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Abstract

We propose a model in which differences in socioeconomic and labor market out-

comes between ex-ante identical countries can be generated as multiple equilibria sus-

tained by different beliefs on the value of effort for finding jobs. To do so, we study the

incentive to improve ability in a model where heterogeneous firms and workers interact

in a labor market characterized by matching frictions and costly screening. When ef-

fort in improving ability raises both the mean and the variance of the resulting ability

distribution, a complementarity between workers’choices and firms’hiring strategies

can give rise to multiple equilibria. In the high-effort equilibrium, heterogeneity in abil-

ity is larger and induces firms to screen more intensively workers, thereby confirming

the belief that effort is important for finding good jobs. In the low-effort equilibrium,

ability is less dispersed and firms screen less intensively, which confirms the belief that

effort is not so important. The model has novel implications for wage inequality, the

distribution of firm characteristics, productivity, sorting patterns between firms and

workers, and unemployment rates that can help explain observed differences across

countries.
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1 Introduction

Countries at similar stages of development differ markedly in a number of socioeconomic

indicators. For instance, wage inequality, labor productivity, school attainment and employ-

ment rates are all higher in the United States than in Southern Europe. The population of

active firms differs too, with a relatively larger number of small and less productive firms in

the latter group of countries. While understanding these differences is important both from

a positive and a normative standpoint, their origin remains largely an open question. One

strand of literature attributes them to distortions, but typically does not explain how they

arose in the first place.1 Another strand of literature emphasizes the role of cultural val-

ues.2 Yet, the mechanisms through which values and beliefs translate into different economic

outcomes, even in places that started with similar conditions, are still poorly understood.

The objective of this paper is to show that significant differences in socioeconomic and

labor market outcomes can emerge as alternative equilibria sustained by different, and yet

rational, beliefs on the role played by ability and effort in determining individual economic

success. We will argue that the mechanism we identify has implications for wage inequality,

the distribution of firm characteristics, sorting patterns between firms and workers, and

unemployment rates that can help to explain the cross-country variation observed in the

data.

To this end, we study the incentives to invest in ability in a model where heterogeneous

firms and workers interact in a labor market with matching frictions. Ability is unobservable,

but firms can use a screening technology to select the best workers. As in Helpman, Itskhoki

and Redding (2010), the combination of these features yields realistic distributions of firms

and wages. We then allow workers to invest costly effort to improve their ability under the

realistic assumption that effort and exogenous talent are complementary.3 The latter feature

implies that exerting effort increases average ability, but also its dispersion in the population,

and introduces a novel complementarity between firms’and workers’strategies.4 On the one

hand, the returns to screening are higher when ability is more dispersed, i.e., when effort

is high. On the other hand, investing effort pays out more when firms screen workers more

intensively.

The main result of the paper is to show that this complementarity can give rise to two

1See for example Bartelsman, Haltiwanger and Scarpetta (2013), Bartelsman, Gautier and de Wind
(2011), Restuccia and Rogerson (2008), and Wasmer (2006).

2See, for example, Guiso, Sapienza, and Zingales (2006), Tabellini (2010), Giavazzi, Schiantarelli and
Serafinelli (2013), and Moriconi and Peri (2015).

3This is consistent with standard human capital accumulation functions such as Heckman, Lochner and
Taber (1998).

4Consistently, in the data wage inequality is higher among skilled workers (e.g., Lemieux, 2006, Flinn and
Mullins, 2014).



equilibria. In the high-effort equilibrium, heterogeneity in ability is higher and this induces

firms to be more selective when hiring workers. In turn, this makes ability, and hence effort,

more important for finding good jobs, thereby confirming the initial belief. In the low-effort

equilibrium, instead, since ability is less dispersed, firms screen less intensively and hence

the probability of finding jobs depends more on luck rather than merit, which confirms the

initial belief on the low value of effort. Relative to the alternative scenario, in the high-effort

equilibrium ability is higher and more dispersed, firms are more productive, and a stronger

sorting pattern between firms and workers generates more inequality among firms. Wage

inequality is also typically higher. Our aim is to show that this mechanism can replicate

several salient differences observed between countries such as the United States, Italy and

Spain.5

First, regarding perceptions, the existing evidence suggests that Americans believe in

individual merit, work ethic and competition more than Southern Europeans. For instance,

according to the 1981-2000 World Values Survey, 26.4% of Americans strongly agree with the

statement that “hard work brings success”, against a share of 14.6% in Italy and 12.2% in

Spain. Those who instead strongly believe that success “is a matter of luck and connections”

represent 2.3%, 8.9% and 7.8% of respondents in the three countries, respectively. Similarly,

43.3% of Americans think that “hard work is an important quality that a child should learn”,

against 26.8% in Italy. More broadly, 29.6% of Americans strongly believe that “competition

is good”, as opposed to 19.2% of Italians and 15.6% of Spaniards.

Second, these beliefs come together with significant differences in investment in education.

Available data on the quality and quantity of schooling indicate that Americans attach a

higher value to education than people from Southern Europe. For instance, in 2010 the

working-age population with tertiary schooling was 41% in the United States against 15%

in Italy and 32% in Spain (OECD, 2013).6 Investment in education, both private and total,

is also higher in the United States. For instance, total expenditure on tertiary education as

a percentage of GDP is 2.8%, 1% and 1.3% in the three countries respectively. Regarding

outcomes, U.S. students outperform those from Italy and Spain in all major international

comparisons, but also exhibit more dispersion in the results. For example, the standard

deviation of IALS test scores is about 22% higher in the United Sates than in Italy (Cebreros,

2014).7 Finally, the United States also score higher than Souther European countries in

5We refer to these three countries because they seem the most natural and economically important
examples of the equilibria we have in mind. More generally, our model can be useful to understand differences
between Anglo-Saxon and Southern European countries, but also between regions with segmented labor
markets and different cultural values. Nordic countries, where governments play a particularly important
role, are outside the scope of the paper.

6The same figures for the cohort aged 25-34 are 43%, 21% and 39%, respectively.
7Note that our model has clear predictions about the mean and variance of ability across equilibria, not

necessarily across countries with possibly different fundamentals.
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reported measures of discipline at school, which may be a proxy for effort (OECD, 2010a).

However, effort in acquiring human capital is notoriously diffi cult to observe. For instance,

Hamermesh and Donald (2008) show that college GPAs have small and mostly non-significant

effects on earnings. The high value attached to education in the United States may also be

reflected in the fierce competition for admission and the high tuition fees of top schools. Yet,

the quality of the long tail of non-top institutions is hard to assess for employers without

investing resources.

Third, the differential value attached to education and effort is also reflected in measures

of wage inequality and other labor market outcomes. In particular, the college premium

relative to the earnings of workers with secondary education is higher than 1.7 in the United

States against 1.5 in Italy and 1.4 in Spain (OECD, 2013). Broader measures of wage

inequality display similar patterns. For instance, the variance of the logarithm of hourly

wages in 2006 is 0.38 in the United States against 0.17 in the other two countries.8 Even

after controlling for workers’characteristics, the variance of the logarithms of residual wages

is 0.26 in the United States and 0.12 in Italy.9 Unemployment is also lower in the United

States, especially for skilled workers. For example, the unemployment rate of U.S. college

graduate is about half of that of the total workforce, while in Italy it is about 70% of the

mean (OECD 2013). As a result, the different composition of the workforce alone contributes

to generate a significantly lower unemployment rate in the former country.

Fourth, there are also large cross-country differences in firm-level outcomes. Available

data suggest U.S. firms to be on average bigger and more productive, and their size distri-

bution to be more dispersed than their European counterparts. For example, the standard

deviation of log sales among manufacturing firms is 0.66 in the United States, 0.53 in Italy

and 0.49 in Spain.10 Interestingly, there is also evidence that American markets are more

selective: for example, the survival rate for new firms is about 10% lower in the United

States than in Italy (Bartelsman, Haltiwanger and Scarpetta, 2009). Regarding the covari-

ance between size and productivity, Bartelsman, Haltiwanger and Scarpetta (2013) find that,

within the typical U.S. manufacturing industry, labor productivity is almost 50% higher than

it would be if employment was allocated randomly and that this measure of allocative ef-

ficiency is much lower on average in European countries. Finally, U.S. labor productivity,

measured as GDP per hour worked in 2006, is 21% higher than in Italy and 38% higher than

in Spain (OECD Data).

Fifth, existing data suggest that American firms value selecting talent more. From their

8See the Appendix for details on how these statistics are computed and the data sources. These values
are similar to those reported in Krueger et al. (2010).

9Focusing on college educated workers only, the variance of the log of residual wages is 0.32 in the United
States and 0.17 in Italy.
10These figures have been computed for 2007. See Section 4 for more details.
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survey on managerial practices around the world, Bloom and Van Reenen (2010) build a

synthetic measure of how strongly firms value selection, based on the answers to questions

on the importance of attracting and keeping talented people to the company. In their sample

of 17 countries, U.S. firms have the highest average score, while Italian firms have the lowest

one.11 Moreover, consistently with our hypothesis on differences in hiring strategies, only

13% of U.S. workers claim to have found their job through personal contacts against 25.5%

in Italy and 45% in Spain (Pellizzari, 2010).

To our knowledge, our theory is the first to be able to match all these observations

without referring to exogenous differences in preferences and/or institutions. Despite this

being a remarkable result, it is important to stress that we do not believe the multiplicity of

equilibria identified in this paper to be the only or even the most important source of these

socioeconomic differences. Rather, our theory illustrates a simple and yet powerful mecha-

nism through which large differences in economic outcomes can arise even when countries

have access to the same technologies and share similar market and political institutions. The

success at replicating some of the salient differences between the two sides of the Atlantic

makes us more confident that the model is capturing real-world phenomena. In particular, we

present numerical exercises suggesting that multiple equilibria can account for a significant

part of the observed differences between Italy and the United States. Moreover, given that

labor markets are often segmented regionally, we believe that our model can be useful for

understanding disparities in firm- and labor-market outcomes between regions of the same

country, such as the North and South of Italy, which share the same broad institutions and

policies.12

Our paper is related to several lines of research. First, it contributes to a set of papers that

study the role of social beliefs in explaining the main differences in economic performance

and inequality observed between the United States, Europe and other countries. Several

important contributions show how alternative sets of beliefs can sustain equilibria with high

and low levels of inequality. In Benabou (2000), Alesina and Angeletos (2005), Hassler et al.

(2005) and Benabou and Tirole (2006), this happens through the endogenous determination

of the political support for redistributive policies; in Piketty (1998) through a status motive.

In other papers multiple equilibria arise through endogenous preference formation (e.g.,

Francois and Zabojnik, 2005, Doepke and Zilibotti, 2014). Differently from these works,

we focus on a complementarity between workers’effort decisions and the hiring strategies

of heterogeneous firms. This approach seems well-suited for our aim of studying especially

11We refer to the measure Talent1 available in the 2006 dataset used in the paper. Spain is not in the
sample.
12We do not push this interpretation further because it is more diffi cult to obtain the relevant data. Yet, a

cursory look at existing evidence suggests regional disparities within Italy and Spain to be broadly consistent
with the two equilibria described in this paper.
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differences in the distribution of wages, workers and firms.

The paper is also related to the large literature on the role of human capital, broadly

defined, for economic development. Several contributions have shown how multiple equilib-

ria and poverty traps can arise in the presence of increasing returns due to human capital

externalities (e.g., Azariadis and Drazen, 1990), non-convexities coupled with credit fric-

tions (e.g., Galor and Zeira, 1993), or a complementarity between talent and technological

change (e.g., Hassler and Rodriguez Mora, 2000). Differently from these works, technologi-

cal increasing returns to human capital or credit frictions are not needed in our approach to

generate multiple equilibria. Moreover, none of the above mentioned papers examines the

interaction between workers and firm heterogeneity.

Closer to our spirit, Acemoglu (1996) and Burdett and Smith (2002) show that human

capital externalities may arise naturally when labor markets are characterized by search fric-

tions. Similarly to our model, agents choose human capital depending on their job prospects

and firms choose jobs depending on the average human capital of the workforce.13 Differently

from our framework, however, these papers abstract from firm heterogeneity and selection

through screening. The importance of the allocation of talent is stressed by many papers,

including Acemoglu (1995), Hsieh et al. (2013) and Bonfiglioli and Gancia (2014).14 None of

them, however, studies its interplay with the hiring strategies of heterogeneous firms which

is at the core of our theory.

Finally, the paper builds on the literature on wage inequality in models with imperfect

labor markets and firm heterogeneity. Acemoglu (1997) shows how search frictions à la

Mortensen and Pissarides (1994) can generate and shape wage inequality.15 Lagos (2006) and

Marimon and Zilibotti (1999) study how different shocks and policies may affect aggregate

outcomes and wage inequality in labor markets with matching frictions. Helpman, Itskhoki

and Redding (2008, 2010) combine search frictions, firm heterogeneity (as in Melitz, 2003)

and worker heterogeneity to study wage dispersion, wage-size premia and unemployment in

open and closed economy. Our model builds on these frameworks by adding an endogenous

ability distribution and by exploring how the novel equilibrium multiplicity that arises can

help explain some of the observed cross-county differences in the distribution of wages, firm

characteristics and unemployment rates.

The rest of the paper is organized as follows. In Section 2 we lay down the model and

derive the conditions for equilibrium multiplicity. In Section 3 we compare labor market

outcomes, firms and welfare across equilibria. In Section 4 we explore the quantitative

13A similar source of equilibrium multiplicity is present in models of statistical discrimination. See, for
example, Samuelson, Mailath and Shaked (2000). Fang and Moro (2010) provide a recent survey. Our
application is however very different.
14See also, Bhattacharya, Guner and Ventura (2013) and Caselli and Gennaioli (2013).
15See also Decreuse and Zylberberg (2011) for a more recent example.
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implications of the model by comparing numerical simulations to data for the United States

and Italy. Section 5 concludes.

2 The Model

We build a model where heterogeneous firms and workers meet in a labor market charac-

terized by matching frictions along the lines of Helpman, Itskhoki and Redding (2010). For

ease of comparison, we borrow their notation whenever possible. Firms are matched ran-

domly with workers of unknown ability although they can use a screening technology to

select them. The profitability of screening is proportional to the heterogeneity among work-

ers. Moreover, ability is relatively more beneficial for more productive firms, which have an

incentive to screen more intensively. We depart from the orginal framework by making the

ability distribution endogenous. To this end, we add a stage in which workers can invest

costly effort to improve their ability. We then show that when investing effort raises both

the mean and the variance of the ability distribution, multiple equilibria may arise due to a

complementarity between effort and screening decisions. We derive the implications of the

model for the equilibrium distribution of firms, wages, sorting patterns, the unemployment

rate and welfare. For simplicity, we focus on a static model which can however be interpreted

as the long-run equilibrium of a dynamic model.

2.1 Preferences and Technology

The economy is populated by a unit measure of identical households of size L̄ with quasi-

linear preferences over the consumption of two homogenous goods, q and Q:16

U = q +
Qζ

ζ
, ζ ∈ (0, 1) .

The demand for Q, which we refer to as the advanced good, is

Q = P−
1

1−ζ ,

where P is its price. The demand for q is residual. Hence, we call q the residual good and

take it as the numeraire (p = 1). The indirect utility is

W = E +
1− ζ
ζ

Qζ , (1)

16Households are infinitesimal but any idiosyncratic risk faced by individual workers is diversified at the
household level. Alternatively, we could have assumed complete insurance markets.
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with E denoting expenditure. For simplicity, we normalize the size of the economy to one,

L̄ = 1.

The residual good is produced by employing labor with a constant returns to scale tech-

nology and is sold in a perfectly competitive market.17 The advanced good is also homo-

geneous, but it is produced by heterogeneous firms employing labor subject to decreasing

returns to scale.18 Firms entering the market incur a sunk cost, fe > 0, expressed in terms of

the numeraire. Once the firm has paid the entry cost, it observes its productivity θ, which is

drawn from a Pareto distribution with support on [1,∞), shape parameter z > 1, and c.d.f.

G (θ) = 1− (θ)−z. After observing θ, the firm can decide whether to exit or to produce. Exit

does not require any additional cost, while production entails a fixed cost of f > 0 units of

the residual good. The mass of entering firms is endogenously determined by free entry.

Output of a firm with productivity θ, employing a measure h of workers with average

ability ā is given by:

y (θ) = θhγ ā, γ ∈ (0, 1) .

This technology has the following important features. First, γ < 1 implies that there are

decreasing returns to hiring more workers as, for example, in Lucas’(1978) span of control

model. Second, the productivity of a worker depends on the average ability of the entire

team.19 Third, there is a complementarity between firms’productivity and workers’ability.

As we will see, these assumptions imply that firms face a trade-off between the quantity and

quality of hired workers and that ability matters relatively more for more productive firms.20

We first characterize the production and hiring decisions for a given distribution of work-

ers’ability. Ability is assumed to be independently distributed and drawn form a Pareto

distribution with support on [1,∞), shape parameter k > 1 and c.d.f. I (a) = 1 − (a)−k.

For now, we take the parameter k of this distribution as given and assume it to be common

knowledge. In Section 2.4, instead, we study how the distribution of ability depends on an

endogenous binary choice of effort.

The labor market is characterized by search frictions. A firm has to pay bn units of the

numeraire to be matched randomly with a measure n of workers. The parameter b captures

matching frictions that are left outside of the model.21 Besides the cost b, the firm can spend

17We assume that parameters are such to guarantee positive demand for the residual good in equilibrium.
18In Helpman, Itskhoki and Redding (2010) firms produce differentiated goods. For our purposes, we do

not need this assumption.
19See Bandiera, Barankay and Rasul (2010) for supportive empirical evidence.
20See Helpman, Itskhoki and Redding (2008) for possible microfoundations of this production function.

Eeckhout and Kircher (2012) study the trade-off between quantity and quality of workers in a more general
setting.
21Making b a function of labor market conditions, as in search and matching models, does not affect the

main results. We followed this alternative strategy in a previous working paper version, Bonfiglioli and
Gancia (2014b).
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resorces to find out more about the ability of the pool of matched workers. In particular,

ability is match specific and it is unknown both to the firm and to the worker. However,

once the match is formed, the firm has access to a screening technology which allows it to

identify workers with ability below a∗ at the cost of c (a∗)δ /δ units of the numeraire, with

c > 0 and δ > 1. Given the distribution of ability, I (a), a firm matched with n workers and

screening at the cutoff a∗ will hire a measure h of workers, where

h = n (1/a∗)k , (2)

with an average ability of ā = a∗k/ (k − 1). With these results, the production function can

be rewritten as a function of n and a∗:

y (θ) =
k

k − 1
θnγ (a∗)1−γk .

Note that if γ < 1/k , output of a firm is increasing in the ability cutoff, a∗. When this

condition is satisfied, there are suffi ciently strong diminishing returns relative to the disper-

sion of ability that a firm can increase its output by not hiring the least productive workers.

When γ > 1/k, instead, no firm wants to screen because employing even the least productive

worker raises the firm’s output and revenue, while screening is costly. To rule out the less

interesting case in which screening is never profitable, from now on we assume γ < 1/k.

Wages in the advanced sector are determined through strategic bargaining between the

firm and workers. Since in the bargaining stage only average ability is known, the firm

retains a fraction of revenues equal to the Shapley value, 1/ (1 + γ), and pays the rest to the

workers.22 Using P = Qζ−1, we can express revenue as:

r (θ) = Qζ−1kθn
γ (a∗)1−γk

k − 1
. (3)

2.2 The Firm’s Problem

Firms choose how many workers to interview, n, and the cutoff ability for hiring workers,

a∗, so as to maximize profit:

π (θ) = max
n>0,a∗≥1

{
r (θ)

1 + γ
− bn− c(a∗)δ

δ
− f

}
, (4)

where r (θ) is given by (3).

22See Helpman, Itskhoki and Redding (2008) for a formal derivation.
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The first-order conditions for an interior solution are:

γ

1 + γ
r (θ) = bn (θ) (5)

1− γk
1 + γ

r (θ) = ca∗ (θ)δ . (6)

Combining the first-order conditions, it is immediate to show that firms that interview more

workers (higher n) screen more intensively (higher a∗) and therefore hire workers with higher

average ability. Moreover, if δ > k, as we will assume, firms that screen to a higher ability

cutoff also hire more workers.23

Substituting equation (2) into (5), and using the result that the wage is a share γ/(1+γ)

of revenue per hired worker, we obtain:

w (θ) ≡ γ

1 + γ

r (θ)

h (θ)
= ba∗ (θ)k . (7)

Hence, the wage is equal to the replacement cost of a worker, which is proportional to the

search cost b and increasing in the screening cutoff a∗ (θ).24 Recall that a∗ (θ) increases in

h (θ) when δ > k. Thus, under this assumption firms hiring more workers also pay higher

wages, making the model consistent with the evidence of a positive size premium (see for

example, Oi and Idson 1999 and Troske, 1999). To match this empirical regularity, from

now on we restrict the analysis to the case δ > k. Note that the model yields wage variation

across firms, but the assumption of unobservable worker heterogeneity implies that wages are

the same across all workers within a given firm. Still, average wages conditional on ability

vary across workers, because high-ability workers are more likely to be hired by firms paying

higher wages.

Profit can be re-written as a fraction of revenue by replacing n and a∗ from (5) and (6)

into (4):

π (θ) =
Γ

1 + γ
r (θ)− f (8)

with

Γ ≡ 1− γ − 1− γk
δ

> 0. (9)

Revenue, in turn, is an increasing function of productivity. To see this, substitute (5)

23To see this, combine (2), (5) and (6) to obtain h = γc(a∗)δ−k/((1 − γk)b). Intuitively, when ability is
suffi ciently dispersed, the advantage of being more selective more than compensate the fall in the hiring rate
per interview.
24Note that the expected wage conditional on being interviewed by a firm is constant: w (θ)h (θ) /n (θ) = b.

This also implies that workers have no incentives to direct their search.
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and (6) into (3):

r (θ) = (1 + γ)1− 1
Γ

(
θ
kQζ−1

k − 1

γγ

bγ

) 1
Γ
(

1− γk
c

) 1−γk
δΓ

. (10)

Since revenue is continuously increasing in productivity and there is a fixed production cost,

the least productive firms would make negative profits and hence exit the market. The cutoff

productivity θ∗ below which firms exit is defined by the condition:

π (θ∗) =
Γ

1 + γ
r (θ∗)− f = 0. (11)

In what follows, we assume that parameters are such that a∗ (θ∗) > 1, so that all firms find

it profitable to screen workers.25 Then, the relative revenue of any two firms only depends

on their relative productivity, r (θ) /r (θ∗) = (θ/θ∗)1/Γ. This result, combined with (8) and

(11), allows us to express profit of firms with productivity θ as

π (θ) = f

[(
θ

θ∗

) 1
Γ

− 1

]
. (12)

We can obtain all firm-level equilibrium variables as a function of productivity relative

to the exit cutoff:26

r (θ) =
1 + γ

Γ
f

(
θ

θ∗

) 1
Γ

(13)

n (θ) =
γ

Γ

f

b

(
θ

θ∗

) 1
Γ

(14)

a∗ (θ) =

(
1− γk

Γ

f

c

) 1
δ
(
θ

θ∗

) 1
δΓ

(15)

h (θ) =
γ

Γ

f

b

(
θ

θ∗

) 1
Γ

a∗ (θ)−k . (16)

Hence, more productive firms are larger in terms of revenues, interviewed and hired workers.

They are also more selective (i.e., screen at a higher ability cutoff) and pay higher wages.

25The required parameter restriction, (1− γ) c/ (1− γk) < f , can be derived by imposing zero profit in (8),
replacing the corresponding revenue into (6) and setting a∗ > 1 in the right-hand side. In a previous version
of the paper we considered also the case in which firms prefer not to screen workers when heterogeneity in
ability is too low.
26To derive the expression for profit, we replace (10) into (8) and use condition (11). As regards the other

variables, we used the definition of profit to obtain r (θ), (5) and (6) to express n (θ) and a∗ (θ) as functions
of r (θ). Given n (θ) and a∗ (θ), we obtain h (θ) from (2).
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2.3 Industry Equilibrium

To determine the equilibrium of the advanced sector, we solve for the cutoff productivity,

θ∗, and the overall consumption of advanced good, Q.27

First, we pin down the cutoffproductivity, θ∗, from the free-entry condition. In particular,

expected profits must be equal to the entry cost:

fe =

∫ ∞
θ∗

π (θ) dG (θ) = f

∫ ∞
θ∗

[(
θ

θ∗

)1/Γ

− 1

]
dG (θ) , (17)

where the second equality uses (12). After replacingG (θ) = 1−θ−z and dG (θ) =
(
zθ−z−1

)
dθ

into (17), we obtain the equilibrium value for θ∗:

θ∗ =

[(
1

zΓ− 1

)
f

fe

]1/z

. (18)

We assume that parameters are such that the least productive firms exit, i.e. θ∗ > 1. This

is equivalent to requiring f to be large enough relative to the entry cost fe, and zΓ to be

higher than one.28

Next, we obtain Q by substituting θ∗ into (10) and (11):

Q =

[
1

1 + γ

k

k − 1

(
Γ

f

)Γ (γ
b

)γ (1− γk
c

) 1−γk
δ

θ∗

]1/(1−ζ)

. (19)

2.4 Effort, Ability and Multiple Equilibria

The equilibrium of the advanced sector was derived for given shape parameter of the ability

distribution, k. In this section, we solve for the allocation of workers between the two sectors

and endogenize the ability distribution. This will allow us to close the model. Endogeniz-

ing the ability distribution and deriving the conditions under which it yields equilibrium

multiplicity are the major departure from Helpman, Itskhoki and Redding (2010).

Consider the problem of workers. Agents must first choose the sector of occupation.

They can decide to enter the residual sector, where ability is irrelevant, in which case they

have a payoff ωq.29 Alternatively, they can seek employment in the advanced sector, where

ability matters. We assume that working in the advanced sector requires formal education

(e.g., some college degree) which can be acquired at the cost of ε units of the residual good.30

27In the Appendix we also derive the measure of entering firms.
28All the required parameter restrictions are stated explicitly in the Appendix.
29The payoff ωq of seeking job in the residual sector will be discussed later.
30Since the model is static, the choice of education and of the sector of occupation are simultaneous.
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Hence, we denote with L ≤ 1 the share of job seekers in the advanced sector and we identify

them with (college) educated workers. We also refer to them as the “skilled workers”.

Ability in the advanced sector depends on an exogenous component, ã, but also on the

effort put in acquiring education. The exogenous component ã, which is firm-worker specific,

is exponentially distributed, with Pr [ã > x] = e−x. Effort is a binary choice, and we denote

it with the indicator function Iη ∈ {0, 1}, taking value one if workers put high effort and
zero otherwise. Putting high effort costs η units of the residual good and allows workers to

improve their ability. More precisely, we assume that the ability of a worker is

ln a = ã/k,

where

k=

{
k0 < 1/γ if Iη = 0

k1 < k0 if Iη = 1.

These equations embed a common notion of complementarity between the exogenous com-

ponent of ability, ã, and effort: since k1 < k0, effort (Iη = 1) raises ability more when ã is

high.

We restrict attention to pure-strategy equilibria, in which all L workers, who are ex-ante

identical, make the same effort decision.31 Under these assumptions, the equilibrium effort

choice (yet to be solved for) pins down the ability distribution of the population of workers,

which is Pareto with shape parameter k, as can be seen from Pr [a > x] = Pr [ã > k lnx] =

x−k. Note that, intuitively, a lower k (high effort) increases the probability that ability be

above any given level x. By shifting probability mass in the right tail of the distribution, it

also increases the fraction of high-ability workers and inequality. Hence, effort raises both

average ability:

E [ln a]|Iη=1 = (k1)−1 > (k0)−1 = E [ln a]|Iη=0 ,

and the variance, V, of its realizations:

V [ln a]|Iη=1 = (k1)−2 > (k0)−2 = V [ln a]|Iη=0 .

Finally, we assume that the effort level exerted by a single worker is unobservable, although

firms know the overall ability distribution.

We are now in the position to solve for the workers’choices. Consider first the fraction

of workers in the advanced sector, L, and define the total number of interviewed workers

31For simplicity, we do not consider explicitly mixed-strategy equilibria in which only a fraction of workers
chooses effort. This is without much loss of generality, since these equilibria are unstable. As explained
later, the incentive to exert effort is increasing in heterogeneity and hence in average effort. This makes an
interior equilibrium in which workers are just indifferent unstable.
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as N ≡
∫∞
θ∗ n (θ)dG (θ). In equilibrium, workers must be indifferent between entering the

residual sector or acquiring education and looking for a job in the advanced sector. This

requires the probability of being interviewed, N/L, times the expected wage conditional on

being interviewed, w (θ)h (θ) /n (θ) = b, to be equal to the payoff ωq in the residual sector

plus the education cost ε and the effort cost η if Iη = 1:

ωq + ε+ Iηη =
N

L
b.

Rearranging:
N

L
=
ωq + ε+ Iηη

b
. (20)

Equation (20) implies that workers reallocate between sectors so that the average interviews

per job seeker, N/L, are higher when Iη = 1. This is because workers have to be compensated

for their effort by a higher interview probability. Put differently, a high cost of education

discourages workers from entering the advanced sector.

Consider now the effort choice. To ease the exposition, we define ∆k ≡ k0 − k1 > 0 and

denote with subscripts 0 and 1 any variable in the case k = k0 and k = k1, respectively.

Hence, θ∗0 is the exit cutoff when k = k0. As stated formally in the next proposition, under

the conditions k1 < k0 < 1/γ and

zδΓ0a
∗ (θ∗0, k0)∆k

zδΓ0 −∆k

< 1 +
η

ωq + ε
<

1 + ∆k

δzΓ1

a∗ (θ∗1, k1)∆k , (21)

two pure-strategy equilibria exist, sustained by different beliefs on the screening strategy of

firms in the advanced sector.

Proposition 1 Assume k1 < k0 < 1/γ and that (21) is satisfied. Then, there exist only two

pure-strategy equilibria sustained by different workers’beliefs on firms’screening decisions.

In the high-effort equilibrium all job seekers in the advanced sectors exert effort (Iη = 1) and

firms with productivity θ screen workers at a cutoff ability a∗ (θ, k1), while in the low-effort

equilibrium, investment in effort is zero (Iη = 0) and firms screen workers at a lower cutoff

for any productivity level, a∗ (θ, k0) < a∗ (θ, k1).

To prove Proposition 1, consider first the behavior of firms. Firms know k and choose

screening intensity according to (15). Hence, if workers put effort the distribution of ability

will be more dispersed (k1 < k0) and this induces firms to screen at a higher cutoff, and vice

versa if Iη = 0. This is because the value of screening is proportional to the heterogeneity in

ability. Next, we consider the choice of workers and we study under what conditions, given

the optimal screening cutoff conditional on k, a deviation is not individually profitable.
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In the low-effort equilibrium, a worker who deviates draws ability from a distribution that

stochastically dominates that of other workers. As a result, effort yields a higher probability

of being hired by any firm, conditional on being interviewed. Such a deviation is not prof-

itable if the higher expected wage is not enough to compensate the cost of effort. Formally,

if all workers choose k = k0, firms screen at a∗ (θ, k0) and the expected wage is bN0/L0. The

payoff of a deviating worker is instead E [w(k1, a
∗ (k0))] − η, where E [w(k1, a

∗ (k0))] is the

expected wage of a worker drawing ability from a distribution with k = k1 when firms screen

at the cutoff a∗ (θ, k0). The value of such a deviation depends on the screening policy of

firms. To see this, use (7) to compute:

E [w(k1, a
∗ (k0))] =

∫∞
θ∗0
w (θ, k0) a∗ (θ, k0)−k1 dG (θ)

1−G (θ∗0)

N0

L0

=
zδΓ0a

∗ (θ∗0, k0)∆k

zδΓ0 −∆k

b
N0

L0

.

Note that E [w(k1, a
∗ (k0))] > bN0/L0.32 More importantly, the expected wage gain from

putting effort is increasing in a∗ (θ∗0, k). Intuitively, higher ability is more valuable if firms

screen more intensively, which in turn depends on the aggregate effort choice (see 15). Hence,

by lowering the incentive to screen workers, the choice of low effort can be self-sustaining.

In sum, deviating from the low-effort equilibrium is not profitable if:

b
N0

L0

> E [w(k1, a
∗ (k0))]− η. (22)

Consider next the high-effort equilibrium. If workers choose k = k1 and firms screen at the

cutoff a∗ (θ, k1), the expected wage is bN1/L1. An individual worker who deviates (k = k0)

saves the cost η but faces a lower probability to be hired and hence a lower expected wage.

Such a deviation is not profitable if

b
N1

L1

− η > E [w(k0, a
∗(k1))] , (23)

where E [w(k0, a
∗(k1))] is the expected wage of a worker choosing k = k0 when firms screen

at the cutoff a∗ (θ, k1) . As before, we can compute:

E [w(k0, a
∗(k1))] =

∫∞
θ∗1
w (θ, k1) a∗ (θ, k1)−k0 dG (θ)

1−G (θ∗1)

N1

L1

=
zδΓ1a

∗ (θ∗1, k1)−∆k

∆k + zδΓ1

b
N1

L1

.

32The assumptions δ > k0 and zΓ0 > 1 guarantee that the denominator is always positive.
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Note that E [w(k0, a
∗(k1))] < bN1/L1. Moreover, the punishment for low effort is proportional

to the screening intensity, captured by a∗ (θ∗1, k1). Hence, similarly to the previous case, by

raising the incentive to screen workers, the choice of high effort can be self-sustaining.

Replacing bN/L = ωq +ε+ Iηη and combining (22) and (23) yields condition (21). When
this condition is satisfied, which requires the cost of effort to be neither too high nor too

low, the two equilibria coexist. We now study the parameter space compatible with this

multiplicity. Define Amin and Amax as the left-hand side and the right-hand side of condition

(21), respectively. Multiplicity requires the interval [Amin, Amax] to be non empty. This is so

if and only if A ≡ Amax/Amin > 1, where:

A =
1 + ∆k (δΓ1z)−1[

1−∆k (δΓ0z)−1]−1

[
Γ0(1− γk1)

Γ1(1− γk0)

]∆k/δ

. (24)

To start with, note that A = 1 when k0 = k1. Of course, high effort is never an equilibrium

if effort has no effect. Moreover, simple algebra shows that A increases with k0 − k1 and

A→∞ when k0 → 1/γ. Equation (24) also shows that multiplicity is more likely (higher A)

the smaller Γ1 is compared to Γ0. Since dΓ/dk = γ/δ, this suggests that a high γ/δ expands

the parameter space compatible with multiplicity. These results are intuitive, because γ/δ

governs the complementarity between effort and screening intensity which is what sustains

the two equilibria. If γ is high, there are weaker diminishing returns and this makes a∗ (θ)

lower but also more sensitive to k (see 6). On the other hand, if δ is high, the screening

cost is very elastic to the ability cutoff, implying that firms’screening policies do not react

much. Indeed, A→ 1 if δ →∞. These results are illustrated in Figure 1, which shows how
A vary with k0 for different parameter values. The dashed line corresponds to higher δ and

the dotted line to higher γ compared to the benchmark case of the solid line (see Section 4

for a discussion of the parameter values used in the simulation).

2.5 Labor Markets and the Unemployment Rate

We can now compute the unemployment rate in the advanced sector, which is given by:

u = 1− N

L

H

N
,

where N/L is the number of interviews per job seeker and H/N is the fraction of interviewed

workers that is actually hired. To find u, we first solve for H/N by integrating h (θ) and

n (θ), from (16) and (14) respectively, across active firms:

H

N
=

∫∞
θ∗ h (θ)dG (θ)∫∞
θ∗ n (θ) dG (θ)

=
a∗ (θ∗)−k (δzΓ− δ)
δzΓ− (δ − k)

. (25)
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Figure 1: The Figure plots A as a function of k0. Equilibrium multiplicity requires A > 1.
The horizontal axis starts at k1 = 1.27. The solid line is the benchmark case, δ = 2.7 and
γ = 0.3. The dashed line corresponds to δ = 0.4, i.e., a higher elasticity of the screening
cost. The dotted line corresponds γ = 0.4, i.e., weaker diminishing returns. See Section 4
for a discussion of the parameters values used in the simulations.

Substituting this expression and N/L from (20) into u yields:

u = 1− a∗ (θ∗)−k (δzΓ− δ)
δzΓ− (δ − k)

· ωq + ε+ Iηη
b

. (26)

The unemployment rate is increasing in the search cost, b, and in the screening intensity

chosen by firms.33 This follows from the two sources of unemployment in the model: not all

workers may be interviewed by firms, and not all interviewed workers are hired.

Finally, we consider the labor market of the residual sector. To make the model more

realistic and obtain richer results through compositional effects, we allow for unemployment

also in the residual sector. Following Helpman and Itskhoki (2009), we show in the Appendix

how search frictions imply that job seekers in the residual sector face an unemployment rate

uq and a wage wq, which depend on workers’bargaining power, the cost of posting vacancies

and the matching function.34 Hence, we can express the expected income of a worker seeking

33We assume that b is suffi ciently high to have positive unempolyment.
34These are all exogenous parameters. Hence, uq and wq do not depend on the equilibrium in the advanced

sector.
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a job in the residual sector, ωq, as the wage times the probability of being hired:

ωq = wq (1− uq) .

The aggregate unemployment rate is then:

ū = Lu+ (1− L)uq. (27)

where the share of job seekers in the advanced sector, L, is found imposing their ex-ante

expected wage, L (ωq + ε+ Iηη), to be equal to the wage bill:

L (ωq + ε+ Iηη) =
γ

1 + γ
Qζ . (28)

In sum, given Iη ∈ {0, 1}, the equilibrium values of θ∗, Q, L, u and ū are given by (18),

(19), (28), (26) and (27), respectively. Given θ∗, all firm-level outcomes are given by (7) and

(13)-(16).

3 Comparing Equilibria

In this section, we compare the predictions of the model for a number of variables of interest

in the two equilibria. In what follows, we use again the subindexes 1 and 0 to denote the

equilibrium with high and low effort, respectively, and we state explicitly the variables that

are functions of k, when needed to avoid confusion. Since some comparisons are ambiguous,

in the next Section we complement the analysis with numerical examples under plausible

parametrizations.

3.1 Outcomes Within the Advanced Sector

We first compare the main outcomes within the advanced sector: firm-level productivity,

revenue, wages, the size of the sector and the mass of educated workers.

3.1.1 Firm-Level Productivity

Productivity in the advanced sector is higher in the high-effort equilibrium for three reasons.

First, active firms are more productive because the cutoff for exit is higher:

θ∗ (k) = [(zΓ (k)− 1) fe/f ]−1/z

is decreasing in k since Γ is increasing in it. An increase in the dispersion of ability (lower

k) benefits disproportionately more productive firms, which screen more intensively due to
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the complementarity between θ and a. This can be seen from (12), showing that π (θ) is a

steeper function of productivity when k (and hence Γ) is lower. For a given exit cutoff, this

increase in the profitability of more productive firms induces entry, thereby making it harder

for the less productive firms to survive.

Second, higher effort has a direct positive effect on the average ability of workers seeking

a job in the advanced sector, E [a] = k/(k − 1).

Third, the average ability of hired workers, ā, is even higher since all firms screen at a

higher cutoff. Analytically, the average ability of hired workers is

ā = a∗ (θ∗ (k) , k) · k

k − 1
· k + δ (Γ (k) z − 1)

k + δ (Γ (k) z − 1)− 1
,

where, from (15), a∗ (θ∗ (k) , k) = [(1− γk)f/(Γ (k) c)]1/δ. The first two factors (both de-

creasing in k) represent the average ability of employed workers if all firms had the same

productivity θ∗ (k), and the third term (also decreasing in k) accounts for the fact that more

productive firms screen more intensively.

3.1.2 Average Revenue and Dispersion

Before comparing revenue across equilibria, we derive its distribution as a function of k.

Given that revenue is a power function of productivity, which is Pareto distributed, it will

also inherit the same type of distribution. In particular, using (13) and the properties of the

Pareto distribution we obtain:35

Fr (r, k) = 1−
(
r∗ (k)

r

)Γ(k)z

for r ≥ r∗ (k) =
1 + γ

Γ (k)
f, (29)

In the high-effort equilibrium firms are larger in terms of revenue. First, the revenue of

the smallest surviving firm is higher, since

r (θ∗ (k) , k) =
1 + γ

Γ (k)
f

is decreasing in k. Moreover, as argued above, screening makes revenue a steeper function

of productivity. Thus, average revenue is even higher:

r̄ = r (θ∗ (k) , k)
zΓ (k)

zΓ (k)− 1
.

35If θ follows a Pareto(θ∗, z), then x ≡ log (θ/θ∗) is distributed as an exponential with parameter z. Then,
any power function of θ of the type AθB , with A and B constant, is distributed as a Pareto(A (θ∗)

B
, z/B),

since AθB = A (θ∗)
B
eBx with Bx ∼ Exp(z/B), by the properties of the exponential distribution.

19



Revenue is also more dispersed across firms when Iη = 1. This can be shown computing

the standard deviation of log-revenue, SD [ln r]. From (29) and using the properties of the

Pareto distribution, we obtain:

SD [ln r] = 1/zΓ (k) ,

which is decreasing in k. Intuitively, more heterogeneity in worker ability amplifies the

differences in output for a given productivity, thereby increasing the dispersion of revenue.

3.1.3 Wage Dispersion

In order to compare wage inequality across equilibria, we need to derive the equilibrium

distribution of wages in the advanced sector. In the Appendix, we show that this is also

Pareto, with c.d.f.

Fw (w, k) = 1−
(
w∗ (k)

w

)1+ δ
k

(Γ(k)z−1)

for w ≥ w∗ (k) = ba∗ (θ∗ (k) , k)k . (30)

As in Helpman Itskhoki and Redding (2010), depending on parameter values, wages may be

more or less dispersed in the high-effort equilibrium. This can be shown by computing the

standard deviation of the log of wages within the advanced sector from (30) and using the

properties of the Pareto distribution:

SD [lnw] =
k

k + δ (Γ (k) z − 1)
.

Simple algebra shows that SD [lnw] is decreasing in k if and only if δ−1 + z−1 + γ > 1.

This ambiguity reflects the fact that the dispersion in ability affects the wage paid by more

productive firms and fraction of workers hired by these firms in opposite ways.

3.1.4 Size of the Advanced Sector

Using (19), we derive the relative output of the advanced sector under the two equilibria:(
Q1

Q0

)1−ζ

=
k1 (k0 − 1)

(k1 − 1) k0

· a
∗ (θ∗1)1−γk1

a∗ (θ∗0)1−γk0
· θ
∗
1

θ∗0
·
(

Γ1

Γ0

)1−γ

.

It is easy to prove that Q is larger in the high-effort equilibrium because workers and firms

are more productive. The product of the first three factors in the expression above, equal to

the relative output per interviewed worker of the marginal firm, is greater than one because:

(i) workers draw ability from a distribution with a higher mean, (ii) firms screen more
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intensively, and (iii) the marginal firm has higher productivity. The last term, accounting

for the resources invested by firms in screening, is lower than one. However, as we formally

prove in the Appendix, this cost is more than compensated by the benefit of screening,

captured by the preceding factors. This is intuitive, since screening is chosen to maximize

firms’profit.

We can also solve for the allocation of workers between the two sectors, which gives also

the fraction of the population with high education. Equation (28) implies:

L1

L0

=
ωq + ε

ωq + ε+ η

(
Q1

Q0

)ζ
.

On the one hand, the higher productivity in the advanced sector in the high-effort equilibrium

(Q1/Q0 > 1) tends to attract more workers to this sector. On the other hand, the cost of

effort tends to discourage job seeking in the advanced sector. The former effect dominates

if ζ is suffi ciently high.

3.2 Aggregate Outcomes

3.2.1 Unemployment

We first compare the unemployment rate in the advanced sector, u, in the two equilibria by

using equation (26), which is re-written here for convenience:

u = 1− a∗ (θ∗ (k) , k)−k
zΓ (k)− 1

zΓ (k)− (1− k/δ) ·
ωq + ε+ Iηη

b
.

Note that, in principle, u can be lower or higher in the high-effort equilibrium. This ambiguity

stems from various mechanisms working in opposite directions. First, screening generates

unemployment. Workers with ability below a∗ (θ∗ (k) , k) are never hired. More dispersion

in ability increases this screening cutoff, but it also raises the probability to draw ability

above any given cutoff. The net effect is given by the factor a∗ (θ∗ (k) , k)−k, which, as in

Helpman Itskhoki and Redding (2008), is non monotonic in k. Workers with ability above

a∗ (θ∗ (k) , k) are hired with some probability, which depends on how fast screening increases

with productivity. Since higher wages compensate unemployment risk, a higher dispersion

in ability increases this component of the unemployment rate if an only if it also raises wage

dispersion, i.e., when δ−1 +z−1 +γ > 1. Finally, to compensate workers for the effort cost, η,

the probability of getting an interview (N/L) needs to be higher when Iη = 1, which tends

to lower unemployment.
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Next, we compare overall unemployment,

ū = L (k)u (k) + (1− L (k))uq.

As shown above, both the unemployment rate and the mass of job-seekers in the advanced

sector vary across equilibria. Assuming that the unemployment rate is higher among un-

skilled workers, as the data suggest, the reallocation of workers towards the advanced sector

tends to lower overall unemployment.

3.2.2 Wage Inequality

We have already studied wage dispersion within the advanced sector. We now consider

other measures of wage inequality which also account for variation across sectors: the skill

premium and the overall Theil index of wages.

First, we define the skill premium as the average wage in the advanced sector, w̄, relative

to the wage in the residual sector, wq. To obtain w̄, note that the expected wage of a job

seeker in the advanced sector, bN/L, is equal to the average wage multiplied by the hiring

probability, 1− u. Using (20), we can then express the skill premium as:

w̄ (k)

wq
=

ωq + ε+ Iηη
wq (1− u (k))

.

Note that the skill premium must compensate workers for the cost of entering the advanced

sector and for any unemployment differential relative to the residual sector. Using (26) we

can rewrite:
w̄ (k)

wq
= a∗ (θ∗ (k) , k)k · zΓ (k)− (1− k/δ)

zΓ (k)− 1
· b
wq
. (31)

Comparing (31) to (26) shows that the skill premium behaves like the component of un-

employment due to screening. Hence, if effort raises screening unemployment, it will also

increase the skill premium. However, since the unemployment rate also depends on the ratio

of job seekers per interviews, which falls with η, the high-effort equilibrium can potentially

exhibit both a higher skill premium and a lower unemployment rate in the advanced sector.

We now consider a more comprehensive measure of inequality, the Theil index of wages.

The advantage of this measure is that it can be decomposed into a within-sector (TW ) and

a between-sector (TB) component, T = TW + TB. As in Helpman, Itskhoki and Redding

(2010), the within-sector component is:

TW (k) = s (k) [µ (k)− ln (1 + µ (k))],
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where µ (k) ≡ k/δ
zΓ(k)−1

and s (k) denotes the wage share of the advanced sector:

s (k) =
(ωq + ε+ Iηη)L (k)

ωq + (ε+ Iηη)L (k)
.

Note that the term in brackets (i.e., the Theil index of wages in the advanced sector) be-

haves like SD (lnw), while contribution from the residual sector is zero. The between-sector

component is instead:

TB (k) = s (k) ln w̄ (k) + (1− s (k)) lnwq − ln [ωq + L (k) (ε+ Iηη)] ,

where ωq+(ε+ Iηη)L (k) is the average wage in the economy. Overall inequality in the high-

effort equilibrium can be higher if workers are reallocated to the advanced sector, where wages

are higher and heterogeneous.

3.2.3 Welfare

Taking indirect utility as our measure of welfare, it is easy to show that it is an increasing

function of output of the advanced sector, Q. To see this, note first that expenditure E is

equal to the sum of wages minus investment in human capital:

E = (1− L (k))ωq + (ωq + ε+ Isη)L (k)− (Isη + ε)L (k) = ωq

This is intuitive, since the ex-ante average wage must be ωq. Using (1), we obtain utility as:

W (k) = ωq +
1− ζ
ζ

Q (k)ζ . (32)

Since Q1/Q0 > 1, welfare is necessarily higher in the high-effort equilibrium. This result

stems from the fact that workers do not internalize the positive effect of their effort choice

on average ability. Hence, the low-effort equilibrium is ineffi cient.

4 Comparing Labor Market Outcomes: Numerical Examples

In this section, we complement the qualitative comparison between equilibria presented in

Section 3 with some numerical examples. The goal is twofold. First, given that the model

predictions for some outcomes are potentially ambiguous, it is useful to explore them using

plausible parameter values. Second, we would like to have a sense of howmuch of the observed

cross-country differences in economic outcomes can be accounted for by our theory. Since

we have already discussed the effects of single parameters, here we are more interested in

assessing the overall performance of the model under plausible configurations. However, given
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how stylized the model is, its quantitative predictions should be interpreted with caution.

We proceed as follows. We identify Italy as a country in the low-effort equilibrium and

the United States as representative of the other scenario. Hence, we calibrate the model with

Iη = 0 so as to match key observations in Italy. With this set of parameters, we change the

value of k so as to match the ability distribution observed in the United States and compute

the range of η compatible with both distributions being two equilibria of the same model.

We then compute the predicted differences in the main variables of interest across the two

equilibria and compare them with the data. For parameters that cannot be identified easily,

we consider a range of possible values. More details on the data targeted by the calibration

are provided in the Appendix.

First, we match labor-market statistics. Since we normalized the total labor supply to

one, we impose L0 = 0.13, equal to the fraction of working-age population with tertiary

schooling in Italy in 2006.36 In the same year, the total unemployment rate in Italy was

6.8%, and 4.8% for workers with a college degree (7.1% for the rest). Hence, we choose b so

as to have u0 = 0.048 in the advanced sector and impose uq = 0.071 in the residual sector. We

set labor productivity in the residual sector to yield wq = 1. In this way, the skill premium

is simply the average wage in the advanced sector, which is w̄0 = (1 − uq + ε)/(1 − u0) in

the equilibrium with low effort. Given u0 and uq, we set ε to have w̄0 = 1.56, corresponding

to the college premium in Italy. This yields ε = 0.55.

To calibrate the shape parameter of productivity, z, we match the firm-size distribution

in Italy. In particular, we compute the standard deviation of the log of value added across

manufacturing establishments in Italy and, for comparison, the United States using data

from the SDBS Structural Business Statistics (OECD, 2010b) and the U.S. Census. Since

the data are aggregated into size categories, we follow Helpman, Melitz and Yeaple (2004)

in assuming that all establishments falling within the same bin have the same value added

as the group mean and using the number of firms in each size category as weights.37 Doing

so, we find that the standard deviation of log value added in 2007 is 0.53 for Italy and 0.66

for the United States. Since the standard deviation of the log of revenue in the advanced

sector is 1/(zΓ), we impose z = 1.88/Γ0 to match the observation for Italy.

In the absence of direct evidence on the cost of screening, we set the parameter c so that

the marginal firm hires all the workers it interviews in the low-effort equilibrium (i.e., we

impose a∗ (θ∗0) = 1 in equation (15)), which seems a natural benchmark. We calibrate ζ from

the elasticity of demand for good Q, which is equal to 1/(1 − ζ). Estimates of the demand

elasticity for skill-intensive goods are typically around 2 (e.g., Gancia, Mueller and Zilibotti,

36The fixed cost f can be set to get L = 0.13.
37We use five size categories: 0-9, 10-19, 20-49, 50-250, over 250 employees. Helpman, Melitz and Yeaple

(2004) show that this methodology to compute dispersion yields results that are highly correlated with direct
measures based on the entire population (when available).
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2013). We therefore set ζ = 0.5.

Next, we need to choose the key parameters γ, δ, k0 and k1. As discussed extensively,

some important results depend on the difference between Γ0 and Γ1, which is given by ∆kγ/δ

where ∆k = k0 − k1. Thus, for the model to produce any interesting effects, γ/δ and ∆k

must be suffi ciently high. To calibrate the shape parameters of the Pareto distributions

for ability, k0 and k1, we follow Cebreros (2014) who documents properties of the skill

distribution across countries based on test scores from the IALS survey.38 Using data on the

minimum, the maximum and the standard deviation of test scores, we obtain k0 = 1.68 for

Italy and k1 = 1.27 the United States (see the Appendix for more details).

Having pinned down k0 and zΓ0, one possibility is to calibrate δ from the wage dispersion

in the advanced sector, SD [lnw] = k0/ [k0 + δ (Γ0z − 1)]. Note that, in the model, variation

in wages across skilled workers does not depend on observable characteristics. Hence, we

identify SD [lnw] with the standard deviation of residual wages, after controlling for ob-

servable characteristics, of workers with tertiary education. We compute this measure using

the data in Jappelli and Pistaferri (2010) for Italy in 2006, and find a value of 0.41, which

implies δ = 2.7. Yet, attributing the entire observed wage dispersion to the mechanism in

the model may be excessive. As an extreme alternative, we also calibrate δ so as to match

the elasticity of wages to scale, which is equal to k/(δ−k) in the model. Available estimates

for the United States point to a size premium of around 10% (Oi and Idson, 1999, Troske,

1999), which implies δ = 14. Finally, regarding γ, we also experiment with a range of values.

The restriction k0 < 1/γ, which is needed for screening to be profitable, requires γ < 0.59.

Hence, we consider three possibilities, γ ∈ {0.3, 0.4, 0.5}.39

Finally, the cost of effort, η, is unobservable and cannot be inferred easily from the data.

Recall from condition (21) that when η is too low, the low-effort equilibrium disappears and,

conversely, the high-effort equilibrium vanishes when η is too high. Since we are interested

in the behavior of the model within the range of multiple equilibria, we want η to satisfy

condition (21). Moreover, a low η could imply a possibly implausibly low cost of improving

ability. Then, to be conservative, we set η equal to its highest admissible value, so as to

maximize the cost of switching to the U.S. equilibrium. Nevertheless, to gauge the plausibility

of equilibriummultiplicity, we report for all parameter configurations the range of η consistent

with condition (21). Besides that, for most of the model’s predictions, the exact value of η

is not very important.40

38The same data have been used by Bombardini, Gallipoli and Pupato (2012) to show that variation in
skill dispersion across countries is a source of comparative advantage.
39Note that the parameter γ captures the overall curvature of the revenue function. In more general

models, it would depend on dinimishing returns, managerial span of control and also product differentiation.
Still, values of γ below 0.3 may appear extreme.
40The value of η only affects (marginally) the allocation of labor between the two sectors and the unem-
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A first set of results is reported in Table 1. The first two columns show the values of the

main variables of interest computed from the data for Italy (column 1) and, for comparison,

for the United States (column 2). Besides the variables already discussed, the table reports

the average firm revenue relative to Italy, computed from manufacturing data from the

SDBS Structural Business Statistics (OECD, 2010b) and the U.S. Census, GDP per hour

worked, which is normalized to one for Italy (from OECD) and the Theil index of the entire

distribution of wages.41 Columns (3)-(4) report the model’s predictions under the benchmark

case δ = 2.7 and γ = 0.3. In column (3), the model is solved using the calibration for Italy,

with no investment in effort and k0 = 1.68. By construction, it matches exactly the values in

column (1) except for the Theil index of overall wage inequality, which was not targeted. As

expected, since the model abstracts from wage dispersion in the low-skill sector and given

the large size of this sector, the predicted overall inequality (0.047) is lower than in the data

(0.126). In column (4), we keep the same parameters but solve the model in the high-effort

equilibrium, with Iη = 1 and k0 = 1.27.

Comparing column (4) to column (2) shows that equilibriummultiplicity has the potential

to explain a significant fraction of the observed differences between Italy and the United

States. Consider firm-level variables first. Average revenue per firm, r̄, is 23% larger in

the high-effort equilibrium. The model also predicts the standard deviation of log revenue

(SD [ln r]) to be 10% higher in the high-effort equilibrium. Compared to the US data, the

model can account for about 25% of the difference in firm size and about 40% of the difference

in dispersion. Moving to labor market outcomes, the higher productivity in the advanced

sector in the equilibrium with high effort induces a substantial reallocation of workers towards

that sector. As a result, the fraction of college-educated workers increases from 13% to

23%, accounting for about 40% of the difference between Italy and the United States. In

this calibration, the unemployment rate in the advanced sector is also significantly lower

with high effort (3.5% instead of 4.8%) and the overall employment rate falls from 6.8%

to 6.3%. Inequality is also higher. The skill premium rises from 1.5 to 1.75, overshooting

a little the gap between the United States and Italy. Moreover, although wage dispersion

in the advanced sector (SD [lnw]) does not change much, the higher skill premium and

the expansion of the high-inequality sector leads to a sizeable increase in the overall Theil

index, from 0.05 to 0.09. Although the level of this index is too low, its absolute difference

across equilibria is comparable to the variation observed in the data.42 Regarding labor

ployment rate in the high-effort equilibrium.

41The Theil index is computed on wages from Jappelli and Pistaferri (2010) for Italy and from the CPS
for the United States.
42See Autor, Katz and Kearney (2008) and Lemieux (2006) on the importance of within-group wage

dispersion and compositional effects in explaining inequality in the United States.
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productivity, the model overpredicts GDP per hour: it is 45% higher in the high-effort

equilibrium, while the U.S. data is 21% higher then the Italian one. This is probably due

to the (too) large effect of the shape parameter on average ability. Finally, the last two rows

show that the predictions in column 3 and 4 can correspond to multiple equilibria for a non-

negligible range of the cost of effort, η ∈ [ηmin, ηmax]. The admissible values of η also look

reasonable, in that they are comparable in magnitude to the increase in the skill premium

across equilibria.

In Column (5) we study what happens if we increase γ to 0.4. Notice that, given our

calibration strategy, the model still matches all the targets in the low-effort equilibrium, as

in Column (3). Hence, we report in Column (5) only the predicted values in the high-effort

equilibrium. With a higher γ, the complementarity between effort and screening becomes

significantly stronger. As a result, all measures of inequality grow larger and SD [lnw] is

now higher with Iη = 1 than with Iη = 0. The downside is that the firms become so selective

that the unemployment rate becomes too high. To compensate this unemployment risk, the

skill premium jumps to 2, well above the U.S. level. This results suggest that the assumption

that discarded workers cannot be rehired may be too restrictive quantitatively. As we show

next, however, these predictions become much less extreme when δ is also higher.

In Table 2 we do robustness checks on the parameter δ. Recall that δ = 2.7 was calibrated

so as to match exactly residual wage dispersion in the advanced sector. Yet, in reality there

might be several sources of wage heterogeneity and attributing all of it to the mechanism

in the model may yield an excessive value of δ. As a conservative alternative, in Columns

(1)-(4), we consider a much higher value, δ = 14, which replicates the correlation between

wages and firm size. We then experiment with different values of γ. In Column (1) we

report the low-effort equilibrium, which does not depend on γ. In Columns (2)-(4) we report

instead the high-effort equilibrium for the cases γ = 0.3, γ = 0.4 and γ = 0.5, respectively.

As expected, the low-effort equilibrium now accounts for a modest fraction of the observed

residual wage dispersion among skilled workers in Italy, 0.12 instead of 0.41. Overall wage

inequality is also considerably lower. Given our calibration strategy, the model still matches

the remaining variables for Italy.

A higher δ weakens the complementarity between effort and screening. As a result, with

δ = 14 effort has a slightly smaller effect on inequality. Also, as expected, the effect on

inequality becomes stronger as we raise γ. For example, the skill premium does not increase

with effort if γ = 0.3, but it reaches 1.64 if γ = 0.5. The Theil index is small, but it still

increases significantly with effort: from 0.016 to 0.023 when γ = 0.3 and to 0.029 when

γ = 0.5. Reallocations of workers to the advanced sector are instead comparable to the

previous cases. Effort lowers the total unemployment rate, except for the highest value of γ.

The effect of effort on average revenue per firm and its dispersion are muted, while its effect
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on labor productivity is still strong, from +39% when γ = 0.3 to +32% when γ = 0.5.

Finally, in Columns (5)-(8) we consider an intermediate case, δ = 7. Column (5) reports

the low-effort equilibrium and shows that the model can now account for close to half of

the residual wage dispersion among skilled workers in Italy (0.19 instead of 0.41). Columns

(6)-(8) report the high-effort equilibrium for the cases γ = 0.3, γ = 0.4 and γ = 0.5,

respectively. Compared to the case δ = 14, the model does marginally better on firm-level

outcomes and generates more inequality, but still falls short of explaining the bulk of the

differences between Italy and the United States.

Before concluding, we mention briefly the model’s implication for welfare. We know

already that welfare is unambiguously higher in the high-effort equilibrium. In terms of

magnitude, the simulations in this section suggest that the gain from switching to the “good”

equilibrium can be substantial, varying between +40% and +50%. These numbers should

however be interpreted with caution. In particular, the simplifying assumption of quasi-

linear utility and risk neutrality may be restrictive for welfare comparison, especially since

total inequality is significantly higher in the high-effort equilibrium.43

These results, albeit suggestive, are remarkable considering that they are obtained with-

out imposing any exogenous difference in rigidities, entry costs or any other structural pa-

rameter, which are certainly important in the real world. They suggest that differences in

the ability distribution, especially its variance, can help explaining disparities in firms and

labor market outcomes.44 We think that this is an interesting and to our knowledge novel

point. Yet, the contribution of the paper goes beyond it. It shows that such differences in the

ability distribution can be generated endogenously as different equilibria under reasonable

parameter values. The motivating evidence on social perceptions in Italy and the United

States presented in the Introduction is also consistent with the beliefs needed to sustain the

two equilibria.

5 Conclusions

We have proposed a model that explains disparities in several economic and labor market

outcomes across similar countries based on multiple equilibria sustained by different beliefs

on the value of effort and ability. In particular, when effort raises the dispersion of workers’

ability and firms have access to a costly screening technology, two equilibria arise: in the

“American”equilibrium, workers expect firms to screen more intensively and hence invest

43The welfare gain of switching to the high-effort equilibrium is also sensitive to the elasticity of substitution
between the advanced and the residual sector. Yet, if 1/(1− ζ) = 1.5 (ζ = 1/3), the gain is still substantial
(around +30%).
44Recall however that the cost of effort is needed to match simultaneously a higher skill premium and a

lower unemployment rate in the advanced sector in the high-effort equilibrium.
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effort to improve their job prospects. This raises the dispersion in workers’ability and induces

firms to be more selective when hiring. The opposite occurs in the “Southern European”

equilibrium, where workers believe effort to be less important and do not invest in it, thereby

inducing firms to screen less intensively. A numerical exercise shows that the two equilibria

can generate variation in wage inequality, the distribution of firm characteristics, productivity

and unemployment rates that can account for a significant fraction of the observed differences

between the United States and Italy, even when they share the same structural parameters.

In addition to these positive results, the model yields useful policy insights. It suggests

that governments could play an important role in trying to transition the economy towards

the preferred equilibrium. For instance, to make the high-effort equilibrium possible, the

technology for improving ability has to be suffi ciently effi cient. Making academic achieve-

ment, which are notoriously imperfect predictors of future wages, better signals of attributes

that are valued in the labor market would also lower the screening costs. Moreover, measures

could be taken to strengthen the social perception of effort and meritocracy in such a way

to coordinate workers and firms on the desired equilibrium.

Although we kept the model simple to obtain analytical results, the analysis could be

extended in a number of interesting directions. As it is common in this class of models, we

left the problem of equilibrium selection entirely outside the analysis. Allowing for learning

dynamics (for instance, as in Blume, 2006) may help understand persistence and the role of

policy in equilibrium selection.45 Introducing dynamics and shocks in the model could yield

novel implications for the cyclical properties of labor market outcomes in the different equi-

libria. Endogenizing policies may help explain why countries in the “American”equilibrium

also tend to have more flexible labor and product market regulations.46

Finally, while in this paper we endogenized workers’ability distribution, in Bonfiglioli,

Crinò and Gancia (2017, 2018) we let the productivity distribution be chosen by firms, and

show that trade and financial frictions can be an important determinant of the equilibrium

degree of heterogeneity. In a similar vein, opening the economy in this model may provide

interesting insights on the effects of trade between countries in different equilibria. For

example, it may help explain why globalization seems to be associated to increased inequality

more in the United States than in Southern European countries. We leave these questions

to future research.

45See Binder and François (2012) and Francois and Zabojnik (2005) for interesting examples of models
studying the dynamic evolution of cultural values and institutions.
46Empirical work by Alesina et al. (2015) shows that labor market regulations have deep cultural roots.
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6 Appendix

6.1 Parameter Restrictions

Parameters have to satisfy the following restrictions:

1. δ > k > 1

2. zΓ > 1

3. zΓ < 1 + f/fe

4. f
c
> 1−γ

1−γk −
1
δ

5. b
ωq+ε+Iηη >

(
Γ

1−γk
c
f

)k/δ
(δzΓ−δ)

δzΓ−(δ−k)

6. 0 < ζ < 1

The first two inequalities in restriction 1. guarantee that firms that sample more workers

also hire more and pay higher wages, while the third one is needed for the mean of the ability

distribution to be finite. Restriction 2. is needed for the mean of firm size distributions to

be finite. The third restriction makes sure that there is firm selection (θ∗ > 1). Restriction

4. guarantees that all firms effectively screen (a∗ (θ∗) > 1). The fifth restriction makes sure

that the unemployment rate in the advanced sector is positive.

6.2 Industry Equilibrium: Mass of Entrants

We derive the equilibrium relationship between consumption of the advanced good Q and the

measure of entrants M by imposing market clearing, i.e. that expenditure in the advanced

good be equal to total revenues of the sector, and substituting for PQ = Qζ :

Qζ = M

∫ ∞
θ∗

r (θ) dG (θ) = f
1 + γ

Γ
M

∫ ∞
θ∗

(
θ

θ∗

)1/Γ

dG (θ) ,

where we used r (θ) = f (θ/θ∗)1/Γ (1 + γ) /Γ.47 Substituting dG (θ) as above delivers the

equilibrium mass of entrants,

M =
1

1 + γ

Qζ

zfe
,

and hence the measure of surviving firms, M [1−G (θ∗)] = M (1/θ∗)z.

47The market-clearing condition can be analogously expressed in terms of real quantities, i.e.,
M
∫∞
θ∗
y (θ)dG (θ) = Q, with y (θ) replaced from the expression for equlibrium revenue, r (θ) = Q−(1−ζ)y (θ) .
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6.3 Labor Market in the Residual Sector

Following Helpman and Itskhoki (2009), we introduce search frictions through a Cobb-

Douglas matching function that gives the mass of hired workers, Nq, as a function of vacancies

posted by firms, Vq, and the measure of job seekers, Lq = 1− L:

Nq = V χ
q L

1−χ
q ,

where χ ∈ (0, 1). This implies that the probability that a firm fills a vacancy is Nq/Vq =

(Nq/Lq)
(χ−1)/χ. We assume that firms can freely enter by paying the cost of posting a vacancy,

v, and they exit if not matched with any worker. A firm employing nq workers produces and

has revenue equal to nq, which is split with the workers through Nash bargaining. Hence,

the wage is equal to the bargaining power of workers wq = 1 − Γq and profit is Γqnq. Free

entry, driving expected profits to zero, requires (Nq/Lq)
(χ−1)/χ Γq = v. This pins down the

tightness of the labor market:
Nq

Lq
=

(
v

Γq

) −χ
1−χ

.

Note that we need v > Γq in order to have Nq/Lq < 1. The unemployment rate in the

residual sector is just uq = 1−Nq/Lq.

6.4 Wage Distribution

To find the equilibrium distribution of wages, notice that a measure h (θ) of workers in each

firm with productivity θ receive the same wage. Hence, the cumulated density of w is

Fw (w) =

∫ θw(w)

θ∗ h (θ) dG (θ)∫∞
θ∗ h (θ)dG (θ)

= 1−
∫∞
θw(w)

h (θ) dG (θ)∫∞
θ∗ h (θ)dG (θ)

for w > w (θ∗) ,

where θw (w) is the productivity of firms paying wages w, θw (w) = θ∗ [w/w (θ∗)]δΓ/k and

w (θ∗) = ba∗ (θ∗)k. This expression can be simplified by replacing h (θ) from (16) and

dG (θ) =
(
zθ−z−1

)
dθ to yield

Fw (w) = 1−
[
w (θ∗)

w

]1+ δ
k

(Γz−1)

for w > ba∗ (θ∗)k .
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6.5 Comparing the Advanced Sector Size

The relative size of the advanced sector, Q1−ζ
1 /Q1−ζ

0 ,

k1

k1 − 1

k0 − 1

k0

(
Γ1

Γ0

)1−γ
a∗ (θ∗1)1−γk1

a∗ (θ∗0)1−γk0

θ∗1
θ∗0
,

is greater that one, since a∗ (θ∗1) > a∗ (θ∗0) and θ∗1 > θ∗0, as shown in section 3, and

k1

k1 − 1

k0 − 1

k0

(
Γ1

Γ0

)1−γ

> 1.

To prove the latter, we first notice that

k1

k1 − 1

k0 − 1

k0

(
Γ1

Γ0

)1−γ

>
k1

k1 − 1
Γ1

(
k0

k0 − 1
Γ0

)−1

since γ ∈ (0, 1) and Γ1 < Γ0. Next, note that:

∂

∂k

(
k

k − 1
Γ

)
=

γ

δ

k

k − 1
− Γ

(k − 1)2 <
γ

δ

k

k − 1
− 1

(k − 1)

1

k

<

(
γk − 1

k

)
1

k − 1
< 0,

since δ > k0 and k0 < 1/γ imply that Γ > (k − 1) /k. Hence,

k1

k1 − 1

k0 − 1

k0

Γ1

Γ0

> 1.

6.6 Data for Numerical Exercise

Firm-level data are sourced from the U.S. Census for the United States and from the OECD

Structural Business Statistics (SDBS) for Italy, and observations refer to year 2007. Since

data are available at the firm level by size bins, we computed standard deviations of log sales

by treating all firms in the same bin as equal and weighting each bin by the number of firms

in it relative to the total, as in Helpman, Melitz and Yeaple (2004).

Wage inequality measures are computed starting from individual-level data on hourly

wages. In particular, for Italy, we source from Jappelli and Pistaferri (2010) data from the

2006 Survey of Household Income and Wealth (SHIW) which was conducted by the Bank

of Italy, and reports information for 25-60 year-old individuals. Hourly wage is computed

as annual earnings divided by annual hours. Residual hourly wages are constructed as the

residuals of the mincerian regression of log hourly wages on age, (age)2, (age)3, (age)4,
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education (taking value between 1 and 18), and dummies for gender and geographical area

(South, Center, North). For the United States, we use data from the 2006 CPS Merged

Outgoing Rotation Groups (CPS-MORG). We focus on working-age individuals (18-64 years

old) and compute hourly wages as weekly earnings divided by the usual number of hours

worked per week. As for Italy, residual hourly wages are constructed as the residuals of the

mincerian regression of log hourly wages on age, (age)2, (age)3, (age)4, education (taking

value between 1 and 16), and dummies for gender and geographical area (State). With

these data at hand for both countries, we compute: (i) the skill premium as the ratio of

average hourly wage of high-skill workers over the average hourly wage of the other workers,

(ii) the standard deviations of log residual hourly wages on the subset of high-skill workers,

and (iii) the Theil index of hourly wages for all workers, capturing overall wage dispersion.

Since the range of values for the indicator of education differs across countries, we consider

high-skill workers those with education higher than or equal to 13 in the United States

(consistently with Bonfiglioli, Crino and Gancia, 2017) and equal to 18 in Italy (as in Jappelli

and Pistaferri, 2010).

We source from the OECD Italian and U.S. data on GDP per hour worked (in PPP

dollars at constant price), the share of working-age population (25-64 years old) with com-

pleted tertiary education (from Education at a glance, https://data.oecd.org/eduatt/adult-

education-level.htm#indicator-chart), the total unemployment rate (from Labour market

statistics, https://data.oecd.org/unemp/unemployment-rate.htm#indicator-chart), and the

unemployment rate among persons with completed tertiary education (from Education at a

glance, https://data.oecd.org/unemp/unemployment-rates-by-education-level.htm#indicator-

chart).

The shape parameters of the ability Pareto distributions, k0 and k1 for Italy and the

United States respectively, are computed using data from IALS test scores. Since test scores

are bounded, we use the formula for a truncated Pareto distribution with shape parameter

k and support [amin, amax]. We obtain k from:

SD(a) =

[
k

k − 2

1− ãk−2

1− ãk −
(

k

k − 2

1− ãk−1

1− ãk

)2
]1/2

amin

where ã = amin/amax, and taking SD(a), amin and amax from the data. In particular, we draw

from Table 16 in Cebreros (2018) the following values for the United States: SD(a) = 71.13,

amin = 40.93 and amax = 437.9 ; and for Italy: SD(a) = 57.94, amin = 48.26 and amax = 395.
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(1) (2) (3) (4) (5)
������ ������

ITA USA low effort 
	�
���

high effort 
	�
��

high effort 
	�
��

Average Revenue per firm, r bar 
���� 
���� 
���� 1,232 
���

Revenue Dispersion, SD[ln(r)] ����� ����� ���� ����� �����
Skilled Share, L ��
�� ����� ��
�� ���� ���
Skilled Unemployment (%), u ����� ���� ����� ����� 
�����
Total Unemployment (%), u bar ����� ����� ����� ���� �����
Skill Premium, w bar 
���� 
���� 
���� 
���� ����
Residual Wage Dispersion, Skilled, SD[ln(w)] ���
� ����� ���
� ����� ����
Theil Index of Wages, All workers ��
� ��
� ����� ����� ��
�
GDP per Hour Worked 
���� 
�
� 
���� 1,455 
����
Effort cost �_max � ��
� ����
Effort cost��_min � ��
�� ��
��

Data

Note: Average Revenue per firm is expressed relative to Italy; Skilled Share refers to working age population
with tertiary education; the Skill Premium is the average hourly wage of workers with tertiary education relative
to workers with less than tertiary education; Residual hourly wages are computed based on mincerian �����������
Firm-level data refer to year ���� labor-market data and GDP per hour worked are from ��� (source, ������
The parameters �_max and �_min delimit the range for the existence of two ����!�"��#� "Model" values in
columns (3) and (4) represent model predictions under the equilibrium with low effort (parametrized to match
Italian data) and with high effort (using the same parameters except 	�� The parameter k is derived using data on
IALS test �&����� In column (5), model predictions under the high-effort equilibrium are obtained using an
alternative parametrization for �� Given the calibration strategy, predicted values for the low-effort equilibrium
#�����'�#**�&'�+�".�'/��&/��&���*����#�+�/��&��'/�.�#�����0��'�+���!.���&������&�!�6��7����

Benchmark case: ����
8#"!��
����60#�����9��6�#�+�<#"���=#�	�'���'&�6��

Model



(1) (2) (3) (4) (5) 7�� 7�� 7��
����� ����� ����� ����� ����� �����

low effort high 
effort

high 
effort

high 
effort

low effort high 
effort

high effort high 
effort

Average Revenue per firm, r bar 
���� 
��� 
���� 
���� 
���� 
���� 
���� 1,129
Revenue Dispersion, SD[ln(r)] ���� ����� ����� ����� ���� ����� ���� ����
Skilled Share, L ��
�� ���� ���� ��� ��
�� ��� ���
 ����
Skilled Unemployment (%), u ����� ��� ����� ����� ����� ����
 3,329 �����
Total Unemployment (%), u bar ����� ����� ��
�� ����
 ����� ����� ��
�� �����
Skill Premium, w bar 
���� 1,551 
���
 
���� 
���� 1,559 
��
� 
����
Residual Wage Dispersion, Skilled, SD[ln(w)] ��
� ����� ����� ����� ��
�� ��
�� ��
�� ��
��
Theil Index of Wages, All workers ���
� ���� ���� ���� ���
� ���� ����
 �����
GDP per Hour Worked 
���� 
���� 1,342 1,319 
���� 1,394 1,355 1,345
Effort cost �_max � ����� ���� ���� � ����
 ����� ��

�
Effort cost��_min � ���� ���� ���� � ���� ���� ����

?�
� ?��

8#"!������60#�����9��6�#�+�<#"���=#�	�'���&�6���@�C�"��'����
Model predictions under alternative parametrizations for � and �

Note: Average Revenue per firm is expressed relative to Italy; Skilled Share refers to working age population with tertiary education; the 
Skill Premium is the average hourly wage of workers with tertiary education relative to workers with less than tertiary education;
Residual hourly wages are computed based on mincerian ����������� Firm-level data refer to year ���� labor-market data and GDP per
hour worked are from ��� (source, ������ The parameters h_max and h_min delimit the range for the existence of two ����!�"��#�
Given the calibration strategy, predicted values for the low-effort equilibrium are not affected by the choice of �� and hence they are
��'���0��'�+�*���+�**����'�J#!�����*���


