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Firm Uncertainty Cycles and the Propagation 
of Nominal Shocks†

By Isaac Baley and Andrés Blanco*

We develop a framework to study the impact of idiosyncratic uncer-
tainty on aggregate economic outcomes. Agents learn about individ-
ual characteristics, which receive infrequent, large, and persistent 
shocks. In this environment, idiosyncratic uncertainty moves in 
cycles, f luctuating between periods of high and low uncertainty; 
with additional fixed adjustment costs, the frequency and size of 
agents’ actions also fluctuate in cycles. We apply our framework 
to study pricing behavior and the propagation of nominal shocks. 
We show, analytically and quantitatively, that idiosyncratic uncer-
tainty cycles amplify the real effects of nominal shocks by generat-
ing cross-sectional dispersion in firms’ adjustment frequency and in 
learning speed. (JEL D21, D81, D83, E31, E32, E52)

Firms operate in constantly changing environments. Fresh technologies become
available, new products and marketing campaigns get developed, unfamiliar 

markets are targeted, workers are replaced, and supply chains get disrupted. These 
idiosyncratic changes are recurrent, large, and persistent, and under many scenar-
ios, firms do not have all the information needed to assess their impact. This lack 
of perfect knowledge generates uncertainty that affects firms’ actions. Moreover, 
responding to the new conditions may entail large adjustment costs for firms.

In this context, many questions arise naturally: how do firms process and respond 
to uncertain changes in their environment? Is it possible to identify the degree of 
frictions from the data? Does idiosyncratic uncertainty matter for aggregate eco-
nomic outcomes?
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To address these questions, we develop a general framework where agents have 
imperfect information about persistent idiosyncratic conditions that change infre-
quently and by large amounts—fat-tailed risk—and must pay a fixed cost to make 
choices. The model is very general and can be applied to a wide array of settings. 
For example, it can be used to analyze portfolio choices subject to adjustment fees 
and uncertain trends in asset returns, or workers’ occupational choices subject to 
mobility costs and uncertain productivity growth. We apply the framework to study 
firms’ pricing decisions and the impact of firm-level uncertainty on the propagation 
of aggregate nominal shocks.

We model price-setting firms that face menu costs to adjust their prices and 
imperfect information about their idiosyncratic productivity. We assume that firms 
receive persistent shocks to their productivity that are fat-tailed, where only the tim-
ing of the shocks is known, but not the exact realization. For example, a firm knows 
a worker or its management has been replaced, but it does not know how productive 
it will be under the new regime. Firms use Bayes’ law to estimate their persistent 
productivity as in  Jovanovic (1979), and we call the conditional variance of the esti-
mates firm uncertainty. In this setup, firm-level uncertainty cycles arise. Uncertainty 
cycles are defined as recurrent patterns in which firm uncertainty spikes up when 
a fat-tailed productivity shock hits, and then fades with learning until the arrival of 
the next shock, when uncertainty jumps again. Due to fixed adjustment costs, the 
pricing policy takes the form of an inaction region that moves with uncertainty; as 
a consequence, the frequency and the size of price changes also fluctuate in cycles. 
With a continuum of ex ante identical firms, the uncertainty cycles endogenously 
generate dispersion in adjustment frequency as firms churn between high and low 
levels of uncertainty: high-uncertainty firms change their prices more often than 
low-uncertainty firms. Additionally, the uncertainty cycles generate dispersion in 
firms’ learning dynamics: high-uncertainty firms incorporate new information more 
quickly into their forecasts than low-uncertainty firms.

Our key prediction is that idiosyncratic uncertainty cycles amplify the real effects 
of aggregate nominal shocks. This result is robust to a variety of specifications, 
including scenarios with partial knowledge about the size of the nominal shock and 
the introduction of aggregate uncertainty shocks. Amplification arises from various 
forces generated by the uncertainty cycles: (i) dispersion in times until the first 
price adjustment, (ii) dispersion in learning dynamics, and (iii) a positive correla-
tion between adjustment frequency and the degree of selection effect. The latter two 
mechanisms are new in the literature. When we calibrate the model to match a vari-
ety of micro-price statistics, we obtain an output response that is almost three times 
as large as the benchmark in Golosov and Lucas (2007), where pricing decisions are 
identical across firms. Moreover, the output effects can be up to seven times larger 
if the monetary shock is only partially observed, in which case firms make forecast 
errors about the monetary shock. All of these results highlight the role of firm-level 
uncertainty, especially its cross-sectional distribution, in assessing the effectiveness 
of monetary policy.

Our analysis proceeds in three steps. First, we show how uncertainty cycles arise 
endogenously from firms’ learning processes in an environment with fat-tailed risk. 
The departure from the Gaussian world entails important computational challenges, 
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but we keep the Bayesian learning tractable by assuming that the timing of shocks is 
known. Importantly, both the information friction and the fat-tailed shocks are needed 
to generate heterogeneity in uncertainty in the steady state, which in turn generates 
the dispersion in frequency and learning speed across firms. Each ingredient on its 
own is not enough. With the information friction alone, all firms eventually are able to 
track their productivity with the same constant precision. Alvarez, Lippi, and Paciello 
(2011) study that case and conclude that the economy collapses to the standard menu 
cost model of Golosov and Lucas (2007), with homogeneous firms and large monetary 
neutrality. The novelty in our setup is that such stabilization is prevented by the fat-
tailed shocks, and heterogeneity persists in steady state. With fat-tailed shocks alone, 
firms face an almost constant probability of adjustment as in Gertler and Leahy (2008) 
or Midrigan (2011). By incorporating the information friction, our model captures 
several features from the micro-pricing data that cannot be explained by those bench-
marks, and reveals new mechanisms that result in larger monetary non-neutrality.

Uncertainty cycles are empirically relevant. Bachmann, Elstner, and Sims (2013) 
and Bachmann, Elstner, and Hristov (2017) find substantial cross-sectional hetero-
geneity and time-variation in measures of firm-idiosyncratic uncertainty using sur-
vey data for German firms. Similar evidence is documented for the United States 
in Senga (2016) by merging survey data from the I/B/E/S and Compustat. The 
evidence reveals persistent differences in the degree of firm-level uncertainty, not 
only in the cross-section, but also across time within the same firm. Regarding 
fat-tailed risk affecting firms, Klenow and  Malin (2010) and Alvarez, Le  Bihan, 
and Lippi (2016) document positive excess kurtosis in the price change distribu-
tion for US and French CPI data, respectively. Further evidence for underlying fat-
tailed risks is found in many firm variables beyond the price change distribution. 
Davis and  Haltiwanger (1992) provide clear evidence of leptokurtic changes in 
employment in US Census data. As further suggestive evidence, we document fat-
tailed distributions for the growth rates of profits, employment, sales, and capital in 
Compustat firms between 1980 and 2015.1

The second step in the analysis focuses on the effects that uncertainty cycles 
have on firm pricing decisions. The answer is not obvious, as there are two oppos-
ing effects of uncertainty. More uncertain firms have wider inaction regions that 
make prices less flexible—the “option value effect” in Dixit (1991)—but they also 
change their beliefs in a more volatile way, which makes prices more flexible—the 
“volatility effect.” We show analytically that the latter effect dominates; thus, higher 
uncertainty yields higher adjustment frequency and bigger price changes. As a result 
of the positive relationship between uncertainty, frequency, and size, the firm uncer-
tainty cycles imply adjustment cycles: periods of frequent adjustment and large price 
changes alternate with periods of infrequent adjustment and small price changes, 
i.e., price changes get clustered instead of evenly spread across time. This implies 
that the probability to adjust conditional on no past adjustment—the hazard rate—
falls with time. Moreover, the magnitude of the information frictions pins down 
the hazard rate’s slope. To understand these results, note that the inaction regions 

1 These variables are clearly endogenous objects and not structural shocks. Nevertheless, in a large set of mod-
els, these variables are related to firms’ productivity. See online Appendix A.1. 
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refer to productivity estimates and not the true realizations. This makes a difference 
because after a firm takes action, its judgment might turn out to be wrong, leading 
it to take further action again very soon. This contrasts sharply with standard menu 
cost models, where the probability of adjustment immediately after a price change 
is tiny and increases over time.

There is empirical evidence that supports the predictions of our price-setting 
model. Bachmann et  al. (forthcoming) document a positive correlation between 
firm-level uncertainty and price adjustment for German firms. Campbell and Eden 
(2014) document that price changes in the retail sector are more extreme and dis-
persed for recently changed prices compared to older prices. Finally, decreasing 
hazard rates are documented for various datasets, countries, and time periods.2

In the third and last part of the analysis, we study the effect of uncertainty cycles 
in the propagation of monetary shocks. For this purpose, we consider a Bewley-
type economy with a continuum of ex ante identical firms that face menu costs and 
idiosyncratic uncertainty cycles. This economy features a non-degenerate steady-
state distribution, where a Pareto principle operates: a small proportion of firms 
has high uncertainty and is responsible for the majority of belief updates and price 
changes, while the majority of firms has low uncertainty and hardly contribute to 
belief updates and price changes. In this environment we study the effect of a small, 
unanticipated, and permanent increase in the money supply. We demonstrate ana-
lytically that monetary shocks have larger effects on output than in an alternative 
economy with a representative firm, conditional on the same average adjustment fre-
quency. We also show that these effects are quantitatively important in a calibrated 
version of the economy that matches micro-price statistics.

Let us now explain the sources of amplification as a result of uncertainty cycles. 
The first amplification mechanism arises due to dispersion of times until the first price 
adjustment following a monetary shock. To understand the logic, it is key to recog-
nize that a firm’s first price change after a monetary shock incorporates that shock 
into its price and, in the absence of complementarities, it is the only price change 
that matters for the accounting of monetary effects. Any price changes after the first 
one are the result of idiosyncratic shocks that cancel out in the aggregate. High-
uncertainty firms adjust quickly to incorporate the monetary shock (they are already 
adjusting for idiosyncratic reasons), whereas low-uncertainty firms take a long 
time to adjust. Through a Jensen’s inequality, this dispersion in times until the first 
adjustment allows to match average price statistics, while increasing aggregate price 
rigidity. This mechanism is explored in Carvalho (2006); Nakamura and Steinsson 
(2010); Bouakez, Cardia and  Ruge-Murcia (2014); Carvalho and  Schwartzman 
(2015); and Alvarez, Lippi, and Paciello (2016). While in those papers heteroge-
neity is exogenous and fixed, in our model heterogeneity arises endogenously in 
ex ante identical firms that churn between high and low levels of uncertainty.

This brings us to the second and more subtle amplification mechanism. The uncer-
tainty cycles basically generate two sets of firms. The first group consists of low fre-
quency adjusters that change their prices primarily due to the arrival of infrequent 

2 See Dhyne et al. (2006); Nakamura and Steinsson (2008); Eden and Jaremski (2009); Vavra (2010); Espada, 
Murillo, and Ramos Francia (2012); Campbell and Eden (2014); and Argente and Yeh (2017).
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shocks as in Gertler and Leahy (2008); their pricing behavior features small selec-
tion effects and is responsible for most of the real effects of nominal shocks. The 
second group consists of high-frequency adjusters that primarily change their prices 
due to the diffusion process as in Golosov and Lucas (2007); their pricing behavior 
features strong selection effects that dampen the real effects of nominal shocks. This 
means that uncertainty cycles generate a positive correlation between the strength 
of the selection effects and the frequency of adjustment: the low-frequency adjust-
ers are also those that do not respond much to monetary shocks. We show that this 
correlation, which is a novel force in these models, further amplifies the real effects 
of monetary shocks.

The third amplification mechanism, exclusive to our learning model with uncer-
tainty cycles, refers to the dispersion in the learning speed across firms: high-uncer-
tainty firms optimally put a larger Bayesian weight on new information compared 
to low-uncertainty firms, and, consequently, they learn faster. To highlight the work-
ings of this mechanism, we consider an extension in which the monetary shock 
is only partially observed, and it is filtered out by firms with the same learning 
technology used to estimate their idiosyncratic productivity. To bring discipline to 
the observability of the monetary shock, we use evidence from survey forecast data 
in Coibion and Gorodnichenko (2012). With partial observability of the monetary 
shock, the first price adjustment does not fully take care of incorporating it into 
prices—passthrough is incomplete—and there are forecast errors that do not cancel 
out in the aggregate. We demonstrate that the existence of average forecast errors 
amplifies real output effects, and by Jensen’s inequality, once again, that forecast 
errors’ persistence is increasing in the dispersion of Bayesian updating weights. 
Therefore, uncertainty cycles generate highly persistent average forecast errors that 
extend the effects of monetary shocks.

Finally, as a way to further understand the learning mechanism, we consider a sit-
uation where all firms experience a synchronized uncertainty shock at the same time 
of the monetary shock. We discover that this aggregate uncertainty shock increases 
all firms’ learning speed and decreases the persistence of average forecast errors. This 
implies that monetary shocks have smaller real effects when aggregate uncertainty is 
large. Empirical support for this channel can be found in Aastveit, Natvik, and Sola 
(2017); Vavra (2014); Caggiano, Castelnuovo, and Nodari (2017); and Castelnuovo 
and Pellegrino (forthcoming), who find weaker effects of monetary policy when eco-
nomic uncertainty is high, and in Coibion and Gorodnichenko (2015), who provide 
evidence that the degree of information rigidity responds to changing economic con-
ditions. The joint dynamics of uncertainty, price-setting, and forecast errors implied 
by our model, and disciplined with micro data, provide a framework to interpret this 
evidence.

I.  Pricing with Uncertainty Cycles

We combine an inaction problem with a signal extraction problem. Its structure 
is very general and it is easily extendable to a variety of environments that involve 
non-convex adjustment costs and imperfect information about fat-tailed idiosyn-
cratic shocks.
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A. Environment

Consider a profit maximizing firm that chooses the price at which to sell its prod-
uct, subject to idiosyncratic productivity shocks. It must pay a menu cost ​θ​ in units 
of product every time it changes the price. We assume that in the absence of the 
menu cost, the firm would like to set a price that makes its markup—price over 
marginal cost—constant. The productivity shocks are not perfectly observed; only 
noisy signals are available to the firm.3 It chooses the timing of the adjustments as 
well as the new reset markups. Time is continuous and the firm discounts the future 
at a rate ​r​.

Quadratic Losses.—Let ​​μ​t​​​ be the markup gap, defined as the log difference 
between the current markup and the frictionless markup. The firm incurs an instan-
taneous quadratic loss as the markup gap moves away from 0:

(1)	​ Π(​μ​t​​)  =  −B​μ​ t​ 
2​,  B  >  0.​

Quadratic loss functions are standard in price setting models, such  as Caplin 
and Leahy (1997), and are motivated as second-order approximations of general 
profit functions.

Markup Gap Process.—Note that during periods in which the price is fixed, the 
markup gap follows productivity. Therefore, even though the firm makes infer-
ence about productivity, it is equivalent and more convenient to work directly with 
markup gaps. We assume ​​μ​t​​​ follows a jump-diffusion process

(2)	​ d​μ​t​​  = ​ σ​f​​ d​W​t​​ + ​σ​u​​ ​u​t​​ d​Q​t​​, ​

where ​​W​t​​​ is a Wiener process, ​​u​t​​ ​Q​t​​​ is a compound Poisson process with intensity ​λ​ , 
and ​​σ​f​​​ and ​​σ​u​​​ are the respective volatilities. The initial condition is ​​μ​0​​​  ∼   (a, b). 
When ​d​Q​t​​  =  1​ , the markup gap receives a Gaussian innovation ​​u​t​​  ∼   (0, 1)​. The 
process ​​Q​t​​​ is independent of ​​W​t​​​ and ​​u​t​​​. This specification nests two benchmarks in 
the literature: small frequent shocks modeled as the Wiener process ​​W​t​​​ with small 
volatility ​​σ​f​​​ , as in Golosov and Lucas (2007), and large infrequent shocks modeled 
through the Poisson process ​​Q​t​​​ with large volatility ​​σ​u​​​ , as in Gertler and  Leahy 
(2008) and Midrigan (2011).4

Signals.—The firm does not observe its markup gaps directly. It receives contin-
uous noisy observations ​​s​t​​​ that evolve according to

(3)	​ d​s​t​​  = ​ μ​t​​ dt + γ d​Z​t​​, ​

3 In Alvarez, Lippi, and Paciello (2011) firms pay an observation cost to see their true productivity level; here 
we make the observation cost infinite and the true state is never fully revealed. 

4 Alternatively, markup gap shocks can be interpreted as shocks to the frictionless markup, e.g., shocks to the 
demand elasticity in a CES framework. For details, see online Appendix A.2. 
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where the signal noise ​​Z​t​​​ follows a Wiener process, independent from ​​W​t​​​. The vol-
atility parameter ​γ​ measures the size of the information friction. Note that ​​μ​t​​​ enters 
as the drift of the signal. This representation makes the filtering problem tractable as 
the signal is continuous.5

Information Set.—We assume that a firm knows if it receives an infrequent shock, 
but it ignores the size of the innovation ​​u​t​​​. The information set at time ​t​ is given by 
the ​σ​-algebra generated by the history of the signals ​s​ and the realizations of ​Q​:

(4)	​​ I​t​​  =  σ {​s​r​​, ​Q​r​​; r  ≤  t}.​

Since the Poisson innovations ​​u​t​​​ are not observed but have a conditional mean 
of zero, the firm understands that infrequent shocks could push its markup either 
upward or downward, but that in expectation they have no effect. This assumption 
allows us to match the price change distribution’s symmetry around zero, and also it 
largely simplifies the exposition. But it is not crucial.6

B. Filtering Problem

The firm estimates its markup gap in a Bayesian way by optimally weighing new 
information from signals against old information from prior estimates. This is a 
passive learning technology in the sense that a firm processes the information that 
is available, but it cannot take any action to change the quality of the signals. This 
contrasts with the active learning models in Keller and  Rady (1999), Bachmann 
and Moscarini (2012), Willems (2017), and Argente and Yeh (2017), where firms 
learn by experimenting with price changes.

Learning Technology.—Let ​​​μ ˆ ​​t​​  ≡  피[​μ​t​​ | ​I​t​​ ]​ be the best estimate (in a mean-
squared error sense) of the markup gap and let ​​Σ​t​​  ≡  피[​(​μ​t​​ − ​​μ ˆ ​​t​​ )​​ 2​ | ​I​t​​ ]​ be its vari-
ance. Firm level uncertainty is defined as ​​Ω​t​​  ≡ ​ Σ​t​​/γ​ , which is the estimation 
variance normalized by the signal volatility. Proposition 1 establishes the laws of 
motion for markup gap estimates and uncertainty, keeping the finite-state prop-
erties of the Gaussian model by representing the posterior distribution ​​μ​t​​ | ​I​t​​​ as a 
function of mean and variance. Our contribution extends the Kalman-Bucy fil-
ter beyond the standard assumption of Brownian motion innovations. To our 
knowledge, this is a novel result in the filtering literature. All proofs are in the  
Appendix.

5 See Øksendal (2007, ch. 6) and the online Appendices B.1 and B.2 for details. 
6 In the online Appendix B.3, we extend the results to consider a positive or negative mean and provide further 

technical discussion for interested readers. 
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PROPOSITION 1: Let the markup gap and the signal evolve according to (2) and 
(3) , and consider the information set in (4). Then the posterior distribution of 
markup gaps is Gaussian ​​μ​t​​ | ​I​t​​  ∼    (​​μ ˆ ​​t​​, γ ​Ω​t​​ )​ , where ​​(​​μ ˆ ​​t​​ , ​Ω​t​​)​​ evolve as follows:

(5)	​ d​​μ ˆ ​​t​​  = ​ Ω​t​​ d​​Z ˆ ​​t​​,	​​ μ ˆ ​​0​​  =  a,​

(6)	​ d​Ω​t​​  = ​ 
​σ​ f​ 

2​ − ​Ω​ t​ 
2​
 _ γ  ​ dt + ​ ​σ​ u​ 

2​
 _ γ ​ d​Q​t​​,	​ Ω​0​​  = ​  b _ γ ​.​

The innovation process ​​​Z ˆ ​​t​​​ is given by ​d​​Z ˆ ​​t​​  = ​  1 __ γ ​ (d​s​t​​ − ​​μ ˆ ​​t​​ dt)  = ​  1 __ γ ​ (​μ​t​​ − ​​μ ˆ ​​t​​) dt + d​Z​t​​​ 
and it is one-dimensional Wiener process under the firm’s information set, and it is 
independent of ​d​Q​t​​​.

Uncertainty Increases the Volatility of Estimates.—The estimate ​​​μ ˆ ​​t​​​ is a Brownian 
motion driven by the innovation process ​​​Z ˆ ​​t​​​ with stochastic volatility ​​Ω​t​​​ with jumps. 
We can see this property using a discrete time approximation of the estimates pro-
cess in (5). Consider a small period of time ​Δ​. The markup gap estimate at time ​
t + Δ​ is given by the convex combination of the prior estimate ​​​μ ˆ ​​t​​​ and the signal 
change ​​s​t​​ − ​s​t−Δ​​​:

(7)	​​​ μ ˆ ​​t+Δ​​  = ​ ​​  
γ
 _ 

​Ω​t​​ Δ + γ ​ 
 
 

⏟
​​  

weight on prior estimate

​​× ​​μ ˆ ​​t​​ + ​​​(1 − ​ 
γ
 _ 

​Ω​t​​ Δ + γ ​)​ 

 

 


​​  

weight on signal

​ ​​ (​ 
​s​t​​ − ​s​t−Δ​​

 _ Δ ​ )​.​

Due to Bayesian updating, when uncertainty is high, estimates optimally put 
more weight on signals instead of the prior. In this case, learning is faster, but it also 
brings more white noise into the estimation. Thus, estimates become more volatile 
with high uncertainty. This effect is key in our discussion of price responsiveness to 
monetary shocks.

Idiosyncratic Uncertainty Cycles.—Equation (6) shows that uncertainty has 
a deterministic and a stochastic component. In the absence of fat-tailed shocks ​
(λ  =  0)​ , uncertainty follows a deterministic path which converges to the constant 
volatility of the continuous shocks ​​σ​f​​​. With fat-tailed shocks ​(λ  >  0)​ , the time 
series profile of uncertainty features a saw-toothed profile that never stabilizes: 
uncertainty jumps up after the arrival of an infrequent shock and then decreases 
deterministically until the arrival of the following one. Although uncertainty never 
settles down, there is a “long-run” level ​​Ω​​ ∗​​ such that its expected change is 0, 
​피​[d ​Ω​t​​ | ​I​t​​]​  =  0​. It is equal to ​​Ω​​ ∗​  ≡ ​ (​σ​ f​ 

2​ + λ ​σ​ u​ 
2​)​​ 1/2​​. The ratio of current to long-run 

uncertainty ​​Ω​t​​/​Ω​​ ∗​​ appears in decision rules and price statistics, and it is character-
ized in Proposition 8 as a function of price statistics.

With the filtering problem at hand, we derive the price adjustment decision.

C. Decision Rules

Sequential Problem.—Let ​​{ ​τ​i​​ }​ i=1​ 
∞ ​​  be the series of dates in which the firm adjusts 

its markup gap and ​​{ ​μ​​τ​i​​​​ }​ i=1​ 
∞ ​​  the series of reset markup gaps on the adjusting dates. 
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Given an initial condition ​​μ​0​​​ , the state’s law of motion, and the filtration ​​{​I​t​​}​ t=0​ 
∞ ​​  , the 

sequential problem is described by

(8)	​​   max​ 
​{​μ​​τ​i​​​​, ​τ​i​​}​ i=1​ 

∞ ​
​​ − ​피​0​​​[​ ∑ 

i=0
​ 

∞
 ​​ ​e​​ −r  ​τ​i+1​​​​(θ + ​∫ ​τ​i​​

​ 
​τ​i+1​​

​​ ​e​​ −r(s−​τ​i+1​​)​ B​μ​ s​ 
2​ ds)​]​.​

This sequential problem is solved recursively as a stopping time problem using 
the Principle of Optimality.7 The following points are formalized in Proposition 2. 
First, the markup gap ​​μ​t​​​ can be substituted for its estimate ​​​μ ˆ ​​t​​​ without altering the 
optimal policy, as the difference in payoffs is a sunk cost that arises from firms’ 
inability to perfectly learn the true realizations. Second, since we are working in a  
Gaussian/quadratic framework, the firm’s state is fully characterized by its markup 
gap estimate ​​μ ˆ ​​ and the uncertainty attached to that estimate ​Ω​ , i.e., higher moments 
are not needed. Third, given the state ​(​​μ ˆ ​​t​​, ​Ω​t​​)​ , the policy consists of (i) a stopping 
time ​τ​ , which is a measurable function with respect to the filtration, and (ii) a new 
markup gap ​​μ ′ ​​.

PROPOSITION 2: Let ​(​​μ ˆ ​​0​​, ​Ω​0​​)​ be the firm’s state immediately after the last markup 
adjustment. Also let ​​ θ ̅ ​  =  θ/B​ be the normalized menu cost. Then the optimal stop-
ping time and reset markup gap ​(τ, μ′ )​ solve the following problem:

(9)	​ V​(​​μ ˆ ​​0​​, ​Ω​0​​)​  = ​ max​ τ​ ​  피​[​∫ 
0
​ 
τ
​​−​e​​ −rs​ ​​μ ˆ ​​ s​ 

2​ ds + ​e​​ −r τ​​(− ​ θ ̅ ​ + ​max​ 
​μ ′ ​

​ ​  V​(​μ ′ ​, ​Ω​τ​​)​)​ | ​I​0​​]​​

subject to the filtering equations in (5) and (6).

Inaction Region.—The solution to the stopping time problem is characterized by 
an inaction region ​​ , such that the optimal time to adjust is given by the first time 
that the state falls outside such a region. The inaction region is two-dimensional 
because the firm has two states. Let ​​μ ̅ ​(Ω)​ denote the inaction region’s bor-
der as a function of uncertainty. The inaction region is described by the set 
​  =  {(​μ ˆ ​, Ω)  :  |​μ ˆ ​|  ≤ ​ μ ̅ ​(Ω)}​. Its symmetry around 0 is inherited from the speci-
fication of the stochastic process, the quadratic profits, and zero inflation. For the 
same reasons, the reset markup gap is equal to 0, i.e., ​​μ ˆ ​′  =  0​. This means that, 
upon adjustment, the firm chooses a price that it thinks will bring its markup to the 
frictionless level, but its judgment might be wrong.

This inaction problem is non-standard because it is two-dimensional, and more-
over, there is a jump process in one of its dimensions. In order to provide sufficient 
conditions for optimality, we impose the Hamilton-Jacobi-Bellman equation, the 
value matching condition, and, following Theorem 2.2 in Øksendal and  Sulem-
Bialobroda (2007), the standard smooth pasting condition for both states.8 
Proposition 3 formalizes these points.

7 See Øksendal (2007) and Stokey (2008) for details.
8 In the online Appendix, Section C derives the infinitesimal generator and its adjoint operator; Section D veri-

fies that the conditions in Theorem 2.2 of Øksendal and Sulem-Bialobroda (2007) in our problem; and Section E.3 
verifies numerically that the smooth pasting conditions for ​​μ ˆ ​​ and ​Ω​ are valid. 
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PROPOSITION 3: Let ​ϕ : ℝ × ​ℝ​​ +​  →  ℝ​ be a function and let ​​ϕ​x​​​ denote its deriv-
ative with respect to ​x​. If ϕ satisfies the following 3 conditions, then ϕ is the value 
function ​ϕ  =  V​ and ​τ  =  inf​{t  >  0 : ϕ(0, ​Ω​t​​ )  − θ  >  ϕ( ​​μ ˆ ​​t​​ , ​Ω​t​​ )}​​ is the optimal 
stopping time:

	 (i)	 In the interior of the inaction region, the function ϕ solves the Hamilton-
Jacobi-Bellman equation:

	 (10)    ​rϕ​(​μ ˆ ​, Ω)​  =  − ​​μ ˆ ​​​ 2​ + ​(​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​)​ ​ϕ​Ω​​​(​μ ˆ ​, Ω)​ + ​ ​Ω​​ 2​ _ 

2
 ​ ​ ϕ​​​μ ˆ ​​​ 2​​​​(​μ ˆ ​, Ω)​ 

	 + λ​[ϕ​(​μ ˆ ​, Ω + ​ 
​σ​ u​ 

2​
 _ γ ​)​ − ϕ​(​μ ˆ ​, Ω)​]​.​

	 (ii)	 At the border of the inaction region, ​ϕ​ satisfies the value-matching condition, 
which sets the value of adjusting equal to the value of not adjusting:

	 (11)	​ ϕ​(0, Ω)​ − ​ θ ̅ ​  =  ϕ​(± ​μ ̅ ​​(Ω)​, Ω)​.​

	 (iii)	 At the border of the inaction region, ϕ satisfies two smooth pasting condi-
tions, one per state:

	 (12)	​​ ϕ​​μ ˆ ​​​​(± ​μ ̅ ​​(Ω)​, Ω)​  =  0,  ​ ϕ​Ω​​​(± ​μ ̅ ​​(Ω)​, Ω)​  = ​ ϕ​Ω​​​(0, Ω)​.​

The passive learning process of our model implies the lack of interaction terms 
between uncertainty and markup estimates, since firms cannot change the infor-
mation flow. Proposition 4 analytically characterizes the inaction region’s border 
​​μ ̅ ​(Ω)​ using the three conditions above. The proof uses a Taylor expansion of the 
value function.9

PROPOSITION 4: For small ​r​ and ​​ θ ̅ ​​ , the inaction region is approximated by

(13)	​​ μ ̅ ​​(Ω)​ = ​​
(

​  6  ​ θ ̅ ​ ​Ω​​ 2​ __________ 
1 + ​​​ ​μ ̅ ​​​(Ω)​

 ​
)

​​​ 
1/4

​,  with ​ ​​ ​μ ̅ ​​​(Ω)​ = ​​(​ 8 __ 
3
 ​ ​ ​ θ ̅ ​ __ 
​γ​​ 2​

 ​)​​​ 
1/2

​​(​ Ω _ 
​Ω​​ ⁎​

 ​ − 1)​.​

The elasticity of the inaction region with respect to uncertainty is equal to

(14)	​ ​(Ω)​  ≡ ​  1 _ 
2
 ​ − ​​(​ 1 __ 

6
 ​ ​ ​ θ ̅ ​ __ 
​γ​​ 2​

 ​)​​​ 
1/2

​ ​ Ω _ 
​Ω​​ ⁎​

 ​  <  1.​

Uncertainty Widens Inaction Region.—The numerator of the inaction region in 
equation (13) is increasing in uncertainty and captures the well-known option value 

9 Online Appendix E compares the policy approximation to its exact counterpart computed numerically and 
conclude that the approximation is adequate in the parameter space of interest. We do the same comparison for the 
conditional moments computed in the next section. 
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effect. As a result of uncertainty dynamics, the option value is time varying. This 
mechanism is reflected in the factor ​​​​ ​μ ̅ ​​ (Ω)​ that amplifies or dampens the option 
value effect depending on the ratio of current uncertainty to long-run uncertainty ​
Ω/​Ω​​ ⁎​​. When current uncertainty is high ​​(Ω / ​Ω​​ ⁎​  >  1)​​ , it is expected to decrease 
(​피 [ dΩ ]   <  0​), and future option values also decrease. This feeds back into the cur-
rent inaction region, shrinking it as ​​​​ ​μ ̅ ​​ (Ω )   >  0​. The total effect of uncertainty on 
the inaction region depends on the ratio of the menu cost to the signal noise. With 
small menu costs ​θ​ and large signal noise ​γ​ , the inaction region is increasing in 
uncertainty, with an elasticity of the inaction region with respect to uncertainty ​(Ω)​ 
close to ​1/2​. The critical result is that the elasticity is less than unity for all possible 
parametrizations.

Figure 1 shows one firm’s realization. Panel A shows the evolution of uncertainty, 
which follows a saw-toothed profile, and its long-run value. Panel B plots the true 
markup gap, the markup gap estimate, and the inaction region. As we can see in the 
figure, the markup gap estimate is always within the Ss bands, but this is not the 
case for the true markup gap. Additionally, the inaction region follows uncertain-
ty’s profile as it is increasing in uncertainty given the calibration. Finally, panel C 
shows the magnitude of price changes, which are triggered when the markup gap 
estimate touches the border of the inaction region. Notice that price changes are 
clustered over time, i.e., there are recurrent periods with high adjustment frequency 
followed by periods of low adjustment frequency. Moreover, as the width of inac-
tion regions decreases over time between Poisson shocks, the size of price changes  
also falls.

Without fat-tailed shocks, uncertainty converges to a constant, i.e., Ω → ​​σ​f​​​, the 
inaction region becomes constant, and dispersion in the size of price changes disap-
pears. This makes evident that both the fat-tailed shocks and the information friction 
are key to generate the cross-sectional variation in price setting that arises from 
uncertainty cycles.10 The next section derives expressions for price statistics that 
highlight the impact of uncertainty cycles on pricing decisions.

D. Uncertainty and Conditional Price Statistics

How does uncertainty affect the adjustment frequency? There are two opposing 
forces. Uncertainty increases estimate volatility, raising the probability of hitting the 
bands and adjusting the price. But to save on menu costs, the inaction region widens, 
reducing the adjustment probability. We show that the first effect dominates because 
the elasticity of the inaction region with respect to uncertainty is lower than one, 
and therefore higher uncertainty increases adjustment frequency. This result holds 
under our assumptions of a quadratic payoff function and martingale processes. 
Proposition 5 formalizes this result.

10 The case without fat-tailed shocks is analyzed in Alvarez, Lippi, and Paciello (2011). That paper shows that 
the model collapses to that of Golosov and Lucas (2007), where all firms have the same inaction region. 
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PROPOSITION 5: Let ​r​ and ​​ θ ̅ ​​ be small. The expected time for the next price change
conditional on the state ​피​[τ  |  ​μ ˆ ​, Ω]​​ is approximated as

(15) 	​피​[τ  |  ​μ ˆ ​, Ω]​  = ​ 
​μ ̅ ​ ​​(Ω)​​​ 2​ − ​​μ ˆ ​​​ 2​

 _________ 
​Ω​​ 2​

 ​​ (1 + ​​​ τ​​(Ω)​)​,​

with ​ ​​ τ​​(Ω)​  ≡  2​(​ Ω _ 
​Ω​​ ⁎​

 ​ − 1)​​(1 − ​(​Ω​​ ⁎​)​)​​

⎛
 ⎜ 

⎝
​ 
γ ​​(24​ θ ̅ ​)​​​ 

1/2

 ___________  
γ + ​​(24​ θ ̅ ​)​​​ 

1/2
​
 ​

⎞
 ⎟ 

⎠
​.​

If the elasticity of the inaction region with respect to uncertainty is less than 1, then 
the expected time between price changes 피[τ | 0, Ω] is a decreasing and convex func-
tion of uncertainty.

The conditional expected time between price changes has two terms. The first 
term ​(​μ ̅ ​ ​(Ω)​​ 2​ − ​​μ ˆ ​​​ 2​ )/​Ω​​ 2​​ states that the expected time for adjustment is shorter when
the markup estimate is closer to the inaction border. This term is decreasing in 
uncertainty with an elasticity larger than one in absolute value. The second term ​​
​​ τ​ (Ω)​ amplifies or dampens the first effect depending on the level of uncertainty,
and it has an elasticity of one. Uncertainty’s overall effect on expected adjustment 
time is negative: more uncertain firms change their prices more frequently than less 
uncertain firms.

A new insight from our model is that inaction regions refer to markup estimates 
and not the true realizations. Firms adjusts their prices so that their expected markup 
gap becomes zero, but this expectation is surrounded with uncertainty. After a price 
change, a high-uncertainty firm is very likely to have made a wrong adjustment, 
which leads to a new price change. As it learns its new productivity level, the like-
lihood of further price changes falls. This contrasts sharply with a standard menu 
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Figure 1. Sample Paths for One Firm

Notes: Panel A: Uncertainty (solid line) and long-run uncertainty (dotted line). Panel B: True markup gap (gray
solid line), markup gap estimate (black dotted line), and inaction region (black solid line). Panel C: Magnitude of
price changes. This figure simulates one realization of the stochastic processes with the finite difference method and 
using the analytical approximation of the inaction region. See online Appendix B.4 for details.

Source: Authors’ calculations



288	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� JANUARY 2019

cost model, where the probability of adjustment right after a price change is tiny 
and increases over time, or with a Calvo model, where the probability of adjust-
ment is always the same. The hazard rate is the adequate statistic to measure these 
effects and also distinguish across models, as it is a dynamic measure of adjustment 
frequency.

The conditional hazard rate, denoted by ​​h​τ​​ (Ω)​ , is the probability of adjusting ​τ​ 
periods after the last price change, and it is conditional on uncertainty ​Ω​. It depends 
on the expected width of the inaction region relative to the expected level of uncer-
tainty ​τ​ periods ahead. Proposition 6 characterizes the conditional hazard rate by 
making two simplifications: it assumes a constant inaction region and shuts down 
future infrequent shocks.11

PROPOSITION 6: Without loss of generality, assume a firm’s last price change 
occurred at ​t  =  0​ and it has an initial level of uncertainty ​​Ω​0​​  > ​ σ​f ​​​. Assume the 
inaction region is constant ​​​μ ̅ ​​0​​​ and no further infrequent shocks are expected (​λ = 0​).  
Denote derivatives with respect to ​τ​ with a prime (​​h​ τ​ ′ ​  ≡  ∂ h/ ∂ τ​). Then:

	 (i)	 The estimate’s unconditional variance ​τ​ periods ahead, denoted by ​​​τ​​ (​Ω​0​​)​ , 
is given by

		  (16)   ​​​τ​​​(​Ω​0​​)​ = ​σ​ f​ 
2​ τ + γ​(​Ω​0​​ − ​Ω​τ​​)​,  where ​ Ω​τ​​ = ​σ​f​​   ​

⎛
 ⎜ 

⎝
​ 
​ 
​Ω​0​​ _ ​σ​f​​ ​ + coth​(​ 

​σ​f​​ _ γ ​ τ)​
  ______________  

1 + ​ 
​Ω​0​​ _ ​σ​f​​ ​ coth​(​ 

​σ​f​​ _ γ ​ τ)​
 ​

⎞
 ⎟ 

⎠
​​,

		  and it is an increasing and concave function of duration ​τ​ and initial uncer-
tainty ​​Ω​0​​​.

	 (ii)	 The hazard of adjusting the price at date ​τ​ , conditional on ​​Ω​0​​​ , is character-
ized by

		  (17)	 ​​h​τ​​​(​Ω​0​​)​  = ​  ​π​​ 2​ _ 
8
 ​ ​​Ψ​(​ 

​​τ​​​(​Ω​0​​)​
 _______ 

​​μ ̅ ​​ 0​ 2​
 ​ )​  



​​ 

increasing in τ

​ ​  ​ ​​  
​​ τ​ ′ ​​(​Ω​0​​)​

 _______ 
​​μ ̅ ​​ 0​ 2​

 ​  

⏟

​​ 

decreasing in τ

​​,​

		  where ​Ψ( · )​ is the increasing hazard rate for the case with fixed uncertainty ​​
Ω​0​​  =  ​Ω​τ​​  =  ​σ​f​​​ derived in Kolkiewicz (2002) , with ​Ψ(0) = 0​ , ​Ψ′ (x) > 0​ ,  
​​lim​x→∞​​​ Ψ(x) = 1, first convex then concave.

	 (iii)	 There exists a date ​​τ​​ ⁎​ (​Ω​0​​)​ such that ​​h​ τ​ ′ ​ (​Ω​0​​) < 0​ for ​τ > ​τ​​ ⁎​ ( ​Ω​0​​ )​ , and ​​τ​​ ∗​ (​Ω​0​​)​ 
is decreasing in ​​Ω​0​​​.

Equation (17) expresses the hazard rate as a product of two factors. The first 
factor ​Ψ( ⋅  )​ is responsible for the increasing part close to ​τ  =  0​ and resembles 

11 Online Appendix E.7 computes the exact numerical hazard rate and checks the validity of these assumptions. 
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the hazard rate of standard menu cost models, as the probability of an additional 
adjustment right after a price change is very low. The second factor is the change 
in unconditional variance ​​​ τ​ ′ ​ (​Ω​0​​)​ , which is decreasing in ​τ​ because of learning. 
These two opposing forces act upon the slope of the hazard rate and the hazard rate 
is non-monotonic. The last point in the proposition establishes that there exists a 
date ​​τ​​ ⁎​​ after which the hazard is downward sloping, and that this date is shorter the 
higher the initial uncertainty.

Figure 2 illustrates the effect of initial uncertainty ​​Ω​0​​​ (panel A) and signal noise ​
γ​ (panel B) on the hazard. Initial uncertainty determines which of the two factors 
dominates. If initial uncertainty is small, there is not much to learn and the hazard 
rate is increasing, as in the standard menu cost model. In contrast, if initial uncer-
tainty ​​Ω​0​​​ is large, the learning force dominates and the hazard is decreasing for 
a larger range of price durations. Signal noise ​γ​ determines how fast uncertainty 
converges to its limit value—independent of ​γ​—and the rate of change in the slope. 
The larger the information friction (the larger ​γ​), the longer it takes to discover 
productivity, and the slope decays more slowly. This relationship between ​γ​ and the 
hazard’s slope is exploited in the calibration.

E. Aggregation of Heterogeneous Firms

In this section, we explain how to aggregate the conditional price statistics. The 
goal is to assess whether heterogeneity in pricing behavior has effects in the aggre-
gate and to match the price statistics generated by the model with those in the data. 
For this purpose, we consider a continuum of ex ante identical firms that face the 
pricing problem from the previous sections. Markup shocks and signals are assumed 
to be ​i.i.d.​ across firms. Independence and stationarity of the controlled process 
ensure the existence of an ergodic distribution ​F(​μ ˆ ​, Ω)​.

The aggregate statistics are equal to the weighted average of the conditional sta-
tistics, where the weights are given by the distribution of uncertainty conditional on 
price adjustment, denoted with ​r(Ω)​ , also known as renewal distribution. This dis-
tribution is different from the unconditional steady-state distribution of uncertainty ​
h(Ω)​ , which is the uncertainty in the entire cross-section.

Proposition 7 shows that the ratio between the renewal and steady-state distribu-
tions is increasing in uncertainty, i.e., adjusting firms are, on average, more uncer-
tain than the rest of the population.

PROPOSITION 7: Assume ​​μ ̅ ​′ (Ω ) > 0​. Then, in a neighborhood around long-run 
uncertainty ​​Ω​​ ⁎​​ , the ratio between the renewal and steady-state densities of uncer-
tainty are proportional to the inverse of the expected time between adjustments,

(18)	​​ 
r​(Ω)​

 _ 
h​(Ω)​

 ​  ∝ ​   1 _ 
피​[τ  | ​(0, Ω)​]​

 ​.​

Since expected time ​피​[τ  | ​(0, Ω)​]​​decreases with uncertainty, the ratio ​r(Ω )/ h(Ω)​ 
increases with uncertainty.
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The previous result implies that average price change statistics—computed with 
the renewal distribution ​r(Ω)​—reflect more intensively the pricing behavior of 
highly uncertain firms because they are more prone to adjust than the average firm. 
For instance, if the unconditional hazard rate is decreasing, it is because the renewal 
distribution puts a large weight on the decreasing hazard rate of high-uncertainty 
firms compared to the increasing hazard rate of low uncertainty firms. The same 
logic applies to the expected time to adjustment and other price statistics. However, 
as we show in the following section, the aggregate response to nominal shocks 
depends on the behavior of the full cross-section—computed with the unconditional 
distribution of uncertainty ​h(Ω)​. Therefore, uncertainty cycles alter the interpreta-
tion of price statistics as a high frequency of adjustment is perfectly compatible with 
a low aggregate price flexibility. Equation (18) expresses the relationship between 
these two densities as a function of the expected price duration.

Our second aggregation result, derived in Proposition 8, establishes a link between 
the long-run uncertainty ​​Ω​​ ⁎​​ , cross-sectional heterogeneity in uncertainty ​피[ ​Ω​​ 2​ ]​ , 
adjustment frequency ​1 / 피[τ  ]​ , and price change variance ​var [ Δp]​.12 Its key point is 
that observable price statistics provide a direct way to recover the heterogeneity in 
firm-level uncertainty.

PROPOSITION 8: The following relationships between long-run uncertainty, 
uncertainty dispersion, average price duration, and price change dispersion hold:

(19)	​​​​ Ω​ ​​​
⁎ 2​  =  피​[​Ω​​ 2​]​  = ​ 

var​[Δp]​
 _ 피​[τ]​

 ​ .​

12 This generalizes proposition 1 in Alvarez, Le Bihan, and Lippi (2016) for the case of heterogeneous uncer-
tainty. Baley and Blanco (2018) show that a similar result holds in the case of positive inflation as well as in other 
environments. 

Figure 2. Conditional Hazard Rate

Notes: Panel A: Conditional hazard for three levels of initial uncertainty ​​Ω​0​​​ , expressed as multiples of ​​σ​f​​​ . Signal 
noise is fixed at ​γ  =  9​σ​f​​​ . Panel B: Conditional hazard for three levels of signal noise ​γ​ , expressed as multiples of ​​
σ​f​​​ . Initial uncertainty is fixed at ​​Ω​0​​  =  5​σ​f​​​ . These are approximated hazard rates with constant inaction regions and 
without further Poisson shocks. We use a larger ​​σ​f​​​  than in the final calibration for illustration purposes.

Source: Authors’ calculations
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Holding fixed uncertainty’s second moment in the left-hand side, expression (19)
establishes a positive link between average price duration and price change dis-
persion: prices either change often for small amounts or rarely for large amounts. 
Analogously, consider a fixed price change dispersion; then heterogeneity in uncer-
tainty and average price duration are negatively related. Underlying these results is 
a Jensen inequality and the fact that frequency decreases with duration.

Remarks.—We finish this section with a few remarks that emphasize that uncer-
tainty cycles go beyond being a micro-foundation for heterogeneity in price-setting. 
Moreover, our particular notion of uncertainty shocks (and the learning that follows) 
plays a specific and important role in generating the type of pricing statistics that we 
use to discipline model parameters, and this matters in the aggregate. A first alternative 
model considers an autoregressive process for uncertainty/volatility, as in the menu 
cost models of Vavra (2014) and Karadi and Reiff (2014). A second alternative model 
is one in which firms perfectly learn their idiosyncratic state at random times, and at 
other times they observe noisy signals. This model generates “downward jumps” in 
uncertainty, which contrast with our “upward jumps.” We discover that these alter-
native models produce very different predictions for micro-level price statistics, e.g., 
increasing re-pricing hazards. Consequently, the micro-price data allow us to distin-
guish between the type of uncertainty processes faced by firms, as well as the different 
forms of uncertainty cycles. And this distinction matters for the aggregate results.13

II.  Aggregate Effects of Uncertainty Cycles

What are the macroeconomic consequences of firm uncertainty cycles and the 
heterogeneity they generate? We develop a standard general equilibrium framework 
with firms that face the pricing problem with menu costs and uncertainty cycles 
studied in the previous sections. We use the model to study the role of firm uncer-
tainty cycles in the propagation of monetary shocks. The model builds on Golosov 
and Lucas (2007), with the addition of the information friction and fat-tailed shocks.

A. General Equilibrium Model

Time is continuous. There is a representative consumer, a continuum of firms 
that operate in monopolistic competition, and a monetary authority. We focus on a 
steady state in which money supply is constant at a level ​M​.

Representative Household.—The household has the following preferences over 
consumption ​​C​t​​​ , labor ​​N​t​​​ , and real money holdings ​​M​t​​/​P​t​​​ , where ​​P​t​​​ is the aggregate 
price level and the future is discounted at rate ​r  >  0​:

(20)	​​ 피​0​​​[​∫ 
0
​ 
∞

​​ ​e​​ −rt​​(log ​C​t​​ − α ​N​t​​ + log ​ 
​M​t​​ _ ​P​t​​

 ​)​ dt]​.​

13 Online Appendix F.1 compares autoregressive and jump uncertainty processes, while F.2 compares upward 
and downward uncertainty cycles. 
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Consumption consists of a CES aggregator as in Woodford (2009), Midrigan (2011), 
and Alvarez and Lippi (2014). The household has access to complete financial mar-
kets. The budget includes labor earnings ​​E​t​​ ​N​t​​​ , profits ​​Π​t​​​ from the ownership of all 
firms, and the opportunity cost of holding cash ​​R​t​​ ​M​t​​​ , where ​​R​t​​​ is the nominal inter-
est rate. Let ​​D​t​​​ be the stochastic discount factor; by complete markets, the time-0 
Arrow-Debreu budget constraint reads

(21)	​​ 피​0​​​[​∫ 
0
​ 
∞

​​ ​D​t​​​(​P​t​​​C​t​​ + ​R​t​​ ​M​t​​ − ​E​t​​ ​N​t​​ − ​Π​t​​)​ dt]​  ≤ ​ M​0​​.​

The household chooses consumption, labor supply, and money holdings to maxi-
mize (20) subject to (21). The household’s first-order conditions establish nominal 
wages as a proportion of the (constant) money stock ​E  =  rM​.

Monopolistic Firms.—On the production side, there is a continuum of firms 
indexed by ​z  ∈  [0, 1]​ who operate in a monopolistically competitive market. Each 
firm maximizes its expected stream of profits, discounted at ​​D​t​​​. It chooses a price 
and then satisfies all its demand. For every price change, it must pay a menu cost ​θ​.  
Production uses a linear technology with labor as its only input: producing ​​y​t​​ (z)​ 
units requires ​​l​t​​ (z) = ​ y​t​​ (z) ​A​t​​ (z)​ units of labor, so that the marginal nominal cost 
is ​​A​t​​ (z) E​. We define markups as ​​μ​t​​​(z)​  ≡ ​ p​t​​​(z)​ /​(​A​t​​​(z)​E)​​. Given the consumer’s 
demand ​​c​t​​ (z)​ for product ​z​ , the instantaneous profit can be written as a function of 
markups alone:

(22)	​​ Π​t​​​(z)​  = ​ c​t​​​(z)​​(​p​t​​​(z)​ − ​A​t​​​(z)​E)​  =  K ​μ​t​​ ​​(z)​​​ −η​​(​μ​t​​​(z)​ − 1)​,​

where ​K​ is a constant in steady state. Define the markup gap ​​μ​t​​​(z)​ ≡ log​(​μ​t​​​(z)​/​μ​​ ⁎​)​​  
as the log deviation of the markup to the unconstrained markup ​​μ​​ ⁎​  ≡  η/​(η − 1)​​.  
Then a second-order approximation of profits produces a quadratic form in the 
markup gap as follows:14

(23)	​ Π(​μ​t​​ (z))  =  C − B​μ​t​​ ​(z)​​ 2​.​

Marginal Cost, Markup Estimates, and Uncertainty.—Firm ​z​’s log marginal cost ​​
a​t​​ (z)  ≡  ln ​A​t​​ (z)​ evolves according to a jump-diffusion process, which is idiosyn-
cratic and independent across ​z​:

(24)	​ d​a​t​​(z)  = ​ σ​f​​ ​ dW​t​​(z) + ​σ​u​​ ​u​t​​(z) d​Q​t​​ (z), ​

where ​​W​t​​ (z)​ is a Wiener process and ​​u​t​​ (z)​Q​t​​ (z)​ is a compound Poisson process with 
arrival rate ​λ​ and Gaussian innovations ​​u​t​​ (z)  ∼    (0, 1)​. Firms do not observe their 

14 ​C​ and ​B​ are constants. ​C​ does not affect the decisions of the firm and it is omitted for the calculations of 
decision rules; ​B​ captures the curvature of the profit function. 
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marginal costs directly, but they have two sources of information: noisy signals ​​s​t​​ (z)​ 
and the Poisson counter ​​Q​t​​ (z)​. Signals evolve as

(25)	​ d​s​t​​(z)  = ​ a​t​​ (z) dt + γ d​Z​t​​ (z), ​

where ​​Z​t​​ (z)​ is an independent Wiener process.15 Firms are all ex ante identical as 
they face the same parameters ​{​σ​f​​ , ​σ​u​​, λ, γ}​ , but become different ex post as they 
receive different realizations of marginal costs and signals. From the definition of 
the markup gap, we have that

(26)	​​ μ​t​​​(z)​  =  log ​p​t​​​(z)​ − ​a​t​​​(z)​ − log E − log ​μ​​ ⁎​.​

Notice that during inaction, the markup gap is driven by the marginal cost process: 
​d​μ​t​​(z)  =  − d​a​t​​(z)​. When the price adjusts, the markup process is reset and then it 
follows marginal cost again. By symmetry of the stochastic processes, we have that 
​d​a​t​​(z)  =  − d​a​t​​(z)​. As markup gaps and marginal costs mirror each other, we prefer 
to work with markup gaps as it facilitates the solution.

Given the assumptions, a firm’s state in this economy consists of a markup gap 
estimate ​​μ ˆ ​(z)​ and its uncertainty ​Ω(z)​ , where their evolution is given by the filtering 
equations derived in Proposition 1. Each process is indexed by ​z​ and it is ​i.i.d.​ across 
firms:

(27)	​ d​​μ ˆ ​​t​​ (z)  =   ​Ω​t​​ (z) d​​Z ˆ ​​t​​ (z),  ​​Z ˆ ​​t​​ (z)  ∼  Wiener,

(28)	 d ​Ω​t​​ (z)  =   ​ 
​σ​ f​ 

2​ − ​Ω​ t​ 
2​ (z)
 _ γ  ​ dt + ​ 

​σ​ u​ 
2​
 _ γ ​ d​Q​t​​ (z).​

Steady State Equilibrium.—Given the exogenous stochastic processes for idio-
syncratic marginal cost ​(​W​t​​ (z), ​Q​t​​ (z))​ , and idiosyncratic noise ​​Z​t​​ (z)​ , an equilibrium 
is defined by a set of stochastic processes for (i) consumption strategies ​​c​t​​ (z)​ , labor 
supply ​​N​t​​​ , and money holdings ​​M​t​​​ for the household; (ii) pricing functions ​​p​t​​ (z)​ , 
markup gap estimates ​​​μ ˆ ​​t​​ (z)​, and uncertainty ​​Ω​t​​ (z)​ ; (iii) prices ​​P​t​​​ , ​​E​t​​​ , ​​R​t​​​ , ​​D​t​​​ ; and 
(iv) a fixed distribution over firm states ​F( ​μ ˆ ​, Ω)​, such that the household and the 
firms optimize, markets clear at each date, and the distribution is consistent with 
actions. In a steady-state equilibrium with constant money supply, the price index, 
nominal wages, and nominal interest rates are constant, as there is no aggregate 
uncertainty. Nominal expenditure is constant and equal to the nominal wage, and by 
market clearing, aggregate output equals aggregate consumption and the real wage ​
Y  =  E/P​.

15 This signal extraction problem can be reinterpreted, in discrete time, as a problem with undistinguishable 
permanent and transitory shocks. The signal noise can be reinterpreted as transitory volatility. This is a useful alter-
native for the interpretation of the model. See online Appendix G for details. 
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B. Aggregate Price and Output Deviations

We study the real effects of a monetary shock through the following exper-
iment. Starting from a zero inflation steady state at ​t  =  0​ , we introduce a one-
time unanticipated permanent increase in money supply of size ​δ  ≈  0​ , such that 
​log ​M​t​​  =  log ​ 

_
 M ​ + δ,  t  ≥  0​. Since nominal wages are proportional to the money 

supply, this shock directly translates into a nominal wage increase of the same 
magnitude. The equality between aggregate output and the real wage implies that 
the increase in the nominal wage due to the monetary shock has to be distributed 
between price and output deviations from steady state, i.e., ​​​Y ̃ ​​t​​ + ​​P ̃ ​​t​​  =  δ​, where 
​​​Y ̃ ​​t​​  ≡  ln​(​Y​t​​ /​ 

_
 Y ​)​​ and ​​​P ̃ ​​t​​  ≡  ln​(​P​t​​ /​ 

_
 P ​)​​.

In order to track the output effects of the monetary shock, we find an expression 
for the impulse-response. First note that the output gap can be approximated to a first 
order by ​​​Y ̃ ​​t​​  =  − ​∫ 0​ 

1​​ ​μ​t​​ (z) dz.​ Adding and subtracting ​​​μ ˆ ​​t​​ (z)​ , and defining individual 
forecast errors as ​​​φ ˆ ​​t​​ (z)  ≡ ​​ μ ˆ ​​t​​ (z) − ​μ​t​​ (z)​ , we obtain the following expression:

(29)	​​​ Y ̃ ​​t​​  =​ ​ − ​∫ 
0
​ 
1
​​ ​​μ ˆ ​​t​​ (z) dz 
 
 


​​  

average inaction error ​​t​​

​​ +​ ​​ ∫ 
0
​ 
1
​​ ​​φ ˆ ​​t​​ (z) dz 

 
 


​​  

average forecast error ​​t​​

​​= ​ ​t​​ + ​​t​​ .​

Expression (29) states that output at time ​t​ differs from its steady state value if there 
are average pricing mistakes. Pricing mistakes arise either from “inaction errors” 
due to the menu cost (first term ​​​t​​​) or from forecast errors due to information fric-
tions (second term ​​​t​​​). We call inaction errors those pricing mistakes that arise by 
being inside the inaction region—the firm is aware of these mistakes, which are 
optimal. Importantly, the output effect considers the cross-sectional average of these 
errors and any idiosyncratic error is washed out.

With the previous expressions, we compute the total output effects of the mone-
tary shock as the area under the impulse-response function, denoted by :

(30)	​   ≡ ​ ∫ 
0
​ 
∞

​​ ​​Y ̃ ​​t​​ dt  = ​ ∫ 
0
​ 
∞

​​ ​​t​​ dt + ​∫ 
0
​ 
∞

​​ ​​t​​ dt  =   + ​,

where we have substituted (29) and defined  and  as the present value of inaction 
and forecast errors, respectively. This measure is adequate as it accounts for both 
short- and long-run responses to the shock.16 Note that by exchanging the order of 
integration between time and states in (30) , we can express the total output effect as 
the average of the stream of individual mistakes:

(31)	​   = ​ ∫ 
0
​ 
1
​​​ ​​[​∫ 

0
​ 
∞

​​ ​​φ ˆ ​​t​​ (z) −  ​​μ ˆ ​​t​​ (z) dt ]​ 
 
 


​​  

stream of pricing mistakes by firm z

​​ dz.​

16 In the transition toward the new steady state, there are general equilibrium effects arising from changes in the 
average markup that affect individual policies. Proposition 7 in Alvarez and Lippi (2014) demonstrates that in this 
type of framework, without complementarities, such general equilibrium effects can be ignored. Following their 
result, we compute output responses using steady-state policies. 
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This expression is very convenient because the stream of individual mistakes—fore-
cast errors and inaction errors—can be characterized recursively, as we show below.

Without any frictions, firms immediately increase their price to reflect the mone-
tary shock. There are no inaction or forecast errors; thus, the monetary shock has no 
real output effects. Without the menu cost, the firms’ decisions are static and their 
markups are equal to the frictionless markup every period. In this case, as shown in 
in Hellwig and Venkateswaran (2014), there will be no output effects from a mon-
etary shock even in the presence of information frictions.17 With menu costs and 
information frictions, the price level fails to fully reflect the monetary shock and 
real effects arise.

We now analytically characterize the real effects of monetary shocks in three cases: 
a perfectly observed monetary shock, a partially observed monetary shock, and a 
monetary shock that is accompanied by an aggregate uncertainty shock. Each case 
highlights one of the amplification mechanisms generated by the uncertainty cycles.

C. Disclosed Monetary Shock

The first exercise assumes that the monetary shock ​δ​ is fully observed; thus, we 
say that it is disclosed. All markup estimates are fully updated and they fall by ​δ​ on 
impact: ​​​μ ˆ ​​0​​ (z)  = ​​ μ ˆ ​​−1​​ (z) − δ​. Forecast errors ​​​φ ˆ ​​t​​ (z)​ are ​i.i.d.​ across firms and the 
average forecast error  is equal to 0. Average inaction errors  are the only source 
of real output effects.

Proposition 9 analytically characterizes the output response. The strategy follows 
Alvarez, Le Bihan, and Lippi (2014) to express recursively the stream of individual 
pricing mistakes and aggregate them to obtain the total effect in (31).

PROPOSITION 9: Assume the economy is in steady state and it is hit with a one-time 
unanticipated monetary shock of size ​δ  >  0​. If firms fully observe the monetary 
shock, then:

	 (i)	 The total output response consists exclusively of inaction errors, which evolve 
as

	 (32)	 ​​(δ)​  =  − ​∫ ​μ ˆ ​,Ω​ 
 

 ​​ w​(​μ ˆ ​ − δ, Ω)​𝑑F​(​μ ˆ ​, Ω)​,	 (total effect)​

​	 (33)	 w​(​μ ˆ ​, Ω)​  =  피​[​∫ 
0
​ 
τ
​​​​μ ˆ ​​t​​  dt ​|​​ ​(​​μ ˆ ​​0​​, ​Ω​0​​)​  = ​ (​μ ˆ ​, Ω)​]​,	 (inaction errors)​

		  subject to the dynamics of ​​​μ ˆ ​​t​​​ in (5) and ​​Ω​t​​​ in (6).

	 (ii)	 When ​δ  >  0​ , up to first order, the total output effect with uncertainty cycles 
is bounded below by the total effect without them ​(λ  =  0)​:

	 (34)	 ​​(δ)​  ≥  δ ×​ ​​ (​ 
피​[τ]​

 ____ 
6
 ​ )​ 

⏟
​​  

without uncertainty cycles

​​​.

17 See online Appendix G. 
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For computing the output effects of a disclosed monetary shock, what matters is 
the first price change of each firm, as that price change fully incorporates the mon-
etary shock; after that, price changes respond solely to idiosyncratic conditions that 
wash out in the aggregate. All this is reflected in equations (32) and (33) , which 
only accumulate inaction errors up to the first price change by each firm. Equation 
(34) tells us that the output effects are bounded below by those obtained in the 
case without heterogeneity. This lower bound, which is proportional to the average 
expected time to adjustment, is a special case of the formula derived in Alvarez, 
Le Bihan, and Lippi (2014) that relates output effects with kurtosis and frequency of 
the price change distribution. With these results, we now discuss two amplification 
mechanisms generated by the uncertainty cycles.

Amplification through Dispersion in Adjustment Frequency.—The first ampli-
fication force arises from dispersion of times until the first adjustment, and it 
is well-known in the literature. Output effects relate to the average expected 
time, that equals the average of the inverse of adjustment frequencies (not the 
inverse of the average frequency). By Jensen’s inequality, dispersion in frequen-
cies increases the average expected time, and in turn, amplifies the output effect. 
In our model, the uncertainty cycles are responsible for introducing dispersion 
in frequencies: high-uncertainty firms have high-adjustment frequencies and 
almost immediately react to the money shock, while low-uncertainty firms have 
low frequency and thus accumulate a bunch of pricing mistakes before adjusting 
due to their inaction.

Despite providing amplification due to dispersion in frequencies, the uncertainty 
cycles also introduce a dampening force due to their effect on the size of price 
changes: the first price change of high-uncertainty firms is quite large, due to their 
wide inaction regions, and produces an overreaction of the aggregate price level on 
impact. This reminds us of the selection effect highlighted in Golosov and Lucas 
(2007), in which prices changes occur in the firms with the largest needs to adjust, 
but here, it is belief heterogeneity who determines the selection effect. Still, this 
selection effect does not undo the amplification due to dispersion in frequencies, as 
confirmed by the lower bound.

Amplification through a Positive Correlation between the Strength of Selection 
Effects and Adjustment Frequency.—The second amplification force embedded 
in our model is more subtle. The uncertainty cycles basically generate two sets 
of firms. The first group consists of low-frequency adjusters that change their 
prices primarily due to the arrival of infrequent shocks as in Gertler and Leahy 
(2008); their pricing behavior features small selection effects and are responsible 
for most of the real effects of nominal shocks. The second group consists of high 
frequency adjusters that primarily change their prices due to the diffusion process 
as in Golosov and Lucas (2007); their pricing behavior features strong selection 
effects that dampen the real effects of nominal shocks. This means that uncertainty 
cycles generate endogenously a positive correlation between the strength of the 
selection effects and the frequency of adjustment: the low frequency adjusters are 
also those that do not respond much to monetary shocks. This correlation, which is 
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a new amplification mechanism in the literature, further amplifies the real effects of 
monetary shocks.18

D. Partially Disclosed Monetary Shock

The second exercise assumes that the monetary shock is only partially disclosed. 
This assumption allows us to gauge the importance of aggregate forecast errors in 
the propagation of the monetary shock (these were absent with a fully disclosed 
shock). Micro-founding this assumption is outside the scope of this paper, but there 
is an abundant literature that provides a plethora of alternatives to think about imper-
fect knowledge about aggregate shocks. A few examples are sticky information in 
Mankiw and Reis (2002) , rational inattention in Woodford (2009), and Mackowiak 
and Wiederholt (2009) , dispersed knowledge in Hellwig and Venkateswaran (2014) , 
level-​k​ reasoning in Farhi and Werning (2017) , among many others. In the quantita-
tive section, we explain how we bring discipline to the observability of the monetary 
shock using evidence from survey forecast data.

We assume that firms only observe a fraction ​α  ∈  [0, 1]​ of the monetary shock ​
δ​ , and that they filter the monetary shock with the same learning technology they 
use to estimate their idiosyncratic state. These assumptions imply the following 
results (see proof of Proposition 10 for details). Markup estimates are only partially 
updated ​​​μ ˆ ​​0​​ (z)  = ​​ μ ˆ ​​−1​​ (z) − αδ​; as markups are overestimated, positive forecast 
errors arise on impact ​​​φ ˆ ​​0​​ (z)  =  (1 − α) δ​, but then decrease with learning. As idio-
syncratic shocks are realized, further forecast errors arise, but these are unrelated 
to the money shock. Thus, we decompose the forecast error into an unbiased and a 
biased component. The unbiased component is ​i.i.d.​ across firms and can be ignored 
for aggregate purposes. The biased component, denoted by ​​φ​t​​​, follows a determin-
istic path for each firm: its initial value is equal across firms and then it disappears 
over time, at a rate that depends on idiosyncratic uncertainty:

(35) ​​ φ​t​​ (z)  = ​ φ​0​​ (z) ​e​​ −​∫ 
0
​ 
s
​​​ 
​Ω​t​​(z) _ γ  ​ ds​ ,  with initial bias  ​φ​0​​ (z)  ∼  (1 − α) δ  ∀ z.​

In this scenario, average forecast errors ​​​t​​​ , as defined in (29) , are no longer equal 
to 0. Proposition 10 establishes that average forecast errors amplify the output 
response—even in the absence of uncertainty cycles—but the response is amplified 
even more when the cycles are present.

PROPOSITION 10: Assume the economy is in steady state and it is hit with a 
one-time unanticipated monetary shock of size ​δ  >  0​. If firms only observe a frac-
tion ​α  ∈  [0, 1]​ of the monetary shock, then:

	 (i)	 The total output effect is the sum of inaction errors ​​(δ, α)​​ and forecast 
errors ​​, which evolve as

	 (36)	 ​​(δ, α)​  =  ​(δ, α)​ + ​(1 − α)​δ​,

18 See online Appendix H for an additional explanation. 
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	 (37)	 ​​(δ, α)​  =  − ​∫ ​μ ˆ ​,Ω​ 
 

 ​​  w​(​μ ˆ ​ − αδ, Ω, ​(1 − α)​δ)​dF​(​μ ˆ ​, Ω)​​,

​	 (38)  w​(​μ ˆ ​, Ω, φ)​  =  피​[​∫ 
0
​ 
τ
​​​​μ ˆ ​​t​​ dt + w​(0, ​Ω​τ​​, φ​e​​ −​∫ 

0
​ 
τ
​​  ​ 
​Ω​s​​ _ γ ​ ds​)​​|​​ ​​μ ˆ ​​0​​  = ​ μ ˆ ​, ​Ω​0​​  =  Ω]​​,

	 (39)	​   = ​ ∫ 
Ω

​ 
 

 ​​ 피​[​∫ 
0
​ 
∞

​​ ​e​​ −​∫ 
0
​ 
t
​​​ 
​Ω​s​​ _ γ ​ ds​ dt ​|​​ ​Ω​0​​  =  Ω]​dh​(Ω)​​,

		  where ​​Ω​t​​​ evolves as in (6) and ​​​μ ˆ ​​t​​​  follows a biased process

	 (40)	 ​d​​μ ˆ ​​t​​​(z)​  = ​ Ω​t​​​(z)​​[​ 
​φ​t​​​(z)​

 _ γ  ​ dt + d​​Z ˆ ​​t​​]​.​

	 (ii)	 Let ​​ 
¯

 ​  ≡ ​ √ 

_

 ​ 
​γ​​ 2​ 피​[τ]​

 _ 
var​[Δp]​

 ​ ​​ be a function of price statistics. When ​δ  >  0​ , up to a first 

order, the total output effect with uncertainty cycles is bounded below by the 
total effect without them ​(λ  =  0)​:

	 (41)	 ​​(δ, α)​  ≥  δ ​​​(α ​ 
피​[τ]​

 _ 6 ​  + ​(1 − α)​​ 
¯

 ​)​  


​​  

without uncertainty cycles

​ ​ .​

With a partially disclosed monetary shock, pricing mistakes do not disappear 
after a firm’s first price change. This is evident in the recursive nature of equation 
(38). The monetary shock is only partially incorporated into prices with each adjust-
ment, i.e., the passthrough of the monetary shock into prices is incomplete.

Amplification through Dispersion in Learning Dynamics.—Let us focus on the 
role of forecast errors. Equation (39) computes the contribution of average fore-
cast errors to the real effects of a monetary shock. With homogenous uncertainty 
(​​Ω​t​​  = ​ σ​f​​​ ), average forecast errors ​​​t​​​ converge back to zero at an exponential rate ​​
e​​ −​σ​f​​/γ​​. With heterogeneous uncertainty, there is dispersion in convergence rates: 
forecast errors of high uncertainty firms disappear at a faster rate than those of low 
uncertainty firms. This dispersion, together with Jensen’s inequality, implies that the 
convergence of average forecast errors is slower than in the homogenous case. This 
slower convergence increases total output effects, as average forecast errors persist 
for a longer period. The value ​​ _​​ in equation (41) provides a lower bound for fore-
cast errors, and it can be disciplined with price statistics.19

An immediate consequence of the endogenous variation in the speed of firm learn-
ing is that passthrough of monetary shocks into prices is heterogenous. When firms 
are more uncertain, they learn more quickly about the monetary shock, increasing the 

19 For example, the lower bound ​​ _​​ decreases with price change variance ​var [ Δp]​ , i.e., larger price change 
dispersion reduces the amplification potential of forecast errors. 
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responsiveness of their prices to that shock. They also respond more aggressively to 
idiosyncratic shocks and increase price change dispersion. This positive relationship 
between price change dispersion and passthrough of nominal shocks is documented 
empirically by Berger and Vavra (2017). As they show, such a relationship naturally 
arises in models with time-varying responsiveness, as in our Bayesian learning model 
with uncertainty cycles.

E. Aggregate Uncertainty Shock

Finally, our third exercise explores the output effects of a monetary shock that 
occurs at the same time as an aggregate uncertainty shock. The analysis is motivated 
by the empirical finding that monetary policy is less effective when economic uncer-
tainty is higher. We interact a partially disclosed monetary shock with an unantic-
ipated uncertainty shock that increases every firm’s uncertainty by a multiple ​κ​ of 
average uncertainty ​피[Ω]​. An example of this type of shock is a monetary expansion 
during a recession or any period of elevated economic uncertainty. Proposition 11 
shows that larger average uncertainty decreases real output effects; still, uncertainty 
cycles maintain their role in amplifying output effects compared to an economy with 
homogenous uncertainty.

PROPOSITION 11: Assume the economy is in steady state and it is hit with a 
one-time unanticipated monetary shock of size ​δ  >  0​. Simultaneously, idiosyn-
cratic uncertainty increases by ​κ피​[Ω]​​ for all firms. If firms only observe a fraction ​
α  ∈  [0, 1]​ of the monetary shock, then:

	 (i)	 The total output effect ​​(δ, α, κ)​  =  ​(δ, α, κ)​ + ​(1 − α)​δ​(κ)​​ is com-
puted as in Proposition 10 , but with an initial condition for uncertainty that 
reflects the uncertainty shock: ​​Ω​0​​  =  Ω + κ피​[Ω]​​. 

	 (ii)	 When ​δ  >  0​ , the forecast error component ​​(κ)​​, which is now a function of 
the size of the aggregate uncertainty shock ​κ​ , is bounded below by

	 (42)	​ ​(κ)​  ≥  ξ​(​ 
피​[τ]​피 ​​[Ω]​​​ 2​ ​​(1 + κ)​​​ 2​

  ________________  
var​[Δp]​

 ​ )​​ 
¯

 ​  ≥ ​ ​  ξ​(​​(1 + κ)​​​ 2​)​​ 
¯

 ​  


​​  

without uncertainty cycles

​​​,

		  where ​ξ( · )​ is decreasing, ​​lim​x→1​​ ξ​(x)​  =  1​, and ​​lim​x→∞​​ ξ​(x)​  =  0​.

The aggregate uncertainty shock shifts the uncertainty distribution to the right by ​
κ피[Ω]​. This shock reduces the output effects of the monetary shocks in the short- 
and in the long run. The uncertainty shift increases the flexibility of the aggregate 
price level on impact by increasing the mass of high uncertainty firms and the 
implied selection effect. This reduces the short-run response of output. Vavra (2014) 
studies this effect in a menu cost model with aggregate volatility shocks. Moreover, 
the shift in the uncertainty distribution decreases the persistence of forecast errors 



300	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� JANUARY 2019

by reducing the mass of low uncertainty firms. This reduces the long-run response  
of output.

Besides the effects that arise from a shift in the distribution, there is an addi-
tional force that affects all firms’ learning dynamics. Firms place a higher weight on 
news when their uncertainty is higher; this is what Bayesian updating is all about. 
Forecast errors disappear faster and the monetary shock is quickly incorporated into 
prices. In turn, this reduces the persistence of the output response. This learning 
force is evident in equation (42) , which defines the lower bound of forecast errors, 
as the lower bound is decreasing in the size of the aggregate uncertainty shock ​κ​.  
Overall, monetary shocks are less effective at increasing output when aggregate 
uncertainty is higher, in line with empirical research. Our results also relate to the 
findings in Coibion and Gorodnichenko (2015), which show that information rigidi-
ties are lower during periods of high uncertainty, just as our model predicts.

III.  Quantifying the Mechanisms

In this section, we quantify the mechanisms responsible for the amplification of 
real output effects due to uncertainty cycles. For this purpose, we solve the model 
and calibrate it to match micro price statistics in the US Consumer Price Index.20

A. Data and Calibration

The calibration is at the weekly frequency. The discount factor ​1/(1 + r)  
= 0.​96​​ 1/52​​ matches an annual risk-free rate of 4 percent; the CES elasticity ​η  =  6​ 
matches an average markup of 20 percent; and the disutility of labor is set to ​α = 1​.  
Following the empirical evidence, we set the normalized menu cost to ​​ θ ̅ ​  =  0.064​ 
so that the expected menu cost payments represent 0.5 percent of average reve-
nue; price statistics and impulse-responses are robust to alternative values for this 
parameter.21

Price statistics computed in the model (at weekly frequency) are aggregated 
to match the monthly price statistics in the data. We target statistics in the BLS 
data computed in Nakamura and Steinsson (2008): price change dispersion of ​
std [  | Δp |  ]   =  0.08​ , average price duration of ​피 [τ]​​ ​ =​ ​ 10 months, and hazard rate’s 
average slope (between 1 and 18 months) of ​slope  =  − 0.007​. We consider three 
parametrizations of the model, all of which match the same average price duration. 
Table 1 summarizes the data, the target moments in each calibration (marked with a 
star), as well as other non-targeted moments.

The baseline calibration in column 1 shuts down the information friction and the 
fat-tailed shocks ​(γ  =  λ  =  0)​. Its only parameter ​​σ​f​​​ is set to match average dura-
tion. We consider this as a simplified version of Golosov and Lucas (2007). Column 

20 The model is solved numerically in discrete time in online Appendix I. 
21 Levy et al. (1997) estimates that the cost of changing prices is about 0.7 percent of firms’ revenue for super-

market chains. For a large retailer, Zbaracki et al. (2004) estimates 0.04 percent for physical costs, 0.28 percent 
for managerial costs, and 0.89 percent for customer costs. We choose a number in between these estimates as our 
baseline, as in Golosov and Lucas (2007) and Gertler and Leahy (2008), and provide a robustness analysis in online 
Appendix J.1. 
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2 shuts down the information friction and the frequent shocks ​(γ  = ​ σ​f​​  =  0)​ , and 
only has fat-tailed shocks. This is a simple version of Gertler and Leahy (2008). 
Its two parameters, ​λ​ and ​​σ​u​​​ , are set to match average duration and price change 
dispersion. Column 3 gives the numbers for our model with uncertainty cycles. 
We calibrate it using a simulated method of moments that matches average dura-
tion, price change dispersion, and the hazard rate’s slope. Importantly, we match 
the same duration with an arrival rate ​λ​ that is 1/2 of the arrival rate in the model 
without cycles. For each fat-tailed shock, prices change more than once because of 
the decreasing hazard; this is key to amplify the persistence of the output response. 
Finally, the calibration sets the volatility of the frequent shocks, ​​σ​f​​​ , very close to 
zero.22

Figure 3 shows the hazard rate and the steady-state distributions. Panel A plots the 
hazard rate for the US data and the three parameterizations. The baseline calibration 
features an increasing hazard, the calibration with only fat-tailed shocks produces 
a flat hazard, and the calibration with uncertainty cycles generates the decreasing 
hazard, as in the data. Panel B plots the distribution of markup gap estimates for 
high- and low-uncertainty firms. The distribution’s support and dispersion increase 
with uncertainty. Average inaction regions are ​|​μ ̅ ​(Ω)|   =  0.14​ and ​|​μ ̅ ​(Ω)|   =  0.06​ 
for high- and low-uncertainty firms, respectively. Panel C shows the two uncertainty 
distributions. Consistent with Proposition 7, the steady-state distribution of uncer-
tainty ​h(Ω)​ is biased toward low uncertainty with an average of 0.015. In contrast, 
the renewal distribution ​r(Ω)​ shifts its mass toward higher levels, with an average 
of 0.06.

Robustness with Respect to the Adjustment Hazard.—Our calibration targets 
the adjustment hazard in Nakamura and Steinsson (2008). The online Appendix 

22 The model with uncertainty cycles generates larger kurtosis than the baseline but lower than in the data. 
Online Appendix K considers an extension with random opportunities to freely adjust. This extension increases 
the kurtosis by generating a larger fraction of small price changes. Small price changes can also be generated by 
introducing economies of scope through multiproduct firms as in Midrigan (2011) and Alvarez and Lippi (2014). 

Table 1—Parameters and Targets

US data Baseline Fat-tailed shocks Uncertainty cycles
Parameters (1) (2) (3)

σf 0.016 0.000
σu 0.146 0.198
λ 0.035 0.016
γ 0.233

Moments
피[τ] in months 10 10* 10* 10*
std[|Δp|] 0.080 0.007 0.080* 0.070*
Hazard rate slope −0.007 0.007 0.000 −0.009*
kurtosis[Δp] 3.950 1.027 2.260 1.960

Notes: Models: (1) Baseline: Perfect info and frequent shocks; (2) Perfect info and fat-tailed shocks; (3) Uncertainty 
cycles. Hazard rate’s slope—average between 1 and 18 months. * = targeted moment.

Source: Data from US CPI in Nakamura and Steinsson (2008) and authors’ calculations
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J.2 analyzes quantitatively the role of uncertainty cycles for different calibrations 
that target other empirical hazards. We show that our mechanism is still present, 
although it gets amplified or dampened, when targeting a steeper hazard as in 
Campbell and Eden (2014), or a f  latter hazard as in Klenow and Kryvtsov (2008). 
An interesting feature is that a highly decreasing hazard is matched with a relatively 
low signal noise ​γ​ , because with little noise it becomes easier to learn the markup, 
and both the uncertainty and the adjustment probability fall quickly. It follows that 
matching a steep hazard rate generates larger heterogeneity in uncertainty, more 
dispersion is adjustment frequency, larger kurtosis for the price change distribution, 
and a stronger correlation between selection effects and adjustment frequency. All 
of these channels together amplify the output effects of a monetary shock, which get 
closer to the case with a constant hazard.

B. Further Inspection of Information Frictions in the Data

Before the quantitative exercise, we perform a deeper inspection of the micro 
data through the lens of our model with the objective of providing further evidence 
on the presence of information frictions. We discover a connection between price 
“age” and uncertainty; we measure the profit losses due to the information friction; 
and we explain how to put discipline on the observability of the monetary shocks 
using survey data.

Age-Dependent Statistics.—As a robustness check of the calibration, we exploit 
the implication that price age, defined as the time elapsed since its last change, is a 
determinant of the size and frequency of its next adjustment. Young prices (recently 
set) and old prices (set many periods ago) exhibit different behavior. In particu-
lar, young prices are more dispersed and more likely to be reset than old prices. 
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These predictions are documented by Campbell and  Eden (2014) using weekly 
scanner data. They find that conditional on adjustment, young prices have twice the 
dispersion of old prices (15 percent versus 7 percent) and that extreme price changes 
tend to be younger. They also find that young prices are 3 times more likely to be 
changed than old prices (36 percent versus 13 percent). We compute analogous 
numbers in our model, defining young prices to be in the twentieth quintile of the 
price age distribution and old prices to be in the eightieth quintile. We obtain that 
price dispersion is 1.3 times higher and adjustment frequency is 2 times higher for 
young prices. Interestingly, the average uncertainty associated to young prices is 3.3 
times the uncertainty faced by old prices, thus relative price dispersion and adjust-
ment frequency are informative about relative uncertainty.23

Losses Due to Information Friction.—Using the model and micro-price statistics, 
we can gauge the size of the profit losses that are due to information frictions and 
nominal rigidities. Proposition 12 characterizes these losses, and provides an upper 
bound in terms of cross-sectional moments and structural parameters.

PROPOSITION 12: Consider a constant returns to scale technology and a CES 
demand with elasticity ​η  >  1​. Then we can express the expected per period profit 
losses that arise from frictions relative to the frictionless benchmark, expressed as 
a fraction of revenue, as

(43)	​ Losses  = ​ 
1 − η

 _ 
2
 ​​

[
​ ​ γ피​[Ω]​ 

⏟
​​  

Loss from information friction

​​ + ​ ​ var​[​μ ˆ ​]​ 
⏟

​​ 
Loss from nominal rigidity

​​
]

​​.

The losses due to the information friction are bounded above by ​​ 
1 − η

 _ 2 ​  γ ​√ 

_

 ​ 
var​[Δp]​

 _ 피​[τ]​
 ​ ​​ .

The first term shows the loss that arises from ignoring the true state, while the 
second term shows the loss that arises from setting an incorrect price, reflected 
through markup dispersion. In our preferred calibration, the term related to infor-
mation frictions equals 0.86 percent of revenues, with an upper bound of 1.6 percent 
of revenue.24 While these numbers appear to be slightly high compared to the 0.28 
percent of managerial costs in Zbaracki et al. (2004) , which include some type of 
information-gathering costs, we think that further empirical evidence is needed in 
order to pin down this number with better precision.

Discipline on Forecast Errors and Observability of the Monetary Shock.—
Through the model, the micro-pricing data tightly disciplines the forecast error 
dynamics. Our estimates for ​γ​ and the implied uncertainty distribution suggest a 

23 See online Appendix L for details on the age-uncertainty relationship and age-dependent statistics. 
24 We thank a referee for suggesting this analysis. The losses related to information frictions are computed 

as ​(1 − η) γ피​[​Ω​t​​ (z)]​/ 2  = ​ (1 − 6)​ × 0.233 × 0.015/2  =  − 0.0086​ , and the upper bound computed with weekly 
price statistics is ​(1 − η) γ ​√ 

_
  var [ Δp ]  / 피[τ] ​/2  = ​ (1 − 6)​ × 0.233 × ​√ 

_
 0.03 / 40 ​ / 2  =  − 0.016​. 
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forecast error persistence at the individual level of 0.94 for the average firm and 
0.84 for the average high uncertainty firm.25 The persistence of aggregate fore-
cast errors is 0.9. These numbers are consistent with the evidence in Coibion and 
Gorodnichenko (2012) , who estimate forecast error persistence in the range of 0.75 
to 0.9 using survey data from US professional forecasters, consumers, firms, and 
central bankers. Furthermore, their results suggest that Bayesian forecasters assign 
a weight lower than 0.2 on new information. Our calibration is also consistent with 
this, as we obtain a weight on new information between 0.06 for an average firm and 
0.16 for a high-uncertainty firm. The weight on new information implies that it takes 
about three quarters to reduce the forecast error by a half, just as our quantitative 
exercise suggests (panel C in Figures 5 and 6).

The convergence of forecast errors is independent from the observability of the 
monetary shock ​α​; nevertheless, observability determines the initial level of the 
average forecast error following a monetary shock. Again, we use the survey evi-
dence in Coibion and Gorodnichenko (2012) to discipline this parameter. They find 
that, on average, the initial response of forecast errors is about half the response of 
the forecasted variable. Given this evidence, we set observability equal to ​α = 0.5​.  
The observability implied by survey data is relatively high when compared to the 
rational inattention literature, which suggests that aggregate shocks are almost undis-
closed, e.g., Mackowiak and Wiederholt’s (2009) model implies that ​α  =  0.04​. For 
this reason, we additionally show results for a fully undisclosed shock (​α  =  0​), so 
that the whole spectrum of observability is covered in our quantitative analysis.

C. Quantifying the Real Effects of Nominal Shocks

We proceed to quantify the real effect of monetary shocks in the three cases 
we theoretically analyzed: disclosed monetary shocks, partially disclosed monetary 
shocks, and monetary shocks accompanied by an aggregate uncertainty shock.

The Role of Selection Effect.—We start by quantifying the output effect of a one-
time unanticipated increase in money supply of size ​δ  =  1​ percent that is fully 
disclosed by the monetary authority. Figure 4 shows the impulse-response of output 
for different calibrations.26

In the baseline case, the monetary shock of 1 percent generates a total output 
effect of ​ = 1.61​ percent. This number is very close to that implied by the lower 
bound formula in Proposition 9: ​δ 피[τ ]/6  =  1.66​ percent. The small and short-lived 
response (1.25 months) is the result of a large selection effect. The second calibration 
with fat-tailed shocks more than triples the baseline’s output effects and persistence. 

25 Forecast error persistence is equal to the Bayesian weight assigned to prior information, given by: 
​​γ​​ 2​/(​γ​​ 2​ + ​Ω​t​​ ​(z)​​ 2​ )​. We compute the cross-sectional average of this number for all firms and also for those with 
uncertainty above the mean. 

26 Note that all the impulse responses have a jump on impact. While this is not surprising for the second calibra-
tion with only fat-tailed shocks (there is a positive mass of firms at the borders of inaction), this jump does not occur 
in the other models with Brownian shocks, as the impact of a small monetary shock is second order. Here, the jumps 
arise because we solve the model in discrete time and there is a positive mass of firms at the borders of inaction in 
all calibrations. Online Appendix M provides all the details on the computation of IRFs and a comparison of the 
impact responses across models. 
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Its f lat hazard breaks the selection effect and obtains larger non-neutrality. The 
model with uncertainty cycles and fully disclosed monetary shock obtains almost 
triple the output effects of the baseline, but the half-life is only 60 percent larger. 
While the impulse-response almost perfectly tracks the baseline in the first months, 
then it slowly approaches the impulse-response of the second model, eventually 
crossing it. The quick and sizable adjustments of high-uncertainty firms dominate 
and drastically reduce the output effect during the first months; thus the short half-
life. Nevertheless, the total effect is amplified as demonstrated in Proposition 9, 
due to the slow responsiveness of low-uncertainty firms.27 Lastly, the model with 
uncertainty cycles and a partially disclosed shock, as calibrated with the survey data, 
obtains real output effects that surpass the other models.

The Role of Forecast Errors.—To highlight the role of average forecast errors, 
we measure the output effect of a one-time unanticipated increase in money supply 
of size ​δ = 1​ percent that is fully undisclosed by the monetary authority (​α = 0​). 
The lack of observability is in line with the rational inattention literature. In this 
case, output effects are mainly driven by forecast errors. Figure 5 plots output devi-
ations from steady state for the extreme cases of fully disclosed shock (​α  =  1​) and 
undisclosed shock (​α  =  0​), and decomposes the deviations into inaction errors 
and forecast errors. We separately display the aggregate response, the response of 

27 Note that, quantitatively, a large fraction of the amplification is due to the leptokurtic shocks. Since Gertler 
and Leahy (2008) and Midrigan (2011), it is well known that a menu cost model with fat-tailed shocks behaves very 
closely to a Calvo model, where selection is minimal and output effects are large. Our results emphasize that the 
idiosyncratic uncertainty cycles introduce amplification above and beyond what is already embedded in a particular 
model. 
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high-uncertainty firms, and the response of low-uncertainty firms, where averages 
are conditional on uncertainty at the moment of the monetary shock.

Comparing across rows, we observe that the output response and half-lives are 
evidently larger with an undisclosed shock. Clearly, with fully disclosed monetary 
shocks, there are no average forecast errors. Note that with undisclosed shocks, 
forecast errors of highly uncertain firms quickly decrease; these firms learn and 
incorporate quickly the monetary shock. Low-uncertainty firms drive most of the 
persistence in average forecast errors as they take a lot of time to learn the monetary 
shock; these firms are pretty certain about their own conditions and make little use 
of new information. Again, this is all pure Bayesian updating. The heterogeneity in 
learning dynamics and in passthrough amplifies the output response. According to 
our formula in (41) , the forecast errors have to be at least as large as those that arise 
without heterogeneity: ​​ _​ ≡ γ ​√ 

_
 피 [ τ] ​/ std [Δp ]  =  0.233 ​√ 

_
 10 ​ / 0.1456  =  5.06​ , 

i.e., output effects must be 5 times as large as the monetary shock. Numerically, we 
obtain an output response 6.6 times larger than the monetary shock. We interpret 
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these numbers as saying that uncertainty cycles amplify the output response by 
30 percent ​(=  6.55/5.06 − 1)​.

Table 2 summarizes all the quantitative results. It shows the total output effect  
and the persistence of the response measured through the half-life of the impulse-re-
sponse. Numbers are multiples of the baseline case in the first column, for which the 
total output effect is ​  =  1.61​ percent and the half-life is 1.25 months.

Simultaneous Monetary and Uncertainty Shock.—Finally, we compute the effect 
of a partially disclosed monetary shock ​(α  =  0.5)​ that occurs at the same time of 
an aggregate uncertainty shock. We assume that the uncertainty shock increases 
firms’ uncertainty by ​κ피[Ω]​ , where ​피 [ Ω]​ is average steady state uncertainty and ​
κ ∈ {0, 1, 4}​. Figure 6 shows the results.

Aggregate uncertainty shocks significantly reduce the output response through 
their effect on forecast errors, as these converge faster to zero due to the Bayesian 
learning forces. According to Proposition 11, the lower bound on forecast errors 
(which is achieved without heterogeneity) decreases with the size of the aggregate 
uncertainty shock ​κ​. Thus the potential of forecast errors to amplify the output 
response are lower with higher aggregate uncertainty. Consistent with the theory, 
in our simulation we obtain that output effects fall from 4.64 times the baseline, to 
2.72 times the baseline with a small uncertainty shock, and to only 1.30 times the 
baseline with a large uncertainty shock. The panel in the far right shows that uncer-
tainty shocks are short-lived, as average uncertainty converges back to its steady-
state level after a few months. Table 3 reports the respective numbers.

D. Intensive and Extensive Margin Decomposition

As a final note, we assess the relative importance of the intensive and extensive 
margins of adjustment that follow a monetary shock. The intensive margin describes 
the additional price increase of those firms that were going to adjust anyway; in con-
trast, the extensive margin, reflects the increase in the fraction of adjusters. While 
we cannot apply directly the first-order decomposition in Caballero and  Engel 
(2007) because in our model a monetary shock only has second-order effects, we 
propose an alternative decomposition along the same lines. Table 4 computes these 

Table 2—Output Response to Monetary Shock for Different Parameterization

Perfect info (γ = 0) Uncertainty cycles (γ > 0, λ > 0)

Baseline
Fat-tailed 

shocks
Disclosed 

money shock
Partially discl. 
money shock

Undisclosed 
money shock

(λ = 0) (λ > 0) (α = 1) (α = 0.5) (α = 0)
Total  1.00 3.75 2.70 4.64 6.55
Half-life 1.00 3.40 1.60 3.40 6.00

Notes: The first line shows the total output effect  of a 1 percent increase in the money supply, and the second 
line the half-life of the impulse-response. All numbers are multiples of the baseline case in the first column, which 
considers perfect information and only Brownian shocks. For that case, the total output effect is  = 1.61 percent 
and the half-life is 1.25 months.

Source: Authors’ calculations
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Notes: Impulse-response after a partially disclosed monetary shock (​α  =  0.5​) paired with an aggregate uncertainty 
shock. The first three variables are measured as deviations from steady state, while uncertainty is plotted in levels. 
Responses are conditional on aggregate uncertainty shock κ피[Ω]: solid line = no uncertainty shock (​κ  =  0​), light 
dashed line = small uncertainty shock (​κ  =  1​), dark dashed line = large uncertainty shock (​κ  =  4​).
Source: Authors’ calculations
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adjustment margins after a disclosed monetary shock paired with an aggregate 
uncertainty shock of different sizes.28 

On impact, the extensive margin is much larger than the intensive margin (70 
versus 30 percent), but its relative importance is decreasing in the size of the aggre-
gate uncertainty shock. Although an in-depth analysis of these margins is outside 
the scope of this paper, we think these numbers provide an interesting starting point 
for further analysis.

IV.  Conclusion

We have developed a new framework that combines an inaction problem, arising 
from a non-convex adjustment cost, together with a signal extraction problem in 
which agents face undistinguishable transitory and persistent shocks with jumps. 
As far as we know, our paper is the first to solve this problem type analytically and 
deliver predictions for the joint dynamics of uncertainty, actions, and forecast errors. 
Although the focus here is on pricing decisions, the model is easy to generalize to 
other setups where fixed adjustment costs, fat-tailed shocks, and information fric-
tions are likely to coexist. Particularly, we foresee applications in setups that gen-
erate strong age-dependent statistics, such as labor markets. Moreover, the filtering 
results can be extended to aggregate shocks to study, for instance, disaster risk in a 
tractable way.

28 Online Appendix N provides all the details regarding the computation of the two margins. We thank one of 
our referees for suggesting this exercise. 

Table 3—Output Response to Simultaneous Monetary and Aggregate Uncertainty Shock

No Ω shock Small Ω shock Large Ω shock
(κ = 0) (κ = 1) (κ = 4)

Total  4.64 2.72 1.30
Half-life 3.40 1.80 0.80

Notes: The first line shows the total output effect  of a simultaneous 1 percent increase in the money supply and 
an aggregate uncertainty shock of size κ피[Ω], and the second line shows the half-life of the impulse-response. All 
numbers are multiples of the baseline case in the first column of Table 2, which considers perfect information and 
only Brownian shocks. For that case, the total effect is  = 1.61 percent and the half-life is 1.25 months. All exer-
cises consider a partially disclosed monetary shock (observability = 0.5).
Source: Authors’ calculations

Table 4—Relative Importance of Intensive and Extensive Margins on Impact

No Ω shock Small Ω shock Large Ω shock
(κ = 0) (κ = 1) (κ = 4)

Intensive/total 0.30 0.37 0.45
Extensive/total 0.70 0.63 0.55

Note: Impact price response decomposition into intensive and extensive margins following a disclosed monetary 
shock (α = 1) and different sizes of aggregate uncertainty shocks.

Source: Authors’ calculations
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Firm-level uncertainty appears to be a quantitatively important determinant of the 
effects of monetary policy. Going forward, it would be interesting to further explore 
empirically the model’s implications. For this purpose, it will be key to generate 
panel data with measures of idiosyncratic uncertainty about both aggregate and indi-
vidual variables, and then pair these with pricing data and other firm characteristics. 
The work by Bachmann et al. (forthcoming) pushes toward this direction by com-
bining firm-level pricing data with a qualitative measure of idiosyncratic uncertainty 
faced by German firms. It would be interesting to incorporate such cross-sectional 
measures of uncertainty into VAR analyses that test for state-dependent effectiveness 
of monetary policy in times of high and low uncertainty, to complement the results 
obtained with measures of aggregate uncertainty (for an example, see Castelnuovo 
and Pellegrino 2018). Finally, surveys that elicit expectations about inflation and 
other aggregate variables, as in Coibion, Gorodnichenko, and Kumar (2018) for 
firms in New Zealand, will allow constructing aggregate forecast errors and test for 
state-dependence in learning and pricing.

Mathematical Appendix

Preliminaries

Notation.—We denote partial derivatives with ​​f​​​μ ˆ ​​​ i​​Ω ​​ j​​​  ≡ ​ 
​∂​​ i+j​ f

 _ 
∂ ​​μ ˆ ​​​ i​ ∂ ​Ω​​ j​

 ​​.

Generator and Adjoint.—We denote with ​​ the infinitesimal generator of ​(​μ ˆ ​, Ω)​ 
and ​​​​ ∗​​, its adjoint operator, which are given respectively by29

(A1)	​ ϕ(​μ ˆ ​, Ω )   =   ​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​ ​ϕ​Ω​​ (​μ ˆ ​, Ω ) + ​ ​Ω​​ 2​ _ 

2
 ​ ​ ϕ​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)

	 +  λ​[ϕ​(​μ ˆ ​, Ω + ​σ​ u​ 
2​ / γ)​ − ϕ(​μ ˆ ​, ​Ω​t​​ )]​, 

(A2)	​ ​​ ∗​ f (​μ ˆ ​, Ω )   =   − ​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​ ​f​Ω​​ (​μ ˆ ​, Ω ) + ​ 2Ω _ γ  ​ f  (​μ ˆ ​, Ω ) + ​ ​Ω​​ 2​ _ 

2
 ​ ​ f​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)

	 +  λ​[ f ​(​μ ˆ ​, Ω − ​σ​ u​ 
2​ / γ)​ − f​(​μ ˆ ​, Ω)​]​.​

PROOF OF PROPOSITION 1:
Proposition 1 is shown in a more general setup than in the main text, considering 

a non-zero drift for the state. The state and the signal evolve as follows:

(A3)	​ (state)  d​μ​t​​  =  F​μ​t​​ dt + ​σ​f​​ d​W​t​​ + ​σ​u​​ ​u​t​​ d​Q​t​​ , 

	 (observation)  d​s​t​​  =  G​μ​t​​ dt + γd​Z​t​​ , 

29 See online Appendix C for the derivation. 
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	 (initial conditions for state)  ​μ​0​​  ∼   (a, b ) , 

	 (initial condition for observations)  ​s​0​​  =  0, ​

where ​​W​t​​ , ​Z​t​​  ∼  Wiener Process​ , ​​Q​t​​  ∼  Poisson(λ)​ , and ​​u​t​​  ∼   (0, 1)​. Let the 
information set (with continuous sampling) be ​​I​t​​  =  σ​{​s​h​​ , ​Q​h​​ : h  ∈  [0, t]}​​. Then 
the posterior distribution of the state is Normal, i.e., ​​μ​t​​ | ​I​t​​  ∼   ( ​​μ ˆ ​​t​​ , ​Σ​t​​ )​ , where the 
posterior mean ​​​μ ˆ ​​t​​  ≡  피 [ ​μ​t​​ | ​I​t​​ ]​ and posterior variance ​​Σ​t​​  ≡  피 [ ​(​μ​t​​ − ​​μ ˆ ​​t​​)​​ 2​ | ​I​t​​ ]​ sat-
isfy the following stochastic processes:

(A4)	​ d​​μ ˆ ​​t​​  =  ​(F − ​ 
​G​​ 2​ ​Σ​t​​ _ 

​γ​​ 2​
 ​ )​ ​​μ ˆ ​​t​​ dt + ​ 

G​Σ​t​​ _ 
​γ​​ 2​

 ​  d​s​t​​ ,	 ​​μ ˆ ​​0​​  =  a, 

	 d​Σ​t​​  =  ​(2F ​Σ​t​​ + ​σ​ f​ 
2​ − ​ 

​G​​ 2​ ​Σ​ t​ 
2​
 _ 

​γ​​ 2​
 ​ )​ dt + ​σ​ u​ 

2​ d​Q​t​​ ,	 ​Σ​0​​  =  b.​

Furthermore, the first filtering equation can be written as ​d​​μ ˆ ​​t​​  =  F​​μ ˆ ​​t​​ dt + ​ 
​G​​ 2​ ​Σ​t​​ ____ γ ​  d ​​Z ˆ ​​t​​​ , 

where ​​​Z ˆ ​​t​​​ is the innovation process, ​d ​​Z ˆ ​​t​​  = ​  1 __ γ ​ (d​s​t​​ − ​​μ ˆ ​​t​​ dt)  = ​  1 __ γ ​ (​μ​t​​ − ​​μ ˆ ​​t​​) dt + d​Z​t​​​ is 
a one-dimensional Wiener process under the information set of the firm, and it is 
independent of ​d​Q​t​​​. Note that using the definition of uncertainty ​​Ω​t​​  ≡  γ ​Σ​t​​​ , and 
substituting ​F  =  0​ and ​G  =  1​ , we get the filtering equations in the text:

(A5)	​ d​​μ ˆ ​​t​​  =   ​Ω​t​​ d​​Z ˆ ​​t​​ , 	 ​​μ ˆ ​​0​​  =  a, 

	 d ​Ω​t​​  =   ​ 
​σ​ f​ 

2​ − ​Ω​ t​ 
2​
 _ γ  ​ dt + ​ 

​σ​ u​ 
2​
 _ γ ​ d​Q​t​​ , 		 ​Ω​0​​  = ​  b _ γ ​ .​

Strategy.—The proof has three steps, each established in a Lemma.

LEMMA 1: We show that the solution ​​M​t​​  ≡  [ ​μ​t​​ , ​s​t​​ ]​ to the system of stochas-
tic differential equations in (A3) , conditional on the history of Poisson shocks  
​​​t​​  =  σ { ​Q​r​​ |r  ≤  t}​ , follows a Gaussian process.

LEMMA 2: ​​μ​t​​ | ​I​t​​​ is Normal and can be obtained as the limit of a discrete sampling 
of observations.

LEMMA 3: The recursive estimation formulas obtained with discrete sampling con-
verge to those in (A4).30

Now we elaborate on the proofs of the three Lemmas.

30 Online Appendix P derives additional details and a formal convergence proof. 
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LEMMA 1: Let ​​M​t​​  ≡  [ ​μ​t​​ , ​s​t​​ ]​ be the solution to (A3) and ​​​t​​  =  σ { ​Q​r​​ |r  ≤  t}​.  
Then, ​​M​t​​ | ​​t​​​ is Normal.

PROOF:
Fix a realization ​ω​ and let ​​N​t​​ (ω)​ be the number of jumps between ​0​ and ​t​ , which 

is a number known at ​t​. Applying Picard’s iterative process to (A3) and considering 
the initial conditions, we obtain the following two sequences:

	​​ μ​ t​ 
k+1​  =   ​μ​0​​ + F ​∫ 

0
​ 
t
​​ ​μ​ τ​ 

k​ dτ + ​σ​f​​ ​W​t​​ + ​σ​f​​ ​ ∑ 
i=1

​ 
​N​t​​(ω)

​​ ​u​i​​ , 

	​ s​ t​ 
k+1​  =  G ​∫ 

0
​ 
t
​​ ​μ​ τ​ 

k​ dτ + γ ​Z​t​​ .​

Assume that ​​μ​ t​ 
0​​ is Normal. As induction hypothesis, assume that 

​​M​ r​ 
k​ | ​​t​​  ≡  [ ​μ​ r​ 

k​ , ​s​ r​ 
k​ | ​​t​​ ]​ is Normal for all ​r  ≤  t​. Note that (i) ​​(​μ​0​​ , ​W​r​​ , ​Z​r​​)​​ are Normal 

random variables independent of ​​​t​​​; (ii) the term ​​∑ i=1​ 
​N​r​​(ω) ​​ ​u​i​​ | ​​t​​​ is Normal since it 

is a fixed sum of ​​N​r​​ (ω)​ Normals; and (iii) by the induction hypothesis, the term ​​
∫ 0​ 

r​​ ​μ​ τ​ 
k​  dτ​ is a Riemann integral of Normal variables. Given that a linear combina-

tion of Normals is Normal, then ​​M​ r​ 
k+1​ | ​​t​​  ≡  [ ​μ​ r​ 

k+1​ , ​s​ r​ 
k+1​ | ​​t​​ ]​ is Normal as well for ​

r  ≤  t​. Therefore, for each ​r  ≤  t​ , we have a sequence of Normal random variables ​​
{ ​M​ r​ 

k​ | ​​t​​ }​ k=0​ 
∞

 ​​ .
To show Normality of ​​M​t​​ | ​​t​​​ , notice that ​​M​ r​ 

k​ | ​​t​​  = ​ M​ r​ 
k​ | ​​r​​​ and ​​M​ r​ 

k​ | ​​r​​​ con-
verges in ​​​​ 2​​ to ​​M​r​​​ (see Øksendal 2007, ch. 5). Since the limit in ​​​​ 2​​ of Normal 
variables is Normal, ​​M​t​​​ is Normal. Therefore the solution to the system of stochastic 
differential equations, conditional to the history of Poisson shocks, i.e., ​​M​t​​ | ​​t​​​ , is a 
Gaussian process. ∎

LEMMA 2: The conditional distribution of the state ​​μ​t​​ | ​I​t​​​ is Normal, 

​​μ​t​​ | ​I​t​​  ∼   ​(피​[​μ​t​​ | ​I​t​​]​, 피​[​​(​μ​t​​ − 피​[​μ​t​​ | ​I​t​​]​)​​​ 
2
​ | ​I​t​​]​)​​ , and the conditional mean and vari-

ance can be obtained as the limit of a discrete sampling of observations.

PROOF:
Let ​Δ  ≡  1/​2​​ n​​. Define an increasing sequence of ​σ​-algebras ​​{ ​I ​ t​ n​ }​ n=0​ 

∞ ​​  using the 
dyadic set as follows:

	​​ I  ​ t​ n​  =  σ​{​s​r​​ , ​Q​h​​ : r  ∈ ​ {0, Δ, 2Δ, 3Δ,  …}​, r  ≤  t, h  ∈  [0, t]}​.​

Let ​​M​ t​ 
n​  ≡ ​ μ​t​​ | ​I ​ t​ n​​ be the estimate at time ​t​ produced with discrete sampling. The 

following properties are true:

	 (i)	 For each ​n​ , ​​M​ t​ 
n​​ is Normal. By the previous Lemma ​( ​μ​t​​ , ​s​​r​1​​​​ , ​s​​r​2​​​​ ,  … , ​s​​r​n​​​​ ) | ​​t​​​  

is Normal; by properties of Normals, ​​M​ t​ 
n​​ is also Normal.

	 (ii)	 For each ​n​ , ​​M​ t​ 
n​​ has finite variance. This is a direct implication of Normality.
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	 (iii)	 Let ​​I  ​ t​ ∞​  ≡  σ { ​∪​ n=1​ 
∞ ​ ​ I​ t​ 

n​ }​ be the ​σ​-algebra generated by the union of the dis-
crete sampling information sets. For each ​t​ , ​​M​ t​ 

n​​ converges to some limit  
​​M​ t​ 

∞​  ≡ ​ μ​t​​ | ​I​ t​ ∞​​ as n → ∞. Since ​​I​ t​ 
n​​ is an increasing sequence of ​σ​-algebras, 

by the Law of Iterated Expectations, ​​M​ t​ 
n​​ is a martingale with finite variance, 

therefore it converges in ​​​​ 2​​. Since limit of Normals is Normal, ​​M​ t​ 
∞​​ is Normal 

too:

	​​ M​ t​ 
n​  ​→​​​​ 2​​​  ​M​ t​ 

∞​  ∼   ​(피​[​μ​t​​ | ​I​ t​ ∞​]​, 피​[​​(​μ​t​​ − 피​[​μ​t​​ | ​I​t​​]​)​​​ 
2
​ | ​I​ t​ ∞​]​)​.​

Since signals ​​s​t​​​ are continuous (in particular left-continuous) and the dyadic set is 
dense in the interval ​[0, t]​ , the information set obtained as the limit of the discrete 
sampling is equal to the information set obtained with continuous sampling:  
​​I​ t​ 
∞​  =  σ​{​s​h​​ , ​Q​h​​ : h  ∈  [0, t]}​​. Therefore, the estimate obtained with the limit of dis-

crete sampling converges (in ​​​​ 2​​) to the estimate with continuous sampling:31

	​​ M​ t​ 
∞​  ​→​​​​ 2​​​  ​μ​t​​ | ​I​t​​  ∼   ​(피​[​μ​t​​ | ​I​t​​]​, 피​[​​(​μ​t​​ − 피​[​μ​t​​ | ​I​t​​]​)​​​ 

2
​ | ​I​t​​]​)​.​ ∎

LEMMA 3: Let ​Δ  ≡  1/​2​​ n​​. Define ​​I​ t​ 
 n,∗​​ as the information set before measurement ​​

I​ t​ 
 n,∗​  =  σ​{​s​r−1​​ , ​Q​h​​ | r  ∈  {0, Δ, 2Δ, 3Δ,  … }, r  ≤  t, h  ∈  [0, t]}​​ , which is used 

to construct predicted estimates. Define ​​​μ ˆ ​​ t​ 
n​  =  피 [ ​μ​t​​ | ​I   ​ t​ n,∗​ ]​ and ​​Σ​ t​ 

n​  =  피 [ ​​(​μ​t​​ − 
 ​​μ ˆ ​​t​​)​​​ 2​ | ​I​ t​  n,∗​ ]​. Then the laws of motion of ​{ ​​μ ˆ ​​ t​ 

n​ , ​Σ​ t​ 
n​ }​ converge weakly to the laws of 

motion for ​{ ​​μ ˆ ​​t​​ , ​Σ​t​​ }​ , with ​​​μ ˆ ​​t​​  ≡  피 [ ​μ​t​​ | ​I​t​​ ]​ and ​​Σ​t​​  ≡  피 [ ​​(​μ​t​​ − ​​μ ˆ ​​t​​)​​​ 2​ | ​I​t​​ ]​ , i.e., the solu-
tion of (A4).

PROOF:
Before we derive the processes for the estimate and its conditional variance, let 

us explain why we use the information set before measurement ​​I​ t​ 
n,∗​​ instead of ​​I  ​ t​ n​​. 

The main reason is convenience, as the first information set produces independent 
recursive formulas for the predicted estimate ​​μ​t​​ |σ { ​∪​ i=1​ 

∞ ​ ​ I​ t​ 
n,∗​ }​ and its convergence 

is easier to show. Let us show that the union of information sets are equal, i.e., 
​σ { ​∪​ i=1​ 

∞ ​ ​ I​ t​ 
n​ }  =  σ { ​∪​ i=1​ 

∞ ​ ​ I​ t​ 
n,∗​ }​ , and thus the way we construct the limit is innocu-

ous. Trivially, we have that ​σ { ​∪​ i=1​ 
∞ ​ ​ I​ t​ 

n,∗​ }  ⊂  σ { ​∪​ i=1​ 
∞ ​ ​ I​ t​ 

n​ }​. For the reverse to be true 
​σ { ​∪​ i=1​ 

∞ ​ ​ I​ t​ 
n​ }  ⊂  σ { ​∪​ i=1​ 

∞ ​ ​ I​ t​ 
n,∗​ }​ , it is sufficient to show that signals ​s​ are continu-

ous, since left-continuous filtrations of continuous process are always contin-
uous. To show that signals are continuous, notice that they can be written as 
​​s​t​​ = ​∫ 0​ 

t​​ ​μ​s​​ ds + γ ​Z​t​​​ , which is an integral of a finite set of discontinuities plus a Wiener 
process, and thus they are continuous.

31 See Davis (1977) for details. 
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Now, let us derive the laws of motion. Consider an interval ​Δ​ and three shocks 
​​ϵ​t​​ , ​η​t​​ , ​u​t​​ ​∼​i.i.d​​  (0, 1)​. Then the processes in (A3) can be written as

	​​ μ​t​​  =   ​μ​t−Δ​​ + F ​∫ 
t−Δ

​ 
t
  ​​ ​μ​τ​​  dτ + ​√ 

_
 Δ ​σ​ f​ 

2​ ​ ​ϵ​t​​ + ​σ​u​​ ​u​t​​ ( ​Q​t​​ − ​Q​t−Δ​​ ) , 

	​ s​t​​  =   ​s​t−Δ​​ + G ​∫ 
t−Δ

​ 
t
  ​​ ​μ​τ​​  dτ + ​√ 

_
 Δ ​γ​​ 2​ ​ ​η​t​​ ,  with ​s​0​​  =  0, 

	​ μ​−Δ​​  ∼   ( ​​μ ˆ ​​Δ​​ , ​Σ​Δ​​ ) ,

	 ( ​Q​t​​ − ​Q​t−Δ​​ ) ​ ∼​iid​​   ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩
​
1

​ 

with probability 1 − ​e​​ −λΔ​ − o( ​Δ​​ 2​ )
​    0​  with probability  ​e​​ −λΔ​ − o( ​Δ​​ 2​ )​   

>1

​ 

with probability o( ​Δ​​ 2​ )
 ​ ​​​.

First-order approximations of the integral yield ​​∫ t−Δ​ t  ​​ ​μ​τ​​  dτ  = ​ μ​t−Δ​​ Δ + ​ξ​t​​  
= ​ μ​t​​ Δ + ​​ξ ̃ ​​t​​​ , where ​​ξ​t​​​ and ​​​ξ ̃ ​​t​​​ are Normal random variables conditional on ​​​t​​ ,​ 
with ​피 [ ​ξ​t​​ ]   =  o( ​Δ​​ 2​ )​ , ​피 [ ​ξ​ t​ 

2​ ]   =  o( ​Δ​​ 2​ )​ , ​피 [ ​​ξ ̃ ​​t​​ ]   =  o( ​Δ​​ 2​ )​, and ​피 [ ​​ξ ̃ ​​t​​ ]   =  o( ​Δ​​ 2​ )​. 
Substituting these approximations above, we can express the laws of motion for ​μ, s​ 
as follows:

	​​ μ​t​​  =  (1 + FΔ) ​μ​t−Δ​​ + ​√ 
_

 Δ ​σ​ f​ 
2​ ​ ​ϵ​t​​ + ​σ​u​​ ​u​t​​ ( ​Q​t​​ − ​Q​t−Δ​​ )  + o( ​Δ​​ 2​ ) , 

	​ s​t​​  =   ​s​t−Δ​​ + GΔ ​μ​t​​ + ​√ 
_

 Δ ​γ​​ 2​ ​ ​η​t​​ + o( ​Δ​​ 2​ ) .​

Since the model is Gaussian, we use the Kalman Filter to estimate the conditional 
mean ​​​μ ˆ ​​ t​ 

n​  =  피 [ ​μ​t​​ | ​I ​ t​ n,∗​ ]​ and variance ​​Σ​ t​ 
n​  =  피 [ ​​(​μ​t​​ − ​​μ ˆ ​​t​​)​​​ 2​ | ​I​ t​ n,∗​ ]​. The recursive for-

mulas are given by:

	​​​ μ ˆ ​​ t+Δ​ n  ​  =  ​(1 + ΔF)​ ​​μ ˆ ​​ t​ 
n​ + ​K​ t​ 

n​​(​s​t​​ − ​s​t−Δ​​ − ΔG(1 + ΔF) ​​μ ˆ ​​ t​ 
n​)​ + o( ​Δ​​ 2​ ) , 

	​ Σ​ t+Δ​ n  ​  =   ​(1 + ΔF)​​ 2​ ​  ​Σ​ t​ 
n​ ​γ​​ 2​
 ____________  

​Σ​ t​ 
n​ ​G​​ 2​ Δ + ​γ​​ 2​

 ​ + ​σ​ f​ 
2​ Δ + ( ​Q​t+Δ​​ − ​Q​t​​ ) ​σ​ u​ 

2​ + o( ​Δ​​ 2​ ) , 

	​ K​ t​ 
n​  =  ​(1 + ΔF)​ ​  ​Σ​ t​ 

n​ G
 ____________  

​Σ​ t​ 
n​ ​G​​ 2​ Δ + ​γ​​ 2​

 ​ .​

Since ​​u​t​​​ has mean zero, knowing that a Poisson shock arrives does not affect the esti-
mate. However, it does affect its variance by adding a shock of size ​​σ​ u​ 

2​​. Rearranging, 
the previous system can be written as

	​​​ μ ˆ ​​ t+Δ​ n  ​ − ​​μ ˆ ​​ t​ 
n​  =  ​(F − G ​φ​​ I​ (Δ))​ ​​μ ˆ ​​ t​ 

n​ Δ + ​φ​​ I​ (Δ)​(​s​t​​ − ​s​t−Δ​​)​ + o( ​Δ​​ 2​ ) , 

	​ Σ​ t+Δ​ n  ​ − ​Σ​ t​ 
n​  =  ​(​φ​​ II​ (Δ )  + ​σ​ f​ 

2​)​ Δ + ( ​Q​t+Δ​​ − ​Q​t​​ ) ​σ​ u​ 
2​ + o( ​Δ​​ 2​ ) , 
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where

	​ φ​​ I​ (Δ )   ≡   ​ 
​Σ​ t​ 

n​ G
 ____________  

​Σ​ t​ 
2​ ​G​​ 2​ Δ + ​γ​​ 2​

 ​ ,  ​φ​​ II​ (Δ )   ≡ ​ [​ 
​γ​​ 2​ (2F + ​F​​ 2​ Δ )  − ​G​​ 2​ ​Σ​ t​ 

n​
  __________________  

​Σ​ t​ 
n​ ​G​​ 2​Δ + ​γ​​ 2​

 ​ ]​​Σ​ t​ 
n​ .​

Taking the limit as ​n  →  ∞​ (​Δ  →  0​), ​​φ​​ I​​(Δ)​  → ​ Σ​t​​ G/​γ​​ 2​​ and 
​​φ​​ II​​(Δ)​  →  2F ​Σ​t​​ − ​G​​ 2​ ​Σ​ t​ 

2​ / ​γ​​ 2​​, which yield exactly the same laws of motion that 
can be obtained with the continuous time Kalman-Bucy filter. Therefore, the laws of 
motion obtained with discrete sampling are locally consistent with the continuous 
time filtering equations in (A4).32

With the three Lemmas at hand, we conclude the proof to Proposition 1. We use 
the structure of the signal to rewrite the law of motion in terms of innovation repre-
sentation as

(A6)	​ d​​μ ˆ ​​t​​  =  F​​μ ˆ ​​t​​ dt + ​ 
G ​Σ​t​​ _ γ  ​​(​ G _ γ ​​(​μ​t​​ − ​​μ ˆ ​​t​​)​ dt + d ​Z​t​​)​  =  F ​​μ ˆ ​​t​​ dt + ​ 

G ​Σ​t​​ _ γ  ​ d ​​Z ˆ ​​t​​ , ​

where the innovation process is defined as ​d ​​Z ˆ ​​t​​ ≡ ​ G __ γ ​​(​μ​t​​ − ​​μ ˆ ​​t​​)​ dt + d ​Z​t​​​.  
Now we show that ​d ​​Z ˆ ​​t​​​ follows a Wiener process. Applying the law of iterated 
expectations: ​피 [(​μ​t​​ − ​​μ ˆ ​​t​​)  | σ { ​​μ ˆ ​​s​​ : s  ≤  t} ]  =  피​[피​[​​(​μ​t​​ − ​​μ ˆ ​​t​​)​|​ ​I​t​​]​| σ { ​​μ ˆ ​​s​​ : s  ≤  t}]​  

=  피[( ​​μ ˆ ​​t​​ − ​​μ ˆ ​​t​​ )  | σ { ​​μ ˆ ​​s​​ : s ≤ t} ]  =  0​. Thus, ​피[(​μ​t​​ − ​​μ ˆ ​​t​​ ) | σ { ​​μ ˆ ​​s​​ : s ≤ t} ]  =  0 ∀ t​ and 
​d ​Z​t​​​ is a Wiener process. Applying Corollary 8.4.5 of Øksendal (2007), we conclude 
that ​d ​​Z ˆ ​​t​​​ is Weiner too. ∎

PROOF OF PROPOSITION 2:
Let ​​{ ​τ​i​​ }​ i=1​ 

∞ ​​  be the series of dates where the firm adjusts its markup gap and ​​{ ​μ​i​​ }​ i=1​ 
∞ ​​  

the series of reset markup gaps. Given an initial condition ​​μ​0​​​ and a law of motion for 
the markup gaps, the firm’s sequential problem is expressed as follows:

(A7)	​​   max​ 
​{​μ​​τ​i​​​​, ​τ​i​​}​ i=1​ 

∞ ​
​​ 피​[​ ∑ 

i=0
​ 

∞
 ​​ ​e​​ −r​τ​i+1​​​​(− ​ θ ̅ ​ − ​∫ ​τ​i​​

​ 
​τ​i+1​​

​​ ​e​​ −r(t−​τ​i+1​​)​ ​μ​ t​ 
2​ dt)​]​.​

Using the definition of variance, we write the conditional expectation of the 
square of the markup gap at time ​t​ as ​피[ ​μ​ t​ 

2​ | ​I​t​​ ] = 피 ​[ ​μ​t​​ | ​I​t​​ ]​​ 2​ + var[ ​μ​t​​ | ​I​t​​ ]   = ​​ μ ˆ ​​ t​ 
2​ + 

var[ ​μ​t​​ | ​I​t​​ ]   = ​​ μ ˆ ​​ t​ 
2​ + ​Ω​t​​​. Now we apply the Law of Iterated Expectations to take 

32 See online Appendix P, where we follow theorem 1.1, chapter 10 of Kushner and Dupuis (2001).
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expectation given the information set at time ​t​ and use the decomposition above to 
write the problem in terms of estimates ​​​μ ˆ ​​t​​​, ​​Ω​t​​​:

	​ 피​[​ ∑ 
 i=0

​ 
∞

 ​​ ​e​​ −r​τ​i+1​​​​(− ​ θ ̅ ​ − ​∫ ​τ​i​​
​ 
​τ​i+1​​

​​ ​e​​ −r(t−​τ​i+1​​)​ ​​μ ˆ ​​ t​ 
2​ dt)​]​ − 피​[​ ∑ 

i=0
​ 

∞
 ​​ ​∫ ​τ​i​​

​ 
​τ​i+1​​

​​ ​e​​ −rt​​Ω​t​​ dt]​,​

	​ 피​[​ ∑ 
 i=0

​ 
∞

 ​​ ​e​​ −r​τ​i+1​​​​(− ​ θ ̅ ​ − ​∫ ​τ​i​​
​ 
​τ​i+1​​

​​ ​e​​ −r(t−​τ​i+1​​)​ ​​μ ˆ ​​ t​ 
2​ dt)​]​ − 피​[​∫ 

0
​ 
∞

​​ ​e​​ −rt​​Ω​t​​ dt]​,​

	​ 피​[​ ∑ 
 i=0

​ 
∞

 ​​ ​e​​ −r​τ​i+1​​​​(− ​ θ ̅ ​ − ​∫ ​τ​i​​
​ 
​τ​i+1​​

​​ ​e​​ −r(t−​τ​i+1​​)​ ​​μ ˆ ​​ t​ 
2​ dt)​]​ − ​ ​ (​Ω​0​​) 

⏟
​​ 

independent of ​τ​i​​
​​,​

where we use the result that the law of motion of uncertainty is independent of the 
stopping time, thus (​​Ω​0​​​) independent of ​​τ​i​​​. Therefore the term (​​Ω​0​​​) is a sunk cost 
that does not affect the firm’s policies.

Given the stationarity of the problem and the stochastic processes, we apply the 
Principle of Optimality to the sequential problem and express it as a sequence of 
stopping time problems.33 Let ​τ​ be the stopping time associated with the optimal 
decision given the state ​( ​​μ ˆ ​​0​​ , ​Ω​0​​ )​. The stopping time problem is given by

(A8)	​ V(​​μ ˆ ​​0​​, ​Ω​0​​)  = ​ max​ τ​ ​   피​[​∫ 
0
​ 
τ
​​−​e​​ −rt​ ​​μ ˆ ​​ t​ 

2​ dt + ​e​​ −rτ​ ​[−​ θ ̅ ​ + ​max​ 
​μ ′ ​

​ ​  V(​μ ′ ​, ​Ω​τ​​ ) ]​]​,​

subject to the filtering equations. ∎

PROOF OF PROPOSITION 3:
We apply Theorem 2.2 of Øksendal and Sulem-Bialobroda (2007) to obtain suf-

ficient conditions for optimality, which are: (i) HJB equation; (ii) value matching; 
and (iii) smooth pasting condition in each dimension. Using the infinitesimal gener-
ator ​​ from (A1), we obtain the HJB equation:

	​ rV(​μ ˆ ​, Ω )   =  −​​μ ˆ ​​​ 2​ + ​(​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​)​ ​V​Ω​​ (​μ ˆ ​, Ω )  + ​ 1 _ 

2
 ​ ​Ω​​ 2​ ​V​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)

	 + λ​[V​(​μ ˆ ​, Ω + ​σ​ u​ 
2​ / γ)​ − V(​μ ˆ ​, Ω)]​.​

The value-matching condition makes the value of adjusting equal to the value of 
not adjusting at the border of inaction ​​μ ̅ ​(Ω)​: ​V(​μ ̅ ​(Ω), Ω)  =  V(0, Ω) − ​ θ ̅ ​​ , where we 
use the symmetry of the value function to obtain a reset markup of 0. The two 
smooth pasting conditions, one for each state, are given by: ​​V​​μ ˆ ​​​ (​μ ̅ ​(Ω), Ω) = 0​ , and 
​​V​Ω​​ (​μ ̅ ​(Ω), Ω) = ​V​Ω​​ (0, Ω)​. Online Appendix D verifies the assumptions needed to 
apply these sufficient conditions in our problem; and E.3 verifies numerically that 
the smooth pasting conditions for ​​μ ˆ ​​ and ​Ω​ are valid. ∎

33 See equation 7.2 in Stokey (2008). 
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PROOF OF PROPOSITION 4:
The plan to characterize the inaction region is as follows. In the spirit of Alvarez, 

Lippi, and Paciello (2011) , we use Taylor approximations to the value function and 
optimality conditions. We first obtain an inaction region that depends on derivatives 
of the value function. These derivatives introduce a new term—a learning compo-
nent—that does not appear in inaction regions derived in perfect information set-
tings. We approximate this learning component around long-run uncertainty ​​Ω​​ ∗​​ and 
obtain an expression for the inaction region that depends only on uncertainty and 
structural parameters. Lastly, we show that the elasticity of the inaction region with 
respect to uncertainty is lower than unity.

Optimality conditions: From Proposition 3, the optimality conditions are

(A9)	​ rV(​μ ˆ ​, Ω)  =  −​​μ ˆ ​​​ 2​ + ​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​ ​V​Ω​​ (​μ ˆ ​, Ω )  + ​ ​Ω​​ 2​ _ 

2
 ​ ​ V​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)

	 + λ​[V​(​μ ˆ ​, Ω + ​σ​ u​ 
2​ / γ)​ − V(​μ ˆ ​, Ω)]​, 

(A10)	 V(​μ ̅ ​​(Ω)​, Ω)  =  V(0, Ω) − ​ θ ̅ ​, 

​(A11)	 V​μ​​ (​μ ̅ ​​(Ω)​, Ω)  =  0, 

​(A12)	 V​Ω​​ (​μ ̅ ​​(Ω)​, Ω)  = ​ V​Ω​​ (0, Ω).​

Taylor approximation of ​V​ and value matching: For a given level of uncertainty ​
Ω​ , we do a fourth order Taylor expansion on the first argument of ​V​ around 0: 
​V(​μ ˆ ​, Ω)  =  V(0, Ω) + ​V​​​μ ˆ ​​​ 2​​​ (0, Ω)​​μ ˆ ​​​ 2​/ 2 ! + ​var​​​μ ˆ ​​​ 4​​​ (0, Ω) ​​μ ˆ ​​​ 4​ / 4 !​. Odd terms do not 
appear due to the symmetry of the value function around ​zero​. Evaluating at the 
border and combining with (A10), we obtain

(A13)	​ − ​ θ ̅ ​  = ​ V​​​μ ˆ ​​​ 2​​​ (0, Ω)​μ ̅ ​ ​(Ω)​​ 2​/ 2 + ​V​​​μ ˆ ​​​ 4​​​ (0, Ω)​μ ̅ ​ ​(Ω)​​ 4​/24.​

Taylor approximation of ​​V​μ​​​ and smooth pasting: For a given level of uncer-
tainty ​Ω​ , we do a third-order Taylor expansion on the first argument of ​​V​μ​​​ around 0: 
​​V​μ​​ (​μ ˆ ​, Ω)  = ​ V​​​μ ˆ ​​​ 2​​​ (0, Ω)​μ ˆ ​ + ​V​​​μ ˆ ​​​ 4​​​ (0, Ω) ​​μ ˆ ​​​ 3​/ 3!​. Evaluate at the border, multiply both 
sides by ​​μ ̅ ​(Ω)/2​ and combine with (A11) to obtain

(A14)	​ 0  = ​ V​​​μ ˆ ​​​ 2​​​ (0, Ω)​μ ̅ ​ ​(Ω)​​ 2​/2 + ​V​​​μ ˆ ​​​ 4​​​ (0, Ω)​μ ̅ ​ ​(Ω)​​ 4​/12.​

Inaction border: Combine the relationships between the second and fourth deriv-
atives of ​V​ in (A13) and (A14):

(A15)	​​  θ ̅ ​  = ​ μ ̅ ​ ​(Ω)​​ 4​ ​V​​​μ ˆ ​​​ 4​​​ (0, Ω)/24  =  − ​μ ̅ ​ ​(Ω)​​ 2​ ​V​​​μ ˆ ​​​ 2​​​ (0, Ω)/4.​
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From the previous equality, we express the border as a function of ​​V​​​μ ˆ ​​​ 4​​​​:

(A16)	​​ μ ̅ ​(Ω)  = ​​ (24​ θ ̅ ​/ ​V​​​μ ˆ ​​​ 4​​​ (0, Ω))​​​ 
1/4

​.​

Definition of learning component ​​​​ ​μ ̅ ​​ (Ω)​: We want to further characterize 
​​V​​​μ ˆ ​​​ 4​​​ (0, Ω)​. Taking second derivatives of the HBJ in (A10) with respect to ​​μ ˆ ​​ and 
using a Taylor approximation of the second argument of ​​V​​​μ ˆ ​​​ 2​​​​(​μ ˆ ​, Ω + ​σ​ u​ 

2​ / γ)​​ around ​
Ω​, we have: ​r ​V​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω) = −2 − ​ ​Ω​​ 2​ − ​​Ω​​ ∗​​​ 2​ _______ γ ​  ​V​​​μ ˆ ​​​ 2​Ω​​ (​μ ˆ ​, Ω)  + ​ ​Ω​​ 2​ __ 2 ​ ​V​​​μ ˆ ​​​ 4​​​ (​μ ˆ ​, Ω)​ , where 
​​​Ω​​ ∗​​​ 2​  ≡ ​ σ​ f​ 

2​ + λ ​σ​ u​ 
2​​. Lastly, taking the the limit ​r  →  0​, evaluating at ​​μ ˆ ​  =  0​ and 

using the property that the payoff function is bounded in the continuation region:

(A17) ​​ V​​​μ ˆ ​​​ 4​​​ (0, Ω)  = ​  4 _ 
​Ω​​ 2​

 ​​(1 + ​ ​Ω​​ 2​ − ​​Ω​​ ∗​​​ 2​ _ γ  ​  ​ 
​V​​​μ ˆ ​​​ 2​Ω​​ (0, Ω)

 _ 
2
 ​ )​  = ​  4 _ 

​Ω​​ 2​
 ​​(1 + ​​​ ​μ ̅ ​​ (Ω))​.​

Substituting back in (A16) , we express the inaction border as

(A18) ​​ μ ̅ ​(Ω)  = ​​ (​  6​ θ ̅ ​ ​Ω​​ 2​ _ 
1 + ​​​ ​μ ̅ ​​ (Ω)

 ​)​​​ 
1/4

​  with  ​​​ ​μ ̅ ​​ (Ω)  ≡ ​  ​Ω​​ 2​ − ​​Ω​​ ∗​​​ 2​ _ γ  ​  ​ 
​V​​​μ ˆ ​​​ 2​Ω​​ (0, Ω)

 _ 
2
 ​  .​

Note that if ​Ω  = ​ Ω​​ ∗​​ , then ​​​​ ​μ ̅ ​​ (Ω)  =  0​, and the formula for the inaction region 
collapses to fourth root formula in Dixit (1991) and Alvarez, Lippi, and Paciello 
(2011), where ​Ω​ takes the place of ​​σ​f​​​.

Approximation of learning component ​​​​ ​μ ̅ ​​ (Ω)​ around ​​Ω​​ ∗​​: Define ​Γ(Ω) 
≡ ​ V​​​μ ˆ ​​​ 2​, Ω​​ (0, Ω)/2​. To characterize this value, first use the equivalence between the 
second and fourth derivatives in (A15) , then substitute the expressions for ​​​​ ​μ ̅ ​​ (Ω)​ 
in (A17) and ​​μ ̅ ​(Ω)​ in (A18) , and using the definition of ​Γ(Ω)​ write recursively as

(A19)	​ Γ(Ω)  = ​   ∂ _ ∂ Ω ​​[− ​ 
​​( ​ 2 _ 3 ​​ θ ̅ ​)​​​ 

1/2
​
 _______ Ω ​  ​​(1 + Γ(Ω) ​ ​Ω​​ 2​ − ​​Ω​​ ∗​​​ 2​ _ γ  ​)​​​ 

1/2

​]​.​

A Taylor approximation of ​​​​ ​μ ̅ ​​ (Ω)​ around ​​Ω​​ ∗​​ yields: ​​​​ ​μ ̅ ​​ (Ω) = ​​​ ​μ ̅ ​​ (​Ω​​ ∗​)  + 
​​ Ω​ ​μ ̅ ​ ​ (​Ω​​ ∗​) (Ω − ​Ω​​ ∗​) = 2 ​Ω​​ ∗​ Γ(​Ω​​ ∗​) (Ω − ​Ω​​ ∗​) / γ  = ​​ (​ 8 _ 3 ​ ​ ​ θ ̅ ​ __ 

​γ​​ 2​
 ​)​​​ 

1/2
​​(Ω / ​Ω​​ ∗​ − 1)​​ , where we 

have used the following equalities: ​​​​ ​μ ̅ ​​ (​Ω​​ ∗​)  =  0​ , ​​​ Ω​ ​μ ̅ ​ ​ (​Ω​​ ∗​)  =  2 ​Ω​​ ∗​ Γ(​Ω​​ ∗​)/ γ​ , and 

​Γ(​Ω​​ ∗​)  = ​ √ 
__

 ​ 2 _ 3 ​ ​ θ ̅ ​ ​/​​Ω​​ ∗​​​ 2​​. Substituting back, we get the result

(A20)	​​ μ ̅ ​(Ω )   = ​ (6 ​ θ ̅ ​ ​Ω​​ 2​ )​​ 
1/4

​ ​​[1 + ​​(​ 8 _ 
3
 ​ ​ ​ θ ̅ ​ _ 
​γ​​ 2​

 ​)​​​ 
1/2

​​(​ Ω _ 
​Ω​​ ∗​

 ​ − 1)​]​​​ 

−1/4

​ .​

Elasticity: To compute the elasticity of the border to uncertainty, apply logs 

to (A20) and obtain ​ln​μ ̅ ​(Ω) ∝ ​ 1 _ 2 ​ ln Ω − ​ 1 _ 4 ​ ln  ​[ 1 + ​​(​ 8 _ 3 ​ ​ ​ θ ̅ ​ __ 
​γ​​ 2​

 ​)​​​ 
1/2

​​(​ Ω __ 
​Ω​​ ∗​

 ​ − 1)​]​​. Our 

parametric assumptions of small menu costs ​​ θ ̅ ​​ and large signal noise ​γ​ make the 
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quantity ​​​(8 ​ θ ̅ ​/ 3 ​γ​​ 2​)​​​ 1/2​​ very small, therefore, we use ​ln (1 + x ) ≈  x​ for ​x​ small 

to get ​ln ​μ ̅ ​(Ω)  ∝ ​  1 _ 2 ​ ln Ω − ​ 1 _ 4 ​ ​​(​ 8 _ 3 ​ ​ ​ θ ̅ ​ __ 
​γ​​ 2​

 ​)​​​ 
1/2

​​(​ ​e​​ lnΩ​ ___ 
​Ω​​ ∗​

 ​ − 1)​​ , which implies the elasticity: ​

 ≡ 1/2 − ​​(​ θ ̅ ​/ (6 ​γ​​ 2​ ))​​​ 1/2​ Ω / ​Ω​​ ∗​  <  1​.

Smooth pasting condition for ​Ω​: Lastly, we show that the smooth past-
ing condition for ​Ω​ is implied by other conditions. Recall from (A15) that 
​− ​ θ ̅ ​  = ​ μ ̅ ​ ​(Ω)​​ 2​ ​V​​​μ ˆ ​​​ 2​​​ (0, Ω ) / 4​. Write the RHS as

	​​ μ ̅ ​ ​(Ω)​​ 2​ ​ 
​V​​​μ ˆ ​​​ 2​​​ (0, Ω)

 _ 
2
 ​  − ​μ ̅ ​ ​(Ω)​​ 2​ ​ 

​V​​​μ ˆ ​​​ 2​​​ (0, Ω)
 _ 

4
 ​   =  ​μ ̅ ​ ​(Ω)​​ 2​ ​ 

​V​​​μ ˆ ​​​ 2​​​ (0, Ω)
 _ 

2 !
 ​  + ​μ ̅ ​ ​(Ω)​​ 4​ ​ 

​V​​​μ ˆ ​​​ 4​​​ (0, Ω)
 _ 

4 !
 ​

	 =  V(​μ ̅ ​​(Ω)​, Ω) − V(0, Ω),​

where in the first equality we have substituted (A15) , and in the second 
equality we have used (A10) evaluated at ​​μ ̅ ​​. Summarizing, we have that ​− ​ θ ̅ ​  
=  V(​μ ̅ ​​(Ω)​, Ω )  − V(0, Ω)​. Take derivative with respect to ​Ω​ on both sides and obtain 
the smooth pasting condition for ​Ω​ in (A12) , ​0  = ​ V​Ω​​ (​μ ̅ ​​(Ω)​, Ω )  − ​V​Ω​​ (0, Ω)​. ∎

PROOF OF PROPOSITION 5:
Let ​T(​μ ˆ ​, Ω )   ≡  피 [ τ |​μ ˆ ​, Ω]​ denote the expected time for the next price change 

given the current state. The strategy to characterize this statistics consists of four 
steps. First, we establish the HJB equation for ​T(​μ ˆ ​, Ω)​ and its corresponding border 
condition. Second, we do a second-order Taylor approximation of ​T(​μ ˆ ​, Ω)​ around ​
(0, Ω)​ , and substitute both the HJB and the border condition into this approximation. 
Third, we approximate terms that depend on uncertainty around its long-run value ​​
Ω​​ ∗​​. Lastly, we show that if the elasticity of inaction to uncertainty is lower than 
unity, i.e., ​(Ω )  < 1​ , then time for between price adjustments ​T(0, Ω)​ is decreasing 
in uncertainty. 

HJB equation, jump approximation, and border condition: The expected time 
between price changes satisfies

(A21)  	​0  =  1 + T(​μ ˆ ​, Ω)  =  1 + ( ​σ​ f​ 
2​ − ​Ω​​ 2​ ) ​T​Ω​​ (​μ ˆ ​, Ω)/γ + ​Ω​​ 2​ ​T​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)/2

	 + λ​[T​(​μ ˆ ​, Ω + ​σ​ u​ 
2​ / γ)​ − T(​μ ˆ ​, Ω)]​.​

We approximate the uncertainty jump with a linear approximation to the second 
state: ​T​(​μ ˆ ​, Ω + ​σ​ u​ 

2​ / γ)​  ≈  T(​μ ˆ ​, Ω) + ​σ​ u​ 
2​ ​T​Ω​​ (​μ ˆ ​, Ω)/γ​. Substituting the approxima-

tion and using the definition of long-run uncertainty ​​Ω​​ ∗​​:

(A22)	​ 0  =  1 + ​(​​Ω​​ ∗​​​ 2​ − ​Ω​​ 2​)​ ​T​Ω​​ (​μ ˆ ​, Ω)/γ + ​Ω​​ 2​ ​T​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)/2.​
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The value matching condition states that the expected time is equal to 0 
​T(​μ ̅ ​(Ω ) , Ω )   =  0​ at the border of action.

Approximation of ​T(​μ ˆ ​, Ω)​: A second-order Taylor approximation of ​T(​μ ˆ ​, Ω)​ in 

the first state around ​​μ ˆ ​  =  0​ yields ​T(​μ ˆ ​, Ω )   =  T(0, Ω )  + ​ 
​T​​​μ ˆ ​​​ 2​​​ (0, Ω)
 _______ 2  ​ ​​μ ˆ ​​​ 2​​. We evaluate 

this expression at ​(​μ ̅ ​(Ω ) , Ω)​ and we use the border condition to compute ​T(0, Ω)​ , ​

T(0, Ω )   =  − ​ 
​T​​​μ ˆ ​​​ 2​​​ (0, Ω)
 _______ 2  ​​μ ̅ ​ ​(Ω)​​ 2​​. We evaluate the HJB in (A22) at ​(0, Ω)​ and solve 

for ​​ 
​T​​​μ ˆ ​​​ 2​​​ (0, Ω)
 _______ 2  ​  =  − ​ 1 __ 

​Ω​​ 2​
 ​​[1 + ​T​Ω​​ (0, Ω) ​ ​​Ω​​ ∗​​​ 2​ − ​Ω​​ 2​ _______ γ ​ ]​ ​. Substitute both terms into the Taylor 

approximation and rearrange:

(A23)	​ T(​μ ˆ ​, Ω )   = ​ 
​μ ̅ ​ ​(Ω)​​ 2​ − ​​μ ˆ ​​​ 2​

 _ 
​Ω​​ 2​

 ​​ (1 + ​​​ τ​ (Ω))​, ​

where ​​​​ τ​ (Ω )   ≡ ​ T​Ω​​ (0, Ω ) ( ​​Ω​​ ∗​​​ 2​ − ​Ω​​ 2​ )/γ​ measures the effect of uncertainty 
changes on the expected time and ​​​τ​​ ( ​Ω​​ ∗​ )   =  0​.

Approximation around ​​Ω​​ ∗​​: A first-order Taylor approximation of ​​​​ τ​ (Ω)​ around ​​

Ω​​ ∗​​ yields: ​​​​ τ​ (Ω )   =  − ​ 2 ​Ω​​ ∗​ ___ γ  ​ ​T​Ω​​ (0, ​Ω​​ ∗​ ) (Ω − ​Ω​​ ∗​ )​. To characterize ​​T​Ω​​ (0, ​Ω​​ ∗​ )​ ,  
take the partial derivative of (A23) with respect to ​Ω​ and evaluate it at ​(0, ​Ω​​ ∗​ )​ to get 

​​T​Ω​​ ( ​Ω​​ ∗​ , 0 )   =  − ​ 2(1 − ( ​Ω​​ ∗​ ) )  __________ 
​​Ω​​ ∗​​​ 2​

  ​ ​( ​ 
2γ ​(6​ θ ̅ ​)​​ 1/2​

 _________ 
γ + 2 ​(6​ θ ̅ ​)​​ 1/2​

 ​)​​, where ​( ​Ω​​ ∗​ )​ is the elasticity of 

the inaction region at ​​Ω​​ ∗​​. Substitute back in ​​​​ τ​ (Ω )   =  2​(​ Ω __ 
​Ω​​ ∗​

 ​ − 1)​(1 − ( ​Ω​​ ∗​ )) 

× ​(​  2γ ​(6  ​ θ ̅ ​)​​ 1/2​
 _________ 

γ + 2 ​(6  ​ θ ̅ ​)​​ 1/2​
 ​)​​. Finally, we arrive at the result

	​ T(​μ ˆ ​, Ω )   = ​  
​μ ̅ ​ ​(Ω)​​ 2​ − ​​μ ˆ ​​​ 2​

 _ 
​Ω​​ 2​

  ​​[1 + A​(​ Ω _ 
​Ω​​ ∗​

 ​ − 1)​]​, ​

where ​A  ≡  2(1 − ( ​Ω​​ ∗​))​(​  2γ ​(6 ​ θ ̅ ​)​​ 1/2​
 _________ 

γ + 2 ​(6 ​ θ ̅ ​)​​ 1/2​
 ​)​​ is a positive constant since the elasticity ​

( ​Ω​​ ∗​ )​ is lower than unity. Furthermore, A is close to zero for small menu costs and 
large signal noise, as in our calibration.

Decreasing and convex in uncertainty: The expected time between price changes 

is equal to ​T(0, Ω )   = ​  
​μ ̅ ​ ​(Ω)​​ 2​

 _____ 
​Ω​​ 2​

  ​​[1 + A​(​ Ω __ 
​Ω​​ ∗​

 ​ − 1)​]​​. Its first derivative with respect to 
uncertainty is given by

	​​ 
∂ T(0, Ω)

 _ ∂ Ω ​   =   ​ 
​μ ̅ ​ ​(Ω)​​ 2​

 _ 
​Ω​​ 3​

 ​​ (2((Ω )  − 1)​[1 + A​(​ Ω _ 
​Ω​​ ∗​

 ​ − 1)​]​ + A ​ Ω _ 
​Ω​​ ∗​

 ​)​.​
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If A is close to 0 (as it is the case with small menu costs and large signal noise) we 

obtain ​​ 
∂ T(0, Ω) ______ ∂ Ω  ​  =  − 2 ​ 

​μ ̅ ​ ​(Ω)​​ 2​
 _____ 

​Ω​​ 3​
  ​ (1 − (Ω )) < 0​ , which is negative because ​(Ω )  <  1​. 

Finally, since ​(Ω)  <  1​ and ​′ (Ω )  >  0​ , the second derivative is positive:

	​​  
​∂​​ 2​ T(0, Ω)

 _ 
∂ ​Ω​​ 2​

  ​  =  4 ​ 
​μ ̅ ​ ​(Ω)​​ 2​

 _ 
​Ω​​ 4​

  ​​[​(​ 3 _ 
2
 ​ − (Ω))​(1 − (Ω )) + ​ Ω _ 

2
 ​ ′ (Ω )]​  >  0.​ ∎

PROOF OF PROPOSITION 6:
Assume ​λ  =  0​ , initial conditions ​(​​μ ˆ ​​0​​ , Ω)   =  (0, ​Ω​0​​)​ , and a constant inaction 

region at ​​​μ ̅ ​​0​​  ≡ ​ μ ̅ ​(Ω)   = ​ μ ̅ ​( ​Ω​0​​)​. Without loss of generality, we assume the last 
price change occurred at ​t  =  0​. First we derive expressions for two objects that will 
be part of the estimate’s unconditional variance: the state’s unconditional variance ​​
피​0​​ [ ​μ​ τ​ 

2​ ]​ and the estimate’s conditional variance ​​Σ​τ​​​  . All moments are conditional on 
the initial conditions, but we do not make this explicit for simplicity. 

State’s unconditional variance: Since the state evolves as ​d​μ​τ​​  = ​ σ​f​​  d​W​τ​​​ , we 
have that ​​μ​τ​​  = ​ μ​0​​ + ​σ​f​​ ​W​τ​​​ , with ​​W​0​​  =  0​ and ​​μ​0​​  ∼   (0, ​Σ​0​​)​. Using the proper-
ties of the Wiener process, the state’s unconditional variance at time ​τ​ (after the last 
price change at ​t  =  0​) is given by

(A24)	​     ​피​0​​ [ ​μ​ τ​ 
2​ ]   =  ​피​0​​ [ ​( ​μ​0​​ + ​σ​f​​ ​W​τ​​ )​​ 2​ ]

	 =  ​피​0​​ [ ​μ​ 0​ 
2​ + 2 ​μ​0​​ ​σ​f​​ ​피​0​​ [( ​W​τ​​ − ​W​0​​ )  ]  + ​σ​ f​ 

2​ ​피​0​​ [ ​( ​W​τ​​ − ​W​0​​ )​​ 2​ ]

	 =  ​피​0​​ [ ​μ​ 0​ 
2​ ]  + ​σ​ f​ 

2​ τ  = ​ Σ​0​​ + ​σ​ f​ 
2​ τ.​

Estimate’s conditional variance: The conditional forecast variance evolves as  

​d ​Σ​τ​​  = ​ (​σ​ f​ 
2​ − ​ ​Σ​​ 2​ __ 

​γ​​ 2​
 ​)​ dτ​. Assuming an initial condition ​​Σ​0​​​ such that ​​Σ​0​​  >  γ ​σ​f​​​ , the 

general solution to the differential equation is in the family of hyperbolic tangent 
and hyperbolic cotangent. Since the family of hyperbolic tangent does not satisfy the 

boundary condition, the solution is given by ​​Σ​τ​​ = ​σ​f​​ γ coth​[​σ​f​​ γc + ​ 
​σ​f​​ __ γ ​ τ]​​. Evaluating 

at the initial condition, we get ​​Σ​0​​  = ​ σ​f​​ γ coth​[γ ​σ​f​​ c]​​ and therefore the constant is ​

c  = ​   1 ___ ​σ​f​​ γ ​ ​coth​​ −1​​(​ 
​Σ​0​​ ___ ​σ​f​​ γ ​)​​. Using properties of the hyperbolic tangent,

(A25)	​​ Σ​τ​​  = ​ σ​f​​ γ coth​[​coth​​ −1​​(​ 
​Σ​0​​ _ ​σ​f​​ γ ​)​ + ​ 

​σ​f​​
 _ γ ​ τ]​.​

Since ​coth​ is invertible in the positive domain and ​coth (+∞)  =  1​, we confirm that ​​
Σ​τ​​  = ​ Σ​0​​​ at ​τ  =  0​ and ​​lim​τ→∞​​ ​Σ​τ​​  = ​ σ​f​​ γ​. 

Estimate’s unconditional variance: Recall that the estimate follows 
​d​​μ ˆ ​​τ​​  = ​ Ω​τ​​ d​​Z ˆ ​​τ​​​. Since ​λ  =  0​ , uncertainty evolves deterministically as 
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​d ​Ω​τ​​  = ​  1 __ γ ​ (​σ​ f​ 
2​ − ​Ω  ​ τ​ 2​ )​. Given the initial condition ​​​μ ˆ ​​0​​  =  0​ , the solution 

to the forecast equation is ​​​μ ˆ ​​τ​​  = ​ ∫ 0​ 
τ​​ ​Ω​s​​  d​​Z ˆ ​​s​​​. By definition of Itō’s integral 

​​∫ 0​ 
τ​​ ​Ω​s​​  𝑑​​Z ˆ ​​s​​  = ​ lim​​(​τ​i+1​​−​τ​i​​)​→0​​ ​∑ ​τ​i​​​ 

 
 ​​ ​ Ω​​τ​i​​​​​(​​Z ˆ ​​​τ​i+1​​​​ − ​​Z ˆ ​​​τ​i​​​​)​​. The Normality of increments and the 

fact that ​​Ω​​τ​i​​​​​ is deterministic imply that for each ​​τ​i​​​ , ​​Ω​​τ​i​​​​ ( ​​Z ˆ ​​​τ​i+1​​​​ − ​​Z ˆ ​​​t​i​​​​ )​ is Normally dis-
tributed as well. Since the limit of Normal variables is Normal, we have that markup 
gap’s estimate at date ​τ​ , given information set ​​I​0​​​ , is also Normally distributed. Let ​​
​τ​​ ≡ ​피​0​​ [ ​​μ ˆ ​​ τ​ 

2​ ]​ denote the estimate’s unconditional variance, then ​​​μ ˆ ​​τ​​ | ​I​0​​ ∼  (0, ​​τ​​ )​. 
To characterize ​​​τ​​​ , start from its definition and add and subtract ​​μ​t​​​:

(A26)  ​​  ​τ​​  ≡ ​ 피​0​​ [ ​​μ ˆ ​​ τ​ 
2​ ]   =   ​피​0​​ [ ​μ​ τ​ 

2​ ]  + ​피​0​​ [ ​( ​​μ ˆ ​​τ​​ − ​μ​t​​ )​​ 2​ ]  − 2 ​피​0​​ [( ​​μ ˆ ​​τ​​ − ​μ​τ​​ ) ​μ​τ​​ ]

	 =  ​ 피​0​​ [ ​μ​ τ​ 
2​ ]  − ​Σ​τ​​ , ​

where we use ​​피​0​​ [( ​​μ ˆ ​​τ​​ − ​μ​τ​​ ) ​μ​τ​​ ]   = ​ 피​0​​ [ ​( ​​μ ˆ ​​τ​​ − ​μ​τ​​ )​​ 2​ ]   = ​ Σ​t​​​ , implied by the orthog-
onality of the innovation and the forecast: ​​μ​τ​​ − ​​μ ˆ ​​τ​​  ⊥ ​​ μ ˆ ​​τ​​​. Substituting expressions 
(A24) and (A25) into (A26) and using ​​Ω​τ​​  =  γ ​Σ​τ​​​ , we get

(A27)   ​​   ​τ​​ (​Ω​0​​)  =   ​σ​ f​ 
2​ τ + γ​(​Ω​0​​ − ​Ω​τ​​)​

	 =  ​σ​ f​ 
2​ τ + γ​(​Ω​0​​ − ​σ​f​​  coth​(​coth​​ −1​​(​ 

​Ω​0​​ _ ​σ​f​​ ​)​ + ​ 
​σ​f​​

 _ γ ​ τ)​)​ 

	 =  ​σ​ f​ 
2​ τ + ​​ τ​ 

​ ( ​Ω​0​​ ) , ​

with the learning component ​​​ τ​ 
​ (​Ω​0​​)  ≡  γ ​σ​f​​​(​ 

​Ω​0​​ __ ​σ​f​​ ​ − coth​(​coth​​ −1​​(​ 
​Ω​0​​ __ ​σ​f​​ ​)​ + ​ 

​σ​f​​ __ γ ​ τ)​)​​. As ​

coth​ is decreasing and convex, ​​V​τ​​​ is increasing and concave in ​τ​ and ​​Ω​0​​​.

Stopping time distribution: Let ​F(​σ​ f​ 
2​ τ, ​​μ ̅ ​​0​​ )​ be the cumulative distribution of 

stopping times obtained from a problem with perfect information, which considers a 
Brownian motion with unconditional variance of ​​σ​ f​ 

2​ τ​ , initial condition 0, and a sym-
metric inaction region ​[−​​μ ̅ ​​0​​ , ​​μ ̅ ​​0​​ ]​. Following Kolkiewicz (2002) and Alvarez, Lippi, 
and Paciello’s (2011) online Appendix, the density of stopping times is given by

	​ f (τ)  = ​  π _ 
2
 ​ ​x ′ ​(τ) ​ ∑ 

j=0
​ 

∞
 ​​ ​α​j​​ exp​(− ​β​j​​ x(τ))​,

where

	 x(τ )  ≡ ​ 
​σ​ f​ 

2​ τ
 _ 

​​μ ̅ ​​ 0​ 2​
 ​ ,  ​α​j​​  ≡  (2j + 1) ​(−1)​​ j​ ,  ​β​j​​  ≡ ​ (2j + 1)​​ 2​ ​ ​π​​ 2​ _ 

8
 ​ .​

The process ​x(τ)​ is equal to the ratio of volatility and the width of the inaction 
region. Since we assumed constant inaction regions, ​x​ only changes with volatil-
ity. In our case, the estimate’s unconditional variance is given by ​​​τ​​(​Ω​0​​ )​. Using a 
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change of variable, the distribution of stopping times becomes ​F​(​​τ​​(​Ω​0​​), ​​μ ̅ ​​0​​)​​ with 
density ​f (τ | ​Ω​0​​)  =  f ( ​​τ​​ (​Ω​0​​ ), ​​μ ̅ ​​0​​ )​. We apply this formula using ​x  ≡ ​ ​τ​​ (​Ω​0​​)/ ​​μ ̅ ​​ 0​ 2​​ 
and the same sequences of ​​α​j​​​ and ​​β​j​​​.

Hazard rate: Given the stopping time distribution, the conditional hazard rate is 
computed using its definition:

(A28)  ​​  h​τ​​ (​Ω​0​​ )  ≡  ​ 
f (τ | ​Ω​0​​ ) ___________ 

​∫ τ​ 
∞​​ f (s | Ω) ds

 ​

	 =  ​ 
f (​​τ​​ (​Ω​0​​ ), ​​μ ̅ ​​0​​ )  _________________  

​∫ τ​ 
∞​​ f (​​s​​ (​Ω​0​​ ), ​​μ ̅ ​​0​​ ) ds

 ​

	 =  ​ 
​​ τ​ ′ ​ (​Ω​0​​ ) ​∑ j=0​ 

∞ ​​ ​ α​j​​ exp​(− ​β​j​​  ​ 
​​τ​​ ( ​Ω​0​​ ) ______ 

​​μ ̅ ​​ 0​ 2​
 ​ )​
   ________________________________   

​∫ τ​ 
∞​​ ​​ s​ ′ ​ (​Ω​0​​) ​∑ j=0​ 

∞ ​​ ​ α​j​​ exp​(− ​β​j​​  ​ 
​​s​​ ( ​Ω​0​​ ) ______ 

​​μ ̅ ​​ 0​ 2​
 ​ )​ ds

 ​ .​

Let ​​u​j​​ (s) ≡ ​α​j​​ exp​(− ​β​j​​ ​ 
​​s​​ ( ​Ω​0​​ ) ______ 

​​μ ̅ ​​ 0​ 2​
 ​ )​​ , then ​d​u​j​​ (s) ≡ ​ 

− ​α​j​​ ​β​j​​ _____ 
​​μ ̅ ​​ 0​ 2​

 ​ ​ ​ s​ ′ ​ (​Ω​0​​) exp​(− ​β​j​​ ​ 
​​s​​ ( ​Ω​0​​ ) ______ 

​​μ ̅ ​​ 0​ 2​
 ​ )​ ds​. 

Exchanging the summation with the integral, the denominator is equal to

	​​  ∑ 
j=0

​ 
∞

 ​​ ​ 
− ​​μ ̅ ​​ 0​ 2​

 _ 
​β​j​​

 ​ ​ ∫ 
τ
​ 
∞

​​ d​u​j​​ (s) ds  =   ​ ∑ 
j=0

​ 
∞

 ​​ ​ 
− ​​μ ̅ ​​ 0​ 2​

 _ 
​β​j​​

 ​ ​ u​j​​ (s) ​|​ τ​ ∞​  = ​  ∑ 
j=0

​ 
∞

 ​​ ​ 
​​μ ̅ ​​ 0​ 2​

 _ 
​β​j​​

 ​ ​u​j​​ (τ)

	 =  ​​μ ̅ ​​ 0​ 2​  ​ ∑ 
j=0

​ 
∞

 ​​ ​ 
​α​j​​

 _ 
​β​j​​

 ​ exp​(− ​β​j​​ ​ 
​​s​​ (​Ω​0​​ ) _ 

​​μ ̅ ​​ 0​ 2​
 ​ )​

	 =  ​ 
8 ​​μ ̅ ​​ 0​ 2​

 _ 
​π​​ 2​

 ​  ​  ∑ 
j=0

​ 
∞

 ​​ ​ 1 _ ​α​j​​ ​ exp​(− ​β​j​​ ​ 
​​s​​ ( ​Ω​0​​ ) _ 

​​μ ̅ ​​ 0​ 2​
 ​ )​,​

where the last equality uses ​​ 
​α​j​​ __ 
​β​j​​

 ​  = ​ 
(2j + 1) ​(−1)​​ j​

 __________ 
​(2j + 1)​​ 2​ ​ ​π​​ 2​ __ 8 ​

 ​   = ​  8 __ 
​π​​ 2​

 ​ ​(2j + 1)​​ −1​ ​(−1)​​ j​  = ​  8 __ 
​π​​ 2​

 ​ ​ 1 __ ​α​j​​ ​​. 

Substituting back into (A28) , we obtain the conditional hazard rate:

(A29)	​​ h​τ​​ (​Ω​0​​)  = ​   ​π​​ 2​ _ 
8 ​​μ ̅ ​​ 0​ 2​

 ​ Ψ​(​ 
​​τ​​(​Ω​0​​ ) _ 

​​μ ̅ ​​ 0​ 2​
 ​ )​ ​​ τ​ ′ ​ (​Ω​0​​) ,​

where ​Ψ(x)  ≡ ​ 
​∑ j=0​ 

∞ ​​ ​ α​j​​ exp​(− ​β​j​​ x)​
  ______________  

​∑ j=0​ 
∞ ​​ ​  1 _ ​α​j​​ ​ exp​(− ​β​j​​ x)​

 ​​ is defined as in Alvarez, Lippi, and Paciello’s 

online Appendix. The function ​Ψ(x)​ is increasing, first convex, then concave, with 
​Ψ​(0)​  =  0​ and ​​lim​x→∞​​ Ψ​(x)​  =  1​.



324	 AMERICAN ECONOMIC JOURNAL: MACROECONOMICS� JANUARY 2019

Hazard rate’s slope: Taking the derivative of the hazard rate with respect to dura-
tion ​τ​ yields

	​​ h​ τ​ ′​  ∝ ​​​ 
​∂​​ 2​​​ τ​ 

​
 ______ 

∂ ​τ​​ 2​
 ​  

⏟
​​ 

<0

​ ​  ​​ Ψ​(​ ​​τ​​ __ 
​​μ ̅ ​​ 0​ 2​

 ​)​ 

⏟
​​ 

→1

​ ​  + ​​​​(​ 
​σ​ f​ 

2​ + ​ 
∂ ​​ τ​ 

​
 _ ∂ τ ​ _______ 

​​μ ̅ ​​ 0​ 2​
 ​ )​​​ 

2

​ 


​​ 

>0

​ ​  ​​​ Ψ ′ ​​(​ 
​​τ​​ __ 
​​μ ̅ ​​ 0​ 2​

 ​)​ 

⏟
​​ 

→0

​ ​ .​

For small ​τ​ , ​Ψ​’s derivative is very large and the second positive term dominates; as ​τ​ 
increases, the function ​Ψ​ and its derivative ​​Ψ ′ ​​ converge to one and zero, respectively, 
and therefore the first term—which is negative—dominates. By the Intermediate 
Value Theorem, there exists a ​​τ​​ ∗​ (​Ω​0​​)​ such that the slope is 0. Taking the cross- 
derivative with respect to uncertainty and using the equivalence between derivatives 
stated above:

​​ 
∂ ​h​ τ​ ′ ​ ____ ∂ ​Ω​0​​

 ​  ∝ ​​ Ψ​(​ ​​τ​​ ___ 
​​μ ̅ ​​ 0​ 2​

 ​)​ 

⏟

​​ 

→1

​ ​ ​​​ 
​∂​​ 3​​​ τ​ 

​
 _ 

∂ ​τ​​ 2​∂ ​Ω​0​​
 ​ 

⏟

​​ 

<0

​ ​  + ​​​Ψ  ″ ​​(​ 
​​τ​​ ___ 
​​μ ̅ ​​ 0​ 2​

 ​)​ 


​​ 

→​0​​ −​

​ ​ ​​​​ (​ 
​σ​ f​ 

2​ + ​ 
∂ ​​ τ​ 

​
 _ ∂ τ ​ ________ 

​​μ ̅ ​​ 0​ 2​
 ​ )​​​ 

2

​ ​ 
∂ ​​ τ​ 

​
 _ ∂ ​Ω​0​​
 ​ ​ 1 ___ 
​​μ ̅ ​​ 0​ 2​

 ​  


​​ 

>0

​ ​ ​

	​ + ​​​Ψ ′ ​​(​ 
​​τ​​ ___ 
​​μ ̅ ​​ 0​ 2​

 ​)​ 

⏟

​​ 

→0

​ ​ ​  1 ___ 
​​μ ̅ ​​ 0​ 2​

 ​​
⎡
 ⎢ 

⎣

​​​ 
​∂​​ 2​​​ τ​ 

​
 _ 

∂ ​τ​​ 2​
 ​ ​ 
∂ ​​ τ​ 

​
 _ ∂ ​Ω​0​​
 ​ 


​​ 

<0

​ ​  + ​​​ 
2 ​σ​ f​ 

2​
 ____ 

​​μ ̅ ​​ 0​ 2​
 ​ ​ 

​∂​​ 2​​​ τ​ 
​
 _ ∂ τ∂ ​Ω​0​​
 ​​(1 + ​(​ 

​Ω​0​​ _ ​σ​f​​ ​ − 1)​​(γ − ​ 
∂ ​​ τ​ 

​
 _ ∂ ​Ω​0​​
 ​)​)​    



​​  

>0

​ ​
⎤
 ⎥ 

⎦

​.​

Since ​​Ψ ′ ​​ and ​​Ψ ″ ​​ converge to zero as ​τ​ increases, the first term dominates. Then the 
slope of the hazard rate becomes more negative as initial uncertainty increases. This 
means that the cutoff ​​τ​​ ∗​ (​Ω​0​​)​ is decreasing with ​​Ω​0​​​. ∎

PROOF OF PROPOSITION 7:
The strategy for the proof is as follows. We derive the Kolmogorov Forward 

Equation (KFE) of the joint ergodic distribution using the adjoint operator, and we 
find its zeros to characterize the ergodic distribution.

Joint distribution: Let ​f (​μ ˆ ​, Ω) : ​[− ∞, ∞]​ × ​[​σ​f​​ , ∞]​  →  핉​ be the ergodic den-
sity of markup estimates and uncertainty. Define the region:

(A30)  ​°  ≡ ​ {(​μ ˆ ​, Ω) ∈ [−∞, ∞]  × [​σ​f​​ , ∞] such that |​μ ˆ ​| < ​μ ̅ ​​(Ω)​ and ​μ ˆ ​ ≠ 0}​,​

where ​​μ ̅ ​​(Ω)​​ is the border of inaction. Thus, ​°​ is equal to the continuation region 
except ​​μ ˆ ​  ≠  0​. Then the function ​f​  has the following properties. First, ​f​ is con-
tinuous. Second, ​f​ is zero outside the continuation region. Given ​Ω​ , ​f (x, Ω) =  0  
∀  x ∉ (−​μ ̅ ​(Ω), ​μ ̅ ​(Ω))​. In particular, it is 0 at the borders of the inaction region: 
​f (−​μ ̅ ​(Ω), Ω)  =  0  =  f (​μ ̅ ​(Ω), Ω), ∀ Ω​. Third, ​f​ is a density: ​∀ (​μ ˆ ​, Ω) ∈ °​ , we 
have that ​f (​μ ˆ ​, Ω)  ≥  0​ and ​​∫ Ω≥​σ​f​​​ 

 
 ​​ ​ ∫ |​μ ˆ ​|≤​μ ̅ ​(Ω)​ 

 
 ​​  f (​μ ˆ ​, Ω) d​μ ˆ ​dΩ  =  1​. Fourth, for any 

​(​μ ˆ ​, Ω) ∈ °​ , ​f​ is a 0 of the Kolmogorov Forward Equation (KFE): ​​A​​ ∗​ f (​μ ˆ ​, Ω) = 0​. 
Substituting the adjoint ​​A​​ ∗​​ in (A2) the KFE becomes

​− ​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​ ​f​Ω​​ (​μ ˆ ​, Ω ) + ​ 2Ω _ γ  ​ f (​μ ˆ ​, Ω) + ​ ​Ω​​ 2​ _ 

2
 ​ ​ f​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω) + λ​[f ​(​μ ˆ ​, Ω − ​σ​ u​ 

2​ / γ)​ − f (​μ ˆ ​, Ω)]​  =  0.​
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With a first-order Taylor approximation, we approximate: ​f ​(​μ ˆ ​, Ω − ​σ​ u​ 
2​ / γ)​  

≈  f (​μ ˆ ​, Ω) − ​σ​ u​ 
2​  ​f​Ω​​ (​μ ˆ ​, Ω)/ γ​. Substituting, collecting terms, and using the definition 

of long-run ​​Ω​​ ∗​​ , the KFE becomes

(A31)	​​  2Ω _ γ  ​  f (​μ ˆ ​, Ω) + ​ ​Ω​​ 2​ − ​​Ω​​ ∗​​​ 2​ _ γ  ​  ​f​Ω​​ (​μ ˆ ​, Ω) + ​ ​Ω​​ 2​ _ 
2
 ​  ​ f​​​μ ˆ ​​​ 2​​​ (​μ ˆ ​, Ω)  =  0, ​

with two border conditions:

(A32)	​ ∀ Ω,  f (|​μ ̅ ​(Ω) | , Ω)  =  0; ​ ∫ Ω≥​σ​f​​
​ 

 

 ​​ ​ ∫ |​μ ˆ ​|≤​μ ̅ ​(Ω)​ 
 

 ​​  f (​μ ˆ ​, Ω) d​μ ˆ ​dΩ  =  1.​

Marginal density of uncertainty: Let ​h​(Ω)​ : ​[​σ​f​​ , ∞]​  →  핉​ be the uncertainty’s 
ergodic density; it solves the following KFE:

(A33) ​​ A​​ ⁎​ h  = ​  2Ω _ γ  ​ h​(Ω)​ + ​ 
​Ω​​ 2​ − ​​​Ω​ ​​​

⁎ 2​
 _ γ  ​ ​h​Ω​​​(Ω)​  =  0,  with ​  lim​ 

Ω→∞
​​ h​(Ω)​  =  0.​

Factorization of ​f​: For each ​(​μ ˆ ​, Ω)​ , guess that we can write ​f​ as a product of the 
ergodic density of uncertainty ​h​ and a function ​g​ as follows:

(A34)	​ f (​μ ˆ ​, Ω)  =  h(Ω) g(​μ ˆ ​, Ω).​

Substituting (A34) into (A31) and rearranging,

​(A35)      0  = ​  2Ω _ γ  ​ h​(Ω)​g​(​μ ˆ ​, Ω)​ + ​ 
​Ω​​ 2​ − ​​​Ω​ ​​​

⁎ 2​
 _ γ  ​​[​h​Ω​​​(Ω)​g​(​μ ˆ ​, Ω)​ + h​(Ω)​​g​Ω​​​(​μ ˆ ​, Ω)​]​ 

	 + ​ ​Ω​​ 2​ _ 
2
 ​ h​(Ω)​ ​g​​​μ ˆ ​​​ 2​​​​(​μ ˆ ​, Ω)​ 

	 =  g​(​μ ˆ ​, Ω)​ ​​​[​ 2Ω _ γ  ​h​(Ω)​ + ​ 
​Ω​​ 2​ − ​​​Ω​ ​​​

⁎ 2​
 _ γ  ​  ​h​Ω​​​(Ω)​]​   


​​  

KFE for h in (A33)

​ ​ 

	 + h​(Ω)​​[​ 
​Ω​​ 2​ − ​​​Ω​ ​​​

⁎ 2​
 _ γ  ​ ​g​Ω​​​(​μ ˆ ​, Ω)​ + ​ ​Ω​​ 2​ _ 

2
 ​ h​(Ω)​ ​g​​​μ ˆ ​​​ 2​​​​(​μ ˆ ​, Ω)​]​ 

	 = ​ 
​Ω​​ 2​ − ​​​Ω​ ​​​

⁎ 2​
 _ γ  ​ ​g​Ω​​​(​μ ˆ ​, Ω)​ + ​ ​Ω​​ 2​ _ 

2
 ​ ​ g​​​μ ˆ ​​​ 2​​​​(​μ ˆ ​, Ω)​,​

where in the second equality we regroup terms and recognize the KFE for ​h​ , in the 
third equality we set the KFE of ​h​ equal to 0 because it is uncertainty’s ergodic den-
sity and divide by ​h​ as it is assumed to be positive. To obtain the border conditions 
for ​g​ , substitute (A34) into (A32):

	​ ∀ Ω,  h(Ω) g(|​μ ̅ ​(Ω) | , Ω)  =  0; ​ ∫ Ω≥​σ​f​​
​ 

 

 ​​ ​ ∫ |​μ ˆ ​|≤​μ ̅ ​(Ω)​ 
 

 ​​  h(Ω) g(​μ ˆ ​, Ω) d​μ ˆ ​dΩ  =  1.​
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Since ​h  >  0​ , we can eliminate it in the first condition and get a border condition for ​
g​: ​g(|​μ ̅ ​(Ω)| , Ω)  =  0​. Then assume that for each ​Ω​ , ​g​ integrates to one, and apply it 
into the second condition:

	​​ ∫ Ω≥​σ​f​​
​ 

 

 ​​  h(Ω)​[​∫ |​μ ˆ ​|≤​μ ̅ ​(Ω)​ 
 

 ​​  g(​μ ˆ ​, Ω) d​μ ˆ ​]​ dΩ  = ​ ∫ Ω≥​σ​f​​
​ 

 

 ​​  h(Ω) dΩ  =  1.​

Therefore, by the factorization method, the ergodic distribution ​h​ is also the mar-
ginal density ​h(Ω)  = ​ ∫ |​μ ˆ ​|≤​μ ̅ ​(Ω)​ 

 
 ​​  f (​μ ˆ ​, Ω) d​μ ˆ ​​, and ​g​ is the density of markup gap esti-

mates conditional on uncertainty ​g(​μ ˆ ​, Ω) = f (​μ ˆ ​|Ω)  =  f (​μ ˆ ​, Ω)/h(Ω)​.

Renewal density: The renewal density is the distribution of firm uncertainty con-
ditional on a price adjustment. For each unit of time, the fraction of firms that adjust 
at a given uncertainty level is given by three terms (the terms multiplied by two take 
into account the distributions’ symmetry around a zero markup gap):

	​ r(Ω) ∝ 2f (​μ ̅ ​(Ω), Ω) ​ 
​σ​ f​ 

2​ − ​Ω​​ 2​
 _ γ  ​ + 2| ​f​​μ ˆ ​​​ (​μ ̅ ​(Ω), Ω) | ​ ​Ω​​ 2​ _ 

2
 ​

	 +  λ ​∫ −​μ ̅ ​​(Ω−​σ​ u​ 
2​/γ)​​ 

​μ ̅ ​​(Ω−​σ​ u​ 
2​/γ)​ ​​   f ​(μ, Ω − ​ 

​σ​ u​ 
2​
 _ γ ​)​ I​(​μ ˆ ​  > ​ μ ̅ ​​(Ω)​)​ dμdΩ.​

The first term counts price changes of firms at the border of the inaction region 
that suffer a deterministic decrease in uncertainty; by the border condition 
​f (​μ ̅ ​(Ω), Ω)  =  0​ , this term is equal to zero. The second term counts price changes 
of firms at the border of the inaction region that suffer either a positive or negative 
change in the markup gap estimate (hence, the absolute value). This term is the 
only one different from zero. The last term counts price changes due to jumps in 
uncertainty. These firms had an uncertainty level of ​Ω − (​σ​ u​ 

2​/γ)​ right before the 
jump; under the assumption that ​​μ ̅ ​(Ω)​ is increasing in uncertainty, this term is also 
equal to zero since all markup estimates that were inside the initial inaction region 
remain inside the new inaction region. Substituting the factorization of ​f​ , we obtain 
a simplified expression for the renewal distribution in terms of ​g​:

(A36)	​ r(Ω)/h(Ω)  ∝  | ​g​​μ ˆ ​​​ (​μ ̅ ​(Ω), Ω) | ​Ω​​ 2​.​

Characterize ​g​ when ​Ω  = ​ Ω​​ ∗​​: If ​Ω  = ​ Ω​​ ∗​​ , the markup gap condi-
tional distribution ​g​ can be further characterized. From (A35) , we obtain ​​
g​​μ​​ 2​​​ (​μ ˆ ​, ​Ω​​ ∗​ )  =  0​ , which together with the border condition ​g(​μ ̅ ​( ​Ω​​ ∗​), ​Ω​​ ∗​) = 0​ and 
​​∫ −​μ ̅ ​(​Ω​​ ∗​)​ 

​μ ̅ ​(​Ω​​ ∗​) ​​ g(​μ ˆ ​, ​Ω​​ ∗​) d​μ ˆ ​  =  1​ determine the solution. To solve this equation for ​g  ∈  ℂ​ , 
integrate twice with respect to ​​μ ˆ ​​: ​g(​μ ˆ ​, ​Ω​​ ∗​)  =  |C|​μ ˆ ​ + |D|​. To determine the con-
stants ​|C|​ and ​|D|​ , we use the border conditions:

	​ 0  =  g(​μ ̅ ​( ​Ω​​ ∗​), ​Ω​​ ∗​)  =  |C|​μ ̅ ​( ​Ω​​ ∗​ )  + |D | ,

	 1  =   ​∫ −​μ ̅ ​(​Ω​​ ∗​)​ 
​μ ̅ ​(​Ω​​ ∗​)

 ​​ g(​μ ˆ ​, ​Ω​​ ∗​ ) dμ  = ​ ∫ −​μ ̅ ​(​Ω​​ ∗​)​ 
​μ ̅ ​(​Ω​​ ∗​)

 ​​ ( | C|​μ ˆ ​ + |D |  ) dμ

	 =  ​(​ 
|C|

 _ 
2
 ​ ​​ μ ˆ ​​​ 2​ + |D|​μ ˆ ​)​​​|​​​ −​μ ̅ ​(​Ω​​ ∗​)​ 

​μ ̅ ​(​Ω​​ ∗​) ​   =  2​μ ̅ ​( ​Ω​​ ∗​ )  | D | .​
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From the second equality, we get that ​D  =  1/2​μ ̅ ​(​Ω​​ ∗​ )​. Then, substituting in the first 
equality: ​|C |   =  − |D |  /​μ ̅ ​( ​Ω​​ ∗​ )   =  − 1/2​μ ̅ ​ ​( ​Ω​​ ∗​ )​​ 2​​. Lastly, since ​​g​​μ​​ 2​​​ (​μ ˆ ​, ​Ω​​ ∗​ )  ≥  0​:

(A37)	​ g(μ, ​Ω ˆ ​)   = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​

​  1 _ 
2​μ ̅ ​( ​Ω​​ ∗​ ) ​​(1 + ​ 

​μ ˆ ​
 _ 

​μ ̅ ​( ​Ω​​ ∗​ ) ​)​

​ 

if ​μ ˆ ​  ∈  [−​μ ̅ ​(​Ω ˆ ​), 0]
​    

​  1 _ 
2​μ ̅ ​( ​Ω​​ ∗​ ) ​​(1 − ​ 

​μ ˆ ​
 _ 

​μ ̅ ​( ​Ω​​ ∗​ ) ​)​

​ 

if ​μ ˆ ​  ∈  (0, ​μ ̅ ​(​Ω ˆ ​) ]
 ​​ .​

This is a triangular distribution in the ​​μ ˆ ​​ domain for each ​Ω​.

Results around ​Ω  ≈ ​ Ω​​ ∗​​: By the previous result and using continuity, the ratio of 
the renewal to marginal distributions near ​​Ω​​ ∗​​ is equal to

(A38)	​​ 
r(Ω)

 _ 
h(Ω) ​  = ​ |​g​​μ ˆ ​​​ (​μ ̅ ​(Ω), Ω)|​ ​Ω​​ 2​  = ​   ​Ω​​ 2​ _ 

2​μ ̅ ​ ​(Ω)​​ 2​
 ​  = ​   1 ___________  

2피 [ τ | (0, Ω ) ] ​ .​

Since the inaction region’s elasticity to uncertainty is lower than unity, this ratio is 
increasing in uncertainty. ∎

PROOF OF PROPOSITION 8:
Proposition 1 in Alvarez, Le Bihan, and Lippi (2014) derives this result for the 

case of fixed uncertainty ​​Ω​t​​  =  σ​. Here we extend their proof for the case of sto-
chastic uncertainty; most steps are analogous to theirs.

Recall that markup gap estimates follow ​d​​μ ˆ ​​t​​  = ​ Ω​t​​ d​B​t​​​. Using Itō’s Lemma, we 
have that ​d( ​​μ ˆ ​​ t​ 

2​ )  = ​ Ω​ t​ 
2​ dt + 2​μ​t​​ ​Ω​t​​ d​B​t​​​. Therefore, ​d( ​​μ ˆ ​​ t​ 

2​ )  − ​Ω​ t​ 
2​ dt​ is a martingale. 

Let initial conditions be ​( ​μ​0​​ , ​Ω​0​​ )   =  (0, ​Ω ̃ ​)​. Then using the Optional Stopping 
(or Doob’s Sampling) Theorem, which says that the expected value of a martin-
gale at a stopping time is equal to the expected value of its initial value (0 in our 

case), we have that ​피​[​​μ ˆ ​​ τ​ 
2​ − ​∫ 0​ 

τ​​ ​Ω​ s​ 
2​ ds | (​μ​0​​ , ​Ω​0​​ )  =  (0, ​Ω ̃ ​)]​  = ​ μ​ 0​ 

2​ − ​∫ 0​ 
0​​ ​Ω​ s​ 

2​ ds  =  0​. 
Rearranging, we obtain

(A39)	​ 피​[​​μ ˆ ​​ τ​ 
2​ |( ​μ​0​​ , ​Ω​0​​ )  =  (0, ​Ω ̃ ​)]​  =  피​[​∫ 

0
​ 
τ
​​ ​Ω​ s​ 

2​ ds | ( ​μ​0​​ , ​Ω​0​​ )  =  (0, ​Ω ̃ ​)]​.​

Now we integrate both sides over different initial states. Since at the stopping time ​​
μ​0​​  =  0​ always, we only need to integrate over initial uncertainty ​​Ω ̃ ​​ using the renewal 
density ​r(Ω)​ , i.e., the distribution of uncertainty of adjusting firms. Integrating the 
LHS of (A39), we obtain the unconditional (or cross-sectional) variance of price 
changes (recall that price changes are equal to markup gap estimates at adjustment, 
and that the mean price change is 0):

(A40) ​​ ∫ 
0
​ 
∞

​​ 피​[​​μ ˆ ​​ τ​ 
2​ |( ​μ​0​​ , ​Ω​0​​ )  =  (0, ​Ω ̃ ​)]​ r(​Ω ̃ ​) d​Ω ̃ ​  =  피 [ ​(Δp)​​ 2​ ]   =  var[(Δp ) ] .​
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Notice that by the law of large numbers, the cross-sectional average of uncertainty 
is the same as the average uncertainty of one firm for every initial condition if time 
is sufficiently long. Applying this notion,

  ​  피​[​Ω​​ 2​]​  = ​  lim​ 
T→∞

​​ ​ 
​∫ 0​ 

T​​ ​Ω​ s​ 
2​𝑑s
 _______ 

T
 ​   = ​  lim​ n→∞​​ ​ 

​n​​ −1​ ​∑ i=0​ 
n  ​​ ​∫ ​τ​i−1​​​ 

​τ​i​​ ​​ ​ Ω​ s​ 
2​𝑑s
  _______________  

​n​​ −1​ ​∑ i=0​ 
n  ​​ ​∫ ​τ​i−1​​​ 

​τ​i​​ ​​  1 𝑑s
 ​ 

	 = ​ 
​lim​n→∞​​ ​n​​ −1​ ​∑ i=0​ 

n  ​​ ​∫ 0​ 
​τ​i​​−​τ​i−1​​​​ ​Ω​ ​τ​i−1​​+s​ 

2 ​  𝑑s
   ___________________________   

​lim​n→∞​​ ​n​​ −1​ ​∑ i=0​ 
n  ​​ ​∫ 0​ 

​τ​i​​−​τ​i−1​​​​ 1 𝑑s
 ​  

	 = ​ 
피​[​∫ 0​ 

τ​​ ​Ω​ s​ 
2​ 𝑑s]​
 __________ 

피​[​∫ 0​ 
τ​​ 𝑑s]​

 ​   = ​ 
​∫ 0​ 

∞​​ 피​[​∫ 0​ 
τ​​ ​Ω​​ 2​ ds | ​(​μ​0​​, ​Ω​0​​)​  = ​ (0, ​Ω ̃ ​)​]​r​(​Ω ̃ ​)​d​Ω ̃ ​

    ___________________________________    
​∫ 0​ 

∞​​ 피​[τ  | ​(​μ​0​​, ​Ω​0​​)​  = ​ (0, ​Ω ̃ ​)​]​r​(​Ω ̃ ​)​ d​Ω ̃ ​
 ​ .​

The denominator is equal to the mean expected time ​피 [ τ ]​ , thus the integral of the 
RHS of (A39) becomes

(A41)	​​ ∫ 
0
​ 
∞

​​ 피​[​∫ 
0
​ 
τ
​​ ​Ω​ s​ 

2​ ds | ( ​μ​0​​ , ​Ω​0​​ )  =  (0, ​Ω ̃ ​)]​ r(​Ω ̃ ​) d​Ω ̃ ​  =  피 [ τ  ] 피 [ ​Ω​​ 2​ ] .​

Together (A40) and (A41) generate the desired result: ​피 [ ​Ω​​ 2​ ]   =  var [ Δp ]  / 피 [ τ ]​.  
We conclude by showing the relationship with long-run uncertainty ​​Ω​​ ∗​​. Using 
properties of the compound Poisson process, we have that in the cross-section, 
​피 [ ​σ​ u​ 

2​ d​Q​t​​ ]   = ​ σ​ u​ 
2​ λdt​. Therefore, the first and second comments of the population’s 

average uncertainty are related in the following way:

(A42)	​ d 피 [ ​Ω​t​​ ]   = ​ 
​σ​ f​ 

2​ + λ ​σ​ u​ 
2​ − 피 [ ​Ω​ t​ 

2​ ]
  _______________ 

​γ​​ 2​
 ​  dt  = ​ 

​( ​Ω​​ ∗​ )​​ 2​ − 피 [ ​Ω​ t​ 
2​ ]
  _____________ 

​γ​​ 2​
 ​  dt.​

Since the ergodic mean satisfies ​d 피 [ ​Ω​t​​ ]   =  0​ , it implies that ​피 [ ​Ω​ t​ 
2​ ]   = ​ ( ​Ω​​ ∗​ )​​ 2​​. ∎

COMBINED PROPOSITIONS 9, 10, AND 11:
This is a general proof that shows all the results in Proposition 9, 10, and 11. 

Assume the economy is in steady state and it is hit with a one-time, unanticipated 
monetary shock of size ​δ  >  0​. Simultaneously, idiosyncratic uncertainty increases 
by ​κ피 [ Ω]​ for all firms. Assume firms only observe a fraction ​α  ∈  [0, 1]​ of the 
monetary shock. Then the total output effect ​(δ, α, κ)  ≡ ​ ∫ 0​ 

∞​​ ​​Y ̃ ​​s​​  ds​ is the sum of 
inaction errors ​(δ, α, κ)​ and forecast errors ​(κ)​:

​	 (δ, α, κ)  =  (δ, α, κ)  + (1 − α ) δ(κ),  

	 (δ, α, κ)  =  −​∫ ​μ ˆ ​, Ω​ 
 

 ​​  w(​μ ˆ ​ − αδ, Ω + κ피[Ω ] , (1 − α)δ) dF(​μ ˆ ​, Ω),

	 w(​μ ˆ ​, Ω, φ)  =  피​[​∫ 
0
​ 
τ
​​ ​​μ ˆ ​​t​​ dt + w(0, ​Ω​τ​​ , φ ​e​​ −​∫ 0​ 

t​​ ​Ω​s​​/γ ds​ )  | ( ​​μ ˆ ​​0​​ , ​Ω​0​​ )   =  (​μ ˆ ​, Ω)]​,

	 (κ)  =   ​∫ 
Ω

​ 
 

 ​​ 피​[​∫ 
0
​ 
∞

​​ ​e​​ −​∫ 0​ 
t​​ ​Ω​s​​/γ ds​ dt | ​Ω​0​​  =  Ω + κ피 [ Ω]]​ dh(Ω ) ,​
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subject to the stochastic processes for (biased) estimates and uncertainty:

	​ d​​μ ˆ ​​t​​  =  − ​Ω​t​​ ​ 
​e​​ −​∫ 0​ 

t​​​Ω​s​​/γds​ ________ γ ​  dt + ​Ω​t​​ d ​​Z ˆ ​​t​​ ;   d ​Ω​t​​  = ​ 
​σ​ f​ 

2​ − ​Ω​ t​ 
2​
 _ γ  ​ dt + ​ 

​σ​ u​ 
2​
 _ γ ​ d ​Q​t​​ .​

Disclosed shock ​(α  =  1)​ and no uncertainty shock ​(κ  =  0)​: Pricing mistakes 
after the first price change are equal to 0, ​w(0, Ω, 0)  =  0​, and the total output 
response is given by

(A43)	​ (δ, 1, 0)  =  I(δ, 1, 0)  =  − ​∫ ​μ ˆ ​, Ω​ 
 

 ​​  w(​μ ˆ ​ − δ, Ω) dF(​μ ˆ ​, Ω ) ,

(A44)	 w(​μ ˆ ​, Ω, 0 )  =  피​[​∫ 
0
​ 
τ
​​ ​​μ ˆ ​​t​​ dt | ( ​​μ ˆ ​​0​​ , ​Ω​0​​ )  =  (​μ ˆ ​, Ω)]​.​

Undisclosed shock ​(α  ∈  [0, 1))​ and no uncertainty shock ​(κ  =  0)​: Up to a first 
order, the total output effect is given by

(A45)	​ (δ, α, 0)  ≥  δ​(​ 
α피 [ τ ]

 _ 
6
 ​  + (1 − α)​ _​)​,​

where the RHS is the first order effect of a monetary shock without heterogeneity ​

(λ  =  0)​ and ​​ _​  ≡ ​ √ 

_____

 ​ 
​γ​​ 2​ 피 [ τ] _____ 

var [ Δp] ​ ​​ is a function of price statistics.

Undisclosed shock ​(α  ∈  [0, 1))​ and aggregate uncertainty shock ​(κ > 0)​: For all ​
κ  >  0​ , the forecast errors ​(κ)​ are bounded below by

(A46)	​ (κ)  ≥  ξ​(​ 
피 [ τ ] 피 ​[Ω]​​ 2​ ​(1 + κ)​​ 2​

  ________________  
var [ Δp] ​ )​​ _​  ≥  ξ(​(1 + κ)​​ 2​ ) ​ _​,​

where the expression in the last inequality refers to the case without heterogeneity ​
(λ  =  0)​. The function ​ξ​ is decreasing, ​​lim​x→1​​ ξ​(x)​  =  1​, and ​​lim​x→∞​​ ξ​(x)​  =  0​. ∎

PROOF OF COMBINED PROPOSITIONS 9, 10, AND 11:
We first identify the initial conditions and the stochastic processes for an aug-

mented firm state that includes forecast errors: ​( ​​μ ˆ ​​t​​ , ​Ω​t​​ , ​φ​t​​ )​. Then we characterize 
recursively the two components of the output effect, the inaction errors and the 
forecast errors. Finally, we show the properties of the output effect for particular 
sets of parameters.

State’s initial conditions: A positive monetary shock of size ​δ  >  0​ translates as a 
downward jump in markups ​​μ​0​​  = ​ μ​−1​​ − δ​. If the firms only incorporate a fraction ​
α​ of the shock, then we have that markup estimates are adjusted by ​​​μ ˆ ​​0​​  = ​​ μ ˆ ​​−1​​ − αδ​.  
From Proposition 1 we have that, in the absence of the monetary shock, forecast 
errors are distributed Normally as ​​​μ ˆ ​​t​​ − ​μ​t​​  = ​​ φ ̃ ​​t​​  ∼   (0, γ ​Ω​t​​ )​. Therefore, at ​t  =  0​ 
before the idiosyncratic shocks are realized, we adjust the mean to take into account 
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the knowledge about the monetary shock; the variance is not adjusted as all firms 
are affected in the same way: ​​​φ ̃ ​​0​​  ∼   ((1 − α) δ, γ ​Ω​0​​ )​. Notice that we can decom-
pose ​​​φ ̃ ​​0​​  = ​ φ​0​​ + ​​φ ˆ ​​ 0​ 

  ​​ with ​​φ​0​​  =  (1 − α) δ​ and ​​​φ ˆ ​​0​​  ∼   (0, γ ​Ω​0​​ )​. We will continue 
with this decomposition for all ​t​; a deterministic bias and the stochastic unbiased 
part of the forecast error. Finally, by the uncertainty shock, ​​Ω​0​​  = ​ Ω​−1​​ + κ피 [ Ω]​.

State’s stochastic process: Now we derive the laws of motion for ​( ​​μ ˆ ​​t​​ , ​Ω​t​​ , ​φ​t​​ )​ 
for ​t  >  0​. From equation (A6) , together with the definition of forecast errors, we 
write the process for markup gap estimates in terms of forecast errors instead of its 
innovations’ representation:

	​ d​​μ ˆ ​​t​​  = ​ Ω​t​​​(​ 
​μ​t​​ − ​​μ ˆ ​​t​​ _ γ  ​ dt + d ​Z​t​​)​  =  − ​Ω​t​​ ​ 

​​φ ̃ ​​t​​ _ γ ​ dt + ​Ω​t​​ d ​Z​t​​  =  − ​Ω​t​​ ​ 
​φ​t​​ _ γ ​ dt + ​Ω​t​​ d ​​Z ˆ ​​t​​ ,​

where in the last step we define the innovation process as in (A6). By con-
struction, the forecast error only has a drift term ​d ​φ​t​​  =  X(ω) dt​. By the defini-
tion of the forecast error and the stochastic process of markup gap, ​0  =  피 [d​μ​t​​ ]   
=  − 피 [ d​​φ ˆ ​​t​​ ]  + 피 [ d​​μ ˆ ​​t​​ ]   =  − 피 [ d​​φ ˆ ​​t​​ ]  − ​Ω​t​​ ​ 

​φ​t​​ __ γ ​ dt​ and thus we have that 

​d​φ​t​​  =  − ​ 
​Ω​t​​ __ γ ​ ​φ​t​​ dt​. The process for uncertainty is the same as (A5).

Recursive pricing mistakes: Let ​​τ​i​​​ the time of the ​i​ th price change of firm with 
current state ​(​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​ )​ and define the function ​w​ as

	​ w(​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​ )  ≡  피​[​∫ ​τ​i​​
​ 
∞

​​ ​​μ ˆ ​​t​​  dt | ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​]​,​

subject to the stochastic process for the state. This function measures the stream of 
future pricing mistakes by the firm, which will produce output deviations from a 
frictionless case. Note that we can write ​w​ recursively:

 ​ w( ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​ )   =  피​[​∫ ​τ​i​​
​ 
∞

​​ ​​μ ˆ ​​t​​  dt | ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​]​ 

	 =  피​[​​∫ ​τ​i​​
​ 
​τ​i+1​​

​​ ​​μ ˆ ​​t​​  dt + 피​[​∫ ​τ​i+1​​
​ 

∞
 ​​ ​​μ ˆ ​​t​​  dt |0, ​Ω​​τ​i+1​​​​ , ​φ​​τ​i+1​​​​]​|​ ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​]​ 

	 =  피​[​∫ ​τ​i​​
​ 
​τ​i+1​​

​​ ​​μ ˆ ​​t​​  dt + w​(0, ​Ω​​τ​i+1​​​​ , ​φ​​τ​i+1​​​​)​ | ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​]​ 

	 =  피​[​∫ 
0
​ 
​τ​i+1​​−​τ​i​​

​​ ​​μ ˆ ​​t​​  dt + w​(0, ​Ω​​τ​i+1​​−​τ​i​​​​ , ​φ​​τ​i+1​​−​τ​i​​​​)​ | ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​]​ 

	 =  피​[​∫ 
0
​ 
τ
​​ ​​μ ˆ ​​t​​  dt + w​(0, ​Ω​τ​​ , ​φ​τ​​)​ |( ​​μ ˆ ​​0​​ , ​Ω​0​​ , ​φ​0​​ )  =  ( ​​μ ˆ ​​​τ​i​​​​ , ​Ω​​τ​i​​​​ , ​φ​​τ​i​​​​ )]​,​

where in the second step we split the time between two intervals ​[ ​τ​i​​ , ​τ​i+1​​ ]​ and 
​[ ​τ​i+1​​ ,  ∞]​ and use the strong Markov property of our process and the firms pol-
icy function; in the third step we substitute the definition of ​w​ ; in the fourth step 
we transform the time dimension; and in the fifth step we define ​τ  = ​ τ​i+1​​ − ​τ​i​​​ ,  
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which is equal to ​τ  =  inf​{t : | ​​μ ˆ ​​t​​ |  ≥ ​ μ ̅ ​( ​Ω​t​​ )}​​. We arrive to ​w( ​​μ ˆ ​​0​​ , ​Ω​0​​ , ​φ​0​​ )   
=  피​[​∫ 0​ 

τ​​ ​​μ ˆ ​​t​​ dt + w​(0, ​Ω​τ​​ , ​φ​τ​​)​]​​.

Area under the impulse-response: Define ​​F​t​​ (​μ ˆ ​, Ω, φ)​ as the cross-sectional den-
sity over ​(​μ ˆ ​, Ω, φ)​ in period ​t​ after the aggregate shocks and ​​F​t0​​ (​μ ˆ ​, Ω, φ| ​​μ ˆ ​​0​​ , ​Ω​0​​ )​ the 
transition probability with initial conditions ​( ​​μ ˆ ​​0​​ , ​Ω​0​​ , ​φ​0​​ )​. From the definition of ​
(δ, α, κ)  ≡  − ​∫ 0​ 

∞​​ ​​Y ̃ ​​t​​  dt​ , we have that

​(δ, α, κ)  =  −​∫ 
0
​ 
∞

​​​[​∫ ​μ ˆ ​, Ω​ 
 

 ​​​ (​​μ ˆ ​​t​​ + ​​φ ̃ ​​t​​)​ d​F​t​​ ( ​​μ ˆ ​​t​​ , ​Ω​t​​ , ​​φ ̃ ​​t​​ )]​ dt

	 =  −​∫ 
0
​ 
∞

​​​[​∫ ​μ ˆ ​, Ω​ 
 

 ​​ ​ (​​μ ˆ ​​t​​ + ​φ​t​​)​ d​F​t​​ ( ​​μ ˆ ​​t​​ , ​Ω​t​​ , ​φ​t​​ )]​ dt

	 =  ​​− ​∫ 
0
​ 
∞

​​​[​∫ ​μ ˆ ​, Ω​ 
 

 ​​ ​​ μ ˆ ​​t​​ d​F​t​​ ( ​​μ ˆ ​​t​​ , ​Ω​t​​ , ​φ​t​​ )]​ dt  
 
  


​​   

average inaction error (δ, α, κ)

​ ​   + ​​​∫ 
0
​ 
∞

​​​[​∫ ​μ ˆ ​, Ω​ 
 

 ​​ ​ φ​t​​ d​F​t​​ (​​μ ˆ ​​t​​, ​Ω​t​​, ​φ​t​​ )]​ dt  
 
  


​​  

average forecast error (κ)

​ ​​ ,

where in the second step we use our result that the output deviation at ​t​ is equal to 
the average of markup gap estimates plus forecast errors across firms at each time ​t​ , 
and the forecast error can be decomposed between the mean and the unbiased part 
that cancels in the aggregate. The average inaction error is computed as

​(δ, α, κ)  ≡  −​∫ 
0
​ 
∞

​​​[​∫ ​μ ˆ ​, Ω​ 
 

 ​​ ​​ μ ˆ ​​t​​ d​F​t0​​​(​​μ ˆ ​​t​​, ​Ω​t​​, ​φ​t​​ | ​​μ ˆ ​​0​​, ​Ω​0​​, (1 − α) δ)​ dF( ​​μ ˆ ​​0​​, ​Ω​0​​ )]​ dt

	 =  −​∫ ​μ ˆ ​, Ω​ 
 

 ​​  w​(​​μ ˆ ​​−1​​ − αδ, ​Ω​−1​​ + κ피 [ Ω ] , (1 − α) δ)​ dF(​​μ ˆ ​​−1​​, ​Ω​−1​​ ), ​

where we exchange the expectation and integral operators, and use the definition of ​

w​. Note that ​d​φ​t​​  =  − ​ 
​Ω​t​​ __ γ ​ dt​ and ​​φ​t​​  =  (1 − α) δ ​e​​ −​∫ 0​ 

t​​ ​Ω​s​​/γ ds​​. Therefore, the average 
forecast error is equal to ​(1 − α) δ(κ)​, where

	​ (κ)  ≡ ​ ∫ ​Ω​−1​​
​ 

 

 ​​  피​[​∫ 
0
​ 
∞

​​ ​e​​ −​∫ 0​ 
t​​ ​Ω​s​​/γ ds​ dt| ​Ω​0​​  = ​ Ω​−1​​ + κ피 [ Ω]]​ dh(Ω ) .​

Disclosed shock ​(α  =  1)​ and no uncertainty shock ​(κ  =  0)​: By the symmetry 
of the Brownian motion, we have that ​w(0, κ, 0)  =  0​. Therefore, for ​α  =  0​ , we 
have that we only need to keep track of the first price change:

	​ w(​μ ˆ ​, Ω, 0 )  =  피​[​∫ 
0
​ 
τ
​​ ​​μ ˆ ​​t​​  dt  | ( ​​μ ˆ ​​0​​ , ​Ω​0​​ )  =  (​μ ˆ ​, Ω)]​.​

Undisclosed shock ​(α  ∈  [0, 1 ))​ and no uncertainty shock ​(κ  =  0)​: We first 
derive a lower bound for the forecast errors and then for the average inaction 
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error. First we obtain a lower bound for forecast errors ​(0)​. Since ​f (x)  = ​ e​​ x​​ and 
​f (x)  = ​ x​​ 2​​ are convex functions, we have that

 ​​ ∫ ​Ω​−1​​
​ 

 

 ​​  피​[​∫ 
0
​ 
∞

​​ ​e​​ −​∫ 0​ 
t​​ ​Ω​s​​/γ ds​ dt]​ dh(Ω)  ≥ ​ ∫ 

0
​ 
∞

​​ ​e​​ −​∫ 0​ 
t​​​ 
​∫ ​Ω​−1​​​ 

 
 ​​ 피​[​Ω​s​​]​ dh(Ω)

  ___________ γ ​ ds​ dt

	 =  ​∫ 
0
​ 
∞

​​ ​e​​ −​ 
피​[Ω]​

 _ γ  ​t​ dt

	 =   ​ 
γ
 _ 피 [ Ω] ​  ≥ ​ 

γ
 _ 

​√ 
_

 피 [ ​Ω​​ 2​ ] ​
 ​  = ​ √ 

_

 ​ 
​γ​​ 2​ 피 [ τ ]

 _ 
var [ Δp] ​ ​.​

Therefore, ​ (0)  ≥ ​ √ 

_____

 ​ 
​γ​​ 2​ 피 [ τ] _____ 

var [ Δp] ​ ​  = ​  _​​ , where ​​ _​​ is a function of price statis-

tics. Our result in Proposition 8, applied to the case without heterogeneity 

(​λ  =  0​) implies that ​​√ 

_____

 ​ 
​γ​​ 2​ 피 [ τ] _____ 

var [ Δp] ​ ​  = ​  
γ

 _ ​σ​f​​ ​​. Therefore, the lower bound in the RHS is 

equal to the average forecast error in the case without heterogeneity.

Now we find a lower bound for inaction errors in two steps. First, given that the 
policy is independent from the forecast error, and these only increase the inaction 
error, we consider the modified inaction errors ​​​​ ∗​ (δ, α, 0)​:

	​​ ​​ ∗​ (δ, α, 0)  =  −​∫ ​μ ˆ ​, Ω​ 
 

 ​​ ​ w​​ ∗​ (​μ ˆ ​ − αδ, Ω) dF(​μ ˆ ​, Ω),

	​ w​​ ∗​ (​μ ˆ ​, Ω)  =  피​[​∫ 
0
​ 
τ
​​ ​​μ ˆ ​​t​​ dt | ( ​​μ ˆ ​​0​​ , ​Ω​0​​)  =  (​μ ˆ ​, Ω)]​,

	 d​​μ ˆ ​​t​​  =   ​Ω​t​​ d​​Z ˆ ​​t​​ ;  d ​Ω​t​​  = ​ 
​σ​ f​ 

2​ − ​Ω​ t​ 
2​
 _ γ  ​ dt + ​ 

​σ​ u​ 
2​
 _ γ ​ d​Q​t​​ , ​

where ​I(δ, α, 0)  ≥ ​ ​​ ∗​ (δ, α, 0)​. The second step consists in showing that 

​​I​​ ∗​ (δ, α, 0)  ≥  δ ​ 
피 [ τ] ____ 6 ​​ . Notice that what matters for computation of output effects 

is the effective size of the shock, given by ​​δ ˆ ​  ≡  αδ​. Therefore, ​​I​​ ∗​ (δ, α, 0 )   
= ​ I​​ ∗​ (​δ ˆ ​, 1, 0)​. Let ​v(Ω, ​δ ˆ ​)​ be the effect of the monetary shock conditional on uncer-

tainty ​Ω​ , it is equal to ​v(Ω, ​δ ˆ ​)  =  − ​ 
​∫ ​μ ˆ ​, Ω​ 

 
 ​​ ​ w​​ ∗​ (​μ ˆ ​ − ​δ ˆ ​, Ω) g(​μ ˆ ​|Ω ) d​μ ˆ ​

  ___________________  피 [ τ | Ω] ​ ​. It can be verified that 

this function is decreasing in ​Ω​. As ​Ω  →  ∞​, price changes are mostly driven by 
the Brownian process affecting markup estimates (the drift generated by forecast 
errors and the uncertainty jumps loose importance). Therefore, we can apply the 
result in Alvarez, Le Bihan, and Lippi (2014) for a shock of size ​​δ ˆ ​​ and obtain: 
​v​(Ω, ​δ ˆ ​)​  ≥ ​ lim​Ω→∞​​ v​(Ω, ​δ ˆ ​)​  = ​ δ ˆ ​/6​. Recalling that the joint distribution can be 
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decomposed as ​f (​μ ˆ ​, Ω)  =  g(​μ ˆ ​|Ω) h(Ω)​ , we can write the modified inaction errors 
as

	​​ ​​ ∗​ (1, ​δ ˆ ​, 0)  =   ​∫ 
Ω

​ 
 

 ​​ 피 [ τ | Ω ] v(Ω, ​δ ˆ ​) dh(Ω)

	 =  ​피​​ h​​[피 [ τ | Ω]]​ ​피​​ h​​[피 [ v(Ω, ​δ ˆ ​)  | Ω]]​ + co​v​​ h​​[피 [ τ | Ω ] , v(Ω, ​δ ˆ ​)]​

	 ≥   ​피​​ h​​[피 [ τ | Ω]]​ ​피​​ h​​[피 [ v(Ω, ​δ ˆ ​)  | Ω]]​

	 ≥   ​피​​ r​​[피 [ τ | Ω]]​ ​피​​ h​​[피 [ v(Ω, ​δ ˆ ​)  | Ω]]​

	 ≥  피 [ τ] ​ ​δ ˆ ​ _ 
6
 ​ .​

In the second line we apply the definition of covariance, the third line uses that the 
covariance is positive, the fourth line computes expectations with the renewal dis-
tribution (that puts more weight on high uncertainty), and in the last step we use the 
equality ​피 [ τ ]  = ​피​​ r​​[피 [ τ | Ω]]​​ and the fact that ​v​(Ω, ​δ ˆ ​)​  ≥ ​ lim​Ω→∞​​ v​(Ω, ​δ ˆ ​)​ = ​δ ˆ ​/6​. 

Summarizing, the inaction errors are bounded below by: ​(δ, α, 0)  ≥ ​ 
αδ  피 [ τ] _____ 6 ​​ .

Undisclosed shock ​(α ∈ [0, 1))​ and aggregate uncertainty shock ​(κ > 0)​:  
Now we characterize an upper bound of the rate of converge of the forecast error 
after a monetary shock. First notice that

	​ (κ)  ≥ ​ ∫ 
0
​ 
∞

​​ ​e​​ −​∫ 0​ 
t​​ ​ 
​∫ ​Ω​−1​​​ 

 
 ​​  피​[​Ω​s​​|​Ω​0​​=​Ω​−1​​+κ피[Ω]]​ dh(Ω)

   ______________________________  γ ​  ds​ dt  = ​ ∫ 
0
​ 
∞

​​ ​e​​ −​∫ 0​ 
t​​ ​y​s​​/γ   ds​ dt,​

where we define ​​y​s​​  ≡ ​ ∫ ​Ω​−1​​​ 
 
 ​​  피​[​Ω​s​​ | ​Ω​0​​  = ​ Ω​−1​​ + κ피[Ω]]​ dh(Ω)  = ​ 피​i​​ [ ​Ω​ s​ 

i ​ ]​ with ini-
tial condition ​​y​0​​  =  피 [ Ω ] (1 + κ)​. Using uncertainty’s law of motion together with 
the result in Proposition 8, we have that

​d​y​s​​  = ​ 피​i​​​[d​Ω​ s​ 
i ​]​ =  피​[​ 

​σ​ f​ 
2​ − ​​(​Ω​ s​ 

i ​)​​​ 
2
​
 __________ γ ​  ds + ​ 

​σ​ u​ 
2​
 _ γ ​ d​Q​ s​ 

i ​]​  = ​ γ​​ −1​​(​σ​ f​ 
2​ + λ ​σ​ u​ 

2​ − 피​[​​(​Ω​ s​ 
i ​)​​​ 2​]​)​ ds

	 =  ​γ​​ −1​​(​ 
var [ Δp]

 _ 피 [ τ] ​  − ​피​i​​​[​​(​Ω​ s​ 
i ​)​​​ 

2
​]​)​ ds  ≤ ​ γ​​ −1​​(​ 

var [ Δp]
 _ 피 [ τ] ​  − ​y​ s​ 

2​)​ ds,​

where the inequality is due to Jensen’s inequality, ​​피​i​​ [ ​​(​Ω​ s​ 
i ​)​​​ 2​ ]   ≥ ​ 피​i​​ ​[ ​Ω​ s​ 

i ​ ]​​ 2​​. 

Let ​​​y ̃ ​​t​​​ be the solution to ​d​​y ̃ ​​s​​  = ​ γ​​ −1​​(​ 
var [ Δp] _____ 피 [ τ] ​  − ​​y ̃ ​​ s​ 2​)​ ds​ with initial condition 

​​​y ̃ ​​0​​  = ​ y​0​​ t​ , given by ​​​y ̃ ​​s​​  = ​ √ 

_____

 ​ 
var [ Δp] _____ 피 [ τ] ​  ​ coth​(​coth​​ −1​​(​√ 

_____

 ​ 
피 [ τ] _____ 

var [ Δp] ​ ​ ​y​0​​)​ + ​√ 

_____

 ​ 
var [ Δp] _____ 
​γ​​ 2​ 피 [ τ]

 ​ ​ s)​​. 

Since ​d ​y​s​​  ≤  d ​​y ̃ ​​t​​​ for all ​t​ and both start at the same value, ​​​y ̃ ​​s​​​ is always above ​​y​s​​​ and we get 

​(κ)  ≥ ​ ∫ 0​ 
∞​​ ​e​​ −​∫ 0​ 

t​​ ​​y ̃ ​​s​​/γ ds​ dt​. Substituting the solution for ​​​y ̃ ​​s​​​ and after several steps of 
algebra, we obtain the lower bound for forecast errors:

	​ (κ)  ≥  ξ​(​ 
피 [ τ ] 피 ​[Ω]​​ 2​ ​(1 + κ)​​ 2​

  ________________  
var [ Δp] ​ )​ ​ _​,​
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where ​​ _​  ≡ ​ √ 

_____

 ​ 
​γ​​ 2​ 피 [ τ] _____ 

var [ Δp] ​ ​​ and ​ξ( ​y​0​​ )  ≡ ​ ∫ 0​ 
∞​​ ​ 

sinh​(​coth​​ −1​​(​√ 

_____

 ​ 
피 [ τ] _____ 

var [ Δp] ​ ​ ​y​0​​)​ + s)​

   ______________________  
sinh​(​coth​​ −1​​(​√ 

_____

 ​ 
피 [ τ] _____ 

var [ Δp] ​ ​ ​y​0​​)​)​

 ​  ds​ is 

decreasing, ​​lim​x→1​​ ξ​(x)​ = 1​, ​​lim​x→∞​​ ξ​(x)​ = 0​. For ​λ = 0​ , the bound becomes  

​ξ​(​(1 + κ)​​ 2​)​ ​ _​​. ∎

PROOF OF PROPOSITION 12:
Let ​Π​(​μ​t​​)​​ be the flow profits as a function of the markups ​​μ​t​​​. A second order 

approximation to the profit function around the frictionless markup ​​μ​​ ⁎​​ yields

(A47) ​ Π​(​μ​t​​)​ = Π​(​μ​​ ⁎​)​ + ​ 
​Π  ″ ​​(​μ​​ ⁎​)​

 _ 
2
 ​ ​​ (​μ​​ ⁎​)​​​ 2​ ​​(​ 

​μ​t​​ − ​μ​​ ⁎​
 ______ 

​μ​​ ⁎​
 ​ )​​​ 

2

​  =  Π​(​μ​​ ⁎​)​ + ​ 
​Π  ″ ​​(​μ​​ ⁎​)​

 _ 
2
 ​ ​​ (​μ​​ ⁎​)​​​ 2​ ​μ​ t​ 

2​,​

where ​​μ​t​​  ≡  log​(​μ​t​​ / ​μ​​ ⁎​)​​ is the realized markup-gap. Given the CES demand and 
the constant returns to scale technology, we can express the expected losses that 
arise from frictions (both nominal and informational) relative to the frictionless 
case, expressed as a fraction of revenue, are given by

	​ Δ  ≡  피​[​ 
Π​(​μ​t​​)​ − Π​(​μ​​ ⁎​)​

  ____________ 
R​(​μ​​ ⁎​)​

 ​ ]​  = ​  1 _ 
2
 ​​(​ 

​Π ″ ​​(​μ​​ ⁎​)​​​(​μ​​ ⁎​)​​​ 2​
  ___________ 

Π​(​μ​​ ⁎​)​
 ​ )​​ 

Π​(​μ​​ ⁎​)​
 _ 

R​(​μ​​ ⁎​)​
 ​피​[​μ​ t​ 

2​]​ 

	 = ​  1 _ 
2
 ​η​(1 − η)​​ 1 _ η ​ ​μ​ t​ 

2​  = ​ 
1 − η

 _ 
2
 ​ 피​[​μ​ t​ 

2​]​.​

To characterize the expectation, note that for each firm ​z​:

 ​ 피​[​μ​t​​ ​(z)​​ 2​]​  =  피​[​​(​μ​t​​ (z )  − ​​μ ˆ ​​t​​ (z )  + ​​μ ˆ ​​t​​ (z))​​​ 
2
​]​

	 =  ​​피​[​​(​μ​t​​ (z )  − ​​μ ˆ ​​t​​ (z))​​​ 
2
​]​ 

 
 


​​  

=γ피​[​Ω​t​​(z)]​

​ ​  + ​​2피​[​(​μ​t​​ (z )  − ​​μ ˆ ​​t​​ (z))​ ​​μ ˆ ​​t​​ (z)]​  
 
  


​​  

=0

​ ​  + ​​피​[​​μ ˆ ​​t​​ ​(z)​​ 2​]​ 
 
 

⏟
​​ 

=var​[​​μ ˆ ​​t​​(z)]​

​ ​

	 = γ피​[​Ω​t​​ (z)]​ + var​[​​μ ˆ ​​t​​ (z)]​.​

For the first term, we have substituted the definition of uncertainty, for the second 
term, we have used the law of the iterated expectations to show that the average fore-
cast error in the population is equal to zero (since each estimate is unbiased), and 
for the third term, we have used that the average markup estimate is equal to zero. 
Therefore the total expected profit losses are given by

(A48)	​ Δ  = ​ 
1 − η

 _ 
2
 ​​

[
​ ​ γ피​[​Ω​t​​]​ 

 
 

⏟
​​ 

Loss from info. friction

​​ + ​ ​ var​[​​μ ˆ ​​t​​]​ 
 
 

⏟
​​ 

Loss from pricing friction

​​
]

​.​
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Finally, to obtain an upper bound for the term related to information frictions, note 
that using the Jensen inequality and Proposition 8, we have that

(A49)	​ γ피​[​Ω​t​​]​  ≤  γ ​√ 
_

 피​[​Ω​ t​ 
2​]​ ​  =  γ ​√ 

_

 ​ 
var [ Δp]

 _ 피 [ τ] ​ ​  .​ ∎
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