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Abstract

We develop a framework to study the impact of idiosyncratic uncertainty on aggregate economic

outcomes. Agents learn about idiosyncratic characteristics, which receive infrequent, large, and per-

sistent shocks. In this environment, idiosyncratic uncertainty moves in cycles, fluctuating between

periods of high and low uncertainty; with additional fixed adjustment costs, the frequency and size

of agents’ actions also fluctuates in cycles. We apply our framework to study pricing behavior and

the propagation of nominal shocks. We show, analytically and quantitatively, that idiosyncratic un-

certainty cycles amplify the real e↵ects of nominal shocks, by generating cross-sectional dispersion

in firms’ adjustment frequencies and in learning speeds.
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1 Introduction

Firms operate in constantly changing environments. Fresh technologies become available, new products

and marketing campaigns get developed, unfamiliar markets are targeted, workers are replaced, and

supply chains get disrupted. These idiosyncratic changes are recurrent, large, and persistent, and

under many scenarios, firms do not have all the information needed to assess their impact. This lack

of perfect knowledge generates uncertainty that a↵ects firms’ actions. Moreover, responding to the

new conditions may entail large adjustment costs for firms. In this context, many questions arise

naturally: How do firms process and respond to uncertain changes in their environment? Is it possible

to identify the degree of frictions from the data? Does firm-level uncertainty matter for aggregate

economic outcomes?

To address these questions, we develop a general framework where agents have imperfect infor-

mation about persistent idiosyncratic conditions that change infrequently and by large amounts—

fat-tailed risk—and must pay a fixed cost to make choices. The model is very general and can be

applied to a wide array of settings. For example, it can be used to analyze portfolio choices subject

to adjustment fees and uncertain trends in asset returns, or workers’ occupational choices subject to

mobility costs and uncertain productivity growth. We apply the framework to study firms’ pricing

decisions and the impact of firm-level uncertainty on the propagation of aggregate nominal shocks.

We model price-setting firms that face menu costs to adjust their prices and imperfect informa-

tion about their idiosyncratic productivity. We assume that firms receive persistent shocks to their

productivity that are fat-tailed, where only the timing of the shocks is known, but not the exact

realization. For example, a firm knows a worker or its management has been replaced, but it does

not know how productive it will be under the new regime. Firms use Bayes’ law to estimate their

persistent productivity as in Jovanovic (1979), and we call the conditional variance of the estimates

firm uncertainty. In this setup, firm-level uncertainty cycles arise. Uncertainty cycles are defined

as recurrent patterns in which firm uncertainty spikes up when a fat-tailed productivity shock hits,

and then fades with learning until the arrival of the next shock, when uncertainty jumps again. Due

to fixed adjustment costs, the pricing policy takes the form of an inaction region that moves with

uncertainty; as a consequence, the frequency and the size of price changes also fluctuate in cycles.

With a continuum of ex-ante identical firms, the uncertainty cycles endogenously generate dispersion

in adjustment frequency as firms churn between high and low levels of uncertainty: high uncertainty

firms change their prices more often than low uncertainty firms. Additionally, the uncertainty cycles

generate dispersion in firms’ learning dynamics: high uncertainty firms incorporate new information

more quickly into their forecasts than low uncertainty firms.

Our key prediction is that idiosyncratic uncertainty cycles amplify the real e↵ects of nominal shocks.

This result is robust to a variety of specifications, including scenarios with partial knowledge about

the size of the nominal shock and the introduction of aggregate uncertainty shocks. Amplification

arises from various forces generated by the uncertainty cycles, two of which are new in the literature:

(i) dispersion in times until the first price adjustment, (ii) dispersion in learning dynamics, and (iii)

a positive correlation between adjustment frequency and the degree of selection e↵ect. When we
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calibrate the model to match a variety of micro-price statistics, we obtain an output response that is

twice as large as the benchmark in Golosov and Lucas (2007), where pricing decisions are identical

across firms. Moreover, the output e↵ects can be up to seven times larger if the monetary shock

is only partially observed, in which case firms make forecast errors about the monetary shock. All

these results highlight the role of firm-level uncertainty, especially its cross-sectional distribution, in

assessing the e↵ectiveness of monetary policy.

Our analysis proceeds in three steps. First, we show how uncertainty cycles arise endogenously

from firms’ learning processes in an environment with fat-tailed risk. The departure from the Gaussian

world entails important computational challenges, but we keep the Bayesian learning tractable by

assuming that the timing of shocks is known. Importantly, both the information friction and the fat-

tailed shocks are needed to generate heterogeneity in uncertainty in the steady state. Each ingredient

on its own is not enough, however. With the information friction alone, all firms eventually track

their productivity with equal and constant precision. Álvarez, Lippi and Paciello (2011) study that

case and conclude that the economy collapses to the standard menu cost model of Golosov and Lucas

(2007) with homogeneous firms and large monetary neutrality. The novelty in our setup is that such

stabilization is prevented by the fat-tailed shocks, and heterogeneity persists in steady state. With fat-

tailed shocks alone, firms face an almost constant probability of adjustment as in Gertler and Leahy

(2008) or Midrigan (2011). By incorporating the information friction, our model captures several

features from the micro-pricing data that cannot be explained by those benchmarks, and reveals new

mechanisms that result in larger monetary non-neutrality.

Uncertainty cycles are empirically relevant. Bachmann, Elstner and Sims (2013) and Bachmann,

Elstner and Hristov (2017b) find substantial cross-sectional heterogeneity and time-variation in mea-

sures of firm-idiosyncratic uncertainty using survey data for German firms. Similar evidence is docu-

mented for the US in Senga (2016) by merging survey data from the I/B/E/S and Compustat. The

evidence reveals persistent di↵erences in the degree of firm-level uncertainty, not only in the cross-

section, but also across time within the same firm. Regarding fat-tailed risk a↵ecting firms, Klenow

and Malin (2011) and Alvarez, Le Bihan and Lippi (2016) document positive excess kurtosis in the

price change distribution for US and French CPI data, respectively. Further evidence for underly-

ing fat-tailed risks is found in many firm variables beyond the price change distribution. Davis and

Haltiwanger (1992) provide clear evidence of leptokurtic changes in employment in US Census data.

As further suggestive evidence, we document fat-tailed distributions for the growth rates of profits,

employment, sales, and capital in Compustat firms between 1980 and 2015.1

The second step in the analysis focuses on the e↵ects that uncertainty cycles have on firm pricing

decisions. The answer is not obvious, as there are two opposing e↵ects of uncertainty. More uncertain

firms have wider inaction regions which makes prices less flexible—“option value e↵ect” in Dixit

(1991)—but they also change their beliefs in a more volatile way, which makes prices more flexible—

“volatility e↵ect”. We show analytically that the latter e↵ect dominates; thus higher uncertainty

yields higher adjustment frequency and bigger price changes. As a result of the positive relationship

1These variables are clearly endogenous objects and not structural shocks. Nevertheless, in a large set of models,
these variables are related to firms’ productivity. See Online Appendix Section A.1.
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between uncertainty, frequency, and size, the firm uncertainty cycles imply adjustment cycles: periods

of frequent adjustment and large price changes alternate with periods of infrequent adjustment and

small price changes, i.e. price changes get clustered instead of evenly spread across time. This implies

that the probability to adjust conditional on no past adjustment—the hazard rate—falls with time.

Moreover, the magnitude of the information frictions pins down the hazard rate’s slope. To understand

these results, note that the inaction regions refer to productivity estimates and not the true realizations.

This makes a di↵erence because after a firm takes action, its judgment might turn out to be wrong,

leading it to take further action again very soon. This contrasts sharply with standard menu cost

models, where the probability of adjustment right after a price change is tiny and increases over time.

There is empirical evidence that supports the predictions of our price-setting model. Bachmann,

Born, Elstner and Grimme (2017a) document a positive correlation between firm-level uncertainty

and price adjustment for German firms. Campbell and Eden (2014) document that price changes in

the retail sector are more extreme and dispersed for recently changed prices compared to older prices.

Finally, decreasing hazard rates are documented for various datasets, countries and time periods.2

In the third and last part of the analysis, we study the e↵ects of uncertainty cycles in the propaga-

tion of monetary shocks. For this purpose, we consider a Bewley–type economy with a continuum of

ex-ante identical firms that face menu costs and idiosyncratic uncertainty cycles. This economy fea-

tures a non-degenerate steady state distribution where a Pareto principle operates: a small proportion

of firms has high uncertainty but is responsible for the majority of belief updates and price changes,

while the majority of firms has low uncertainty and hardly contributes to belief updates and price

changes. In this economy we study the e↵ect of a small, unanticipated, and permanent increase in the

money supply. We demonstrate analytically that monetary shocks have larger e↵ects on output than

in an alternative economy with a representative firm, conditional on the same average adjustment

frequency. We also show that these e↵ects are quantitatively important in a calibrated version of the

economy that matches micro-price statistics.3

Let us now explain the sources of amplification as a result of uncertainty cycles. The first amplifica-

tion mechanism arises due to dispersion of times until the first price adjustment following a monetary

shock. To understand its logic, it is key to recognize that a firm’s first price change after a monetary

shock incorporates that shock into its price and, in the absence of complementarities, it is the only

price change that matters for the accounting of monetary e↵ects. Any price changes after the first

one are the result of idiosyncratic shocks that cancel out in the aggregate. High uncertainty firms ad-

just quickly to incorporate the monetary shock (they are already adjusting for idiosyncratic reasons),

whereas low uncertainty firms take a long time to adjust. Through a Jensen’s inequality, this disper-

sion allows to match average price statistics while increasing aggregate price rigidity. This mechanism

is explored in Carvalho (2006), Nakamura and Steinsson (2010), Bouakez, Cardia and Ruge-Murcia

(2014), Carvalho and Schwartzman (2015) and Álvarez, Lippi and Paciello (2016). While in those pa-

2See Dhyne et al. (2006), Nakamura and Steinsson (2008), Eden and Jaremski (2009), Vavra (2010), Cortés, Murillo
and Ramos-Francia (2012), Campbell and Eden (2014), and Argente and Yeh (2015).

3Uncertainty cycles have consequences for the interpretation of price-change statistics. Average price-change statistics
reflect more intensively the pricing behavior of highly uncertain firms because they are more prone to adjust than the
average. We explain how to correct for this bias and show that, once corrected, the aggregate price level is stickier than
suggested by average frequency.
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pers heterogeneity is exogenous and fixed, in our model heterogeneity arises endogenously in ex-ante

identical firms that churn between high and low levels of uncertainty.

This brings us to the second and more subtle amplification mechanism. The uncertainty cycles

basically generate two sets of firms. The first group consists of low frequency adjusters that change

their prices primarily due to the arrival of infrequent shocks as in Gertler and Leahy (2008); their

pricing behavior features small selection e↵ects and are responsible for most of the real e↵ects of

nominal shocks. The second group consists of high frequency adjusters that primarily change their

prices due to the di↵usion process as in Golosov and Lucas (2007); their pricing behavior features

strong selection e↵ects that dampen the real e↵ects of nominal shocks. This means that uncertainty

cycles generate a positive correlation between the strength of the selection e↵ects and the frequency

of adjustment: the low frequency adjusters are also those that does not respond much to monetary

shocks. We show that this correlation, which is novel force in these models, further amplifies the real

e↵ects of monetary shocks.

The third amplification mechanism, exclusive to our learning model with uncertainty cycles, refers

to the dispersion in the learning speed across firms: high uncertainty firms optimally put a larger

Bayesian weight on new information compared to low uncertainty firms, and consequently, they learn

faster than low uncertainty firms. To highlight the workings of this mechanism, we assume that the

monetary shock is only partially observed by firms and that they filter it out using the same learning

technology they use to estimate their idiosyncratic productivity. To bring discipline to the observability

of the monetary shock, we use evidence from survey forecast data in Coibion and Gorodnichenko

(2012). With partial observability of the monetary shock, the first adjustment does not fully take

care of incorporating it into prices—passthrough is incomplete—and there will be forecast errors that

do not cancel out in the aggregate. We demonstrate that the existence of average forecast errors

amplifies real output e↵ects, and by Jensen’s inequality once again, that forecast errors’ persistence

is increasing in the dispersion of Bayesian updating weights. Therefore, uncertainty cycles generate

highly persistent average forecast errors that extend the e↵ects of monetary shocks.

Finally, as a way to further understand the learning mechanism, we consider a situation where

all firms experience a synchronized uncertainty shock at the same time of the monetary shock. We

discover that this aggregate uncertainty shock increases all firms’ learning speed and the persistence of

average forecast errors falls. This implies that monetary shocks have smaller real e↵ects when aggregate

uncertainty is large. Empirical support for this channel can be found in Aastveit, Natvik and Sola

(2013), Vavra (2014), Caggiano, Castelnuovo and Nodari (2014), and Castelnuovo and Pellegrino

2018, who find weaker e↵ects of monetary policy when economic uncertainty is high, and in Coibion

and Gorodnichenko (2015), who provide evidence that the degree of information rigidity responds to

changing economic conditions. The joint dynamics of uncertainty, price-setting, and forecast errors

implied by our model, and disciplined with micro data, provide a framework to interpret this evidence.
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2 Pricing with uncertainty cycles

We combine an inaction problem with a signal extraction problem. Its structure is very general and

it is easily extendable to a variety of environments that involve non-convex adjustment costs and

imperfect information about fat-tailed idiosyncratic shocks.

2.1 Environment

Consider a profit maximizing firm that chooses the price at which to sell its product, subject to

idiosyncratic productivity shocks. It must pay a menu cost ✓ in units of product every time it changes

the price. We assume that in the absence of the menu cost, the firm would like to set a price that

makes its markup—price over marginal cost—constant. The productivity shocks are not perfectly

observed; only noisy signals are available to the firm.4 It chooses the timing of the adjustments as

well as the new reset markups. Time is continuous and the firm discounts the future at a rate r.

Quadratic losses. Let µt be the markup gap, defined as the log di↵erence between the current

markup and the frictionless markup. Firms incur an instantaneous quadratic loss as the markup gap

moves away from zero:

⇧(µt) = �Bµ2
t , B > 0. (1)

Quadratic loss functions are standard in price setting models, such as Caplin and Leahy (1997), and

are motivated as second order approximations of general profit functions.

Markup gap process. Firms make inferences about their productivity, but when the price is fixed,

the markup gap follows productivity. Therefore, it is equivalent and convenient to work directly with

markup gaps. We assume µt follows a jump-di↵usion process

dµt = �fdWt + �uutdQt, (2)

where Wt is a Wiener process, utQt is a compound Poisson process with intensity �, and �f and

�u are the respective volatilities. When dQt = 1, the markup gap receives a Gaussian innovation

ut ⇠ N (0, 1). The process Qt is independent of Wt and ut. This specification nests two benchmarks

in the literature: small frequent shocks modeled as the Wiener process Wt with small volatility �f ,

as in Golosov and Lucas (2007), and large infrequent shocks modeled through the Poisson process Qt

with large volatility �u, as in Gertler and Leahy (2008) and Midrigan (2011).5

4In Álvarez, Lippi and Paciello (2011) firms pay an observation cost to see their true productivity level; here we make
the observation cost infinite and the true state is never fully revealed.

5Alternatively, markup gap shocks can be interpreted as shocks to the frictionless markup, e.g. shocks to the demand
elasticity in a CES framework. See Online Appendix Section A.2 for details.
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Signals. Firms do not observe their markup gaps directly. They receive continuous noisy observa-

tions about the markup gap, denoted by st, which evolve according to

dst = µtdt+ �dZt, (3)

where the signal noise Zt follows a Wiener process, independent from Wt. The volatility parame-

ter � measures the information friction’s size. Note that µt enters as the drift of the signal. This

representation makes the filtering problem tractable as the signal is continuous.6

Information set. We assume that a firm knows if they receive an infrequent shock but not the size

of the innovation ut. Thus the information set at time t is given by the �-algebra generated by the

history of signals s and realizations of Q:

It = �{sr, Qr; r  t}. (4)

Since Poisson innovations ut are not observed but have conditional mean of zero, firms know that

infrequent shocks could push their markups either upwards or downwards, but in expectation they

have no e↵ect. This assumption allows us to match the price change distribution’s symmetry around

zero, and largely simplifies the exposition. But it is not crucial.7

2.2 Filtering problem

Firms’ learning technology. Firms make estimates in a Bayesian way by optimally weighing new

information from signals against old information from prior estimates. This is a passive learning

technology in the sense that firms process the information that is available to them, but they cannot

take any action to change the quality of the signals. This contrasts with the active learning models

in Keller and Rady (1999), Bachmann and Moscarini (2011), Willems (2013), and Argente and Yeh

(2015) where firms learn by experimenting with price changes.

Let µ̂t ⌘ E[µt|It] be the best estimate (in a mean-squared error sense) of the markup gap and

let ⌃t ⌘ E[(µt � µ̂t)2|It] be its variance. Firm level uncertainty is defined as ⌦t ⌘ ⌃t
� , which is the

estimation variance normalized by the signal volatility. Proposition 1 establishes the laws of motion

for markup gap estimates and uncertainty keeping the finite-state properties of the Gaussian model

by representing the posterior distribution µt|It as a function of mean and variance. Our contribution

extends the Kalman–Bucy filter beyond the standard assumption of Brownian motion innovations. To

our knowledge, this is a novel result in the filtering literature. All proofs are provided in the Appendix.

6See Chapter 6 in Øksendal (2007) and the Online Appendix Sections B.1 and B.2 for details.
7In the Online Appendix Section B.3 we extend the results to consider a positive or negative mean and provide further

technical discussion for interested readers.
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Proposition 1 (Filtering equations). Let the markup gap and the signal evolve according to (2)

and (3), and consider the information set in (4). Then the posterior distribution of markup gaps is

Gaussian µt|It ⇠ N (µ̂t, �⌦t), where (µ̂t,⌦t) evolve as follows:

dµ̂t = ⌦tdẐt, µ̂0 = a, (5)

d⌦t =
�2
f � ⌦2

t

�
dt+

�2
u

�
dQt, ⌦0 =

b

�
. (6)

Ẑt is the innovation process given by dẐt = 1
� (dst � µ̂tdt) = 1

� (µt � µ̂t)dt + dZt and it is one-

dimensional Wiener process under the firm’s information set, and it is independent of dQt.

Uncertainty increases the volatility of estimates. The estimate µ̂t is a Brownian motion driven

by the innovation process Ẑt with stochastic volatility with jumps given by ⌦t. We can see this property

using a discrete time approximation of the estimates process in (5). Consider a small period of time

�. The markup gap estimate at time t+� is given by the convex combination of the prior estimate

µ̂t and the signal change st � st��:

µ̂t+�� =
�

⌦t�+ �| {z }
weight on prior estimate

µ̂t� +

✓
1� �

⌦t�+ �

◆

| {z }
weight on signal

(st � st��) . (7)

Due to Bayesian updating, when uncertainty is high, estimates optimally put more weight on

signals instead of the prior. Learning is faster, but it also brings more white noise into the estimation.

Estimates become more volatile with high uncertainty. This e↵ect is key in our discussion of price

responsiveness to monetary shocks.

Idiosyncratic uncertainty cycles. Equation (6) shows that uncertainty has a deterministic and a

stochastic component. In the absence of fat-tailed shocks (� = 0), uncertainty follows a deterministic

path which converges to the constant volatility of the continuous shocks �f . With fat-tailed shocks

(� > 0), the time series profile of uncertainty features a saw-toothed profile that never stabilizes:

uncertainty jumps up after the arrival of an infrequent shock and then decreases deterministically

until the arrival of the following one. Although uncertainty never settles down, there is a “long-run”

level ⌦⇤ such that its expected change is zero, E
h
d⌦t

���It
i
= 0. It is equal to ⌦⇤ ⌘ (�2

f + ��2
u)

1
2 . The

ratio of current to long-run uncertainty ⌦t/⌦⇤ appears in decision rules and price statistics and it is

characterized in Proposition 8 as a function of price statistics.

With the filtering problem at hand, the following section derives the price adjustment decision.

2.3 Decision rules

Sequential problem. Let {⌧i}1i=1 be the series of dates where the firm adjusts its markup gap and

{µ⌧i}1i=1 the series of reset markup gaps on the adjusting dates. Given an initial condition µ0, the
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state’s law of motion, and the filtration {It}1t=0, the sequential problem is described by:

max
{µ⌧i ,⌧i}

1
i=1

�E
" 1X

i=0

e�r⌧i+1

✓
✓ +

Z ⌧i+1

⌧i

e�r(s�⌧i+1)Bµ2
s ds

◆#
. (8)

The sequential problem in (8) is solved recursively as a stopping time problem using the Principle of

Optimality, see Øksendal (2007) and Stokey (2009) for details. The following points are formalized in

Proposition 2. First, the markup gap µt can be substituted for its estimate µ̂t without altering the

optimal policy, as the di↵erence in payo↵s is a constant that arises from firms’ inability to perfectly

learn the true realizations. Second, since we are working in a Gaussian/quadratic framework, the

firm’s state is fully characterized by its markup gap estimate µ̂ and the uncertainty attached to that

estimate ⌦, i.e. higher moments are not needed. Third, given its state (µ̂t,⌦t), the policy consists of

(i) a stopping time ⌧ , which is a measurable function with respect to the filtration, and (ii) the new

markup gap µ0.

Proposition 2 (Stopping time problem). Let (µ̂0,⌦0) be the firm’s state immediately after the

last markup adjustment. Also let ✓̄ = ✓
B be the normalized menu cost. Then the optimal stopping time

and reset markup gap (⌧, µ0) solve the following problem:

V (µ̂0,⌦0) = max
⌧

E
Z ⌧

0
�e�rsµ̂2

sds+ e�r⌧
⇣
� ✓̄ +max

µ0
V (µ0,⌦⌧ )

⌘���I0
�

(9)

subject to the filtering equations in (5) and (6) .

Inaction region. The solution to the stopping time problem is characterized by an inaction region

R such that the optimal time to adjust is given by the first time that the state falls outside such

a region. The inaction region is two-dimensional because the firm has two states. Let µ̄(⌦) denote

the inaction region’s border as a function of uncertainty. The inaction region is described by the

set R = {(µ̂,⌦) : |µ̂|  µ̄(⌦)}. Its symmetry around zero is inherited from the specification of the

stochastic process, the quadratic profits, and zero inflation. For the same reasons, the reset markup

gap is equal to zero, i.e. µ̂0 = 0. This means that, upon adjustment, the firm chooses a price that it

thinks will bring its markup to the frictionless level, but its judgement might be wrong.

This inaction problem is non-standard because it is two-dimensional, and moreover, there is a

jump process in the ⌦ dimension. In order to provide su�cient conditions of optimality, we impose

the Hamilton-Jacobi-Bellman equation, the value matching condition, and, following Theorem 2.2 in

Øksendal and Sulem (2010), the standard smooth pasting condition for both states.8 Proposition 3

formalizes these points.

Proposition 3 (HJB Equation, Value Matching and Smooth Pasting). Let � : R⇥ R+ ! R
be a function and let �x denote its derivative with respect to x. If � satisfies the following three

8In the Online Appendix, Section C derives the infinitesimal generator and its adjoint operator; Section D verifies
that the conditions in that Theorem hold in our problem; and Section E.3 verifies numerically that the smooth pasting
conditions for µ̂ and ⌦ are valid.
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conditions, then � is the value function � = V and ⌧ = inf {t > 0 : �(0,⌦t)� ✓ > �(µ̂t,⌦t)} is the

optimal stopping time:

1. In the interior of the inaction region, � solves the Hamilton-Jacobi-Bellman (HJB) equation:

r�(µ̂,⌦) = �µ̂2 +

 
�2
f � ⌦2

�

!
�⌦(µ̂,⌦) +

⌦2

2
�µ̂2(µ̂,⌦) + �


�

✓
µ̂,⌦+

�2
u

�

◆
� �(µ̂,⌦)

�
. (10)

2. At the border of the inaction region, � satisfies the value matching condition, which sets the value

of adjusting equal to the value of not adjusting:

�(0,⌦)� ✓̄ = �(±µ̄(⌦),⌦). (11)

3. At the border of the inaction region, � satisfies two smooth pasting conditions, one per state:

�µ̂(±µ̄(⌦),⌦) = 0, �⌦(±µ̄(⌦),⌦) = �⌦(0,⌦). (12)

The passive learning process of our model implies the lack of interaction terms between uncertainty

and markup estimates, since firms cannot change the information flow. Proposition 4 analytically

characterizes the inaction region’s border µ̄(⌦) using the three conditions above. The proof uses a

Taylor expansion of the value function.9

Proposition 4 (Inaction region). For small r and ✓̄, the inaction region is approximated by

µ̄(⌦) =

✓
6✓̄⌦2

1 + Lµ̄(⌦)

◆1/4

, with Lµ̄(⌦) =

✓
8

3

✓̄

�2

◆1/2✓
⌦

⌦⇤ � 1

◆
. (13)

The elasticity of the inaction region with respect to uncertainty is equal to

E(⌦) ⌘ 1

2
�
✓
1

6

✓̄

�2

◆1/2
⌦

⌦⇤ < 1. (14)

Uncertainty widens inaction region. The numerator of the inaction region in equation (13) is

increasing in uncertainty and captures the well known option value e↵ect. As a result of uncertainty

dynamics, the option value is time varying. This mechanism is reflected in the factor Lµ̄(⌦) that

amplifies or dampens the option value e↵ect depending on the ratio of current uncertainty to long-run

uncertainty ⌦/⌦⇤. When current uncertainty is high
�

⌦
⌦⇤ > 1

�
, it is expected to decrease (E[d⌦] < 0)

and future option values also decrease. This feeds back into the current inaction region, shrinking it

as Lµ̄(⌦) > 0. The total e↵ect of uncertainty on the inaction region depends on the ratio of the menu

cost and the signal noise. With small menu costs ✓ and large signal noise �, the inaction region is

9Section E of the Online Appendix compares the approximation of the policy with its exact counterpart computed
numerically and concludes that the approximation is adequate in the parameter space of interest. We do the same
comparison for the conditional moments computed in the next section.
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increasing in uncertainty, with an elasticity of the inaction region with respect to uncertainty E(⌦)
close to 1/2. The critical result is that the elasticity is less than unity for all possible parametrizations.

Figure I shows one firm’s realization. Panel A shows the evolution of uncertainty, which follows a

saw-toothed profile. Panel B plots the true markup gap, the markup gap estimate and the inaction

region. As we can see in the figure, the markup gap estimate is always within the Ss bands, but this

is not the case for the true markup gap. Additionally, the inaction region follows uncertainty’s profile

as it is increasing in uncertainty given the calibration. Finally, Panel C shows the magnitude of price

changes, which are triggered when the markup gap estimate touches the border of the inaction region.

Notice that price changes are clustered over time, i.e. there are recurrent periods with high adjustment

frequency followed by periods of low adjustment frequency. Moreover, as the width of inaction regions

decreases over time, the size of price changes also falls.

Figure I – Sample Paths For One Firm
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Panel A: Uncertainty (solid line) and long-run uncertainty (dotted line). Panel B: True markup gap (gray solid
line), Markup gap estimate (black dotted line) and inaction region (black soli line). Panel C: Magnitude of price
changes. This figure simulates one realization of the stochastic processes using the finite di↵erence method and
uses the analytical approximation of the inaction region.

Without fat-tailed shocks, uncertainty converges to a constant, i.e., ⌦ ! �f , the inaction region

is constant, and there is no dispersion in the size of price changes. This makes evident that both the

fat-tailed shocks and the information friction are key to generate the cross-sectional variation in price

setting that arises from uncertainty cycles.10 The next section derives expressions for price statistics

that make evident the impact of uncertainty cycles on pricing decisions.

2.4 Uncertainty and conditional price statistics

How does uncertainty a↵ect the adjustment frequency? There are two opposing forces. Uncertainty

increases estimate volatility, raising the probability of hitting the bands and adjusting the price. To

save on menu costs, the inaction region widens, reducing the adjustment probability.

10The case without fat-tailed shocks is analyzed in Álvarez, Lippi and Paciello (2011). That paper shows that the
model collapses to that of Golosov and Lucas (2007) where all firms have the same inaction region.
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The first e↵ect dominates because the elasticity of the inaction region with respect to uncertainty is

lower than one, and higher uncertainty increases adjustment frequency. This result holds under our as-

sumptions of a quadratic payo↵ function and martingale processes. Proposition 5 formalizes this result.

Proposition 5 (Conditional Expected Time). Let r and ✓̄ be small. The expected time for the

next price change conditional on the state, denoted by E[⌧
��µ̂,⌦], is approximated as:

E[⌧
��µ̂,⌦] = µ̄(⌦)2 � µ̂2

⌦2
(1 + L⌧ (⌦)) with L⌧ (⌦) ⌘ 2

✓
⌦

⌦⇤ � 1

◆
(1�E(⌦⇤))

 
�(24✓̄)1/2

� + (24✓̄)1/2

!
. (15)

If the elasticity of the inaction region with respect to uncertainty is less than one, then the expected

time between price changes E[⌧
��0,⌦] is a decreasing and convex function of uncertainty.

The conditional expected time between price changes has two terms. The first term µ̄(⌦)2�µ̂2

⌦2

states that expected time for adjustment is smaller when the markup estimate is closer to the inaction

border. This term is decreasing in uncertainty with an elasticity larger than one in absolute value.

The second term L⌧ (⌦) amplifies or dampens the first e↵ect depending on the level of uncertainty,

and it has an elasticity of one. Uncertainty’s overall e↵ect on expected adjustment time is negative:

more uncertain firms change their prices more frequently than less uncertain firms.

A new insight from our model is that inaction regions refer to markup estimates and not the true

realizations. Firms adjusts their prices so that their expected markup gap becomes zero, but this

expectation is surrounded by uncertainty. After a price change, a high uncertainty firm is very likely

to have made a wrong adjustment which leads to a new price change. As it learns its new productivity

level, the likelihood of further price changes falls. This contrasts sharply with a standard menu cost

model where the probability of adjustment right after a price change is tiny and increases over time,

or with a Calvo model where the probability of adjustment is always the same. The hazard rate is

the adequate statistic to measure these e↵ects and also distinguish across models, as it is a dynamic

measure of adjustment frequency.

The conditional hazard rate, denoted by h⌧ (⌦), is the probability of adjusting ⌧ periods after

the last price change, and it is conditional on uncertainty ⌦. It depends on the expected width

of the inaction region relative to the expected level of uncertainty ⌧ periods ahead. Proposition 6

characterizes the conditional hazard rate by making two simplifications: it assumes a constant inaction

region and shuts down future infrequent shocks.11

Proposition 6 (Conditional Hazard Rate). Without loss of generality, assume a firm’s last price

change occurred at t = 0 and it has an initial level of uncertainty ⌦0 > �f . Assume the inaction region

is constant µ̄0 and no further infrequent shocks are expected (� = 0). Denote derivatives with respect

to ⌧ with a prime (h0⌧ ⌘ @h/@⌧).

11Online Appendix E.7 computes the exact numerical hazard rate and checks the validity of these assumptions.
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1. The estimate’s unconditional variance ⌧ periods ahead, denoted by V⌧ (⌦0), is given by:

V⌧ (⌦0) = �2
f⌧ + �(⌦0 � ⌦⌧ ), where ⌦⌧ = �f

0

@
⌦0
�f

+ coth
⇣
�f

� ⌧
⌘

1 + ⌦0
�f

coth
⇣
�f

� ⌧
⌘

1

A (16)

and it is an increasing and concave function of duration ⌧ and initial uncertainty ⌦0.

2. The hazard of adjusting the price at date ⌧ , conditional on ⌦0, is characterized by:

h⌧ (⌦0) =
⇡2

8
 

✓
V⌧ (⌦0)

µ̄2
0

◆

| {z }
increasing in ⌧

V 0
⌧ (⌦0)

µ̄2
0| {z }

decreasing in ⌧

, (17)

where  (·) is the increasing hazard rate for a case with fixed uncertainty ⌦0 = ⌦⌧ = �f derived

in Kolkiewicz (2002), with  (0) = 0,  0(x) > 0, limx!1 (x) = 1, first convex then concave.

3. There exists a date ⌧⇤(⌦0) such that h0⌧ (⌦0) < 0 for ⌧ > ⌧⇤(⌦0), and ⌧⇤(⌦0) is decreasing in ⌦0.

Equation (17) expresses the hazard rate as a product of two factors. The first factor  (·) is

responsible for the increasing part close to ⌧ = 0 and resembles the hazard rate of standard menu

cost models, as the probability of an additional adjustment right after a price change is very low.

The second factor is the change in unconditional variance V 0
⌧ (⌦0), which is decreasing in ⌧ because

of learning. These two opposing forces act upon the slope of the hazard rate and the hazard rate is

non-monotonic. The last point in the proposition establishes that there exists a date ⌧⇤ after which

the hazard is downward sloping, and that this date is shorter the higher the initial uncertainty.

Figure II illustrates the e↵ect of initial uncertainty ⌦0 (Panel A) and signal noise � (Panel B) on

the hazard. Initial uncertainty determines which of the two factors dominates. If initial uncertainty

is small, there is not much to learn and the hazard rate is increasing, as in the standard menu cost

model. In contrast, if initial uncertainty ⌦0 is large, the learning force dominates and the hazard

is decreasing for a larger range of price durations. Signal noise � determines how fast uncertainty

converges to its limit value—independent of �—and the rate of change in the slope. The larger the

information friction (the larger �), the longer it takes to discover productivity, and the slope decays

more slowly. This relationship between � and the hazard’ slope will be used for calibration.

2.5 Aggregation of heterogeneous firms

In this section we explain how to aggregate the conditional price statistics. The goal is to assess

whether heterogeneity in pricing behavior has e↵ects in the aggregate and to match the price statistics

generated by the model with those in the data. For this purpose, we consider a continuum of ex-ante

identical firms that face the pricing problem from the previous sections. Markup shocks and signals

are assumed to be iid across firms. Independence and stationarity of the controlled process ensure the

existence of an ergodic distribution F (µ̂,⌦).
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Figure II – Conditional Hazard Rate
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Panel A. Conditional hazard for three levels of initial uncertainty ⌦0, expressed as multiples of �f . Signal noise
is fixed at � = 9�f . Panel B. Conditional hazard for three levels of signal noise �, expressed as multiples of �f .
Initial uncertainty is fixed at ⌦0 = 5�f . These are approximated hazard rates with constant inaction regions and
without further Poisson shocks. We use a larger �f than in the final calibration for illustration purposes.

The aggregate statistics are equal to the weighted average of the conditional statistics, where the

weights are given by the distribution of uncertainty conditional on price adjustment, denoted with

r(⌦), also known as renewal distribution. This distribution is di↵erent from the unconditional steady

state distribution of uncertainty h(⌦), which is the uncertainty in the entire cross-section. Proposition

7 shows that the ratio between the renewal and marginal distributions is increasing in uncertainty, i.e.

adjusting firms are on average more uncertain than the rest of the population.

Proposition 7 (Uncertainty Distributions). Assume µ̄0(⌦) > 0. Then, in a neighborhood around

long-run uncertainty ⌦⇤, the ratio between the renewal and marginal densities of uncertainty are pro-

portional to the inverse of the expected time between adjustments

r(⌦)

h(⌦)
/ 1

E[⌧ |(0,⌦)] . (18)

As expected time decreases with uncertainty, the ratio r(⌦)/h(⌦) increases with uncertainty.

The previous result implies that average price change statistics (computed with the renewal dis-

tribution r(⌦)) reflect more intensively the pricing behavior of highly uncertain firms because they

are more prone to adjust than the average firm. For instance, if the unconditional hazard rate is

decreasing, it is because the renewal distribution puts a large weight on the decreasing hazard rate

of high uncertainty firms compared to the increasing hazard rate of low uncertainty firms. The same

logic applies to the expected time to adjustment and other price statistics. However, as we show in

the following section, the aggregate response to nominal shocks depends on the behavior of the full

cross-section (computed with the unconditional distribution of uncertainty h(⌦)). Therefore, uncer-
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tainty cycles alter the interpretation of price statistics as a high frequency of adjustment is perfectly

compatible with a low aggregate price flexibility. Equation (18) expresses the relationship between

these two densities as a function of the expected price duration.

Our second aggregation result, derived in Proposition 8, establishes a link between the long-run

uncertainty ⌦⇤, cross-sectional heterogeneity in uncertainty E[⌦2], adjustment frequency 1/E[⌧ ], and
price change dispersion V[�p].12 Its key point is that observable price statistics provide a direct way

to recover the heterogeneity in firm level uncertainty.

Proposition 8 (Uncertainty Heterogeneity and Price Statistics). The following relationships

between long-run uncertainty, uncertainty dispersion, average price duration, and price change disper-

sion hold:

⌦⇤2 = E[⌦2] =
V[�p]

E[⌧ ] . (19)

Holding fixed uncertainty’s second moment in the left-hand side, expression (19) establishes a

positive link between average price duration and price change dispersion: prices either change often

for small amounts or rarely for large amounts. Analogously, consider a fixed price change dispersion;

then heterogeneity in uncertainty and average price duration are negatively related. Underlying these

results is a Jensen inequality and the fact that frequency decreases with duration.

Remarks. We finish this section with a few remarks that emphasize that uncertainty cycles go

beyond being a micro-foundation for heterogeneity in price-setting. Moreover, our particular notion of

uncertainty shocks (and the learning that follows) plays a specific and important role in generating the

type of pricing statistics that we use to discipline model parameters, and this matters in the aggregate.

A first alternative model considers an autoregressive process for uncertainty/volatility, as in the menu

cost models of Vavra (2014) and Karadi and Rei↵ (2014). A second alternative model is one in which

firms perfectly learn their idiosyncratic state at random times, and at other times they observe noisy

signals. This model generates “downward jumps” in uncertainty which contrast with our “upward

jumps”. We discover that these alternative models produce very di↵erent predictions for micro-level

price statistics, e.g. increasing re-pricing hazards. Consequently, the micro-price data allow us to

distinguish between the type of uncertainty processes faced by firms, as well as the di↵erent forms of

uncertainty cycles. And this distinction matters for the aggregate results.13

3 Aggregate e↵ects of uncertainty cycles

What are the macroeconomic consequences of firm uncertainty cycles and the heterogeneity they

generate? We develop a standard general equilibrium framework with monopolistic firms that face the

pricing problem with menu costs and uncertainty cycles studied in the previous sections. We use the

12This generalizes Proposition 1 in Álvarez, Le Bihan and Lippi (2014) for the case of heterogeneous uncertainty.
Blanco (2016) shows that a similar result holds in the case of positive inflation.

13In the Online Appendix, Section F.1 compares autoregressive and jump uncertainty processes, while Section F.2
compares upward and downward uncertainty cycles.
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model to study the role of firm uncertainty in the propagation of monetary shocks. The model builds

on Golosov and Lucas (2007), with the addition of the information friction and fat-tailed shocks.

3.1 General equilibrium model

Time is continuous. There is a representative consumer, a continuum of monopolistic firms, and a

monetary authority. We focus on a steady state in which money supply is constant at a level M .

Representative Household The household has the following preferences over consumption Ct,

labor Nt, and real money holdings Mt
Pt

, where Pt is the aggregate price level and the future is discounted

at rate r > 0:

E0

Z 1

0
e�rt

⇣
logCt � ↵Nt + log

Mt

Pt

⌘
dt

�
. (20)

Consumption consists of a CES aggregator as in Woodford (2009), Midrigan (2011), and Álvarez and

Lippi (2014). The household has access to complete financial markets. The budget includes labor

earnings EtNt, profits ⇧t from the ownership of all firms, and the opportunity cost of holding cash

RtMt, where Rt is the nominal interest rate. Let Dt be the stochastic discount factor; by complete

markets, the time-0 Arrow-Debreu budget constraint reads:

E0

Z 1

0
Dt (PtCt +RtMt � EtNt �⇧t) dt

�
 M0. (21)

The household chooses consumption, labor supply and money holdings to maximize (20) subject to

(21). The household’s first order conditions establish nominal wages as a proportion of the (constant)

money stock E = rM .

Monopolistic Firms On the production side, there is a continuum of firms indexed by z 2 [0, 1]

who operate in a monopolistically competitive market. Each firm maximizes its expected stream of

profits, discounted at Dt. It chooses a price and then satisfies all its demand. For every price change,

it must pay a menu cost ✓. Production uses a linear technology with labor as its only input: producing

yt(z) units requires lt(z) = yt(z)At(z) units of labor, so that the marginal nominal cost is At(z)E.

We define markups as µt(z) ⌘ pt(z)
At(z)E

. Given the consumer’s strategy, the instantaneous profit can be

written as a function of markups alone:

⇧t(z) = ct(z)
⇣
pt(z)�At(z)E

⌘
= Kµt(z)

�⌘
⇣
µt(z)� 1

⌘
, (22)

whereK is a constant in steady state. Define the markup gap µt(z) ⌘ log(µt(z)/µ⇤) as the log deviation

of the current markup to the unconstrained markup µ⇤ ⌘ ⌘
⌘�1 . Then a second order approximation

of profits produces a quadratic form in the markup gap as follows:14

⇧(µt(z)) = C �Bµt(z)
2. (23)

14C and B are constants. C does not a↵ect the decisions of the firm and it is omitted for the calculations of decision
rules; B captures the curvature of the profit function.
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Productivity, markup estimates and uncertainty Firm z’s log productivity at(z) ⌘ lnAt(z)

evolves according to a jump-di↵usion process which is idiosyncratic and independent across z:

dat(z) = �fWt(z) + �uut(z)dQt(z) (24)

where Wt(z) is a Wiener process and ut(z)Qt(z) is a compound Poisson process with arrival rate �

and Gaussian innovations ut(z) ⇠ N (0, 1). Firms do not observe their productivity directly, but they

have two sources of information: noisy signals st(z) and the Poisson counter Qt(z). Signals evolve as

dst(z) = at(z)dt+ �dZt(z) (25)

where Zt(z) is an independent Wiener process.15 Firms are all ex-ante identical as they face the

same parameters {�f ,�u,�, �}, but become di↵erent ex-post as they receive di↵erent realizations of

productivity and signals. From the definition of the markup gap, we have that

µt(z) = log pt(z)� at(z)� logE � logµ⇤. (26)

Notice that during inaction, the markup gap is driven by the productivity process: dµt(z) = �dat(z).

When the price adjusts, the markup process is reset and then it follows productivity again. By sym-

metry of the stochastic processes, we have that dat(z) = �dat(z). As markup gaps and productivity

mirror each other, we prefer to work with markup gaps as it facilitates the solution.

Given the assumptions, a firm’s state in this economy consists of a markup gap estimate µ̂(z) and

its uncertainty ⌦(z), where their evolution is given by the filtering equations derived in Proposition 1.

Each process is indexed by z and is iid across firms:

dµ̂t(z) = ⌦t(z)dẐt(z), Ẑt(z) ⇠ Wiener (27)

d⌦t(z) =
�2
f � ⌦2

t (z)

�
dt+

�2
u

�
dQt(z). (28)

Steady state equilibrium Given exogenous stochastic processes for idiosyncratic productivity

Wt(z), Qt(z), idiosyncratic noise Zt(z), an equilibrium is defined by a set of stochastic processes for (i)

consumption strategies ct(z), labor supply Nt, and money holdings Mt for the household, (ii) pricing

functions pt(z), markup gap estimates µ̂t(z) and uncertainty ⌦t(z), (iii) prices Pt, Et, Rt, Dt, and

(iv) a fixed distribution over firm states F (µ̂,⌦) such that the household and firms optimize, markets

clear at each date, and the distribution is consistent with actions. In a steady state equilibrium with

constant money supply, the price index, nominal wages, and nominal interest rates are constant, as

there is no aggregate uncertainty. Nominal expenditure is constant and equal to the nominal wage,

and by market clearing, aggregate output equals aggregate consumption and the real wage Y = E
P .

15This signal extraction problem can be reinterpreted, in discrete time, as a problem with undistinguishable permanent
and transitory shocks. The signal noise can be reinterpreted as transitory volatility. This is a useful alternative for the
interpretation of the model. See Online Appendix Section G for details.
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3.2 Aggregate price and output deviations

We study the real e↵ects of a monetary shock through the following experiment. Starting from a zero

inflation steady state at t = 0, we introduce a one-time unanticipated permanent increase in money

supply of size � ⇡ 0, such that logMt = log M̄ + �, t � 0. Since nominal wages are proportional to the

money supply, this shock directly translates into a nominal wage increase of the same magnitude. The

equality between aggregate output and the real wage implies that the increase in the nominal wage

due to the monetary shock has to be distributed between price and output deviations from steady

state, i.e. Ỹt + P̃t = � where Ỹt ⌘ ln
⇣
Yt

P

⌘
and P̃t ⌘ ln

⇣
Pt

P

⌘
. Furthermore, the output gap can be

approximated to a first order by:

Ỹt = �
Z 1

0
µt(z)dz. (29)

Finally, adding and subtracting µ̂t(z), and defining individual forecast errors as '̂t(z) ⌘ µ̂t(z)�µt(z),

we obtain the following expression:

Ỹt = �
Z 1

0
µ̂t(z) dz

| {z }
average inaction error It

+

Z 1

0
'̂t(z) dz

| {z }
average forecast error Ft

= It + Ft. (30)

Expression (30) states that output at time t di↵ers from its steady state value if there are average

pricing mistakes. Pricing mistakes arise either from “inaction errors” due to the menu cost (first term)

or from forecast errors due to information frictions (second term). We call inaction errors those pricing

mistakes that arise by being inside the inaction region—the firm is aware of these mistakes, which are

optimal. Importantly, the output e↵ect considers the cross-sectional average of these errors and any

idiosyncratic error is washed out. Total output e↵ects of the monetary shock are measured as the area

under the impulse-response function denoted by M and given by

M ⌘
Z 1

0
Ỹt dt =

Z 1

0
It dt+

Z 1

0
Ft dt = I + F . (31)

where we have substituted (30) and defined I and F as the present value of inaction and forecast

errors, respectively. This measure is adequate as it accounts for both short- and long-run responses

to the shock.16 Note that by exchanging the order of integration between time and states in (31), we

can express the total output e↵ect as the average of the stream of individual mistakes:

M =

Z 1

0

Z 1

0
'̂t(z) � µ̂t(z) dt

�

| {z }
stream of pricing mistakes by firm z

dz. (32)

This expression is very convenient because the stream of individual mistakes—forecast errors and

inaction errors—can be characterized recursively as we show below.

16In the transition towards the new steady state, there are general equilibrium e↵ects arising from changes in the
average markup which a↵ect individual policies. Proposition 7 in Álvarez and Lippi (2014) demonstrate that in this
type of framework without complementarities, such general equilibrium e↵ects can be ignored. Following their result, we
compute output responses using steady state policies.
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Without any frictions, firms immediately increase their price to reflect the monetary shock. There

are no inaction errors at the firm-level or forecast errors cancel in the aggregate; thus the monetary

shock has no real output e↵ects. Without the menu cost, the firms’ decisions are static and their

markups are equal to the frictionless markup every period. In this case, as shown in Hellwig and

Venkateswaran (2014), there will be no output e↵ects from a monetary shock even in the presence

of information frictions.17 With menu costs and heterogenous uncertainty, the price level will fail to

fully reflect the monetary shock and there will be real e↵ects. We now analytically characterize these

e↵ects in three cases: a perfectly observed monetary shock, a partially observed monetary shock, and

a monetary shock that is accompanied by an aggregate uncertainty shock. Each case highlights a

di↵erent amplification mechanism generated by the uncertainty cycles.

The first exercise assumes that the monetary shock � is fully observed; thus we say that it is

disclosed. All markup estimates are fully updated and they fall by � on impact: µ̂0(z) = µ̂�1(z)� �.

Forecast errors '̂t(z) are iid across firms and the average forecast error F is equal to zero. Average

inaction errors I are the only source of real output e↵ects. Proposition 9 analytically characterizes

the output response. The strategy follows Álvarez, Le Bihan and Lippi (2014) to express recursively

the stream of individual pricing mistakes and aggregate them to obtain the total e↵ect in (32).

Proposition 9 (Real e↵ects from a disclosed monetary shock). Assume the economy is in

steady state and it is hit with a one-time unanticipated monetary shock of size � > 0. If firms fully

observe the monetary shock, then:

1. The total output response consists exclusively of inaction errors, which evolve as:

(total e↵ect) M(�) = �
Z

µ̂,⌦
w(µ̂� �,⌦) dF (µ̂,⌦) (33)

(inaction errors by firm) w(µ̂,⌦) = E
Z ⌧

0
µ̂t dt

���(µ̂0,⌦0) = (µ̂,⌦)

�
(34)

subject to the dynamics of µ̂t in (5) and ⌦t in (6).

2. When � > 0, up to first order, the total output e↵ect with uncertainty cycles is bounded below by

the total e↵ect without them (� = 0):

M(�) � �

✓
E[⌧ ]
6

◆
.

| {z }
without uncertainty cycles

(35)

For computing the output e↵ects of a disclosed monetary shock, what matters is the first price

change of each firm, as that price change fully incorporates the monetary shock; after that, price

changes respond solely to idiosyncratic conditions that wash out in the aggregate. All this is reflected

in Equations (33) and (34), which only accumulate inaction errors up to the first price change by

each firm. Equation (35) tells us that the output e↵ects are bounded below by those obtained in the

17See Online Appendix Section G.
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case without heterogeneity. This lower bound, which is proportional to the average expected time to

adjustment, is a special case of the formula derived in Álvarez, Le Bihan and Lippi (2014) that relates

output e↵ects with kurtosis and frequency of the price change distribution. With these results, we

now discuss two amplification mechanisms generated by the uncertainty cycles.

Amplification through dispersion in adjustment frequency. The first amplification force

arises from dispersion of times until the first adjustment, and it is well-known in the literature. Out-

put e↵ects relate to the average expected time, that equals the average of the inverse of adjustment

frequencies (not the inverse of the average frequency). By Jensen’s inequality, dispersion in frequencies

increases the average expected time, and in turn, amplifies the output e↵ect. In our model, the uncer-

tainty cycles are responsible for introducing dispersion in frequencies: high uncertainty firms have a

high adjustment frequencies and almost immediately react to the money shock, while low uncertainty

firms have low frequency and thus accumulate a bunch of pricing mistakes before adjusting due to

their inaction.

Despite providing amplification due to dispersion in frequencies, the uncertainty cycles also intro-

duce a dampening force due to their e↵ect on the size of price changes: the first price change of high

uncertainty firms is quite large, due to their wide inaction regions, and produces an overreaction of

the aggregate price level on impact. This reminds us of the selection e↵ect highlighted in Golosov and

Lucas (2007), in which prices changes occur in the firms with the largest needs to adjust, but here

belief heterogeneity drives the selection. Still, this selection e↵ect does not undo the amplification due

to dispersion in frequencies, as confirmed by the lower bound.

Amplification through a positive correlation between the strength of selection e↵ects

and adjustment frequency. The second amplification force is more subtle. The uncertainty cycles

basically generate two sets of firms. The first group consists of low frequency adjusters that change

their prices primarily due to the arrival of infrequent shocks as in Gertler and Leahy (2008); their

pricing behavior features small selection e↵ects and are responsible for most of the real e↵ects of

nominal shocks. The second group consists of high frequency adjusters that primarily change their

prices due to the di↵usion process as in Golosov and Lucas (2007); their pricing behavior features

strong selection e↵ects that dampen the real e↵ects of nominal shocks. This means that uncertainty

cycles generate endogenously a positive correlation between the strength of the selection e↵ects and

the frequency of adjustment: the low frequency adjusters are also those that does not respond much to

monetary shocks. This correlation, which is a new amplification mechanism in the literature, further

amplifies the real e↵ects of monetary shocks.18

3.3 Partially disclosed monetary shock

The second exercise assumes that the monetary shock is only partially disclosed. This assumption

allows us to gauge the importance of aggregate forecast errors in the propagation of the monetary

shock (these were absent with a fully disclosed shock). Micro-founding this assumption is outside the

18See Online Appendix Section H for details.
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scope of this paper, but there is an abundant literature that provides a plethora of alternatives to

think about imperfect knowledge about aggregate shocks. A few examples are sticky information in

Mankiw and Reis (2002), rational inattention in Woodford (2009) and Maćkowiak and Wiederholt

(2009), dispersed knowledge in Hellwig and Venkateswaran (2014), level-k reasoning in Farhi and

Werning (2017), among many others. In the quantitative section, we explain how we bring discipline

to the observability of the monetary shock using evidence from survey forecast data.

We assume that firms only observe a fraction ↵ 2 [0, 1] of the monetary shock �, and that they

filter the monetary shock with the same learning technology they use to estimate their idiosyncratic

state. These assumptions imply the following results (see proof of Proposition 10 for details). Markup

estimates are only partially updated µ̂0(z) = µ̂�1(z) � ↵�; as markups are overestimated, positive

forecast errors arise on impact '̂0(z) = (1 � ↵)� but then decrease with learning. As idiosyncratic

shocks are realized, further forecast errors arise but these are unrelated to the money shock. Thus

we decompose the forecast error into an unbiased and a biased component. The unbiased component

is iid across firms and can be ignored for aggregate purposes. The biased component, denoted by 't

follows a deterministic path for each firm: its initial value is equal across firms and then it disappears

over time, at a rate that depends on idiosyncratic uncertainty as follows

't(z) = '0(z)e
�

R s
0
⌦t(z)

� ds, with initial bias '0(z) ⇠ (1� ↵)� 8z. (36)

In this scenario, average forecast errors Ft (defined in (30)) are no longer equal to zero. Proposition 10

establishes that average forecast errors amplify the output response—even in the absence of uncertainty

cycles—but the response is amplified even more when these are present.

Proposition 10 (Real e↵ects from undisclosed monetary shock). Assume the economy is in

steady state and it is hit with one-time unanticipated monetary shock of size � > 0. If firms only

observe a fraction ↵ 2 [0, 1] of the monetary shock, then:

1. The total output e↵ect is the sum of inaction and forecast errors, which evolve as:

(total e↵ect) M(�,↵) = I(�,↵) + (1� ↵)�F (37)

(inaction error) I(�,↵) = �
Z

µ̂,⌦
w(µ̂� ↵�,⌦, (1� ↵)�) dF (µ̂,⌦) (38)

w(µ̂,⌦,') = E
Z ⌧

0
µ̂t dt+ w

⇣
0,⌦⌧ ,'e

�
R ⌧
0
⌦s
� ds
⌘ ���(µ̂0,⌦0) = (µ̂,⌦)

�
(39)

(forecast error) F =

Z

⌦
E
Z 1

0
e�

R t
0
⌦s
� dsdt

���⌦0 = ⌦

�
dh(⌦) (40)

where ⌦t evolves as in (6) and µ̂t now follows a biased process dµ̂t(z) = ⌦t(z)
h
't(z)
� dt+ dẐt

i
.

2. Let F ⌘
q

�2E[⌧ ]
V[�p] be a function of price statistics. When � > 0, up to a first order, the total
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output e↵ect with uncertainty cycles is bounded below by the total e↵ect without them (� = 0):

M(�,↵) � �

✓
↵
E[⌧ ]
6

+ (1� ↵)F
◆
.

| {z }
without uncertainty cycles

(41)

With a partially disclosed monetary shock, pricing mistakes do not disappear after a firm’s first

price change. This is evident in the recursive nature of equation (39). The monetary shock is only

partially incorporated into prices with each adjustment, i.e. the passthrough of the monetary shock

into prices is incomplete.

Amplification through dispersion in learning dynamics. Let us focus on the role of forecast

errors. Equation (40) computes the contribution of average forecast errors to the real e↵ects of a

monetary shock. With homogenous uncertainty (⌦t = �f ), average forecast errors Ft converge back to

zero at an exponential rate e��f/� . With heterogeneous uncertainty, there is dispersion in convergence

rates: forecast errors of high uncertainty firms disappear at a faster rate than those of low uncertainty

firms. This dispersion, together with Jensen’s inequality, imply that the convergence of average forecast

errors is slower than in the homogenous case. This slower convergence increases total output e↵ects,

as average forecast errors persist for a longer period. The value F in Equation (41) provides a lower

bound for forecast errors, and it can be disciplined with price statistics.19

An immediate consequence of the endogenous variation in the speed of firm learning is that

passthrough of monetary shocks into prices is heterogenous. When firms are more uncertain, they

learn more quickly about the monetary shock, increasing the responsiveness of their prices to that

shock. They also respond more aggressively to idiosyncratic shocks and increase price change disper-

sion. This positive relationship between price change dispersion and passthrough of nominal shocks

is documented empirically by Berger and Vavra (2017). As they show, such a relationship naturally

arises in models with time-varying responsiveness, as in our Bayesian learning model with uncertainty

cycles.

3.4 Aggregate uncertainty shock

Finally, our third exercise explores the output e↵ects of a monetary shock that occurs at the same time

as an aggregate uncertainty shock. The analysis is motivated by the empirical finding that monetary

policy is less e↵ective when economic uncertainty is higher. We interact an undisclosed monetary

shock with an unanticipated uncertainty shock that increases every firm’s uncertainty by a multiple

 of average uncertainty E[⌦]. An example of this type of shock is a monetary expansion during a

recession or any period of elevated economic uncertainty. Proposition 11 shows that larger average

uncertainty decreases real output e↵ects; still, uncertainty cycles maintain their role in amplifying

output e↵ects compared to an economy with homogenous uncertainty.

19For example, the lower bound F decreases with price change dispersion V[�p], i.e. larger price change dispersion
reduces the amplification potential of forecast errors.
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Proposition 11 (Real e↵ects from monetary and uncertainty shock). Assume the economy is

in steady state and it is hit with one-time unanticipated monetary shock of size � > 0. Simultaneously,

idiosyncratic uncertainty increases by E[⌦] for all firms. If firms only observe a fraction ↵ 2 [0, 1] of

the monetary shock, then:

1. The total output e↵ect M(�,↵,) = I(�,↵,) + (1� ↵)�F() is computed as in Proposition 10,

but with an initial condition for uncertainty that reflects the uncertainty shock: ⌦0 = ⌦+E[⌦].

2. When � > 0, the forecast error component F(), now a function of , is bounded below by

F() � ⇠

✓
E[⌧ ]E[⌦]2(1 + )2

V[�p]

◆
F � ⇠((1 + )2) F ,| {z }

without uncertainty cycles

(42)

where ⇠(·) is decreasing, limx!1 ⇠(x) = 1 and limx!1 ⇠(x) = 0.

The aggregate uncertainty shock shifts the uncertainty distribution to the right by E[⌦]. This

shift increases the flexibility of the aggregate price level on impact by increasing the mass of high

uncertainty firms and the implied selection e↵ect. This reduces the short-run response of output.

Vavra (2014) studies this e↵ect in a menu cost model with aggregate volatility shocks. Moreover, the

shift in the uncertainty distribution decreases the persistence of forecast errors by reducing the mass

of low uncertainty firms. This reduces the long-run response of output. Besides the e↵ects that arise

from a shift in the distribution, there is an additional force that a↵ects all firms’ learning dynamics.

Firms place a higher weight on news when their uncertainty is higher; this is what Bayesian updating

is all about. Forecast errors disappear faster and the monetary shock is quickly incorporated into

prices. In turn, this reduces the persistence of the output response. This learning force is evident

in equation (42), the lower bound of forecast errors, which is decreasing in the size of the aggregate

uncertainty shock . Overall, monetary shocks are less e↵ective at increasing output when aggregate

uncertainty is higher, in line with empirical research. Our results also relate to the findings in Coibion

and Gorodnichenko (2015) which show that information rigidities are lower during periods of high

uncertainty, just as our model predicts.

4 Quantifying the mechanisms

In this section we quantify the mechanisms responsible for the amplification of real output e↵ects with

heterogenous uncertainty. For this purpose, we solve the model and calibrate it to match micro price

statistics in the US Consumer Price Index.20

4.1 Data and calibration

The calibration is at the weekly frequency. The discount factor is set to 1
1+r = 0.961/52 to match an

annual risk free rate of 4%; the CES elasticity is set to ⌘ = 6 to match an average markup of 20%;

20The model is solved numerically in discrete time. See Section I in the Online Appendix for details.
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and the disutility of labor is set to ↵ = 1. Following the empirical evidence, we set the normalized

menu cost to ✓̄ = 0.064 so that the expected menu cost payments represent 0.5% of average revenue;

price statistics and impulse-responses are robust to alternative values for this parameter.21

Price statistics computed in the model (at weekly frequency) are aggregated to match the monthly

price statistics in the data. We target statistics in the BLS data computed in Nakamura and Steinsson

(2008): price change dispersion std[|�p|] = 0.08, average price duration of E[⌧ ]=10 months, and hazard

rate’s average slope between 1 and 18 months slope = �0.007. We consider three parametrizations

of the model, of all which match the same average price duration. Table I summarizes the data, the

target moments in each calibration (marked with a star), and other non-targeted moments produced.

Table I – Parameters and Targets

US Data (1) Baseline (2) Fat-tailed shocks (3) Heterogenous uncertainty
Parameters
�f 0.016 0
�u 0.146 0.198
� 0.035 0.016
� 0.233
Moments
E[⌧ ] in months 10 10⇤ 10⇤ 10⇤

std[|�p|] 0.08 0.007 0.08⇤ 0.07⇤

hazard rate slope �0.007 0.007 0.000 �0.009⇤

kurtosis[�p] 3.95 1.027 2.26 1.96

Data: US CPI data. Models: (1) Baseline: Perfect info and frequent shocks; (2) Perfect info and fat-tailed shocks;
(3) Heterogeneous uncertainty. Hazard rate’s slope - average between 1 and 18 months. ⇤ = targeted moment.

The baseline calibration in Column (1) shuts down the information friction (� = 0) and fat-tailed

shocks (� = 0). Its only parameter �f is set to match average duration. We consider this as a simplified

version of Golosov and Lucas (2007). Column (2) shuts down the information friction (� = 0) and

the frequent shocks (�f = 0), and only has fat-tailed shocks. This is a simple version of Gertler and

Leahy (2008). Its two parameters, � and �u, are set to match average duration and price change

dispersion. Column (3) gives the numbers for our model with heterogenous uncertainty. We calibrate

it using a simulated method of moments that matches average duration, price change dispersion, and

the hazard rate’s slope. Importantly, we match the same duration with an arrival rate � that is 1/3 of

the arrival rate in the model without heterogeneity. For each fat-tailed shock, prices change more than

once because of the decreasing hazard; this is key to amplify the persistence of the output response.

Finally, the calibration sets the volatility of the frequent shocks, �f , very close to zero.

Figure III shows the hazard rate and the steady state distributions. Panel A plots the hazard

rate for the US data and the three parameterizations. The baseline calibration features an increasing

hazard rate, the calibration with only fat-tailed shocks produces a flat hazard, and the calibration

with heterogenous uncertainty generates the non-monotonic hazard with the decreasing segment, as

21Levy et al. (1997) estimates that the cost of changing prices is about 0.7% of firms’ revenue for supermarket chains.
For a large retailer, Zbaracki et al. (2004) estimates 0.04% for physical costs, 0.28% for managerial costs, and 0.89% for
customer costs. We choose a number in between these estimates as our baseline, as in Golosov and Lucas (2007) and
Gertler and Leahy (2008), and provide a robustness analysis in Section J.1 of the Online Appendix.
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in the data. Panel B plots the distribution of markup gap estimates for high and low uncertainty

firms. The distribution’s support and dispersion increase with uncertainty. Average inaction regions

are |µ̄(⌦)| = 0.14 and |µ̄(⌦)| = 0.06 for high and low uncertainty firms, respectively. Panel C shows

the two uncertainty distributions. Consistent with Proposition 7, the steady state distribution of

uncertainty h(⌦) is biased towards low uncertainty with an average level of 0.015. In contrast, the

renewal distribution r(⌦) shifts its mass towards higher levels, with an average uncertainty of 0.059.22

Figure III – Hazard Rates and Steady State Distribution
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Robustness with respect to the adjustment hazard. Our calibration targets the adjustment

hazard in Nakamura and Steinsson (2008). Section J.2 in the Online Appendix analyzes quantitatively

the role of uncertainty cycles for di↵erent calibrations that target other empirical hazards. We show

that our mechanism is still present, although it gets amplified or dampened, when targeting a steeper

hazard as in Campbell and Eden (2014), or a flatter hazard as in Klenow and Kryvtsov (2008). An

interesting feature is that a highly-decreasing hazard is matched with a relatively low signal noise �,

because with little noise it becomes easier to learn the markup, and both the uncertainty and the

adjustment probability fall quickly. It follows that matching a steep hazard rate generates larger

heterogeneity in uncertainty, more dispersion is adjustment frequency, larger kurtosis for the price

change distribution, and a stronger correlation between selection e↵ects and adjustment frequency.

All of these channels together amplify the output e↵ects of a monetary shock, which get closer to the

case with a constant hazard (Calvo).
22The model with heterogenous uncertainty generates larger kurtosis than the baseline but below the kurtosis in

the data. Section K in the Online Appendix considers an extension with random opportunities to freely adjust. This
extension increases the kurtosis by generating more small price changes. Small price changes can also be generated by
introducing economies of scope through multi-product firms as in Midrigan (2011) and Álvarez and Lippi (2014).
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4.2 Further inspection of information frictions in the data

Before the quantitative exercise, we perform a deeper inspection of the micro data through the lens

of our model with the objective of providing further evidence on the presence of information frictions.

We discover a connection between price “age” and uncertainty; we measure the profit losses due to

the information friction; and we explain how to put discipline on the observability of the monetary

shocks using survey data.

Age-dependent statistics. As a robustness check of the calibration, we exploit the implication that

price age, defined as the time elapsed since its last change, is a determinant of the size and frequency

of its next adjustment. Young prices (recently set) and old prices (set many periods ago) exhibit

di↵erent behavior. In particular, young prices are more dispersed and more likely to be reset than old

prices. These predictions are documented by Campbell and Eden (2014) using weekly scanner data.

They find that conditional on adjustment, young prices have double the dispersion of old prices (15%

vs. 7%) and that price changes in the extreme tails of the price change distribution tend to be young.

They also find that young prices are three times more likely to be changed than old prices (36% vs

13%). We compute analogous numbers in our model, defining young prices to be in the 20th quintile

of the price age distribution and old prices to be in the 80th quintile. We obtain that price dispersion

is 1.3 times higher and adjustment frequency is 2 times higher for young prices. Interestingly, the

average uncertainty associated to young prices is 3.3 times the uncertainty faced by old prices, thus

relative price dispersion and adjustment frequency are informative about relative uncertainty.23

Losses due to information friction. Using the model and micro-price statistics, we can gauge

the size of the profit losses that are due to information frictions and nominal rigidity.24 Proposition

12 characterizes these losses, and provides an upper bound in terms of cross-sectional moments and

structural parameters.

Proposition 12 (Revenue losses due to frictions). Consider a constant returns to scale technology

and a CES demand with elasticity ⌘ > 1. Then we can express the expected per period profit losses

that arise from frictions relative to the frictionless benchmark, expressed as a fraction of revenue, as:

Losses =
1� ⌘

2

2

64 �E [⌦]| {z }
Loss from info. friction

+ V [µ̂]|{z}
Loss from nominal rigidity

3

75 (43)

Moreover, the losses due to the information friction are bounded above by 1�⌘
2 �
q

V[�p]
E[⌧ ] .

The first term shows the loss that arises from ignoring the true state, while the second term

shows the loss that arises from setting an incorrect price, reflected through markup dispersion. In

our preferred calibration, the term related to information frictions equals 0.86% of revenues, with an

23See Online Appendix Section L for details on the age-uncertainty relationship and age dependent statistics.
24We thank one of our referees for suggesting this analysis.
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upper bound of 1.6% of revenue.25 While these numbers appear to be slightly higher compared to

the 0.28% of managerial costs in Zbaracki et al. (2004), which include some information-gathering

costs, we think that further empirical evidence is needed in order to pin down this number with better

precision.

Discipline on forecast errors and observability of the monetary shock. Through the model,

the micro-pricing data tightly disciplines the forecast error dynamics. Our estimates for � and the

implied uncertainty distribution suggest forecast error persistence at the individual level of 0.94 for

the average firm and 0.84 for the average high uncertainty firm.26. The persistence of aggregate

forecast errors is 0.9. These numbers are consistent with the evidence in Coibion and Gorodnichenko

(2012), who estimate forecast error persistence in the range of 0.75 to 0.9 using survey data from

US professional forecasters, consumers, firms, and central bankers. Furthermore, their results suggest

that Bayesian forecasters assign a weight lower than 0.2 on new information. Our calibration is also

consistent with this, as we obtain a weight on new information between 0.06 (for an average firm) and

0.16 (for a high uncertainty firm). The weight on new information implies that it takes about three

quarters to reduce the forecast error by a half, just as our quantitative exercise suggests (Panel C in

Figures V and VI).

The convergence of forecast errors is independent from the observability of the monetary shock ↵;

nevertheless, observability determines the initial level of the average forecast error following a monetary

shock. Again, we use the survey evidence in Coibion and Gorodnichenko (2012) to discipline this

parameter. They find that, on average, the initial response of forecast errors is about half the response

of the forecasted variable. Given this evidence, we set observability equal to ↵ = 0.5. The observability

implied by survey data is relatively high when compared to the rational inattention literature, which

suggests that aggregate shocks are almost undisclosed, e.g. Maćkowiak and Wiederholt (2009)’s model

implies that ↵ = 0.04. For this reason, we additionally show results for a fully undisclosed shock

(↵ = 0), so that the whole spectrum of observability is covered in our quantitative analysis.

4.3 Quantifying the real e↵ects of monetary shocks

We proceed to quantify the real e↵ect of monetary shocks in the three cases we theoretically

analyzed: disclosed monetary shocks, partially disclosed monetary shocks, and monetary shocks ac-

companied by an aggregate uncertainty shock.

The role of selection e↵ect. We start by quantifying the output e↵ect of a one-time unanticipated

increase in money supply of size � = 1% that is fully disclosed by the monetary authority. Figure

IV shows the impulse-response of output for the three calibrations.27 In the baseline with perfect

25The numbers are computed as: 1�⌘
2 �E [⌦t(z)] = �

�
1�6
2

�
⇤0.233⇤0.0147 = �0.0086, and the upper bound is computed

with weekly price statistic as 1�⌘
2 �

q
V[�p]
E[⌧ ] = �

�
1�6
2

�
⇤ 0.233 ⇤

q
0.03
40 = �0.016.

26Forecast error persistence is equal to the Bayesian weight assigned to prior information: �2

�2+⌦t(z)2
. We compute the

cross-sectional average of this number for all firms and for firms with uncertainty above the mean.
27Note that all the impulse-responses have a jump on impact. While this is not surprising for the second calibration

with only fat-tailed shocks (there is a positive mass of firms at the borders of inaction), this jump does not occur in
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information, the monetary shock of 1% generates a total output e↵ect of M = 1.61%. This number

is very close to that implied by the lower bound formula in Proposition 9, which yields: � E[⌧ ]
6 =

1.66%. The small and short-lived output response (1.25 months) is the result of a large selection

e↵ect. The second calibration with fat-tailed shocks more than triples the baseline’s output e↵ects

and persistence. Its flat hazard breaks the selection e↵ect and obtains larger non-neutrality. The model

with heterogenous uncertainty and fully disclosed monetary shock more than doubles the output e↵ects

in the baseline, but the half-life is only 40% larger. The impulse-response almost perfectly tracks the

baseline in the first months, then it slowly approaches the impulse-response of the second model, and

eventually crosses it at 24 months. The quick and large adjustments of high uncertainty firms dominate

and drastically reduce the output e↵ect during the first months; thus the short half-life. Nevertheless,

the total output e↵ect is amplified by heterogeneity as demonstrated in Proposition 9, thanks to the

slow responsiveness of low uncertainty firms.28 Lastly, the model with heterogeneous uncertainty and

a partially disclosed shock, as calibrated with the survey data, obtains real output e↵ects that surpass

the other models.

Figure IV – Output Response to a Monetary Shock
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(1) Baseline: perfect info with only frequent shocks; (2) Perfect info with only fat-tailed shocks; (3) Heterog.
uncertainty + disclosed shock; (4) Heterog. uncertainty + partially disclosed shock (from survey data).

The role of forecast errors. To highlight the role of average forecast errors, we measure the output

e↵ect of a one-time unanticipated increase in money supply of size � = 1% that is fully undisclosed

by the monetary authority (↵ = 0). The lack of observability is in line with the rational inattention

the other models with Brownian shocks as the impact of a small monetary shock is second order. Here, the jumps
arise because we solve the model in discrete time and there is a positive mass of firms at the borders of inaction in
all calibrations. See Section M in the Online Appendix for more details on the computation of IRFs and a detailed
comparison of the impact responses across models.

28Note that, quantitatively, a large fraction of the amplification is due to the leptokurtic shocks. Since Gertler and
Leahy (2008) and Midrigan (2011), it is well known that a menu cost model with fat-tailed shocks behaves very closely
to a Calvo model, where selection is minimal and output e↵ects are large. Our results emphasize that the idiosyncratic
uncertainty cycles introduce amplification above and beyond what is already embedded in a particular model.
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literature. In this case, output e↵ects are mainly driven by forecast errors. Figure V plots output

deviations from steady state for the extreme cases of fully disclosed shock (↵ = 1) and undisclosed shock

(↵ = 0), and decomposes the deviations into inaction errors and forecast errors. We separately display

the aggregate response, the response of high uncertainty firms, and the response of low uncertainty

firms, where averages are conditional on uncertainty at the moment of the monetary shock.

Figure V – Output Response Conditional on Uncertainty and Observability of Monetary Shock
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Impulse-responses after a monetary shock. The first three variables are measured as deviations from steady state, while
adjustment frequency is plotted in levels. Column A is equal to the sum of Columns B and C. First row = disclosed,
second row = undisclosed. Responses are conditional on initial uncertainty: solid line = total mass of firms, light dashed
line = uncertainty below 20th percentile, dark dotted dashed line = uncertainty above 80th percentile.

Comparing across rows, we observe that the output response and half-lives are evidently larger

with an undisclosed shock. Note that forecast errors of highly uncertain firms quickly decrease; these

firms learn and incorporate quickly the monetary shock. Low uncertainty firms drive most of the

persistence in average forecast errors as they take a lot of time to learn the monetary shock; these

firms are pretty certain about their own conditions and make little use of new information. Again, this

is all pure Bayesian updating. The heterogeneity in learning dynamics and in passthrough amplifies

the output response. According to our formula in (41), the forecast errors have to be at least as large

as those that arise without heterogeneity: F ⌘ �
p

E[⌧ ]
std[�p] =

0.233
p
10

0.1456 = 5.06, i.e. output e↵ects must be 5

times as large as the monetary shock. Numerically, we obtain an output response 7 times larger than

the monetary shock. We interpret these numbers as saying that heterogeneous uncertainty amplifies

the output response in 40%.
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Simultaneous monetary and uncertainty shock. Finally, we compute the e↵ect of a partially

disclosed monetary shock (↵ = 0.5) that occurs at the same time of an aggregate uncertainty shock.

We assume that the uncertainty shock increases firms’ uncertainty by E[⌦], where E[⌦] is average

steady state uncertainty and  2 {0, 1, 4}. Figure VI shows the results.

Figure VI – Output Response to Simultaneous Monetary and Uncertainty Shock
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Impulse-response after a partially disclosed monetary shock (↵ = 0.5) paired with an aggregate uncertainty shock. The
first three variables are measured as deviations from steady state, while uncertainty is plotted in levels.

Aggregate uncertainty shocks significantly reduce the output response through their e↵ect on

forecast errors, as these converge faster to zero due to the Bayesian learning forces. According to

Proposition 11, the lower bound on forecast errors (which is achieved without heterogeneity) decreases

with the size of the aggregate uncertainty shock . Thus the potential of forecast errors to amplify

the output response are lower with higher aggregate uncertainty. Consistent with the theory, in our

simulation we obtain that output e↵ects fall from 4.64 times the baseline, to 2.75 times the baseline

with a small uncertainty shock, and to only 1.3 times the baseline with a large uncertainty shock. The

panel in the far right shows that uncertainty shocks are short-lived, as average uncertainty converges

back to its steady state level after a few months.

Table II summarizes all the quantitative results. It shows the total output e↵ect M and the

persistence of the response measured as the half-life of the impulse-response function. Note that in

this table all the numbers are multiples of the baseline case.

Table II – Output Response to Monetary Shock for Di↵erent Parametrizations

Perfect Info Heterogenous uncertainty
(1) (2) (3) (4) (5) (6)

Output E↵ect Baseline Fat-tailed Disclosed Undisclosed Small Unc. Large Unc.
shocks money shock money shock shock shock

� = � = 0 � = 0 ↵ = 1 ↵ = 0.5  = 1  = 4
Total e↵ect 1.00 3.75 2.70 4.64 2.75 1.31
Half-life 1.00 3.40 1.60 3.40 1.80 1.00

Multiples of the baseline case in Column (1) with perfect information and only small frequent shocks. For that
case, the total output e↵ects are M = 1.61% and the half-life is 1.25 months.
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4.4 Intensive and Extensive Margin Decomposition

As a final note, we assess the relative importance of the intensive and extensive margins of adjust-

ment that follow a monetary shock. The intensive margin describes the additional price increase of

those firms that were going to adjust anyway; in contrast, the extensive margin, reflects the increase

in the fraction of adjusters. While we cannot apply directly the first-order decomposition in Caballero

and Engel (2007) because in our model a monetary shock only has second-order e↵ects, we propose an

alternative decomposition along the same lines. Table III computes these adjustment margins after a

disclosed monetary shock � = 1% paired with an aggregate uncertainty shock of di↵erent sizes.29

Table III – Relative Importance on Intensive and Extensive Margins on Impact

On Impact: No ⌦ shock Small ⌦ shock Large ⌦ shock
 = 0  = 2  = 4

Intensive/Total 30% 39% 44%
Extensive/Total 70% 61% 56%

We observe that, on impact, the extensive margin is larger than the intensive margin, but its

relative importance is decreasing in the size of the aggregate uncertainty shock. Although an in-depth

analysis of these margins is outside the scope of this paper, we think these numbers are an interesting

starting point for further empirical analysis.

5 Conclusion

We have developed a new framework that combines an inaction problem, arising from a non-convex

adjustment cost, together with a signal extraction problem in which agents face undistinguishable

transitory and persistent shocks with jumps. As far as we know, our paper is the first to solve this

problem type analytically and deliver predictions for the joint dynamics of uncertainty, actions, and

forecast errors. Although the focus here is on pricing decisions, the model is easy to generalize to

other setups where fixed adjustment costs, fat-tailed shocks, and information frictions are likely to

coexist. Particularly, we foresee applications in setups that generate strong age-dependent statistics,

such as labor markets. Moreover, the filtering results can be extended to aggregate shocks to study,

for instance, disaster risk in a tractable way.

Firm-level uncertainty appears to be a quantitatively important determinant of the e↵ects of

monetary policy. Going forward, it would be interesting to further explore empirically the model’s

implications. For this purpose, it will be key to generate panel data with measures of idiosyncratic

uncertainty about both aggregate and individual variables, and then pair these with pricing data and

other firm characteristics. The work by Bachmann, Born, Elstner and Grimme (2017a) pushes to-

wards this direction by combining firm-level pricing data with a qualitative measure of idiosyncratic

29Section N of the Online Appendix provides all the details regarding the computation of the two margins. We thank
one of our referees for suggesting this exercise.
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uncertainty faced by German firms. It would be interesting to incorporate such cross-sectional mea-

sures of uncertainty into VAR analyses that test for state-dependent e↵ectiveness of monetary policy

in times of high and low uncertainty, to complement the results obtained with measures of aggregate

uncertainty (for an example, see Castelnuovo and Pellegrino 2018). Finally, surveys that elicit firm

expectations about inflation and other aggregate variables, as in Coibion, Gorodnichenko and Kumar

(2018) for the case of New Zealand, will allow constructing aggregate forecast errors to test for state

dependency in learning and pricing.
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A Appendix: Proofs

Preliminaries Throughout the proofs, we denote partial derivatives with fµ̂i⌦j ⌘ @i+jf
@µ̂i@⌦j . We denote with A the

infinitesimal generator of (µ̂,⌦) and A⇤ its adjoint operator, which are given respectively by

A�(µ̂,⌦) =
�2
f � ⌦2

�
�⌦(µ̂,⌦) +

⌦2

2
�µ̂2(µ̂,⌦) + �


�

✓
µ̂,⌦+

�2
u

�

◆
� �(µ̂,⌦t)

�
(A.1)

A⇤f(µ̂,⌦) = �
�2
f � ⌦2

�
f⌦(µ̂,⌦) +

2⌦
�

f(µ̂,⌦) +
⌦2
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fµ̂2(µ̂,⌦) + �


f

✓
µ̂,⌦� �2

u

�

◆
� f (µ̂,⌦)

�
(A.2)

See Section C of the Online Appendix for their derivation.

Proposition 1 (Filtering Equations, Including Drift). Proposition 1 is proved in a more general setup than in the
text, adding a non-zero drift for the state. Let the following processes define the state and the signal

(state) dµt = Fµtdt+ �fdWt + �uutdQt (A.3)

(observation) dst = Gµtdt+ �dZt

(initial conditions for state) µ0 ⇠ N (a, b)

(initial conditions for observations) s0 = 0

where Wt, Zt ⇠ Wiener Process, Qt ⇠ Poisson(�), ut ⇠ N (0, 1)

Let the information set (with continuous sampling) be It = � {sh, Qh : h 2 [0, t]}. Then the posterior distribution of
the state is Normal, i.e. µt|It ⇠ N (µ̂t,⌃t), where the posterior mean µ̂t ⌘ E[µt|It] and posterior variance ⌃t ⌘
E[(µt � µ̂t)

2|It] satisfy the following stochastic processes:

dµ̂t =
⇣
F � G2⌃t

�2

⌘
µ̂tdt+

G⌃t
�2 dst, µ̂0 = a (A.4)

d⌃t =
⇣
2F⌃t + �2

f � G2⌃2
t

�2

⌘
dt+ �2

udQt, ⌃0 = b

Furthermore, the first filtering equation can be written as dµ̂t = Fµ̂tdt +
G2⌃t

� dẐt, where Ẑt is the innovation process

given by dẐt = 1
� (dst � µ̂tdt) = 1

� (µt � µ̂t)dt + dZt and it is one-dimensional Wiener process under the probability
distribution of the firm independent of dQt. Finally, using the definition of uncertainty ⌦t ⌘ �⌃t, and substituting F = 0
and G = 1, we obtain the filtering equations used in the text:

dµ̂t = ⌦tdẐt, µ̂0 = a (A.5)

d⌦t =
�2
f � ⌦2

t

�
dt+

�2
u

�
dQt, ⌦0 =

b
�

(A.6)

Proof. The strategy of the proof has three steps, each established in a Lemma.

(1) We show that the solution Mt ⌘ [µt, st] to the system of stochastic di↵erential equations in (A.3), conditional on
the history of Poisson shocks Qt = �{Qr|r  t}, follows a Gaussian process.

(2) µt|It is Normal and can be obtained as the limit of a discrete sampling of observations;

(3) The recursive estimation formulas obtained with discrete sampling converge to (A.4).30

Now we elaborate on the three steps.

Lemma 1. Let Mt ⌘ [µt, st] be the solution to (B.13) and Qt = �{Qr|r  t}. Then Mt|Qt is Normal.

Proof. Fix a realization ! and let Nt(!) be the quantity of jumps between 0 and t, which is a number known at t.
Applying Picard’s iterative process to (A.3) and considering the initial conditions, we obtain the following sequences

µk+1
t = µ0 + F

Z t

0

µk
⌧d⌧ + �fWt + �f

Nt(!)X

i=1

ui

sk+1
t = G

Z t

0

µk
⌧d⌧ + �Zt

Assume that µ0
t is Normal. As induction hypothesis, assume that Mk

r |Qt ⌘ [µk
r , s

k
r |Qt] is Normal for all r  t. Note

that (µ0,Wr, Zr) are Normal random variables independent of Qt; the term
PNr(!)

i=1 ui|Qt is Normal since it is a fixed

30In Section P of the Online Appendix, we derive additional details and a formal convergence proof.
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sum of Nr(!) Normal random variables; and finally, the term
R r

0
µk
⌧d⌧ is a Riemann integral of Normal variables by

the induction hypothesis. Given that the linear combination of Normals is Normal, then Mk+1
r |Qt ⌘ [µk+1

r , sk+1
r |Qt] is

Normal as well for r  t. Therefore, for each r  t, we have a sequence of Normal random variables {Mk
r |Qt}1k=0.

To show Normality of Mt|Qt, notice that Mk
r |Qt = Mk

r |Qr and Mk
r |Qr converges in L2 to Mr (see Chapter 5

of Øksendal (2007)). Since the limit in L2 of Normal variables is Normal, Mt is Normal. Therefore the solution to
the system of stochastic di↵erential equations, conditional to the history of Poisson shocks, i.e. Mt|Qt, is a Gaussian
process.

Lemma 2. The conditional distribution of the state µt|It is Normal, µt|It ⇠ N
�
E [µt|It] ,E

⇥
(µt � E [µt|It])

2 |It

⇤�
, and

the conditional mean and variance can be obtained as the limit of a discrete sampling of observations.

Proof. Let � ⌘ 1
2n and define an increasing sequence of �-algebras {In

t }1n=0 using the dyadic set as follows:

In
t = � {sr, Qh : r 2 {0,�, 2�, 3�, . . . } , r  t, h 2 [0, t]}

Let Mn
t ⌘ µt|In

t be the estimate at time t produced with discrete sampling. The following properties are true.

(i) For each n, Mn
t is a Normal random variable. By the previous Lemma (µt, sr1 , sr2 , . . . , srn)|Qt is Normal; by

properties of Normals, Mn
t is also Normal.

(ii) For each n, Mn
t has finite variance. This is a direct implication of Normality.

(iii) Let I1
t ⌘ �{U1

n=1I
n
t } be the �-algebra generated by the union of the discrete sampling information sets. For each

t, Mn
t converges to some limit M1

t ⌘ µt|I1
t as n ! 1. Since In

t is a increasing sequence of �-algebras, by the
Law of Iterated Expectations Mn

t is a martingale with finite variance, therefore it converges in L2. Given that the
limit of Normal random variables is Normal, the limit M1

t is a Normal random variable as well.

Mn
t !L2 M1

t ⇠ N (E [µt|I1
t ] ,E

⇥
(µt � E [µt|It])

2 |I1
t

⇤

Since signals st are continuous (in particular left-continuous) and the dyadic set is dense in the interval [0, t], the
information set obtained as the limit of the discrete sampling is equal to the information set obtained with continuous
sampling: I1

t = � {sh, Qh : h 2 [0, t]}. Therefore, the estimate obtained with the limit of discrete sampling converges (in
L2) to the estimate with continuous sampling, i.e. M1

t !L2 µt|It ⇠ N
�
E [µt|It] ,E

⇥
(µt � E [µt|It])

2 |It

⇤�
(see Davis

(1977) for more details in this topic).

Lemma 3. Let � ⌘ 1
2n and define In,⇤

t as the information set before measurement (used to construct predicted estimates)

In,⇤
t = � {sr�1, Qh |r 2 {0,�, 2�, 3�, . . . }, r  t, h 2 [0, t]}

and define µ̂n
t = E[µt|In,⇤

t ] and ⌃n
t = E[(µt � µ̂t)

2 |In,⇤
t ]. Then the laws of motion of {µ̂n

t ,⌃
n
t } converge weakly to the

solution of (A.4), namely the laws of motion for {µ̂t,⌃t}, where µ̂t ⌘ E[µt|It] and ⌃t ⌘ E[(µt � µ̂t)
2 |It].

Proof. Before we derive the processes for the estimate and its conditional variance, an explanation of why we use the
information set In,⇤

t instead of In
t is due. The reason is convenience, as the first information set produces independent

recursive formulas for the predicted estimate µt|�{U1
i=1I

n,⇤
t } and it is easier to show its convergence. Let us show that the

union of information sets are equal, i.e. �{U1
i=1I

n
t } = �{U1

i=1I
n,⇤
t }, and thus the way we construct the limit is innocuous.

Trivially, we have that �{U1
i=1I

n,⇤
t } ⇢ �{U1

i=1I
n
t }. For the reverse to be true �{U1

i=1I
n
t } ⇢ �{U1

i=1I
n,⇤
t }, it is su�cient

to show that signals s are continuous, since left-continuous filtrations of continuous process are always continuous. To
show that signals are continuous, notice that they can be written as st =

R t

0
µsds+ �Zt, which is an integral of a finite

set of discontinuities plus a Wiener process, and thus they are continuous.
Now let us derive the laws of motion. Considering an interval �, then the processes in (A.3) can be written as

µt = µt�� + F

Z t

t��
µ⌧d⌧ +

q
��2

f ✏t + �uut(Qt �Qt��), µ�� ⇠ N (µ̂�,⌃�)

st = st�� +G

Z t

t��
µ⌧d⌧ +

p
��2⌘t, s0 = 0

(Qt �Qt��) ⇠i.i.d

8
<

:

1 with probability 1� e��� � o(�2)
0 with probability e��� � o(�2)
> 1 with probability o(�2)

✏t, ⌘t, ut ⇠i.i.d N (0, 1)

First order approximations of the integral yield
R t

t�� µ⌧d⌧ = µt���+⇠t = µt�+ ⇠̃t, where ⇠t and ⇠̃t are Normal random

variables conditional on Qt, with E[⇠t] = o(�2), E[⇠2t ] = o(�2), E[⇠̃t] = o(�2) and E[⇠̃t] = o(�2). Substituting these
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approximations above, we can express the laws of motion for µ, s as follows:

µt = (1 + F�)µt�� +
q
��2

f ✏t + �uut(Qt �Qt��) + o(�2)

st = st�� +G�µt +
p
��2⌘t + o(�2)

Since the model is Gaussian, we use the Kalman Filter to estimate the conditional mean µ̂n
t = E[µt|In,⇤

t ] and variance
⌃n

t = E[(µt � µ̂t)
2 |In,⇤

t ]. The recursive formulas are

µ̂n
t+� = (1 +�F ) µ̂n

t +Kn
t (st � st�� ��G(1 +�F )µ̂n

t ) + o(�2)

⌃n
t+� = (1 +�F )2

⌃n
t �

2

⌃n
t G2�+ �2

+ �2
f�+ (Qt+� �Qt)�

2
u + o(�2)

Kn
t = (1 +�F )

⌃n
t G

⌃n
t G2�+ �2

Notice that since ut has mean zero, the known arrival of a Poisson shock does not a↵ect the estimate. However, it does
a↵ect the variance by adding a shock of size �2

u. Rearranging, the previous system can be written as

µ̂n
t+� � µ̂n

t =
⇣
F �G'I(�)

⌘
µ̂t�+ 'I(�) (st � st��) + o(�2), 'I(�) ⌘ ⌃n

t G
⌃2

tG2�+ �2

⌃n
t+� � ⌃n

t =
⇣
'II(�) + �2

f

⌘
�+ (Qt+� �Qt)�

2
u + o(�2), 'II(�) ⌘


�2(2F + F 2�)�G2⌃n

t

⌃n
t G2�+ �2

�
⌃n

t

Taking the limit as n ! 1 (or �! 0), we see that 'I(�) ! ⌃tG
�2 and 'II(�) ! 2F⌃t� G2⌃2

t
�2 , which yield exactly the

same laws of motion that can be obtained with the continuous time Kalman-Bucy filter. Therefore, the laws of motion
obtained with discrete sampling are locally consistent with the continuous time filtering equations in (A.4) (see Section
P of the Online Appendix for details, where we follow Theorem 1.1, Chapter 10 of Kushner and Dupuis (2001)).

To conclude, we use the structure of the signal to rewrite the law of motion in terms of innovation representation as

dµ̂t = Fµ̂tdt+
G⌃t

�

✓
G
�

(µt � µ̂t) dt+ dZt

◆
= Fµ̂tdt+

G⌃t

�
dẐt (A.7)

where dẐt ⌘ G
� (µt � µ̂t) dt+ dZt is the innovation process. We now show dẐt is a Wiener process. Applying the law of

iterated expectations:

E[(µt � µ̂t)|�{µ̂s : s  t}] = E [E [ (µt � µ̂t)| It] |�{µ̂s : s  t}] = E[(µ̂t � µ̂t)|�{µ̂s : s  t}] = 0

Since E[(µt � µ̂t)|�{µ̂s : s  t}] = 0 8t and dZt is a Wiener process, we apply corollary 8.4.5 of Øksendal (2007) and
conclude that dẐt is a Weiner process as well.

Proof of Proposition 2 (Stopping time problem). Let {⌧i}1i=1 be the series of dates where the firm adjusts her
markup gap and {µi}1i=1 the series of reset markup gaps. Given an initial condition µ0 and a law of motion for the
markup gaps, the sequential problem of the firm is expressed as follows:

max
{µ⌧i ,⌧i}

1
i=1

E
" 1X

i=0

e�r⌧i+1

✓
�✓̄ �

Z ⌧i+1

⌧i

e�r(t�⌧i+1)µ2
tdt

◆#
(A.8)

Using the definition of variance, we can write the condition expectation of the markup gap at time t as:

E[µ2
t |It] = E[µt|It]

2 + V[µt|It] = µ̂2
t + V[µt|It] = µ̂2

t + (�2
f + ��2

u)t = µ̂2
t + ⌦

⇤2t

where in the last equality we use the definition of fundamental uncertainty ⌦⇤. Use the Law of Iterated Expectations
in (A.8) to take expectation given the information set at time t. Use the decomposition above to write the problem in
terms of estimates:

E
" 1X

i=0

e�r⌧i+1

✓
�✓̄ �

Z ⌧i+1

⌧i

e�r(t�⌧i+1)µ̂2
tdt

◆#
� ⌦⇤2E

" 1X

i=0

Z ⌧i+1

⌧i

te�rtdt

#

| {z }
sunk cost

The last term in the previous expression is a constant number, and it arises from the fact that the firm will never learn
the true realization of the markup gap. It is considered a sunk cost in the firm’s problem since she cannot take any
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action to alter its value; therefore, we can ignore it from her problem. To compute its value, note that the term inside
the expectation is equal to:

�⌦⇤2E
" 1X

i=0

Z ⌧i+1

⌧i

te�rtdt

#
= �⌦⇤2E

" 1X

i=0


e�r⌧i(1 + r⌧i)� e�r⌧i+1(1 + r⌧i+1)

r2

�#
= �⌦⇤2E


e�r⌧0(1 + r⌧0)

r2

�
< 1

where the sum is telescopic and all terms except the first cancel out. Using the previous results, the sequential problem
in (A.8) is written in terms of estimates as:

max
{µ⌧i ,⌧i}

1
i=1

E
" 1X

i=0

e�r⌧i+1

✓
�✓̄ �

Z ⌧i+1

⌧i

e�r(t�⌧i+1)µ̂2
tdt

◆#

Given the stationarity of the problem and the stochastic processes, we apply the Principle of Optimality to the sequential
problem (see equation 7.2 in Stokey (2009)) and express it as a sequence of stopping time problems with state (µ̂0,⌦0):

V (µ̂0,⌦0) = max
⌧

E
Z ⌧

0

�e�rtµ̂2
tdt+ e�r⌧ [�✓̄ +max

µ0
V (µ0,⌦⌧ )]

�

subject to the filtering equations. Here ⌧ is the stopping time associated with the optimal decision.

Proof of Proposition 3 (HJB Equation, Value Matching and Smooth Pasting). We apply Theorem 2.2 of Øksendal
and Sulem (2010) to obtain su�cient conditions for optimality, which are: (1) HJB equation; (2) Value matching; and
(3) Smooth pasting condition in each dimension. Using the infinitesimal generator A from (A.1) we obtain the HJB
equation:

rV (µ̂,⌦) = �µ̂2 +

 
�2
f � ⌦2

�

!
V⌦(µ̂,⌦) +

1
2
⌦2Vµ̂2(µ̂,⌦) + �


V

✓
µ̂,⌦+

�2
u

�

◆
� V (µ̂,⌦)

�

The value matching condition that sets equal the value of adjusting and not adjusting at the border:

V (µ̄(⌦),⌦) = V (0,⌦)� ✓̄

Finally, we impose two smooth pasting conditions, one for each state,

Vµ̂(µ̄(⌦),⌦) = 0, V⌦(µ̄(⌦),⌦) = V⌦(0,⌦)

Section D of the Online Appendix verifies assumptions for the su�cient conditions to hold in our problem; and Section
E.3 verifies numerically that the smooth pasting conditions for µ̂ and ⌦ are valid.

Proof of Proposition 4 (Inaction Region). The plan for the proof is as follows. Following Álvarez, Lippi and Paciello
(2011) we use Taylor approximations to the value function and optimality conditions to characterize the border of the
inaction region. We first obtain an inaction region that depends on derivatives of the value function. This derivatives
introduce a novel term—which we label learning component—that does not appear in inaction regions derived in perfect
information settings. We then approximate this learning component around fundamental uncertainty ⌦⇤. With this
approximation, we obtain an expression for the inaction region that depends only on the uncertainty level and parameters.
Lastly, we show that the elasticity of the inaction region with respect to uncertainty is lower than unity.

1. Optimality conditions: The optimality conditions of the problem are given by:

rV (µ̂,⌦) = �µ̂2 + �


V

✓
µ̂,⌦+

�2
u

�

◆
� V (µ̂,⌦)

�
+

�2
f � ⌦2

�
V⌦(µ̂,⌦) +

⌦2

2
Vµ̂2(µ̂,⌦) (A.9)

V (µ̄ (⌦) ,⌦) = V (0,⌦)� ✓̄ (A.10)

Vµ(µ̄ (⌦) ,⌦) = 0 (A.11)

V⌦(µ̄ (⌦) ,⌦) = V⌦(0,⌦) (A.12)

Where we used the property of symmetry of the value function to obtain a reset markup equal to zero.

2. Taylor approximation of V and value matching. For a given level of uncertainty ⌦, we do a 4th order Taylor

expansion on the first argument of V around zero: V (µ̂,⌦) = V (0,⌦) +
Vµ̂2 (0,⌦)

2! µ̂2 +
Vµ̂4 (0,⌦)

4! µ̂4. Odd terms do
not appear due to the symmetry of the value function around 0. Evaluating at the border and combining with
the value matching condition (A.10) we obtain:

� ✓̄ = Vµ̂2(0,⌦)
µ̄(⌦)2

2
+ Vµ̂4(0,⌦)

µ̄(⌦)4

24
(A.13)
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3. Taylor approximation of Vµ and smooth pasting. For a given level of uncertainty ⌦, we do a 3rd order

Taylor expansion on the first argument of Vµ around zero: Vµ(µ̂,⌦) = Vµ̂2(0,⌦)µ̂ +
Vµ̂4 (0,⌦)

3! µ̂3. Evaluate at the

border, multiply both sides by µ̄(⌦)
2 and combine with the smooth pasting condition (A.11) to obtain:

0 = Vµ̂2(0,⌦)
µ̄(⌦)2

2
+ Vµ̂4(0,⌦)

µ̄(⌦)4

12
(A.14)

4. Inaction border (as a function of V ): Combine the relationships between the 2nd and 4th derivatives of V
in (A.13) and (A.14):

✓̄ = µ̄(⌦)4
Vµ̂4(0,⌦)

24
= �µ̄(⌦)2

Vµ̂2(0,⌦)

4
(A.15)

From the previous equality, we obtain an expression for the border of inaction as a function of Vµ̂4 :

µ̄(⌦) =

✓
24✓̄

Vµ̂4(0,⌦)

◆1/4

(A.16)

5. Definition of learning e↵ect Lµ̄(⌦): We want to further characterize Vµ̂4(0,⌦). Taking second derivatives of

the HBJ in (A.9) with respect to µ̂ and using a Taylor approximation of the second argument of Vµ̂2

⇣
µ̂,⌦+

�2
u
�

⌘

around ⌦ we have:

rVµ̂2(µ̂,⌦) = �2� ⌦2 � ⌦⇤2

�
Vµ̂2⌦(µ̂,⌦) +

⌦2

2
Vµ̂4(µ̂,⌦)

where ⌦⇤2 ⌘ �2
f + ��2

u. Lastly, taking the limit r ! 0, evaluating at µ̂ = 0 and using the property that the payo↵
function is bounded in the continuation region:

Vµ̂4(0,⌦) =
4
⌦2

✓
1 +

⌦2 � ⌦⇤2

�

Vµ̂2⌦(0,⌦)

2

◆
=

4
⌦2

�
1 + Lµ̄(⌦)

�
(A.17)

Thus

µ̄(⌦) =

✓
6✓̄⌦2

1 + Lµ̄(⌦)

◆1/4

with Lµ̄(⌦) ⌘ ⌦2 � ⌦⇤2

�

Vµ̂2⌦(0,⌦)

2
(A.18)

Note that if ⌦ = ⌦⇤, then Lµ̄(⌦) = 0 and the formula for the inaction region collapses to 4-th root formula in
Dixit (1991) and Álvarez, Lippi and Paciello (2011), where ⌦ takes the place of �f .

6. Approximate learning component Lµ̄(⌦) around ⌦⇤. Define �(⌦) ⌘
Vµ̂2,⌦(0,⌦)

2 . To characterize it, first use
the equivalence between the 2nd and 4th derivatives in (A.15), then substitute the expressions for Lµ̄(⌦) in (A.17)
and µ̄(⌦) in (A.18), and then simplify:

�(⌦) ⌘ @
@⌦


Vµ̂2(0,⌦)

2

�
=

@
@⌦


�
Vµ̂4(0,⌦)

12
µ̄(⌦)2

�
=

@
@⌦

"
�
( 23 ✓̄)

1/2

⌦

⇣
1 + Lµ̄(⌦)

⌘1/2
#

Using the definition of �(⌦) write the previous equation recursively as: �(⌦) = @
@⌦


� ( 2

3 ✓̄)1/2

⌦

⇣
1 + �(⌦)⌦

2�⌦⇤2

�

⌘1/2�
.

A first order Taylor approximation of Lµ̄(⌦) around ⌦⇤ yields:

Lµ̄(⌦) = Lµ̄(⌦⇤) + Lµ̄
⌦(⌦

⇤)(⌦� ⌦⇤) = 2⌦⇤�(⌦⇤)
⌦� ⌦⇤

�
=

✓
8
3

✓̄
�2

◆1/2 ✓
⌦
⌦⇤ � 1

◆

where we have used the following equalities: Lµ̄(⌦⇤) = 0, Lµ̄
⌦(⌦

⇤) = 2⌦
⇤

� �(⌦
⇤), and �(⌦⇤) =

( 2
3 ✓̄)1/2

⌦⇤2 .

Substituting back into the border, we get the final approximation:

µ̄(⌦) = (6✓̄⌦2)1/4
"
1 +

✓
8
3

✓̄
�2

◆1/2 ✓
⌦
⌦⇤ � 1

◆#�1/4

(A.19)

7. Elasticity: Now we compute the elasticity of the border to uncertainty E ⌘ @ ln µ̄(⌦)
@ ln⌦ . Applying logs to (A.19) we

obtain: ln µ̄(⌦) / 1
2 ln⌦� 1

4 ln
h
1 +

⇣
8
3

✓̄
�2

⌘1/2 �
⌦
⌦⇤ � 1

� i
. Our parametric assumptions of small menu costs ✓̄ and

large signal noise � make the quantity
⇣

8
3

✓̄
�2

⌘1/2
very small, therefore, we use ln(1 + x) ⇡ x for x small to get:

ln µ̄(⌦) / 1
2 ln⌦� 1

4

⇣
8
3

✓̄
�2

⌘1/2 ⇣
eln⌦

⌦⇤ � 1
⌘
. Taking the derivatives, we obtain the elasticity: E ⌘ 1

2 �
⇣

1
6

✓̄
�2

⌘1/2
⌦
⌦⇤ .
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Clearly, E < 1. Since ⌦ is bounded below by �f , the highest value for the elasticity is E = 1
2 �

⇣
1
6

✓̄
�2

⌘1/2 �f

⌦⇤ < 1
2 .

8. Smooth pasting condition for ⌦: Lastly, we show that the smooth pasting condition for ⌦ is implied by other

conditions. First, recall from (A.15) that �✓̄ = µ̄(⌦)2
Vµ̂2 (0,⌦)

4 . Write the RHS as:

µ̄(⌦)2
Vµ̂2(0,⌦)

2
� µ̄(⌦)2

Vµ̂2(0,⌦)

4
= µ̄(⌦)2

Vµ̂2(0,⌦)

2!
+ µ̄(⌦)4

Vµ̂4(0,⌦)

4!
= V (µ̄ (⌦) ,⌦)� V (0,⌦)

where in the first equality we have substituted the equality in (A.15), and in the second equality we have used the
HJB in (A.9) evaluated at µ̄. Summarizing, we have that �✓̄ = V (µ̄ (⌦) ,⌦)�V (0,⌦). Finally, take derivative with
respect to ⌦ on both sides and obtain the smooth pasting condition for ⌦ in (A.12), 0 = V⌦(µ̄ (⌦) ,⌦)� V⌦(0,⌦).

Proof of Proposition 5 (Conditional Expected Time). Let T (µ̂,⌦) denote the expected time for the next price
change given the current state, i.e. E[⌧

��µ̂,⌦]. The proof consists of four steps. First, we establish the HJB equation
for T (µ̂,⌦) and its corresponding border condition. We apply a first order approximation to the HJB equation on the
second state to compute the value with uncertainty jump. Second, we do a second order Taylor approximation of T (µ̂,⌦)
around (0,⌦), and substitute both the HJB and the border condition into this approximation. Third, we approximate
term (ii) around fundamental uncertainty ⌦⇤. Lastly, we show that if E < 1, then time for between price adjustments
T (0,⌦) is decreasing in uncertainty.

1. HJB equation, jump approx, and border condition. The expected time between price changes satisfies

0 = 1 +AT (µ̂,⌦) = 1 + �


T

✓
µ̂,⌦+

�2
u

�

◆
� T (µ̂,⌦)

�
+

(�2
f � ⌦2)

�
T⌦(µ̂,⌦) +

⌦2

2
Tµ̂2(µ̂,⌦)

We approximate the uncertainty jump with a linear approximation to the second state:

T

✓
µ̂,⌦+

�2
u

�

◆
⇡ T (µ̂,⌦) +

�2
u

�
T⌦(µ̂,⌦)

Substituting the approximation and using the definition of fundamental uncertainty ⌦⇤, we obtain:

0 = 1 +
⌦⇤2 � ⌦2

�
T⌦(µ̂,⌦) +

⌦2

2
Tµ̂2(µ̂,⌦) (A.20)

The border condition states that at the border of action, the expected time is equal to zero T (µ̄(⌦),⌦) = 0.

2. Approximation of T (µ̂,⌦). A second order Taylor approximation of T (µ̂,⌦) in the first state around µ̂ = 0

yields: T (µ̂,⌦) = T (0,⌦)+
Tµ̂2 (0,⌦)

2 µ̂2. We evaluate this expression at (µ̄(⌦),⌦) and we use the border condition to

compute T (0,⌦), T (0,⌦) = �
Tµ̂2 (0,⌦)

2 µ̄(⌦)2. We evaluate the HJB in (A.20) at (0,⌦) and solve for it to compute

Tµ̂2(0,⌦)/2,
Tµ̂2 (0,⌦)

2 = � 1
⌦2

h
1 + T⌦(0,⌦)⌦

⇤2�⌦2

�

i
. Substitute both terms into the Taylor approximation and

rearrange:

T (µ̂,⌦) =
µ̄(⌦)2 � µ̂2

⌦2
(1 + L⌧ (⌦)) (A.21)

where L⌧ (⌦) ⌘ T⌦(0,⌦)⌦
⇤2�⌦2

� measures the e↵ect of uncertainty changes on the expected time and L⌧ (⌦
⇤) = 0.

3. Approximation around ⌦⇤. A first order Taylor approximation of L⌧ (⌦) around ⌦
⇤ yields:

L⌧ (⌦) = �2⌦⇤

�
T⌦(0,⌦

⇤)(⌦� ⌦⇤)

To characterize T⌦(0,⌦
⇤), take the partial derivative of (A.21) with respect to ⌦ and evaluate it at (0,⌦⇤):

T⌦(⌦
⇤, 0) = �2µ̄(⌦)2

⌦⇤3 (1� E(⌦⇤))
⇣
1 +

2
�
µ̄(⌦⇤)2

⌦⇤

⌘�1
= �2(1� E(⌦⇤))

⌦⇤2

⇣ 2�(6✓̄)1/2

� + 2(6✓̄)1/2

⌘

where E(⌦⇤) is the elasticity of the inaction region at ⌦⇤. Substitute back into L⌧ (⌦) and arrive to

L⌧ (⌦) = 2

✓
⌦
⌦⇤ � 1

◆
(1� E(⌦⇤))

✓
2�(6✓̄)1/2

� + 2(6✓̄)1/2

◆
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Finally, we arrive at the result

T (µ̂,⌦) =
µ̄(⌦)2 � µ̂2

⌦2


1 +A

✓
⌦
⌦⇤ � 1

◆�

where A ⌘ 2(1�E(⌦⇤))
⇣

2�(6✓̄)1/2

�+2(6✓̄)1/2

⌘
is a positive constant since the elasticity E(⌦⇤) is lower than unity. Further-

more, A is close to zero for small menu costs and large signal noise, as in our calibration.

4. Decreasing and convex in uncertainty. The expected time between price changes is equal to T (0,⌦):

T (0,⌦) =
µ̄(⌦)2

⌦2


1 +A

✓
⌦
⌦⇤ � 1

◆�

Its first derivative with respect to uncertainty is given by:

@T (0,⌦)
@⌦

=
µ̄(⌦)2

⌦3

✓
2(E(⌦)� 1)


1 +A

✓
⌦
⌦⇤ � 1

◆�
+A

⌦
⌦⇤

◆

If A is close to zero (as it is the case with small menu costs and large signal noise) we obtain:

@T (0,⌦)
@⌦

= �2
µ̄(⌦)2

⌦3
(1� E(⌦)) < 0

which is negative because the elasticity E(⌦) is lower than unity. Finally, the second derivative

@2T (0,⌦)
@⌦2

= 4
µ̄(⌦)2

⌦4

✓
3
2
� E(⌦)

◆
(1� E(⌦)) + ⌦

2
E 0(⌦))

�
> 0

which is positive since the elasticity is lower than unity and increasing in uncertainty. Therefore, the expected
time is decreasing and convex in uncertainty.

Proof of Proposition 6 (Conditional Hazard Rate). Assume � = 0, initial conditions (µ̂0,⌦) = (0,⌦0), and a
constant inaction region at µ̄0 ⌘ µ̄(⌦) = µ̄(⌦0). Without loss of generality, we assume the last price change occurred at
t = 0. First we derive expressions for two objects that will be part of the estimate’s unconditional variance: the state’s
unconditional variance E0[µ

2
⌧ ] and the estimate’s conditional variance ⌃⌧ . All moments are conditional on the initial

conditions, but we do not make it explicit for simplicity.

1. State’s unconditional variance Since the state evolves as dµ⌧ = �fdW⌧ , we have that µ⌧ = µ0 + �fW⌧ , with
W0 = 0 and µ0 ⇠ N (0,⌃0). Therefore, the state’s unconditional variance at time ⌧ (after the last price change at
t = 0) is given by:

E0[µ
2
⌧ ] = E0[(µ0+�fW⌧ )

2] = E0[µ
2
0+2µ0�fE0[(W⌧ �W0)]+�2

fE0[(W⌧ �W0)
2] = E0[µ

2
0]+�2

f⌧ = ⌃0+�2
f⌧ (A.22)

where we have use the properties of the Wiener process.

2. Estimate’s conditional variance. The conditional forecast variance evolves as d⌃⌧ =
⇣
�2
f � ⌃2

�2

⌘
d⌧ . Assuming

an initial condition ⌃0 such that ⌃0 > ��f , the general solution to the di↵erential equation is in the family of
hyperbolic tangent and hyperbolic cotangent. Since the family of hyperbolic tangent does not satisfy the boundary

condition, the solution is given by ⌃⌧ = �f� coth
h
�f�c+

�f

� ⌧
i
. Evaluating at the initial condition, we get

⌃0 = �f� coth [��fc] and therefore c = 1
�f� coth�1

⇣
⌃0
�f�

⌘
. Back into (2) and using properties of the hyperbolic

tangent,

⌃⌧ = �f� coth


coth�1

✓
⌃0

�f�

◆
+

�f

�
⌧

�
(A.23)

Since coth is invertible in the positive domain and coth(+1) = 1 we confirm that ⌃⌧ = ⌃0 at ⌧ = 0 and
lim⌧!1 ⌃⌧ = �f�.

3. Estimate’s unconditional variance. Recall that the estimate follows dµ̂⌧ = ⌦⌧dẐ⌧ . Since � = 0, uncertainty
evolves deterministically as d⌦⌧ = 1

� (�
2
f � ⌦2

⌧ ). Given the initial condition µ̂0 = 0, the solution to the forecast

equation is µ̂⌧ =
R ⌧

0
⌦sdẐs. By definition of Itō’s integral

R ⌧

0
⌦sdẐs = lim(⌧i+1�⌧i)!0

P
⌧i
⌦⌧i(Ẑ⌧i+1 � Ẑ⌧i). The

increments’ Normality and the fact that ⌦⌧i is deterministic imply that for each ⌧i, ⌦⌧i(Ẑ⌧i+1 � Ẑti) is Normally
distributed as well. Since the limit of Normal variables is Normal, we have that markup gap’s estimate at date
⌧ , given information set I0, is also Normally distributed. Let V⌧ ⌘ E0[µ̂

2
⌧ ] denote the estimate’s unconditional

variance, then µ̂⌧ |I0 ⇠ N (0,V⌧ ). To characterize V⌧ , start from its definition and add and subtract µt:

V⌧ ⌘ E0[µ̂
2
⌧ ] = E0[µ

2
⌧ ] + E0[(µ̂⌧ � µt)

2]� 2E0[(µ̂⌧ � µ⌧ )µ⌧ ] = E0[µ
2
⌧ ]� ⌃⌧ (A.24)
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where we that E0[(µ̂⌧ � µ⌧ )µ⌧ ] = E0[(µ̂⌧ � µ⌧ )
2] = ⌃t, implied by the orthogonality of the innovation and the

forecast: µ⌧ � µ̂⌧ ? µ̂⌧ . Substituting expressions (A.22) and (A.23) into (A.24) and using ⌦⌧ = �⌃⌧ , we get:

V⌧ = �2
f⌧ + � (⌦0 � ⌦⌧ ) = �2

f⌧ + �

✓
⌦0 � �f coth

✓
arcoth

✓
⌦0

�f

◆
+

�f

�
⌧

◆◆
= �2

f⌧ + LV
⌧ (A.25)

where we define the learning component as: LV
⌧ ⌘ ��f

⇣
⌦0
�f

� coth
⇣
arcoth

⇣
⌦0
�f

⌘
+

�f

� ⌧
⌘⌘

. Since coth is decreasing

and convex, V⌧(⌦0) is increasing and concave in ⌧ and ⌦0.

4. Stopping time distribution. Let F (�2
f⌧, µ̄0) be the cumulative distribution of stopping times obtained from a

problem with perfect information which considers a Brownian motion with unconditional variance of �2
f⌧ , initial

condition 0, and a symmetric inaction region [�µ̄0, µ̄0]. Following Kolkiewicz (2002) and Álvarez, Lippi and
Paciello (2011)’s Online Appendix, the density of stopping times is given by:

f(⌧) =
⇡
2
x0(⌧)

1X

j=0

↵j exp (��jx(⌧)) , where x(⌧) ⌘
�2
f⌧

µ̄2
0

, ↵j ⌘ (2j + 1)(�1)j , �j ⌘ (2j + 1)2
⇡2

8

The process x(⌧) is equal to the ratio of volatility and the width of the inaction region. Since we assumed
constant inaction regions, x only changes with volatility. In our case, the estimate’s unconditional variance is
given by V⌧ (⌦0). Using a change of variable, the distribution of stopping times becomes F (V⌧ (⌦0), µ̄0) with

density f(⌧ |⌦0) = f(V⌧ (⌦0), µ̄0). We apply this formula using x ⌘ V⌧ (⌦0)
µ̄2
0

and the same sequences of ↵j and �j .

5. Hazard rate. Given the stopping time distribution, the conditional hazard rate is computed using its definition:

h⌧ (⌦0) ⌘
f(⌧ |⌦0)R1

⌧
f(s|⌦)ds

=
f(V⌧ (⌦0), µ̄0)R1

⌧
f(Vs(⌦0), µ̄0)ds

=
V 0
⌧ (⌦0)

P1
j=0 ↵j exp

⇣
��j

V⌧ (⌦0)
µ̄2
0

⌘

R1
⌧

V 0
s(⌦0)

P1
j=0 ↵j exp

⇣
��j

Vs(⌦0)
µ̄2
0

⌘
ds

(A.26)

Let uj(s) ⌘ ↵j exp
⇣
��j

Vs(⌦0)
µ̄2
0

⌘
, then duj(s) ⌘ �↵j�j

µ̄2
0

V 0
s(⌦0) exp

⇣
��j

Vs(⌦0)
µ̄2
0

⌘
ds. Exchanging the summation

with the integral, the denominator is equal to:

1X

j=0

�µ̄2
0

�j

Z 1

⌧

duj(s)ds =
1X

j=0

�µ̄2
0

�j
uj(s)

���
1

⌧
=

1X

j=0

µ̄2
0

�j
uj(⌧) = µ̄2

0

1X

j=0

↵j

�j
exp

✓
��j

Vs(⌦0)
µ̄2
0

◆
=

8µ̄2
0

⇡2

1X

j=0

1
↵j

exp

✓
��j

Vs(⌦0)
µ̄2
0

◆

where in the last equality we use
↵j

�j
= (2j+1)(�1)j

(2j+1)2 ⇡2
8

= 8
⇡2 (2j + 1)�1(�1)j = 8

⇡2
1
↵j

. Substituting back into (A.26):

h⌧ (⌦0) =
⇡2

8µ̄2
0

 

✓
V⌧ (⌦0)

µ̄2
0

◆
V 0
⌧ (⌦0) (A.27)

where we define  (x) ⌘
P1

j=0 ↵j exp(��jx)
P1

j=0
1
↵j

exp(��jx)
as in Álvarez, Lippi and Paciello (2011)’s Online Appendix. The

function  (x) is increasing, first convex then concave, with  (0) = 0 and limx!1 (x) = 1.

6. Hazard rate’s slope. Taking derivative of the hazard rate with respect to duration ⌧ yields:

h0
⌧ / @2LV

⌧

@⌧2
| {z }

<0

 

✓
V⌧

µ̄2
0

◆

| {z }
!1

+

0

@�2
f +

@LV
⌧

@⌧

µ̄2
0

1

A
2

| {z }
>0

 0
✓
V⌧

µ̄2
0

◆

| {z }
!0

For small ⌧ ,  ’s derivative is very large and the second positive term dominates; as ⌧ increases, the function  
and its derivative  0 converge to 1 and 0 respectively, and therefore the first term – which is negative – dominates.
By the Intermediate Value Theorem, there exists a ⌧⇤(⌦0) such that the slope is zero.

Taking the cross-derivative with respect to uncertainty and using the equivalence between derivatives stated above:

@h0
⌧

@⌦0
/  

 
V⌧

µ̄2
0

!

| {z }
!1

@3LV
⌧

@⌧2@⌦0| {z }
<0

+ 00
 

V⌧

µ̄2
0

!

| {z }
!0�

0

B@
�2
f +

@LV
⌧

@⌧

µ̄2
0

1

CA

2

@LV
⌧

@⌦0

1

µ̄2
0

| {z }
>0

+ 0
 

V⌧

µ̄2
0

!

| {z }
!0

1
µ̄2
0

2

664
@2LV

⌧

@⌧2

@LV
⌧

@⌦0| {z }
<0

+
2�2

f

µ̄2
0

@2LV
⌧

@⌧@⌦0

 
1 +

 
⌦0

�f
� 1

! 
� �

@LV
⌧

@⌦0

!!

| {z }
>0

3

775

Since  0 and  00 converge to 0 as ⌧ increases, the first term dominates. Then the slope of the hazard rate becomes
more negative as initial uncertainty increases. This means that the cuto↵ duration ⌧⇤(⌦0) is decreasing with ⌦0.
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Proof of Proposition 7 (Uncertainty Distributions). The strategy for the proof is as follows. We derive the Kol-
mogorov Forward Equation (KFE) of the joint ergodic distribution using the adjoint operator, and we find its zeros to
characterize the ergodic distribution.

1. Joint distribution. Let f(µ̂,⌦) : [�1,1] ⇥ [�f ,1] ! R be the ergodic density of markup estimates and
uncertainty. Define the region:

R� ⌘ {(µ̂,⌦) 2 [�1,1]⇥ [�f ,1] such that |µ̂| < µ̄ (⌦) & µ̂ 6= 0} (A.28)

where µ̄ (⌦) is the border of the inaction region. Thus R� is equal to the continuation region except µ̂ 6= 0. Then
the function f has the following properties:

a) f is continuous

b) f is zero outside the continuation region. Given ⌦, f(x,⌦) = 0 8x /2 (�µ̄(⌦), µ̄(⌦)). In particular, it is zero
at the borders of the inaction region: f(�µ̄(⌦),⌦) = 0 = f(µ̄(⌦),⌦), 8⌦.

c) f is a density: 8(µ̂,⌦) 2 R�, we have that f(µ̂,⌦) � 0 and
R
⌦��f

R
|µ̂|µ̄(⌦)

f(µ̂,⌦)dµ̂d⌦ = 1

d) For any state (µ̂,⌦) 2 R�, f is a zero of the Kolmogorov Forward Equation (KFE): A⇤f(µ̂,⌦) = 0. Substituting
the adjoint operator A⇤ in (A.2) we write the KFE as:

�
�2
f � ⌦2

�
f⌦(µ̂,⌦) +

2⌦
�

f(µ̂,⌦) +
⌦2

2
fµ̂2(µ̂,⌦) + �


f

✓
µ̂,⌦� �2

u

�

◆
� f(µ̂,⌦)

�
= 0 (A.29)

We compute f
⇣
µ̂,⌦� �2

u
�

⌘
with a first order Taylor approximation: f

⇣
µ̂,⌦� �2

u
�

⌘
⇡ f(µ̂,⌦) � �2

u
� f⌦(µ̂,⌦).

Substituting this approximation, collecting terms, and using the definition of fundamental uncertainty ⌦⇤, the
KFE becomes:

2⌦
�

f(µ̂,⌦) +
⌦2 � ⌦⇤2

�
f⌦(µ̂,⌦) +

⌦2

2
fµ̂2(µ̂,⌦) = 0 (A.30)

with two border conditions:

8⌦ f(|µ̄(⌦)|,⌦) = 0 ;

Z

⌦��f

Z

|µ̂|µ̄(⌦)

f(µ̂,⌦)dµ̂d⌦ = 1 (A.31)

2. Marginal density of uncertainty Let h(⌦) : [�f ,1] ! R be the uncertainty’s ergodic density; it solves the
following KFE

A⇤h =
2⌦
�

h(⌦) +
⌦2 � ⌦⇤2

�
h⌦(⌦) = 0

and a border condition lim⌦!1 h(⌦) = 0.

3. Factorization of f . For each (µ̂,⌦), guess that we can write f as a product of the ergodic density of uncertainty
h and a function g as follows:

f(µ̂,⌦) = h(⌦)g(µ̂,⌦) (A.32)

Substituting (A.32) into (A.30) and rearranging

0 =
2⌦
�

h(⌦)g(µ̂,⌦) +
⌦2 � ⌦⇤2

�
[h⌦(⌦)g(µ̂,⌦) + h(⌦)g⌦(µ̂,⌦)] +

⌦2

2
h(⌦)gµ̂2(µ̂,⌦)

= g(µ̂,⌦)


2⌦
�

h(⌦) +
⌦2 � ⌦⇤2

�
h⌦(⌦)

�

| {z }
KFE for h

+h(⌦)


⌦2 � ⌦⇤2

�
g⌦(µ̂,⌦) +

⌦2

2
h(⌦)gµ̂2(µ̂,⌦)

�

=
⌦2 � ⌦⇤2

�
g⌦(µ̂,⌦) +

⌦2

2
gµ̂2(µ̂,⌦)

where in the second line we regroup terms and recognize the KFE for h, in the third line we set the KFE of h
equal to zero because it is uncertainty’s ergodic density and divide by h as it is assumed to be positive. To obtain
the border conditions for g, substitute the decomposition (A.32) into (A.31):

8⌦ h(⌦)g(|µ̄(⌦)|,⌦) = 0 ;

Z

⌦��f

Z

|µ̂|µ̄(⌦)

h(⌦)g(µ̂,⌦)dµ̂d⌦ = 1 (A.33)
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Since h > 0, we can eliminate it in the first condition and get a border condition for g: g(|µ̄(⌦)|,⌦) = 0. Then
assume that for each ⌦, g integrates to one. Use this assumption into the second condition:

Z

⌦��f

h(⌦)

"Z

|µ̂|µ̄(⌦)

g(µ̂,⌦)dµ̂

#
d⌦ =

Z

⌦��f

h(⌦)d⌦ = 1

Therefore, by the factorization method, the ergodic distribution h is also the marginal density h(⌦) =
R
|µ̂|µ̄(⌦)

f(µ̂,⌦)dµ̂

and g is the density of markup gap estimates conditional on uncertainty g(µ̂,⌦) = f(µ̂|⌦) = f(µ̂,⌦)
h(⌦) .

4. Renewal density The renewal density is the distribution of firm uncertainty conditional on a price adjustment.
For each unit of time, the fraction of firms that adjusts at given uncertainty level is given by three terms (the
terms multiplied by 2 take into account the symmetry of the distribution around a zero markup gap):

r(⌦) / 2f(µ̄(⌦),⌦)
�2
f � ⌦2

�
+ �

Z µ̄(⌦��2
u/�)

�µ̄(⌦��2
u/�)

f

✓
µ,⌦� �2

u

�

◆
I (µ̂ > µ̄ (⌦)) dµd⌦+ 2|fµ̂(µ̄(⌦),⌦)|

⌦2

2
(A.34)

The first term counts price changes of firms at the border of the inaction region that su↵er a deterministic decrease
in uncertainty; by the border condition f(µ̄(⌦),⌦) = 0, this term is equal to zero. The second term counts price

changes due to jumps in uncertainty. These firms had an uncertainty level of ⌦ � �2
u
� right before the jump;

under the assumption that µ̄(⌦) is increasing in uncertainty, this term is also equal to zero since all markup
estimates that were inside the initial inaction region remain inside the new inaction region. The last term counts
price changes of firms at the border of the inaction region that su↵er either a positive or negative change in the
markup gap estimate (hence the absolute value). This term is the only one di↵erent from zero. Substituting the
factorization of f , we obtain a simplified expression for the renewal distribution in terms of g:

r(⌦)
h(⌦)

/ |gµ̂(µ̄(⌦),⌦)|⌦2 (A.35)

5. Characterize g when ⌦ = ⌦⇤. If ⌦ = ⌦⇤, the markup gap conditional distribution g can be further
characterized:

gµ2(µ̂,⌦⇤) = 0; g(µ̄(⌦⇤),⌦⇤) = 0;

Z µ̄(⌦⇤)

�µ̄(⌦⇤)
g(µ̂,⌦⇤)dµ̂ = 1 g 2 C (A.36)

To solve this equation, integrate twice with respect to µ̂: g(µ̂,⌦⇤) = |C|µ̂+ |D|. To determine the constants |C|
and |D|, we use the border conditions:

0 = g(µ̄(⌦⇤),⌦⇤) = |C|µ̄(⌦⇤) + |D|

1 =

Z µ̄(⌦⇤)

�µ̄(⌦⇤)
g(µ̂,⌦⇤)dµ =

Z µ̄(⌦⇤)

�µ̄(⌦⇤)
(|C|µ̂+ |D|)dµ =

✓
|C|
2

µ̂2 + |D|µ̂
◆ ���

µ̄(⌦⇤)

�µ̄(⌦⇤)
= 2µ̄(⌦⇤)|D|

From the second equality, we get that D = 1
2µ̄(⌦⇤) . Then substituting in the first equality: |C| = � |D|

µ̄(⌦⇤) =

� 1
2µ̄(⌦⇤)2 . Lastly, since gµ2(µ̂,⌦⇤) � 0, we obtain :

g(µ, ⌦̂) =

8
<

:

1
2µ̄(⌦⇤)

⇣
1 + µ̂

µ̄(⌦⇤)

⌘
if µ̂ 2 [�µ̄(⌦̂), 0]

1
2µ̄(⌦⇤)

⇣
1� µ̂

µ̄(⌦⇤)

⌘
if µ̂ 2 (0, µ̄(⌦̂)]

(A.37)

This is a triangular distribution in the µ̂ domain for each ⌦ (see next figure).

6. Ratio when ⌦ ⇡ ⌦⇤. By the previous result and using continuity, the ratio of the renewal to marginal distribu-
tions near ⌦⇤ is equal to:

r(⌦)
h(⌦)

= |gµ̂(µ̄(⌦),⌦)|⌦2 =
⌦2

2µ̄(⌦)2
=

1
2E[⌧ |(0,⌦)] (A.38)

Since the inaction region’s elasticity to uncertainty is lower than unity, this ratio is increasing in uncertainty.
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Proof of Proposition 8 (Uncertainty Heterogeneity and Price Statistics). See Proposition 1 in Álvarez, Le Bi-
han and Lippi (2014) for a derivation of this result for the case of fixed uncertainty ⌦t = �. Here we extend their proof
for the case of stochastic uncertainty; most steps are analogous to theirs.

Recall that markup gap estimates follow dµ̂t = ⌦tdBt. Using Itō’s Lemma, we have that d(µ̂2
t ) = ⌦

2
tdt+ 2µt⌦tdBt.

Therefore d(µ̂2
t ) � ⌦2

tdt is a martingale. Let initial conditions be (µ0,⌦0) = (0, ⌦̃). Then using the Optional Stopping
(or Doob’s Sampling) Theorem, which says that the expected value of a martingale at a stopping time is equal to the
expected value of its initial value (zero in our case), we have that

E

µ̂2
⌧ �

Z ⌧

0

⌦2
sds
���(µ0,⌦0) = (0, ⌦̃)

�
= µ2

0 �
Z 0

0

⌦2
sds = 0

E
h
µ̂2
⌧

���(µ0,⌦0) = (0, ⌦̃)
i

= E
Z ⌧

0

⌦2
sds
���(µ0,⌦0) = (0, ⌦̃)

�

Now we will integrate both sides over di↵erent initial states. Since µ0 = 0 always at the stopping time, we only need to
integrate over initial uncertainty ⌦̃ using the renewal density r(⌦), i.e. the distribution of uncertainty of adjusting firms.

• Integrating the LHS we obtain the unconditional (or cross-sectional) variance of price changes (recall that price
changes are equal to markup gap estimates at adjustment, and that the mean price change is zero):

Z 1

0

E
h
µ̂2
⌧

���(µ0,⌦0) = (0, ⌦̃)
i
r(⌦̃)d⌦̃ = E[(�p)2] = V[(�p)] (A.39)

• Notice that by the law of large numbers, if time is su�ciently long, the mean uncertainty is the same as the
average uncertainty of one firm for every initial condition:

E[⌦2] = lim
T!1

R T

0
⌦2

sds

T
(A.40)

Therefore

E[⌦2] = lim
T!1

R T

0
⌦2

sds

T
= lim

n!1

n�1Pn
i=0

R ⌧i
⌧i�1

⌦2
sds

n�1
Pn

i=0

R ⌧i
⌧i�1

ds
=

limn!1 n�1Pn
i=0

R ⌧i�⌧i�1

0
⌦2

⌧i�1+sds

limn!1 n�1
Pn

i=0

R ⌧i�⌧i�1

0
ds

=
E
⇥R ⌧

0
⌦2

sds
⇤

E
⇥R ⌧

0
ds
⇤ =

R1
0

E[
R ⌧

0
⌦2ds|(µ0,⌦0) = (0, ⌦̃)]r(⌦̃)d⌦̃

R1
0

E[⌧ |(µ0,⌦0) = (0, ⌦̃)]r(⌦̃)d⌦̃
(A.41)

where the denominator is equal to the mean expected time E[⌧ ]. Therefore,
Z 1

0

E
Z ⌧

0

⌦2
sds
���(µ0,⌦0) = (0, ⌦̃)

�
r(⌦̃)d⌦̃ = E[⌧ ]E[⌦2] (A.42)

• Putting together (A.39) and (A.42) we get the first result:

E[⌦2] =
V[�p]
E[⌧ ]

We conclude by showing the relationship with long-run uncertainty ⌦⇤. Using properties of the compound Poisson process,
we have that in the cross-section, E[�2

udQt] = �2
u�dt. Therefore, the first and second comments of the population’s average

uncertainty are related in the following way

dE[⌦t] =
�2
f + ��2

u � E[⌦2
t ]

�2
dt =

(⌦⇤)2 � E[⌦2
t ]

�2
dt (A.43)

Since the mean of the ergodic distribution satisfies dE[⌦t] = 0, we have that (⌦⇤)2 = E[⌦2
t ].
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Proof of Propositions 9,10, and 11 (Macroeconomic E↵ects of Uncertainty Cycles). This is a general proof
that shows all the results in Proposition 9, 10, and 11. Assume the economy is in steady state and it is hit with
one-time unanticipated monetary shock of size � > 0. Simultaneously, idiosyncratic uncertainty increases by E[⌦] for
all firms. If firms only observe a fraction ↵ 2 [0, 1] of the monetary shock, then:

1. The total output e↵ect M(�,↵,) ⌘
R1
0

Ỹsds is the sum of inaction and forecast errors:

M(�,↵,) = I(�,↵,) + (1� ↵)�F() (A.44)

I(�,↵,) = �
Z

µ̂,⌦

w(µ̂� ↵�,⌦+ E[⌦], (1� ↵)�)dF (µ̂,⌦) (A.45)

w(µ̂,⌦,') = E
Z ⌧

0

µ̂t dt+ w(0,⌦⌧ ,'e
�
R t
0

⌦s
� ds)

���(µ̂0,⌦0) = (µ̂,⌦)

�
(A.46)

F() =

Z

⌦

E
Z 1

0

e�
R t
0

⌦s
� dsdt

���⌦0 = ⌦+ E[⌦]
�
dh(⌦) (A.47)

subject to the following stochastic processes for (biased) estimates and uncertainty:

dµ̂t = �⌦t
e�

R t
0 ⌦s/�ds

�
dt+ ⌦tdẐt; d⌦t =

�2
f � ⌦2

t

�
dt+

�2
u

�
dQt

2. The following properties hold:

• Disclosed shock (↵ = 1) and no uncertainty shock ( = 0) Pricing mistakes after the first price change
are equal to zero w(0,⌦, 0) = 0 and the total output response is given by

M(�, 1, 0) = I(�, 1, 0) = �
Z

µ̂,⌦

w(µ̂� �,⌦)dF (µ̂,⌦) (A.48)

w(µ̂,⌦, 0) = E
Z ⌧

0

µ̂t dt
���(µ̂0,⌦0) = (µ̂,⌦)

�
(A.49)

• Undisclosed shock (↵ 2 [0, 1)) and no uncertainty shock ( = 0) Up to a first order, the total output
e↵ect is given by

M(�,↵, 0) � �

✓
↵E[⌧ ]
6

+ (1� ↵)F
◆

(A.50)

where the RSH is the first order e↵ect of a monetary shock without heterogeneity (� = 0) and F ⌘
q

�2E[⌧ ]
V[�p]

is a function of price statistics.

• Undisclosed shock (↵ 2 [0, 1)) and aggregate uncertainty shock ( > 0) For all  > 0, the forecast
errors F() are bounded below by

F() � ⇠

✓
E[⌧ ]E[⌦]2(1 + )2

V[�p]

◆
F � ⇠((1 + )2) F (A.51)

where the expression in the last inequality refers to the case without heterogeneity (� = 0). The function ⇠
is decreasing, limx!1 ⇠(x) = 1 and limx!1 ⇠(x) = 0

Proof. We first identify the initial conditions and the stochastic processes for an augmented firm state that includes
forecast errors: (µ̂t,⌦t,'t). Then we characterize recursively the two components of the output e↵ect, the inaction
errors and the forecast errors. Finally, we show the properties of the output e↵ect for particular sets of parameters.

1. State’s initial conditions

• A positive monetary shock of size � > 0 translates as a downward jump in markups µ0 = µ�1 � �. If
the firms only incorporate a fraction ↵ of the shock, then we have that markup estimates are adjusted by
µ̂0 = µ̂�1 � ↵�.

• From Proposition 1 we have that, in the absence of the monetary shock, forecast errors are distributed
Normally as µ̂t � µt = '̃t ⇠ N(0, �⌦t). Therefore, at t = 0 before the idiosyncratic shocks are realized, we
adjust the mean to take into account the knowledge about the monetary shock; the variance is not adjusted
as all firms are a↵ected in the same way: '̃0 ⇠ N ((1�↵)�, �⌦0). Notice that we can decompose '̃0 = '0+'̂2

0

with '0 = (1� ↵)� and '̂0 ⇠ N (0, �⌦0). We will continue with this decomposition for all t; a deterministic
bias and the stochastic unbiased part of the forecast error.
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• Finally, uncertainty gets amplified by a factor , thus ⌦0 = ⌦�1 + E[⌦].

2. State’s stochastic process Now we derive the laws of motion for (µ̂t,⌦t,'t) for t > 0.

• From equation (A.7), together with the definition of forecast errors, we can write the process for markup
gap estimates in terms of forecast errors instead of the innovations’ representation:

dµ̂t = ⌦t

✓
µt � µ̂t

�
dt+ dZt

◆
= �⌦t

'̃t

�
dt+ ⌦tdZt = �⌦t

't

�
dt+ ⌦tdẐt

where in the last step we used the same argument as in A.7.

• By construction, the forecast error only has a drift term d't = X(!)dt. By the definition of the forecast error
and the stochastic process of markup gap, 0 = E[dµt] = E[�d'̂t+dµ̂t] = �E[d'̂t]+E[dµ̂t] = �E[d'̂t]�⌦t

't
� dt

and thus we have that

d't = �⌦t

�
'tdt

• The process for uncertainty is the same as (A.6).

3. Recursive pricing mistakes Let ⌧i the time of the i-th price change of firm with current state (µ̂⌧i ,⌦⌧i ,'⌧i)
and define the function w as:

w(µ̂⌧i ,⌦⌧i ,'⌧i) ⌘ E
Z 1

⌧i

µ̂tdt
���µ̂⌧i ,⌦⌧i ,'⌧i

�

subject to the stochastic process for the state. This function measures the stream of future pricing mistakes by
the firm, which will produce output deviations from a frictionless case. Note that we can write w recursively:

w(µ̂⌧i ,⌦⌧i ,'⌧i) = E
Z 1

⌧i

µ̂tdt
���µ̂⌧i ,⌦⌧i ,'⌧i

�

= E
"Z ⌧i+1

⌧i

µ̂tdt+ E
"Z 1

⌧i+1

µ̂tdt
���0,⌦⌧i+1 ,'⌧i+1

#����� µ̂⌧i ,⌦⌧i ,'⌧i

#

= E
Z ⌧i+1

⌧i

µ̂tdt+ w
�
0,⌦⌧i+1 ,'⌧i+1

� ���µ̂⌧i ,⌦⌧i ,'⌧i

�

= E
Z ⌧i+1�⌧i

0

µ̂tdt+ w
�
0,⌦⌧i+1�⌧i ,'⌧i+1�⌧i

� ���µ̂⌧i ,⌦⌧i ,'⌧i

�

= E
Z ⌧

0

µ̂tdt+ w (0,⌦⌧ ,'⌧ )
���(µ̂0,⌦0,'0) = (µ̂⌧i ,⌦⌧i ,'⌧i)

�

where in the second step we split the time between two intervals [⌧i, ⌧i+1] and [⌧i+1,1] and use the strong Markov
property of our process and the firms policy function, in the third step we substitute the definition of w, in the
fourth step we transform the time dimension, and in the fifth step we define ⌧ = ⌧i+1 � ⌧i, which is equal to
⌧ = inf {t : |µ̂t| � µ̄(⌦t)}. We arrive to: w(µ̂0,⌦0,'0) = E

⇥R ⌧

0
µ̂tdt+ w (0,⌦⌧ ,'⌧ )

⇤
.

4. Area under the impulse-response Define Ft(µ̂,⌦,') as the cross sectional density over (µ̂,⌦,') in period t
after the aggregate shocks and Ft0(µ̂,⌦,'|µ̂0,⌦0) the transition probability with initial conditions (µ̂0,⌦0,'0).
From the definition of M(�,↵,), we have that

M(�,↵,) ⌘ �
Z 1

0

Ỹtdt

= �
Z 1

0

Z

µ̂,⌦

(µ̂t + '̃t) dFt(µ̂t,⌦t, '̃t)

�
dt

= �
Z 1

0

Z

µ̂,⌦

(µ̂t + 't) dFt(µ̂t,⌦t,'t)

�
dt

= �
Z 1

0

Z

µ̂,⌦

µ̂tdFt(µ̂t,⌦t,'t)

�
dt

| {z }
average inaction error

+

Z 1

0

Z

µ̂,⌦

'tdFt(µ̂t,⌦t,'t)

�
dt

| {z }
average forecast error

where in the second step we use our result that the output deviation at t is equal to the average of markup gap
estimates plus forecast errors across firms at each time t, and the forecast error can be decomposed between the
mean and the unbiased part that cancels in the aggregate. The first term captures the average inaction error and
the second term the average forecast error.
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• Average inaction error. The average inaction error is computed as:

I(�,↵,) ⌘ �
Z 1

0

Z

µ̂,⌦

µ̂tdFt0(µ̂t,⌦t,'t|µ̂0,⌦0, (1� ↵)�)dF (µ̂0,⌦0)

�
dt

= �
Z

µ̂,⌦

w(µ̂�1 � ↵�,⌦�1 + E[⌦], (1� ↵)�)dF (µ̂�1,⌦�1)

where we exchange the expectation and integral operators, and use the definition of w.

• Average forecast error. Since d't = �⌦t
� dt, we have that 't = (1�↵)�e�

R t
0

⌦s
� ds, thus the average forecast

error is equal to (1� ↵)�F() where

F() ⌘
Z

⌦�1

E
Z 1

0

e�
R t
0

⌦s
� dsdt|⌦0 = ⌦�1 + E[⌦]

�
dh(⌦)

5. Disclosed shock (↵ = 1) and no uncertainty shock ( = 0). By the symmetry of the Brownian motion, we
have that w(0,, 0) = 0. Therefore, for ↵ = 0, we have that we only need to keep track of the first price change:

w(µ̂,⌦, 0) = E
Z ⌧

0

µ̂t dt
���(µ̂0,⌦0) = (µ̂,⌦)

�

6. Undisclosed shock (↵ 2 [0, 1)) and no uncertainty shock ( = 0). We first derive a lower bound for the
forecast errors and then for the average inaction error.

• Lower bound for forecast errors. Since f(x) = ex and f(x) = x2 are convex functions, we have that

Z

⌦�1

E
Z 1

0

e�
R t
0

⌦s
� dsdt|⌦0 = ⌦�1

�
dh(⌦) �

Z 1

0

e�
R t
0

R
⌦�1

E[⌦s|⌦0=⌦�1]dh(⌦)

� dsdt

=

Z 1

0

e�
E[⌦]
� tdt =

�
E[⌦] �

�p
E[⌦2]

=

s
�2E[⌧ ]
V[�p]

Therefore, we have that F(0) �
q

�2E[⌧ ]
V[�p] = F , where F ⌘

q
�2E[⌧ ]
V[�p] is a function of price statistics. Our result

in Proposition 8, applied to the case without heterogeneity (� = 0) implies that �/�f =
q

�2E[⌧ ]
V[�p] . Therefore,

the lower bound in the RHS is equal to the average forecast error in the case without heterogeneity.

• Lower bound for inaction errors. We derive a lower bound for the average inaction errors in two steps. First,
given that the policy is independent from the forecast error, and these only increase the inaction error, we
consider the modified inaction errors I⇤(�,↵, 0) as follows:

I⇤(�,↵, 0) = �
Z

µ̂,⌦

w⇤(µ̂� ↵�,⌦)dF (µ̂,⌦)

w⇤(µ̂,⌦) = E
Z ⌧

0

µ̂t dt
���(µ̂0,⌦0) = (µ̂,⌦)

�

dµ̂t = ⌦tdẐt; d⌦t =
�2
f � ⌦2

t

�
dt+

�2
u

�
dQt

where I(�,↵, 0) � I⇤(�,↵, 0). The second step consists in showing that I⇤(�,↵, 0) � � E[⌧ ]
6 . Notice that what

matters for computation of output e↵ects is the e↵ective size of the shock, given by �̂ ⌘ ↵�. Therefore,
I⇤(�,↵, 0) = I⇤(�̂, 1, 0). Recall that the joint distribution can be decomposed as f(µ̂,⌦) = g(µ̂|⌦)h(⌦).
Then we can rewrite

I⇤(1, �̂, 0) =

Z

⌦

E[⌧ |⌦]v(⌦, �̂)dh(⌦), where v(⌦, �̂) = �
R
µ̂,⌦

w⇤(µ̂� �̂,⌦)g(µ̂|⌦)dµ̂
E[⌧ |⌦]

= Eh [E[⌧ |⌦]]Eh
h
E[v(⌦, �̂)|⌦]

i
+ Covh

h
E[⌧ |⌦], v(⌦, �̂)

i
(A.52)

� Eh [E[⌧ |⌦]]Eh
h
E[v(⌦, �̂)|⌦]

i
(A.53)

� Er [E[⌧ |⌦]]Eh
h
E[v(⌦, �̂)|⌦]

i
(A.54)

� [E[⌧ ]] �̂
6

(A.55)
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The function v(⌦, �̂) is the e↵ect of the monetary shock conditional on uncertainty ⌦. It can be verified
that this function is decreasing in ⌦. As ⌦! 1, price changes are mostly driven by the Brownian process
a↵ecting markup estimates (the drift generated by forecast errors and the Poisson shocks in uncertainty
lose importance). Therefore, we apply the result in Álvarez, Le Bihan and Lippi (2014) for a shock of size

�̂ and obtain: v(⌦, �̂) � lim⌦!1 v(⌦, �̂) = �̂
6 . Summarizing, the inaction errors are bounded below by:

I(�,↵, 0) � ↵�E[⌧ ]
6 . With these results we can justify each step in (A.55): the second equality is due to the

definition of covariance, the third inequality is due to the positive relation between E[⌧ |⌦], v(⌦, �̂), the third
inequality is since the renewal distribution puts more weight to high uncertainty and the last step is since

v(⌦, �̂) � lim⌦!1 v(⌦, �̂) = �̂
6 .

7. Undisclosed shock (↵ 2 [0, 1)) and aggregate uncertainty shock ( > 0). Now we characterize an upper
bound of the rate of converge of the forecast error after a monetary shock.

• First notice that
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s]. Using uncertainty’s law of motion together

with the result in Proposition 8, we have that
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with initial condition y0 = E[⌦](1 + ). Since Ei[⌦
i
s
2
] � Ei[⌦

i
s]

2 by Jensen’s inequality, we obtain
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• Let ỹt be the solution to dỹs = ��1
⇣

V[�p]
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s
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ds with initial condition ỹ0 = y0. Since dys  dỹt for all t

and they start at the same value, ỹs is always above ys and we get

F() �
Z 1

0

e�
R t
0

ỹs
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• Therefore, forecast errors are bounded below by:
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V[�p] and the function ⇠ are defined also in terms of steady state price statistics. The function
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• Finally, when � = 0, the lower bound collapses to ⇠
�
(1 + )2

�
F .

Proof of Proposition 12 (Revenue losses due to frictions). Let ⇧(µt) be the flow profits as a function of the
markups µt. A second order approximation to the profit function around the optimal frictionless markup µ⇤ yields

⇧(µt) = ⇧(µ
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2
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2
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t , (A.56)

where µt ⌘ log(µt/µ
⇤) is the realized markup-gap. Given the CES demand and the constant returns to scale technology,

we can express the expected losses that arise from frictions (both nominal and informational) relative to the frictionless
case, expressed as a fraction of revenue, are given by:
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(A.57)

To characterize the expectation, note that for each firm z:

E
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µt(z)
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2⇤ (A.58)
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(A.60)

= �E [⌦t(z)] + V [µ̂t(z)] , (A.61)

For the first term, we have substituted the definition of uncertainty, for the second term, we have used the law of the
iterated expectations to show that the average forecast error in the population is equal to zero (since each estimate is
unbiased), and for the third term, we have used that the average markup estimate is equal to zero. Therefore the total
expected profit losses are given by

� =
1� ⌘
2

2

64 �E [⌦t]| {z }
Loss from info. friction

+ V [µ̂t]| {z }
Loss from pricing friction

3

75 . (A.62)

Finally, to obtain an upper bound for the term related to information frictions, note that using the Jensen inequality
and Proposition 8 we have that

�E [⌦t]  �
q

E [⌦2
t ] = �

s
V[�p]
E[⌧ ] (A.63)
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