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A Computational strategy

In this online appendix, we detail our computational strategy. Whenever we mention a “FOC

with respect to...” in this appendix, we refer to the FOCs of the Ramsey planner’s problem,

which are in Appendix A in the paper.

1. Choose T , the number of periods after which the steady state is assumed to be reached.

(We use T = 150.) All parameter values, initial conditions, and functional forms are

taken as given. Fix ψ.

2. Propose as a candidate solution a (3T + 3)-dimensional vector

X = {k0, ..., kT−1, e0, ..., eT−1, γ0, ..., γT−1,∆1,∆2, λ}.1

3. For each (∆1,∆2, λ), find the steady state with either τ k∞ = 0 or τ k∞ = τ̃ . In the

first case, we set γss = 0 and find (kss, css, ess, µss) using the FOCs for consumption,

labor, and capital, and the resource constraint. In the second case, we set css = c̃ and

γss = µss = 0 and find (kss, ess) using the consumer’s Euler equation with τ k∞ = τ̃ and

the resource constraint. We then set time-T variables to these steady-state values.

4. For each candidate solution X, we compute ct from the resource constraint and µt from

the FOC for labor for t = 0, ..., T − 1. Thus the resource constraint and FOC for labor

always hold as equality. Obviously {rt, wt, Fkl,t, Fkk,t} in the FOCs are found using the

production function.

5. Then, given X, we set up a system of 3T + 3 equations to solve for X that satisfies

G(X) = 0,

where the function G captures that FOCs with respect to capital and consumption,

Kuhn-Tucker conditions, and discounted sums equations have to hold.

1Note that this is not the minimal number of variables we could find solving a fixed point problem. 2T +3
would be sufficient if we solved out µt. However, convergence is better if the approximation errors are spread
over a larger number of variables.
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More precisely, we take G = (G1, G2, G3, G4), where Gi : R3T+3 → RT for i = 1, 2, 3,

and G4 : R3T+3 → R3. Letting γ̃t(X) be the value of γt that solves exactly the FOC for

consumption given (kt−1, lt, γt−1,∆1,∆2, λ) in the candidate solution X, the elements

of G are defined as follows:

• G1,t = γ̃t(X)− γt, t = 0, ..., T − 1.

• Let I+(x) be the indicator function of [0,∞) and INDt(X) be defined, as a function

of the candidate solution, by

INDt(X) = I+

(
u′ (c1,t)

u′ (c1,t+1)
− β [1 + (rt+1 − δ) (1− τ̃)]

)
.

Then

G2,t(X) = INDt(X)γt+(1−INDt(X))

{
u′ (c1,t)

u′ (c1,t+1)
− β [1 + (rt+1 − δ) (1− τ̃)]

}
,

t = 0, ..., T − 1.

• G3,t sets the FOC for capital to zero when γ̃t(X) is introduced in the FOC, t =

0, ..., T − 1, i.e.,

G3,t = µt + γ̃t(X)β (c1,t+1)
−σc Fkk (kt, et+1) (1− τ̃)− βµt+1 (1− δ + Fk (kt, et+1)) .

• G4 sets the life-time budget constraints of both agents and the FOC with respect

to λ to zero.

Note that the FOCs for consumption and labor at t = 0 differ from the FOC in later

periods, see Appendix A.

We use a trust-region dogleg algorithm and Broyden’s algorithm, repeatedly when necessary,

to solve this system of (3T + 3) equations. We thank Michael Reiter for providing us his

implementation of Broyden’s algorithm.

Notice that the above algorithm imposes (up to the precision of the solution) that τ kt ≤ τ̃ ,

but it does not impose γt ≥ 0. We check ex post that the last inequality holds for all t. It

did for all cases when we found a solution to this system of equations.

B Sensitivity analysis for our baseline model

We check the sensitivity of our results to the measurement of relevant tax rates and inequality

at the status quo. We recalibrate and solve our baseline model considering both a lower and
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a higher value for each the three data moments. Note that, given the calibration strategy

that we use (described in Section 4.1), considering different values of λSQ and taxes in effect

changes the distribution of private wealth of agents kj,−1 in all of the alternative calibrations

considered in this robustness exercise.

The benchmark case splits the observed population into two groups that have above or

below median wage-wealth ratio. In the real world there is a very large heterogeneity of wage-

wealth ratios even within each of these groups. Therefore, the Pareto-improving allocations

that we compute in the text could worsen the welfare of agents further out in the distribution.

As another robustness check, we recalibrate the heterogeneity parameters in our model to the

top and bottom quintiles of the wage-wealth distribution in the PSID. That is, now agent w

(c) represents families in the group of 20% highest (lowest) wage-wealth ratios, rather than

the top and bottom half as in the main text. This affects the calibration of wages as well as

initial wealth. For bottom and top quintiles GMV report that φw/φc = 0.95 and λSQ = 0.31,

see their Tables 2 and 3.

Table 1 summarizes some aspects of the simulations for these alternative parameters,

changing the values of parameters one at a time relative to the baseline calibration. It

reports the duration of the transition and the revenue share of capital taxes for the two

extreme points of the set of POPI plans. We always find the same qualitative properties of

the optimal policies as for the baseline calibration described in Section 4, and in some cases

the results are reinforced, as the transition is even longer.

We have also solved our model with u() = log() for a baseline calibration and these

parameter changes. The results are presented in Table 2.

Table 1: Sensitivity analysis, σc = 2

Workers gain as much as possible Capitalists gain as much as possible
Calibration duration of revenue share duration of revenue share

transition (years) of τ k(%) transition (years) of τ k(%)
Baseline 24 20.8 16 16.2
τ kSQ = 0.3 33 25.1 22 20.7
τ kSQ = 0.57 26 30.7 12 20.1

τ lSQ = 0.15 35 38.9 20 29.7
τ lSQ = 0.3 22 15.0 14 11.6

λSQ = 0.5 24 20.6 16 16.5
λSQ = 0.6 25 21.2 15 15.2
High inequality 26 19.4 16 14.8

Notes: The column entitled ‘Calibration’ indicates which data moment has been reset to which value. The
subscript ‘SQ’ refers to the status quo.
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Table 2: Sensitivity analysis, σc = 1

Workers gain as much as possible Capitalists gain as much as possible
Calibration duration of revenue share duration of revenue share

transition (years) of τ k(%) transition (years) of τ k(%)
Baseline 26 21.7 11 12.7
τ kSQ = 0.3 35 25.5 17 16.8
τ kSQ = 0.57 17 15.4 7 7.7

τ lSQ = 0.15 30 36.1 13 21.6
τ lSQ = 0.3 14 7.2 8 4.6

λSQ = 0.5 25 21.5 12 13.4
λSQ = 0.6 25 21.3 10 11.4
High inequality 26 25.1 16 19.1

Notes: The column entitled ‘Calibration’ indicates which data moment has been reset to which value. The
subscript ‘SQ’ refers to the status quo.

C Inequality and deductible

In this section we explore in more detail how initial wealth inequality affects optimal policy

in our model, in particular at one point of the Pareto frontier: the social planner cares only

about the welfare of the worker (the wealth-poor agent). The aim is to inspect the claim

in Benhabib and Szőke (2021), BSz hereafter, that a combination of high inequality and

maximising the welfare of a wealth-poor agent is the reason for the τ k∞ > 0 result that they

find. We allow for a deductible, as in Section 4.4 and in BSz.

We consider 6 scenarios, combining two possible calibrations of inequality with three

different sets of parameter values.

For the calibration of inequality we start with ‘baseline inequality’ as in our baseline

calibration in the main text. Remember that we have calibrated the initial wealth of workers

and capitalists by taking the consumption ratio of the two groups from the data cwSQ/ccSQ = 0.54,

initial wealth is found from the lifetime budget constraint under status quo taxation. The

case of ‘high inequality’ sets cwSQ/ccSQ = 0.2, i.e., the planner only cares about workers who

consume a fifth as much as the capitalists. The resulting initial wealth values are in Table 3

below.

The three sets for parameter values are as follows. The first is our baseline calibration.

Second, we adapt parameterisation in part towards BSz by assuming homogenous labor pro-

ductivity (φw = φc = 1), zero labor tax, no government spending, and no initial government

debt. We will call this ‘BSz calibration’. Our third case is the same as our BSz calibration

but with a lower upper bound on the capital income tax rate that BSz use, τ̃ = 0.1.
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Table 3 shows some key features of optimal tax policies and the resulting allocations in

the 6 scenarios, as well as the optimal allocations when we impose restrictions on tax policies

from BSz, namely, τ kt = τ̃ and τ lt = 0, for all t, which we dub ‘BSz tax policies’.

Table 3: Wealth inequality and optimal policy

Calibration: Baseline ‘BSz’ ‘BSz’ τ̃ = 0.1

Baseline inequality

kw0 −1.136 −2.741 −2.553
kc0 4.356 5.935 10.67
τ k∞ 0 0.401 0 0.401 0 0.1
Duration 44 ∞ 43 ∞ 96 ∞
τ l∞ 0.243 0 −0.036 0 −0.050 0
Deductible −6.438 −1.702 −8.802 1.064 −13.12 0.461
λ = cw/cc 0.645 0.571 0.691 0.559 0.668 0.549
V w −152.64 −103.58 −111.33 −69.01 −72.772

High inequality

kw0 −5.167 −8.228 −10.95
kc0 8.387 11.62 19.26
τ k∞ 0 0.401 0 0.401 0 0.1
Duration 69 ∞ 62 ∞ 129 ∞
τ l∞ 0.271 0 −0.171 0 −0.240 0
Deductible −25.36 −1.763 −34.17 1.060 −53.09 0.369
λ = cw/cc 0.545 0.245 0.615 0.238 0.598 0.229
V w −270.82 −419.39 −169.05 −259.38 −116.36 −209.66

Table 3 shows that our optimal tax policies give higher lifetime utility to the wealth-poor

than the BSz tax policies. In addition, Table 3 shows that at the optimum (i) the deductible

is always negative, i.e., a lump-sum tax is always optimal, and (ii) in the BSz calibrations the

labour income tax is negative; and both are increasing (in absolute value) with initial wealth

inequality. That is, increasing wealth inequality and caring only about the poor agent does

not imply that BSz policies are optimal for these parameter values, even if we minimise the

need to raise public revenue. A negative labour income tax rate is progressive in the BSz

calibrations and, combined with a lump-sum tax and zero capital tax in the long run, serves

to promote equity better than a high capital tax combined with a lump-sum transfer. The

room for redistribution under BSz tax policies is small: λ = cw/cc remains close to its autarky

value in all 6 scenarios. Finally, in our baseline calibration a lump-sum tax remains optimal

even under BSz tax policies, due to the need to finance government spending and debt.
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D More on the multiplier µ and optimal waste

SW and BB pointed out that the Chamley-Judd argument may fail because µ may not have

a steady state. Indeed, they show examples where optimal policy implies immiseration, i.e.,

ct → 0, therefore µt →∞. However, there is another reason why the standard Chamley-Judd

argument might not work, namely, when γ has a steady state γss > 0 and the production

function is strictly concave. In this appendix we show that in that case µss < 0, and hence

it is optimal to waste aggregate consumption, or, allowing for free disposal would improve

social welfare.

It follows that the reason BSz obtain τ kt 9 0 is that in their model µ is negative in some

periods, their result is therefore compatible with our Proposition 1 as it requires µt ≥ 0, ∀t.
In general, negative µ’s are associated with models where τ k∞ = τ̃ and css > 0. Below we also

show numerically that negative µ’s are optimal in the example of Section IIIA of BSz, and

that requiring positive rather than zero government spending improves social welfare. We

also show that wasteful government spending improves social welfare.

We modify our baseline model for the purposes of this exercise, and adopt some as-

sumptions from BSz. In particular, we focus on the case with inelastic labour supply, the

government can set a (possibly negative) deductible D, as in Section 4.4, all agents are

equally productive, i.e., φ1 = φ2, there is no depreciation allowance, the mass of the worker

(the wealth-poor agent, agent 1) is zero, and the Pareto weight of the capitalist (agent 2) is

zero. u() is CRRA.

Under these assumptions, ct = c2,t, k−1 = k2,−1, k1,−1 < k−1 and we can write λc1,t = ct,

∀t, for some λ.2 Due to the deductible D the optimal allocation sets ∆2 = −∆1, hence the

Lagrangian of the policy-maker’s problem is

L =
∞∑
t=0

βt[u (c1,t) + ∆1 (1− λ)u′ (c1,t) c1,t

+u′ (c1,t) [γt − γt−1 (1− δ + rt (1− τ̃))] (1)

+µt [F (kt−1) + (1− δ)kt−1 − kt − c1,tλ− g]} −W,

where γ−1 = 0 and W = ∆1u
′ (c1,0) (k1,−1 − k−1) (1− δ + r0 (1− τ̃)). The FOCs are easy to

derive. They are similar to the ones of our baseline model, see Appendix A.

We assume that c and k have steady states. We are concerned with models where the

optimal allocation does not have immiseration, i.e., ct → css > 0, so we ignore the constraint

ct ≥ c̃ for simplicity. Using that u() is CRRA, let Ωc ≡ 1 + ∆1 (1− λ) (1− σc).
2BSz denote 1/λ by αi.
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Proposition 3. If the tax limit is binding forever in the optimal allocation, then µ and γ

have steady states and

a) either µss,−γss,Ωl,Ωc < 0,

b) or µss = γss = Ωl = Ωc = 0.

Proof. Let us rewrite the FOC for capital as

µt+1 = µtνt − γtαt, (2)

where νt = 1
β(1−δ+Fk(kt,et+1))

and αt = −u′(c1,t+1)Fkk(kt,et+1)(1−τ̃)
1−δ+Fk(kt,et+1)

. If the tax limit is binding

forever, plugging τ̃ = τ kt in (4) of the main text, we have

νt =
u′ (c1,t+1) (1− δ + Fk (kt, et+1) (1− τ̃))

u′ (c1,t) (1− δ + Fk (kt, et+1))
→ 1− Fk (kss, ess) τ̃

1− δ + Fk (kss, ess)
= νss,

where 0 < νss < 1.

Let us rewrite (22) of Appendix A as

Ωlv′ (l1,t)− γt−1Bt = −Dtµt (3)

where Bt, Dt are defined by the corresponding terms in (22) of Appendix A. Combining this

equation with (2) we have

µt+1 = µt
νt

1 + Dt+1

Bt+1
αt
− Ωlv′ (l1,t+1)αt
Bt+1 +Dt+1αt

.

Given that (Bt, Dt, αt)→ (Bss, Dss, αss) > 0 we have 0 < νss

1+Dss

Bss
αss

< 1.

Therefore, in the limit this is a stable first-order linear equation in µ, and using a familiar

argument we get

µt → µss = − Ωlv′ (lss1 )αss

Bss +Dssαss

(
1

1− νss

1+Dss

Bss
αss

)
. (4)

Further, using (3) we have that

γt → γss =
Ωlv′ (lss) +Dssµss

Bss
. (5)

Hence (2) implies

µss = − αssγss

1− νss
≤ 0.

Using (Bss, Dss, αss) > 0 and 0 < νss < 1 in (4), there are only two possibilities: either(
µss,Ωl,−γss

)
< 0 or µss = γss = Ωl = 0. Furthermore, taking limits in (21) of Appendix A,

with ξss = 0, it follows that either Ωl,Ωc < 0 or Ωl = Ωc = 0.
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Given these results we expect that in the quantitative example of Section IIIA in BSz,

µss < 0. To verify this, we compute the dynamic paths of multipliers for that example, where

the production function is F (k, 1) = z (ρk1−η + (1− ρ))
1

1−η and we use their parameter values

z = 2.5, ρ = 0.95, η = 3, β = 0.96, σc = 3, δ = 1, τ̃ = 0.1, and g = 0. The results are shown

in Figure 1. The precise values of the multipliers at the steady state are γss = 0.0104 > 0,

µss = −0.0026 < 0, and µt < 0 for t ≥ 12.3

Figure 1: The paths of γ and µ
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This demonstrates why our Proposition 1 does not apply here. The question then arises:

what does a negative µ in some periods imply for fiscal policy? Indeed, from an economic

point of view, this seems like a mistake, as it means that wasting consumption can be optimal

even though welfare depends only on consumption.

The explanation is the following: both in this paper and BSz, the government faces the

constraint gt = g for a fixed g. Mathematically the multiplier on such an equality constraint

might have either sign at the optimum. Consider now changing this constraint to gt ≥ g,

giving the government the ability to waste aggregate consumption through fiscal policy. A

negative µt in this paper or BSz implies that social welfare would improve by setting gt > g.

To demonstrate this we have done the following exercise: since µt < 0 for t ≥ 12, we set

3We have computed these multipliers in two ways: imposing the optimal allocation provided by BSz and
using our algorithm which jointly solves for allocations and multipliers. The solutions are indistinguishable
in the Figure.
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gt = g for all periods t ≥ 12 for some g > 0, keeping gt = 0 for t < 12. We then compute the

corresponding allocations when taxes are at the upper bound forever.4 We find the following.

Table 4: Welfare of the poor agent for various g

g Welfare
0 −3.88675
0.1 −3.88425
0.13 −3.8840711
0.134 −3.8840685
0.14 −3.8840742
0.15 −3.88411

Note that the optimal allocation for g = 0 is the same as in BSz for g = 0, and we find the

same welfare as using their formula. Social welfare is maximised when g = 0.134, and this

corresponds to a consumption-equivalent welfare gain of 0.109% compared to g=0.

The reason this happens is that a lower ct means a higher discount factor u′(ct)
u′(c0)

, therefore

increasing gt could increase the discounted value of tax revenue in the distant future. If

capital taxes are already at the upper limit, wasting consumption is the only way to extract

more revenue from the capitalist and increase the relative consumption of the worker. This

is indeed what happens: relative consumption λ is 0.656 for g = 0 and 0.666 for g = 0.134.

E Alternative solution strategies for PO allocations

The setting of Flodén (2009) is close ours. It is important to clarify the differences, as in our

view Flodén’s strategy of solving a model with a so-called ‘optimized’ agent does not find all

PO solutions. In fact, it is not clear that this strategy gives PO allocations except in a very

special case. Here we describe in detail his approach and review his contribution.

There are several ways in which our solution approach differs from Flodén’s. He assumes

that agents have a Greenwood-Hercowitz-Huffman (GHH) utility, i.e., the utility of agent j

is

Uj,t =
1

1− µ

(
cj,t −

ζ

1 + 1/γ
l
1+1/γ
j,t

)1−µ

.

This is a non-separable utility function, unlike ours, but it is immediate to extend our ap-

proach to this case. In addition, Flodén considers a general measure of agents λ̃(s) (λ(s)

in Flodén, 2009) of agents of type s. Our two-types-of-agents setup is a special case of his,

4This is a feasible but not necessarily optimal policy under free disposal.
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therefore this is not an important difference either. Our approach could also be generalized

to a general measure of agents.

For reference, we repeat here two equilibrium conditions we use, equations (6) and (7) in

the main text:

c2,t = λc1,t, ∀t, (6)

and

l2,t = K(λ)l1,t, ∀t. (7)

Flodén writes the planner’s problem as Atkeson, Chari, and Kehoe (1999), ACK hereafter,

by keeping consumption of all agents in the equilibrium conditions, instead of summarizing

the allocations of other agents using (6), (7), and λ, as we do. Although this makes com-

putations different, it should not affect the allocations found. We describe this approach in

detail below.

A key difference is that Flodén solves a planner’s problem that maximizes the utility

of one agent (the ‘optimized’ agent). Then Proposition 5 in his paper claims that all PO

allocations can be traced out by changing the wage and wealth of the optimized agent. By

contrast we solve for all individual allocations directly (through the optimal choice of λ).

These differences are important and we examine them carefully below.

We use the notation

ujc,t =

(
cj,t −

ζ

1 + 1/γ
l
1+1/γ
j,t

)−µ
.

and similarly for ujl,t.

Using an ACK Lagrangian

Instead of representing equilibrium conditions with (6) and (7), as we do, Flodén follows

ACK and the keeps equilibrium conditions

u1c,t
u1c,t+1

=
ujc,t
ujc,t+1

and
u1l,t
u1c,tφ1

=
ujl,t
ujc,tφj

, ∀j, (8)

as separate constraints in the planner’s problem. Feasibility, firm behavior, and budget con-

straints are as in the main text of our paper. For simplicity we do not consider consumption

limits or tax limits in this appendix.

We focus on the case where λ̃ is a discrete measure with J types of agents, where J is

a finite integer, and agent j has mass λ̃j. This is the case of our main text with J = 2

and λ̃1 = λ̃2 = 1/2. It also seems to be the case that Flodén is thinking of, since in the
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computations he looks at a case with 300 agents, each with the same mass. We comment on

the case of a continuum of agents at the end.

The Lagrangian to find the PO allocations using this approach is

L=
∞∑
t=0

βt

{(
J∑
j=1

ψjUj,t + ∆j

[
Uj,t(1− µ) +

u1c,tζl
1/γ+1
j,t

γ + 1

]
+ρjt [u1c,tujc,t+1 − ujc,tu1c,t+1] + ξjt [u1c,tujl,tφ1 − u1l,tujc,tφj]) (9)

+µt

(
J∑
j=1

λ̃jcj,t + g + kt − (1− δ) kt−1 − F (kt−1, et)

)}
+

J∑
j=1

∆jWj,−1.

We use Flodén’s notation except that we use ψ instead of his agent weights ω, we use ∆j for

the multipliers of individual implementability constraints instead of λj, and for the multiplier

of the feasibility constraint we use µt instead of Flodén’s −νt.
We prefer representing CE in the main text using (6) and (7) to substitute out agent 2’s

consumption and labor because then the planner’s problem can be written as a maximization

over τ k0 , λ, {c1t , kt, l1t }
∞
t=0. This reduces enormously the number of variables and multipliers

to be computed, and it is much more convenient for computation. More precisely, given the

algorithm described in Appendix A, the number of variables to solve for with J agents would

be (2 + J) × T + 2 + J using the ACK approach, while using our approach the number of

variables to compute is only 3T + 2 + J . But solving the Lagrangian (9) is equally valid,

and it should give the same solution as we find. Hence in this appendix we characterize PO

solutions to (9), as is done in Flodén (2009).

Using a representative agent

Flodén actually uses a modification of the above Lagrangian applying his Proposition 3.

This proposition says that CE constraints can be summarized in an implementability con-

straint of a representative agent (RA) who has productivity φRA ≡
(∑J

j=1 λ̃jφ
1+γ
j

) 1
1+γ

and∑J
j=1 λ̃jkj,−1 = k−1 − kg−1. This RA consumes CRA

t =
∑J

j=1 λ̃jcj,t. His Proposition 3 shows

that as long as a CE satisfies
∞∑
t=0

βt
[
uCRA,tC

RA
t + ulRA,tl

RA
t

]
= WRA

−1 , (10)

there is a heterogeneous-agents equilibrium which is consistent with the tax policy for this

RA economy.

Flodén finds equilibria that arise from the FOCs of the Lagrangian on page 300 in Flodén.

The reader can check that one can go from the above Lagrangian (9) to Flodén’s with the

following three modifications:
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1. Equation (10) is introduced in the planner’s problem as an additional constraint.

2. The competitive equilibrium conditions (8) are written in terms of ratios of individual

marginal utilities to the RA’s marginal utilities.

3. Individual consumptions disappear from the feasibility constraint, i.e.,
∑J

j=1 λ̃jcj,t is

replaced by CRA
t in the feasibility constraint.

Let us comment on the validity of these modifications.

Modification 1 is not needed for an equilibrium, because if all individual implementability

constraints are satisfied, constraint (10) is guaranteed to hold. Therefore, modification 1 is

redundant. All this means is that the multipliers λj and ∧ (in Flodén’s notation) are not

uniquely defined, but the FOCs obtained from introducing modification 1 should give the

same allocations as (9).

Modification 2 is also correct, indeed it implies and is implied by (8).

But modification 3 is incorrect. Only if an additional constraint was added restricting

J∑
j=1

λ̃jcj,t = CRA
t , (11)

one could put only CRA
t in the feasibility constraint. A similar point applies to aggregate

labor.

As it is written, the Lagrangian on page 300 in Flodén ignores the fact that the aggregate

of all individual consumptions and leisure have to satisfy the feasibility constraint. A proper

solution would entail incorporating the constraint (11) into the planner’s problem, since it is

not implied by any combination of the other constraints imposed. Therefore, FOCs (A.6) to

(A.14) in Flodén do not provide a PO allocation.

That the FOCs of Flodén’s Lagrangian do not give the correct solution can be seen in

the following way. Let L2 represent the expression in the first two lines of (9). The correct

FOC with respect to cj,t from (9) is

∂L2

∂cj,t
= −µtλ̃j. (12)

Now, since ∂L2
∂cj,t

is the expression on the left-hand side of equation (A.6) in Flodén one can

see that he is using the FOC
∂L2

∂cj,t
= 0, (13)
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which are not compatible with optimality. Therefore, the FOCs in Flodén (2009) do not give

a PO solution. In particular, his solution does not insure that

∂L2

∂cj,t
=
∂L2

∂c1,t

λ̃j

λ̃1
,

which should hold in the optimum for all j = 1, ..., J . A similar issue is found in the

FOCs with respect to individual labor. In other words, the FOCs on page 300 do not

relate correctly the marginal conditions of the PO solution to the Lagrange multiplier of the

feasibility constraint and, therefore, the solution is not PO.

If we considered a measure λ̃(.) with a continuous density λ̃′ (where λ̃ represents the

measure of agents denoted λ on page 283 in Flodén (2009), we would have the same problem.

Then, to find a PO solution, we would maximize
∑∞

t=0 β
t
(∫

[0,1]
ψ(j)Uj,tdj

)
for some density

ψ and incorporating in the feasibility constraint that

CRA
t =

∫
c(j)dλ̃(j),

we would find the FOC
∂L2

∂cj,t
= −λ̃′(j)µt, ∀j ∈ [0, 1] . (14)

This is incompatible with (13). The correct solution would imply
∫
I
∂L2
∂cs,t

dλ̃(s) = −µt
∫
I
dλ̃(s)

for any subset of agents I, but Flodén’s FOCs give
∫
I

∂L2
∂ct(s)

dλ̃(s) = 0.

The only case where (13) is correct is when an agent has λ̃j = 0 in the discrete case or

λ̃′(j) = 0 in the continuous case. In other words, it seems that the case where the FOCs are

valid is where the planner gives full measure in her objective function to agents who have

zero measure in the market.

Later on Proposition 5 in Flodén argues that all PO solutions can be traced out by

maximizing the utility with respect to one ‘optimized’ agent, whose initial state is denoted s.

The proof of that proposition shows that the FOCs for this modified problem coincide with

the FOCs on page 300 which are as (13). But if (as we think) the latter do not give an PO

allocation, then the conclusion of Proposition 5 does not follow. In fact, most PO solutions

involve giving weight to all agents in the objective function of the planner, hence (12) has to

hold instead of (13). Therefore, it is not true that all PO solutions can be found by selecting

an optimized agent even with GHH utility.

In our opinion one can only find all PO allocations by taking properly into account the

utilities of all agents in the economy, as we do in the main text, or as a direct application of

(9) would do.
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A rationale for Flodén’s solution

Although we do not provide a careful account, we believe that Flodén’s results can be rein-

terpreted as follows.

Imagine we consider optimizing a weighted sum of utilities of J ′ agents (where J ′ is a

discrete number) and that these agents have mass zero in the economy. This can either be

because λ̃j = 0 for all j = 1, ..., J ′ and J ′ < J in the discrete case or because we consider

only a discrete number of agents in the continuous case. For this PO allocation the planner’s

FOCs are indeed (13). But this is only a very small share of PO solutions. For any welfare

function that gives positive weight to all agents, (13) does not work.

Hence what Flodén does do is to find some fiscal policies which are feasible (in the

heterogeneous-agents economy) by searching those that are optimal from the point of view

of infinitesimal agents. This is a useful way of exploring the set of feasible policies in an

ordered and easy-to-compute fashion, but it does not trace out all PO equilibria, and indeed

it is not guaranteed that the solutions found are even Pareto optimal for a set of agents of

positive measure.
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