.7 A model with monopolistic competition in transshipment

This section presents a version of our baseline model in which landlords providing
transshipment services engage in monopolistic competition. This implies that, unlike in
our baseline model, port activity involves positive profits. We also show how we take
the model with monopolistic competition to the data and how we simulate the same
no-containerization counterfactual in it as in our baseline model.

We first present the setup of the monopolistic competition model. As in our baseline
model, we assume that each city is inhabited by a continuum of landlords. Without loss
of generality, we normalize the mass of these landlords to one in each city, and index
an individual landlord by m ∈ [0, 1].

Unlike in our baseline model, we assume that transshipment services are differenti-
ated products. Firms shipping through port city r may use the services of any number
of landlords m residing in the city. Firms aggregate transshipment services in a CES
function with elasticity of substitution ζ ∈ (1,∞) across the services performed for
them by the individual landlords. As ζ < ∞, these services are imperfect substitutes.
Hence, each firm uses the transshipment service of each landlord in equilibrium.7

Landlords are aware that they are the sole provider of their differentiated transship-
ment service but cannot influence city-wide prices and quantities. Thus, they engage
in monopolistic competition, choosing their land allocation, transshipment price and
transshipment quantity to maximize their net nominal income. In other words, landlord
m in port city r solves the problem

max
Fm(r),Om(r),Shippingm(r)

[
Om (r)− (ν (r) + ψ (Fm (r)))Shipping (r)λ

]
Shippingm (r)

+R (r) (1− Fm (r))

where Om (r) is the price of transshipment services that landlord m charges, ν (r) is
the exogenous part of transshipment costs, Fm (r) is the share of land that the landlord
allocates to transshipment, Shipping (r) is the total value of shipments flowing through
the port excluding the price of transshipment services, R (r) is the land rent prevailing
in the city, and 1− Fm (r) is the share of land rented out to firms.

As the price elasticity of demand for each landlord’s transshipment service is con-
stant at −ζ , each landlord charges a constant markup over her marginal cost in equilib-

7To fix ideas, one may think that one port city landlord provides the cranes, another the
storage, and so on. As a result, firms use the services of all landlords, not only one.
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rium:
Om (r) =

ζ

ζ − 1
(ν (r) + ψ (Fm (r)))Shipping (r)λ

As landlords in a given port city are symmetric, we can drop their index and simply
write

O (r) =
ζ

ζ − 1
(ν (r) + ψ (F (r)))Shipping (r)λ (S.27)

from which we get that landlords earn profits on transshipment equal to

Π (r) =
1

ζ − 1
(ν (r) + ψ (F (r)))Shipping (r)1+λ . (S.28)

For simplicity, we assume that landlords spend these profits outside our set of cities S.
This implies that we do not need to take profits into account when calculating demand
for goods in the city, or city GDP. This assumption helps us keep the model computa-
tionally tractable.

The first-order condition to the landlord’s maximization problem with respect to
Fm (r) implies

−ψ′ (F (r))Shipping (r)1+λ −R (r) = 0

from which, by rearranging,

−ψ′ (F (r)) =
R (r)

Shipping (r)1+λ
.

Note that this equation is identical to equation (5) of our baseline model. More
generally, as the remaining model assumptions in the monopolistic competition model
are the same as those in the baseline model, the only equation that differs between the
two frameworks is equation (S.27), which replaces equation (4) in the baseline model.
The remaining equilibrium conditions are all identical.

In Section A.3, we conduct a robustness check in which we take the model with mo-
nopolistic competition to the data to measure the aggregate gains from containerization,
as in the baseline model. Inverting and simulating the monopolistic competition model
follows the same steps as described in Sections I.3 and I.4, with one exception: we use
equation (S.27) instead of equation (4) whenever we calculate transshipment prices.

To do so, we need to choose the value of the markup parameter ζ . Note that, by
equation (S.28), transshipment profits are decreasing in ζ . Data on profits of ports are
hard to find, especially during our period of interest, but we were able to obtain profit
and revenue data for a number of ports from annual reports of port authorities between
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1950 and 1990.8 In this sample, profits as a percentage of revenue are on average 28%,
with no clear trends over time. Choosing ζ = 3, our model predicts an average profit
margin of 27% and a median profit margin of 33% across ports. Hence, we use ζ = 3

in the inversion and the counterfactual simulation.9

II Data

In this section, we provide additional details about data construction and sources for the
variables used in the analysis.

II.1 Lloyd’s List shipping data

We clean the shipping data by manually matching them to the 1953 and 2017 editions of
the World Port Index (WPI), which is a widely used reference list of worldwide ports.
The initial Lloyd’s List sample of ‘ports’ included ports on navigable rivers such as
Budapest, Hungary. We therefore chose to discipline the sample of ports using WPI.
We use a historic and current edition of the WPI to ensure we capture both ports that
may no longer exist, and ones that only appear later in the period. A different approach
would have been to choose a distance threshold from the coast and drop any port located
further from the coast than the threshold. This definition, however, is very sensitive to
the precision of the coastline shapefile used to calculate distance form the coast, which
is why we did not choose this method. Despite filtering the Lloyd’s List sample through
the WPI, our final sample still contains a handful of ports that are very far inland. In
the empirical analysis, we show that our results are robust to different ways of treating
these ‘inland ports.’ Our base sample consists of Lloyd’s List ports that match to at least
one of the WPI editions.

II.2 Underwater elevation levels

We use data on underwater elevation levels from the General Bathymetric Chart of the

Oceans (GEBCO). We use the 2014 version of these data. Most observations in the
dataset are from ship-track soundings with interpolation between soundings guided by
satellite-derived gravity data. The data are continuously updated with sources from
local bathymetry offices and coastal navigation charts. More details on dataset con-
struction can be found at http://www.gebco.net.

8We describe these data in Section II.16.
9We compute the profit margin of port r in the model as Π(r)−R(r)F (r)

O(r)Shipping(r) . These margins vary
across ports and are in fact negative for a few of them. As these ports operate in the data, we do
not let them shut down in the model and assume they are subsidized from the outside economy.
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II.3 Saiz proxy for land-rents

The following sources are used to calculate the Saiz measure for our sample of cities.
The coastline shapefile needed to distinguish between land and sea cells is from GSHHG
(https://www.soest.hawaii.edu/pwessel/gshhg/). Inland bodies of water and wetlands
are from the World Wildlife Fund’s Global Lakes and Wetlands Database (https://www.
worldwildlife.org/pages/global-lakes-and-wetlands-database). Finally, data on land el-
evations used to calculate the slope of each cell is from GEBCO’s land data, described
above.

II.4 Predicted city-level GDP per capita

Here we provide a more detailed discussion of how we estimate city level GDP per
capita for our full sample of cities (port and non-port cities). First, we merge the Can-

back data with our city list, and construct GDP per capita from the level of GDP and
the population data provided by Canback. GDP are reported at purchasing power parity
(in 2005 USD). We have estimates from this source for 898 cities in our sample.

We estimate city-level GDP for the full sample by extrapolating the estimated re-
lationship between GDP per capita and nighlight luminosity. We begin by estimating
the linear fit of GDP per capita on nightlight luminosity, building on a growing body
of evidence suggesting that income can be reasonably approximated using nightlight
luminosity data (Donaldson and Storeygard, 2016).

We construct the ‘luminosity’ of each city in the following way. We take the 1992
30 arc-second grid layer from NOAA’s National Geophysical Data Center (source:
https://ngdc.noaa.gov/products/) as the baseline input, as this is the closest year to 1990
– the year for which we have city income from Canback. We define a cell in this raster to
be ‘lit up’ if its luminosity level is above 25. This threshold defines meaningful levels of
economic activity in the cell - as proxied by nightlights.10 We then construct a polygon
from contiguous cells with luminosity above 25 for each city in our sample. We observe
luminosity for 2,294 cities in our dataset.11 With these data in hand, we then define a
city i’s luminosity, luminosityi, to be the sum of all cells’ luminosity levels within the
polygon. Note that in this summation, we drop any cells identified as ‘gas flares’ in the
source data, as these do not contain meaningful information on economic activity.

For the remaining 342 cities (13%), we either fail to identify an area polygon as-
signed to the city (340 cities) or a gas flare completely covers the polygon of the city (2
cities). We observe both GDP per capita and luminosity for a subset of 810 cities. For

10We experimented with different cutoffs and this was the one for which the R2 in the regres-
sion of income on luminosity was highest.

11We have cities with ‘missing’ luminosity data if we fail to detect any cells with luminosity
levels above 25 in the vicinity of the city’s geocode.
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this subset, we estimate the relationship between GDP per capita and luminosity. More
precisely, we estimate

ln(GDP/capita)i = β ∗ ln(luminosityi) + FEc + εi (S.29)

where GDP/capitai is city-level GDP per capita as compiled in the Canback Global

Income Distribution Database (CGIDD) for the year 1990 which covers 898 cities, and
luminosityi measures the sum of luminosity in the cells in the polygon that defines the
area of the city.

Note that most of the papers in this literature estimate the level of GDP within
a country, where the level of development is not as widely dispersed as across cities
worldwide. To account for these differences and the way in which they affect lumi-
nosity, we include country fixed effects FEc in our estimation. However, in order to
identify country fixed effects we need to drop 21 cities that are the only cities with GDP
per capita data in their respective country, leaving a sample of 789 cities for estimation.

The results of this regression are given in column (1) of Supplementary Table S.1.
We then predict GDP per capita for all cities for which we observe luminosity that are
also in the set of countries used in this regression. This allows us to predict GDP per
capita for a total of 2,289 cities. For the remaining 341 cities, we use the following
approximation. For 89 cities, we observe GDP per capita directly, which we use. For
240 cities we only observe population in 1990, so we use this to predict GDP per capita
based on the estimated relationship between GDP per capita and population in 1990 for
all cities in our sample for which we observe both measures. This estimated relationship
is given in column (2) of Supplementary Table S.1. Finally, for 18 cities we only observe
population in 1980, so we use the latter to predict GDP per capita for all cities in our
sample for which we observe both variables, resulting in the estimated relationship in
column (3) of Supplementary Table S.1.

This procedure yields a city-level estimate for GDP per capita for all 2,636 cities in
our dataset.

II.5 Port shares for 1990

Here, we provide details on the construction of port share data and the sources used.
First, it is important to note that historical data on the area occupied by the port is very
difficult to find. For example, data on port area is only sporadically and inconsistently
reported in Lloyd’s Ports of the World, and it is usually not found in ports’ annual
reports. These are in fact the two sources from which we take the measure for the ports
where port area is observed. We also experimented with using satellite images from the
1980s, but the resolution is too low to detect port areas.
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Table S.1: Relationship between GDP per capita and nightlight luminosity

ln(GDP per capita)

Independent variables (1) (2) (3)

ln(Luminosity) 0.126***

(0.014)

ln(Population, 1990) 0.107***

(0.013)

ln(Population, 1980) 0.100***

(0.014)

Observations 789 854 871

R-squared 0.926 0.923 0.921

Country FE 3 3 3

Notes: All regressions include country fixed effects. Robust stan-
dard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

We observe data on port area in 1990 for seven cities. These are: Aarhus (Denmark),
Helsinki (Finland), Copenhagen (Denmark), Hamburg (Germany), Los Angeles (USA),
New Orleans (USA) and Seattle (USA).12 Data for the European ports and for the port
of Los Angeles are from Lloyd’s Ports of the World (1990). We complemented these
with data for other U.S. ports where planning maps and annual reports gave information
on the land area of the port. In all these cases, we verified or cleaned the data to ensure
that a consistent definition of port area was used. In particular, these measures only
include the total land (and not sea) area occupied by the port. Data for the remaining
U.S. ports are from Port Authority of Seattle (1989) and Port of New Orleans (1984).
These documents were shared by the port authorities based on requests we made. For
Long Beach, we take port area in 1971 from the port’s annual report (Port of Long
Beach, 1971) and add additional land acquired from a detailed history of port projects
(Riffenburgh, 2012). To construct the port shares, we use the area of land occupied by
the city as reported in Wikipedia.

12The port area for Los Angeles includes the area occupied by the ports of Los Angeles and
Long Beach.
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II.6 Area per throughput calculation for the Port of Seattle

We obtained ‘Property Books’ that allow us to calculate the area of the Port of Seattle
from the Port of Seattle Public Records Office. These volumes contain engineering
maps for each parcel of land under the ownership of the port. Each map includes an
estimate of the land area. For both years 1961 and 1973, we used only land parcels
directly related to port activities. In particular, we excluded the airport and the marina
terminal. Data on annual total throughput (in short tons, including both domestic and
international sea-borne trade) and the share of containerized cargo were collected from
Annual Reports that are archived at the Puget Sound Regional Archives. To smooth out
fluctuations in year-to-year capacity utilization, we took the five-year moving-average
of throughput.

Table S.2: Port of Seattle: area per unit of cargo shipped

Year Area Throughput Area/Throughput

1961 8,651,016 2,022,192 4.28

1973 33,547,908 4,135,795 8.11

Notes: Area reported in square feet, throughput in short tons.
Data were not available far enough back in time to allow for
the calculation of the five-year moving-average for 1961.

Supplementary Table S.2 reports the numbers. While the expansion of traffic dur-
ing this period was impressive (throughput doubled), the area occupied by the port
expanded even more rapidly (increasing almost fourfold), such that area per throughout
increased by 90% during this period. The Annual Reports paint a consistent picture. In
the early 1960s, the port acquired vast parcels of land in the Lower Duwamish Industrial
Development District. Throughout the latter half of the decade, the port continued to
acquire more land in this area and to simultaneously develop the acquired tracts. These
were completed in the late 1960s, early 1970s. We illustrate this in Supplementary Fig-
ure S.1 which shows the set of acquired land parcels and an example of a completed
container facility.

II.7 Google Earth port area and containerization, modern data

We compiled data on the area of all ports for a random subset of port cities in our
dataset (236 cities, which is 43% of the full sample), resulting in 252 individual ports.
For each port, we hand-coded polygons that contain port activities based on satellite
imagines from Google Earth. We used the name tags of buildings as well as visual
markers (e.g., stacked containers, ships). We aimed to be conservative in that we only
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Acquired land parcels (red shading), 1963

Completed terminal 102, 1970

Figure S.1: Illustration of port development, Seattle

Notes: The two panels illustrate development of the port through the 1960s. The first panel
shows the initial set of land parcels acquired by the port along the Duwamish Waterway in the
early 1960s. The second shows a container terminal completed in 1970 within this project.
Sources: ‘Port of Seattle: Industrial Development, Duwamish Waterway’ (1963), ‘Annual Re-
port of the Port of Seattle’ (1970).

included areas that could clearly be identified as containing port-related activities. As
such, we did not include warehouses (as they cannot be unambiguously identified) or
highways or railways. A port can have multiple polygons, e.g., in the case of terminals
that are not directly connected. Google Earth reports the area (in km2) of each polygon,
which we aggregate to the level of geopolis port cities. The average area of a port in
our data is 3.6 km2 (median: 2 km2), with a minimum of 0.03 km2 and a maximum
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of 30 km2 (Los Angeles, including the Port of Long Beach). The latter occupies 43
km2 according to Wikipedia (https://en.wikipedia.org/wiki/Port_of_Long_Beach and
https://en.wikipedia.org/wiki/Port_of_Los_Angeles), so while our measure most likely
underestimates the true size of ports, the measure is arguably in the correct range.

Data on total (in tons) and containerized (in TEUs; twenty-foot equivalent units)
volume of cargo handled by each port is taken from the 2009 edition of Le Journal de

la Marine Marchande (JMM). We use the average of the reported numbers for 2008
and 2009 in order to maximize the number of observations, as some ports only report
data for one of the two years. In order to generate the share of container traffic in total
merchandise traffic, we use the average weight per TEU of 12 tons as recommended by
the European Sustainable Shipping Forum.13

We match the dataset on the area of ports and cargo volume based on the names,
countries and geocodes of the ports, resulting in 123 observations.

II.8 Land reclamation

Data on land reclaimed from the sea are taken from Martín-Antón et al. (2016). The
authors compare historical maps to current Google Earth images to examine whether
land reclamation has taken place in a city. We matched these data to our sample of
port cities. The authors report three measures; i) any land reclamation, ii) coastal land
reclamation, iii) coastal and island land reclamation. This contains land reclaimed for
any purpose, not just for port activities. In our analysis, we use their coastal land recla-
mation measure, though the results are essentially the same regardless of the measure
used.

The authors systematically examined the coastlines of the world, paying particular
attention to South East Asia, the Persian Gulf, Europe and the U.S., where land recla-
mation has been more extensive. Any systematic measurement error introduced in this
way will be accounted for in our specifications that control for continent and coastline
fixed effects. Reassuringly, the coefficients of interest do not change substantially with
the inclusion of these, suggesting that these issues – if present, are not quantitatively
large.

II.9 Country GDP per capita

Data on country-level GDP per capita are from the Penn World Tables. We take real
GDP at constant 2011 prices (USD) and divide by country population reported from the
same source. In theory, the data exist for 1950 (our first sample year), but in practice
there are many missing observations. For this reason, in robustness checks, we always

13Downloaded on March 11, 2021, from https://ec.europa.eu/clima/sites/clima/files/docs/
0108/20170517_guidance_cargo_en.pdf.
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use the data for 1960. This is observed for many, though not all countries.

II.10 Identifying city centroids for within port-city moves

In Section 3, we discussed evidence that showed that ports had moved further towards
the outskirts of the city during our sample period. To conduct this exercise, we use data
on ports’ geocodes from two editions of the World Port Index: 1953 and 2017. We also
need to identify the geocode of each city’s centroid. To this end, we use daylight satel-
lite data to identify a city’s contiguous built-up area and find the city centroid within
this polygon. We closely follow the methodology in Baragwanath, Goldblatt, Hanson,
and Khandelwal (2019). In particular, we use an extremely high resolution dataset of
daylight satellite data, the Global Human Settlement Built-Up Grid available at 38 m
resolution (source: https://ghsl.jrc.ec.europa.eu/ghs_bu.php). Using this raster and the
geocodes of our cities, we construct a polygon for each city consisting of contiguous
built-up cells around the geocode. We take the centroid of this polygon to be the cen-
troid of the city.

II.11 Ship size data

The evolution of ship sizes, illustrated in Supplementary Figure S.2 is based on data
purchased from the Miramar Ship Index (Haworth, 2020), accessible at http://www.
miramarshipindex.nz. The Miramar Ship Index is a comprehensive list of all newly
built ships and their main characteristics going back to the 19th century. We calcu-
late the average tonnage of all newly built ships in the years 1960, 1990, and 2010,
distinguishing between container-ships and non-container ships.

Figure S.2: Development of ship sizes over time, 1960-2010

Notes: The figure illustrates the growth in ship size, as measured in average tons per newly built
ship in a given year, for the years 1960, 1990, and 2010, for container-ships and all other ships
(i.e., excluding container-ships), respectively. Source: Haworth (2020).
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II.12 Ship positions

We purchased data on the precise geo-location of ships for 100 randomly selected ports
in our sample from marinetraffic.com. Data were available for 94 of these 100 ports.
The data refer to all stationary (i.e., reporting speed of 0 knots per hour) cargo vessels
during the week of November 4 and 10, 2019, at 12:00-13:00 local time, resulting in
17,000 observations. For vessels that report different stationary positions during this
one-hour window, we keep the last reported stationary location within the hour. We
calculate the geodesic distance of each anchored vessel to the geocode of the port and
take the sum across the number of anchored ships within certain distances from the
geocode of the port. Supplementary Table S.3 shows the distribution of ships around
the port by decile of port size.

Table S.3: Location of stationary ships around the port

Port up to 1km 3km 5km 10km 15km 20km 25km 30km Total

All 11 39 57 76 83 86 89 90 100

1st decile 27 91 100 100 100 100 100 100 100

2nd - 3rd decile 49 81 95 95 95 95 95 95 100

4th - 5th decile 26 64 88 99 100 100 100 100 100

6th - 7th decile 21 57 78 96 100 100 100 100 100

8th - 10th decile 8 33 50 70 79 83 86 88 100

Notes: The table shows the location of stationary cargo ships for 94 random ports in our sample. Data
were requested for 100 random ports in our sample. Four ports we requested data for had no anchored ships
during the time window when data were reported and two ports from the source could not unambiguously
be matched to our data. The data are from marinetraffic.com. Deciles shown by row refer to the number
of anchored ships in the port. In general, larger ports have stationary ships located farther from the port.

II.13 Nautical maps for dredging dummy variable

We obtained access to nautical maps of ports around the world from marinetraffic.com,
see https://www.marinetraffic.com/en/online-services/single-services/nautical-charts.
These detailed nautical charts have been constructed based on information from hydro-
graphic organizations of different countries. They provide pilotage information includ-
ing depth of water at high spatial disaggregation. Dredged channels are demarcated
on these maps by a ‘safety contour’ that distinguishes the channel from the surround-
ing shallow waters (defined as less than 5 meters). We constructed a binary variable,
‘Dredging’, that takes the value 1 if a dredged channel is visible on the nautical chart in
the 3-5 km buffer ring around the port.
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II.14 Port cost data based on Blonigen and Wilson (2008)

Blonigen and Wilson (2008) estimate port costs as exporter-port fixed effects in a re-
gression of bilateral HS 6-digit product level import charges that control for distance,
value, value-to-weight, percentage of containerized traffic between the two ports, trade
imbalances, time, product and importer-port fixed effects using U.S. census data for
1991 (see Blonigen and Wilson (2008) for additional details). The exporter fixed ef-
fects are all estimated relative to the port costs at Rotterdam. For our purposes, these
relative measures need to be scaled to levels. We do this by setting the iceberg trade cost
of passing through Rotterdam to be 1.004. This is based on estimates of revenue from
handling one container to be approximately $140 AUD (Australian Competition and
Consumer Commission, 2017, p. 8) and the average value of a container to be 20,000
EUR (Kirchner, 2006, p. 4).14

Table S.4: Prediction of port cost

(1)

Independent Variables Port cost

ln(Shipment) -0.033**

(0.015)

Constant 0.444***

(0.145)

Observations 72

R-squared 0.074

Notes: The dependent variable, port
cost, is taken from the port efficiency es-
timation in Blonigen and Wilson (2008)
for 1991, available for 72 international
port cities in our data (for details,
see Appendix II.14). The regressor,
ln(Shipment), refers to our shipping
data in 1990. Observations are weighted
by the inverse of the squared standard er-
ror of the estimated port cost as given
by Blonigen and Wilson (2008). Ro-
bust standard errors in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.

14These are industry-level averages as of 2016 (for revenue from container handling) and
2006 (for average value of cargo), and do not refer specifically to data from Rotterdam.
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Table S.5: Predicted port cost

N mean standard deviation

1950 2145 0.345 0.105

1960 2145 0.328 0.106

1970 2145 0.324 0.108

1980 2145 0.317 0.105

1990 2145 0.294 0.104

Notes: This table shows summary statistics for
the predicted port cost based on the estimation in
Table S.4. The 2,145 ports include the 553 ports
with population data (Geopolis ports) as well as
all other ports from the Lloyd’s List data that do
not have population data.

II.15 Data on frost-free days

We use data from the FAO GAEZ database (http://www.fao.org/nr/gaez/en/) to measure
the average the number of frost-free days per year in each city. This database provides
the average of this variable during the years between 1961 and 1990 in every cell over a
5 by 5 arc minute grid of the Earth. Using the geocoordinates of each city, we determine
the grid cell in which the city is located, and assign the average number of frost-free
days in the cell to the city.

II.16 Annual reports for ports

We were able to acquire annual reports for a number of port authorities in the United
States during our sample period, 1950 to 1990, and for a handful of ports worldwide.
Some ports have made historical annual reports available online, while for others, we
have obtained the reports by contacting the port authorities. We use these reports for i)
historical evidence (Section 1), ii) in the case of the Port of Seattle, to measure changes
in land per unit of throughput during the period in which they containerized (Section 1),
iii) to examine reporting on pollution and disamenities (Section 7), and iv) to calculate
profit rates (Section I.7).

As accounting and reporting standards changed across ports and over time, we only
kept ports that reported consistent information on profits over time (defined as revenue
minus operating expenses and depreciation). These ports are: Houston, Los Angeles,
Long Beach, New York/New Jersey, New Orleans, Seattle and Townsville (Australia).
We tried to collect at least one observation per port for each decade between 1950 and
1990, and ended up with on average three decadal observations per port. The average
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profit margin across all observations in our sample is 28%, with no clear time trend.
Data sources are as follows;

Houston. Port of Houston Authority of Harris County, Texas: ‘Comprehensive Annual
Financial Report’ (various years). Thank you to Dollores Villareal at the Port of Hous-
ton for responding to our request and digitizing the data for us.

Los Angeles. Port of Los Angeles Board of Harbor Commissioners: ‘Annual Report’
(various years). Thank you to Kurt Arendt at the Port of Los Angeles for responding to
our request and sharing data.

Long Beach. The Port of Long Beach California: ‘Harbor Highlights’ (various years).
Accessible at https://www.polb.com/port-info/history#historical-publications.

New York/New Jersey. The Port Authority of New York and New Jersey: ‘Annual
Report’ (various years). These can be accessed online at https://corpinfo.panynj.gov/
pages/annual-reports/.

New Orleans. Board of Commissioners of the Port of New Orleans: ‘Annual Report
Fiscal’ (various years). Thank you to Mandi Venderame at the Port of New Orleans for
responding to our request and sharing data.

San Francisco. The Port of San Francisco: ‘Annual Report’, other reports and planning
maps from various years. Thank you to Randolph Quezada at the Port of San Francisco
for numerous helpful conversations and for sharing scans.

Seattle. The Port of Seattle: ‘Annual Report’ (various years) and planning maps. Thank
you to Midori Okazaki, archivist at Puget Sound Regional Archives, for scanning the
files during the COVID-19 lockdown while the archives were closed to the public.

Townsville (Australia). Townsville Harbor Board: ‘Report’ (various years). Thank you
to the Port Authority for responding to our data request.

II.17 Maritime Silkroad Counterfactual, regression with country fixed effects

Table S.6 replicates Table B.16 of the online appendix, but adds country fixed effects.
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Table S.6: Maritime Silkroad Counterfactual, country fixed effects

Baseline Benchmark 1

(1) (2) (3) (4) (5) (6) (7) (8)

∆ ln(Shipment) ∆ ln(Port cost) ∆ ln(Market access) ∆ ln(Population) ∆ ln(Shipment) ∆ ln(Port cost) ∆ ln(Market access) ∆ ln(Population)
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Notes: Treated port indicates the 24 treated ports of the Maritime Silkroad counterfactual. Treated country are countries that have at least one treated port. Robust standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1.
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