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Abstract

In economies with lumpy microeconomic adjustment, we establish structural relationships between

the dynamics of the cross-sectional distribution of agents and its steady-state counterpart and discipline

these relationships using micro data. Applying our methodology to firm lumpy investment, we discover

that the dynamics of aggregate capital are structurally linked to two cross-sectional moments of the

capital-to-productivity ratio: its dispersion and its covariance with the time elapsed since the last

adjustment. We compute these su�cient statistics using plant–level data on the size and frequency of

investments. We find that, in order to explain investment dynamics, the benchmark model with fixed

adjustment costs must also feature a precise combination of irreversibility and random opportunities

of free adjustment.
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1 Introduction

Lumpiness in microeconomic adjustment is pervasive in many economic environments. Capital invest-

ment, labor hiring and firing, inventory management, consumption of durable goods, price setting, portfo-

lio choice, and many other economic decisions faced by firms and households are characterized by periods

of inaction followed by bursts of activity. How does lumpiness in microeconomic adjustment a↵ect ag-

gregate dynamics? How persistent are the e↵ects of an aggregate shock or a change in government policy

in lumpy environments? Understanding these issues is key for the design and implementation of policies

aimed at stabilizing the business cycle or generating growth.

This paper presents a new approach to study aggregate dynamics in lumpy economies. We consider

environments with ex ante identical agents that make decisions subject to idiosyncratic shocks and ad-

justment frictions. These frictions may take the form of non convex adjustment costs, random or fixed

dates of adjustment, among others. Aggregate dynamics in this type of environment require handling the

cross-sectional distribution of agents, which is a highly dimensional and complicated object. We propose

a ‘su�cient statistics’ approach for characterizing aggregate dynamics that consists of (i) representing

the dynamics of the distribution as a function of a few steady-state cross-sectional moments, and (ii)

measuring these steady-state moments through micro data on adjustments. Our su�cient statistics ap-

proach provides researchers with a unique set of moments to be targeted by lumpy models and guides

the empirical e↵orts in providing the statistics that are most informative for the theory.

Our first result characterizes the dynamics of the distribution in the following way. Starting from

an initial distribution close to the ergodic one, we characterize the convergence of any moment of such

distribution toward its ergodic counterpart. Following Álvarez and Lippi (2014), we focus the analysis on

the cumulative impulse–response function, or CIR, which equals the cumulative deviations in the moment

of interest with respect to its steady-state value, i.e., the area under the IRF. The CIR is a useful metric:

It summarizes the impact e↵ect and persistence of distributional dynamics following a once and for all

aggregate shock, it eases comparison across models, and it can be interpreted as a “multiplier” of aggregate

shocks.1 We show analytically that the CIR can be expressed as a linear combination of steady-state

cross-sectional moments. While the exact mapping depends on the moment being tracked and some

features of the environment (for example, time- vs. state- dependent adjustments), we characterize the

CIR for widely used models of inaction in a variety of economic applications.

The logic of the previous result is that steady-state moments are informative about agents’ respon-

siveness to idiosyncratic shocks, and therefore are good predictors of the e↵ect of lumpiness on the speed

of convergence of the distribution. As an example, consider a monetary economy with lumpy price-setting

and no inflation. Then, substantial steady-state dispersion in firm-level markups relative to the volatil-

ity of idiosyncratic productivity shocks must necessarily reflect important adjustment frictions, which in

turn generate unresponsive adjustments to aggregate nominal shocks and persistent real output e↵ects. In

this simple example, the ratio of steady-state markup dispersion to idiosyncratic volatility is a su�cient

1Álvarez, Le Bihan and Lippi (2016) and Baley and Blanco (2019) also use the CIR to compare the real e↵ect of monetary
policy shocks across price-setting models. The analysis of the CIR is closely related to the “marginal response function” by
Borovička, Hansen and Scheinkman (2014).
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statistic that characterizes the dynamics of average markups following a monetary shock.2

Our second result shows how to recover these su�cient statistics—the steady-state cross-sectional

moments of (potentially unobserved) variables—using information on observable actions available in

micro datasets. To fix ideas, assume an economy with lumpy capital adjustment and idiosyncratic

productivity shocks and suppose there is interest in recovering a measure of misallocation, that is, the

steady-state dispersion in the capital-to-productivity ratio. The idea consists of assuming a continuous

process for idiosyncratic productivity that hit firms during periods of inaction and a minimal structure

for the adjustment policy, and then using the information revealed through firms’ observed investments to

back out the level of misallocation. The minimal assumption requires that adjustment frictions deliver a

constant reset point, that is, that all firms set the same capital-to-productivity ratio when they decide to

invest.3 In this way, our theory shows how one can recover capital misallocation using data on investment

rates exclusively.

Application: Aggregate capital dynamics. To illustrate our framework’s usefulness, we consider

an application to aggregate capital dynamics. For this purpose, we set up a model of lumpy investment

in the spirit of Caballero and Engel (1999) and the related literature.4 Firms are subject to idiosyncratic

productivity shocks, a common drift due to depreciation and productivity growth, and a general model of

adjustment costs. Firms must pay a fixed cost to invest, which could be di↵erent for positive and negative

investments and depend on firms’ size. In addition, firms face random opportunities of free adjustment.

We demonstrate analytically that, in order to explain aggregate capital dynamics as measured via

the CIR, such a model must match two steady-state moments related to capital misallocation and the

distribution of times since the last adjustment. Concretely, defining the capital gap as the log of the

capital-to-productivity ratio relative to the steady-state cross-sectional average, the CIR for the first

moment of the capital gap is given by two steady-state moments: the variance of capital gaps—a measure

of misallocation—and the covariance between capital gaps and capital gaps’ age (the time elapsed since

last adjustment). Moreover, we show numerically that these two su�cient statistics are also quantitative

determinants in models with richer adjustment cost structures (e.g., full irreversibility, U-shaped hazards).

Given the mapping from the CIR to ergodic moments of capital gaps, we apply the second part of the

theory to infer the variance and covariance terms from micro data on adjustments. Using plant-level data

from Chile and Colombia, we measure these two key moments using the frequency and size of investments

(notably, the covariance term had never been computed before) and discover two interesting regularities.

First, the variance of capital gaps is significantly larger than the volatility of idiosyncratic productivity, a

telltale sign that policies are insensitive to the capital gap and favoring random opportunities of free ad-

justment. Second, the covariance between capital gaps and capital gaps’ age is positive, which means that

firms that have not invested in a long time have large capital-to-productivity ratios, even in the presence

of depreciation and productivity growth. This is evidence that adjustment frictions are asymmetric.

2Blanco (2019) shows quantitatively that the slope of the Phillips curve is linked to ergodic relative price dispersion.
3This feature is present in models with non-convex adjustment costs and random or fixed adjustment dates, among others.
4Similar environments have been studied by Dixit and Pindyck (1994), Bertola and Caballero (1994) and Caballero, Engel

and Haltiwanger (1995), and more recently in quantitative general equilibrium by Veracierto (2002), Thomas (2002), Gourio
and Kashyap (2007), Khan and Thomas (2008), Bachmann, Caballero and Engel (2013), and Winberry (2019).
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Our theory shows how missing the previous two moments in the data leads to a wrong assessment

of the role of micro-level lumpiness for aggregate dynamics. For example, a standard fixed-cost model

dramatically misses these moments and thus can only generate up to 1% of the CIR inferred from the

data; the widespread model with a U-shaped probability of adjustment slightly increases the fit up to

14% of the CIR. By adding frequent opportunities of free adjustment and strong downward irreversibility,

the model can generate up to 75% of the CIR. We conclude that our methodology can aid researchers

in understanding the deep links that exist between the nature of adjustment costs, capital misallocation,

and the dynamics of aggregate investment.

Advantages and limitations. Our approach allows us to characterize the CIR for any moment of

the cross-sectional distribution and other continuous functions of these moments. This is useful as many

applications require tracking the dynamics of second, third, or higher moments of cross-sectional dis-

tributions. Moreover, we can accommodate transitions starting from various initial distributions con-

sisting of small perturbations around the steady-state, such as horizontal shifts (first-moment shocks)

or mean-preserving spreads (second-moment shocks). In the same vein, we can accommodate a variety

of continuous stochastic processes for the state (e.g., with drift, without drift, mean-reverting). While

the mappings between data and ergodic moments clearly depend on the stochastic process assumed, the

theory imposes cross-equation restrictions that allow us to either validate or reject the assumptions.

One limitation of our framework is that we can only characterize the CIR but not the complete IRF.

The reason is that we need to consider the complete transitional dynamics in order to exploit the ergodic

properties of the environment (i.e., exchange the time series of the cross-sectional distribution with a

cross-sectional distribution of individual stopping-time policies). Extending the theory to characterize

the full IRF would allow us to better understand the role of lumpiness for aggregate dynamics.

A second limitation is that our analysis takes as a premise that the steady-state policies hold along the

transition path. This assumption is valid as long as the general equilibrium feedback from the distribution

to individual policies though prices is quantitatively insignificant. There are several general equilibrium

frameworks in which this is the case, either theoretically or quantitatively.5 But when general equilibrium

e↵ects are quantitatively relevant, our framework does not fully characterize aggregate dynamics. Never-

theless, the tools developed in this paper are still informative about the role of lumpiness in richer general

equilibrium models and serve as a guide to study one important dimension of the economic environment.

In order to minimize these concerns, our empirical application considers data from small open economies,

Chile and Colombia, for which the interest rate is mainly determined outside their borders.

5In the sticky-price models of Woodford (2009), Golosov and Lucas (2007), and the vast literature that builds on them,
equilibrium nominal wages respond one-to-one to money supply shocks and equilibrium real wages have a negligible e↵ect
on firms’ policies. Similar models are also used to study real exchange rate dynamics by Carvalho and Nechio (2011) and
Blanco and Cravino (2018). In investment, Bachmann, Caballero and Engel (2013) and Winberry (2019), building on Khan
and Thomas (2008), show that partial equilibrium dynamics are not undone by general equilibrium e↵ects whenever the
model matches properties of the data. the properties of wages and interest rates in the data. For example, the general
equilibrium feedback is small when matching the cyclical behavior of US interest rates (Winberry, 2019) or the conditional
heteroscedasticity of the investment rates (Bachmann, Caballero and Engel, 2013). Online Appendix C describes some of
these frameworks.
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Contributions to the literature. We highlight three contributions with respect to previous work.

Our first contribution is to provide su�cient statistics that capture the role of micro lumpiness for

aggregate dynamics that are valid across a variety of models. Álvarez, Le Bihan and Lippi (2016) provide

a first step in this direction. They show that in a large class of price-setting models, the CIR of average

markup gaps—a measure of the real e↵ects of a monetary shock—is proportional to the kurtosis of price

changes times the average price duration.6 In related work, Carvalho and Schwartzman (2015) and

Álvarez, Lippi and Paciello (2016) show that in time-dependent models the relevant su�cient statistic

is the average price duration times its coe�cient of variation. These results are restricted to economies

with zero inflation, symmetric policies, and the transitions of the first moment of the distribution. Our

contribution lies in establishing steady-state cross-sectional moments as an intermediate link between

the CIR and observable actions. With this strategy, we can extend the applicability of the su�cient

statistics approach to richer economic environments featuring drift and asymmetric policies and study

the transitions of higher order moments.

The su�cient statistics approach considers a flexible formulation that permits us to remain agnostic

about the nature of adjustment costs, giving the data the biggest role in informing about it. For instance,

our work speaks to the debate about the size of the adjustment frictions in the quantitative investment

literature.7 By matching di↵erent conditional and unconditional moments generated by a particular

model to their empirical counterparts, the literature has obtained values for fixed costs that can di↵er up

to various orders of magnitude and reach opposite conclusions. We establish the two moments that these

models need to match to explain investment dynamics and compute the first empirical estimates. In the

same spirit, Elsby, Ratner and Michaels (2019) assess the role of labor market frictions for aggregate

dynamics in terms of a su�cient statistic for labor flows across firms, which can be measured using

establishment panel data on employment.

Our second contribution is to strengthen the bridge between two literatures that study lumpy economies

with di↵erent objectives and methodologies. The first aims at understanding the role of lumpiness for

aggregate dynamics and has a long tradition, see Caplin and Spulber (1987), Caplin and Leahy (1991,

1997), and Caballero and Engel (1991) for early work. The second literature aims at quantifying welfare

losses and ine�ciencies in steady-state, for example, Álvarez, Beraja, Gonzalez-Rozada and Neumeyer

(2018) in the context of price-setting and Asker, Collard-Wexler and De Loecker (2014) in investment.

To our best knowledge, this paper is the first to show theoretically that structural links exist between ag-

gregate dynamics and the steady-state cross-sectional moments of lumpy economies. We believe our tools

can engage researchers to establish deeper links across these fields and exploit the connections between

these two dimensions of the same environment.

Lastly, our third contribution is to provide an alternative methodology for recovering gaps in lumpy

environments, which are understood as the di↵erence between an agent’s choice under frictions relative

to an optimal frictionless or static target. Since Hamermesh (1989), there have been several approaches

to recover these gaps. In labor, Caballero, Engel and Haltiwanger (1997) use hours worked to recover the

6This su�cient statistic is valid for the price-setting models in Taylor (1980), Calvo (1983), Reis (2006), Golosov and
Lucas (2007), Nakamura and Steinsson (2010), Midrigan (2011), Álvarez and Lippi (2014), among other.

7See Thomas (2002) and its reassessment by Gourio and Kashyap (2007), as well as Khan and Thomas (2008) and its
reassessment by Bachmann, Caballero and Engel (2013) and Winberry (2019). Footnote 4 gives more references.
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labor gap (see Cooper and Willis (2004) and Bayer (2009) for a discussion). In pricing, Campbell and

Eden (2014) use the average price across the same retailer in the same city to recover the markup gap.

In development, Hsieh and Klenow (2009) use value added over capital to recover the capital gap. Our

methodology proposes an alternative way to directly compute cross-sectional moments of the gaps and to

estimate the parameters of the assumed stochastic process using observable micro data on adjustments.

Structure. Section 2 presents a standard model of lumpy investment that allows us to introduce the

objects of interest. Section 3 develops the theory. Section 4 applies the theory using micro-level data,

and Section 5 generalizes and extends the results.

2 A Model of Lumpy Investment

This section describes the economic environment, built in the spirit of Caballero and Engel (1999), within

which we develop and apply the theory.

2.1 Environment

Time is continuous and infinite. A representative household and a continuum of ex ante identical firms

live in the economy. There is no aggregate uncertainty, and firms face idiosyncratic shocks to productivity

and capital adjustment costs. We denote with ! 2 ⌦ the full history of shocks and consider (⌦, P,F) to be

a probability space equipped with the filtration F = {Ft : t � 0}. We use the notation g!,t : ⌦⇥R ! R
to denote an adapted process (a function Ft-measurable for any t � 0) and E[g!,t] to denote its expecta-

tion under P .

Household. The household chooses the stochastic process for consumption to maximize its expected

utility subject to a budget constraint. The household’s problem is given by

Z 1

0
e
�⇢t

Ctdt, subject to

Z 1

0
Qt (Ct �⇧t) dt = 0, (1)

where Ct denotes the household’s consumption, ⇧t ⌘ E[⇡!,t] denotes firms’ aggregate profits, and Qt is

the Arrow–Debreu time-zero price. Due to the linearity of preferences, prices are equal to Qt = e
�⇢t and

are independent of the aggregate state (the distribution of firm idiosyncratic states, described next).

Firms. Firms operate in competitive markets. They produce output of a uniform good using capital

(k), subject to idiosyncratic productivity (e). Capital between adjustments depreciates at a constant rate

⇣ > 0. The production function features decreasing returns to scale ↵ < 1. For every capital adjustment,

a firm pays an adjustment cost proportional to its size and it may be subject to partial irreversibility.

The adjustment cost has the general form

✓̃!,t ⌘ ✓!,tJ
�
e!,t, k!,t� , {�k!,t>0}

�
, (2)
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where J (·) is homogeneous of degree one in the first two arguments (k!,t� denotes the left limit of the

capital stock) and may depend on the sign of the investment ( {�k!,t>0} takes the value 1 if investment

is positive and 0 otherwise). The component ✓!,t follows

✓!,t =

(
⇠ if dNt = 1

✓ otherwise
, (3)

where Nt is a Poisson counter with arrival rate � and ⇠ ⇠ H⇠ with support [0, ✓].8

A firm chooses a sequence of adjustment dates (T!,i) and investment (�k!,T!,i
= k!,T!,i

� k!,T�

!,i

)

to maximize its expected stream of profits, discounted at the household’s discount factor Qt:

max
{T!,i,�kT!,i

}1
i = 1

E
"Z 1

0
Qse

1�↵
!,s k

↵
!,s ds�

1X

i = 1

QT!,i

⇣
✓̃!,T!,i

+�k!,T!,i

⌘#
, (4)

where productivity and capital follow:

log(e!,t) = log(e!,0) + µt+ �W!,t, (5)

log(k!,t) = log(k!,0)� ⇣t+
X

i:T!,it

log(1 + i!,T!,i
). (6)

Here µ > 0 is a common trend, idiosyncratic productivity shocks W!,t follow a Wiener process with

volatility � > 0, and i!,T!,i
= �k!,T!,i

/kT�

!,i

denotes the investment rate at the i-th adjustment.

Aggregate feasibility. Aggregate output Yt is used for the household’s consumption Ct and aggregate

investment It, which includes capital adjustment costs:

E
⇥
e
1�↵
!,t k

↵
!,t

⇤
| {z }

Yt

= Ct + E
h

{⌧,t}

⇣
✓̃!,t +�k!,t

⌘i

| {z }
It

. (7)

Here {⌧,t} = {! : 9i such that T!,i = t} indicates the set of adjusters.

Equilibrium. Given an initial distribution of {k!,0, e!,0}, an equilibrium is a set of stochastic processes

for Arrow-Debreu prices {Qt}, the household’s consumption policy {Ct}, and the firms’ investment policies
�
T!,i,�k!,T!,i

 
such that:

(i) Given prices {Qt}, {Ct} solves the household’s problem (1).

(ii) Given {Qt} and the stochastic processes for productivity and capital adjustment costs,
�
T!,i,�k!,T!,i

 

solve the firm’s investment problem (4).

(iii) The goods market clears in (7).
8We omit here a more general formulation that encompasses richer time-dependent models to simplify exposition of the

model. See below for the formulation of ✓!,t to generate time-dependent models and Section 5 for the extension to more
general state spaces and policy functions.
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2.2 Redefining the state: Capital gap

Capital gap. Since the economy features growth, we first redefine the firms’ state to ensure stationarity.

To this end, we define three variables. First, we define a firm’s log capital–productivity ratio k̂!,t ⌘
log(k!,t/e!,t). Second, we define the steady-state average capital–productivity ratio k̂ss ⌘ E [log(k!/e!)].

The notation without time index t refers to moments computed with the steady-state distribution. Lastly,

we define the capital gap as the firm’s capital–productivity ratio minus its steady-state average

x!,t ⌘ k̂!,t � k̂ss. (8)

While the distribution of productivity may diverge, the distribution of capital gaps is stationary and has

mean zero because of the normalization. Importantly, the construction of capital gap does not use the

static optimal choice as it is commonly done in the literature, but the economy’s average log capital–

productivity ratio.

Law of motion of capital gaps. Uncontrolled capital gaps—not considering any investments—follow

the process

dx̃!,t = ⌫dt+ �dW!,t, (9)

where we use tildes to show explicitly that these variables evolve exogenously. For convenience, we define

the total drift of capital gaps as ⌫ ⌘ �(⇣ + µ) < 0, which is negative and includes depreciation and the

common productivity trend. Initial conditions x̃!,0 are exogenously given. By the discussion above, the

initial condition of the uncontrolled capital gap is x̃!,0 = k̂!,0 � k̂ss.

In contrast, controlled capital gaps—which take into account the adjustment policy— evolve as

x!,t = x̃!,t +
X

T!,it

�x!,T!,i
, (10)

where the adjustment dates (T!,i) and the changes in capital gaps (�x!,T!,i
) solve the firm’s problem in

(4). Due to the continuity assumption for the idiosyncratic productivity, the changes in the capital gap

equal the changes in the capital stock or the investment rate i!,T!,i
⌘ �k!,T!,i

/k!,T�

!,i

as follows:

�x!,T!,i
= lim

t"T!,i

log(k!,T!,i
/k!,t)� lim

t"T!,i

log(e!,T!,i
/e!,t)

| {z }
=0

= log(k!,T!,i
/k!,T�

!,i

) = log
�
1 + i!,T!,i

�
. (11)

Reset capital gap. Homotheticity and iid behavior in the adjustment cost imply that the reset capital

gap x̂—the new capital gap conditional on adjustment—is constant across agents and time.9 Thus, the

reset gap is memoryless, in the sense that once an agent adjusts, it incorporates all of the accumulated

idiosyncratic shocks into its investment:

x̂ = x!,T!,i
. (12)

9Homogeneous resets are also the result of firms’ being ex ante identical, an assumption that is relaxed in Section 5.2.
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With the normalization explained above, x̂ is the capital–productivity ratio of adjusting firms relative to

the average ratio in the economy, and not relative to a static optimal value.

Duration of inaction and capital gap age. Finally, we define two related but di↵erent concepts.

First, the duration of an inaction period—denoted by ⌧—is the di↵erence between two consecutive ad-

justment dates:

⌧!,i ⌘ T!,i+1 � T!,i. (13)

Second, the age of the capital gap—denoted by a—is the time elapsed since its last adjustment:

a!,t = t�max{T!,i : T!,i  t}. (14)

After each adjustment, age is reset to zero. The joint stochastic process of (x, a) does matter for aggregate

dynamics, and therefore we also include a as a state.

2.3 From adjustment cost structures to policies

Our specification for capital adjustment costs ✓̃!,t stated in (2) spans a wide set of models. The

advantage of considering a flexible formulation is that it permits us to remain agnostic about the true

nature of adjustment costs and allows the data to inform us about it.

The first class refers to fully state-dependent models, in which firms always face the same constant

fixed cost ⇠ = ✓, i.e., H⇠(✓) = 1 and H⇠(⇠) = 0 for all ⇠ < ✓. This structure is considered by Caballero

and Engel (1991); it features an inaction region [x, x] and produces the following sequence of duration of

inaction:

⌧!,i = inf
t�0

�
t : x!,T!,i+t /2 [x, x]

 
. (15)

The second class refers to random fixed-cost models, which are hybrid models with both time- and

state-dependence in the adjustment cost structure. Consider H⇠ to be non degenerate, so that firms draw

new values of the fixed cost. Let Ñ!,t be a Poisson counter with a general hazard rate ⇤(x!,t�). Then

adjustments dates are given by

⌧!,i = inf
t�0

n
t : x!,T!,i+t /2 [x, x] or dÑ!,T!,i+t � 1

o
. (16)

A broadly used example, proposed by Caballero and Engel (1999), takes H⇠ ⇠ Uniform[0, ✓]; it implies

a U–shaped adjustment hazard that is equal to zero at the reset capital-productivity ratio and increasing

in the distance. Our theory is more general, as it can accommodate non monotonic hazard rates as well

as a non zero hazard at the reset point. Within this class, if H⇠ is degenerate at zero, then firms face

either a positive or a zero adjustment cost. We label this specification as the Bernoulli fixed cost ; it

implies a constant adjustment hazard inside the inaction region and is the workhorse model of the paper,

as it allows for a sharp characterization.10 The sequence of duration for the Bernoulli fixed-cost model

follows (16) with ⇤(x!,t�) = �.

10In the price-setting literature, this is labeled the CalvoPlus model by Nakamura and Steinsson (2010).

9



Lastly, we consider fully time-dependent models. This case is interesting for two reasons: Many

applications (e.g., pricing and portfolio choice) consider time-dependent costs; moreover, it allows us

to better explain economic intuitions. These models can be summarized by a sequence of duration of

inaction given by

⌧!,i = u!,i, iid ⇠ cdf Hu(u). (17)

If, in addition, u is a constant—i.e., Hu(u) = 0 for all u < T and Hu(T ) = 1—then firms adjust at the

fixed date T . If Hu follows an exponential distribution with parameter �, then firms adjust at random

iid dates.11

Asymmetric costs and irreversibilities. The third argument in J (e!,t, k!,t� , {�k!,t>0}) allows us to

consider asymmetries in adjustments costs. If J (·, ·, 1) = J (·, ·, 0), then any policy asymmetry (inaction

region or adjustment hazard) must be a direct consequence of asymmetry in the static payo↵ or drift

in the capital–productivity ratio. This property breaks whenever J (·, ·, 1) 6= J (·, ·, 0), as asymmetric

policies also arise by setting di↵erent costs for positive and negative investments, for example, by setting

J (·) = e✓(1 + ✓
�(1 � {�k!,t>0})); the extreme case ✓� = 1 generates full downward irreversibility, as

in Veracierto (2002).

In the next sections, we focus the analysis on the families specified above.12

2.4 Steady-state and aggregate dynamics

We are interested in characterizing the deviations of aggregate variables from the steady-state. First,

we show that aggregate variables can be expressed as moments of the capital gap distribution. Then,

we define steady-state moments and our notion of aggregate dynamics through the cumulative impulse

response, or CIR.

Aggregate variables. Here we show a few examples of how deviations of aggregate variables can

be expressed in terms of capital gaps. Take aggregate capital detrended by productivity, denoted with

K̂t ⌘ E [log(k!,t)]�E [log(e!,t)] = E [log(k!,t/e!,t)]. Then, the aggregate capital’s deviation from steady-

state is equal to the average capital gap E[x!,t]:

K̂t � K̂ss = E [log(k!,t/e!,t)]� E [log(k!/e!)] = E
h
k̂!,t

i
� k̂ss = E[xt]. (18)

Notice that in this normalization, we first centralize the capital-gap distribution around its steady-state

average and then aggregate across firms. Output deviations from steady-state can also be expressed in

11The micro-foundation for these models is ✓!,t = 0 if
P

i

j = 1
u!,i = t for some i or ✓!,t = 1 otherwise.

12Let us compare our environment with the lumpy investment models cited before. First, we do not consider labor
as a production factor. Given that we consider a partial equilibrium setting and the labor decision is usually static, this
assumption is innocuous, as adding labor only a↵ects the value of the output-capital elasticity. Second, all of the investments
in our model, regardless of their size, are subject to adjustment costs (in the language of the literature, we do not consider
unconstrained investments). Quantitatively, this assumption does not play a big role in the dynamics, as in the calibration
most investments are constrained due to the large size of idiosyncratic shocks. Lastly, we consider a random-walk process
for idiosyncratic productivity instead of a mean-reverting process. This assumption is done to simplify the exposition at this
stage and is relaxed in Section 5.2. Online Appendix F explores the role of these alternative assumptions.
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terms of moments of normalized capital gaps: Ŷt = ↵E[xt]. Misallocation, defined as the variance of log

marginal products of capital, can be expressed in terms of the variance of capital gaps: Var[log(mpkt)] =

(1�↵)2Var[xt]. Overall, the previous analysis illustrates how to shift the focus from aggregate variables

to moments of the capital gaps.

Steady-state moments. Consider the steady-state distribution of capital gaps and age, denoted by

F (x, a). For any two numbers k, l 2 N, we define the ergodic (k, l)–cross-sectional moment as

E[xkal] ⌘
Z

x

Z

a
x
k
a
l
dF (x, a) 8k, l 2 N, with E[x] = 0. (19)

Aggregate dynamics. Fix an initial distribution of the state F0(x, a) = E
⇥

{(x0,a0)(x,a)}
⇤
. We

define the impulse response function (IRF) for the m-th moment of the capital gap distribution under

the initial distribution F0, or IRFm,t(F0), as the di↵erence between its time t value and its ergodic value:

IRFm,t(F0, t) ⌘ E [xmt ]| {z }
transition

� E[xm].| {z }
steady-state

(20)

Following Álvarez, Le Bihan and Lippi (2016), we define the cumulative impulse response (CIR), denoted

by CIRm(F0), as the area under the IRFm,t(F0) curve across all dates t 2 (0,1):

CIRm(F0) ⌘
Z 1

0
IRFm,t(F0, t) dt. (21)

Figure I illustrates these two objects. In the left panel, we plot an initial marginal distribution F0(x)

and the steady-state distribution F (x); we also highlight the m-th moment of capital gaps E[xm0 ], which

will be tracked on its way toward steady-state.13 In the right panel, the solid line represents the impulse

response of E[xmt ], a function of time, and the area underneath it is the CIR. The CIR is our key measure

of the convergence speed toward steady-state. The smaller the CIR, the faster the convergence.

Initial distribution as �-perturbations around steady-state. For expositional purposes, we in-

terpret the initial distribution F0 as a small perturbation of the steady-state distribution that can be

parsimoniously described in terms of one parameter �. As a baseline, we focus on a particular pertur-

bation consisting of a small uniform horizontal displacement of the distribution of capital gaps relative

to the invariant F , i.e., a shock to the first moment of the distribution. This perturbation is labeled the

“marginal response function” by Borovička, Hansen and Scheinkman (2014). If f(x � �, a) denotes the

initial density of capital gaps and fx(x, a) denotes its derivative with respect to x, we can approximate it

as f(x� �, a) ⇡ f(x, a)� �fx(x, a). For � > 0, we observe that the initial density is equal to a right shift

of the steady-state density. Afterward, the distribution will evolve according to the agents’ policies and

will converge back to its steady-state. Under this interpretation, we denote the CIRm(F0) as CIRm(�).14

13Abusing notation, we denote the marginal distributions as F (x) and F (a).
14In Section 5.2 we consider more general perturbations around steady-state, such as mean-preserving spreads that capture

aggregate second-moment shocks.
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Figure I – Distribution Dynamics and Cumulative Impulse Response (CIR)

State (x)

A. Distribution of State

steady state F (x)

initial condition F0(x)

E[xm1] E[xm0 ]

CIRm =
R1
0

IRFm,t dt

Time

B. Dynamics for E[xmt ]� E[xm1]

IRFm,t = E[xmt ]� E[xm1]

1

Notes: Panel A shows the steady-state distribution of the idiosyncratic state F (x) and an initial distribution F0(x). It also

illustrates the cross-sectional m-th moment to be tracked, from its initial value E[xm

0 ] toward its steady-state E[xm

1]. Panel

B shows the dynamics of the m-th moment in two ways: the IRF (solid line) and the CIR (area under the IRF).

3 Theoretical Results

We establish the theoretical relationships between observed data on adjustments (�x, ⌧), steady-state

moments and parameters, and aggregate dynamics measured via the CIR.

3.1 Structural link between micro data and steady-state moments

The first link connects the ergodic cross-sectional moments, the structural parameters of the stochastic

process, and the reset state to the distribution of capital gaps �x and adjustment dates ⌧ obtained from

a panel of observations. The relevance of this result is that, in many applications, the state x is likely

to be unobservable, but the adjustment sizes �x and durations ⌧ are observable. This is the case in the

investment model, as capital gaps are hard to observe but investment rates are readily available.

Proposition 1 derives a set of relationships between objects that we do observe—the distribution of

investment and duration—with objects that we do not observe—the distribution of capital gaps.

Proposition 1. Let (�x, ⌧) be a panel of observations of adjustment size and inaction duration. Denote

with E[·],Cov[·], and CV2[·] = V[·]/E[·]2, respectively, the cross-sectional average, the covariance, and

the coe�cient of variation squared, conditional on adjustment. Then, the following expressions hold:
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1. The reset capital gap is given by

x̂ =
E[�x]

2

�
1� CV2[⌧ ]

�
+

Cov[⌧,�x]

E[⌧ ] . (22)

2. The drift and volatility of the capital gap process are recovered as

⌫ = �E[�x]

E[⌧ ] ; �
2 =

E[�x
2]

E[⌧ ] + 2⌫x̂. (23)

3. Average age (time elapsed since last adjustment) relates to inaction duration as

E[a] =
E[⌧ ]
2

�
1 + CV2[⌧ ]

�
(24)

4. With non-zero drift (⌫ 6= 0), the steady-state moments for any m � 1 are given by

E[xm] =
1

m+ 1

(
x̂
m+1 � E

⇥
(x̂��x)m+1

⇤

E [�x]
� �

2

2⌫
m(m+ 1)E[xm�1]

)
, (25)

E[xma] =
1

m+ 1

8
<

:
E[⌧ ]E[xm+1]� E

h
⌧ (x̂��x)m+1

i

E[�x]
� �

2

2⌫
m(m+ 1)E[xm�1

a]

9
=

; . (26)

5. With zero drift (⌫ = 0), the steady-state moments for any m � 1 are given by

E[xm] =
2

(m+ 1)(m+ 2)

E
⇥
(x̂��x)m+2 � x̂

m+2
⇤

E [�x2]
, (27)

E[xma] =
2

(m+ 1)(m+ 2)

"
E
⇥
⌧(x̂��x)m+2

⇤

E[�x2]
� E[xm+2]

�2

#
. (28)

The proof is in the Appendix; it enumerates the formal assumptions for this proposition to hold.

To show this result, we use three tools: Itō’s Lemma, the Optional Sampling Theorem (OST), and

the equivalence between the cross-sectional distribution of agents and the occupancy measure.15 To

understand the logic of the proof, assume there is a single state x. Apply Itō’s Lemma to x
m+1
t with the

initial condition x̂ (right after adjustment), integrate between 0 and ⌧ , and use x⌧ = x̂��x⌧ to obtain

(x̂��x⌧ )
m+1 � x̂

m+1

| {z }
investment (observable)

=

Z ⌧

0


⌫(m+ 1)xmt +

�
2

2
(m+ 1)mx

m�1
t

�
dt

| {z }
history of capital gaps (unobservable)

+�(m+ 1)

Z ⌧

0
x
m
t dWt

| {z }
noise

. (29)

Equation (29) shows that the distribution of investment in the LHS is related to the history of capital

gaps plus a noise term in the RHS. While we cannot recover each individual history, we can recover the

average history between adjustments.

15See Stokey (2009) for details.
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For this, take the expectation on both sides of (29) and observe that the noise term is a martingale

with expectation zero by the OST, and obtain

E
⇥
(x̂��x⌧ )

m+1 � x̂
m+1

⇤
| {z }

moments of investment

= ⌫(m+ 1)E
Z ⌧

0
x
m
t dt

�
+
�
2

2
m(m+ 1)E

Z ⌧

0
x
m�1
t dt

�

| {z }
average capital gap during inaction

. (30)

The final step in relating the distributions of investment and capital gaps uses the occupancy measure.

Intuitively, the average time a single agent’s state spends at a given value is proportional to the number

of agents with a state equal to that same value, where the constant of proportionality is the expected time

between adjustments E[⌧ ].16 Therefore, instead of measuring the average capital gap between adjustments

for an agent, we can measure the average capital gap across agents:

E
⇥
(x̂��x⌧ )

m+1 � x̂
m+1

⇤
/E[⌧ ]

| {z }
moments of investment and duration

= ⌫(m+ 1)E [xm] +
�
2

2
m(m+ 1)E

⇥
x
m�1

⇤

| {z }
average capital gap across agents

. (31)

Now we provide the economics behind each expression in Proposition 1.

Reset state. Equation (22) shows how to recover the reset state x̂ from the micro data; this expression

is derived from the restriction imposed by the normalization of the ergodic mean of the centralized

distribution to zero. It has two components that jointly reflect how the reset state compensates for

drift, for asymmetry in state-dependent policies, or a combination of both, ensuring that E[x] = 0.

To illustrate the compensation for drift, consider the family of fully time-dependent costs, which by

construction do not exhibit asymmetric policies. In such models, Cov[⌧,�x] = �⌫Var[⌧ ] and equation

(22) collapses to x̂ = �⌫E[a], so that the reset state compensates the average accumulated drift between

adjustments, centralizing the ergodic mean at zero.17

To illustrate the compensation for asymmetric policies, consider a driftless state and a fully state-

dependent cost in which the width of the lower and upper inaction triggers relative to the reset point are

|x̂ � x| and |x � x̂|, respectively. Under no drift, the reset state is x̂ = Cov[⌧,�x]/E[⌧ ]. Panel A of

Figure II plots three distributions of capital gaps for di↵erent types of policies (these distributions may

not be available to the econometrician). First, symmetric policies (in green) necessarily imply x̂ = 0 in

order to obtain a zero ergodic mean. Our formula obtains the same conclusion directly from the data on

adjustments—in this case Pr(�x = z|⌧) = Pr(�x = �z|⌧) = 1/2—and therefore the covariance between

⌧ and �x is zero. Now consider an asymmetric inaction region such that the upper trigger is closer to

x̂ than the lower trigger; for example, 4z = |x̂ � x| > |x � x̂| = z for z > 0 (in red). In this case,

the capital gap distribution is left-skewed and x̂ = z. Due to the asymmetry in the policy, the longer

the duration of inaction, the higher the probability of a large positive investment; therefore, the formula

identifies a positive reset state x̂ = Cov[⌧,�x]/E[⌧ ] = z > 0. Analogously, the reset state is negative

for right-skewed distributions (in blue).

16Formally, E
⇥R

⌧

0
x
m

t dt
⇤

= E[⌧ ]E [xm] for any m.
17Proof: Cov[⌧,�x] = E[⌧�x]�E[⌧ ]E[�x] = E

⇥
⌧(�⌫⌧ � �

R
⌧

0
Wt)

⇤
+ ⌫E[⌧ ]2 = �⌫E[⌧2]+ ⌫E[⌧ ]2 = �⌫Var[⌧ ], where

we have used the OST to kill the martingale E
⇥
⌧
R

⌧

0
Wt

⇤
= 0.
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Figure II – Reset state for asymmetric policies in fully state-dependent models

State (x)

f
(
x
)

A. Fully state dependent

symmetric

left-skewed

right-skewed

�3z �2z �z

x̂ = �z

0

x̂ = 0

z

x̂ = z

2z 3z 5 10

20

40

60

80

100

Drift (�⌫ ⇥ 100)
(
x
+
x
)
⇥
1
0
0

B. CalvoPlus

� = 0.001

� = 0.1

� = 0.17

1

Notes: Panel A describes the distribution of state x in a fully state-dependent model. The symmetric distribution (green

line) has widths of (|x̂ � x|, |x � x̂|) = (z, z), the left-skewed distribution (red line) (|x̂ � x|, |x � x̂|) = (4z, z), and

right-skewed distribution (blue line) (|x̂ � x|, |x � x̂|) = (z, 4z). The reset states are 0, z, and �z, respectively. Panel

B shows the levels of asymmetry in policy and drift that together imply a zero reset state x̂ = 0, for fixed parameters

(�, x) = (0.275,�0.49) and three values of � 2 {0.001, 0.1, 0.17}.

Lastly, regarding the interactions, policy asymmetry may dampen or amplify the drift’s e↵ect in the

reset state. For illustration, consider the Bernoulli fixed-cost model and fix a set of parameters. Panel

B in Figure II shows the combination of values for (�⌫ ⇥ 100, x + x) such that the reset state is zero

x̂ = 0. When ⌫ = 0, only symmetric policies generate a zero reset x̂. As the drift increases, the upper

limit x increases as well to compensate for the drift. The covariance term informs this interaction, as in

this case x̂ = �⌫ (E[⌧ ]� E[a]) + Cov[⌧,�x]/E[⌧ ]. Note that the asymmetry is also increasing in the

parameter � (the arrival of free adjustment opportunities): As � increases, the fraction of state-dependent

(asymmetric) investments decreases, and it must be compensated for by a more asymmetric policy.

Drift and volatility of stochastic process. Expressions in (23) provide a guide to infer the parame-

ters of the stochastic process. The first expression shows how to infer drift ⌫ from the average investment

rate in the data, scaled by the adjustment frequency. Intuitively, the average depreciation (plus common

trend) has to be equal to the investment rate to have an ergodic distribution. The second expression

shows how to infer volatility � from the dispersion in investment rates, scaled by the frequency and

corrected by the drift. With a zero drift, higher idiosyncratic volatility reduces the average duration or

increases the average investment size; with non zero drift, investment’s second moment also reflects the

drift and (23) shows how to correct for it.18

18Álvarez, Le Bihan and Lippi (2016) obtain this expression for idiosyncratic volatility in the driftless case.
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Average age. Equation (24) relates average age to the average and the dispersion in duration, measured

through the coe�cient of variation. The relationship with the average duration is straightforward. To

understand why the duration dispersion a↵ects average age, recall a basic property in renewal theory:

The probability that a random firm has an expected duration of inaction of ⌧ is increasing in ⌧ , i.e.,

larger stopping times are more representative in the capital-gap distribution.19 Therefore, dispersion in

duration reflects that some firms take a long time to adjust, and on top of that, those firms are more

representative in the economy; this raises the average age. There are two special cases in which the

dispersion in duration does not matter for average age. With an exponential distributions of stopping

times, the coe�cient of variation is equal to 1 and (24) collapses to E[a] = E[⌧ ]. The second case is with

a fixed adjustment date T , for which E[a] = T/2. In the empirical application in Section 4, we measure

both sides of expression (24) and verify that it is satisfied with a high degree of precision.

Ergodic moments of x. Equations (25) and (27) provide formulas to compute the ergodic moments

of the gap x using observed changes in the gap �x. To build the intuition, consider the symmetric and

driftless case (⌫ = x̂ = 0) and set m = 2. Then the formula for the second moment yields

V[x] =
E
⇥
�x

4
⇤

6E [�x2]
=

E
⇥
�x

2
⇤
CV

⇥
�x

2
⇤

6
. (32)

This expression shows how the dispersion of capital gaps in the LHS relates to the average and the

dispersion (the coe�cient of variation) of the adjustment size �x
2 in the RHS. If the data shows large

adjustment size on average, it reflects that capital gaps drift far away from zero increasing the ergodic

variance; this force is amplified if there is dispersion in adjustment sizes, as large adjustments are more

representative of the population of capital gaps (the same renewal logic as applied to age above). For

⌫ > 0, the moments are di↵erent but the same idea applies.

Now consider the case m = 3, which relates to the asymmetry in the distribution of capital gaps.

A natural, but incorrect, conclusion is that a right-skewed investment rate distribution implies a left-

skewed capital gap distribution. This is not necessarily true. The reason is that if the probability of

adjustment is low for positive capital gaps, then we should not see positive investment rates. They are

more representative, however, since they have larger duration. The theory can measure this force by

comparing the fourth moment of the distribution versus the third moment. If ⌫ < 0, then

Sign (Skew[x]) = Sign
�
E[x3]

�
= Sign

✓
�1 +

4�2

|⌫|
E[�x

3]

E[�x4]

◆
. (33)

Therefore, the capital gap distribution features positive skewness as long as E[�x
3]/E[�x

4] > |⌫| /4�2.

Joint ergodic moments of x and age. Equations (26) and (28) provide formulas for the joint ergodic

moments of the gap and its age. Let us focus on their covariance, as it is a key moment for the CIR1

under all the models we study in the next section. Following equation (26) and assuming m = 1 and

19This property has been widely studied in labor economics when thinking about long-term unemployment. For example,
Mankiw (2014)’s textbook Principles of Macroeconomics states: “Many spells of unemployment are short, but most weeks
of unemployment are attributable to long-term unemployment.”
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⌫ < 0, we have that the covariance is composed of a negative and a positive term:

Cov[x, a] = � 1

2⌫

8
>>><

>>>:

E[�x
3]

3E[�x]
+ �

2E[a]
| {z }

>0

�
✓
E
⇥
�x

2
⇤
+

Cov[⌧,�x
2]

E[⌧ ]

◆

| {z }
<0

9
>>>=

>>>;
. (34)

Therefore, the covariance could be positive or negative depending on two forces. The first force is related

to the drift: Over time, firms’ capital gaps depreciate and therefore we should expect a negative covariance

between age and capital gaps. The second force, related to asymmetry in adjustment policies, pushes

toward a positive covariance: If idiosyncratic shocks are large relative to the drift and the investment

distribution is right-skewed (the probability of adjustment is lower for firms with capital gaps above

the reset than for firms with capital gaps below the reset)—which could be the result, for example,

of downward irreversibility—then the covariance is positive. The theory shows how to discipline these

two forces with data on observables as shown in (34), where the term E[�x
3] primarily captures the

asymmetries while the term Cov[⌧,�x
2] primarily captures the drift.

Application: Markups and misallocation. Let us explain a straightforward application of the re-

sults in Proposition 1. The expressions can be used to compute cross-sectional moments of the distribution

of firm-level markups using pricing data without the need for data on marginal costs; we see this strategy

as complementary to the so-called demand approach (Berry, Levinsohn and Pakes, 1995) or the more re-

cent production approach (De Loecker and Warzynski, 2012; De Loecker and Eeckhout, 2017). Similarly,

one can compute moments of firm-level marginal products of capital or labor using inputs’ adjustment

data, without additional requirements on the production technology (Hsieh and Klenow, 2009; David and

Venkateswaran, 2019).

Another interesting application of the results for non-zero drift would be to revisit the role of positive

inflation for price-setting and its welfare costs, as studied by Burstein and Hellwig (2008), Gagnon (2009),

and Blanco (2019).

3.2 Structural link between steady-state moments and aggregate dynamics

This section shows that for the class of adjustment cost specifications described in Section 2.3, the CIR

is a linear combination of ergodic moments, in which the coe�cients depend on the stochastic process

parameters and adjustment cost specification.

As a first step, Proposition 2 expresses the CIR in (21) as the solution to a collection of stopping-

time problems, indexed by initial conditions. The result is surprising: It is only necessary to track each

firm until its first adjustment, even in the presence of drift and asymmetric policies. The reason is that

the first adjustment incorporates all deviations from steady-state due to the fact that the reset state is

memoryless; any additional adjustments are driven purely by idiosyncratic conditions that produce the

ergodic moment of interest and thus do not contribute to deviations from steady-state. Importantly, this

result depends on the independence of prices with respect to the firms’ distribution, which implies that

the steady-state policies hold along the transition path.
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We generalize the result in Álvarez, Le Bihan and Lippi (2016), who show that to compute the CIR of

the first moment one only needs to keep track of an agent until its first adjustment in a driftless economy

with symmetric policies, as the cross-sectional average of subsequent adjustments is exactly equal to

zero. Here, we show that this property extends to any moment of the distribution m > 1, any arbitrary

Markovian stopping policy, and any Markovian law of motion of the uncontrolled state. Subsequent

adjustments do not cancel out to zero, but are equal to the steady-state moment.

Proposition 2. The CIRm can be written recursively as

CIRm(F0) =

Z
vm(x, a)dF0(x, a), (35)

where the value function for an agent with initial state (x, a) is given by

vm(x, a) ⌘ E
Z ⌧

0
(xmt � E[xm]) dt

���(x, a)
�
. (36)

The idea behind the proof of Proposition 2 is to exchange the integral across agents (the cross-section)

with the infinite time integral (the time series).20 Then, we show that the first adjustment incorporates

all deviations from steady-state and the additional adjustments equal the ergodic moment E[xm]. This

implies that the value function vm(x, a) equals zero after the first adjustment. For that reason, the

infinite limit in the time integral gets substituted for the first stopping date t = ⌧ . Now we proceed to

characterize the CIR for di↵erent variations of the random fixed-cost model.

3.2.1 Bernoulli fixed-cost model

Consider the Bernoulli fixed-cost model (fixed cost with free opportunities of adjustment). Proposition

3 derives a simple expression for the CIRm, as a linear combination of two simple moments of the joint

distribution F (x, a).

Proposition 3. In the Bernoulli fixed-cost model, up to first order, the CIRm is given by

CIRm(�)/� =
E
⇥
x
m+1

⇤
� ⌫Cov [xm, a]

�2
+ o(�). (37)

Equation (37) shows that up to first order, there exists a one–to–one mapping between two ergodic

moments and the CIR. The logic behind the proof is that the CIR and the ergodic moments share the

same finite basis ⌦ = {e⇠1x, e⇠2x,e⇠1xx, e⇠2xx, {xi}mi=0}, where ⇠1, ⇠2 are the characteristic roots of the HJB
satisfied during periods of inaction. After this observation, the rest involves simple coe�cient matching

and algebra.

To build the intuition for this result, let us focus on the case m = 1. Consider ⌫ = 0 so that the CIR1

is given exclusively by Var[x]/�2, the dispersion of capital gaps normalized by the idiosyncratic volatility.

This dispersion encodes information about agents’ responsiveness to idiosyncratic shocks (the higher the

ratio, the less responsive the policy) and, in turn, the responsiveness determines the speed of convergence

20This can be done due to the ergodic properties of the problem and the fact that moments are finite.
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to the steady-state. In the case ⌫ 6= 0, the covariance between capital gap age and the investment rate

appears in the expression to correct for the dispersion generated by the drift (which is orthogonal to the

dispersion due to idiosyncratic shocks). The concept of responsiveness is tightly linked to the selection

e↵ects, formalized in symmetric models by Elsby and Michaels (2019).

Now consider m = 2. The dynamics of the second moment can have either sign. Assume ⌫ < 0 and

� su�ciently large. Then the covariance is necessarily positive, i.e., Cov
⇥
x
2
, a
⇤
> 0, since larger age is

associated with larger accumulated gaps. Then the sign of the CIR2 depends on the asymmetry of the

capital gap distribution, measured through its third moment E[x3], which in turn depends on how much

an asymmetric policy compensates for the drift (recall Figure II).

Generally, aggregate dynamics for the m-th moment are structurally linked to the m + 1 steady-

state moment. These connections can be useful to think about the cyclicality in the second moment of

investment, as documented by Bachmann and Bayer (2014), or the cyclicality in the skewness in sales

growth as documented by Bloom, Guvenen and Salgado (2016). There are some papers that already

point towards these relationships. For instance, Ehouarne, Kuehn and Schreindorfer (2016) analyze the

role of the skewness of investment rates in order to generate misallocation cycles.

Revisiting a known case. Álvarez, Le Bihan and Lippi (2016) characterize the CIR for m = 1, zero

drift, and a symmetric policy (x̂ = 0) and obtain their well-known ‘kurtosis’ formula. Their result is

nested in our formulas. Combining the CIR1 in the Bernoulli fixed-cost model (37) with the expression

for �2 in (23) and the expression for Var[x] in (27), we obtain the kurtosis formula for the CIR1:

CIR1(�)/�| {z }
aggregate dynamics

⇡ Var[x]/�2| {z }
responsiveness

= E[⌧ ]Kur[�x]/6| {z }
microdata

. (38)

Note that the ratio of ergodic variance to shock volatility—the intermediate link between aggregate

dynamics and the microdata—captures the relative importance of shocks vis-à-vis responsiveness, as put

forward by Berger and Vavra (2019).

Discussion. There are many advantages of working within Bernoulli fixed costs. There is a simple

closed-form expression for the CIR with an intuitive economic interpretation; the two su�cient statistics

involved are easily computed from the data (using the results in Proposition 1), and it is quite general in

the sense that it accommodates arbitrary inaction regions and random iid adjustments. The disadvantage

is that it imposes a strong assumption for adjustment costs. Nevertheless, we find that it provides a good

approximation of the CIRm for more general cases, as shown in Section 4.5. As an intermediate step

toward characterizing the general random fixed-cost model, we consider fully time-dependent models.
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3.2.2 Fully time-dependent models

With fully time-dependent adjustment costs, the distribution of stopping times is independent of the

capital gap. Proposition 4 characterizes the CIRm for this class of models.

Proposition 4. Let � ⌘ �
2
/2⌫. In fully time-dependent models, up to first order, the CIRm is given by

CIRm(�)/� =
mX

k=1

m!

k!
(��)m�k �k + o(�). (39)

�k = kE
h
x
k�1

a

i
+ {k�2}�k(k � 1)E

h
x
k�2

a

i
. (40)

We leave discussion of the proof for later, as it is a nested case of the random fixed-cost model

explained below. To understand the economics behind this relationship, consider first the case m = 1:

CIR1(�)/� = E [a] + o(�). (41)

Average age provides information about the speed at which the average firm adjusts to the perturbation

from the steady-state. Consider a frictionless limit in which all firms continuously invest to bring capital

gaps to zero. Since capital in all firms would have age equal to zero, the economy reaches its steady-state

immediately. Notice that in the presence of drift and asymmetric policies, the su�cient statistic for fully

time-dependent models E[a] di↵ers to that of the Bernoulli fixed-cost model (Var [x] � ⌫Cov [x, a])/�2.
However, with zero drift and symmetric policies, one can show that E[a] = Var[x]/�2, implying that the

su�cient statistic for both models coincides.21 As shown by Alvarez, Lippi and Passadore (2017), this is

true as long as shocks � are small.

Now consider the case m = 2, where we have that22

CIR2(�)/2� = Cov [x, a] + o(�). (42)

From this expression, it is clear that a positive �-perturbation always generates a negative second-moment

CIR whenever �⌫ < 0. The value of the covariance depends on the model. Let us illustrate this point with

an example. Computing the covariance in terms of moments of the duration distribution,23 we can derive

expressions for a fixed date and iid exponentially distributed dates: CIRfixed
2 (�)/� = ⌫E[⌧ ] (1 + 2E[⌧ ]/3)

and CIRiid
2 (�)/� = 2⌫E[⌧ ] (1 + 2E[⌧ ]), which are negative in both cases; therefore, the second moment

shrinks in the transition. Note that, for the same average duration, the exponential date model has a

larger covariance in absolute value than with a fixed date, and thus the shrinkage is larger. The underlying

reason is due to di↵erences in the tail of the duration distribution generated by each model.
21See Online Appendix B.1 for the proof.
22The formula implies CIR2(�)/� = �2 � 2��1 = 2Cov [x, a] + 2�E[a]� 2�E[a] + o(�) = 2Cov [x, a] + o(�).
23The expression reads Cov[x, a] = ⌫

E[⌧ ]

⇣
E[⌧2

]

2
+ E[⌧3

]

3

⌘
. With fixed dates we substitute E[⌧m] = E[⌧ ]m; with iid exponential

dates we substitute E[⌧m] = m!E[⌧ ]m.
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3.2.3 General random fixed-cost model

Now we proceed to characterize aggregate dynamics under very general random fixed costs. The strategy

is as follows. We set as an upper bound the value of the CIR obtained for fully time-dependent models.

This value reflects adjustments along the intensive margin exclusively, as agents cannot a↵ect the duration

of inaction. Then, we consider an additional term that captures adjustments through the extensive

margin, or changes in the duration—which are available in models with a state-dependent component—

that can only reduce the CIR.

Two challenges are involved in bringing discipline to the extensive margin. First, the extensive margin

not only depends on the immediate response of the aggregate duration but also reflects all current and

future changes in duration. Second, even if we had the whole sequence of adjustments in duration that

follows a perturbation, the extensive margin also depends on the capital gaps of the particular set of firms

selected to invest. We propose a way to bring discipline to the extensive margin in a general setting. See

Caballero and Engel (2007) for a discussion on the importance of this margin in a static setting.

How to characterize the extensive margin? In order to characterize the extensive margin, we

introduce the following auxiliary function:

gm(x) ⌘ E[xm⌧ |x̂+ x]� Ex̂ [(x⌧ + x)m| x̂]. (43)

The first term in (43) equals the expected capital gap at the moment of adjustment when the initial

condition is x̂+ x; the second term equals the expected capital gap at the moment of adjustment plus a

deterministic increase of size x when the initial condition is x̂. The di↵erence between these two functions

of x provides information on how the stopping-time policy depends on the initial condition and how it

correlates with the capital gap. To see this clearly, recall that the expected capital gap at the moment of

adjustment is equal to x⌧ = x̂��x and we can re-express gm(x) in the following way:

gm(x) = E
h
(x̂+ x� ⌫⌧

x̂+x � �W⌧ x̂+x)m
i
� E

h
(x̂+ x� ⌫⌧

x̂ � �W⌧ x̂)
m
i
, (44)

where ⌧ z is the stopping time with initial condition z. In equation (44) we observe that if ⌧ is independent

of the initial condition, i.e., ⌧ x̂+x = ⌧
x̂ = ⌧ , as in time-dependent models, then gm(x) = 0 for all

x, implying that the extensive margin is null. For other models, the derivatives of gm with respect to

the initial condition, evaluated at zero, provide a micro-elasticity of firms’ idiosyncratic response to the

new initial conditions though changes in its stopping time ⌧ . With this function at hand, we proceed to

characterize the CIRm for the random fixed-cost model.

Proposition 5. Let � ⌘ �
2
/2⌫ and define the auxiliary function gm(x) ⌘ E[xm⌧ |x̂+x]�Ex̂ [(x⌧ + x)m| x̂].

In the generalized hazard model, for every m � 1, the CIRm is given by

CIRm(�)/� =
mX

k=1

m!

k!
(��)m�k (�k + k)� E[xm] 0 + o(�), (45)
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where the margins of adjustment are given by

(intensive) �k = kE[xk�1
a] + {k�2}k(k � 1)�E[xk�2

a], (46)

(extensive)  k =
1X

j=0

 k,jE[xj ], (47)

 k,j =
1

⌫

1X

i�j

x̂
i�j

i!j!


d
i+1

gk+1(0)

dxi+1
/(k + 1)� d

i
gk(0)

dxi

�
. (48)

The total e↵ect of the �-perturbation is an area with height � and a base given by the recursive sum

of two components: �k, which measures adjustments through the intensive margin and its expression

is identical to that for time-dependent models in equation (41); and  k, which measures adjustments

through the extensive margin and is expressed as a linear combination of ergodic moments. In turn,

the weights  m,j , or micro-elasticities, are written in terms of derivatives of the auxiliary function gm,

evaluated at zero.

The proof of Proposition 5 is constructive and has two steps. The first step constructs two Bellman

equations of a representative agent to characterize the intensive �m and the extensive  m margins of

adjustment. The history independence in the stochastic processes and policies allows us to collapse all

of the ex post heterogeneity due to idiosyncratic shocks and frictions to the problem of a representative

agent. Importantly, this aggregation result does not imply that heterogeneity is irrelevant for aggregate

dynamics; it says that all heterogeneity can be summarized in a compact way. The second step proceeds

similarly to Proposition 1 and expresses each Bellman equation as a function of ergodic moments using

a combination of Itō’s Lemma, Optional Sampling Theorem, and the occupancy measure.

Propositions 3 and 4 are subcases of Proposition 5. In fully time-dependent models, since the duration

adjustment is independent of the state, we have that  k,j = 0 and  k = 0 for all k, and therefore CIRm

collapses to (41). The Bernoulli fixed-cost model, due to its constant hazard of adjustment, allows for a

closed-form solution for  k,j . However, computations are quite involved. Thus we proved Proposition 3

in a simpler way using principles of linear algebra, as outlined above.

Constructing micro-elasticities from the data. To construct micro-elasticities, we need to ask:

What piece of gm(x) is observable in the data and what is not? The object E [(x̂��x+ x)m] is an

observable statistic, as it depends on the steady-state investment rates. The objects E[xj ] and x̂ can

also be recovered from the data, as we have shown before. Therefore, the only object that might not

be directly observable is Ex̂+x [(x̂��x)m], which measures the elasticity of investment with respect to

changes in initial conditions. Guided by the theory, we suggest that this elasticity is the key object that

future research should focus on computing, both in the data and in the models.

Two papers use an adequate methodology and data to construct micro-elasticities. First, in the

pricing literature, Karadi and Rei↵ (2019) study the immediate monthly price response to a change in

the VAT using the Hungarian CPI. Since a change in the VAT proxies a cost-push shock, the experiment

is equivalent to an increase in a firm’s markup in the same proportion; this design would allow one to

compute the micro-elasticity of the expected price change to initial conditions. Second, in the investment
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literature, Zwick and Mahon (2017) exploit shifts in accelerated depreciation to estimate the e↵ect of

temporary tax incentives on equipment investment; such a design would allow one to compute the micro-

elasticity of expected investment to initial conditions.

In the following section we apply our theoretical results to the data.

4 Application: Investment Dynamics

In this section, we revisit the investment model from Section 2 and apply our tools using establishment-

level data from Chile. In the process, we assess the nature of adjustment costs, the magnitude of capital

misallocation in steady-state, and the aggregate dynamics of aggregate capital.

4.1 Data description

Sources. We use yearly micro data on the cross-section of manufacturing plants in Chile from the

Annual National Manufacturing Survey (Encuesta Nacional Industrial Anual) for the period 1979 to

2011.24 Information on depreciation rates and price deflators used to construct the capital series comes

from National Accounts and Penn World Tables. The Online Data Appendix presents all of the details on

the data, construction of variables, and detailed analysis of each capital category separately: structures,

vehicles, machinery, and equipment. Here we focus on the total capital stock and structures, a category

that represents approximately 30% of all investment in the manufacturing sector and features the strongest

lumpy behavior. We consider all plants that appear in the sample for at least 10 years (more than 60%

of the sample) and have more than 10 workers.

Capital stock and investment rates. We construct the capital stock series through the perpetual

inventory method (PIM).25 Let a plant’s ! stock of capital on year t be given by

K!,t = (1� �j)K!,t�1 + I!,t/Dt for K!,t0 given, (49)

where depreciation rate � is a type-specific time-invariant depreciation rate; price deflators Dt are gross

fixed capital formation deflators by capital type; and initial capital Ki,t0 is given by plants’ self-reported

nominal stock of capital by type at current prices for the first year in which they report a non negative

capital stock. Gross nominal investment I!,t is based on information on purchases, reforms, improvements,

and sales of fixed assets reported by each plant in the survey:

I!,t = puchases!,t + reforms!,t + improvements!,t � sales!,t. (50)

24These data have been used by Liu (1993) to examine the role of turnover and learning on productivity growth; by Tybout
(2000) to survey the state of the manufacturing sector in developing economies; and more recently by Oberfield (2013) to
study productivity and misallocation during crises.

25See Section A.2 for details on the PIM method and several checks on the data.
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Once we construct the investment and capital stock series, we define investment rate i!,t as the ratio of

real gross investment to capital stock:26

i!,t ⌘ I!,t/Dt

K!,t
. (51)

4.2 Construction of capital gaps and duration

To apply the theory, for each plant ! and each inaction spell k we record the capital gap change upon

action �x!,k and the spell’s duration ⌧!,k. Using the information on investment rates, we construct

capital gap changes as27

�x!,k =

8
<

:
log (1 + i!,k) if |i!,k| > i

0 if |i!,k| < i,

(52)

where i > 0 is a parameter that captures the idea that small maintenance investments do not incur

the fixed cost. Following Cooper and Haltiwanger (2006), we set i = 0.01, such that all investments

smaller than 1% in absolute value are excluded and considered as inaction. Additionally, we truncate

the distribution at the 1st and 99th percentiles. Finally, we compute a spell’s duration as the di↵erence

between two adjacent adjustment dates:

⌧!,k = T!,k � T!,k�1. (53)

Figure III plots the cross-sectional distribution of capital gap changes. Following the investment

distribution, it presents sizeable asymmetry and a large positive skewness. In each figure, we show the

distribution for two subsamples: observations with spell duration above the average (dark bars) and spell

duration below the average (white bars). The two distributions lie on top of one another, a sign of lack

of covariance between adjustment size and duration.

As the next step, we put the theory to work by computing the cross-sectional statistics of capital gap

changes and duration in order to back out the parameters of the stochastic process as well as the ergodic

moments.

4.3 Putting the theory to work

The relationships derived in Proposition 1 tell us how to use cross-sectional data on capital gaps and

duration to pin down the parameters of the productivity process, the reset point, and the ergodic moments,

which in turn are used to construct the CIR. Table I summarizes the statistics calculated from the micro

data, which serve as inputs into the formulas, as well as the theory’s output.28

26Table X in the Online Appendix presents descriptive statistics on investment rates by capital category. For comparison,
the table also includes the numbers reported by Cooper and Haltiwanger (2006) for 7,000 US manufacturing plants between
1972 and 1988 and by Zwick and Mahon (2017) from tax records for US firms.

27In contrast to equation (11), which computes investment as the di↵erence in the capital stock between two instants, for
the data we consider investment as the di↵erence between two consecutive years.

28Section 4.6 explains how we address heterogeneity by industrial sector and plant size, and time trends, among other
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Figure III – Distribution of capital gap changes by duration
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Notes: Panel A plots the distribution of capital gap changes �x in structures, while Panel B plots the distribution for

total capital. Solid bars are the distribution conditional on inaction spells with a duration below the average; white bars

are the distribution conditional on inaction spells with a duration above the average. We consider a balanced panel with

a truncation of 1st and 99th percentiles, depreciation rates reported in Table II in the Data Appendix, and an inaction

threshold of i = 0.01.

Table I – Inputs from Micro Data and Outputs from the Theory

Inputs from Data Outputs from Theory

Structures Total Structures Total

Frequency Parameters
E[⌧ ] 2.441 1.711 ⌫ -0.111 -0.129
CV2[⌧ ] 1.096 0.847 �

2 0.075 0.067
x̂ 0.013 0.041

Capital Gaps Steady-state Moments
E[�x] 0.271 0.221 Var[x] 0.226 0.148
E[�x

2] 0.191 0.132 E[a] 2.558 1.581
E[(x̂��x)3] -0.184 -0.098 Cov[a, x] 0.900 0.406

Covariances Aggregate Dynamics via CIR1

Cov[⌧,�x] 0.064 0.042 Bernoulli fixed cost 4.328 3.013
E[⌧(x̂��x)2] 0.535 0.253 Time dependent 2.558 1.581

Notes: Authors’ calculations using establishment-level survey data for Chile. We consider a
balanced panel with a truncation of 1st and 99th percentiles, depreciation rates reported in Table
II in the Data Appendix, and an inaction threshold of i = 0.01.
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The left part of Table I shows the inputs from the data: cross-sectional statistics for frequency, capital

gaps, and covariances between them. The right part of the table shows the outputs from our theory:

parameters (⌫,�2, x̂) and ergodic moments (E[a],Var[x],Cov[x, a]). For aggregate dynamics via the CIR1,

we show the values obtained for our formulas in the Bernoulli fixed-cost model in (37) and time-dependent

model in (41). We do not report the numbers obtained numerically for the general random fixed-cost

model, but these are very close to the Bernoulli case. We take this as a confirmation that the formula

with variance and covariance holds approximately in more general settings.

Inputs from micro data. Consider first the distribution of expected times ⌧ . We obtain an average

expected time to adjustment for structures of E[⌧ ] = 2.4 years with a large dispersion, suggesting sub-

stantial heterogeneity in adjustment times across plants. Now consider the distribution of capital gaps;

it has an average of E[�x] = 0.27 and a second moment of E[�x
2] = 0.19, and it is right-skewed. The

covariance between adjustment size and expected time is almost zero Cov[⌧,�x] = 0.06, as suggested

by Figure III.

Outputs from theory: Parameters. We will now explain the parameter values implied by our

formulas. From (23), the implied drift, which captures the depreciation rate, productivity growth, and

changes in relative prices, equals

⌫ = �E[�x]

E[⌧ ] = �0.271

2.441
= �0.111, (54)

and the volatility of idiosyncratic shocks equals

� =

vuuut
E[�x

2]

E[⌧ ]| {z }
0.08

+ 2⌫x̂|{z}
0.002

= 0.27. (55)

Note that the main component that drives the volatility estimate is the second moment of capital gap

changes, normalized by expected duration, whereas the drift term is negligible. The calibration of the

volatility of innovations in the literature falls within a wide range, from 0.054 in Khan and Thomas (2008)

to 0.121 in Winberry (2019) to 0.176 in Bachmann, Caballero and Engel (2013).29 It is worth noting

that these calibrations are done jointly with the fixed adjustment cost within a particular inaction model.

In contrast, our volatility estimate is pinned down directly through our model–independent mapping

between data and parameters.

concerns. We also present several robustness checks regarding the depreciation rates used in the calculation of capital stock
via the PIM, the inaction threshold i, the truncation for outliers, and adding Colombia as an additional country.

29To compare with the literature, we must do a few calculations. These papers use an AR(1) process for productivity in
levels with volatility � and autocorrelation ⇢. If the process is calibrated at the annual frequency, then the annual standard
deviation of productivity growth rate is �

p
2/(1 + ⇢); if the process is calibrated at the quarterly frequency, then the annual

standard deviation of productivity growth rate is �
q

⇢4�1

1�⇢2
+ 1 + ⇢2 + ⇢4 + ⇢6. Moreover, since we abstract from labor and

our productivity is rescaled, we must adjust the previous numbers by a factor 1/(1� ↵) in order to make them comparable
to ours (we assume a labor share and span of control to deliver ↵ = 0.58). Lastly, for Bachmann, Caballero and Engel
(2013), we only consider the idiosyncratic shocks (excluding the sectorial shocks). Recall that we only consider structures
here.
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Lastly, the observation formula for the reset capital gap in (22) implies that upon adjustment, capital

gaps are reset on average 1.3% above the average capital gap:

x̂ =
E[�x]

2| {z }
0.14

⇣
1� CV[⌧ ]2

⌘

| {z }
�0.23

+
Cov[⌧,�x]

E[⌧ ]| {z }
0.02

= 0.013 (56)

As with the covariance, the reset state, together with the drift, provides highly useful information to

distinguish families of inaction models, as we explain below.

Output from theory: Ergodic moments. From (24), average age E[a] is recovered using information

about the average and the dispersion of adjustment times. Following our earlier discussion on renewal

theory—i.e., larger stopping times are more representative in the sample—the heterogeneity in expected

times increases the average age:

E[a] = E[⌧ ]|{z}
2.4

1 + CV[⌧ ]2

2| {z }
1.05

= 2.52. (57)

Notice that E[a] ⇡ E[⌧ ], and recalling an earlier discussion, this is consistent with a strong time-dependent

component, where ⌧ follows either a fixed date or an exponential distribution.

According to the observation formula (25), the steady-state dispersion of capital gaps Var[x]—a notion

of misallocation—can be expressed in terms of capital gap changes and the reset point as follows:

Var[x] =
x̂
3 � E[(x̂��x)3]

3E[�x]
= 0.23, (58)

where the cubic powers capture asymmetries in the distribution. Note that the ergodic variance is

quantitatively very close to the average accumulated shocks, i.e., Var[x] = �
2E[a]. This suggests a large

pass-through from productivity shocks to capital misallocation, signaling ine�cient capital adjustments.

Equation (26) implies that the covariance between age and adjustment size suggested by the data is

positive:

Cov[x, a] =
1

2⌫

0

BB@
E
h
⌧ (x̂��x)2

i

E[⌧ ]| {z }
0.22

�Var[x]| {z }
0.23

��
2E[a]| {z }
0.20

1

CCA = 0.914. (59)

This positive covariance between capital gaps and capital age means that the capital holdings of plants

that have not adjusted in a long time (their capital is old) are above the gap of plants that have recently

adjusted. In the next section, we discuss how this covariance, as well as other objects computed above,

allows us to discern across models of inaction.

Let us recall the only two assumptions we have made to establish the link between data and ergodic

moments and parameters: (i) capital gaps follow a Brownian motion, and (ii) the reset state x̂ is constant

across plants and time. We have not assumed a particular inaction model or a parametric restriction

of the plants’ state besides those imposed on the capital gaps x. Clearly, plants’ investments may have
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other drivers besides capital gaps, and we do not impose any structure on those.

4.4 Evidence in favor of random fixed adjustment costs

The structural connections between ergodic moments, parameters, and policies recovered from the data

through our formulas strongly suggest that adjustment costs have both a time- and a state-dependent

component, as well as a large asymmetry in the policy. Here, we summarize these pieces of evidence.

A fully state-dependent model can generate asymmetric policies that deliver positive covariance

Cov[a,�x] and the small and positive x̂. However, such a model cannot generate the large observed

passthrough V[x] = �
2E[a]. To see this, assume that such a model is able to generate the expected

duration and the reset state; then it generates a variance of V[x] = 0.0020, 100 times lower than in

the data. In contrast, a fully time-dependent model can generate the large passthrough, but it faces

two challenges: the lack of asymmetries needed to generate the positive covariance30 (by definition, such

models are symmetric) and the low reset state. If the driver of inaction is time-dependence, then the

reset state should be equal to x̂
time dep = �⌫E[a] = �0.111⇤2.554 = 0.279, 20 times larger than the data.

For the previous reasons, we will focus on the random fixed adjustment cost to analyze aggregate

dynamics.

4.5 CIR under random fixed adjustment costs

We start by assuming the Bernoulli fixed-cost model to analyze aggregate dynamics of the first mo-

ment of capital gaps. We consider an unanticipated permanent aggregate productivity shock that shifts

horizontally the distribution of idiosyncratic productivity of all plants. If this model is true, in which

both intensive and extensive margins are active, we obtain from the data the following values:

CIR1(�)/� ⇡
Var[x]
�2| {z }
3.014

� ⌫ Cov[a, x]
�2| {z }
1.340

= 4.354. (60)

A natural question arises: Which parameters in the random fixed-cost model generate the data? To

answer this, we use the following strategy. We explore three types of hazard rates. The first is a constant

hazard generated by the baseline random fixed-cost model from the previous sections. We show that this

model dramatically misses the data. Then we use the generalized hazard model to entertain two simple

deviations that can be parametrized easily: (i) a U–shaped hazard, as proposed by Caballero and Engel

(1999) and followed by most of the literature, and (ii) a piecewise linear hazard. The advantage of these

formulations is that quantitatively, the CIR computed under these two alternatives is well approximated

by the variance and covariance expression in (37); thus we keep the focus on these two moments. In each of

these cases, we fix the values for (�, ⌫, x̂,E[⌧ ]) obtained in the data and then search for a parametrization

that best fits the variance and covariance. We conclude that a piecewise linear hazard provides the best

fit for the data.

30In fully time-dependent models the covariance equals Cov[a,�x] = ⌫

E[⌧ ]

⇣
E[⌧2

]

2
+ E[⌧3

]

3

⌘
<

⌫

E[⌧ ]
E[⌧2

]

2
= �0.22, which is

extremely low compared to its value in the data
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Bernoulli fixed cost (constant hazard). We search values for (�, x, x). Fix the hazard’s level �.

Find the inaction region’s bounds x(�), x(�) to match the average inaction duration E[⌧ ] and the reset

state x̂. Compute the implied variance Var[x] and covariance Cov[x, a] and repeat for other values of

�. Panels A and C in Figure IV plot the two key moments and the CIR1 against �. It also shows the

values in the data (dashed lines). The variance and covariance are increasing, and the combination that

yields the best match is (�, x, x) = (0.217,�0.55,1). The calibration pushes for a very large and positive

upper border of inaction x, which in turn makes the lower border more negative to fit the reset state and

the frequency of free adjustment � larger. At some point the upper border becomes irrelevant and � and

x converge to the values above. The implied values are far from the data: a variance of Var[x] = 0.02

and a covariance of Cov[x, a] = 0.3, implying a very low propagation (only 14% of the propagation in the

data). As the next step, we use the general hazard to explore simple departures.

U-shaped hazard. We have shown that a random fixed-cost model with constant hazard is not able

to match the two key moments in the data and thus misses the CIR. We entertain a first deviation in

which the fixed-cost is distributed uniformly and generates a quadratic hazard of the form

⇤(x) = c(x� x̂)2, c > 0. (61)

Given the parameters for the stochastic process, we search values for (c, x, x) so that this model gets as

close as possible to the data. Fix a quadratic coe�cient c. Find the inaction region’s bounds x(c), x(c)

to match the average inaction duration E[⌧ ] and the reset state x̂. Then compute the implied capital gap

variance Var[x] and covariance with age Cov[x, a]. Repeat for other values of c. Panels B and E plot the

two key moments and the CIR for di↵erent values of the quadratic coe�cient c. The combination that

yields the best match is (c, x, x) = (3.05,�0.44, 1.05), but again, the implied values are still far from the

data: a variance of Var[x] = 0.04 and a covariance of Cov[x, a] = 0.03. Notice that the CIR is remarkably

well approximated by the variance and covariance formula. By missing the moments in the data, this

model also implies very little propagation of aggregate shocks (again, only 14%).

Piecewise linear hazard. Finally, we analyze a piecewise linear hazard of the form

⇤(x) = max{b0 + b1(x� x̂), 0}, b0 > 0, b1 < 0. (62)

This hazard incorporates strong asymmetries into the adjustment cost structure, as ⇤(x) = 0 for all

su�ciently large gaps: x > x̂ � b0/b1. This hazard resembles a ‘hockey stick’. In other words, if the

capital gap is too positive, there is no disinvestment (downward irreversibility). Given the parameters

for the stochastic process, we search values for (b0, b1, x). Inspired by the estimation of the constant

hazard, the inaction region’s upper bound is set at x = 1. Fix a hazard slope b1. Find the intercept

b0(b1) and the inaction region’s lower bound x(b1) to match the average inaction duration E[⌧ ] and the

reset state x̂. Compute the variance Var[x] and covariance Cov[x, a] and repeat for other values of b1.

Panels C and F plot the two key moments and the CIR for di↵erent values of the hazard’s slope b1. The

combination that yields the best match is (|b1|, b0, x) = (0.74, 0.37,�1.7), and the implied values for the
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variance Var[x] = 0.17 and the covariance Cov[x, a] = 0.6 are much closer to the data. As in the previous

case, the CIR is approximated perfectly by the variance and covariance formula. This model is able to

explain 75% of the propagation in the data.

Figure IV – Key moments and CIR in data and models with random costs (three di↵erent hazards)
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Notes: Panels A, B, and C plot the steady-state variance of capital gaps and the covariance between capital gap and age

for three random fixed-cost models: Bernoulli (constant hazard), U-shaped hazard, and piecewise linear hazards. Each

line describes the curve level across one parameter such that the models satisfy (⌫,�, x̂,E[⌧ ]) = (�0.111, 0.27, 0.013, , 2.44).

Panels D, E, and F plot the CIR1 in each model, together the implied CIRs computed as V[x]�⌫Cov[x,a]
�2 with the moments

computed in the data and within each model.

On the nature of adjustment costs. We conclude that in order to explain aggregate investment

dynamics, a lumpy investment model must match two cross-sectional moments: the variance and the

covariance. In order to get close to reproducing these two moments in the data, the standard lumpy model

must be augmented to feature two elements: downward irreversibility for su�ciently large investments

and su�cient randomness in the fixed cost.
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4.6 Robustness

We conduct a series of robustness checks for the empirical analysis. Overall, values for the key statistics

of interest, Var[x] and Cov[x, a], are very similar across all the following alternatives. A first concern

that arises is how di↵erent layers of heterogeneity may a↵ect the computation and interpretation of

cross-sectional statistics. We recompute the statistics controlling for heterogeneity in terms of capital

type (structures, vehicles, machinery, and equipment), plant size (number of workers), and industrial

sectors; we also compare unweighted vs. weighted statistics. Second, we address the potential presence of

time trends and di↵erences along the business cycle phase. Third, we explore alternative methodologies

to construct capital gap adjustments. Finally, we repeat the entire analysis for Colombia.

Heterogeneity by capital category. We repeat the analysis for each capital category separately:

structures, machinery, equipment, and vehicles. Table X in the Data Appendix reports cross-sectional

investment statistics by capital type, and Figure XI plots the histograms of capital gaps. Table XI reports

data inputs and theory outputs. Across all categories the covariance is positive, but it is almost zero

for vehicles. This is not surprising, as vehicles are not expected to have strong irreversibility given a

well-developed secondary market.

Heterogeneity by sector. We consider eight 2-digit sectors within manufacturing: (1) Food and bev-

erages; (2) Textiles, clothing and leather; (3) Wood and furniture; (4) Paper and printing; (5) Chemistry,

petroleum, rubber and plastic; (6) Manufacture of non-metallic mineral products; (7) Basic metal; and

(8) Metal products, machinery and equipment. Table XII in the Data Appendix reports cross-sectional

statistics by sectors and Tables XIII and XIV shows data inputs and theory outputs for structures and

total capital, respectively. We find that besides textiles and chemicals, all other sectors present similar

investment patterns. When we recompute the formulas excluding textiles and chemicals, we find that

neither the inputs from the data nor the outputs from the theory di↵er from the numbers that include

these sectors. We conclude that heterogeneity across sectors should not be a concern once these two

sectors are excluded.

Heterogeneity by plant size. We consider di↵erent plant sizes in terms of their number of workers.

Table XV in the Data Appendix reports cross-sectional statistics by quartiles of the average number of

workers during the sample period: small plants (0–25%, S), medium plants (25–50%, M), large plants

(50–75%, L), and very large plants (75–100%, XL). Then quantiles are computed using a plant-level

fixed e↵ect and a time trend. Table XVI computes the formulas by plant size. Inputs from the data are

di↵erent for small and large plants. What is particularly striking is that the parameters of the stochastic

process we recovered are identical across sizes: plants are hit with the same magnitude of shocks and the

same drift. Variance and covariance are also very similar (positive and large) across plant size, even if

the level of lumpiness di↵ers dramatically across them.

Time trends and business cycle. To address the potential presence of time trends that may con-

taminate the statistics, we recompute the formulas for three 10–year subperiods (1979–1989, 1990–2000,
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2001–2011). To assess whether the parameters and moments change along the business cycle, we compute

the formulas conditioning on the business cycle phase, where recession periods are identified following the

OECD index of economic indicators. Results are in Table XVII and XVIII. While we find the presence

of some trends, the moments of interest remain large and positive.

Weighted statistics and unbalanced panel. We consider weighted statistics by plants’ total capital

and also an unbalanced panel. We repeat all of the configurations above. The results in Table XIX show

the robustness to these alternative specifications.

Alternative construction of capital gaps. We consider alternative depreciation rates to construct

the capital stock through the perpetual inventory method {0.5�, �, 1.5�}, where � varies by capital type, as

in the baseline. Results are in Table XX. Additionally, we consider di↵erent cut values to define inaction

in equation (52): i 2 {0, 0.01, 0.02}. We also explore di↵erent truncation levels for outliers, from 2% (1st

and 99th percentiles) to 4% (2nd and 98th). Results are in Table XXI.

Additional country: Colombia. We repeat all analyses for Colombia, using the Annual Manufac-

turers Survey (Encuesta Anual Manufacturera) for the period 1995–2016. These data has been used

by Eslava, Haltiwanger, Kugler and Kugler (2004, 2013) to study the e↵ect of structural reforms and

trade liberalization on aggregate productivity. Results are very similar across the two countries (see Data

Appendix E).

5 Generalization and extensions

In the previous sections we specified parametric restrictions to the inaction model and to the firms’ state

space to get expressions for the CIR. Nevertheless, it is possible to extend our theory to accommodate

richer models. For instance, models with both observation and fixed costs, as in Álvarez, Lippi and

Paciello (2011), can be represented by adding new state variables. In this section, we generalize our

results to consider more general stopping rules and states, explaining the assumptions on policies and

processes that are necessary in order to apply our tools. We extend the analysis in four directions, to

consider: (i) fixed heterogeneity, (ii) a mean-reverting process for the state, (iii) transitions for arbitrary

smooth functions of the state, and (iv) aggregate second-moment shocks.

5.1 Generalization

Notation. We denote conditional distributions as Z|Y , conditional expectations with initial condition

z as Ez[Z], and the minimum between two stopping times as t ^ s ⌘ min{t, s}.

General setup. Let (⌦, P,F) be a probability space equipped with a filtration F = (Ft; t � 0). We

consider an economy populated by a continuum of agents indexed with ! 2 ⌦, where agent !’s information

set at time t is the filtration Ft. Each agent’s uncontrolled state is given by S̃t(!) = [x̃t(!), S
�x
t (!)] 2

R1+K�x . The state is split between a main state x̃ and a set of complementary states S̃
�x
t . The main
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state follows a Brownian motion with drift dx̃t(!) = ⌫dt + �dWt(!). The agent’s policies consist of

a sequence of adjustment dates {Tk}1k = 1 and adjustment sizes {�S⌧k}
1
k = 1, measurable with respect

to Ft. Given these policies {Tk(!),�S⌧k(!)}1k = 1, the controlled state St(!) evolves as the sum of the

uncontrolled state plus the adjustments: St(!) = S̃t(!) +
P

Tk(!)t�S⌧k(!).

The first premise for our theory is a recursive representation of the conditional CIR, both between and

within stopping dates. This requires that St(!) be a su�cient statistic for the conditional CIR, which in

turn requires that the policy be history independent. Formally, this means that for all t(!)  Ti+1(!) we

have that

E
"Z Ti+1

Ti^t(!)
f(xt)dt|FTi^t(!)

#
= E

"Z Ti+1�(Ti^t(!))

0
f(xt)dt|S0 = STi^t(!)

#
= v

f (STi^t(!)). (63)

Since the main state follows a Brownian motion, the burden of this requirement falls completely on the

complementary state and the policy. Assumptions 1 and 2 formalize these requirements.

Assumption 1 (Markovian complementary state). The complementary state S̃
�x
t follows a strong

Markov process:

S̃
�x
(t^Tk)+h|Ft^Tk

= S̃
�x
h |{S̃�x

0 = S̃(t^Tk)}, 8k. (64)

To understand this assumption, consider a history ! such that t < Tk(!). In this case, the comple-

mentary state’s law of motion depends only on its current value; thus it is independent of its own history.

Additionally, the complementary state is an homogeneous process, since its law of motion at date t is

equivalent to its law of motion at zero, given an initial condition. In the complementary case t � Tk(!),

these properties continue to hold, and thus the stopping policy does not reveal new information about

the complementary state’s law of motion.

Assumption 2 (Markovian policies). Policies satisfy the following conditions:

Tk+1|FTk+h = T1|{S0 = STk+h} for all h 2 [0, Tk+1 � Tk]. (65)

A second premise in our theory is that we can characterize the CIR with the first stopping time of

every agent. This means that, upon taking action, agents fully adjust to include any deviations from their

steady-state behavior and come back to the steady-state process. This would imply that S⌧k is iid across

time and independent of the history previous to the adjustment. The challenge with stochastic iid resets

is that is makes it more di�cult to identify the parameters of the stochastic process, e.g., di↵erentiating

the fundamental volatility � from the volatility arising from a random reset state. Therefore, in order for

the reset state to be su�ciently informative, we ask that it be a constant STi
= Ŝ.

Assumption 3 (Constant reset state). The reset state is constant: STk
= Ŝ for all k.

Finally, in order to apply the Optional Sampling Theorem, we require several stopping processes to

be well-defined (finite moments at the stopping-time).31

31See Online Appendix A for a formal definition of a well-defined stopping process.
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Assumption 4 (Well-defined stopping processes). The processes
⇣nR t

0 s
j
x
m
s dBs

o

t
, ⌧

⌘
for all m

and j = 0, 1 are well-defined stopping processes.

It is straightforward to check that the previous assumptions hold in the investment example developed

in Section 2.32 Assumptions 1 to 4 are enough to demonstrate Propositions 1 and 2. Proposition 3

cannot be directly extended, since it depends on having the same basis underlying the CIR and the

ergodic moments. Under the condition that the stopping policy is independent of the main state, we

can obtain the CIR characterization in Proposition 4. In order to extend Proposition 5, we require

one additional assumption. There must exist an equivalent representation of the extensive margin as a

function exclusively of the main state x. For this, we require that there exist a stopping policy ⌧⇤ that

only depends on the main state x and can fully describe the extensive margin by itself. For instance, a

stopping policy given by a Poisson counter with hazard ⇤(x)dt satisfies this requirement.

Assumption 5 (Hazard). There exists a stopping policy ⌧⇤ s.t.

EŜ

"Z ⌧

0

 
@ES

⇥
x
m+1
⌧ /m+ 1

⇤

@x
� ES [xm⌧ ]

!
dt

#
= Ex̂

"Z ⌧

0

 
@Ex

⇥
x
m+1
⌧⇤ /m+ 1

⇤

@x
� Ex [xm⌧⇤ ]

!
dt

#
. (66)

With the formal requirements needed to apply our theory, we proceed to develop four extensions.

5.2 Extensions

Extension I: Fixed heterogeneity. The first extension considers fixed heterogeneity across di↵erent

types of firms, e.g., sectors. Let n = 1, . . . , N denote the sectors, (⌫n,�n) the sectoral drift and volatility,

and �n the output weight of sector n. Then, up to the first order, the CIRm of the economy is a weighted

average of the sector-specific CIRm,n:33

CIRm(�) =
NX

n = 1

�nCIRm,n(�)). (67)

The only important consideration for this derivation is that capital gaps refer to the capital-productivity

ratio relative to the sectoral average, and not the economy’s average. Note that, within each sector,

(⌫n,�n) is a constant vector. If this is not the case, the theory can still recover cross-sectional moments

of these parameters. For example, under a scenario with heterogeneous volatility and zero drift, Baley

and Blanco (2019) show how to recover average volatility across agents: E[�2!] = E[�x
2]/E[⌧ ].

Extension II: Mean reversion. Mean reverting processes are widely used in many applications due

to their empirical relevance. Assume the uncontrolled state follows an Ornstein–Uhlenbeck process with

mean-reversion parameter ⇢, i.e., dx̃t = ⇢x̃tdt + �dWt. We show that the theoretical tools that map

32For Assumption 1, the complementary state is given by the arrival of free adjustment opportunities Nt, which is assumed
to be a Poisson counter process and thus a strong Markov process. The requirements in Assumptions 2 and 3 are also satisfied.
We show that the reset capital gap is constant; and since the stopping policy is an inaction set with respect to the controlled
state, the stopping policy is history independent within and between adjustments.

33See Online Appendix B.3.
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aggregate dynamics to steady-state moments to micro data still apply, but the precise formulas change.

For instance, the reset state and structural parameters are recovered through the following system:34

x̂ =
E[e�⇢⌧�x]

E[e�⇢⌧ ]� 1
, (68)

�
2
/⇢ = 2

x̂
2 � E

⇥
e
�2⇢⌧ (x̂��x)2

⇤

E [e�2⇢⌧ ]� 1
, (69)

erf

 
x̂p
�2/⇢

!
= E

"
erf

 
x̂��xp
�2/⇢

!#
. (70)

where erf(x) ⌘ 2p
⇡

R x
0 e

�t2
dt is the Gauss error function. Note that in the limiting case ⇢ ! 0, and

using the approximation e
�⇢⌧ ⇡ 1 � ⇢⌧ , expressions (68) and (69) converge to expressions in (22) and

(23) with zero drift ⌫ = 0. These equations are useful to test for the persistence of productivity shocks

directly from investment data.

Extensions III: Transitions of arbitrary functions of the state. The third extension studies

transitions of any arbitrary smooth functions of the state f(x). This extension can be applied to study

welfare, as the welfare criteria can be generally written in this form. Additionally, it can be used to

correct for biases arising from applying logs and aggregating.35 Using a Taylor approximation around

zero, we write the CIR of the f(x) function in terms of a sequence of CIRs, weighted by the Taylor

factors:

CIR(f(x), �) =

Z 1

0
Et[f(x)]� E[f(x)]dt =

1X

j = 1

df
j(0)

dxj

CIRj(�)

j!
. (71)

Extension IV: Aggregate second-moment shocks. Since the seminal work on aggregate uncer-

tainty shocks by Bloom (2009), there has been great interest in the macroeconomic consequences of

second-moment shocks along the cycle. For simplicity, we consider a perturbation that can be expressed

via a single parameter � such that the initial distribution F0(x) = F (x�) represents a mean-preserving

spread (� < 1) or contraction (� > 1) of the ergodic distribution. To simplify the exposition, we set ⌫ = 0

and focus on the dynamics of the first moment36

CIR1(�)/� = �+ + o(�) (72)

� = 2Cov[x, a] (73)

 =
1X

j = 0

 1,jE[xj+1] (74)

As with first-moment shocks, the Cov[x, a] is also a key statistic to study aggregate dynamics following

second-moments shocks. Intuitively, an aggregate shock to the second moment of the distribution can

34See Online Appendix B.4.
35Campbell and Fisher (2000) show that working with the average of the log (instead the log of the average) generates

a bias in aggregate dynamics as agents with di↵erent sizes are treated equality in the log-scale. Computing the CIR for
f(x) = e

x corrects this bias.
36See Online Appendix B.5.
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a↵ect the dynamics of the first moment under large asymmetries in the policy, which are captured by the

covariance term. This term could be positive or negative, and it is disciplined by the data. The interaction

between first- and second-moment shocks, as studied by Vavra (2014), Castelnuovo and Pellegrino (2018),

and Baley and Blanco (2019), can be easily accommodated by combining our results.

6 Conclusion

We provide structural relationships in lumpy models between the CIR—a summary measure of persistence

for aggregate dynamics—steady-state cross-sectional moments, and micro data on adjustments, and apply

them to lumpy investment. We conclude by discussing three promising avenues for future research that

may overcome some of the limitations in our work.

First, we focus on a one-dimensional state. Extending the theory to multidimensional states would

allow us to analyze the interaction between heterogeneity and lumpiness in multi-plant firms (Kehrig and

Vincent, 2019), portfolio choice with multiple assets (Kaplan, Moll and Violante, 2018), misallocation

with several production inputs (Hawkins, Michaels and Oh, 2015), or the interaction of lumpy behavior

across di↵erent choices, such as investment and price-setting (Sveen and Weinke, 2007).

Second, we assume full adjustment upon action. Extending the theory to accommodate partial ad-

justments would allow us to study the interaction of lumpiness with convex adjustment costs or imperfect

information. This line of work would continue the recent contributions by Baley and Blanco (2019).

Third, we characterize the CIR but not the complete IRF, and we only consider small perturbations

around steady-state. Extending the theory to characterize the full IRF and more general perturbations,

as in contemporaneous work by Álvarez and Lippi (2019) who make significant progress in this front

using eigenvalue-eigenfunction representations, would allow us to better understand the role of lumpiness

for aggregate dynamics.
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A Appendix: Preliminaries

Assumptions. Let St = [xt, at] be the state. Here we enumerate three assumptions needed for Propositions 1–4:

1. {St}t2[0,1) is an strong Markov process with first element xt.

2. Homogeneous resets: S⌧i = Ŝ.

3. ⌧i is a stopping time with respect to the filtration generated by {St}.

4.
⇣nR

t

0
x
m

s s
n
dWs

o

t

, ⌧

⌘
are well-defined stopping processes for any m and n = 0, 1.

Auxiliary Theorem 1. [Optional Sampling Theorem (OST)] Let Z be a (sub) martingale on the filtered space (⌦,P,F)
and ⌧ a stopping time. If ({Zt}t, ⌧) is a well-defined stopping process, then

E[Z⌧ ](�) = E[Z0] (A.1)

Proof. See Theorem 4.4 in Stokey (2009).

Auxiliary Theorem 2. [Ergodic distribution and occupancy measure] Let S be a strong Markov process and g : S ! R
a function of S. Denote with F the ergodic distribution of S and with R the renewal distribution, i.e. the distribu-

tion conditional on adjustment. With homogeneous resets, Pr[S = Ŝ] = 1 under the renewal distribution R. Assume
R
g(S)dF (S) = limT!1

R T
0 g(St)dt

T
for all initial conditions S0. Then the following relationship holds:

Z
g(S)dF (S) =

E
⇥R

⌧

0
g(St)dt

⇤

E [⌧ ]
. (A.2)

Proof. See proof in Online Appendix A .

B Appendix: Proofs

Proof of Proposition 1. We continue with the notation St = [xt, at] and Assumptions 1 to 4 above. Additionally, we
assume that the first element of St follows a Brownian motion with non-zero drift. For the zero-drift case, see Online
Appendix B.2.

• Average adjustment size. From the law of motion xt = x̂ + ⌫t + �Wt, we find the following equalities: �W⌧ =
�⌫⌧ + x⌧ � x̂ = �⌫⌧ ��x. Taking expectations on both sides, we have �E[W⌧ ] = �⌫E[⌧ ] � E[�x]. Since W⌧ is a

martingale, E[W⌧ ] = W0 = 0 by the OST. Therefore, ⌫ = �
E[�x]

E[⌧ ] as well.

• Fundamental volatility: To characterize �, define Yt = xt � ⌫t with initial condition Y0 = x̂. With similar steps as
before, we have that

�
2 =

E
⇥
�Y

2

⌧

⇤

E[⌧ ] =
E
⇥
(Y⌧ � Y0)

2
⇤

E[⌧ ] =
E
⇥
(x⌧ � ⌫⌧ � x̂)2

⇤

E[⌧ ] =
E
⇥
(⌫⌧ +�x)2

⇤

E[⌧ ] (B.3)

or equivalently

�
2 =

E[�x
2]

E[⌧ ] + 2⌫

✓
E[�x⌧ ]
E[⌧ ] + ⌫

E[⌧2]
E[⌧ ]

◆

Applying the formula for x̂ below (B.5), we have the result.

• Reset state: For the reset state x̂, we apply Itō’s Lemma to x
2

t to obtain d(x2

t ) = 2xtdxt+(dxt)
2 =

�
2⌫xt + �

2
�
dt+

2�xtdWt. Using the OST E[
R

⌧

0
xsdWs] = 0. Moreover, given that E[

R
⌧

0
xsds] = E[x]E[⌧ ] = 0, we have that

E[x2

⌧ ] = x̂
2 + �

2E[⌧ ]. (B.4)

Completing squares E[x2

⌧ ] = E[(x̂� (x̂� x⌧ ))
2] = E[�x

2]� 2x̂E[�x] + (x̂)2, we get

x̂ =
1

2E[�x]

⇥
E[�x

2]� �
2E[⌧ ]

⇤

=
1

2E[�x]


E[�x

2]�

✓
E[�x

2] + 2
E[�x]E[�x⌧ ]

E[⌧ ] +
E[�x]2E[⌧2]

E[⌧ ]2

◆�

=
E[�x⌧ ]
E[⌧ ] �

E[�x]E[⌧2]
2E[⌧ ]2 . (B.5)

Rewriting in terms of covariance Cov[⌧,�x] = E[⌧�x]+E[⌧ ]E[�x] and coe�cient of variation squared CV2[⌧ ] = V[⌧ ]
E[⌧ ]2 ,

we have the result.
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• Ergodic moments of x: For observability of ergodic moments of x, apply Itō’s Lemma to x
m+1 and get dx

m+1

t
=

(m+1)xm

t ⌫dt+(m+1)xm

t �dWt+ �
2

2
m(m+1)xm�1

t
dt. Integrating from 0 to ⌧ , using the OST to eliminate martingales,

and rearranging:

E
Z

⌧

0

x
m

t dt

�
=

1
⌫(m+ 1)

�
E[xm+1

⌧ ]� x̂
m+1

�
�
�
2

2⌫
mE

Z
⌧

0

x
m�1

t dt

�
. (B.6)

Substituting the equivalences E[xm] = E
⇥R

⌧

0
x
m

t dt
⇤
/E[⌧ ] and E[�x] = �⌫E[⌧ ] yields:

E[xm] =
x̂
m+1

� E[(x̂��x)m+1]
E[�x](m+ 1)

�
�
2
m

2⌫
E[xm�1], E[x] = 0. (B.7)

• Joint ergodic moments of x and age: For observability of ergodic moments of x
m
a, where a stands for the

duration of the last action, we use Itō’s Lemma and the OST on x
m+1

t
t:

E
⇥
⌧ (x̂��x)m+1

⇤
= E

Z
⌧

0

x
m+1

t dt

�
+ (m+ 1)⌫E

Z
⌧

0

x
m

t tdt

�
+
�
2
m(m+ 1)

2
E
Z

⌧

0

x
m�1

t tdt

�
(B.8)

and therefore

E[xm
a] =

E
⇥
⌧ (x̂��x)m+1

⇤

⌫(m+ 1)E[⌧ ] �
E[xm+1]
⌫(m+ 1)

�
�
2
m

2⌫
E[xm�1

a] (B.9)

with initial condition E[a] = E[⌧2
]

2E[⌧ ] .

Proof of Proposition 2. Here we extend the result in Álvarez, Le Bihan and Lippi (2016) for higher-order moments,
arbitrary state, and policies. Start from the CIR’s definition and fix an m 2 N:

CIRm = E
Z

1

0

(xt(!)
m

� E[xm]) dt

�
, (B.10)

where the expectation is taken across agents !. Using the strong Markov property of S and law of iterated expectations, we
express the CIR as a function of the initial distribution F0:

CIRm = E

E
Z

1

0

(xt(!)
m

� E[xm]) dt

����F0

��
=

Z

S

E
Z

1

0

(xt(!)
m

� E[xm]) dt

����S0 = S

�
dF0(S) =: CIRm(F0), (B.11)

Let {Ti}
1

i=1
be the sequence of stopping times. In equality (1) below, we write the CIR as the cumulative deviations between

time t = 0 and the first stopping time T1 plus the sum of deviations between all future stopping times. In (2), we use the
Law of Iterated Expectations to condition on the information set FTi . In (3), we use the strong Markov property of St,
the assumption of homogeneous resets, and that Ŝ is constant for i � 1 to change the conditioning from STi+h|FTi to Sh|Ŝ

and write the problem recursively. We define ⌧ = Ti+1 � Ti. In (4), we show that every element inside the infinite sum is
equal to zero. For this purpose, recall the relationship between ergodic moments and expected duration derived in Auxiliary

Theorem 2, E[xm] = E
hR

⌧

0
xt(�|!)

m
|Ŝ

i
/E[⌧ |Ŝ], and thus we are left with the simple expression in the fourth line:

CIRm(F0) =

Z

S

E
Z

1

0

(xt(!)
m

� E[xm]) dt

����S0 = S

�
dF0(S), (B.12)
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����S0 = S

�
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Note that we can write the CIR as follows, by defining the value function ṽm(S) conditional on a particular initial
condition S = [x, S�x]:

CIRm(F0) =

Z

S

ṽm(S)dF0(S), ṽm(S) ⌘ ES

Z
⌧

0

(xt(!)
m

� E[xm]) dt

�
(B.13)

Then rewrite the last expression as

ṽm(S) ⌘ ES

Z
⌧

0

xt(!)
m
dt

�
� ES

Z
⌧

0

E[xm]dt

�

= ES

Z
⌧

0

xt(!)
m
dt

�
� E[xm]ES

Z
⌧

0

1dt

�

= ES

Z
⌧

0

xt(!)
m
dt

�
� E[xm]ES

Z
⌧

0

xt(!)
0
dt

�

= vm(S)� E[xm]v0(S)

where we define vm(S) ⌘ ES
⇥R

⌧

0
x
m

t dt
⇤
.

Proof of Proposition 3. The idea behind this proof is that the CIR and the ergodic moments share the same finite basis
⌦ = {e

⇠1x, e⇠2x,e⇠1xx, e⇠2xx, {xi
}
m

i=0}, where ⇠1, ⇠2 are the characteristic roots of the HJB satisfied during periods of inaction.
After this observation, the rest involves simple coe�cient matching and algebra.

For clarity, we elaborate the proof in Lemmas 1 to 5.

(i) Lemma 1 rewrites the CIR, up to a first order approximation with respect to the aggregate shock �, as the average of
the marginal value of equation (36) given by v

0

m(x)� E[xm]v00(x). Then, we express the CIR as a combination of the

following auxiliary functions: E
hR

⌧

0
x
m

t dt

���x
i
, E
hR

⌧

0
e
⇠1xtdt

���x
i
, E
hR

⌧

0
e
⇠2xtdt

���x
i
evaluated at x = x̂.

(ii) Lemma 2 expresses the auxiliary functions from the previous Lemma in terms of the finite basis ⌦.

(iii) Lemma 3 expresses E
hR

⌧

0
tx

m

t dt

���x
i
as a function of the same finite basis ⌦. Note that this function is related to E[xm

a]

through the occupancy measure.

(iv) Lemma 4 and 5 relate the basis coe�cients between the CIR and the ergodic moments, obtaining two linear relationships
that connect both objects:

CIRm(�)/� =
E[xm+1]
�2

+ L({E[xi]}mi=0) + “discrepancy”, (B.14)

�
⌫

�2
Cov[xm

, a] = L({E[xi]}mi=0) + “discrepancy”. (B.15)

The first term in (B.14) relates to the ratio of the m + 1 ergodic moment to idiosyncratic volatility E[xm+1]/�2; the
second term is a linear combination of the first m ergodic moments L({E[xi]}mi=0), where L(x) is a linear projection
function; and the third term is a “discrepancy”.

(v) Subtracting (B.15) from (B.14) we obtain the result:

CIRm(�)/� =
E[xm+1]� ⌫Cov[xm

, a]
�2

(B.16)

Notation 1. For the next Lemmas, we use the following notation:

�̃(') =
�� '

�2

⇠1(') = �⌫̃ �

q
⌫̃2 + 2�̃(') ; ⇠2(') = �⌫̃ +

q
⌫̃2 + 2�̃(') ; ⇠1(')⇠2(') = 2�̃(')

D(') = e
⇠1(')x+⇠2(')x

� e
⇠2(')x+⇠1(')x

↵1(') =
e
⇠1(')x

D(')
; ↵

1
(') =

e
⇠1(')x

D(')
; ↵2(') =

e
⇠2(')x

D(')
; ↵

2
(') =

e
⇠2(')x

D(')

m(x,') =
mX

i=0

bi,mx
i

with bi,m(') =
m!
i!


⇠1(') + 1/�
⇠1(')� ⇠2(')

⇠1(')
i�m +

⇠2(') + 1/�
⇠2(')� ⇠1(')

⇠2(')
i�m

�
.


m
(') = m(x,') ; m(') = m(x,') ; ̂m(') = m(x̂,').
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Moreover, we use the notation

⌫̃ =
⌫

�2
; �̃ = �̃(0) ; � ⌘ �

2
/2⌫

⇠1 = ⇠1(0) ; ⇠2 = ⇠2(0) ; T = T (0)

D = D(0) ; ↵1 = ↵1(0) ; ↵
1
= ↵

1
(0) ; ↵2 = ↵2(0) ; ↵

2
= ↵

2
(0)

T = (↵2↵1
� ↵1↵2

)�1 ; bi,m = bi,m(0)

m(x) ⌘ m(x, 0) ; m = m(x, 0) ; 
m

= m(x, 0) ; ̂m = m(x̂, 0)

Lemma 1. For this proof, we take S = x. Define vm(x) ⌘ E
⇥R

⌧

0
x
m

t dt|x
⇤
, then we can write the CIR as:

CIRm(�)/� =
1

E[⌧ ]

✓
E
Z

⌧

0

v
0

m(xt)dt

�
� E[xm]E

Z
⌧

0

v
0

0(xt)dt

�◆
+ o(�) (B.17)

with

E
Z

⌧

0

v
0

m(xt)dt

�
=

1
�

 
�⇠1V1(x̂) [↵2m

� ↵
2
m]� ⇠2V2(x̂) [↵1

m � ↵1m
] +

mX

i=1

ivi�1(x̂)bi,m

!
(B.18)

V1(x) ⌘ E
Z

⌧

0

e
⇠1xt

dt|x

�
(B.19)

V2(x) ⌘ E
Z

⌧

0

e
⇠2xt

dt|x

�
(B.20)

Proof. The random fixed adjustment cost model satisfies all of the assumptions in the preliminaries A. Thus

CIRm(�) =

Z
x

x

(vm(x)� E[xm]v0(x)) f(x� �)dx

Doing a first-order Taylor approximation over � (note that f 0(x) exist for all x 2 [x, x]/{x̂}) and integrating by parts (using
that there is no mass at the borders of inaction, i.e., f(x) = f(x) = 0), we have that

CIRm(�) = ��

Z
x

x

(vm(x)� E[xm]v0(x)) f
0(x)dx+ o(�2)

= ��


f(x) (vm(x)� E[xm]v0(x))|

x

x
�

Z
x

x

�
v
0

m(x)� E[xm]v00(x)
�
dF (x)

�
+ o(�2)

= �

Z
x

x

�
v
0

m(x)� E[xm]v00(x)
�
dF (x) + o(�2).

Now, we proceed to compute vm(x) ⌘ E
hR

⌧

0
x
m

t dt

���x
i
.

Computing vm(x). The function vm(x) satisfies the HJB

0 = x
m + ⌫v

0

m(x) +
�
2

2
v
00

m(x)� �vm(x)

with the border conditions vm(x) = 0 and vm(x) = 0. The homogeneous solution is given by

v
h

m(x) = B1,me
⇠1x +B2,me

⇠2x
.

To find the non homogenous solution, we guess and verify a polynomial expression v
c

m(x) =
P

m

i=0

bi,m

�
x
i. Plugged into the

HJB

0 =
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m
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mX
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bi,m

�
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i
.

For this equation to hold, the coe�cients {bi,m} must satisfy the following di↵erence equation:

bm,m = 1, bm�1,m =
⌫

�
m, bi,m =

⌫

�
(i+ 1) [bi+1,m + �bi+2,m(i+ 2)]

The solution is given by

bi,m =
m!
i!


⇠1 + 1/�
⇠1 � ⇠2

(⇠1)
i�m +

⇠2 + 1/�
⇠2 � ⇠1

(⇠2)
i�m

�
.
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The border conditions define a system of equations to be solved for B1,m and B2,m

B1,me
⇠1x +B2,me

⇠2x = �

mX

i=0

bi,m

�
x
i
, B1,me

⇠1x +B2,me
⇠2x = �

mX

i=0

bi,m

�
x
i
.

Using Cramer’s rule, we obtain (B.21).

B1,m =

�
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P

m

i=0
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1

m

� ↵1
m] .

Thus we obtain the first result:

vm(x) =
e
⇠1x [↵

2
m � ↵2m

] + e
⇠2x [↵1m

� ↵
1
m] + m(x)

�
(B.21)

Writing the CIR as function of V1(x̂), V2(x̂). Using the relationship between ergodic moments and expected
duration derived in Auxiliary Theorem 2,

CIRm(�)/� =

Z
x

x

[v0m(x)� E[xm]v00(x)]dF (x) + o(�) =
E
⇥R
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0
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0
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� E[xm]E

⇥R
⌧

0
v
0
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Proof. Computing V1(x) and V2(x). Next, we show (B.22) (computing (B.23) requires similar steps, mutatis mutandis).
The value V1(x) satisfies the HJB
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Lemma 3. Define the following value:

Um(x) ⌘ E
Z

⌧

0

tx
m

t dt

���x
�
,

It can be expressed as

�Um(x) = vm(x)� e
⇠1x
⇥
↵2

0

m
(0)� ↵

2

0

m(0)
⇤
� e

⇠2x
⇥
↵
1

0

m(0)� ↵1
0

m
(0)
⇤
+ 

0

m(x, 0) . . .

. . .+
e
⇠1xx [↵2m

� ↵
2
m]

�2(⌫̃ + ⇠1)
+

e
⇠2xx [↵

1
m � ↵1m

]

�2(⌫̃ + ⇠2)
� e

⇠1x
⇥
↵
0

2(0)m
� ↵

0

2
(0)m

⇤
� e

⇠2x
⇥
↵
0

1
(0)m � ↵

0

1(0)m

⇤

Proof. First we characterize Um(x) with the moment-generating function. Define the functions Hm(x,') = Ex[
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Lemma 4. The following relationship holds
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Proof. Departing from Lemma 1
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where K2m is defined in (B.25).

46



Departing from the definition of K1m and using the property that T [↵2↵1
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Finally, using (B.58), we have that
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since v1(x̂) = E[x]E[⌧ ] = 0 and v0(x̂) = E[⌧ ]. Using this result we have that
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Proof. First we characterize E[axm] with the moment-generating function. From Lemma 3 , we have
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Below, first we characterize C1m and then C2m. Taking the derivative of ↵
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Using equations (B.32) and (B.33),
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therefore we have characterized C1m. Using the definition of  (i) in equation (B.28), we can write C2m as

C2m =
m�1X

i=0

b
0

i,m(0) (i) (B.34)

In Auxiliary Result 2, we show that
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Applying the formula for the covariance and using equation (B.36)
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Subtracting (B.30) from (B.24) we finish the proof.

Proof of Proposition 4. The proof is a special case of Proposition 3.
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Then, to a first order, the CIRm is given by
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Proof. The proof is divided into three Lemmas for clarity.

Lemma 6. [Aggregation] To a first order, the CIRm is given by
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Proof. Throughout this proof we denote conditional expectations with superscripts, as follows Ey[·] = E[·|y].
Express the CIR as derivatives with respect to initial condition. Start from the representation of the CIR in (B.17)
from Lemma 1
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v
0

m(x)� E[xm]v00(x)
�
dF (x) + o(�) (B.45)

where vm(x) ⌘ Ex
⇥R

⌧

0
x
m

t dt
⇤
and v0(x) ⌘ Ex [⌧ ]. From vm’s definition, take its derivative with respect to initial conditions

and substitute it back into the CIR

CIRm(�)/� =

Z
@

@x
Ex

Z
⌧

0

x
m

t dt

�
dF (x)� E[xm]

Z
@ES [⌧ ]
@x

dF (x)
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Lastly, by adding and subtracting the following object
R
Ex

hR
⌧

0

@x
m
t

@x
dt

i
dF (x), we re-express the CIR as the sum of three

terms Bm, Cm, and  0, defined in the brackets.

CIRm(�)/� =

Z
Ex

Z
⌧

0

@x
m

t

@x
dt

�
dF (x)

| {z }
Bm

�E[xm]

Z
@Ex[⌧ ]
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dF (x)
| {z }

 0

+

Z ✓
@
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⌧
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x
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t dt

�
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Z
⌧

0
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m

t

@x
dt

�◆
dF (x)

| {z }
Cm

.

(B.46)
Now we further characterize each of these terms.

Characterize Bm. Since xt = x+ ⌫t+ �Wt, for all t  ⌧ we have that

Bm ⌘

Z
Ex

Z
⌧

0

@x
m

t

@x
dt

�
dF (x) =

Z
Ex

Z
⌧

0
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m�1

t dt

�
dF (x).

Applying Itō’s Lemma to x
m

t we have dx
m

t = ⌫mx
m�1

t
dt + �mx

m�1

t
dWt + �

2

2
m(m � 1)xm�2

t
dt, and integrating both sides

from 0 to ⌧ and taking expectations with initial condition x, we get

Ex [xm

⌧ ]� x
m = m� Ex

Z
⌧

0

x
m�1

t dWt

�

| {z }
=0 by OST
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Z
⌧

0
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�
+
�
2
m

2
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Z
⌧

0

(m� 1)xm�2

t dt

�
.

Given that
R

t

0
x
m

s dWt is a martingale with zero initial condition and it is well defined by assumption, we apply the Optional

Sampling Theorem (OST) to conclude that Ex
⇥R

⌧

0
x
m�1

t
dWt

⇤
= 0. Solve for Ex

⇥R
⌧

0
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t
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⇤
:
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⌧ ]� x
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t

⌫
�m�Ex
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(m� 1)xm�2

t dt

�
.

Integrating both sides across all initial conditions, defining '�m ⌘
1

⌫
(Ex [xm

⌧ ]� x
m

t ) and �m ⌘
E[

R ⌧
0 '

�
m(xt)dt]
E[⌧ ] , and recognizing

Bm and Bm�1, we get:
Bm = �m �m�Bm�1, �0 = 0, (B.47)

where we used the Auxiliary Theorem 2, exchanging the ergodic distribution for the local occupancy measure.

Characterize Cm. With similar steps as in the previous point, we characterize Cm as follows:

Cm ⌘

Z
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t dt

�

| {z }
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�Ex
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B
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First, we get an expression for the term A. Applying Itō’s Lemma to x
m+1

t
we have dx

m+1

t
= (m + 1)⌫xm

t dt + �(m +

1)xm

t dWt + �
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2
m(m + 1)xm�1

t
dt. Integrating both sides from 0 to ⌧ , taking expectations with initial condition x, using

the OST, and rearranging, we get Ex
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0
x
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t dt
⇤
= 1
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⇤
, and its derivative with

respect to initial condition x:
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⇤
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Now, for the term B, recall from the characterization of �m that

B ⌘ Ex

Z
⌧
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dt

�
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⌫
(Ex [xm
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.

Subtract the equations for A and B and simplify to obtain

@Ex
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0
x
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t dt
⇤
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⇤
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Integrate with the ergodic distribution, define ' m(xt) ⌘
1

⌫

✓
@Ex[xm+1

⌧ ]/(m+1)

@x
� Ex [xm

⌧ ]

◆
and  m ⌘

E[
R ⌧
0 '

 
m(xt)dt]
E[⌧ ] , and

recognize Cm and Cm�1 to get:
Cm =  m �m�Cm�1, C�1 = 0. (B.48)

Characterize  0. We corroborate that the expression
R

@Ex
[⌧ ]

@x
dF (x) is equal to  0. By the OST, we have Ex[x⌧ ] � x =

⌫Ex[⌧ ]. Thus @Ex
[⌧ ]

@x
= 1

⌫

h
@Ex

[x⌧ ]

@x
� 1
i
. Substituting and using Auxiliary Theorem 2, we recover the expression for  0 in the
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definition of  m:

 0 ⌘

Z
@Ex[⌧ ]
@x

dF (x) =

Z
1
⌫


@Ex[x⌧ ]
@x

� 1

�
dF (x)

All results together. Define Zm ⌘ Bm + Cm, which implies Zm = �m + m �m�Zm�1. Combine the results in (B.46),
(B.47) and (B.48) to obtain CIRm(�)/� = (Zm � E[xm] 0). Note that we can write Zm:

Zm = �m + m + (��)1mZm�1

= �m + m + (��)1m (�m�1 + m�1) + (��)2m(m� 1)Zm�2

= �m + m + (��)1m (�m�1 + m�1) + (��)2m(m� 1) (�m�2 + m�2) + (��)3m(m� 1)(m� 2)Zm�3

= . . .

=
mX

k=1

(��)m�km!
k!

(�k + k)

Lemma 7. [Representation for intensive margin] The intensive margin �m defined as

�m ⌘
E
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⇤

E [⌧ ]
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�

m(xt) =
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⌫
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⌧ ]� x
m

t ) .

can be represented as a function of steady-state moments as

�m = mE[xm�1
a] + {m�2}�m(m� 1)E[xm�2

, a].

Proof. Start (1) from the definition of �m and '�m(S), then (2) exchange the time integral with the expectation conditional
on adjustment E[·], which introduces an indicator {t⌧}. Use the Law of Iterated Expectations in (3) to condition on the
set {t  ⌧}.
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(B.49)

We now characterize E
⇥
x
m+1

⌧

R
⌧

0
dt
⇤
. Applying Itō’s Lemma followed by the OST to Y
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m

t

R
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dsdt (B.50)
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⌧ ] = E
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(B.51)

Using equations (B.49) and (B.51), we have that

�m = mE[xm�1
a] + {m�2}�m(m� 1)E[xm�2

a].

Lemma 8. [Representation for extensive margin] Assume the moments of the adjustment size can be written as

gm(x) = Ex̂+x [(x̂��x)m]� E [(x̂��x+ x)m] . (B.52)

Then the extensive margin given by  m ⌘
E[

R ⌧
0 '

 
m(xt)dt]
E[⌧ ] with '

 

m(x) ⌘
1

⌫

✓
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⌧ /(m+1)]
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� Ex [xm
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◆
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as a function of steady-state moments as follows:
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Proof. Using a change of variable in assumption (B.52), we have that

Ey [xm

⌧ ] = gm(y � x̂) + E [(y � x̂+ x⌧ )
m] . (B.54)

Using the previous equation, we have that
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(B.55)
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If ⌧ |xt ⇠ ⌧ (as in fully time-dependent models), then we have that

gm(x) = Ex̂+x [(x̂��x)m]� E [(x̂��x+ x)m]

= E
h
(x̂+ x+ ⌫⌧

x+x̂ + �W
⌧x+x̂)m

i
� E [(x̂+ x+ ⌫⌧ + �W⌧ )
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= 0 (B.57)

Auxiliary Result 1. [Equivalence in coe�cients]

1

�̃

mX

i=1

ibi,m

i�1X

j=0

bj,i�1 (j) +
mX

i=0

bi,m (i+ 1) =
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bi,m+1 (i)�
⌫

�

mX

i=0

bi,m

iX

j=0

bj,i (j), (B.58)

Proof. Now, we show (B.58). It is easy to verify the following in di↵erence equations for the {{bi,m}
m

i=0} :

bm,m = 1 ; bm�1,m = m
⌫

�
(B.59)

bi,m =
⌫

�
(i+ 1)bi+1,m +

1

�̃2
(i+ 2)(i+ 1)bi+2,m with i  m� 2 (B.60)

bi,m = bi�1,m�1

m

i
with i � 1 and m � 1 (B.61)

bi,m =
⌫

�
mbi,m�1 +

(m� 1)m

�̃2
bi,m�2 with i  m� 2 m � 2. (B.62)
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Operate over the left-hand side of (B.58) and we have

LHS =
m�1X

j=0

mX

i=j+1

ibi,mbj,i�1

�̃
 (j) +

mX

j=1
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+ bj�1,m

#
 (j) + bm�1,m (m) + bm,m (m+ 1), (B.63)

and operating over the right-hand side of (B.58)

RHS =
mX

j=0

bj,m+1 (j)�
mX

j=0

mX

i=j

⌫

�
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 (j) + bm+1,m+1 (m+ 1). (B.64)

Thus, to show that (B.63) is equal to (B.64), we need to get that for all m

bm+1,m+1 = bm,m (B.65)
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⌫
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ib0,i�1bi,m
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(B.68)

Now we show equations (B.65) to (B.68) by induction hypothesis. We skip the verification for m = 1 and m = 2.
Assume they hold for m� 1 and m� 2, and now we show they hold for m:

• Equation (B.65): From equation (B.59) we have that bm,m = 1 = bm+1,m+1.

• Equation (B.66): From equation (B.59) we have that
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• Equation (B.67): Departing from the right-hand side of (B.67), we have that
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Now we explain the steps in equation (B.70). In step (1) we apply (B.62), and in step (2) we apply the induction
hypothesis. In step (3) we operate, and in steps (4) and (5) we apply (B.62), (B.59) and operate. Step (6) completes
the sum.

• Equation (B.68): With similar steps as before
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Auxiliary Result 2.
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Proof. We use the induction hypothesis of order two for any m over i. For this step, we need the following recursive
characterization of bi,m and b

0

i,m(0), which is easy to show:

bm,m = 1 ; bm�1,m =
⌫

�
m ; bi,m =

⌫

�
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(i+ 2)(i+ 1)

2�̃
bi+2,m 8i  m� 2. (B.72)
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First, we verify that (B.71) holds for i = m� 1 and i = m� 2.
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Fix any i  m� 2 and assume that equation (B.71) holds for i+ 1 and i+ 2. Below, we equation (B.71) for i
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. (B.74)

Now we explain each step in equation (B.74). In step (1) we use (B.73), and in step (2) we use the induction hypothesis.
Step (3) operates over the first sum, and step (4) uses (B.73). Finally, step (5) uses that bi,i = 1 and ⌫

�
(i+1)bi+1,i+1 = bi,i+1.

Thus, we prove (B.71).
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