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Abstract

The booms and busts in U.S. stock prices over the post-war period can to a large extent

be explained by �uctuations in investors�subjective capital gains expectations. As we

show, survey measures of these expectations display excessive optimism at market peaks

and excessive pessimism at market troughs. Using the framework of Internal Rationality

of Adam and Marcet (2011), we incorporate subjective price beliefs into an otherwise

standard asset pricing model with utility maximizing investors. We show how subjective

belief dynamics can temporarily delink stock prices from their fundamental value and give

rise to asset price booms that ultimately result in a price bust. The model quantitatively

replicates (1) the volatility of stock prices and (2) the positive correlation between the

price dividend ratio and expected returns observed in survey data. Models imposing

objective or �rational�price expectations cannot simultaneously account for both facts.

Our �ndings imply that large parts of U.S. stock price �uctuations are not due to standard

fundamental forces, instead result from self-reinforcing belief dynamics triggered by these

fundamentals.
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�Bull-markets are born on pessimism, grow on skepticism, mature on optimism and die
on euphoria�

Sir John Templeton, Founder of Templeton Mutual Funds

1 Motivation

Following the recent boom and bust cycles in a number of asset markets around the

globe, there exists renewed interest in understanding better the forces contributing to the

emergence of such drastic asset price movements. This paper argues that movements in

investor optimism and pessimism, as measured by the movements in investors�subjective

expectations about future capital gains, are a crucial ingredient for understanding these

�uctuations.

We present an asset pricing model that incorporates endogenous belief dynamics about

expected capital gains. The model gives rise to sustained stock price booms and busts

and is consistent with the behavior of investors�capital gains expectations, as measured

by survey data. The presented modeling approach di¤ers notably from the standard

approach in the consumption-based asset pricing literature, which proceeds by assuming

that stock price �uctuations are fully e¢ cient. Campbell and Cochrane (1999) and Bansal

and Yaron (2004), for example, present models in which stock price �uctuations re�ect

the interaction of investor preferences and stochastic driving forces in a setting with

optimizing investors who hold rational expectations.

We �rst present empirical evidence casting considerable doubt on the prevailing view

that stock price �uctuations are e¢ cient. Speci�cally, we show that the rational ex-

pectations (RE) hypothesis gives rise to an important counterfactual prediction for the

behavior of investors�return or capital gain expectations.1 This counterfactual prediction

is a model-independent implication of the RE hypothesis, but - as we explain below - key

for understanding stock price volatility and its e¢ ciency properties.

As previously noted by Fama and French (1988), the empirical behavior of asset prices

implies that rational return expectations correlate negatively with the price dividend (PD)

ratio. Somewhat counter-intuitively, the RE hypothesis thus predicts that investors have

been particularly pessimistic about future stock returns in the early part of the year

2000, when the tech stock boom and the PD ratio of the S&P500 reached their all-time

maximum. As we document, the available survey evidence implies precisely the opposite:

1Since most variation in returns is due to the variation in capital gains, we tend to use both terms
interchangeably.
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all quantitative survey measures of investors�expected return (or capital gain) available

for the U.S. economy, unambiguously and unanimously correlate positively with the PD

ratio; and perhaps not surprisingly, return expectations reached a temporary maximum

rather than a minimum in the early part of the year 2000, i.e., precisely at the peak of

the tech stock boom, a fact previously shown in Vissing-Jorgensen (2003).

We present formal econometric tests of the null hypothesis that the survey evidence is

consistent with RE and demonstrate that the hypothesis of rational return or capital gain

expectations is overwhelmingly rejected by the data. Our tests correct for small sample

bias, account for autocorrelations in the error structure, are immune to the presence of

di¤erential information on the part of agents and to the presence of measurement error in

survey data. An appealing feature of the tests is that they also provide clues about why

the RE hypothesis fails: the failure arises because survey expectations and RE covary

di¤erently with the PD ratio, a �nding that is useful for guiding the search for alternative

and empirically more plausible expectations models.

The positive comovement of stock prices and survey expectations suggests that price

�uctuations are ampli�ed by overly optimistic beliefs at market peaks and by overly

pessimistic beliefs at market troughs. Furthermore, it suggests that investors� capital

gains expectations are in�uenced - at least partly - by the capital gains observed in the

past, in line with evidence presented by Malmendier and Nagel (2011). Indeed, a simple

adaptive updating equation captures the time series behavior of the survey data and its

correlation with the PD ratio very well.

Taken together, these observations motivate the construction of an asset pricing model

in which agents hold subjective beliefs about price outcomes. We do so using the frame-

work of Internal Rationality (IR), developed in Adam and Marcet (2011), which allows

considering maximizing investors that hold subjective price beliefs within an otherwise

standard Lucas (1978) asset pricing model.2 Within this framework, agents optimally

update beliefs using Bayes�law.

With this modi�cation, the Lucas model becomes quantitatively consistent with im-

portant aspects of the data. Using con�dence intervals based on the simulated method of

moments, we �nd that the model matches key moments describing the observed volatility

of stock prices and the positive correlation between the PD ratio and subjective return

expectations. This is obtained even though we use the simplest version of the Lucas

model with time separable preferences and standard stochastic driving processes. The

2As is explained in Adam and Marcet (2011), subjective price beliefs are consistent with optimizing
behavior in the presence of lack of common knowledge about agents�beliefs and preferences.
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same model under RE is very far from explaining the data and produces - amongst other

things - far too little price volatility and the wrong sign for the correlation between the

PD ratio and investors return expectations.

The strong improvement in the model�s empirical performance arises because agents�

attempts to improve their knowledge about price behavior can temporarily delink asset

prices from their fundamental (RE) value and give rise to belief-driven boom and bust

cycles in stock prices. This occurs because with imperfect information about the price

process, optimal behavior prescribes that agents use past capital gain observations to

learn about the stochastic process governing the behavior of capital gains; this generates

a feedback between capital gain expectations and realized capital gains that can drive

booms and busts in stock prices.

Suppose - in line with the empirical evidence - that agents become more optimistic

about future capital gains whenever they are positively surprised by past capital gains.3

A positive surprise for the capital gains observed in the previous period then increases

optimism about the capital gains associated with investing in the asset today. If such

increased optimism leads to an increase in investors�asset demand and if this demand

e¤ect is su¢ ciently strong, then positive past surprises trigger further positive surprises

today, and thus further increases in optimism tomorrow. As we show analytically, stock

prices in our model do increase with capital gain optimism whenever the substitution

e¤ect of increased optimism dominates the wealth e¤ect of such belief changes. Asset

prices in the model then display sustained price booms, similar to those observed in the

data.

After a sequence of sustained increases, countervailing forces come into play that en-

dogenously dampen the upward price momentum, eventually halt it and cause a reversal.

Speci�cally, in a situation where increased optimism about capital gains has led to a stock

price boom, stock prices make up for a larger share of agents�total wealth.4 As we show

analytically, this causes the wealth e¤ect to become as strong as (or even stronger than)

the substitution e¤ect when expectations about stock price appreciation are su¢ ciently

high.5 Increases in optimism then cease to cause further increases in stock demand and

thus stock prices, so that investors�capital gains expectations turn out to be too opti-

mistic relative to the realized outcomes. This induces downward revision in beliefs, which

3Such positive surprises may be triggered by fundamental shocks, e.g., a high value for realized
dividend growth.

4This occurs because stock prices are high, but also because agents discount other income streams,
e.g., wage income, at a higher rate.

5With CRRA utility, this happens whenever the coe¢ cient of relative risk aversion is larger than one.
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gives rise to negative price momentum and an asset price bust.

The previous arguments show how belief dynamics can temporarily delink asset prices

from their fundamental value. Clearly, these price dynamics are ine¢ cient as they are

not justi�ed by innovations to preferences or other fundamentals.

Since we depart from RE, our model requires introducing an explicit assumption about

agents�price beliefs. Various elements guide this modelling choice. First, we choose price

beliefs such that there are no �black swan�like events, i.e., we insure that agents have

contingency plans for all prices that they actually encounter along the equilibrium path.

Second, we choose the subjective price process such that it gives rise to capital gain

expectations that are consistent with the behavior of survey expectations. In particular,

agents believe the average growth rate of stock prices to slowly drift over time, which

is consistent with the presence of prolonged periods of price booms that are followed by

price busts. Given these beliefs, equilibrium prices will indeed display prolonged periods

of above average and below average growth.

More generally, the present paper shows how the framework of Internal Rationality

allows studying learning about market behavior in a model of intertemporal decision

making. It thereby improves on shortcomings present in the learning literature, where

agents�belief updating equations and choices are often not derived from individual max-

imization and are optimal only in the limit once learning converges to the RE outcome.

We thus provide explicit microfoundations for settings in which subjective beliefs about

market outcomes matter for these outcomes.

The bulk of the paper considers a representative agent model. This is motivated by

the desire to derive results analytically and to show how a rather small deviation from

the standard paradigm helps reconciling the model with the data. A range of extensions

consider - amongst other things - a heterogenous agents version and more elaborate

subjective belief structures. These extensions allow replicating additional data features,

e.g., the equity premium.

The remainder of the paper is structured as follows. The next section discusses the

related literature. Section 3 then shows that the price dividend ratio (PD) ratio covaries

positively with survey measures of investors�return expectations and that this is incom-

patible with the RE hypothesis. It also shows that the time series of survey expectations

can be captured by a fairly simple belief updating equation. Section 4 introduces our

asset pricing model with subjective beliefs. As a benchmark, section 5 determines the

RE equilibrium. Section 6 introduces a speci�c model of subjective price beliefs, which
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relaxes agents�prior about price behavior relative to the RE equilibrium beliefs. It also

derives the Bayesian updating equations characterizing the evolution of subjective beliefs

over time. After imposing market clearing in section 7, we present closed form solutions

for the PD ratio in section 8 in the special case of vanishing uncertainty. Using the an-

alytical solution, we explain how the interaction between belief updating dynamics and

price outcomes can endogenously generate boom and bust dynamics in asset prices. Sec-

tion 9 estimates the fully stochastic version of the model using a mix of calibration and

simulated method of moments estimation. It shows that the model successfully replicates

a number of important asset pricing moments, including the positive correlation between

expected returns and the PD ratio. It also explains how the model gives rise to a high

Sharpe Ratio and to a low volatility for the risk free interest rate. Section 10 shows that

the estimated model can replicate the low frequency movements in the time series of the

US postwar PD ratio, as well as the available time series of survey data. Section 11

presents a number of robustness checks and extensions of the basic model. A conclusion

brie�y summarizes and discusses potential avenues for future research. Technical material

and proofs can be found in the appendix.

2 Related Literature

Following Bob Shiller�s (1981) seminal observation that stock price volatility cannot be

explained by the volatility of rational dividend expectations, the asset pricing litera-

ture made considerable progress in explaining stock price behavior. Bansal and Yaron

(2004) and Campbell and Cochrane (1999), for example, developed consumption based

RE models in which price �uctuations result from large and persistent swings in investors�

stochastic discount factor. Section 3 shows, however, that RE models fail to capture the

behavior of investors�return expectations. This strongly suggests that RE models fall

short of providing a complete explanation of the sources of stock price volatility.

Attributing stock price �uctuations to �sentiment��uctuations or issues of learning

has long had an intuitive appeal. A substantial part of the asset pricing literature in-

troduces subjective beliefs to model investor �sentiment�. The standard approach resorts

to Bayesian RE modeling, which allows for subjective beliefs about fundamentals, while

keeping the assumption that investors know the equilibrium pricing function linking stock

prices to fundamentals. Following early work by Timmermann (1993) and Barberis,

Shleifer and Vishny (1998), a substantial literature follows this approach. It �nds that
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the additional stock price volatility generated from learning is overall small compared to

the gap that exists relative to the data.

Recent work by Barberis et al. (2014), for example, considers a time-separable utility

framework where some investors have rational dividend beliefs while others extrapolate

from past dividend observations.6 While this allows to successfully replicate survey be-

havior, the standard deviation of the PD ratio falls one order of magnitude short of that

observed in the data, so that there are no signi�cant stock price boom and bust episodes.7

In ongoing work, Hirshleifer and Yu (2012) and Choi and Mertens (2013) consider

Bayesian RE models with time non-separable preferences and investors who extrapo-

late past fundamentals. They show how extrapolation of fundamentals endogenously

generates long-run consumption risk and thereby some increase in asset price volatility.

Collin-Dufresne, Michael and Lochstoer (2016) show how learning about fundamentals

can give rise to sizable Sharpe ratios, provided agents have a preference for an early

resolution of uncertainty. Standard preference parameterizations in this class of models

imply, however, that agents are willing to give up a big part of consumption to resolve

consumption risk early, see Epstein, Farhi and Strzalecki (2014).

The modeling approach pursued in the present paper di¤ers fundamentally from the

one discussed in the previous paragraphs. The Bayesian RE literature assumes that agents

�nd it di¢ cult to forecast fundamental shocks (agents hold subjective dividend beliefs),

but that agents can predict perfectly price outcomes conditional on the history of ob-

served fundamentals (agents know the equilibrium pricing function mapping the history

of dividends into price outcomes). Assuming that agents know the pricing function pro-

vides agents with a substantial amount of information about market behavior, suggesting

that it is of interest to study the e¤ects of relaxing this informational assumption. Our

6Barberis et al. (2014) claim in the main text of their paper that agents agree on dividend behavior
and that the only di¤erence between rational agents and extrapolators is that the latter extrapolate
future prices from past prices (p.4 of their paper). Yet, as it turns out, their model is one where some
agents extrapolate past dividends while others have rational dividend expectations and all agents know
the equilibrium pricing function, in line with standard Bayesian RE modeling. This can be seen in the
proof of their proposition 1, which reverse-engineers a process for extrapolators�dividend beliefs (their
equations (A16) and (A18)) that di¤ers from the true dividend process (their equation (1)). The proof
of the proposition explicitly acknowledges that these subjective dividend beliefs are chosen such that
extrapolators� price beliefs (their equations (3) and (4)) are consistent with the equilibrium pricing
function: "At the same time, in order to compute the values of the derived parameters that govern their
consumption and portfolio decisions, extrapolators need to be aware of the price equation (A11)." (p.19
of their paper). This implies that rational agents and extrapolators disagree about the dividend process
but agree about the equilibrium pricing function, in line with standard Bayesian RE modeling. It also
implies that in their setting, learning from price behavior is observationally equivalent to learning from
dividend behavior, unlike in the setting presented in this paper.

7Due to the CARA utility setup the volatility of the PD ratio also asymptotically converges to zero.
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agents entertain a distribution of prices for given fundamentals, which is non-degenerate

and that does not coincide with the model at hand.8

To show that a key element for understanding stock price volatility is investor�s im-

perfect knowledge about how prices are formed, we make the distinction to the Bayesian

RE literature as stark as possible: we assume that agents �nd it easy to predict fun-

damentals, i.e., assume agents hold RE about dividends, but �nd it di¢ cult to predict

price behavior, i.e., agents do not know the equilibrium pricing function. We show that a

simple asset pricing model can then replicate survey data and generate su¢ cient volatil-

ity for the PD ratio, including occasional boom and bust episodes. This is achieved in a

setting with standard time-separable preferences and obtained because there is a much

stronger propagation of economic disturbances when agents learn about the equilibrium

pricing function: belief changes then a¤ect stock price behavior and stock prices feed

back into belief changes; this allows movements in prices and beliefs to mutually rein-

force each other during price boom and bust phases, thereby increasing price volatility.

The feedback from market outcomes into beliefs is absent in a Bayesian RE setting.

The literature on robust control and asset prices, e.g. Cogley and Sargent (2008), con-

siders settings where investors are uncertain about the process for fundamentals. In line

with Bayesian RE modeling, this literature assumes that investors know the equilibrium

pricing function.

The literature on adaptive learning previously considered deviations from rational

price expectations using asset pricing models where investors learn about price behavior.

Marcet and Sargent (1992), for example, study convergence to RE when agents estimate

an incorrect model of stock prices by least squares learning. A range of papers in the

adaptive learning literature argues that learning generates additional stock price volatility.

Bullard and Du¤y (2001) and Brock and Hommes (1998), for example, show that learning

dynamics can converge to complicated attractors that increase asset return volatility,

when the RE equilibrium is unstable.9 Lansing (2010) shows how near-rational bubbles

can arise in a model with learning about price behavior. Branch and Evans (2011) present

a model where agents learn about risk and return and show how it gives rise to bubbles and

crashes. Boswijk, Hommes and Manzan (2007) estimate a model with fundamentalist and

chartist traders whose relative shares evolve according to an evolutionary performance

8This is related to work by Angeletos and La�O (2013) who consider a setting in which agents are
uncertain about the price at which they will be able to trade. They show how sentiment shocks can give
rise to perfectly self-ful�lling �uctuations in aggregate outcomes. Sentiment shocks in their setting result
from extrinsic uncertainty; in our setting they are triggered from intrinsic sources of uncertainty.

9Stability under learning dynamics is de�ned in Marcet and Sargent (1989).
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criterion, showing that the model can generate a run-up in asset prices and subsequent

mean-reversion to fundamental values. DeLong et al. (1990) show how the pricing e¤ects

of positive feedback trading survives or even get ampli�ed by the introduction of rational

speculators.

The approach used in the present paper di¤ers along several dimensions from the

contributions mentioned in the previous paragraph. First, we compare quantitatively the

implications of our model with the data, i.e., we match a standard set of asset pricing

moments capturing stock price volatility and use formal asymptotic distribution to eval-

uate the goodness of �t. Second, we compare the model to evidence obtained from survey

data. Third, we present a model that derives investors�consumption and stockholding

plans from properly speci�ed microfoundations. In particular, we consider agents that

solve an in�nite horizon decision problem and hold a consistent set of beliefs, we discuss

conditions for existence and uniqueness of optimal plans, as well as conditions insuring

that the optimal plan has a recursive representation. The adaptive learning literature

often relies on shortcuts that amount to introducing additional behavioral elements into

decision making and postulates beliefs that become well speci�ed only in the limit, if

convergence to RE occurs.10

In prior work, Adam, Marcet and Nicolini (2016) present a model in which investors

learn about risk-adjusted price growth and show how such a model can quantitatively

replicate a set of standard asset pricing moments describing stock price volatility. While

replicating stock price volatility and postulating beliefs that are hard to reject in the light

of the existing asset price data and the outcomes generated by the model, their setup

falls short of explaining survey evidence. Speci�cally, it counterfactually implies that

stock return expectations are constant over time. Adam, Marcet and Nicolini (2016) also

solve for equilibrium prices under the assumption that dividend and trading income are

a negligible part of total income. We solve the model without this assumption and show

that it can play an important role for the model solution, for example, it gives rise to an

endogenous upper bound for equilibrium prices.11

The experimental and behavioral literature provides further evidence supporting the

presence of subjective price beliefs. Hirota and Sunder (2007) and Asparouhova, Bossaerts,

Roy and Zame (2013), for example, implement the Lucas asset pricing model in the

10See section 2 in Adam and Marcet (2011) for a detailed discussion.
11In line with the approach in the Bayesian RE literature, Adam Marcet and Nicolini (2016) impose

an exogenous upper bound on agents�beliefs, a so-called �projection facility�, so as to insure existence of
�nite equilibrium prices.
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experimental laboratory and document that there is excess volatility in prices that is

unaccounted for by the rational expectations equilibrium and that likely arises from par-

ticipants�expectations about future prices. Furthermore, the type of learning employed

in the present model is in line with evidence presented in Malmendier and Nagel (2011)

who show that experienced returns a¤ect beliefs about future asset returns.12

3 Stock Prices & Stock Price Expectations

This section shows that survey expectations of future stock prices are inconsistent with the

notion that agents hold rational stock price expectations. Indeed, our formal econometric

tests, presented in sections 3.2 and 3.3, show that stock market investors display undue

optimism about future stock prices when the PD ratio is high and undue pessimism when

the PD ratio is low. Section 3.4 then illustrates how simple adaptive price predictions,

in line with Malmendier and Nagel (2011, 2013), quantitatively capture the relationship

between survey expectations and the PD ratio.

3.1 Survey Expectations and the PD Ratio

As pointed out by Vissing-Jorgensen (2003), Greenwood and Shleifer (2014) and a previ-

ous version of the current paper, survey expectations of future returns (or capital gains)

display a positive correlation with the PD ratio, while actual returns (or capital gains)

display a negative correlation.13

Appendix A.2 documents this fact for a range of surveys and �gure 2 illustrates it

using our preferred survey, the UBS Gallup Survey, which is based on a representative

sample of approximately 1.000 U.S. investors that own at least 10.000 US$ in �nancial

wealth.14 Figure 2 graphs the US PD ratio (the black line) together with measures of

the cross-sectional average of investors�one-year ahead expected real return.15 Return

expectations are expressed in terms of quarterly real growth rates and the �gure depicts

two expectations measures: investors�expectations about the one year ahead stock market
12Nagel and Greenwood (2009) show that - in line with this hypothesis - young mutual fund managers

displayed trend chasing behavior over the tech stock boom and bust around the year 2000.
13A related observation is that return forecast errors implied by survey data can be predicted using

the PD ratio, see Bacchetta, Mertens, and Wincoop (2009).
14About 40% of respondents own more than 100.000 US$ in �nancial wealth. As is documented in

appendix A.2, this subgroup does not behave di¤erently.
15To be consistent with the asset pricing model presented in later sections we report expectations of

real returns. The nominal return expectations from the survey have been transformed into real returns
using in�ation forecasts from the Survey of Professional Forecasters. Results are robust to using instead
the Michigan Survey in�ation forecast.
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return, as well as their expectations about the one year ahead returns on their own stock

portfolio. These measures behave very similarly over the period for which they overlap,

but the latter is available for a longer time period. Figure 2 reveals that there is a strong

positive correlation between the PD ratio and expected returns. The correlation between

the expected own portfolio returns and the PD ratio is +0.70 and even higher for expected

stock market returns (+0.79). Moreover, investors�return expectations were highest at

the beginning of the year 2000, which is precisely the year the PD ratio reached its peak

during the tech stock boom. Investors then expected annualized real returns of around

13% from stock investments, while the subsequently realized returns turned out to be

particularly dismal. Conversely, investors were most pessimistic in the year 2003 when

the PD ratio reached its bottom, expecting then annualized real returns of below 4%.

This evidence suggests that survey data is incompatible with rational expectations

and that stock prices seem to play a role in the formation of expectations about stock

returns. Yet, evidence based on comparing two correlations can only be suggestive, as it

is subject to several econometric shortcomings. For example, if investors possess infor-

mation that is not observed by the econometrician, as might be considered likely, then

the correlation between the fully rational return forecasts and the PD ratio will di¤er

from the correlation between realized returns and the PD ratio. The same holds true

if survey expectations are measured with error, as one can reasonably expect. Further-

more, results in Stambaugh (1999) imply that with the PD ratio being such a persistent

process, there is considerable small sample bias in these correlations, given the relatively

short time spans over which investor expectations can be tracked. Finally, a highly seri-

ally correlated predictor variable (PD ratio), whose innovations are correlated with the

variable that is to be predicted (future returns), gives rise to spurious regression and thus

spurious correlation problems, see Ferson et al. (2003) and Campbell and Yogo (2006).

There exists also no standard approach allowing to correct for these small sample issues

when comparing correlations.16 Comparisons involving correlations are thus insu¢ cient

for rejecting the hypothesis that survey expectations are consistent with RE. To deal

with these concerns, the next sections construct formal econometric tests that take these

concerns fully into account.

16Any test must take into account the joint distribution of the correlation estimates in order to make
statistically valid statements.
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3.2 RE Test with Small Sample Adjustments

This section develops a RE test that takes into account the concerns expressed in the

previous section. While the present section emphasizes the derivation of analytical results,

section 3.3 provides further tests that rely entirely on Monte Carlo simulation.

Let EPt denote agents�subjective expectations operator based on information up to

time t, which can di¤er from the rational expectations operator Et. Let Rt;t+N denote the

real cumulative stock returns between period t and t +N and let ENt = EPt Rt;t+N + �
N
t

denote the (potentially noisy) observation of expected returns, as obtained - for example

- from survey data, where �Nt is measurement error.
17

Let us linearly project the random variable EPt Rt;t+N on
Pt
Dt
to de�ne

EPt Rt;t+N = a
N + cN

Pt
Dt

+ uNt ; (1)

where

E(xt u
N
t ) = 0; (2)

for x0t = (1; Pt=Dt). The operator E denotes the objective expectation for the true data

generating process, whatever is the process for agents� expectations. The projection

residual uNt captures variations in agents� actual expectations that cannot be linearly

attributed to the price-dividend ratio.18 It summarizes all other information that agents

believe to be useful in predicting Rt;t+N .19

Due to the potential presence of measurement error, one cannot directly estimate

equation (1), but given the observed return expectations ENt , one can write the following
regression equation

ENt = aN + cN
Pt
Dt

+ uNt + �
N
t : (3)

Assuming that the measurement error �Nt is orthogonal to the current PD ratio20, we

have the orthogonality condition

E
�
xt(u

N
t + �

N
t )
�
= 0: (4)

17Since the Shiller survey reports expectations about capital gains instead of returns, Rt;t+N denotes
the real growth rate of stock prices between periods t and t+N when using the Shiller survey.
18The residual uNt is likely to be correlated with current and past observables (other than the PD

ratio) and thus serially correlated.
19The projection in equation (1) and the error are well-de�ned as long as agents�expectations EPt Rt;t+N

and Pt=Dt are stationary and have bounded second moments.
20We allow �Nt to be serially correlated and correlated with equilibrium variables other than PDt.
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Let bcNT denote the OLS estimator of cN in equation (3), given a sample of length T .21
We can specify an additional regression equation like equation (3), but with actual

returns as dependent variable

Rt;t+N = a
N + cN

Pt
Dt

+ uNt ; (5)

where

E
�
xtu

N
t

�
= 0: (6)

Let bcNT denote the OLS estimate of cN with T observations.
The reader can probably guess that the regression estimates are useful here because

under the hypothesis of RE we have cN = cN , so that the estimates bcNT and bcNT are both
consistent estimates of the same parameter. This gives rise to the following test:

Proposition 1 Assume the process
�
Rt;t+N ; ENt ; Pt=Dt

	
is stationary and ergodic, all

moments are such that asymptotic distributions exist22, E(�t) = E(�tPt=Dt) = 0, and

Pt=Dt is part of agents�time t information set. Then

a) Under the null hypothesis of rational expectations

p
T
bcNT � bcNTb�c�c ! N(0; 1) in distribution as T !1; (7)

where b�2c�c is a consistent estimate of var(bcN � bcN).23
b) Suppose in addition that

Pt
Dt

= PD(1� �) + � Pt�1
Dt�1

+ "PDt (8)

for � 2 (�1; 1), where (uNt + �Nt ;uNt ; "PDt+1) is normally distributed, i.i.d., with mean zero,
and E(�Nt "

PD
t+1) = 0. Under the null hypothesis of rational expectations, the small sample

21Although the residuals uNt and the measurement errors �Nt are likely to be serially correlated, the
OLS estimate is consistent.
22More precisely, we assume: i) bounded second moments of (Rt;t+N ; ENt ; Pt=Dt), ii) var(Pt=Dt) > 0;

and iii) letting the prediction error "Nt = Rt;t+N � Et(Rt;t+N ) where Et is taken with respect to the
objective distribution and the information available to investors at t; we have

Sw =
1X

k=�1
E

 �
uNt + �t
uNt + "

N
t

� �
uNt�k + �t�k
uNt�k + "

N
t�k

�0

 xtx0t�k

!
<1:

23Equation (55) in the proof of proposition 1 provides an explicit expression for a consistent variance
estimator.
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bias of bcNT � bcNT in the test-statistic (7) is
E(bcNT � bcNT ) = cov("PDt+1; "

N
t )

var("PDt )
E(b�T � �); (9)

where "Nt � Rt;t+N � EtRt;t+N denotes the rational prediction error and E(b�T � �) the
small sample bias in the estimation of � for a sample of length T .

The proof of proposition 1 can be found in appendix A.3. It treats equations (3)-(6) as

a seemingly unrelated regression system and uses the fact that under rational expectations

one has cN = cN . Part b) of the proposition follows from results in Stambaugh (1999).

Part a) of proposition 1 uses minimal assumptions to obtain an asymptotically valid

result. Essentially, all that is needed is stationarity of the observables and orthogonality

of the measurement error. The test is asymptotically robust to serial-correlation and

heteroskedasticity of the error terms.

Part b) of proposition 1 deals with small sample bias in the test statistic. Since �

is close to one, we have E(b�T � �) < 0; and since future stock price increases are likely
to be correlated with future surprises to returns, i.e., cov("PDt+1; "

N
t ) > 0, we tend to get

E(bcNT � bcNT ) < 0 in small samples, even if in fact cN = cN .
The fraction on the right-hand side of the bias expression in equation (9) can be

estimated from observables using the calculated errors from equations (3), (5) and (8)

and the fact that under the null

cov("PDt+1; "
N
t ) = cov("

PD
t+1;u

N
t )� cov("PDt+1; uNt + �Nt ):

The bias E(b�T � �) in equation (9) is approximately given by E(b�T � �) ' �1+3�
T
, see

Marriott and Pope (1954). Since the true bias is a non-linear function of � and the

analytical linear approximation less precise in the relevant range of � close to one24, we

compute the bias E(b�T � �) using Monte-Carlo integration.25
Interestingly, our RE test cN = cN is less prone to small sample bias than tests for the

signi�cance of the individual regression coe¢ cients (cN = 0 and cN = 0). This follows

from the proof of proposition 1, which shows that

E(bcNT � cN) = E(bcNT � cN) + cov("PDt+1; "Nt )var("PDt )
E(b�T � �):

24See, for instance, �gure 1 in MacKinnon and Smith (1998).
25Given the estimated values of PD; �; �2"PD we simulate 10.000 realizations of PD of length T , computeb� for each realization, average over realizations to obtain an approximation for E(b�T ) and compute the

bias correction accordingly.
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The previous equation implies that the small sample bias present in the individual esti-

mate of cN , i.e., E(bcNT � cN), cancels when testing for cN = cN .
The test outcomes associated with proposition 1 are reported in table 1a.26 The table

reports the bias-corrected point estimates of cN and cN , as well as the bias-corrected

p-values for the test based on proposition 1.27 We use the UBS, CFO and Shiller surveys

and consider various ways for extracting expectations from these surveys.28 The point

estimates always satisfy bcN > 0 and bcN < 0. The di¤erence between the two estimates is
statistically signi�cant at the 1% level in all cases, except when using the survey median

from the CFO survey, where p-values are around 3% to 5%.29

Overall, the test results in table 1a provide strong evidence against the notion that

survey expectations are compatible with rational expectations. Table 1a also shows that

agents are overly optimistic when the PD ratio is high and overly pessimistic when the

PD ratio is low. This suggests that current prices have an �excessive role�in in�uencing

current return expectations. Clearly, if the asset price and survey data were generated

by a rational expectations model, say the models of Campbell and Cochrane (1999) or

Bansal and Yaron (2004), the tests in table 1a would have been accepted.

3.3 Additional Small Sample Adjustments

The closed-form expressions for the small sample bias derived in the previous section

are useful for understanding the nature of the bias. At same time, they fall short of

completely addressing small sample issues. In particular, the result stated in part b) of

proposition 1 relies on assuming that the regression residuals uNt +�
N
t and u

N
t in equations

(3) and (5) are i.i.d. Yet, this is unlikely to hold in our application.

Consider �rst the residual uNt . Under the null hypothesis of RE, we have u
N
t =

uNt +"
N
t , where "

N
t � Rt;t+N�EtRt;t+N is a prediction error from the true data-generating

process. For short prediction horizons (N = 1), "Nt is indeed serially uncorrelated, but for

longer horizons (N > 1), the residuals "Nt denote forecast errors for overlapping prediction

horizons. Since we use quarterly data and prediction horizons between one and ten years,

26We used 4 lags for Newey West estimator and we checked that results are robust to increasing the
lag length up to 12 lags. For each considered survey, we use data on actual returns (or excess returns, or
price growth) for the same time period for which survey data is available when computing the p-values.
27The p-values are computed using the bias corrected test statistic

p
T
bcNT �bcNT �E(bcNT �bcNT )b�c�c .

28See appendix A.1 for information on the data sources.
29We conjecture that the CFO provides less signi�cant results because the sample starts in Q3:2000,

thus does not include the upswing of the tech boom period, unlike the UBS sample. As a result, the
CFO sample period displays less mean reversion in prices, which accounts for the fact that the estimates
of c are less negative and less signi�cant.
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serial correlation of uNt is a relevant concern.

Next, consider the residual uNt . Under the null hypothesis, it captures information that

agents use to predict future returns over and above the PD ratio. The variables capturing

such information can be expected to be themselves serially correlated.30 Indeed, once we

take into account serial correlation below, we �nd a quarterly persistence for uNt between

0.77 and 0.93.

An additional concern with the small sample result in proposition 1 is that the varianceb�c�c is usually underestimated in regressions involving highly serially correlated variables.
Ferson, Sarkissian and Simin (2003) and Campbell and Yogo (2006) show that this leads

to spurious regression problems that cause the null hypothesis to be rejected too often in

the kind of regressions we are dealing with.

To address all these issues, this section constructs p-values using a Monte-Carlo pro-

cedure to �nd the actual distribution of the statistic
p
T
�bcN � bcN� =b�c�c . The aim is

to build a model for returns that is as close as possible to the one used in Stambaugh

(1999), but that allows for serial correlation of the error terms. To this end, we consider

in addition to equation (8) an equation for returns of the form

Rt;t+N = A
N +CN Pt

Dt

+UN
t+N ; (10)

with given constants AN and CN . We allow UN
t to be serially correlated by specifying

it as an AR(1) process. Since the innovations "PDt to the PD ratio in equation (8) are

likely also a key component of the innovation to returns, we allow the innovations to UN
t

to be correlated with "PDt and consider

UN
t = �U

N
t�1 + �t + �"

PD
t (11)

for �t � N(0; �2�); independent of "
PD
j at all dates j, and for given constants � and �

satisfying j�j<1.
Notice that equation (10) is not a special case of equation (5) in section 3.2. The

reason is that UN
t+N is correlated with "

PD
t+N�j for j � 0 and thus correlated with PDt:

E(UN
t+N PDt) =

(�)N ��2"PD

1� (��)2
:

30For example, in a model with capital accumulation, uNt is a function of the capital stock, which is
highly serially correlated.
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As a result, the regression coe¢ cients
�
aN ; cN

�
in equation (5) do not satisfy aN = AN ;

cN = CN ; whenever �� 6= 0. It would thus be incorrect to plug our estimates of aN ; cN

into equation (10) for the purpose of running the Monte Carlo simulations.

To estimate the parameters in equations (10) and (11) we proceed as follows. We

lag equation (10) by one period, multiply by � and subtract it from equation (10). This

delivers

Rt;t+N = A
N(1� �) + �Rt�1;t+N�1 +CN

Pt
Dt

� �CN Pt�1
Dt�1

+ �"PDt+N + �t+N ;

which can be estimated using non-linear least squares and the observed explanatory

variables (Rt�1;t+N�1; PtDt ;
Pt�1
Dt�1

;b"PDt+N), because these explanatory variables are orthogonal
to �t+N . We thus have consistent and e¢ cient estimates for �, �; �

2
�;A

N and CN . We

plug these estimates into equations (10) and (11) to simulate Rt;t+N :

To compute expected returns under the null hypothesis of RE, we compute the true

expectation of returns, which are given by

Et (Rt;t+N) = A
N +CN Pt

Dt

+ (�)N UN
t :

Using these results, we can simulate all the variables involved in equations (3) and (5),

compute the statistic
p
T
�bcN � bcN� =b�c�c for each simulation and study its small sample

distribution, using the sample sizes of the considered survey source. We then compute

the probability that
p
T
�bcN � bcN� =b�c�c in the Monte-Carlo simulations is smaller than

the corresponding value we �nd for the data. This provides a p-value for the one-sided

test of RE, when the alternative hypothesis is cN > cN , i.e., that survey returns respond

more strongly to the PD ratio than actual returns.

Table 1b reports the outcomes of this procedure. The second column in the table

reports the estimated value for �. It shows that the residuals UN
t in equation (11) are

indeed serially correlated. We �nd that this leads to considerable spurious regression

problems, as the standard deviation of the test statistic
p
T
�bcN � bcN� =b�c�c is indeed

around 2 to 3 times larger than its asymptotic value of 1.

Table 1b also reports the bias corrected estimates bcN and bcN .31 Compared to the

results in table 1a, the estimates for bcN are considerably less negative; the ones for the
CFO and Shiller 1 year sample even become positive. Yet, the bias corrected estimates

31The point estimates correct for small sample bias using the mean of the estimator found in the
Monte-Carlo simulations with serially correlated errors and using the fact that cN = CN + (�)

N
�(1 �

�2)=(1� (��)2).
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for bcN in table 1b also become more positive when compared to the ones reported in table
1a. Therefore, despite the spurious regression problems, which cause an increase in the

true variance of the test statistic, the RE hypothesis is soundly rejected.32 The level of

the rejection is now considerably lower than the one reported in table 1a, but still highly

signi�cant. Since the involved sample lengths are not very large, this is a remarkable

result.

Table 1c repeats the analysis when letting Rt;t+N denote excess stock returns rather

than stock returns.33 We construct excess return expectations following Bacchetta et

al. (2009), i.e., we assume that the N period ahead risk-free interest rate is part of

agents�information set and subtract it from the (expected) stock return.34 We �nd that

the strength of the rejection of RE is then somewhat lower when compared to table 1b.

Still, for most survey sources one obtains p-values near or below 5%. The somewhat

lower p-values show that the approach based on plain stock returns, as reported in table

1b, o¤ers a slightly more powerful test of the RE hypothesis. Interestingly, this is in line

with the main hypothesis of this paper, namely, that agents form their expectations about

stock prices by extrapolating the behavior of past price growth. Under this hypothesis,

subtracting the risk-free interest rate adds noise to the independent variables on the l.h.s.

of regression equations (3) and (5), which is consistent with the observed decrease in the

signi�cance levels.

3.4 How Models of Learning May Help

This section illustrates that a simple �adaptive�approach to forecasting stock prices is a

promising alternative to explain the joint behavior of survey expectations and stock price

data.

Figure 2 shows that the peaks and troughs of the PD ratio are located very closely

to the peaks and troughs of investors� return expectations. This suggests that agents

become optimistic about future capital gains whenever they have observed high capital

gains in the past. Such behavior can be captured by models where agents�expectations

are in�uenced by past experience, prompting us to temporarily explore the assumption

that the log of agents� subjective conditional capital gain expectations ln eEt [Pt+1=Pt]
32As in table 1a, the rejection is less strong for the CFO survey, especially when using the survey

median. See the discussion in footnote 29 for a discussion for the potential reasons behind this result.
33For the Shiller survey, which reports price growth expectations, Rt;t+N now denotes excess prices

growth.
34Following Bacchetta et al. (2009), we use the constant maturity interest rates available from the

FRED database at the St. Louis Federal Reserve Bank.
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evolves according to the following adaptive prediction model

ln eEt [Pt+1=Pt] = (1� g) ln eEt�1 [Pt=Pt�1] + g lnPt�1=Pt�2; (12)

where g > 0 indicates how strongly capital gain expectations are updated in the direction

of past price growth observations. While equation (12) may appear ad-hoc, we show in

section 6 how a very similar equation can be derived from Bayesian belief updating in a

setting where agents estimate the persistent component of price growth from the data.

Note that equation (12) incorporates price growth observations only with a lag, in line

with the theoretical model that we consider later on.

One can feed into equation (12) the historical price growth data of the S&P 500 over

the postwar period. Together with an assumption about capital gain expectations at

the start of the sample this delivers a time series of implied capital gain expectations

ln eEt [Pt+1=Pt] that can be compared to the expectations from the UBS survey.35 Setting
the unobserved initial price growth expectations in Q1:1946 equal to 0% , �gure 3 reports

the outcome of this procedure, when estimating the gain parameter g using nonlinear least

squares to minimize the distance between the expectations implied by equation (12) and

the observed survey expectations.36 The resulting point estimate is given by g = 0:0264

and has a standard error equal to 0:00168. Figure 3 shows that the adaptive prediction

model captures the behavior of UBS expectations extremely well: the correlation between

the two series is equal to +0.91.

There also exists a strong positive relationship between the PD ratio and the capital

gains expectations implied by equation (12). Figure 4 documents this relationship for the

entire postwar period by plotting the joint distribution of the capital gains expectations

(as implied by equation (12)) and the PD ratio in the data.37 When regressing the PD

ratio on a constant and the expectations of the adaptive prediction model, one obtains

an R2 coe¢ cient of 0.43; using also the square of the expectations, the R2 rises further

to 0.48.38

Interestingly, the relationship between implied price growth expectations and the PD

35We transform the UBS survey measures of return expectations into a measure of price growth
expectations using the identity Rt+1 =

Pt+1
Pt

+ Dt+1

Pt
= Pt+1

Pt
+ �DDt

Pt
where �D denotes the expected

quarterly growth rate of dividends that we set equal to the sample average of dividend growth over
Q1:1946-Q1:2012, i.e, �D = 1:0048. Results regarding implied price growth are very robust towards
changing �D to alternative empirically plausible values.
36The �gure reports log quarterly expected growth rates for real stock prices.
37As before, we set the unobserved initial price growth expectations in Q1:1946 equal to 0%.
38The p-values for the coe¢ cients on the linear and squared expectations are all statistically signi�cant

at the 1% level.

18



ratio depicted in �gure 4 seems to have shifted upwards after the year 2000, as indicated

by the squared icons in the �gure. Indeed running the previous regressions on the linear

and squared expectations separately before and after the year 2000, one obtains much

higher R2 values, namely 0.72 and 0.77, respectively. We will come back to this issue in

section 10.

Overall, it emerges from �gure 4 that variations in expected capital gains eEt [Pt+1=Pt]
can account - in a purely statistical sense - for a large share of the variability in the

postwar PD ratio. This suggests that an asset pricing model consistent with equation (12),

which additionally predicts a positive relationship between the PD ratio and subjective

expectations about future capital gains, has a good chance of replicating the observed

positive comovement between price growth expectations and the PD ratio. The next

sections spell out the microfoundations of such a model.

4 A Simple Asset Pricing Model

Consider an endowment economy populated by a unit mass of in�nitely lived agents i 2
[0; 1] with time-separable preferences. Agents trade one unit of a stock in a competitive

stock market. They earn each period an exogenous non-dividend income Wt � 0 that we
refer to as �wages�for simplicity. Stocks deliver the exogenous dividend Dt � 0. Dividend
and wage incomes take the form of perishable consumption goods.

The Investment Problem. Investor i solves

max
fCit�0;Sitg1t=0

EP
i

0

1X
t=0

�t u
�
Cit
�

(13a)

s.t.: SitPt + C
i
t = S

i
t�1 (Pt +Dt) +Wt for all t � 0

S � Sit � S (13b)

Si�1 = 1;

where Ci denotes consumption, u the instantaneous utility of the consumer, assumed to be

continuous, di¤erentiable, increasing and strictly concave, Si the agent�s stockholdings,

which are subject to upper and lower limits such that �1 < S < 1 < S < 1, and
P � 0 the (ex-dividend) price of the stock. P i denotes the agent�s subjective probability
measure, which may or may not satisfy the rational expectations hypothesis. Further

details of P i will be speci�ed below.
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To simplify the exposition, we do not explicitly consider trade in risk free bonds (Bit)

in problem (13), instead impose from the outset that actual bond prices and agents�

subjective believes about future bond prices are such that agents hold and plan to hold

zero bonds at all times (Bit � 0). When bonds are in zero net supply, these believes are
in line with the equilibrium outcomes, when all agents are identical or when agents face

the borrowing constraint Bit � 0.39

Dividend and Wage Income. As is standard in the literature, we assume that

dividends grow at a constant rate and that dividend growth innovations are unpredictable

lnDt = ln �
D + lnDt�1 + ln "

D
t ; (14)

where �D � 1 denotes gross mean dividend growth and ln "Dt an i.i.d. growth innovation
described further below.

We also specify an exogenous wage income process Wt , which is chosen such that the

resulting aggregate consumption process Ct = Wt +Dt is empirically plausible: �rst, in

line with Campbell and Cochrane (1999), we set the standard deviation of consumption

growth to be 1/7 of the standard deviation of dividend growth; second, again following

these authors, we set the correlation between consumption and dividend growth equal to

0.2; third, we choose a wage process in the model such that the average consumption-

dividend ratio in the model (E [Ct=Dt]) equals the average ratio of personal consumption

expenditure to net dividend income in U.S. postwar data and displays persistence similar

to that observed in the data. All this can be parsimoniously achieved using the following

wage income process.

ln

�
1 +

Wt

Dt

�
= (1� p) ln(1 + �) + p ln

�
1 +

Wt�1

Dt�1

�
+ ln "Wt ; (15)

where 1+ � is the average consumption-dividend ratio and p 2 [0; 1) its quarterly persis-
tence. The innovations are given by0@ ln "Dt

ln "Wt

1A � iiN

0@�1
2

0@ �2D

�2W

1A ;
0@ �2D �DW

�DW �2W

1A1A ; (16)

with E"Dt = E"Wt = 1. Given the variance of dividend growth �2D, which can be esti-

39In the latter case, the �most patient agent�prices the bond, i.e., letting 1 + rbt denote the gross real
return on a one period risk free bond, we have

�
1 + rbt

��1
= supi2[0;1] �E

Pi

t u
0 �Cit+1� =u0 �Cit�.
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mated from dividend data, one can use �DW and �2W to impose the desired volatility of

consumption growth and the desired correlation with dividend growth. Choosing � = 22,

one obtains the observed average consumption-dividend ratio in the data and setting p to

a value close to one, one replicates the observed persistence of the consumption-dividend

ratio in the data. Appendix A.4 provides further details.

The Agents�Underlying Probability Space. Agents hold a set of subjective

probability beliefs about all payo¤-relevant variables that are beyond their control. In

addition to fundamental variables (dividends and wages), agents perceive competitive

stock prices as beyond their control. Therefore, the belief system also speci�es probabili-

ties about prices. Formally, letting 
 denote the space of possible realizations for in�nite

sequences, a typical element ! 2 
 is given by ! = fPt; Dt;Wtg1t=0. As usual, 
t then
denotes the set of all (nonnegative) price, dividend and wage histories from period zero

up to period t and !t its typical element. The underlying probability space for agents�

beliefs is then given by (
;B,P i) with B denoting the corresponding �-Algebra of Borel
subsets of 
, and P i a probability measure over (
;B).
The agents�plans will be contingent on the history !t, i.e., the agent chooses state-

contingent consumption and stockholding functions

Cit : 
t ! R+ (17)

Sit : 
t !
�
S; S

�
(18)

The fact that Ci and Si depend on price realizations is a consequence of optimal choice

under uncertainty, given that agents consider prices to be exogenous random variables.

The previous setup is general enough to accommodate situations where agents learn

about the stochastic processes governing the evolution of prices, dividends, and wages.

For example, P i may arise from a stochastic process describing the evolution of these

variables that contains unknown parameters or hidden variables about which agents hold

prior beliefs. The presence of unknown parameters or hidden variables then implies that

agents update their beliefs using the observed realizations of prices, dividends and wages.

A particular example of this kind will be presented in section 6 when we discuss learning

about stock price behavior.

The probability space de�ned above is more general than that speci�ed in a RE

analysis of the model, where 
 contains usually only the variables that are exogenous to

the model (in this case Dt and Wt), but not variables that are endogenous to the model
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and exogenous to the agent only (in this case Pt). In the RE literature, the Bayesian RE

literature or the literature modeling robustness concerns, agents are assumed to know

the equilibrium pricing function Pt((D;W )t) mapping histories of dividends and wages

into a market prices. Prices then carry only redundant information and can be excluded

from the probability space without loss of generality. The more general formulation

we entertain here allows us to consider agents who do not know exactly which price

materializes given a particular history of dividends and wages; our agents do have a view

about the distribution of Pt conditional on (D;W )t; but in their minds this is a proper

distribution, not a point mass as in the RE case. Much akin to academic economists,

investors in our model have not converged on a single asset pricing model that associates

one market price with a given history of exogenous fundamentals.

Parametric Utility Function. To obtain closed-form solutions, we consider in the

remaining part of the paper the utility function

u(Ct) =
C1�t

1�  with  > 1: (19)

We furthermore assume that

��RE < 1; (20)

where �RE = (�D)1�E[("Wt )
� �"Dt �1�]. This insures existence of an equilibrium under

rational price expectations.

Existence of a Recursive Solution. Since solving the optimization problem (13)

for general (potentially non-rational) price beliefs is non-standard, it is worth pointing

out that this problem is well de�ned. Existence of a maximum is guaranteed by the

stock limits (13b), which ensure that the choice of stocks is made over a compact set,

in combination with a bounded continuous objective function (19), satisfying u(Ct) � 0.
Su¢ ciency of �rst order conditions is guaranteed because the agents�problem is concave.

Given the subjective price beliefs introduced in the remaining part of the paper, agents�

posterior will follow a recursive form. Using a standard normalization of the utility

function and of the budget constraint, one can then guarantee that the optimal solution

to (13) takes the form

Sit = S
i

�
Sit�1;

Pt
Dt

;
Wt

Dt

;mi
t

�
; (21)

where mi
t is a su¢ cient statistic characterizing the subjective distributions about future
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values of
�

Dt+j
Dt+j�1

;
Pt+j
Dt+j

;
Wt+j

Dt+j

�
for j > 0.40 See appendix A.5 for details.

5 Rational Expectations (RE) Equilibrium

As a point of reference, we determine the stock price under the assumption of RE. For

the limiting cases with an i.i.d. consumption-dividend ratio (p = 0) or with a unit root in

this ratio (p! 1), one can derive simple closed form expressions for the RE stock price,

see Appendix A.6:

Proposition 2 If agents hold rational expectations and if price expectations satisfy the

usual transversality condition (stated explicitly in appendix A.6), then the RE equilibrium

price dividend ratio is

PREt
Dt

=
��RE

1� ��RE
for p! 1 (22)

PREt
Dt

= b
�e�RE

1� �e�RE
�
"Wt
�

for p = 0; (23)

where �RE � (�D)1�E[("Wt )
� �"Dt �1�], b � E[("Wt )

� �"Dt �1�]e(1�)�2D2 and e�RE �
(�D)1�e(�1)�

2
D=2.

The previous result shows that under RE the equilibrium PD ratio inherits the per-

sistence properties of the consumption-dividend ratio process. Speci�cally, for p = 0, the

PD ratio is an i.i.d. process, thus fails to match the persistence of the PD ratio observed in

the data. For the empirically more plausible case with a persistent consumption-dividend

ratio (p close to 1), the PD ratio also becomes persistent but volatility then strongly falls.

In the limit p ! 1, which is the case considered in Campbell and Cochrane (1999), the

RE PD ratio becomes a constant. Price growth is then given by

lnPREt+1 � lnPREt = ln �D + ln "Dt+1; (24)

so that one-step-ahead price growth and return expectations are constant over time.

Moreover, as long as p is bounded below 1, the RE equilibrium implies a negative correla-

tion between the PD ratio and expected future returns, contrary to what is evidenced by

40The solution for optimal consumption plans follows from (21) and the �ow budget constraint.
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survey data.41 The RE equilibrium thus has di¢ culties in jointly matching the persistence

and volatility of the PD ratio and the behavior of survey returns.

6 Learning about Capital Gains and Internal Ratio-

nality

This section speci�es agents�beliefs. Once one departs from rational expectations, these

beliefs become part of the micro-foundations of the model. The benchmark beliefs pre-

sented in the next section aim at specifying price beliefs in a parsimonious way such

that they have a chance of replicating the behavior of survey expectations. We study

alternative and more elaborate belief formulations in sections 11.2 and 11.3.

6.1 Agents�Belief System: Benchmark Speci�cation

To focus on the e¤ects of learning about price behavior, we assume that agents know the

processes (14)-(16), i.e., agents hold rational dividend and wage expectations. This sets

us apart from the Bayesian RE literature, which focuses on learning about the behavior

of exogenous fundamentals.

We also have to specify price beliefs. Our speci�cation is motivated by the following

observations. Under RE, price growth is approximately equal to dividend growth, when-

ever the consumption-dividend ratio is persistent (p close to 1), see proposition 2. Price

growth in the data, however, can persistently outstrip dividend growth, thereby giving

rise to a persistent increase in the PD ratio and an asset price boom, see �gure 1; con-

versely, it can fall persistently short of dividend growth and give rise to a price bust. This

behavior of actual asset prices suggests that it is of interest to relax agents�beliefs about

price growth behavior. Indeed, in view of the actual behavior of asset prices, agents may

entertain a more general model of price behavior, incorporating the possibility that the

growth rate of prices persistently exceeds/falls short of the growth rate of dividends. To

the extent that the equilibrium asset prices implied by these beliefs display such data-like

behavior, agents�beliefs will be generically validated

In line with the previous discussion, our benchmark assumption is that agents perceive

prices to evolve according to

41Appendix A.6 derives the general expression for the RE price for the case p 2 (0; 1).
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lnPt+1 � lnPt = ln �t+1 + ln "t+1; (25)

where "t+1 denotes a transitory shock to price growth and �t+1 a persistent price growth

component that drifts slowly over time according to

ln �t+1 = ln �t + ln �t+1 . (26)

For simplicity, we assume that agents perceive the innovations ln "t and ln vt to be jointly

normally distributed according to0@ ln "t

ln �t

1A � iiN

0@0@ ��2"
2

��2v
2

1A ;
0@ �2" 0

0 �2�

1A1A : (27)

Since agents observe stock price growth, but do not separately observe the persistent and

transitory subcomponents driving it, the previous setup de�nes a �ltering problem in

which agents need to decompose observed price growth into its persistent and transitory

elements, so to forecast optimally.42

The presented belief setup has a number of appealing features. First, it allows cap-

turing the fact that stock price growth displays large transitory �uctuations by imposing

�2� << �2". In the limiting case where �
2
� is close to zero, the persistent price growth

component behaves almost like a constant, as in the RE solution with p ! 1: The sub-

jective price beliefs speci�ed above can thus be interpreted as a small deviation from RE

equilibrium beliefs. Second, the benchmark setup can capture periods with sustained

increases in the PD ratio (�t+1 > �D) and sustained decreases (�t+1 < �D), in line

with the behavior of the PD ratio in the data. To the extent that the PD ratio in the

model also displays such behavior, agents�beliefs about the presence of a persistent price

growth component will also be generically validated by the model outcome. Third, as

we shall show in the next section, the belief speci�cation implies that agents perceived

price growth expectations will approximately evolve according to equation (12), which

captures the time series behavior of survey expectations.

As with any assumption about model primitives, one can entertain other plausible

42Note that we do not incorporate mean-reversion into price growth beliefs in our benchmark setting.
This is for simplicity, as we wish to consider the most parsimonious way to include perceived booms and
busts. In addition, we seek to determine the model-endogenous forces that lead to a reversal of boom
and bust dynamics, i.e., we do not want to obtain reversals because they are hard-wired into beliefs. We
extend the setup to one with mean reversion in section 11.2.
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alternatives. Section 11.2 explores alternative ways to specify the belief system, which

incorporate mean reversion in the PD ratio.

6.2 E¢ ciency of Stock Prices and Internal Rationality

Among academics there appears to exist a widespread belief that rational behavior and

knowledge of the fundamental processes (dividends and wages in our case) jointly dic-

tate a certain process for stock prices and thus the price beliefs agents can rationally

entertain.43 This view stipulates that rational behavior implies knowledge that current

stock prices must equal a discounted sum of dividends. Individual rationality and ra-

tional expectations about fundamentals would then provide investors with knowledge of

the equilibrium pricing function (as is assumed under RE or Bayesian RE), so that pos-

tulating subjective price beliefs, e.g., those speci�ed in the previous section, would be

inconsistent with the assumption of optimal behavior on the part of agents.

This view is correct only in special cases. Considering the case with risk neutral

agents, Adam and Marcet (2011) show that it is correct only if agents are homogeneous

and do not face trading constraints. In a setting with heterogeneous risk neutral agents

and trading constraints, it fails to be correct. As we show below, agents in our model are

�internally rational�even in the homogeneous agent case: their behavior is optimal given

an internally consistent system of subjective beliefs about variables that are beyond their

control, which includes prices. All that is needed is a concave utility function.44

To illustrate this point, consider �rst risk neutral agents with rational dividend expec-

tations and ignore limits to stock holdings. Forward-iteration on the agents�optimality

condition

u0(Cit) = �E
Pi
t

�
u0(Cit+1)

Pt+1 +Dt+1

Pt

�
(28)

then delivers the present value relationship

Pt = Et

"
TX
i=1

�iDt+i

#
+ �TEP

i

t [Pt+T ] ;

which is independent of the agent�s own choices. Provided agents�price beliefs satisfy

a standard transversality condition (limT!1 �
TEP

i

t [Pt+T ] = 0 for all i), each rational

agent would conclude that there must be a degenerate joint distribution for prices and

43We often received this reaction during seminar presentations.
44Obviously, the subsequent discussion takes for granted that the fact that investors are homogenous

is is not common knowledge.
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dividends given by

Pt = Et

" 1X
i=1

�iDt+i

#
a.s. (29)

Since the r.h.s. of the previous equation is fully determined by dividend expectations,

the beliefs about the dividend process deliver the price process compatible with optimal

behavior. In such a setting, it would be plainly inconsistent with optimal behavior to

assume the subjective price beliefs (25)-(26).45

Next, consider a concave utility function u(�) satisfying standard Inada conditions.
Forward iteration on (28) and assuming an appropriate transversality condition then

delivers

Pt u
0(Ct) = E

P
t

" 1X
j=1

�j u0(Ct+j) Dt+j

#
a.s. (30)

Unlike in equation (29), the right side of the previous equation depends on the agent�s

subjective consumption plans. From equation (17) follows that future consumption plans

are of the form Ct+j((P;D;W )
t+j): Expected future consumption thus depends on the

agent�s price expectations, say those implied by equation (25). Indeed, whatever are the

agent�s price expectations, subjective consumption plans will adjust, so as to satisfy the

�rst order condition (28). As a result, equation (30) will also hold. Equation (30) thus fails

to impose any restriction on what optimizing agents can possibly believe about the price

process, given their knowledge about the processes for Wt and Dt. With the considered

non-linear utility function, we can thus simultaneously assume that agents maximize

utility, hold the subjective price beliefs (25)-(26) and have rational expectations about

dividends and wages.

The fact that equilibrium prices can be written as a discounted some of the form (30)

di¤ers notably from the standard pricing formula studied in modern asset pricing theory,

which determines equilibrium prices using

Pt u
0(Wt +Dt) = E

P
t

" 1X
j=1

�j u0(Wt+j +Dt+j) Dt+j

#
a.s.

The r.h.s. of this equation uses equilibrium values of future consumption instead of the

subjective future consumption plans showing up in equation (30). In this sense, stock

prices satisfying (30) are not e¢ cient, because they do not discount dividends with the

�objective�discount factor.

45See Adam and Marcet (2011) for a discussion of how in the presence of trading constraints, this
conclusion breaks down with linear consumption preferences.
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6.3 Learning about Capital Gains

Under internal rationality, the speci�cation of the perceived price process (25) dictates

the way agents learn from observed prices. The presence of an unobserved permanent

component in equation (25) gives rise to an optimal �ltering problem. To obtain a

parsimonious description of this problem, we specify conjugate prior beliefs about the

unobserved persistent component ln �t at t = 0. Speci�cally, agent i�s prior is

ln �0 � N(lnmi
0; �

2); (31)

where prior uncertainty �2 is assumed to be equal to its Kalman �lter steady state value,

i.e.,

�2 �
��2� +

q
(�2�)

2 + 4�2��
2
"

2
: (32)

Equations (25), (26) and (31), and knowledge of the dividend and wage income processes

(16) then jointly specify agents�probability beliefs P i.
The optimal Bayesian �lter then implies that the posterior beliefs following some

history !t are given by46

ln �tj!t � N(lnmi
t; �

2); (33)

with

lnmi
t = lnmi

t�1 �
�2v
2
+ g

�
lnPt � lnPt�1 +

�2" + �
2
v

2
� lnmi

t�1

�
(34)

g =
�2

�2 + �2"
: (35)

Agents�beliefs can thus be parsimoniously summarized by a single state variable (mi
t)

describing agents�degree of optimism about future capital gains. These beliefs evolve

recursively according to equation (34) and imply that

lnmi
t = lnE

Pi
t

�
Pt+1
Pt

�
� �2=2; (36)

so that equation (34) is - up to some (small) variance correction and the presence of a

time lag - identical to the adaptive prediction model (12) considered in section 3.4.

The subjective price beliefs (25),(26) and (31) generate perfect foresight equilibrium

46See theorem 3.1 in West and Harrison (1997). Choosing a value for �2 di¤erent from the steady
state value (32) would only add a deterministically evolving variance component �2t to posterior beliefs
with the property limt!1 �

2
t = �

2, i.e., it would converge to the steady state value.
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price expectations in the special case in which prior beliefs are centered at the growth

rate of dividends, i.e.,

lnmi
0 = ln �

D;

and when considering the limiting case with vanishing uncertainty, where (�2"; �
2
� ; �

2
D; �

2
W )!

0. Agents�prior beliefs at t = 0 about price growth in t � 1 then increasingly concen-

trates at the perfect foresight outcome ln �D, see equations (25) and (26). With price and

dividend expectations being at their perfect foresight value, the perfect foresight equilib-

rium prices implied by proposition 2 for the vanishing noise limit become the equilibrium

outcome at t = 0. Importantly, it continues to be possible to study learning dynamics in

the limit with vanishing risk: keeping the limiting ratio �2�=�
2
" �nite and bounded from

zero as uncertainty vanishes, the Kalman gain parameter g; de�ned in equation (35),

remains well-speci�ed and satis�es lim �2�
�2"
= lim g2

1�g . We will exploit this fact in section

8 when presenting analytical results.

7 Dynamics under Learning

This section explains how equilibrium prices are determined under the subjective beliefs

introduced in the previous section and how they evolve over time.

Agents� stock demand is given by equation (21). Stock demand depends on the

belief mi
t, which characterizes agents� capital gains expectations. These beliefs evolve

according to (34). As a benchmark, we shall now assume that all agents hold identical

beliefs (mi
t = mt for all i). In doing so, we assume that the marginal investor has

return expectations in line with those documented for the survey data. We consider the

homogenous agent case �rst, so as to stay as close as possible to the representative agent

settings typically considered under RE. Section 9.2 considers extensions to settings with

heterogenous beliefs.

Using the representative agent assumption, the fact that stocks are in unit supply and

imposing market clearing in periods t and t � 1 in equation (21), one obtains that the
equilibrium price in any period t � 0 solves

1 = S

�
1;
Pt
Dt

;
Wt

Dt

;mt

�
: (37)

The beliefs mt and the price dividend ratio Pt=Dt are now simultaneously determined via

equations (34) and (37). Due to a complementarity between realized capital gains and
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expected future capital gains47, this simultaneity can give rise to multiple market clearing

price and belief pairs. In the learning literature, the standard approach to resolve this

issue consists of assuming that agents use only lagged endogenous variables to update

model estimates (Eusepi and Preston (2011), Evans and Honkapohja (2001), Marcet and

Nicolini (2003), Sargent, Williams and Zha (2009)). In our benchmark speci�cation we

shall follow this approach, but we provide below Bayesian foundations for lagged updating

in a setting where agents can observe current prices. Furthermore, as we show in section

11.3, lagged belief updating is objectively optimal because agents who update beliefs

using current price information experience lower utility in equilibrium.

Introducing an updating lag into equation (34) can be justi�ed as internally rational

by slightly modifying the information structure. The modi�cation is relatively straight-

forward and consists of assuming that agents observe at any time t information about

the lagged transitory price growth component "t�1 entering equation (25). In such a set-

ting, it is optimal to give less weight to the last available price growth observation, when

estimating the permanent component �t. This is so because the last observation is more

noisy. Formally, appendix A.7 shows that in the limit where agents learn all transitory

factors with a lag, Bayesian updating implies

lnmt = lnmt�1 + g (lnPt�1 � lnPt�2 � lnmt�1) + g ln "
1
t ; (38)

where updating now occurs using only lagged price growth (even though agents do ob-

serve current prices) and where ln "1t � iiN(��
2
"

2
; �2") is a time t innovation to agent�s

information set (unpredictable using information available to agents up to period t� 1).
The shock ln "1t thereby captures the information that agents receive in period t about

about the transitory price growth component ln "t�1.

With this slight modi�cation, agents�beliefs mt are now pre-determined at time t, so

that the economy evolves according to a uniquely determined recursive process: equation

(37) determines the market clearing price for period t given the beliefs mt and equation

(38) determines how time t beliefs are updated following the observation of the new

market clearing price.48

47Intuitively, a higher PD ratio implies higher realized capital gains and thus higher expectations of
future gains via equation (34). Higher expected future gains may in turn induce a higher willingness to
pay for the asset, thereby justifying the higher initial PD ratio.
48There could still be an indeterminacy arising from the fact that S (�) is non-linear, so that equation

(37) may not have a unique solution. We have not encountered such problems in our analytical solution
or when numerically solving the model.
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8 Equilibrium: Analytic Findings

This section derives a closed form solution for the equilibrium asset price for the special

case where all agents hold the same subjective beliefs P and where these beliefs imply no
(or vanishing) uncertainty about future prices, dividends and wages. While the absence of

uncertainty is unrealistic from an empirical standpoint, it helps us in deriving key insights

into how the equilibrium price depends on agents�beliefs, as well as on how prices and

beliefs evolve over time.49 The empirically more relevant case with uncertainty will be

considered in section 10 using numerical solutions.

We present a series of results that increasingly adds assumptions on agents�beliefs

system P. The next section provides a closed form expression for the equilibrium PD ratio
as a function of agents�subjective expectations about future stock market returns for any

belief system P without uncertainty. Section 8.2 then discusses the pricing implications
of this result for the subjective capital gains beliefs presented in section 6. Finally, section

8.3 shows how the interaction between asset price behavior and subjective belief revisions

can temporarily de-link asset prices from their fundamental value, i.e., give rise to a self-

reinforcing boom and bust cycle in asset prices along which subjective expected returns

rise and fall.

8.1 Main Result

LettingRt+1 � (Pt+1 +Dt+1) =Pt denote the stock return, we have following main result:50

Proposition 3 Suppose u(C) = C1�=(1 � ), agents� beliefs P imply no uncertainty

about future prices, dividends and wages. Assume given posterior beliefs about prices,

dividends and wages that satisfy

lim
T!1

EPt RT > 1 and lim
T!1

EPt

 
TX
j=1

�Yj

i=1

1

Rt+i

�
Wt+j

!
<1; (39)

49An analytic solution can be found because in the absence of uncertainty one can evaluate more easily
the expectations of nonlinear functions of future variables showing up in agents�FOCs.
50The proof can be found in appendix A.8.
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then, if jSj ;
��S�� are su¢ ciently large, the equilibrium PD ratio in period t is given by

Pt
Dt

=

�
1 +

Wt

Dt

� 1X
j=1

 �
�
1


�j �
EPt
Yj

i=1

1

Rt+i

�1� 1


!

� 1

Dt

EPt

 1X
j=1

�Yj

i=1

1

Rt+i

�
Wt+j

!
(40)

Conditions (39) insure that the in�nite sums in the pricing equation (40) converge.51

Under the additional assumption that agents hold rational wage and dividend expecta-

tions and that Wt=Dt = �; equation (40) simpli�es further to52

Pt
Dt

= (1 + �)

1X
j=1

 �
�
1


�j �
EPt
Yj

i=1

1

Rt+i

� �1


!

��
 1X
j=1

�
�D
�j �

EPt
Yj

i=1

1

Rt+i

�!
: (41)

We now discuss the implications of equation (41), focusing on the empirically relevant

case where � > 0 and  > 1.

Consider �rst the upper term on the r.h.s. of equation (41), which is decreasing in the

expected asset returns. This emerges because for  > 1 the wealth e¤ect of a change in

return expectations then dominates the substitution e¤ect, so that expected asset demand

and therefore the asset price has a tendency to decrease as return expectations increase.

The negative wealth e¤ect thereby increases in strength if the ratio of wage to dividend

income (�) increases. This is the case because higher return expectations also reduce the

present value of wage income.

Next, consider the lower term on the r.h.s. of equation (41), including the negative sign

pre-multiplying it. This term depends positively on the expected returns and captures a

substitution e¤ect that is associated with increased return expectations. This substitution

e¤ect only exists if � > 0, i.e., only in the presence of non-dividend income, and it is

increasing in �. It implies that increased return expectations are associated with increased

stock demand and thus with a higher PD ratio in equilibrium. It is this term that allows

the model to match the positive correlation between expected returns and the PD ratio.

51These are satis�ed, for example, for the expectations associated with the perfect foresight RE solu-
tion. Equation (40) then implies for p = 1 that the PD ratio equals the perfect foresight PD ratio, i.e.,
the value given by equation (23) with "Wt = 1, as is easily veri�ed. Conditions (39) are equally satis-
�ed for the subjective beliefs de�ned in section 6, when considering the case with vanishing uncertainty
(�2"; �

2
� ; �

2
D; �

2
W )! 0.

52In deriving equation (41) we abstract from transitional dynamics in Wt=Dt and set Wt=Dt = �.

32



This substitution e¤ect is present even in the limiting case with log consumption

utility ( ! 1). The upper term on the r.h.s. of equation (41) then vanishes because the

substitution and wealth e¤ects associated with changes in expected returns cancel each

other, but the lower term still induces a positive relationship between prices and return

expectations. The substitution e¤ect is also present for  > 1 and can then dominate the

negative wealth e¤ect arising from the upper term on the r.h.s. of (41). Consider, for

example, the opposite limit with  !1. Equation (41) then delivers

Pt
Dt

=
1X
j=1

 
1 + �

1X
j=1

�
1�

�
�D
�j�!�

EPt
Yj

i=1

1

Rt+i

�
:

Since �D > 1, there is a positive relationship between prices and expected asset returns,

whenever � is su¢ ciently large. The two limiting results ( ! 1 and  !1) thus suggest
that for su¢ ciently large � the model can generate a positive relationship between return

expectations and the PD ratio, in line with the evidence obtained from survey data.

8.2 PD Ratio and Expected Capital Gains

Since future stock returns depend on the belief system and on current PD ratio, equa-

tion (41) does not yet give an explicit solution for the PD ratio. For the belief system

introduced in section 653, we have EPt [Pt+i] = (mt)
i Pt and EPt Dt+i =

�
�D
�i
Dt, so that

without uncertainty

EPt R
�1
t+i =

EPt Pt+i�1
EPt Pt+i + E

P
t Dt+i

=

�
mt +

�
�D=mt

�i�1
�D
Dt

Pt

��1
:

Substituting this into (41) gives a non-linear relationship between the PD ratio and the

subjective capital gain expectations mt. Since a closed-form solution for the PD ratio is

unavailable we show numerical solutions of this equation.

Figure 5 depicts the relationship between the PD ratio and mt using the parameter-

ization employed in our quantitative application later on, but abstracting from future

uncertainty.54 Figure 5 shows that there is a range of price growth beliefs around the

perfect foresight value (mt = �
D) over which the PD ratio depends positively on expected

price growth, similar to the positive relationship between expected returns and the PD

ratio derived analytically in the previous section. Over this range, the substitution e¤ect

53Appendix A.9 proves that condition (39) is satis�ed for all beliefs mt > 0.
54The parameter values are given by those listed in table 2 and by the estimated parameters for the

model with diagonal matrix from table 3, i.e., g = 0:262,  = 2:03, � = 0:99514, p = 0:95.
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dominates the wealth e¤ect because our calibration implies that dividend income �nances

only a small share of total consumption (approximately 4.3%). As a result, stock market

wealth is only a small share of the total present value of household wealth (the same

4.3%) when beliefs assume their perfect foresight value (mt = �
D).

Figure 5 also reveals that there exists a capital gains belief beyond which the PD ratio

starts to decrease for higherm. Mathematically, this occurs because ifmt !1, expected
returns also increase without bound55, so that EPt

Qj
i=1

1
Rt+i

! 0. From equation (41)

one then obtains Pt
Dt
! 0.

The economic intuition for the existence of a maximum PD ratio is as follows: for

higher mt the present value of wage income is declining, as increased price growth opti-

mism implies higher expected returns56 and therefore a lower discount factor. This can

be seen by noting that the FOC (65) can alternatively be written as

1 = �EPt

"�
Ct+1
Ct

��
Rt+1

#
;

which implies that increased return expectations EPt Rt+1 imply a lower discount factor

�EPt
�
(Ct+1=Ct)

��.57 With increased optimism, the present value of wage income thus
falls. At the same time, stock market wealth initially increases strongly. Indeed, at the

maximum PD ratio, stock market wealth amounts to approximately 4.5 times the value

it assumes in the perfect foresight solution, see �gure 5. This relative wealth shift has the

same e¤ect as a decrease in the wage to non-wage income ratio �. As argued in section

8.1, for su¢ ciently small values of � the income e¤ect starts to dominate the substitution

e¤ect, so that prices start to react negatively to increased return optimism.

8.3 Endogenous Boom and Bust Dynamics

We now explain how the interplay between price realizations and belief updating can

temporarily de-link asset prices from their fundamental values. This process emerges

endogenously and takes the form of a sustained asset price boom along which expected

returns rise and that ultimately results in a price bust along which expected returns fall.

This feature allows the model to generate volatile asset prices and to capture the positive

correlation between expected returns and the PD ratio.

55This follows from EPt Rt+i+1 = E
P
t
Pt+i+1+Dt+i+1

Pt+i
> EPt

Pt+i+1
Pt+i

= mt.
56This is hown in appendix A.11, which depicts the relationship between expected capital gains and

expected returns at various forecast horizons.
57This holds true under the maintained assumption of no or vanishing uncertainty.
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Consider �gure 5 and a situation in which agents become optimistic, in the sense

that their capital gains expectations mt increase slightly above the perfect foresight value

mt�1 = �D entertained in the previous period.58 Figure 5 shows that this increase in

expectations leads to an increase in the PD ratio, i.e., Pt=Dt > Pt�1=Dt�1. Moreover, due

to the relatively steep slope of the PD function, realized capital gains will strongly exceed

the initial increase in expected capital gains. The belief updating equation (38) then im-

plies further upward revisions in price growth expectations and thus further capital gains,

leading to a sustained asset price boom in which the PD ratio and return expectations

jointly move upward.

The price boom comes to an end when expected price growth reaches a level close

to where the PD function in �gure 5 reaches its maximum.59 At this point, stock prices

grow at most at the rate of dividends (�D), but agents hold considerably more optimistic

expectations about future capital gains (mt > �
D). Investors�high expectations will thus

be disappointed, which subsequently leads to a reversal. During a price boom, expected

price growth and actual price growth thus mutually reinforce each other. The presence

of an upper bound in prices implies, however, that the boom must come to an end. Price

growth must thus eventually become very low, sending actual and expected stock price

growth eventually down.

The previous dynamics are also present in the stochastic model considered in the next

sections. They introduce low frequency movements in the PD ratio, allowing the model

to replicate boom and bust dynamics and thereby empirically plausible amounts of asset

price volatility, despite assuming standard consumption preferences. These dynamics also

generate a positive correlation between the PD ratio and expected returns.60

In the deterministic model, however, the dynamics for the PD ratio tend to be tempo-

rary phenomena because beliefs tend to converge to the perfect foresight equilibrium:61

Lemma 1 Consider the limiting case without uncertainty and suppose investors hold

rational dividend and wage beliefs.

1. For any mt > 0, we have limt!1mt = �
D, whenever limt!1mt exists.

58In the model with uncertainty, such upward revisions can be triggered by fundamentals, e.g., by
an exceptionally high dividend growth realization in the previous period, which is associated with an
exceptionally high price growth realization.
59In the model with noise, fundamental shocks, e.g., a low dividend growth realization, can cause the

process to end well before reaching this point.
60While the arguments above only show that expected capital gains correlate positively with the PD

ratio, Appendix A.11 shows that expected capital gains and expected returns comove positively, so that
expected returns also comove positively with the PD ratio.
61The proof of lemma 1 can be found in appendix A.10.
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2. For mt su¢ ciently close to �
D and g < 1

2
, we have limt!1mt = �

D if

�1 < �D

PD(�D)

@PD(m)

@m

����
m=�D

< 1; (42)

where PD(m) is the equilibrium PD ratio associated with beliefs m, as implied by

equation (41).

The �rst result in the lemma provides a global convergence result. It shows that

if beliefs settle down in this economy, they must settle down on the perfect foresight

equilibrium value. When this is the case, equilibrium prices also converge to the perfect

foresight value. While technically one cannot rule out convergence to deterministic or

chaotic cycles, the second result in the lemma shows that locally beliefs do converge to

the perfect foresight equilibrium, whenever the elasticity of the PD ratio with respect to

price growth believes is below one in absolute value and the gain parameter g not too

large. Condition (42) is satis�ed, for example, for the parameterization of the estimated

models reported in table 3.

To illustrate the global belief dynamics further, �gure 6 depicts how beliefs evolve

over time using the parameterization of the estimated model from table 3.62 The arrows

in the �gure indicate, starting from any point (mt;mt�1) in the plane, the direction in

which the belief pair (mt;mt�1) evolves.63 The black dot indicates the position of the

perfect foresight equilibrium (mt = mt�1 = �
D), which is a rest point of the dynamics.

In line with what we �nd when simulating the model, �gure 6 strongly suggests that

beliefs globally converge to the perfect foresight equilibrium in the absence of stochastic

disturbances.

Figure 6 also shows that it takes time for beliefs to settle down at the perfect foresight

equilibrium and that agents will make persistent forecast errors along the transition path.

In particular, when agents are optimistic and stock are prices high (mt > �
D), there is

a tendency for prices and beliefs to return towards their perfect foresight values, so that

realized capital gains are low. Similarly, when agents are pessimistic and stock prices low

(mt < �D), the tendency of prices and beliefs to return to the perfect foresight values

implies that realized capital gains are high. Note that this pattern of forecast errors is

consistent with the one documented for the survey data in section 3.

62The vector �eld uses the parameters from the estimated model with diagonal matrix and estimated
p reported in table 3. The vector �elds for the other models from table 3 look almost identical.
63To increase reability of the graph, the length of the arrows l is nonlinearly rescaled by dividing by

l3=4 and then linearly adjusted, so as to �t into the picture.
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9 Matching Asset Pricing Moments

This section evaluates the ability of the model to replicate key asset pricing moments

when using dividend and wage shocks as fundamental driving forces.

The set of data moments that we seek to replicate is listed in the second column of

table 3. The �rst eight asset pricing moments listed in the table are standardly used

in the asset pricing literature to summarize the main features of stock price volatility.64

They include the mean, standard deviation and autocorrelation of the quarterly PD ratio

(E[PD], Std[PD] and Corr[PDt, PDt�1], respectively), the mean and standard deviation

of quarterly real stock returns (E[rs] and Std[rs]), the risk-free interest rate (E[rb]) and the

regression coe¢ cient (c) and R-square value (R2) obtained in equation (5) when Rt;t+N

is the �ve year ahead excess return.65 As is well known, it is di¢ cult for RE models with

time separable utility functions to jointly match these moments.

We augment the standard set of moments in table 3 by the correlation between the

PD ratio and expected stock returns from the UBS survey, denoted Corr[PDt,EPt Rt+1],

so as to capture the behavior of survey data.

Numerically solving the non-linear asset pricing model with subjective beliefs turns

out to be computationally time-consuming, despite the fact that we extensively rely on

parallelization in the solution algorithms.66 For this reason, we match the model to the

data by calibrating most parameters and estimate only a key subset using the simulated

method of moments (SMM).

Table 2 reports the calibrated parameters and the calibration targets.67 The mean and

standard deviation of dividend growth (�D and �D) are chosen to match the corresponding

empirical moments of the U.S. dividend process. The ratio of non-dividend to dividend

income (�) is chosen to match the average dividend-consumption ratio in the U.S. for 1946-

64These moments are also considered in Adam, Marcet, and Nicolini (2016).
65The regression also contains a constant whose value is statistically insigni�cant and not reported in

the table.
66The numerical solution is obtained by numerically determining the stock demand function (21)

solving the FOC (28) under the subjectively perceived dividend, wage and price dynamics, where agents
understand that their beliefs evolve according to (38). We verify that in the limiting case without
uncertainty, our numerical solution algorithm recovers the analytical solution derived in proposition 3.
Furthermore, in the case with uncertainty, we insure the accuracy of the numerical solution by verifying
that the Euler equation errors are in the order of 10�5 over the relevant area of the state space. Insuring
this requires a considerable amount of adjustment by hand of the grid points and grid size used for
spanning the model�s state space. Further details of the solution approach are described in appendix
A.12. The MatLab code used for solving the model is available upon request.
67The targets are chosen to match features of the fundamental processes emphasized in the asset

pricing literature.
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2011.68 The standard deviation of wage innovations (�W ) and the covariance between

wage and dividend innovations (�DW ) are chosen, in line with Campbell and Cochrane

(1999), such that the correlation between consumption and dividend growth is 0.2 and the

standard deviation of consumption growth is one seventh of the the standard deviation

of dividend growth.69 The perceived uncertainty in stock price growth (�") is set equal

to the empirical standard deviation of stock price growth.70

This leaves us with four remaining parameters: the updating parameter g, the time

discount factor �, the risk aversion parameter  and the persistence parameter for the

wage-dividend ratio p. Letting � = (g; �; ; p) denote this set of parameters and � the

set of admissible values, the SMM estimate b� is given by
b� = argmin

�2�

h bS � S(�)i0 b� h bS � S(�)i ; (43)

where bS is the set of moments in the data to be matched (the ones listed in table 3),
S(�) the corresponding moment from the model for parameter values � and b� a weighting
matrix.

We pursue two estimation approaches, one that implements e¢ cient SMM and an

alternative one that emphasizes more directly the replication of the data moments. Both

approaches have advantages and disadvantages, as we discuss below, but ultimately de-

liver similar estimates and model moments. All estimations exclude the risk free rate from

the set of moments to be matched, as the model has a hard time in fully replicating the

equity premium. We thus only report the risk-free interest rate implied by the estimated

models.

Our �rst estimation approach chooses the weighting matrix b� in equation (43) to

be equal to the inverse of the estimated covariance matrix of the data moments bS, as
required for e¢ cient SMM estimation. While an e¢ cient weighting matrix is desirable

for estimation, it also causes some di¢ culties. First, the weighting matrix turns out to

be approximately singular; following Adam, Marcet and Nicolini (2016) we thus exclude

some moments from the estimation that are nearly redundant, namely we exclude the

excess return regression coe¢ cient (c) from the set of estimated moments.71 Second, we

68See appendix A.4 for further details.
69For details on how this can be achieved, see appendix A.4.
70Since the gain parameter g will be small, the contribution of �2� in (25) is negligable.
71See section 5 and the online appendix in Adam, Marcet and Nicolini (2016) for details on asymptotic

distribution of SMM, how to use a systematic criterion for excluding moments, details on how to estimateb� and how to compute S(�) using small samples.
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also have to exclude the correlation between the PD ratio and surveyed expected returns,

since the short sample for surveys provides a less reliable estimate of b�.
The second estimation approach uses a diagonal weighting matrix b� in equation (43),

with the diagonal entries consisting of the inverse of the individually estimated variances

of the corresponding data moments in bS. Although this alternative is less e¢ cient from
an econometric point of view, the matrix b� is now guaranteed to be invertible, therefore
we can use the full set of moments in the estimation.72 Furthermore, this criterion just

minimizes the sum of t-statistics of all the moments, therefore emphasizes more directly

matching the moments, as typically pursued in the asset pricing literature.

An unconstrained minimization of the objective function (43) over � = (g; �; ; p)

turns out to be numerically unstable and computationally too costly. For this reason,

we impose additional restrictions on the parameter space �. These restrictions can only

constrain the empirical performance of the model, so that the goodness of �t results

presented below constitute a lower bound on what the model can potentially achieve.

Speci�cally, we impose �
�
�D
��

= 0:995(�D)�2, where �D assumes the value from table

3. This additional restriction is inspired by the fact that - according to our experience - the

model can perform reasonably well for (�; ) = (0:995; 2) and helps resolving numerical

instabilities in our solution routines. We furthermore restrict the persistence parameter

to p 2 f0:95; 0:999g, which is inspired by the fact that the sample autocorrelation of
log(1 +Wt=Dt) is very high in US postwar data (about 0:99).

Table 3 reports the estimation outcome in terms of implied model moments, estimated

parameters and t-ratios.73

In terms of estimated parameters, the discount factor is estimated to be close to one

and relative risk aversion is slightly above 2. The estimated gains (bg) are very close to
the values obtained in the empirical section 3.4.

For both estimation approaches, the model matches the data moments rather well. In

particular, the model easily replicates the positive correlation between the PD ratio and

expected stock returns (Corr[PDt,EPt Rt+1]), in line with the value found in the survey

data. This is achieved, even though this moment was not used in the estimation using the

e¢ cient weighting matrix. The model also performs well in terms of producing su¢ cient

72 As mentioned before, the risk free rate is always excluded from estimation.
73The t-ratio is the ratio of the gap between the model and the data moment over the standard

deviation of the moment in the data, as implied by the weighting matrix. For excluded moments we use
the individually estimated standard deviations in the numerator. For the case of an e¢ cient weighting
matrix, the t-ratio for moments included is computed according to the proper covariance matrix that
delivers a standard normal distribution, see the online appendix in Adam Marcet and Nicolini (2016).
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volatility for the PD ratio (Std[PD]) and stock returns (Std[rs]). If anything, the model

tends to produce too much volatility. The model also succeeds in replicating the mean

and autocorrelation of the PD ratio (E[PD] and Corr[PDt,PDt�1]) and the evidence on

excess return predictability (c and R2), even though the regression coe¢ cient c was not

included in the set of moments to be matched.

The most signi�cant shortcoming of the model concerns the equity premium. While it

matches the average stock return (E[rs]), it predicts a too high value for the risk free rate

(E[rb]). Nevertheless, the model can explain about half of the equity premium observed

in the data. Given the low estimated value for the degree of relative risk aversion (b),
this is remarkable and we explore the mechanism behind this outcome further in section

9.2 below.

Abstracting from the mean risk free rate, the estimation using the diagonal weighting

matrix generates t-ratios below two for all model moments and often even t-ratios below

one. The estimation using the full matrix performs similarly well, but implies a slightly

high volatility for stock returns and the PD ratio. The empirical performance of the sub-

jective belief model is overall very good, especially when compared to the performance

of the rational expectations version of the model, as reported in table 4 using the same

parameters as for the estimated model (with diagonal matrix) in table 3. Under RE, the

t-ratios all increase in absolute terms, with some of the increases being quite dramatic.

With objective price beliefs, the model produces insu¢ cient asset price volatility (too

low values for Std[PD] and Std[rs]) and the wrong sign for the correlation between the

PD ratio and expected stock returns (Corr[PDt,EPt Rt+1]). It also gives rise to a small

negative equity premium.74 These features are rather robust across alternative parame-

terizations of the RE model and highlight the strong quantitative improvement obtained

by incorporating subjective belief dynamics.

Table 5 shows that the performance of the subjective belief model is also rather robust

across di¤erent values for the persistence parameter p of the wage-dividend process. The

table reports the estimation outcomes when repeating the estimation from table 3 but

imposing p = 0 (no persistence) and p = 0:999 (near unit root behavior). The ability

of the subjective belief model to match the empirical asset pricing moments is hardly

a¤ected by the persistence parameter.

Figure 7 illustrates how the subjective belief model improves empirical performance.

The �gure depicts the equilibrium PD ratio (y-axis) as a function of agents�capital gain

74For the considered parameterization, the equity premium is slightly negative because stocks are a
hedge against wage income risk.
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beliefs (x-axis). It graphs this relationship once for the model with uncertainty (black line)

and once for the vanishing noise limit analyzed in the previous section (red line).75 While

the presence of price, dividend and wage risk lowers the equilibrium PD ratio compared

to a setting without risk, the functional form of the relationship remains qualitatively

unchanged. The intuition from the vanishing noise limit thus carries over to the model

with noise: the model continues to give rise to occasional boom and bust dynamics in

asset prices.

9.1 Further Evidence on Model Performance

Table 6 presents further asset pricing moments that have not been used in the estima-

tion of the model. It reports data moments, the corresponding model moments for the

estimated subjective belief model from table 3, for the RE version of model and for an

augmented subjective belief model featuring stock supply shocks, as introduced below.

Table 6 shows that the subjective belief model successfully replicates the low volatility

of the risk free interest rate present in the data. The subjective belief model even sightly

underpredicts volatility. This shows that the ability to generate highly volatile stock

returns does not rely on counterfactually making the risk free interest rate very volatile.

In terms of matching the low volatility of the risk free rate, the performance of the

subjective belief model is approximately as good as that of the RE model.

Table 6 also presents evidence on the quarterly autocorrelations of stock returns and

excess stock returns. It shows that the subjective belief model overpredicts both auto-

correlations relative to the ones present in the data. As table 6 shows, this feature arises

not solely due to the presence of subjective beliefs: the rational expectations versions of

the model also overpredicts the autocorrelation of excess stock returns.

The failure of the subjective belief model to deliver a near zero high-frequency auto-

correlation for returns is related to the fact that the low frequency returns generated by

learning also show up at high frequency because the model features few transitory shocks

to stock prices. As we show below, the subjective belief model becomes consistent with

the observed value of the quarterly autocorrelations of stock returns and excess stock

returns, when adding small iid disturbances to the model.

To illustrate this point in a simple way, we consider in appendix A.13 a model where

75For the stochastic solution, the equilibrium PD in �gure 7 is determined from the market clearing
condition (37) assuming Wt=Dt = �, to be comparable with the value this variable assumes in the
vanishing risk limit. The �gure assumes the parameters implied by the estimated model with diagonal
matrix from table 3.
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equilibrium stock supply in period t satis�es

St = e
"st ;

where "st � iiN(��2"s=2; �2"s) denotes an exogenous shock to the supply of stocks. This
shock can represent extraneous demand for stocks, e.g., the one arising from noise or

liquidity traders.76 This generalized setup nests the model without noise traders for the

special case �"S = 0.

As it turns out, small positive values for the standard deviation �"S bring the model

fully in line with the observed autocorrelations. The last two columns in table 6 illustrate

this fact and report the model implied autocorrelations, when setting �"s = 1:25 � 10�3,
which implies that the standard deviation of aggregate stock supply is 0.125% of the

average outstanding amount of stocks (which is equal to one). Table 6 shows that the

autocorrelations are now fully consistent with those observed in the data, while the stan-

dard deviation of the risk free rate is hardly a¤ected. Moreover, as shown in appendix

A.13, the presence of stock supply shocks has only small e¤ects on the other asset pricing

moments reported in table 3.

9.2 Subjective Consumption Plans and the Sharpe Ratio

A somewhat surprising feature of the estimated models in Table 3 is that they give rise

to a fairly high Sharpe ratio, despite the fact that the estimated risk aversion is relatively

low. Speci�cally, the estimated models imply that the quarterly unconditional Sharpe

ratio,
�
E[rs]� E[rb]

�
=Std[rs]; is close to 0:1. Since the model implied equity premium

is too low, this value falls signi�cantly short of the value of Sharpe ratio in the data

(0:22). Yet, it signi�cantly exceeds the value it would assume if agents held rational price

expectations. Under RE, the Sharpe ratio would be tiny and approximately be given by77

E[rs]� E[rb]
Std[rs]

�  � E [Stdt(Ct+1=Ct)] = 0:00576: (44)

76Alternatively, the shocks "St may capture changes to asset �oat, as discussed in Ofek and Richardson
(2003) and Hong, Scheinkman, and Xiong (2006). In any case, they capture (exogenous) stock demand
or supply that is not coming from the consumers described in equation (13).
77See appendix A.14 for a derivation of equations (44) and (45).
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In the presence of subjective price beliefs, however, the Sharpe ratio is approximately

equal to

E
�
rst+1

�
� E

�
rbt
�

Std [rs]
�
E
�
rst+1

�
� E

�
EPt
�
rst+1

��
Std [rs]| {z }

Subj. return pessimism

+ 
E
�
StdPt [Ct+1=Ct]

�
E [Stdt [Ct+1=Ct]]| {z }

Ratio of

subj. to obj.

consumption volatility

E [Stdt [Ct+1=Ct]] ;

(45)

which illustrates the existence of two additional factors a¤ecting the Sharpe ratio: subjec-

tive return pessimism, as present in models where agents entertain robustness concerns,

e.g., Cogley and Sargent (2008), and the relative volatility of subjective consumption

plans compared to the ones emerging under rational expectations. Subjective return

pessimism contributes to the Sharpe ratio because pessimism depresses stock prices and

thereby generates a higher equity premium ex-post. Subjective consumption volatility

a¤ects the equity premium for standard reasons.

For the estimated models from table 3, we �nd that about one third of the model�s

Sharpe ratio is due to subjective return pessimism and about two thirds due to the second

term on the r.h.s of equation (45).78 In both estimated models, the second component

is so large because the average subjective standard deviation of consumption growth is

about 12.5 times larger than the average objective standard deviation.79

Analyzing which future shocks contribute in agents�mind to this high level of sub-

jectively expected consumption volatility, we �nd that transitory price growth shocks are

the main culprit, i.e., the perceived shocks "t+1 in the subjective price evolution equation

(25). These shocks move prices permanently up (or down), without an associated change

in fundamentals, and prompt agents to make contingent plans to sell (or buy) stocks in

the future in response to these shocks. These expectations of future trade increase subjec-

tive expected consumption volatility, while the representative agent assumption insures

that agents will never actually buy or sell stocks in equilibrium. As a result, subjective

and objective consumption volatility diverge considerably.

The reason for this discrepancy is largely due the fact that the homogeneous agent

78The approximate Sharpe ratio decomposition (45) works quantitatively well for the estimated models
from table 3: the actual Sharpe ratio are 10.7% and 10.2% for the model estimated using a diagonal and
an e¢ cient matrix, respectively, while the terms on the r.h.s. in equation (45) sum to 10.5% and 10.9%.
79The precise ratios are 12:87 (12:64) for the model from table 3 estimated using a diagonal (e¢ cient)

matrix. For both models, we have E[Stdt[Ct+1=Ct]] = 0:00273.
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model imposes zero trade in equilibrium. Equilibrium consumption is then not a¤ected

by stock prices. As we now illustrate, one can resolve this discrepancy by introducing

heterogeneity among agents.

We show this using two simple heterogeneous agent extensions of our baseline model.

The �rst extension studies an ad-hoc modi�cation in which agents�beliefs at time t are

given by

lnmi
t = lnmt + ln�

i
t; (46)

where ln�it � iiN(0; �2�) is an idiosyncratic and transitory shock to agent i�s capital gain
optimism and where mt evolves as in the baseline model. The second extension considers

a fully microfounded extension, where - in line with the belief updating equation (38) -

agents�expectations evolve according to

lnmi
t = lnm

i
t�1 + g

�
lnPt�1 � lnPt�2 � lnmi

t�1
�
+ ln "1;it ; (47)

where
�
g ln "1;it

�
� iiN(0; �2") is an idiosyncratic with rather persistent e¤ects on be-

liefs.80 In both extensions, belief heterogeneity induces trade in equilibrium, which in-

creases the objective volatility of individual consumption growth relative to the represen-

tative agent setting. We then calibrate the variances �2� and �
2
" such that the objective

and subjective standard deviations are approximately aligned (E
�
StdPt

�
Cit+1=C

i
t

��
�

E
�
Stdt

�
Cit+1=C

i
t

��
).

Table 7 reports the asset pricing moments and t-ratios for both heterogeneous agent

extensions.81 As becomes clear from table 7, the extended models can replicate the

asset pricing moments equally well as the baseline model, but also aligns the subjective

and objective standard deviations of consumption growth. The ability of the model to

generate a low risk free rate is actually improved relative to the representative agent

model, with the average risk free rate even becoming slightly negative for the model with

persistent shocks.82 Overall, table 7 illustrates the robustness of our quantitative results

towards allowing for investor heterogeneity.

80As is clear from appendix A.7, the shock ln "1;it represents information that the agent receives about
the perceived transitory price shock. Since these shocks exist only in subjective terms, the baseline model
sets ln "it = ln "t = 0 for all t.
81The table uses the model parameterization of the estimated model from table 3 (diagonal matrix).

For the case with persistent belief shocks, we slightly adjust the updating gain g to improve the match
with the asset pricing moments. The simulations use 51 di¤erent agents.
82The strong e¤ect on the risk free rate is due to the tight borrowing limits (Bit � 0) that we impose,

see the discussion in section 4. The e¤ect would likely be less strong for less strict borrowing limits, but
this would require fundamental changes to the solution approach, including an increase in the number
of state variables.

44



9.3 Expectational Errors

Since our model matches stock price behavior and the comovement pattern between

survey expectations and stock prices, agents�expectations in the model fail to satisfy the

rational expectations hypothesis, in line with what has been documented for the survey

evidence. To document the quantitative importance of this fact, this section applies

the RE tests from section 3.2 to the subjectively expected one-quarter-ahead capital gain

expectations from our estimated models. In particular, we test the acceptance rates of the

rational expectations hypothesis (H0 : c = c) at various signi�cance intervals and various

sample lengths, using the test statistic described in proposition 1.83 Table 8 reports the

outcomes.84 It shows that at conventional signi�cance levels the rational expectations

hypothesis can be rejected with high likelihood, even for relatively short sample lengths.

This is in line with the empirical evidence documented in section 3.

10 Historical PD Ratio and Survey Evidence

This section shows that the estimated subjective belief model successfully replicates the

low-frequency movements of the postwar U.S. PD ratio, as well as the available time series

of survey expectations. We illustrate this point using the model from table 5, which has

been estimated under the restriction that the wage-dividend ratio displays close to unit

root behavior (p = 0:999). This is motivated by the fact that estimated models that

imply more mean reversion in the wage-dividend ratio, say the ones from table 3, cannot

capture the time series behavior of the PD ratio after the year 1990. After 1990, the

wage-dividend ratio started to persistently diverge from a value close to its sample mean

of 22 to a value close to 12 at the end of the sample period in 2012.

To determine the model �t, we feed the historically observed price growth observations

into the model�s belief updating equation (38), so as to obtain a model-implied belief

process.85 We then combine this belief series with the historically observed wage-dividend

ratio to obtain from the model�s equilibrium pricing function the model implied prediction

for the postwar PD series. Formally, this is done by plugging implied expectations and

wage-dividend ratio in equation (37) and backing out the corresponding PD ratio. In

83We include the small sample bias correction reported in proposition 1.
84Rejection frequencies have been computed from 1000 random samples of the speci�ed sample length

that werde randomly drawn randomly from a time series of 100,000 simulated model periods, with the
�rst 10,000 periods being discarded as burn-in.
85Since we cannot observe the shocks ln "1t in (38), we set them equal to zero. Gaps between the model

predicted and actual PD ratio may thus partly be due to these shocks.
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doing so, we choose the unobserved price growth belief at the start of the sample period

(mQ1:1946) so as to minimize the sum of absolute deviations of the model-implied PD ratio

from the PD ratio in the data.86

The resulting belief sequence is depicted in �gure 8. Figure 9 graphs the model implied

PD ratio together with the PD ratio from the data. It reveals that the model captures

a lot of the low-frequency variation in the historically observed PD ratio. It captures

particularly well the variations before the year 2000, including the strong run-up in the

PD ratio from the mid 1990�s to the year 2000. The model also predicts a strong decline

of the PD ratio after the year 2000, but overpredicts the decline relative to the data.

The gap after the year 2000 emerging in �gure 9 is hardly surprising, given the empiri-

cal evidence presented in �gure 4, which shows that the relationship between the PD ratio

and the expectations implied by equation (12) has shifted upward in the data following

the year 2000. While we can only speculate about potential reasons causing this shift,

the exceptionally low real interest rates implemented by the Federal Reserve following

the reversal of the tech stock boom and following the collapse of the subsequent housing

boom may partly contribute to the observed discrepancy. This suggests that incorporat-

ing the asset pricing e¤ects of monetary policy decisions might improve the model �t.

This is, however, beyond the scope of the present paper.

Figure 10 depicts the model-implied price growth expectations and the price growth

expectations from the UBS survey.87 While the model �ts the survey data rather well, it

predicts after the year 2003 considerably lower capital gains expectations, which partly

explains why the model underpredicts the PD ratio in �gure 9 towards the end of the

sample period. While the expectations gap in �gure 10 narrows considerably after the

year 2004, this fails to be the case for the PD ratio in �gure 9. Underprediction of

expected price growth thus explains only partly the deterioration of the �t of the PD

ratio towards the end of the sample period.

11 Robustness Analysis

This section explores the robustness of our main �ndings to changing key model parame-

ters and to using more general price belief systems. The next section studies the pricing

e¤ects of alternative model parameters. Section 11.2 discusses the implications of more

general price belief systems that incorporate mean-reversion of the PD ratio. Finally,

86This delivers initial price growth expectations in Q1:1946 of -1.7%.
87See footnote 35 for how to compute price growth expectations from the UBS survey.
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section 11.3 considers the pricing and welfare implications of introducing agents who use

current price information for updating beliefs.

11.1 Model Parameterization

This section studies how the model�s ability to generate boom and bust dynamics in

stock prices depends on key model parameters. The equilibrium pricing function for

our baseline parameterization, depicted in �gure 5, allows for self-reinforcing stock price

boom and bust dynamics because the price dividend ratio increases initially strongly with

capital gain optimism. This section explores the robustness of this feature by studying

how the equilibrium pricing is a¤ected by the coe¢ cient of relative risk aversion (), the

discount factor (�), and the average wage to dividend income ratio (�).

Figure 11 depicts the equilibrium pricing function for alternative parameter choices.

Each panel plots the pricing function from our baseline parameterization, as well as the

those generated by increasing or decreasing the values for , � and �. The top panel, for

example, shows that lowering (increasing) the coe¢ cient of relative risk aversion increases

(reduces) the hump in the PD function and moves it to the left (right), thereby causing

asset price booms to become more (less) likely and larger in size. Similar e¤ects are

associated with increasing (decreasing) the wage to dividend income ratio (�) and with

increasing (decreasing) the discount factor (�). Overall, �gure 11 shows that the model

can produce hump-shaped equilibrium PD functions over a fairly wide set of parameter

speci�cations.

11.2 Generalized Belief System

This section considers a generalized price belief system, which implies that investors

expect the PD ratio to eventually mean-revert over time. This is motivated by the fact

that the price belief system (25)-(26) employed in the main part of the paper, along with

knowledge of the dividend process, does not imply that agents expect the log of the PD

ratio to mean revert over time.

We �nd that the pricing implications of the model do not depend on the expected

long run behavior for the PD ratio and that very similar equilibrium pricing functions

can be generated by belief systems that imply persistent changes in the PD ratio but

where the PD ratio is ultimately mean reverting.

It is important to note that the survey data provide little support for mean reverting
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price growth expectations over the available forecast horizons and thus for mean reversion

in the expected PD ratio. In particular, the last four rows in table 1a show that the

regression coe¢ cient bc obtained from regressing the expected 10 year ahead capital gain

forecasts from the Shiller survey on the PD ratio is more than 10 times larger than the

corresponding regression coe¢ cient obtained from regressing the one year ahead forecast

on the PD ratio. The expected annualized ten year price growth thus reacts stronger

to movements in the PD ratio than the expected one year price growth. This shows

that one should incorporate only a mild degree of mean reversion into subjective price

growth beliefs, as the belief system would otherwise become inconsistent with the survey

evidence.

To analyze the e¤ects of mean reversion in price beliefs, we now assume that investors

perceive prices to evolve according to

lnPt+1 = ln �t+1 + lnPt + (1� �PD) (lnPD � lnPt=Dt) + ln "t+1 (48)

ln �t+1 = (1� ��) ln �D + �� ln �t + ln �t+1; (49)

where lnPD denotes the perceived long run mean of the log PD ratio and �PD 2 [0; 1];
�� 2 [0; 1] are given parameters. For �PD = �� = 1 these equations deliver the benchmark
price belief system (25)-(26) studied in the main part of the paper.88 For �� < 1, equation

(49) implies that agents expect mean reversion in the persistent price growth component

ln �t towards the mean growth rate of dividends (ln �
D); if in addition �PD < 1, equation

(48) implies that agents expect lnPt=Dt to eventually return to its long run mean lnPD.89

Suppose that �� < 1 and �PD < 1, that agents are optimistic about future capital

gains, i.e., they believe �t to be above �
D, and that agents observe a PD ratio above

its long-run mean (Pt=Dt > PD). Provided �� and �PD are su¢ ciently close to one,

equations (48)-(49) imply that agents expect a fairly persistent boom in the PD ratio, as

is the case with the benchmark belief system (25)-(26). Yet, unlike with the benchmark,

they also expect a price bust further down the road, because the PD ratio is expected to

eventually return to its long run value.

Equations (48) and (49) jointly imply that optimal belief updating about the unob-

served persistent stock price growth component ln �t is described by a generalized version

of equation (38), which states that the posterior mean lnmt � EP(ln �t j P t) in steady
88As before, we assume that agents have rational expectations about the dividend and wage income

processes.
89This can be seen by subtracting (14) from (48).
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state evolves according to90

lnmt = (1� ��) ln �D + �� lnmt�1 (50)

+g

0@ lnPt�1 � lnPt�2 � lnmt�1

�(1� �PD) (lnPD � lnPt�2=Dt�2)

1A+ g ln "1t :
Using the generalized belief and updating equations, �gure 12 depicts the impact of

di¤erent perceived values for �PD and �� on the equilibrium pricing function when setting

the perceived long-run mean lnPD in (48) equal to the perfect foresight value of the PD

ratio.91 The �gure�s top panel plots the e¤ects of decreasing �PD below one, while keeping

�� = 0:9999. For the considered values of �PD, agents expect the log PD ratio to mean

revert by 1%, 2%, or 3% per year towards its long run mean (lnPD). The �gure also

plots the outcome when there is virtually no mean reversion (�PD = 0:9999). The top

panel of �gure 12 shows that by introducing mean reversion, one pushes the peak of the

equilibrium PD ratio to the right and also lowers its height. The shift to the right occurs

because agents only expect a persistent boom in the PD ratio if the increase in the PD

ratio implied by the persistent growth component (ln �t) outweighs the mean reversion

generated by the negative feedback from the deviation of the PD from its long run value

in equation (48). The downward shift in the PD ratio occurs because mean reversion

causes investors to expect lower and eventually negative returns sooner.

The second panel in �gure 12 depicts the e¤ects of decreasing �� below one, while

keeping �PD = 0:9999. As before, we consider values for �� that imply virtually no

mean reversion and mean reversion by 1%, 2% and 3% per year towards the long run

value (ln �D). The panel shows that the pricing implications are very similar to those of

decreasing �PD.

Finally, the bottom panel depicts the e¤ects of jointly decreasing �� and �PD. The

pricing implication of such simultaneous changes turn out to be considerably stronger,

compared to the case where only one of the persistence parameters decreases. Figure

13 illustrates why this sharp di¤erence occurs. It graphs the expected path of the PD

90Since equation (48) only introduces an additional observable variable into (25) and equation (49) only
adds a known constant and known mean reversion coe¢ cient relative to (26), the arguments delivering
equation (38) as optimal Bayesian updating directly generalize to equation (50).
91We assume that �2" and �

2
� assume the same values as in the baseline speci�cation, so that the gain

parameter also remains unchanged at g = 0:02515. This parameterization makes sure that - for the
values of �� and �PD considered below - the perceived standard deviation for stock price growth implied
by equations (49)-(48) approximately matches the standard deviation of stock price growth in the data.
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ratio for di¤erent parameter combinations
�
�PD; ��

�
.92 If either �PD or �� are close to

1, agents expect a rather prolonged stock price boom that is expected to revert only in

the distant future. Expected stock returns are thus high for many periods before they

turn negative. This di¤ers notably from the case where both persistence parameters fall

signi�cantly below one (�PD = �� = 0:97
1
4 ). The expected stock price boom is then

much smaller and considerably more short-lived, so that returns are lower and expected

to become negative earlier. From the discussion following equation (41), it should be

clear that the implied path for expected returns then cannot sustain a high PD ratio as

an equilibrium outcome.

Summing up, the model continues to give rise to hump-shaped equilibrium pricing

functions, even if agents ultimately expect mean reversion in the PD ratio, provided

the generalized belief system implies that agents expect elevated capital gains to be

su¢ ciently persistent.

11.3 Current Price Information for Belief Updating

The baseline model speci�cation postulates a belief structure that makes it subjectively

optimal for agents to update beliefs mt based on price information up to period t�1 only,
see equation (38). The present section demonstrates that lagged belief updating is also

objectively optimal for agents: belief updating with current price observations robustly

generates lower experienced utility for agents.93 In this sense, the baseline speci�cation

with lagged belief updating can be interpreted as the limiting outcome of a setting in

which agents choose - based on experienced utility - whether or not to use current prices

for updating beliefs.

To show that lagged updating generates objectively higher utility, we consider an ex-

tended model setup where a share � 2 [0; 1] of investors updates beliefs using current
price growth information, with the remaining share 1�� using lagged price growth infor-
mation.94 While the beliefs of lagged updaters are predetermined, the beliefs of current

updaters vary simultaneously with the stock price Pt. The latter creates a potential for

multiple market clearing equilibrium price and belief pairs.

92The �gure assumes that the equilbrium PD ratio initially equals PD0 = 150, i.e., it is above its long
run value, and that agents are mildly optimistic about future capital gains with lnm0 = 1% > ln�

D.
93This �nding is in line with results reported in Adam et al. (2015), who show that agents whose

beliefs are more reactive to price growth observations tend to do worse than agents whose beliefs display
less sensitivity.
94Updaters using current price information update beliefs according to equation (38), but replace

lnPt�1= lnPt�2 by lnPt= lnPt�1 on the right-hand side.
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To assess the implications of simultaneous belief updating, we consider the estimated

benchmark parameters from table 3 (diagonal matrix) and di¤erent values for � 2 [0; 1].
To select between equilibrium prices in periods where multiple equilibrium price exist,

we consider two alternative selection rules.95 The �rst rule selects the equilibrium price

that is closest to the previous period�s market clearing price. The second selection rule

selects the price that is furthest away from the previous market clearing price.

Table 9 reports the expected discounted utility of agents that use current and lagged

belief updating for di¤erent values of � and for the two considered selection rules.96 It

shows that independently of the selection rule and independently of the share of current

updaters �, utility of lagged updaters always exceeds that of current updaters. Cur-

rent updaters thus have an incentive to switch to lagged updating, i.e., to the setting

considered in our baseline speci�cation.

12 Conclusions

We present a model with rationally investing agents that gives rise to market failures in

the sense that the equilibrium stock price deviates from its fundamental value. These

deviations take the form of asset price boom and bust cycles that are fueled by the

belief-updating dynamics of investors who behave optimally given their imperfect knowl-

edge about the behavior of stock prices. Optimal belief updating also causes investors�

subjective capital gain expectations to comove positively with the price-dividend ratio,

consistent with the evidence available from investor surveys.

As we argue, these features cannot be replicated within asset pricing models that

impose rational price expectations. Moreover, the developed statistical tests show that

the behavior of surveys return expectations is incompatible with the rational expectations

hypothesis.

Taken together, this suggests that asset price dynamics are to a large extent in�uenced

by investors�subjective optimism and pessimism, i.e., the asset price �uctuations observed

in the data are to a large extent ine¢ cient. The ine¢ ciency arises because equilibrium

stock prices are determined by the sum of dividends that is discounted using the stochastic

discount factor implied by investors�subjective consumption plans, which are in�uenced

95In the vast majority of cases, we �nd three market clearing equilibrium prices, conditional on there
being multiplicity. In less than 0.1% of the periods with multiplicities we �nd �ve market clearing prices.
96The table reports the unconditional expectation of discounted consumption utility using the objective

distribution for consumption, as realized in equilibrium. Appendix A.15 reports the associated asset
pricing moments.
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by investors� subjective price beliefs. This di¤ers from the standard setup under RE,

where stock prices equal the sum of dividends discounted by the �objective�stochastic

discount factor.

Due to the simplicity of the setup, these ine¢ cient price �uctuations do not yield

adverse welfare implications in our baseline model.97 For models incorporating investor

heterogeneity, e.g., the extension presented in section 9.2, or models featuring endogenous

output or stock supply processes, stock price �uctuations may have signi�cant e¤ects on

welfare. Exploring these within a setting that generates quantitatively credible amounts

of asset price �uctuations appears to be an interesting avenue for further research. Such

research will in turn lead to further important questions, e.g., whether policy can and

should intervene with the objective to stabilize asset prices.

In deriving our results, we assumed that all agents in the economy become more (or

less) optimistic when observing capital gains above (or below) their expectations. While

the quantitative model predictions survive when investors are heterogeneous in the degree

to which they respond to observed capital gains, see Adam et al. (2015), it appears of

interest to assess the potential price impact generated by speculators with rational price

expectations. While rational speculators can contribute to price destabilization, as in

DeLong et al. (1990), they may also help with price stabilization, as in Barberis et al.

(2014). Exploring this issue further, especially in connection with the limits to arbitrage

emphasized in Shleifer and Vishny (1997), appears to be a fruitful avenue for further

research.

97This is true if one evaluates welfare using ex-post realized consumption.

52



bc bc bias�103 p-value bc bc bias�103 p-value
�103 �103 E(bc� bc) H0:c = c �103 �103 E(bc� bc) H0:c = c

Survey measure S&P 500, real returns
Survey Average Survey Median

UBS, >100k, 1 yr, SPF 0.58 -2.46 0.432 0.0000 0.48 -2.49 0.415 0.0000
UBS, >100k, 1 yr, Michigan 0.57 -2.46 0.452 0.0000 0.47 -2.49 0.413 0.0000
UBS, all, 1 yr, SPF 0.57 -2.46 0.424 0.0000 0.49 -2.49 0.401 0.0000
UBS, all, 1 yr, Michigan 0.56 -2.46 0.442 0.0000 0.48 -2.49 0.433 0.0000
CFO, 1 yr, SPF 0.20 -1.67 0.222 0.0011 0.25 -1.37 0.325 0.0471
CFO, 1 yr, Michigan 0.27 -1.67 0.200 0.0006 0.34 -1.37 0.313 0.0362

Dow Jones, real price growth
Survey Average Survey Median

Shiller, 1 yr, SPF 0.26 -1.22 0.235 0.0011 0.24 -1.20 0.265 0.0015
Shiller, 1 yr, Michigan 0.33 -1.22 0.232 0.0006 0.31 -1.20 0.238 0.0007
Shiller, 10 yrs, SPF 4.73 -7.25 -1.367 0.0000 6.15 -7.24 -1.440 0.0000
Shiller, 10 yrs, Michigan 4.24 -7.25 -1.423 0.0000 5.65 -7.24 -1.462 0.0000

Table 1a: Rational Expectations test, H0 : c = c
(stock returns, small sample bias correction from proposition 1)

The table reports p-values for the rational expectations test from section 3.2 for di¤erent
survey sources and di¤erent ways to extract expectations from the surveys. Estimates
and p-values are bias corrected as described in section 3.2 and proposition 1. bc is
the estimate of cN in equation (3) and bc the estimate of cN in equation (5). The column
labeled �bias�reports the small sample bias of bc� bc as implied by proposition 1. The UBS and
CFO surveys report return expectations for the S&P 500, the Shiller surveys report capital gain
expectations for the Dow Jones Index. In the regressions, Rt;t+N denotes returns, except for the
Shiller survey, where it denotes capital gains. The columns labeled �Survey Average�compute
expectations using the cross-sectional average of return expectations, the columns labeled �Survey
Median�uses the median expectation. In the �rst column, SPF and Michigan refer to di¤erent
approaches to compute real expected returns, with the former using in�ation expectations from
the Survey of Professional Forecasters (SPF) and the latter using the Michigan survey; 1 yr and
10 yr refer to forecast horizons of 1 and 10 years, respectively; UBS, >100k indicates a
restricted sample using only UBS survey participants with more than 100.000 USD in �nancial
wealth; UBS, all indicates the use of all survey participants. The UBS expectations refer to
expectations of the future stock market returns.
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� bc bc bias�103 p-value bc bc bias�103 p-value
�103 �103 E(bc� bc) H0:c � c �103 �103 E(bc� bc) H0:c = c

Survey measure S&P 500, real returns
Survey Average Survey Median

UBS*, >100k, 1 yr, SPF 0.82 2.80 -0.64 0.054 0.014 2.68 -0.62 0.062 0.013
UBS*, >100k, 1 yr, Michigan 0.82 2.79 -0.64 0.054 0.016 2.67 -0.62 0.071 0.014
UBS*, all, 1 yr, SPF 0.82 2.78 -0.64 0.072 0.013 2.69 -0.62 0.063 0.013
UBS*, all, 1 yr, Michigan 0.82 2.77 -0.64 0.072 0.015 2.68 -0.62 0.055 0.014
CFO, 1 yr, SPF 0.94 5.83 3.19 -0.568 0.046 6.59 4.07 -0.550 0.111
CFO, 1 yr, Michigan 0.94 5.90 3.19 -0.568 0.044 6.67 4.07 -0.520 0.107

Dow Jones, real price growth
Survey Average Survey Median

Shiller, 1 yr, SPF 0.92 4.68 2.34 -0.621 0.020 4.68 2.38 -0.627 0.018
Shiller, 1 yr, Michigan 0.92 4.74 2.34 -0.624 0.016 4.74 2.38 -0.627 0.017
Shiller, 10 yrs, SPF 0.76 8.07 -2.65 -0.130 0.016 9.45 -2.66 -0.200 0.014
Shiller, 10 yrs, Michigan 0.76 7.48 -2.65 0.200 0.023 8.85 -2.66 -0.200 0.019

Table 1b: Rational Expectations test, H0 : c � c
(stock returns, one-sided test, small sample corrections with serially correlated

errors and non-linear least squares estimates from section 3.3)

The column labeled � reports the estimated persistence parameter of the return residuals UN
t in

equation (11). See the caption of table 1a for further information.

� bc bc bias�103 p-value bc bc bias�103 p-value
�103 �103 E(bc� bc) H0:c � c �103 �103 E(bc� bc) H0:c = c

Survey measure S&P 500, real excess returns
Survey Average Survey Median

UBS, >100k, 1 yr, SPF 0.77 2.00 -1.11 0.153 0.051 1.89 -1.10 0.154 0.058
UBS, >100k, 1 yr, Michigan 0.77 2.00 -1.11 0.157 0.056 1.89 -1.10 0.158 0.054
UBS, all, 1 yr, SPF 0.77 1.98 -1.11 0.161 0.056 1.90 -1.10 0.154 0.057
UBS, all, 1 yr, Michigan 0.77 1.98 -1.11 0.154 0.054 1.90 -1.10 0.160 0.062
CFO, 1 yr, SPF 0.93 5.58 3.00 -0.532 0.067 6.44 4.12 -0.517 0.155
CFO, 1 yr, Michigan 0.93 5.59 3.00 -0.540 0.065 6.45 4.12 -0.522 0.151

Dow Jones, real excess price growth
Survey Average Survey Median

Shiller, 1 yr, SPF 0.91 4.01 1.85 -0.562 0.028 4.01 1.84 -0.548 0.028
Shiller, 1 yr, Michigan 0.91 4.00 1.85 -0.547 0.030 4.01 1.84 -0.540 0.032
Shiller, 10 yrs, SPF 0.78 6.30 -5.16 0.151 0.030 7.68 -5.15 0.175 0.023
Shiller, 10 yrs, Michigan 0.78 6.14 -5.16 0.383 0.033 7.52 -5.15 -0.214 0.026

Table 1c: Rational Expectations test, H0 : c � c
(excess stock returns, one-sided test, small sample corrections with serially
correlated errors and non-linear least squares estimates from section 3.3.

The column labeled � reports the estimated persistence parameter of the return residuals UN
t in

equation (11). See the caption of table 1a for further information.
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Parameter Value Calibration Target
�D 1:0048 average quarterly real dividend growth
�D 0:0192 std. deviation quarterly real dividend growth
� 22 average consumption-dividend ratio
�DW �3:51 � 10�4 jointly chosen s.t. corrt(Ct+1=Ct; Dt+1=Dt) = 0:2
�W 0:0186 and stdt(Ct+1=Ct) = 1

7
stdt(Dt+1=Dt)

�" 0:0816 std. deviation of quarterly real stock price growth

Table 2: Model calibration
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U.S. Data Subj. Belief Subj. Belief
1946:1-2012:1 Model Model
(quart. real values) (e¢ cient � matrix) (diagonal � matrix)

Moment Moment t-ratio Moment t-ratio
E[PD] 139.8 120.1 -0.79 115.2 -0.98
Std[PD] 65.2 95.6 2.06 88.2 1.56
Corr[PDt, PDt�1] 0.98 0.98 0.65 0.98 0.90
Std[rs] 8.00 8.88 2.20 7.74 -0.64
c -0.0041 -0.0055 -1.11 -0.0050 -0.77
R2 0.25 0.23 -0.13 0.20 -0.34
E[rs] 1.89 1.91 0.04 1.82 -0.15
E[rb] 0.13 1.01 5.16 0.99 5.08
UBS Survey Data:
Corr[PDt,EPt Rt+1] 0.79 0.80 0.07 0.79 0.01

Estimates:bg 0.0282 0.0262b� 0.99524 0.99514b 2.05 2.03
p 0.95 0.95

Table 3: Asset pricing moments, data and estimated models

The table reports U.S. asset pricing moments (second column) using the data sources
described in Appendix A.1, the moments of the estimated models (columns three
and �ve) and t-ratios for the model moments (columns four and six) from the SMM
estimation. T-ratios are de�ned as (data moment - model moment)/(estimated standard
deviation of the model moment). The reported moments are as follows: E[PD], Std(PD)
and Corr[PDt, PDt�1] denote the mean, standard deviation and autocorrelation of the quarterly
price dividend ratio, respectively; E[rs] and Std[rs] denote the mean and standard deviation
of the real quarterly stock return, expressed in percentage points, respectively; E[rb]
is the mean risk free interest rate, expressed in percentage points; c and R2 denote,
respectively, the regression coe¢ cient and R2 value obtained in equation (5)
when Rt;t+N is excess stock returns and N = 5 years; Corr[PDt,EPt Rt+1] denotes the
correlation between the PD ratio and the subjective return expectations, with these being
measured in the data column using the mean of the UBS survey (own portfolio), de�ated
by the mean in�ation expectations from the SPF survey. The estimated parameters are
the updating gain g from equation (38), the time discount factor �, the coe¢ cient
of relative risk aversion  and the persistence p of the wage-dividend ratio from
equation (15).
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U.S. Data RE Model
Moment Moment t-ratio

E[PD] 139.8 108.3 -1.26
Std[PD] 65.2 11.3 -3.64
Corr[PDt, PDt�1] 0.98 0.95 -11.20
Std[rs] 8.00 1.49 -16.22
c -0.0041 -0.0181 -11.09
R2 0.25 0.72 3.66
E[rs] 1.89 1.41 -1.04
E[rb] 0.13 1.52 8.15
UBS Survey Data:
Corr[PDt,EPt Rt+1] 0.79 -1.00 -26.36

Table 4: RE asset pricing moments

The table reports U.S. asset pricing moments (second column) using the data sources
described in Appendix A.1, the moments of the rational expectations (RE) model
(column three) and the t-ratios of the RE model (column four). The RE model uses
the parameterization of the estimated subjective belief model from table 3 (diagonal
matrix). See table 3 for a description of the moment labels in the �rst column.
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U.S. Data Subj. Belief Subj. Belief
1946:1-2012:1 Model Model
(quart. real values) (diagonal matrix) (diagonal matrix)

Restriction imposed: p=0 p=0.999
Moment Moment t-ratio Moment t-ratio

E[PD] 139.8 112.9 -1.07 116.8 -0.92
Std[PD] 65.2 82.1 1.14 98.5 2.25
Corr[PDt, PDt�1] 0.98 0.98 -0.22 0.99 1.78
Std[rs] 8.00 7.91 -0.22 7.73 -0.68
c -0.0041 -0.0045 -0.36 -0.0037 0.27
R2 0.25 0.15 -0.74 0.14 -0.79
E[rs] 1.89 1.83 -0.14 1.81 -0.17
E[rb] 0.13 0.97 4.92 1.00 5.12
UBS Survey Data:
Corr[PDt,EPt Rt+1] 0.79 0.85 0.82 0.75 -0.65

Estimates:bg 0.0222 0.0272b� 0.99510 0.99519b 2.02 2.04

Table 5: Asset pricing moments (restricted estimation)

The table reports U.S. asset pricing moments (second column) using the data sources
described in Appendix A.1, the moments and t-ratios of the estimated subjective
belief model when restricting the persistence parameter p from equation (15) to zero
(third and fourth column) and when restricting p to 0.999 (�fth and sixth column). See
table 3 for a description of the labels used in the �rst column.
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U.S. Data Subj. Belief Subj. Belief
1946:1-2012:1 Model Model
(quart. real values) (transitory belief shocks) (persistent belief shocks)

Moment Moment t-ratio Moment t-ratio
E[PD] 139.8 113.5 -1.05 120.6 -0.77
Std[PD] 65.2 85.9 1.40 90.8 1.73
Corr[PDt, PDt�1] 0.98 0.98 0.63 0.98 0.51
Std[rs] 8.00 7.37 -1.58 7.93 -0.16
c -0.0041 -0.0047 -0.53 -0.0064 -1.81
R2 0.25 0.18 -0.47 0.25 0.05
E[rs] 1.89 1.80 -0.19 1.87 -0.06
E[rb] 0.13 0.34 1.26 -0.65 -4.58
UBS Survey Data:
Corr[PDt,EPt Rt+1] 0.79 0.79 -0.08 0.85 0.78

Consumption volatility:
E[StdPt Ct+1/Ct] 3.38 4.55
E[StdtCt+1/Ct] 3.23 4.99

Parameters:
g 0.0262 0.0282
� 0.99514 0.99514
 2.03 2.03
�� 0.0030 -
�" - 0.0018

Table 7: Heterogeneous Agent Model with Equilibrium Trade

The table reports U.S. asset pricing moments (second column) using the data sources
described in Appendix A.1, the moments and t-ratios of the subjective belief model
with idiosyncratic transitory belief shocks (third and forth column), see equation (46)
, and the moments and t-ratios of the subjective belief model with idiosyncratic
persistent belief shocks (�fth and sixth column), see equation (47). E[StdPt Ct+1/Ct]
denotes the unconditional expectation of the subjective standard deviation of
consumption growth and E[StdtCt+1/Ct] the unconditional expectation of the objective
standard deviation of consumption growth. The standard deviation of the idiosyncratic
belief shocks �� and �" has been chosen so as to approximately equate subjective
and objective standard deviation of consumption growth . See table 3 for a description
of the remaining labels used in the �rst column.
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Signi�cance Sample length in quarters
level 25 50 75 100 150 200

Model from Table 7 1% 0.828 0.944 0.971 0.981 0.984 0.987
(diagonal matrix) 5% 0.900 0.970 0.981 0.987 0.988 0.990
Model from Table 7 1% 0.779 0.938 0.968 0.975 0.975 0.989
(e¢ cient matrix) 5% 0.892 0.974 0.986 0.981 0.980 0.991

Table 8: Rejection frequencies for the RE hypothesis (H0 : c = c)
for the estimated asset pricing models

The reported rejection frequencies are based on the rational expectations test developed
in section 3.2 of the paper and include the small sample bias correction stated in
proposition 1.

Selection rule : Closest price Furthest price
Share of current Lagged Current Lagged Current
updaters (�) updaters updaters updaters Updaters

0.0 -4.02 -4.07 -4.02 -4.07
0.1 -4.02 -4.06 -4.02 -4.06
0.2 -4.01 -4.06 -4.01 -4.06
0.3 -4.01 -4.05 -4.01 -4.06
0.4 -4.01 -4.05 -4.00 -4.06
0.5 -4.00 -4.05 -3.99 -4.06
0.6 -4.00 -4.04 -3.98 -4.06
0.7 -3.99 -4.04 -3.97 -4.06
0.8 -3.99 -4.03 -3.89 -4.11
0.9 -3.97 -4.03 -3.39 -4.24
1.0 -3.95 -4.02 -2.46 -4.02

Table 9: Expected utility of current and lagged
belief updaters

The table reports the objectively expected utility for agents that use current and
one period lagged prices to update beliefs for di¤erent equilibrium selection
rules, as described in section 11.3, and di¤erent shares � of current updaters.
Since u(C)<0, expected utility is always negative. The model is parameterized
using the estimated parameters from table 3 (diagonal matrix).
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Figure 1: Quarterly PD Ratio of the S&P 500, Q1:1946-Q1:2012
(PD ratio is de�ned as stock prices over quarterly dividends; dividends are deseasonalized by
averaging dividend payments over the current and previous three quarters)
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Figure 2: Quarterly PD ratio of the S&P 500 (l.h.s. scale) and investors� expected
quarterly real returns from the UBS Gallup Survey (r.h.s. scale), Q2:1998-Q4:2007
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Figure 3: Real price growth expectations implied by the UBS survey expectations and
by the adaptive prediction model (equation (12)), Q2:1998-Q4:2007
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Figure 4: Quarterly PD ratio of the S&P 500 graphed against the quarterly real price
growth expectations implied by the adaptive prediction model (equation (12)) for the
same quarter, Q1:1946-Q1:2012
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Figure 5: Quarterly PD ratio and expected capital gains (vanishing noise limit, estimated
model from table 3, diagonal matrix)

0.98 0.99 1 1.01 1.02 1.03 1.04
0.98

0.99

1

1.01

1.02

1.03

1.04

mt

m
t1

Figure 6: Illustration of global belief dynamics under learning in the absence of shocks
(estimated model from table 3, diagonal matrix). The black dot indicates the perfect
foresight equilibrium belief.
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Figure 7: The e¤ects of uncertainty on the equilibrium PD ratio (estimated model from
table 3, diagonal matrix)

1940 1950 1960 1970 1980 1990 2000 2010 2020
0.03

0.02

0.01

0

0.01

0.02

0.03

su
bj

ec
tiv

e 
pr

ice
 g

ro
wt

h 
ex

pe
ct

at
io

ns
 (m

(t)
1

)

Figure 8: Price growth expectations implied by Bayesian updating and historical stock
price growth (estimated model from table 5, p=0.999), Q1:1946-Q1:2012
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Figure 9: Historical PD ratio: data versus model, Q1:1946-Q1:2012 (estimated model
from table 5, p=0.999)
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Figure 10: Price growth expectations: UBS survey vs. Bayesian updating model (esti-
mated model from table 5, p=0.999), Q2:1998-Q4:2007
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Figure 11: E¤ects of (; �; �) on the equilibrium PD function
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Figure 12: Equilibrium pricing function (generalized belief system)
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Figure 13: Persistence parameters and expected PD path (generalized belief system)
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A Appendix (not for publication)

A.1 Data Sources

Stock price data: our stock price data is for the United States and has been downloaded
from �The Global Financial Database�(http://www.global�nancialdata.com). The period
covered is Q1:1946-Q1:2012. The nominal stock price series is the �SP 500 Composite
Price Index (w/GFD extension)�(Global Fin code �_SPXD�). The daily series has been
transformed into quarterly data by taking the index value of the last day of the considered
quarter. To obtain real values, nominal variables have been de�ated using the �USA BLS
Consumer Price Index�(Global Fin code �CPUSAM�). The monthly price series has been
transformed into a quarterly series by taking the index value of the last month of the
considered quarter. Nominal dividends have been computed as follows

Dt =

�
ID(t)=ID(t� 1)
IND(t)=IND(t� 1) � 1

�
IND(t)

where IND denotes the �SP 500 Composite Price Index (w/GFD extension)�described
above and ID is the �SP 500 Total Return Index (w/GFD extension)�(Global Fin code
�_SPXTRD �). We �rst computed monthly dividends and then quarterly dividends by
adding up the monthly series. Following Campbell (2003), dividends have been deseason-
alized by taking averages of the actual dividend payments over the current and preceding
three quarters.
Interest rate data: As nominal interest rate we use the 90 Days T-Bills Secondary

Market (Global Fin code ITUSA3SD). The weekly (to the end of 1953) and daily (after
1953) series has been transformed into a quarterly series using the interest rate corre-
sponding to the last week or day of the considered quarter and is expressed in quarterly
rates (not annualized). To obtain real values, nominal variables have been de�ated using
the �USA BLS Consumer Price Index�(Global Fin code �CPUSAM�).
Stock market survey data: The UBS survey is the UBS Index of Investor Opti-

mism, which is available (against a fee) at
http://www.ropercenter.uconn.edu/ data_access/data/datasets/ubs_investor.html.
The quantitative question on stock market expectations has been surveyed over the

period Q2:1998-Q4:2007 with 702 responses per month on average and has thereafter
been suspended. For each quarter we have data from three monthly surveys, except for
the �rst four quarters and the last quarter of the survey period where we have only one
monthly survey per quarter. The Shiller survey data covers individual investors over the
period Q1:1999Q1-Q4:2012 and has been kindly made available to us by Robert Shiller at
Yale University. On average 73 responses per quarter have been recorded for the question
on stock price growth. Since the Shiller data refers to the Dow Jones, we used the PD
ratio for the Dow Jones, which is available at http://www.djaverages.com/, to compute
correlations. The CFO survey is collected by Duke University and CFO magazine and
collects responses from U.S. based CFOs over the period Q3:2000-Q4:2012 with on average
390 responses per quarter, available at http://www.cfosurvey.org/ .
In�ation expectations data: The Survey of Professional Forecasters (SPF) is avail-

able from the Federal Reserve Bank of Philadelphia at http://www.phil.frb.org/research-
and-data/real-time-center/survey-of-professional-forecasters/. The Michigan Surveys of
Consumers are collected by Thomson Reuters/University of Michigan
(http://www.sca.isr.umich.edu/).
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A.2 Correlations between PD Ratio and Actual/Survey Re-
turns

This appendix documents for the UBS Survey, the CFO survey and the Shiller individual
investor survey that there exists a positive correlation between the PD ratio and survey
expected returns (or capital gains), but a negative correlation between the PD ratio and
actual returns (or capital gains).
Table A1 documents the positive correlation for the UBS survey. Results are in-

dependent of how one extracts expectations from the survey (using the median or the
mean expectation, using in�ation expectations from the Michigan survey or the Survey
of Professional Forecasters (SPF) to obtain real return expectations, using plain nominal
returns instead or real returns, or when restricting attention to investors with more than
100.000 US$ in �nancial wealth). The numbers reported in brackets in table A1 (and in
subsequent tables) are autocorrelation robust p-values for the hypothesis that the corre-
lation is smaller or equal to zero.98 These p-values are not adjusted for small sample bias,
as there is no generally accepted approach for how to perform such adjustments. This
said, the p-values for the null hypothesis are all below the 5% signi�cance level and in
many cases below the 1% level.
A positive correlation is equally obtained when considering other survey data. Table

A2 reports the correlations between the PD ratio and the stock price growth expectations
from Bob Shiller�s Individual Investors� Survey.99 The table shows that price growth
expectations are also strongly positively correlated with the PD ratio, suggesting that
the variation in expected returns observed in the UBS survey is due to variations in
expected capital gains. Table A2 also shows that correlations seem to become stronger
for longer prediction horizons.
Table A3 reports the correlations for the stock return expectations reported in the

Chief Financial O¢ cer (CFO) survey which surveys chief �nancial o¢ cers from large U.S.
corporations. Again, one �nds a strong positive correlation.
Table A4 reports the correlations between the PD ratio and the realized real returns

(or capital gains) in the data, using the same sample periods as are available for the
surveys considered in tables A1 to A3, respectively. The point estimate for the correlation
is negative in all cases, although the correlations fall short of being signi�cant the 5%
level due to the short sample length for which the survey data is available.

98The sampling width is four quarters, as is standard for quarterly data, and the test allows for con-
temporaneous correlation, as well as for cross-correlations at leads und lags. The p-values are computed
using the result in Roy (1989).
99Shiller�s price growth data refers to the Dow Jones Index. The table thus reports the correlation of

the survey measure with the PD ratio of the Dow Jones.
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UBS Gallup
Nominal Real Ret. Exp. Real Ret. Exp.

Return Exp. (SPF) (Michigan)
Average Median Average Median Average Median

Own portfolio,
>100k US$

0.80
(0.01)

0.78
(0.01)

0.79
(0.01)

0.77
(0.01)

0.84
(0.01)

0.83
(0.01)

Own portfolio,
all investors

0.80
(0.01)

0.76
(0.02)

0.79
(0.01)

0.75
(0.02)

0.84
(0.01)

0.80
(0.01)

Stock market,
>100k US$

0.90
(0.03)

0.89
(0.04)

0.90
(0.03)

0.88
(0.03)

0.91
(0.03)

0.88
(0.03)

Stock market,
all investors

0.90
(0.03)

0.87
(0.04)

0.90
(0.03)

0.87
(0.04)

0.91
(0.03)

0.88
(0.03)

Table A1: Correlation between PD ratio and 1-year ahead expected return measures
(UBS Gallup Survey, robust p-values in parentheses,
without small sample correction for p-values )

Shiller Nominal Real Capital Gain. Real Capital Gain
Survey Capital Gain Exp. Exp. (SPF) Exp. (Michigan)
Horizon Average Median Average Median Average Median
1 month 0.46

(0.01)
0.48
(0.01)

0.45
(0.01)

0.47
(0.01)

0.46
(0.01)

0.49
(0.01)

3 months 0.57
(0.01)

0.64
(0.00)

0.54
(0.01)

0.61
(0.00)

0.56
(0.01)

0.62
(0.01)

6 months 0.58
(0.01)

0.75
(0.01)

0.54
(0.02)

0.70
(0.01)

0.56
(0.02)

0.71
(0.01)

1 year 0.43
(0.03)

0.69
(0.01)

0.38
(0.05)

0.62
(0.01)

0.42
(0.04)

0.64
(0.02)

10 years 0.74
(0.01)

0.75
(0.01)

0.66
(0.02)

0.71
(0.01)

0.71
(0.02)

0.75
(0.01)

Table A2: Correlation between PD ratio and expected stock price growth
(Shiller�s Individual Investors�Survey, robust p-values in parentheses,

without small sample correction for p-values )

CFO Nominal Real Return Real Return
Survey Return Exp. Exp. (SPF) Exp. (Michigan)

Average Median Average Median Average Median
1 year 0.71

(0.00)
0.75
(0.00)

0.62
(0.00)

0.69
(0.00)

0.67
(0.00)

0.72
(0.00)

Table A3: Correlation between PD ratio and 1-year ahead expected stock return measures
(CFO Survey, robust p-values in parentheses, without small sample correction for p-values )
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Variables Time Period Stock Index Correlation

PD, 1 year-ahead real return
UBS Gallup sample
(stock market exp.)

S&P 500
�0:66
(0:08)

PD, 1 year-ahead real price growth Shiller 1 year sample Dow Jones
�0:42
(0:06)

PD, 10 year-ahead real price growth Shiller 10 year sample Dow Jones
�0:88
(0:16)

PD, 1 year-ahead real return CFO sample S&P 500
�0:46
(0:06)

Table A4: Correlation between PD and actual real returns/capital gains
(robust p-value in parentheses, without small sample correction for p-values )

A.3 Proof of Proposition 1

Proof of part a)
Under the null hypothesis of rational expectations (EPt = Et) equation (1) implies

Rt;t+N = a
N + cN

Pt
Dt

+ uNt + "
N
t ; (51)

where "Nt is the prediction error Rt;t+N �EtRt;t+N from the true data-generating process,
the conditional expectation is taken with respect to investors� information at t. Since
Pt=Dt is in this information set under RE and given (2) we have

E
�
xt
�
uNt + "

N
t

��
= 0: (52)

Therefore, uNt + "
N
t = u

N
t and the null hypothesis of rational expectations implies

cN = cN : (53)

Equations (3) (5) de�ne a SUR system of equations with dependent variables ENt
and Rt;t+N ; and explanatory variables in both equations xt = (1; Pt

Dt
)0: Under the null

hypothesis the error terms satisfy the orthogonality conditions (4) and (52).
For part a) of Proposition 1 we de�ne the OLS estimator equation by equation b�T as

b�T �
2664
baNTbcNTbaNTbcNT

3775 =
 
I2 


TX
t=1

xtx
0
t

!�1 TX
t=1

�
ENt
Rt;t+N

�

 xt;

where I2 is a 2�2 identity matrix. A standard result ensures that under the assumptions
OLS equation by equation is consistent and e¢ cient among the set of estimators that use
orthogonality conditions (4) and (52).
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As is well known, as T !1 we have

p
T
�b�T � �0�! N

�
0; [I2 
 E(xtx0t)]

�1
Sw [I2 
 E(xtx0t)]

�1
�
; (54)

in distribution, where

Sw = �0 +

1X
k=1

(�k + �
0
k)

�k = E

��
u�t
u"t

� �
u�t�k; u"t�k

�

 xtx0t�k

�
;

where u�t � uNt + �Nt and u"t � uNt + "Nt . The footnote of the proposition contains all
boundedness conditions required to ensure validity of asymptotic distribution, E(xtx0t) is
invertible because var(Pt=Dt) > 0.
To build the test-statistic, we only need to �nd an estimator for var-cov matrix in

(54). We estimate E (xtx0t) by
1
T

PT
t=1 xtx

0
t. Since u�t and u"t are not forecasting errors,

there is no reason why �k should be zero for any k, so we use a Newey-West estimatorbSw. Therefore, postmultiplying (�T � �0) by [0; 1; 0;�1]0 in (54), and letting
b�2c�c � 1

T
[0; 1; 0;�1]

"
I2 


1

T

TX
t=1

xtx
0
t

#�1 bSw "I2 
 1

T

TX
t=1

xtx
0
t

#�1 2664
0
1
0
�1

3775 (55)

we have that under the null hypothesis

p
T
bcNT � bcNTb�c�c ! N(0; 1) in distribution.

Proof of part b)
Equations (3) (5) in the current paper are each of the form of equation (1) in

Stambaugh (1999). Focusing �rst on (3), our (ENt ; ut + �t; PDt; "
PD
t+1) play the role of

(yt; ut; xt�1; vt) in Stambaugh. Note, in particular, that to match his framework we
need to have PDt play the role of xt�1; implying that our "PDt+1 plays the role of Stam-
baugh�s vt: Therefore, assumption at the bottom of page 378 in Stambaugh requires that
(uNt + �

N
t ; "

PD
t+1) is jointly normal. Under normality, using orthogonality of measurement

error, it follows from proposition 4 in Stambaugh (1999) that

E(bcNT � cN) = cov("PDt+1; u
N
t )

var("PDt )
E(b�T � �) (56)

where b�T is the OLS estimator of �. Since ut contains information that under the null
is useful for predicting future returns we could expect

cov("PDt+1;u
N
t )

var("PDt )
6= 0 and the bias to be
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non-zero. Similarly, we have,

E(bcNT � cN) =
cov("PDt+1; u

N
t + "

N
t )

var("PDt )
E(b�T � �) (57)

= E(bcNT � cN) + cov("PDt+1; "Nt )var("PDt )
E(b�T � �): (58)

A.4 Parameterization of the Wage Process

We set 1 + � equal to the average consumption-dividend ratio in the U.S. over the pe-
riod 1946-2011, using the �Personal Consumption Expenditures� and �Net Corporate
Dividends� series from the Bureau of Economic Analysis. This delivers � = 22. The
consumption-dividend ratio �uctuates considerably over time and displays a close to unit
root behavior, with the quarterly sample autocorrelation being equal to 0.99, prompting
us to consider only values close to one for the persistence parameter p.
Following Campbell and Cochrane (1999), our remaining calibration targets are

�c;t =
1

7
�D (59)

and
�c;d;t = 0:2; (60)

where �c;t denotes the conditional standard deviation of log consumption growth and �c;d;t
the conditional correlation between log consumption growth and log dividend growth.
Aggregate consumption is given by Ct = Dt +Wt so that

log
Ct
Ct�1

= log
Dt

�
1 + Wt

Dt

�
Dt�1

�
1 + Wt�1

Dt�1

�
= c+ log "Dt + log "

W
t � (1� p) log

�
1 +

Wt�1

Dt�1

�
;

where c summarizes constant terms. Conditional variance of log consumption growth is
thus equal to

�2c;t = �
2
D + �

2
W + 2�DW (61)

and conditional covariance between log consumption and dividend growth given by

covt�1

�
log

Ct
Ct�1

; log
Dt

Dt�1

�
=covt�1

�
log "Dt + log "

W
t ; log "

D
t

�
= cov

�
log "Dt + log "

W
t ; log "

D
t

�
= �2D + �DW :
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The conditional correlation is

�c;d;t = corrt�1

�
log

Ct
Ct�1

; log
Dt

Dt�1

�
=

�2D + �DWp
(�2D + �

2
W + 2�DW )�D

= 7
�2D + �DW

�2D
;

where the last line uses (59) and (61). Targeting a correlation of 0.2 thus delivers

�DW =

�
0:2

7
� 1
�
�2D: (62)

From (61) we then get

�2W =

�
1

49
� 1� 2

�
0:2

7
� 1
��

�2D: (63)

Equations (62) and (63) deliver our calibration targets. As is easily veri�ed, the implied
covariance matrix for the innovations

�
log "Dt ; log "

W
t

�
has a positive determinant.

We now check what the calibration implies for the variance of unconditional log con-
sumption growth �2C . Using the fact that time t shocks are independent of log

�
1 + Wt�1

Dt�1

�
and letting �C denote the standard deviation of unconditional log consumption growth,
we get

�2C = �
2
D + 2�DW + �

2
W + (1� p)2 var

�
log

�
1 +

W

D

��
:

The unconditional variance of log
�
1 + W

D

�
is given by

var

�
log

�
1 +

W

D

��
=

�2W
1� p2 ;

hence

�2C = �2D + 2�DW +
2(1� p)
1� p2 �

2
W

= �2D + 2

�
0:2

7
� 1
�
�2D +

2(1� p)
1� p2

�
1

49
� 1� 2

�
0:2

7
� 1
��

�2D

For p ! 1, we thus have the result that unconditional and conditional consumption
growth volatility are identical (�C = �c;t = �D=7). For lower values of the persistence
parameter p, unconditional consumption volatility decreases somewhat relative to condi-
tional consumption volatility. For the parameter values considered in the main text, we
have �

�D
�C

�
�
�
7:0 for p = 1:0
4:7 for p = 0:95

:
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A.5 Existence of Optimum, Su¢ ciency of FOCs, Recursive So-
lution

Substituting out Ct using the budget constraint (13a) in problem (13), one obtains a
problem that involves consumption choices only. Given the stock holding limits, the
choice set is compact. It is also non-empty since St = 1 for all t is feasible. The following
condition then insures existence of optimal plans:

Condition 1 The utility function u(�) is bounded above and for all i 2 [0; 1]

EP
i

0

1X
t=0

�t u (Wt +Dt) > �1: (64)

The expression on the left-hand side of condition (64) is the utility associated with
never trading stocks (Sit = 1 for all t). Since this policy is always feasible, condition (64)
guarantees that the objective function in (13a) is also bounded from below, even if the
�ow utility function u(�) is itself unbounded below.
From  > 1, see equation (19), we have u(Ct) =

C1�t

1� � 0 and thus a utility func-
tion that is bounded above. Provided (64) holds, the optimization problem (13a) thus
maximizes a bounded continuous utility function over a compact set, which guarantees
existence of a maximum. Under the assumptions made in the main text (utility function
given by (19), knowledge of (16) and (20)), condition (64) indeed holds, as can be seen
from the following derivations:

EP
i

0

1X
t=0

�t u (Wt +Dt)

= E0

1X
t=0

�t u (Wt +Dt)

=
1

1� E0
1X
t=0

�t
�
(1 +

Wt

Dt

)Dt

�1�

=
1

1� 

��
1 +

W0

D0

�
D0

�1�
E0

1X
t=0

�t

 
1 + Wt

Dt

1 + W0

D0

Dt

D0

!1�
:

Using

1 + Wt

Dt

1 + W0

D0

=

 
1 + �

1 + W0

D0

!1�pt t�1Y
j=0

�
"Wt�j

�pj
Dt

D0

=
�
�D
�t t�1Y
j=0

"Dt�j
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we get

EP
i

0

1X
t=0

�t u (Wt +Dt)

=
1

1� 

��
1 +

W0

D0

�
D0

�1�
E0

1X
t=0

 
1 + �

1 + W0

D0

!(1�pt)(1�) �
��D

�t(1�) t�1Y
j=0

"Dt�j
�
"Wt�j

�pj!1�

The in�nite sum is bounded if �
�
�D
�1�

E[
��
"W
�pj
"D
�1�

] is bounded below one for all
j > 0. The following derivations establish this fact:

�
�
�D
�1�

E

���
"W
�pj
"D
�1��

= �
�
�D
�1� �

E
h�
"W
�pj(1�)i

+ E[
�
"D
�1�

]
�

= �
�
�D
�1� �

ep
j(�1)(1+pj(�1))

�2W
2 + e(�1)

�2D
2

�
� �

�
�D
�1� �

e(�1)(1+(�1))
�2W
2 + e(�1)

�2D
2

�
= �

�
�D
�1�

E
h�
"W
�� �

"D
�1�i

< 1;

where the weak inequality follows from  > 1 and p 2 [0; 1] and the strict inequality from
(20). This establishes existence of optimal plans.
Since (13a) is a strictly concave maximization problem the maximum is unique. With

the utility function being di¤erentiable, the �rst order conditions

u0(Cit) = �E
Pi
t

�
u0(Cit+1)

Pt+1 +Dt+1

Pt

�
(65)

plus a standard transversality condition are necessary and su¢ cient for the optimum.

Recursive Formulation. We have a recursive solution whenever the optimal stock-
holding policy can be written as a time-invariant function Sit = Si(xt) of some state
variables xt. We seek a recursive solution where xt contains appropriately rescaled vari-
ables that do not grow to in�nity. With this in mind, we impose the following condition:

Condition 2 The �ow utility function u (�) is homogeneous of degree � � 0. Further-

more, the beliefs P i imply that �t �
�

Dt
Dt�1

; Pt
Dt
; Wt

Dt

�
has a state space representation,

i.e., the conditional distribution P i(�t+1j!t) can be written as

P i(�t+1j!t) = F i(mi
t) (66)

mi
t = Ri(mi

t�1; �t) (67)

for some �nite-dimensional state vectormi
t and some time-invariant functionsF i and

Ri.

Under Condition 2, problem (13a) can then be re-expressed as

max
fSit2[S;S]g1t=0

EP
i

0

1X
t=0

�t Dt u
�
Sit�1

�
Pt
Dt

+ 1

�
� Sit

Pt
Dt

+
Wt

Dt

�
; (68)
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given Si�1 = 1; where Dt is a time-varying discount factor satisfying D�1 = 1 and

Dt = Dt�1
�
�D"Dt

��
:

The return function in (68) depends only on the exogenous variables contained in the
vector �t. Since the beliefs P i are assumed to be recursive in �t, standard arguments in
dynamic programming guarantee that the optimal solution to (68) takes the form (21).
This formulation of the recursive solution is useful, because scaling Pt and Wt by the
level of dividends eliminates the trend in these variables, as desired. This will be useful
when computing numerical approximations to Si(�). The belief systems P i introduced in
section 6 will satisfy the requirements stated in condition 2.

A.6 Proof of Proposition 2

For general p we have

(1 +
Wt

Dt

) = (1 + �)(1�p) (1 +
Wt�1

Dt�1
)p ln "Wt

Dt = �DDt�1"
D
t

so that for Sit = 1 for all t � 0, the budget constraint implies Cit = Dt+Wt = Dt(1+
Wt

Dt
).

Substituting this into the agent�s �rst order condition delivers

Pt = �Et

24 (1 + Wt+1

Dt+1
)Dt+1

(1 + Wt

Dt
)Dt

!�
(Pt+1 +Dt+1)

35 : (69)

Assuming that the following transversality condition holds

lim
j!1

Et

24�j ( 1 + Wt+j

Dt+j

1 + Wt

Dt

!
Dt+j

Dt

)�
Pt+j

35 = 0; (70)

one can iterate forward on (69) to obtain
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= Et
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�
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�pi
;
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one has

Pt
Dt

= Et

24 1X
j=1
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1 +

Wt+j

Dt+j

1 + Wt

Dt

!� �
Dt+j

Dt

�1�35
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�(�D)1�
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24 1 + �

1 + Wt
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!�(1�pj) jY
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�
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�1� �
"Wt+k

��pi35 (71)

The in�nite sum in the previous expression is bounded, if Et
h�
"Wt+1

��pj�1 �
"Dt+1

�1�i
remains bounded away from one for all j > 1. This follows from the following derivations:

Et
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�1�i
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= Et
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��pj�1i
+ Et
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= e�p

j�1��
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2 + e(1�)
��2D
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2
D
2

� e(1+)
�2W
2 + e(�1)

�2D
2 = Et

h�
"Wt+1

�� �
"Dt+1

�1�i
< 1;

where the inequality in the third to last line follows from  > 1 and p 2 [0; 1] and the
last inequality from assumption (20). For the special cases p = 1 and p = 0, equation
(71) delivers the expressions stated in proposition 2.

A.7 Bayesian Foundations for Lagged Belief Updating

We now present a slightly modi�ed information structure for which Bayesian updating
gives rise to the lagged belief updating equation (38). Speci�cally, we generalize the
perceived price process (25) by splitting the temporary return innovation ln "t+1 into two
independent subcomponents:

lnPt+1 � lnPt = ln �t+1 + ln "1t+2 + ln "2t+1

with ln "1t+2 � iiN(�
�2";1
2
; �2"1), ln "

2
t+1 � iiN(�

�2"2
2
; �2"2) and

�2" = �
2
"1 + �

2
"2:

We then assume that in any period t agents observe the prices, dividends and wages up to
period t, as well as the innovations "1t up to period t. Agents�time t information set thus
consists of It = fPt; Dt;Wt; "

1
t ; Pt�1; Dt�1;Wt�1; "

1
t�1; :::g. By observing the innovations

"1t , agents learn - with a one period lag - something about the temporary components
of price growth. The process for the persistent price growth component ln �t remains as
stated in equation (26), but we now denote the innovation variance by �2ev instead of �2v.
As before, lnmt denotes the posterior mean of ln �t given the information available at
time t. We prove below the following result:

Proposition 4 Fix �2" > 0 and consider the limit �2"2 ! 0 with �2ev = �2"2g
2=(1 � g).
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Bayesian updating then implies

lnmt = lnmt�1 + g (lnPt�1 � lnPt�2 � lnmt�1)� g ln "1t (72)

The modi�ed information structure thus implies that only lagged price growth rates
enter the current state estimate, so that beliefs are predetermined, precisely as assumed
in equation (38). Intuitively, this is so because lagged returns become in�nitely more
informative relative to current returns as �2"2 ! 0, which eliminates the simultaneity
problem. For non-vanishing uncertainty �2"2 the weight of the last observation actually
remains positive but would still be lower than that given to the lagged return observation,
see equation (75) in the proof below and the subsequent discussion for details.
We now provide the proof of the previous proposition. Let us de�ne the following

augmented information set eIt�1 = It�1 [ f"1tg. The posterior mean for �t given eIt�1,
denoted lnmtjeIt�1 is readily recursively determined via
lnmtjeIt�1 = lnmt�1jeIt�2 � �

2ev
2
+ eg�lnPt�1 � lnPt�2 � ln "1t + �2ev + �2"22

� lnmt�1jeIt�2
�
(73)

and the steady state posterior uncertainty and the Kalman gain by

�2 =
��2e� +

q
(�2e�)2 + 4�2e��2"2
2eg =

�2

�2"2
(74)

We furthermore have

E[lnPt � lnPt�1jeIt�1] = lnmtjeIt�1 � �
2
"1 + �

2
"2

2

and

(lnPt � lnPt�1)� E[lnPt � lnPt�1jeIt�1] = ln �t � lnmtjeIt�1 + ln "1t+1 + ln "2t + �
2
"1 + �

2
"2

2

so that

�
ln �t

lnPt � lnPt�1
jeIt�1� � N   lnmtjeIt�1

lnmtjeIt�1 � �2"1+�
2
"2

2

!
;

�
�2 �2

�2 �2 + �2"1 + �
2
"2

�!
;

where the covariance between ln �tjeIt�1 and lnPt � lnPt�1jeIt�1 can be computed by
exploiting the fact that ln �t � lnmtjeIt�1 and ln "1t+1 + ln "2t are independent and using
ln �t � Et[ln �tjeIt�1] = ln �t � lnmtjeIt�1. Using standard normal updating formulae, we
can thus compute

lnmtjIt = E[ln �tjIt] = E[ln �tjeIt�1; lnPt � lnPt�1]
= lnmtjeIt�1 + �2

�2 + �2"1 + �
2
"2

�
lnPt � lnPt�1 +

�2"1 + �
2
"2

2
� lnmtjeIt�1

�
; (75)
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where the second equality exploits the fact that Dt;Wt contain no information about
ln �t; and the second inequality follows from the fact that eIt�1 contains information up
to t� 1 and including "1t ; since the latter is independent of (lnPt � lnPt�1).
Since �2

�2+�2"1+�
2
"2
< �2

�2"2
= eg, the weight of the price observation dated t is reduced

relative to the earlier observation dated t � 1 because it is �noisier�. Now consider the
limit �2"2 ! 0 and along the limit choose �2"1 = �

2
" � �2"2 and �2ev = g2

1�g�
2
"2, as assumed in

the proposition. From �2 ! 0 and equation (75) it then follows that lnmtjIt = lnmtjeIt�1,
i.e., the weight of the last observation price converges to zero. Moreover, from �2ev = g2

1�g�
2
"2

and (74) we get eg = g. Using these results, equation (73) implies equation (72).
A.8 Proof of Proposition 3

The proof uses the assumption of no uncertainty so that for any function f we have
EPt f(Xt+j; Yt+j) = f(EPt Xt+j; E

P
t Yt+j). Simplifying notation (and slightly abusing it)

in this appendix we let Xt+j = EPt Xt+j for all j � 1, so that Xt+j below denotes the
subjective expectation conditional on information at time t of the variable X at time
t+ j. The �rst order conditions (65) can then be written as

C�t = C�t+1�Rt+1 =) Ct = �
� j


jY
�=1

R
� 1


t+� Ct+j (76)

for all t; j � 0; assuming the stock limits are not binding in periods t; t+ 1; :::; t+ j � 1.
Iterating forward N periods on the budget constraint of the agent and using the fact that

either
NY
�=1

R�1t+� ! 0 or St+N ! 0 as N !1 we have

(Pt +Dt)St�1 =
1X
j=0

 
jY
�=1

R�1t+�

!
(Ct+j �Wt+j)

Using equation (76) to substitute out Ct+j gives

(Pt +Dt)St�1 =
1X
j=0

 
jY
�=1

R�1t+�

!"�
Wt

Dt

+ 1

�
�
j


jY
�=1

R
1


t+� �Wt+j

#

assuming the stock limits are large enough not to be binding.
Imposing on the previous equation St�1 = 1 (the market clearing condition for St�1

if t � 0, or the initial condition for period t = 0) and Ct = Dt +Wt (the market clearing
condition for consumption) one obtains

Pt
Dt

+ 1 =
NX
j=0

 
jY
�=1

R�1t+�

!"�
Wt

Dt

+ 1

�
�
j


jY
�=1

R
1


t+� �
Wt+j

Dt

#

Cancelling the terms for j = 0 in each summation gives for the market-clearing price

Pt
Dt

=

NX
j=1

 
jY
�=1

R�1t+�

!"�
Wt

Dt

+ 1

�
�
j


jY
�=1

R
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t+� �
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Dt

#
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Using (39) gives (40).

A.9 Veri�cation of Conditions (39)

For the vanishing noise limit of the beliefs speci�ed in section 6 we have

EPt [Pt+j] = (mt)
j Pt

EPt [Dt+j] =
�
�D
�j
Dt

EPt [Wt+j] =
�
�D
�j
Wt

where we have abstracted from transitional dynamics in the Wt=Dt ratio and assume
Wt=Dt = �, as transitional dynamics do not a¤ect the limit results. We �rst verify the
inequality on the l.h.s. of equation (39). We have

lim
T!1

EPt [RT ] = mt + lim
T!1

�
�D

mt

�T�1
�D
Dt

Pt
;

so that for mt > 1 the limit clearly satis�es limT!1E
P
t [RT ] > 1 due to the �rst term

on the r.h.s.; for mt < 1 the second term on the r.h.s. increases without bound, due to
�D > 1, so that limT!1E

P
t [RT ] > 1 also holds.

In a second step we verify that the inequality condition on the r.h.s. of equation (39)
holds for all subjective beliefs mt > 0. We have

lim
T!1

EPt

 
TX
j=1

�Yj

i=1

1

Rt+i

�
Wt+j

!
= lim

T!1
WtE

P
t

 
TX
j=1

�
�D
�j �Yj

i=1

1

Rt+i

�!

= lim
T!1

Wt

TX
j=1

Xj (77)

where

Xj =

�
�D
�jQj

i=1(mt +
�
�D

mt

�i�1
�DDt

Pt
)
� 0 (78)

A su¢ cient condition for the in�nite sum in (77) to converge is that the terms Xj are
bounded by some exponentially decaying function. The denominator in (78) satis�es

Yj

i=1
(mt +

�
�D

mt

�i�1
�D
Dt

Pt
)

� (mt)
j +

�
�D

mt

�j( j�12 )
�D
Dt

Pt
; (79)

where the �rst term captures the the pure products in mt, the second term the pure

products in
�
�D

mt

�i�1
�DDt

Pt
, and all cross terms have been dropped. We then have
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Xj =

�
�D
�jQj

i=1(mt +
�
�D

mt

�i�1
�DDt

Pt
)

�
�
�D
�j

(mt)
j +
�
�D

mt

�j( j�12 )
�DDt

Pt

=
1�

mt

�D

�j
+
�
�D

mt

�j( j�12 ) 1

(�D)
j�1

Dt
Pt

;

where all terms in the denominator are positive. For mt � �D > 1 we can use the �rst

term in the denominator to exponentially bound Xj , as Xj �
�
�D

mt

�j
; for mt < �

D we
can use the second term:

Xj �
1�

�D

mt

�j( j�12 ) 1

(�D)
j�1

Dt
Pt

=
1��

�D

mt

� j
2 1
�D

�j�1
Dt
Pt

Since mt < �
D there must be a J <1 such that�

�D

mt

� j
2 1

�D
� �D

mt

> 1

for all j � J , so that the Xj are exponentially bounded for all j � J .

A.10 Proof of Lemma 1

Proof of lemma 1: We start by proving the �rst point in the lemma. The price, dividend
and belief dynamics in the deterministic model are described by the following equations

lnmt = lnmt�1 + g (lnPt�1 � lnPt�2 � lnmt�1) (80)

lnPt � lnDt = f(lnmt)

lnDt � lnDt�1 = �D;

where f(�) is a continuos function, implicitly de�ned by the log of the Pt=Dt solution to
equation (41).100 Substituting the latter two equations into the �rst delivers

lnmt � lnmt�1 = g
�
f(lnmt�1)� f(lnmt�2) + ln �

D � lnmt�1
�
.

If lnmt converges, then the l.h.s. of the previous equation must converge to zero. Since
f(�) is continuos, this means that mt�1 must converge to �

D, as claimed.
We now prove the second point in the lemma. The belief dynamics implied by the

second order di¤erence equation (80) can expressed as a two-dimensional �rst order dif-

100Since we are interested in asymptotic results and since Wt=Dt ! �, pricing is asymptotically given
by equation (41).
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ference equation using the mapping F : R2 ! R2, de�ned as

F (x) =

�
x1 + g(lnPD(e

x1)� lnPD(ex2) + ln �D � x1)
x1

�
;

so that �
lnmt

lnmt�1

�
= F

�
lnmt�1
lnmt�2

�
:

Clearly, F has a �xed point at the RE solution, i.e., (ln �D; ln �D)0 = F (ln �D; ln �D)0.
Moreover, mt locally converges to the RE beliefs if and only if

@F (ln �D; ln �D)

@x0
=

�
1 + g (� � 1) �g �

1 0

�
(81)

has all eigenvalues less than one in absolute value, where � � @ lnPD(elnm)
@ lnm

���
m=�D

=

�D

PD(�D)

@PD(m)
@m

���
m=�D

with j�j < 1. The eigenvalues of the matrix in equation (81) are

� =
1 + g(� � 1)�

q
(1 + g(� � 1))2 � 4g �
2

:

From j�j < 1 and g < 1
2
follows that (1 + g(� � 1))2� 4g� > 1� 2g�� 2g � 0, so that all

eigenvalues are real. As is easily veri�ed, we have �+ < 1 because

1 + g(� � 1) < 2�
q
(1 + g(� � 1))2 � 4g � ,q

(1 + g(� � 1))2 � 4g � < 1� g(� � 1),
(1 + g(� � 1))2 � 4g � < (1� g(� � 1))2 ,

2g(� � 1)� 4g� < �2g(� � 1),
�g < 0

and �� < 1 because

�1 + g(� � 1) <
q
(1 + g(� � 1))2 � 4g �

where the l.h.s. is negative and the r.h.s. positive. We have �+ > �1 if and only if

1 + g(� � 1) > �2�
q
(1 + g(� � 1))2 � 4g �

From j�j < 1 and g < 1
2
the l.h.s. is weakly positive, while the r.h.s. is strictly negative.

We have �� > �1 if and only if

3 + g(� � 1) >

q
(1 + g(� � 1))2 � 4g � ,

(2 + (1 + g(� � 1)))2 > (1 + g(� � 1))2 � 4g � ,
1 + (1 + g(� � 1)) > �g � ,

2 + g(2� � 1) > 0
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Figure 14: Expected return as a function of expected capital gain

The last equation holds since j�j < 1 and g < 1
2
. This shows that the eigenvalues of (81)

are all inside the unit circle.

A.11 Capital Gains Expectations and Expected Returns: Fur-
ther Details

Figure 14 depicts how expected returns at various horizons depend on agent�s expected
price growth expectations using the same parameterization as used in �gure 5. It shows
that expected returns covary positively with capital gains expectations for mt � �D, as
has been claimed in the main text. The �at part at around mt � 1 � 0:01 arises because
in that area the PD ratio increases strongly, so that the dividend yield falls. Only for
pessimistic price growth expectations (mt < �

D) and long horizons of expected returns
we �nd a negative relationship. The latter emerges because with prices expected to fall,
the dividend yield will rise and eventually result in high return expectations.

A.12 Numerical Solution Algorithm

Algorithm: We solve for agents� state-contingent, time-invariant stockholdings (and
consumption) policy (21) using time iteration in combination with the method of en-
dogenous grid points. Time iteration is a computationally e¢ cient, e.g., Aruoba et al.
(2006), and convergent solution algorithm, see Rendahl (2013). The method of endoge-
nous grid points, see Carroll (2006), economizes on a costly root �nding step which speeds
up computations further.
Evaluations of Expectations: Importantly, agents evaluate the expectations in the

�rst order condition (65) according to their subjective beliefs about future price growth
and their (objective) beliefs about the exogenous dividend and wage processes. Expecta-
tions are approximated via Hermite Gaussian quadrature using three interpolation nodes
for the exogenous innovations.
Approximation of Optimal Policy Functions: The consumption/stockholding

policy is approximated by piecewise linear splines, which preserves the nonlinearities
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arising in particular in the PD dimension of the state space. Once the state-contingent
consumption policy has been found, we use the market clearing condition for consumption
goods to determine the market clearing PD ratio for each price-growth belief mt.
Accuracy: Carefully choosing appropriate grids for each belief is crucial for the

accuracy of the numerical solution. We achieve maximum (relative) Euler errors on the
order of 10�3 and median Euler errors on the order of 10�5 (average: 10�4).
Using our analytical solution for the case with vanishing noise, we can assess the

accuracy of our solution algorithm more directly. Setting the standard deviations of
exogenous disturbances to 10�16 the algorithm almost perfectly recovers the equilibrium
PD ratio of the analytical solution: the error for the numerically computed equilibrium
PD ratio for any price growth belief mt on our grid is within 0.5 % of the analytical
solution.

A.13 Model with Stock Supply Shocks

With the supply shocks speci�ed in the main text, the individual optimization problem
remains unchanged. The only point where the model changes is when we compute market
clearing prices. These now have to satisfy the relation

S(e"
s
t�1 ;

Pt
Dt

;
Wt

Dt

;mt) = e
"st ;

where

"st � iiN(�
�2"s

2
; �2"S):

To illustrate model performance in the presence of supply shocks and to compare it to the
model without supply shocks, we continue to keep the parameter values for (; �; p) equal
to the estimated ones for the model from table 3 (diagonal matrix) and only reestimate
the gain value g, so as to �t the asset pricing moments reported in table 3, using a
diagonal weighting matrix. Clearly, an even better match with the data moments can be
achieved by reestimating all parameters. For �2"S = 1:25 � 10�3, the new gain estimate isbg = 0:02315.
Table A5 below reports the moments and t-ratios for the model with supply shocks.

The model implied standard deviation for the risk free rate and the autocorrelations of
the excess stock returns and stock returns are reported in table 6 in the main text. In
terms of the t-ratios in table A1, the model performs equally well as the baseline models
from table 3, except for the autocorrelation of the PD ratio which is now somewhat lower.
The �t with the latter moment could be improved further by relaxing the assumption
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that "st is iid.

Subj. Belief Model
with Supply Shocks

Moment t-ratio
E[PD] 107.3 -1.30
Std[PD] 74.1 0.60
Corr[PDt, PDt�1] 0.96 -6.66
Std[rs] 7.45 -1.36
c -0.0044 -0.28
R2 0.16 -0.63
E[rs] 1.81 -0.18
E[rb] 0.98 4.99
UBS Survey Data:
Corr[PDt,EPt Rt+1] 0.75 -0.69

Table A5: Asset pricing moments, estimated model with supply shocks
from table 6 in the main text

A.14 Derivation of Approximate Sharpe Ratios

Under rational and subjective price beliefs, the following two �rst-order-conditions hold,
namely the �rst order condition for stocks

1 = EPt

"
�

�
Ct+1
Ct

��
(1 + rst+1)

#
; (82)

where 1+ rst+1 =
Pt+1+Dt+1

Pt
is the gross real stock return, and the �rst order condition for

bonds
1 + rbt =

1

EPt

�
�
�
Ct+1
Ct

��� : (83)

Equation (82) can be written as

EPt

"
�

�
Ct+1
Ct

��#
� EPt

�
rst+1

�
+ covPt

"
�

�
Ct+1
Ct

��
; rst+1

#
= 1: (84)

Dividing the previous equation by EPt

�
�
�
Ct+1
Ct

���
and using (83) one obtains

EPt
�
rst+1

�
� rbt = �(1 + rbt ) � covPt

"
�

�
Ct+1
Ct

��
; 1 + rst+1

#
: (85)

Dividing by StdPt
�
rst+1

�
delivers
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EPt
�
rst+1

�
� rbt

StdPt
�
rst+1

� = �(1 + rbt ) � StdPt
�
� (Ct+1=Ct)

�� corrPt
"
�

�
Ct+1
Ct

��
; 1 + rst+1

#
; (86)

where the left-hand side is the (subjective) conditional Sharpe ratio and corrPt [�] the
(subjective) conditional correlation. Using the fact that�

1 + rbt
�
� � 1

corrPt

"
�

�
Ct+1
Ct

��
; 1 + rst+1

#
� �1;

where the latter follows from the �rst order condition (82), we have under the additional
assumption of log-normal consumption growth (which holds exactly in the case with
rational price expectations):

EPt
�
rst+1

�
� rbt

StdPt
�
rst+1

� � StdPt [Ct+1=Ct] : (87)

For the case with rational price expectations (EPt [�] = Et[�], StdPt [�] = Stdt [�]), it then
follows from (23) that Stdt

�
rst+1

�
� Std

�
rst+1

�
, so that by using this relationship to

substitute Stdt
�
rst+1

�
in (87) and by applying the unconditional rational expectations

operator on both sides of the equation, one obtains equation (44) in the main text.
For the case with subjective price expectations, we have

StdPt
�
rst+1

�
� StdP

�
rst+1

�
� Std [rs] ; (88)

where the �rst approximation is a feature of the subjective price belief system101 and
the second approximation due to the way we calibrated the standard deviation �" of the
transitory price shock "t in table 2. Using (88) to substitute StdPt

�
rst+1

�
in (87) and

applying the unconditional expectations operator on both sides of the equation delivers

E
�
EPt
�
rst+1

��
� E

�
rbt
�

Std [rs]
� E

�
StdPt [Ct+1=Ct]

�
;

which implies (45).

101According to agents�subjective beliefs

1 + rst+1 =
Pt+1 +Dt+1

Pt

= �t+1vt+1"t+1 +
Dt
Pt
"Dt : (89)

Since Dt

Pt
is small, �t+1vt+1 � 1, and the standard deviation of "Dt is small relative to the standard

deviation of "t+1, the last term in (89) contributes little to the standard deviation of rst+1. It then
follows from �t+1vt+1 � 1 that StdPt

�
rst+1

�
� StdP ["t+1], which is time invariant, as claimed.
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A.15 Simultaneous Belief Updating

This appendix provides further information about the extended model with a share of
simultaneous belief updaters considered in section 11.3.
Table A6 reports for di¤erent values of � the model moments when the selection rule

chooses the closest market clearing price.102 The table shows that most asset pricing
implications of the subjective belief model are rather robust to allowing for contempo-
raneous belief updating. The main quantitative e¤ects of introducing current updaters
consists of increasing the volatility of stock returns, the volatility of the PD ratio and the
equity premium. These e¤ects become more pronounced as the share of current updaters
� increases, as this leads to an increase in the percentage share of periods with multiple
market clearing prices. Importantly, however, the objectively expected discounted utility
of agents that use lagged belief updating exceeds - for all values of � - that of agents who
use current belief updating, see the last two rows in table A6.103 Current updaters would
thus have an incentive to switch to lagged updating, i.e., to the setting considered in our
baseline speci�cation.
Table A7 reports the model moments when the equilibrium selection rule chooses in-

stead the market clearing price that is furthest away from the previous period�s price.
For � � 0:7 the same phenomena occur as for the alternative selection rule considered
before, i.e., volatility and risk premia increase, with the quantitative e¤ects being now
more pronounced. For � � 0:8, the share of periods with multiple equilibria increases
substantially, so that there are more often two consecutive periods with multiple equilib-
ria. The selection rule then creates an oscillating pattern between high and low market
clearing prices. This manifests itself in a reduced autocorrelation for the PD ratio, which
becomes even negative for � � 0:9. As before, current forecasters�(objectively) expected
utility always falls short of that experienced by forecasters using only lagged price growth.
For large values of �, the utility gap widens signi�cantly because the forecast quality of
forecasters using current price information deteriorates signi�cantly in the presence of
oscillating price patterns.
Overall, we �nd that - in line with the postulated subjective belief structure in our

baseline setting - agents will �nd it optimal to use only lagged price observations to
update beliefs. Even if some agents would use current price information for updating
beliefs, the model continues to produce high amounts of stock price volatility and also
tends to deliver a positive correlation between the PD ratio and subjective expected
returns.

102The parameters in tables A6 and A7 are those given by the estimated model from table 3 (diagonal
matrix). To compute Corr[PDt; EPt [Rt+1]] we let E

P
t [Rt+1] denote the average return expectations

across agents, in line with how the return expectations are computed in the survey data.
103The table reports the unconditional expectation of discounted consumption utility using the objective
distribution for consumption, as realized in equilibrium.
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