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Abstract

Standard practice in Bayesian VARs is to formulate priors on the autore-

gressive parameters, but economists and policy makers actually have priors

about the behavior of observable variables. Our proposal is to use prior infor-

mation on observables systematically. We show how this kind of prior can be

used under strict probability theory principles. We state the inverse problem

to be solved and we propose a numerical algorithm that works well in practical

situations with a large number of parameters. We prove various convergence

theorems for the algorithm. Using examples from the VAR literature, we show
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how priors on observables can address a priori weaknesses of standard priors,

serving as a cross check and an alternative formulation.
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1 Introduction

The application of Bayesian methods has been a key element in the development of

vector autoregressions (VARs) and it has allowed for much progress in their applica-

tion.1 It is still the case that the literature offers a variety of priors on parameters,

from a practical point of view it is difficult to know which prior is the appropriate

one in a given application and the choice of the prior often matters significantly for

the results.

From a strictly Bayesian point of view the fact that different priors give rise to

different posteriors is not necessarily a problem. If a prior on parameters really rep-

resents the beliefs of the analyst, the resulting posterior gives the correct answer for

these prior beliefs. In this case different posteriors would appropriately reflect differ-

ences in prior beliefs. However, VAR parameters often lack intuitive interpretation

so it is difficult to claim that an analyst has proper priors about VAR parameters.2

1VARs in macroeconomics follow from Sims (1980). See Rubio-Ramı́rez et al. (2010) on the

identification of structural VARs, and Sims and Zha (1998) on Bayesian VARs.

2To be specific: an analyst estimating the mean of a population, or the elasticity of substitution

between two goods, can have a subjective prior about the mean and the elasticity because these

parameters have an intuitive interpretation. But it is difficult to give an interpretation, say, to the

coefficient of the third lag of GDP in the equation with the price level on the left hand side in a

VAR, so an analyst is unlikely to have a subjective prior about it.
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Moreover, we argue that priors on parameters that are standard in the literature can

not represent the beliefs about observables that analysts do have: when we derive

the prior on observables that is implied by various standard priors on parameters we

find very disparate behavior of observables and often prior beliefs that a reasonable

analyst would never have. In this case the resulting posterior lacks a proper Bayesian

justification.

Given that economists do have priors about the behavior of observable variables

our proposal is to be ‘more Bayesian’ in the estimation of VARs and to incorporate

this prior knowledge in the estimation.

At the very least, Bayesian VAR applications should examine if the used prior on

parameters implies a reasonable prior behavior for observables. Our main proposal,

however, is to incorporate prior information in a direct way, namely, to state explicitly

a prior on observable variables and to obtain the posterior consistent with it. This can

be done as follows. First, ‘translate’ the prior on observables to an equivalent prior

on parameters. This is found by solving an inverse problem, a Fredholm equation

of the first kind. We propose an algorithm to solve this equation by reformulating

this inverse problem as the fixed point of a certain mapping. We use successive

approximations on this mapping to compute the fixed point. We prove that under

mild assumptions the fixed point condition is necessary and sufficient for the solution

and that successive approximations converge locally to the solution. Finally, we

propose an approximate conjugate algorithm that speeds up the computation of the

fixed point and of the posterior.

Using priors on observables is not only a natural way to incorporate information

that analysts do have, it also focuses the discussion about what is a ‘good’ prior on

the observables and, therefore, differences in priors are easier to interpret. Different

prior opinions about, say, the variance of output growth rate, are not going to be
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huge across analysts and they are easy to interpret.

Our algorithm and fixed point formulation is applicable to any statistical model,

but in this paper we focus on applications to the structural Bayesian VARs.

To show that our approach works in practical applications we use it to reexamine

three important VAR studies: the estimation of fiscal policy effects in Blanchard

and Perotti (2002), the estimation of monetary policy effects in Christiano et al.

(1999) and in Romer and Romer (2004). In each case we use a subjective prior about

observables and compare with a few most popular variants of the standard priors for

VARs due to Litterman, Sims and Zha.3 We show that these standard VAR priors

on parameters actually imply widely disparate priors on observables. Some of them

imply ‘crazy’ behavior of observables, a prior knowledge that no reasonable economist

or policy maker would hold, therefore these standard priors are not justified from a

subjective Bayesian point of view.

Our approach incorporates into the prior the knowledge about the economy that

economists may have. We find that incorporating such knowledge does matter for the

results. With subjective priors on observables we find larger fiscal multipliers than

Blanchard and Perotti (2002), more persistent real effects of monetary policy than

Christiano et al. (1999), and highlight a mismatch between the Romer and Romer

(2004) evidence on the effects of monetary policy and a standard New Keynesian

model.

These examples show, first, that a prior on observables may be useful in clarifying

empirical results, as they eliminate some of the inconsistencies that priors on param-

eters generate. Second, it reduces posterior variance relative to the noninformative

prior by incorporating useful information in the inference. Third, our algorithm works

well in practice even in a relatively large VAR where the fixed point we compute has

3See Litterman (1986); Sims and Zha (1998); Sims (2002).
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hundreds of parameters.

In this paper we do not take a stand on what is the best way to specify a prior

on observables, we merely point out that there are various ways of doing so, as we

construct priors on observables in a different way for each example: we use knowledge

about the economy stated by Blanchard and Perotti in the first example, we use an

empirical Bayes prior in the second example, and a prior based on a structural model

of the economy (related to the priors in Del Negro and Schorfheide 2004, and others)

in the third example.

Another advantage of our prior is that it produces good results when evaluated

from a classical perspective. In Jarociński and Marcet (2010) we show that it reduces

the mean squared error relative to the various classical small sample bias correction

techniques considered.

Section 2 states the problem of mapping a prior on observables into prior on pa-

rameters, section 3 presents the fixed point formulation of this problem and conver-

gence theorems, section 4 shows the empirical applications. The appendix contains

the proofs and details of the empirical applications. An appendix available online

provides additional implementation details, empirical and Monte Carlo results.

Related literature

Almost all applications in Bayesian econometrics are based on priors specified

directly on parameters, and not on observables. Kadane et al. (1980) and Berger

(1985, Ch.3.5) advocate specifying priors on observables, but they acknowledge the

difficulty of solving the inverse problem in practice and their recommendation has

had limited impact in econometrics. Kadane et al. (1996) is a small scale time series

application.

Priors for VAR parameters used in the literature are loosely motivated by the

implied behavior of the series. Such motivations stand behind the Litterman, Sims
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and Zha priors (Litterman, 1979, and others), steady-state priors (Villani, 2009),

priors about the cointegrating relations in the data (Giannone et al., 2016), DSGE

model-based priors (Ingram and Whiteman 1994, Del Negro and Schorfheide 2004,

Del Negro et al. 2007, Christiano et al. 2011 and others). However, in most of these

approaches the prior information on observables is stated informally, and the con-

nection between the prior on parameters and on observables is also informal. Our

paper is the first to derive a VAR posterior from a prior on observables applying strict

probability theory.4

Inverse problems have attracted interest in microeconometrics recently, see Car-

rasco et al. (2007) for a survey. This literature focuses on issues of consistency and

asymptotic distribution while we are interested in the computation of a prior on pa-

rameters. More importantly, the numerical methods used in this literature would be

unfeasible for the high-dimensional problems that we face.5

4For example, the DSGE-model-based priors mentioned above in effect do not solve the inverse

problem described in section 2. In light of our results, they can be justified as performing only one

iteration on the mapping on which we find one should iterate until finding the fixed point.

5To mention two recent papers in this literature. Bonhomme and Robin (2010) obtain non-

parametric estimates of the distribution of hidden factors by performing three integrations (twice

integrating the second derivative of the characteristic function of the factors, and once more to find

the inverse Fourier transformation of the characteristic function). Their assumptions of additivity

and independence of factors grant them analytic formulae and imply that all integrals to be computed

are univariate. The counterpart of the latent factors in Bonhomme and Robin would be our VAR

parameters, but since it is key to incorporate the covariances of the parameters (see the example

in section 2) we would have to integrate jointly over hundreds of VAR parameters, hence a direct

application of Bonhomme and Robin’s approach would be numerically unfeasible.

Carrasco and Florens (2011) also estimate non-parametrically the probability distribution func-

tion of a hidden variable. The algorithms they propose involve solving large non-linear systems of

equations. Available algorithms of the Gauss-Newton type involve inverting a matrix at each itera-

tion, and this would be unfeasible in the very high-dimensional problem we consider. Our algorithm
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One common theme in the literature just mentioned is whether or not a solution

exists and the inverse problem is well-posed. We do not focus on these issues in

this paper. The analyst can check ex-post if the solution to our fixed point problem

implies a density of observables that captures approximately his prior, alleviating the

problem of existence. We discuss these issues in detail in section 4 in the context of the

three applications we consider. Furthermore, the approximate conjugate algorithm

that we use appears to act as a ‘regularization’ of the kind that is often used in

inverse problems to go around the numerical difficulties that are encountered in ill-

posed problems.6 More work on the relationship between regularization and the

approximate conjugate algorithm would be useful.

Many available algorithms for solving inverse problems need to restrict the proba-

bilities to be non-negative and to add up to 1 at each step. These restrictions involve

additional numerical complications. Another advantage of our algorithm is that it

obtains proper densities at each step of the algorithm by construction.

Related to our work is the algorithm of Newton (2002) iterating on Bayes’ for-

mula. This algorithm is receiving recent attention in the non-parametric estimation

literature. It is an on-line estimator (also called ‘recursive’ estimator in statistics),

i.e., each observation is added one by one without updating previous estimates. On-

line estimation is useful when relevant information arrives very rapidly, faster than

the new information can be processed optimally by a computer.7 It has also been a

avoids any matrix inversion.

6For example, Carrasco and Florens (2011) use a Tikhonov regularization for the same purpose.

7Think of steering a ship into a harbor, where the angle of a rudder has to adjust to the direction

of the wind; or think of choosing an optimal portfolio in a very unstable financial market. In such

applications updating quickly the current value of the estimated quantity in view of a sudden change

in the wind or on stock prices is likely to be more important than, say, maximizing the likelihood

function using all past information as each new piece of information arrives.
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useful tool to obtain convergence results in the literature of least squares learning.8

But these estimators add noise and inaccuracies in the estimation, so they are less

justified in research papers. For example, one well-known side-effect of on-line esti-

mation is that Newton’s estimates depend on the ordering of the observations and

that they are less efficient estimators. In ongoing research we investigate the appli-

cation of our algorithm (described in section 3) to non-parametric estimation and we

compare its properties to Newton’s algorithm using our Proposition 5. Preliminary

results indicate that Newton’s algorithm is a noisy version of our algorithm, that it

converges much more slowly as the sample grows and that it has certain convergence

problems which can be corrected by our approximate algorithm.9

We stress that our fixed-point approach to solving the inverse problem is not

specific to VARs, it may be used for handling priors on observables in other models.

2 Priors about observables

Consider a model summarized in the likelihood function pY |θ that relates the distribu-

tion of the observable data Y to unknown parameters θ. Standard Bayesian practice

is to find the posterior of θ after first stating a subjective prior directly on parameters

pθ. But for reasons discussed in the introduction it is desirable to use prior infor-

mation about the observable data Y instead and to specify a prior on observables

pY . The uncertainty represented in this prior can be seen as a combination of the

researcher’s uncertainty about the values of parameters θ and the error terms of the

model pY |θ. To find the posterior that incorporates this prior information we first

translate the prior on observables pY into a prior on parameters pθ that is consistent

with the model at hand. Then one can apply Bayes’ formula in a standard way to

8See Marcet and Sargent (1989) and Evans and Honkapohja (2002).

9In the current paper we discuss some of these results in section 3.2 and footnote 12.
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obtain the posterior that is consistent with the prior on observables.

To demonstrate how a prior on observables can be translated into a prior on

parameters we now use a simple example. This example will also serve to discuss

issues of uniqueness and existence.

2.1 An example

Let variable y follow a univariate AR(1) model

yt = α + ρyt−1 + εt, with εt ∼ N (0, σ2
ε) i.i.d., t = 1, ..., T. (1)

N denotes the normal density. We treat y0 and σ2
ε as given.

Most researchers would have a prior idea about the behavior of y. One may express

this idea by formulating a prior on the growth rate of y in the first period, for example,

∆y1 ∼ N (µ∆, σ
2
∆) (2)

for given µ∆, σ
2
∆. This is just stating the prior idea that the researcher holds about

the behavior of ∆y1, notice that it is compatible with many values of ρ and in no

way it is saying that y follows a unit root. Although we do not write it explicitly to

conserve space, the prior is conditional on the starting point y0, hence (2) amounts

to a prior on the behavior of y1.

For convenience, in this simple example we assume the prior in (2) is normally

distributed, a known and fixed σ2
ε , and we state the prior only about the first obser-

vation t = 1. The numerical methods we derive later in this paper do not need any

of these features.

To translate the prior on observables (2) into the implied prior on α, ρ note that,

given the AR(1) model

µ∆ = E(∆y1) = E(α + (ρ− 1)y0)

σ2
∆ = Var(∆y1) = Var(α + (ρ− 1)y0) + σ2

ε
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and provided that σ2
∆ ≥ σ2

ε the implied prior on α, ρ satisfies:

α + (ρ− 1)y0 ∼ N (µ∆, σ
2
∆ − σ2

ε ). (3)

This example brings about three points. First, for an arbitrary prior on observ-

ables there may not exist an implied prior on parameters that is compatible with

the model, this would be the case if we had specified a prior variance on observables

σ2
∆ < σ2

ε . Second, there may be more than one solution, since (3) only imposes a

restriction on a linear combination of α, ρ. To obtain a proper prior on parameters

we need to complement (3) with an additional assumption, for example, about the

marginal distribution of α or about the distribution of ∆y2. Third, equation (3) and

the distribution of α imply a joint distribution of α and ρ with some non-zero corre-

lation between α and ρ. This shows that the key in translating a prior on observables

is to find the joint distribution of parameters. Many VAR applications assume pri-

ors in which parameters are mutually independent, this is understandable because

specifying prior correlations between parameters is difficult, but imposing zero prior

correlation on parameters often leads to unreasonable priors on observables. As we

see in (3) a prior on observables is a natural way to specify such correlations among

parameters.

2.2 A formulation as an inverse problem

We now return to the general case. Let Y take values on the space Y and θ take

values on the space Θ. A key condition relating the prior on observables pY and the

prior on parameters pθ is∫
Θ

pY |θ(Y ; ·) pθ = pY (Y ) for almost all Y ∈ Y (4)

where the ‘almost all’ statement is with respect to pY . Note that pY is known given

our stated prior on observables, and pY |θ is also known after specifying a model. Our
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task is, given pY and pY |θ, to find the prior density pθ that satisfies the functional

equation (4). This is known in calculus as ‘a Fredholm equation of the first kind’ and

in statistics as an ‘inverse problem.’

In the theoretical analysis we will assume that a solution pθ exists, in practice

we can ensure this in several ways by adjusting pY . Multiple solutions might arise,

for example when the dimension of θ is larger than the dimension of Y, as in the

AR(1) example above. See the empirical application in section 4.2 for one approach

to selecting one from the potentially multiple solutions.

3 Fixed point formulation

Fredholm equations like (4) can rarely be solved analytically.10 We now reformulate

our inverse problem in terms of a fixed point problem that facilitates computation. We

first present some results on necessity and sufficiency of the fixed point condition that

hold in the case of continuous distributions such as those used in VAR applications.

We propose an algorithm for finding the fixed point by successive approximations.

We prove that this algorithm converges for the discrete case and we show that the

continuous case can be approximated by discretizing appropriately. Finally, we de-

scribe the approximate conjugate fixed point iteration that we use in practice and we

show how to check for accuracy.

10 The AR(1) example of section 2.1 is an exception. An analytic solution is available in that

case because the growth rate of y in period t = 1 is linear in the parameters and both the prior on

observables and the error ε are Gaussian. But just generalizing to a prior on the growth rates in

two periods, t = 1, 2, yields a problem where parameters enter non-linearly and an analytic solution

is not available. The change of variable formula does not help either, see the online Appendix G for

a further discussion.
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3.1 The continuous case

Let g : Θ → R+ be a probability density on Θ, in other words, g is a possible prior

on parameters. Define the mapping F :

F(g)(θ) ≡
∫
Y

pY |θ(Y ; θ) g(θ)∫
Θ
pY |θ(Y ; ·) g

pY (Y ) dY for all θ ∈ Θ. (5)

Let us comment on the notation. First, we have written the integrals in (4) and

in (5) in terms of densities, we consider the discrete case in section 3.2. Second, the

mapping F is indexed by pY |θ and pY but we leave this dependence implicit to avoid

notational clutter.

F(g) has the following interpretation: the term
pY |θ(Y ;θ) g(θ)∫

Θ pY |θ(Y ;·) g is the posterior dis-

tribution obtained when the prior on parameters is given by g and when the data

realization Y is observed. Therefore, F(g) is a mixture of posteriors for different

realizations Y , each weighted by its density pY (Y ).

Clearly, we have F(g) ≥ 0 and if F(g) is integrable then Fubini implies
∫

Θ
F(g) =

1, so that F(g) is itself a density.

We now show that there is a close relation between solutions of (4) and fixed

points of the mapping F . First of all we prove

Proposition 1. (Necessity) If pθ satisfies (4) and pY (Y ) > 0, then F(pθ) is well

defined and pθ is a fixed point of F .

Even though necessity is obtained under very general conditions it turns out that

uniqueness of solutions to (4) and sufficiency of a fixed point condition F(g∗) = g∗

are closely related through the concept of completeness, defined as follows.

Definition 1. Consider two random vectors a and b, each taking values in A and B.

Their joint distribution pa,b is said to be “complete with respect to a” when it holds

that if a measurable function δ : A → R satisfies E(δ(a) | b) = 0 for all b ∈ B then

δ = 0 a.s. in A.
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The completeness conditions we will need essentially mean that the model pY |θ is

identified, in other words that values of Y a.s. carry all relevant information about the

value of θ and vice versa. The relationship between completeness and identification

has been the object of recent research in non-parametric estimation, starting with

Newey and Powell (2003). The discrete case analysed in the next section clarifies

that all that is needed in the discrete case is that a matrix version of the likelihood

pY |θ is invertible.

Proposition 2. (Uniqueness). Assume that pθ,Y is complete with respect to θ, and

there exists a solution of (4) satisfying pθ > 0. Then pθ is the unique solution to (4).

Proposition 3. (Sufficiency) Assume that pθ,Y is complete with respect to Y . Then

any fixed point g∗ = F(g∗) such that g∗ > 0 satisfies (4).

It follows from Propositions 1, 2 and 3 that if pθ,Y is complete both with respect

to Y and θ, and there exists a positive solution to (4), then the set of solutions to (4)

and the set of positive fixed points of F coincide and this set is a singleton.

The above propositions suggest that instead of trying to solve problem (4) directly

we can search for fixed points of the mapping F .

Let us state, for future reference, a simple algorithm to search for fixed points of

F by successive approximations. Let z denote the iteration number, we then define

the following

Algorithm 1. (Successive approximations on F) 1) Start with g0, an initial

density of θ. 2) Given gz−1 find gz = F(gz−1) for z = 1, 2, .... Repeat 2) until

convergence.

Algorithm 1 avoids many difficulties often found when solving inverse problems.

First, inversion of large matrices is entirely avoided. Second, gz is guaranteed to be a
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proper density at every iteration z, and thus one does not have to restrict the solution

to be positive and to add up to 1.

It will turn out, however, that the restriction to positive fixed point g∗ > 0 is

important. It is possible to see that F has ‘false fixed points’ such that g∗∗ = F(g∗∗)

where g∗∗ = 0 for some θ and that do not satisfy (4). This serves as a word of caution:

a good algorithm will stay away from densities that can be zero in some range of θ.

The existence of such ‘false fixed points’ is trivial in the discrete case so we show some

specific examples to the next section.

In section 3.4 we propose a practical approximation to Algorithm 1 that is likely

to act as a regularization and that works well in the large VARs that are used in

the literature. Furthermore, this approximate algorithm gives a positive density for

θ everywhere, therefore it stays away from false fixed points.

Even though VAR applications usually consider continuous distributions of AR

parameters, continuous densities have to be projected into classes of functions of

finite elements. A discrete approximation is a good candidate for such a family. In-

deed, in section 3.3 we discuss how to approximate continuous densities with discrete

distributions. Thus we now move to the discrete case.

3.2 The discrete case

We now discuss discrete distributions of θ and Y . The discrete case is useful because it

allows us to analytically prove convergence of the successive approximations algorithm

using results in matrix algebra.

Assume that Y and θ are discrete variables that each takeN possible values, that is

Y =
{
Y 1, ..., Y N

}
and Θ =

{
θ1, ..., θN

}
for a finite integer N . The likelihood function

is known and given by an N×N matrix Π with a typical element πij = pY |θ(Y j; θi). In

this section pY is an N -dimensional vector that contains pY (Y j) in the j-th element.
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We write g(θi) = gi. In the discrete case equation (4) specializes to

Π′gθ = pY (6)

for some discrete distribution gθ. Note that we use g for general probability vectors

of θ and gθ denotes the solution to (6).

We assume throughout that Π is invertible. Some results could be obtained with-

out this assumption but not much more generality would be gained.

A quick look at (6) may suggest that solving inverse problems in discrete problems

is an easy task, as it can be achieved by simply inverting the matrix Π′. However,

in practice Π′ is often large dimensional and ill-conditioned, making matrix inversion

unfeasible. It is well known that this approach leads to ill-defined solutions where for

an approximate Π′ the resulting solution gθ = (Π′)−1 pY has some negative elements.

In contrast, the algorithm of successive approximations on F completely sidesteps

any matrix inversion. This plus the use of a conjugate approximate algorithm in

section 3.4 below enables us to solve very high-dimensional problems.

The discrete version of the mapping F (5) is

F(g)i ≡
∑
j

πijgi∑
k πkjgk

pY (Y j) for all i = 1, ..., N. (7)

The issue of existence of a distribution gθ that solves (6) is straightforward. Since

Π is invertible gθ = (Π′)−1 pY is a well defined vector and it satisfies
∑N

i=1 gθ,i =

1.11 But for existence we still need to assume that (Π′)−1 pY has only non-negative

elements.

A trivial adaptation of Proposition 1 guarantees that if pY > 0, a probability

vector gθ that solves (6) is a fixed point of F (necessity). The following proposition

guarantees sufficiency.

11This is because since Π has an eigenvector equal to 1 (a column vector with all elements equal

to 1), we have 1′gθ = 1′ (Π′)
−1
pY = 1.
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Proposition 4. (Sufficiency, discrete case) Assume that i) Π is invertible and

ii) g∗ is a fixed point of F such that g∗i > 0 for all i = 1, ..., N. Then g∗ is the unique

solution of (6).

The requirement that a fixed point satisfies g∗ > 0 is not a technicality, it is

important for sufficiency: there are indeed fixed points of F with some elements of g

equal to zero which are not solutions to the inverse problem. In particular, it is easy

to check that there is always a ‘false fixed point’ with g∗∗
i

= 1 for any i . Also, fixing

g∗∗
i

= 0 for some i gives N − 1 remaining equations and unknowns to find values for

the remaining coordinates g∗i i 6= i that satisfy the fixed point condition.

The following proposition guarantees that the successive approximation algorithm

is locally stable under some conditions.

Proposition 5. (Convergence) Assume that i) Π is invertible, ii) the vector gθ =

(Π′)−1 pY satisfies gθ,i > 0 for all i. Then all eigenvalues of the derivative ∂F(gθ)
∂g′

are

real and they belong to the interval [0, 1).

Therefore, successive approximations on F converge locally to gθ. Formally, let-

ting gz be the vector defined in Algorithm 1, there is an open neighborhood S ⊂{
g ∈ RN

+ :
∑

i gi = 1
}

of gθ such that for all g0 ∈ S we have gz → gθ as z →∞.

Let us discuss the above assumptions. Invertibility of Π is related to completeness

and identification of the model pY |θ. For example, if invertibility failed because two

rows of Π were equal, this would mean that two different values of θ imply the same

behavior of Y so that the likelihood pY |θ would not allow identification of θ.

Assumption ii) only adds a strict inequality gθ,i > 0 over and above the non-

negativity requirement that is already needed for existence of a solution to (6). Given

existence this strict inequality is a mild requirement. It is clear that the set of Π’s

and pY ’s for which gθ = (Π′)−1 pY is non-negative and it violates ii) is of measure

zero.
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This justifies using Algorithm 1 to solve the inverse problem. Under the assump-

tions, if the algorithm converges to a strictly positive g we can be certain that this is

the solution to the inverse problem. Furthermore, if the solution of the inverse prob-

lem is strictly positive and we start the iterations sufficiently close, the algorithm will

converge. Using homotopy, this ensures that we can always approximate the solution

of the inverse problem with Algorithm 1.

As mentioned before, the iterations have to be kept away from ‘false’ fixed points.

Since our algorithm relies on local convergence we can always use homotopy to build

good initial conditions in a systematic way so as to stay within a neighborhood of

the correct fixed point.12 The conjugate approximate algorithm that we use in the

empirical applications ensures that g∗ is everywhere positive by construction.

3.3 A discrete approximation to the continuous case

When continuous densities of θ and Y exist the solution pθ has to be approximated

numerically by a class of functions with finite elements. In this subsection we show

how this can be done using step functions, thus mapping the continuous case into the

12Some results in the literature state global convergence for the algorithm of Newton (2002), for

example Martin and Ghosh (2008). But in fact these results do not accurately reflect the behavior

of that algorithm. First, it is obvious that Newton’s algorithm is not globally stable in the space of

distributions because if the initial condition is set equal to one of the ‘false’ fixed points described

in the text the algorithm stays there forever. Newton’s algorithm should be re-designed to exclude

these false fixed points and convergence proofs should be adapted. Second, it can be shown that in

the vicinity of such points Newton’s algorithm moves particularly slowly, therefore these ‘false’ fixed

points slow down convergence. Third, combining results from stochastic approximation and our

Proposition 5 one can show that Newton’s algorithm converges asymptotically at a rate slower than
√
T for most applications. On the other hand, applying our approach to non-parametric estimation

alleviates or completely corrects these problems and, in particular,
√
T convergence obtains. A

formal proof of the statements in this footnote is available from the authors.
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discrete distribution described in section 3.2. We find conditions guaranteeing that the

fixed points of this modified problem converge to a solution of the continuous inverse

equation (4) as the step-size becomes finer. Combining this result with Proposition

5 we can state that for sufficiently many iterations on F and sufficiently small step

size ε we can approximate the continuous pθ that solves (4) arbitrarily well.

Appendix B describes in detail how to partition Y and Θ each into Nε < ∞

non-overlapping intervals denoted Yε
j and θεi i, j = 1, ..., Nε respectively with interval

width ε > 0. We discretize pY by an Nε-dimensional probability vector pεY with

elements pεY,j =

∫
Yε
j

pY . We discretize pY |θ by an Nε × Nε matrix Πε with typical

element πεi,j =

∫
Yε
j×θ

ε
i

pY |θ.

Let gεθ ∈ RNε be a discrete distribution that satisfies the discrete inverse equation

for this approximation

Πε′gεθ = pεY (8)

and let Gε
θ be the corresponding cumulative distribution function

∫
θεj

dGε
θ = gεθ,j for all

j = 1, ..., Nε.

Proposition 6. (Approximation by step functions) If the (continuous) inverse

equation (4) has a unique solution density pθ with a corresponding cdf Gθ, and the

assumptions of Lemma 1 hold, then Gε
θ → Gθ weakly as ε→ 0.

The proof is in Appendix B.

3.4 Approximate conjugate algorithm

Proposition 5 is useful because it shows a precise sense in which successive approxima-

tions converge in the discrete case. But after experimenting with such discretizations
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we found them impractical. The reason is that discretizing a likelihood function with

very many parameters becomes highly costly computationally.13

We now propose a practical numerical algorithm based on approximate iterations

on the mapping F when Y and θ are general continuous random variables. This

approximate conjugate algorithm is the one we apply to real life applications in section

4. In this algorithm, at each iteration we restrict the density g to be in a given

parametric family that is conjugate with the likelihood. The conjugacy speeds up the

iterations and, later, the computation of the posterior. We place no restriction on the

density pY except that it must be possible to generate draws from this distribution

on a computer.

Of course, fixing a parametric family is a good approach only as long as the

solution of the inverse equation (4) is approximated with the desired accuracy by the

proposed parametric family. Therefore, after stating the algorithm we discuss how to

check ex-post if the accuracy of the approximation is acceptable.

Let G be a given parametric family of densities on Θ. Let q : Θ → Rν be a

function such that the moments Ep(q(θ)) suffice to pin down any density g ∈ G.14

Algorithm 2. (Approximate conjugate algorithm)

1) Start with an initial density g0 ∈ G

2) Given gz−1 ∈ G compute the moments EF(gz−1)(q(θ)).

3) Let gz ∈ G be given by the moments EF(gz−1)(q(θ)).

Repeat 2)-3) until convergence of the moments EF(gz)(q(θ)).

13For example, the VAR of Christiano et al. (1999) that we discuss in section 4.2 has 231 parame-

ters. If we use, say, 10 intervals per parameter we would have Nε = 10231. This is much larger than

the distance between the earth and the nearest star outside the solar system measured in millimeters

(roughly, a mere 4·1019mm.)

14For example, G can be the set of Gaussian densities. In that case q(θ) ≡ (vec(θ), vec(θθ′)).
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In words, we obtain each successive iteration gz ∈ G by projecting F(gz−1) back

onto the family G. Typically, the moments involved in Step 2 will need to be ap-

proximated numerically. When G is conjugate one can approximate these moments

efficiently using the following result. Let pg(θ|Y ) =
pY |θ(Y ;θ) g(θ)∫

Θ pY |θ(Y ;·) g denote the posterior

distribution of θ obtained with the prior distribution g and given data realization Y .

Result 1. 15 Given any density g, for any function q : Θ→ Rν we have

EF(g)(q(θ)) = EpY
[
Epg(·|Y )(q(θ))

]
. (9)

This result suggests that the moments EF(gz−1)(q(θ)) required in Step 2 above

can be computed using the following Monte Carlo procedure: draw J realizations

of Y from pY , then split Step 2 into two steps: 2a) For each draw Y compute (if

possible, analytically) the posterior moments of θ using gz−1 as the prior, that is

Epgz−1 (·|Y )(q(θ)). 2b) Approximate EpY [·] in (9) by averaging the posterior moments

obtained in Step 2a over the J draws. The key is that if G is a family of conjugate

priors for pY |θ then the moments computed in Step 2a are available in closed form

so that this computation can be done very efficiently. When G is not conjugate then

Algorithm 2 also works, but it is slower because a separate Monte Carlo procedure is

needed for each draw Y in order to evaluate the moments Epg(·|Y )(q(θ)).

As a simple example of the above procedure we now write in detail this algorithm

for the example in section 2.1, where θ = (α, ρ), the likelihood pY |θ is given by the

model specified in (1), with a known σ2
ε , and supposing that G is the class of normal

distributions. Consider a prior on observables pY describing the behavior of (y1, y2),

hence an analytic solution is not available (see footnote 10). Let Mpri ≡ Epri(θ) and

Vpri ≡ Epri(θθ
′) be the prior (and Mpo,Vpo the posterior) mean and second moment

15This result follows from the law of iterated expectations at the fixed point, but for arbitrary g

FpY (g) is not the marginal density of θ consistent with pY and pgθ|Y , and thus we offer a (rather

simple) proof of (9) in the Appendix.
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of θ. Given a sample Y = (y1, y2) a standard result in Bayesian statistics fully

characterizes the posterior as

(Mpo,Vpo) = FN (Mpri,Vpri;Y ) (10)

for a well known function FN . Then we can combine Algorithm 2 with Result 1 in

the following

Algorithm 3. (Approximate conjugate algorithm under normality)

Let G be the class of normal distributions.

Draw J independent realizations Y
j

from pY , J a large integer.

1) Start with an initial g0 ∈ G with mean M0 = Eg0(θ) and second moment

V0 = Eg0(θθ′).

2) Given a prior gz−1 ∈ G with mean M z−1 and second moment Vz−1 approximate

EF(gz−1)(θ, θθ
′) with (M z,Vz) = 1

J

∑J
j=1 FN (M z−1,Vz−1;Y

j
).

3) Set the next iteration gz ∈ G with mean and second moment M z,Vz.

Repeat 2)-3) until convergence of M z and Vz.16

The result is a normal approximate fixed point of F .

Algorithm 3 shows how Algorithm 2 and Result 1 can be combined in a simple

case.17 But Algorithm 3 assumes that the innovation variance σ2
ε is known. In most

practical applications this variance is not known. In the next algorithm we incorporate

16Usually normal distributions are expressed in terms of variances V instead of second mo-

ments V. Obviously either choice is equivalent taking V = V − MM ′. We use second

moments in the main text because then the formulae in Algorithm 3 are simpler. Had we

used variances we would have to use in step 2 the longer, but equivalent expression V z =

1
J

∑J
j FV (Mz−1, V z−1;Y

j
) + 1

J

∑J
j FM (Mz−1, V z−1;Y

j
)FM (Mz−1, V z−1;Y

j
)′ − MzMz′ for well

known functions FM (Mpri, V pri;Y ) and FV (Mpri, V pri;Y ) that give the posterior mean and vari-

ance in a linear Gaussian model.

17For an application see Jarociński and Lenza (2016) pp. 24-26.
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uncertainty about the innovation variance and generalize to the case of a multivariate

model, a VAR. We set G as the family of Normal-Inverted Wishart conjugate prior

densities of the parameters of a VAR model and combine Algorithm 2 with Result 1.

This is what we do in our applications in section 4. Here is a full description of this

algorithm.

The VAR model for the N × 1 vector of observables yt is

yt =
P∑
p=1

Bp yt−p + c+ ut, ut ∼ N (0,Σ), t = 1, ..., T. (11)

The parameters are θ = (B,Σ), for a matrix B = (B1, ..., BP , c)
′, P is the number of

lags, the initial values y−P+1, ..., y0 are treated as fixed and the analysis conditions on

them. The Normal-Inverted Wishart conjugate prior density of B and Σ satisfies

p(vecB|Σ) = N (vecM,Σ⊗Q), (12)

p(Σ) = IW(S, v), (13)

where IW denotes the Inverted Wishart density and M,Q, S, v are prior parameters

of appropriate dimensions.

As in Algorithm 3 we denote M = E(B) and V = E(vecB(vecB)′). We also de-

note the moments of Σ−1 as D = E(Σ−1) and H = diagE(vec Σ−1 (vec Σ−1)
′
). Analo-

gous to (10), given a Normal-Inverted Wishart prior with parameters (Mpri, Qpri, Spri,

vpri) and a sample Y , the posterior moments are given as

(Mpo,Vpo, Dpo,Hpo) = FNIW(Mpri, Qpri, Spri, vpri;Y ) (14)

for a well known function FNIW . For completeness we derive closed form expression

for FNIW(Mpri, Qpri, Spri, vpri;Y ) in the Online Appendix. Then we can use

Algorithm 4. (Approximate conjugate algorithm for a Normal-Inverted

Wishart prior in a VAR)
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Let G be the class of Normal-Inverted Wishart distributions.

Draw J independent realizations Y
j

from pY , J a large integer.

1) Start with an initial prior g0 ∈ G given by parameters M0, Q0, S0, v0.

2) Given gz−1 ∈ G with parameters M z−1, Qz−1, Sz−1, vz−1, approximate the rele-

vant moments given the density F(gz−1) with

(M z,Vz, Dz,Hz) =
1

J

J∑
j=1

FNIW(M z−1, Qz−1, Sz−1, vz−1;Y
j
)

3) Find parameters M z, Qz, Sz, vz so as to match the moments M z,Vz, Dz,Hz as

closely as possible with a Normal-Inverted Wishart density. Let gz ∈ G be given by

parameters M z, Qz, Sz, vz.

Repeat 2)-3) until convergence of M z, Qz, Sz, vz.

One difference with Algorithm 3 is that step 3) is no longer automatic, because

the Normal-Inverted Wishart density is not parameterized directly in terms of its

moments. In fact, the Normal-Inverted Wishart density imposes certain constraints

on the first two moments, so in general one cannot match the moments M z,Vz, Dz,Hz

exactly. The approach we follow in practice is to match M z and Dz exactly, and to

match Vz and Hz approximately, under a certain choice of the objective function. We

derive closed form expressions for M z, Qz, Sz, vz in the Online Appendix. There are

many ways one can approximate F(gz−1) with a Normal-Inverted Wishart density,

but our experience suggests that the precise modelling choices there are not critical

for the properties of the algorithm, so we go for the simplicity of implementation.

3.5 Accuracy

After performing the iterations we need to check the accuracy of the approximate

solution gZ . It is clear that gZ will not satisfy (4) exactly, first because the iterations

might not reach an exact fixed point of F , second because we use an approximate
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conjugate prior algorithm as described in the previous subsection. But gZ does satisfy

(4) exactly for a certain distribution of Y : namely, we can always plug gZ in the left

side of (4) and obtain the corresponding distribution for observables pZY =
∫

Θ
pY |θ g

Z .

Since the prior densities pY that a researcher may state for observables can only be

indicative, if pZY is ‘reasonable close’ to pY then gZ should be an acceptable translation

of pY .

With this motivation we check accuracy by comparing pZY and pY . For this purpose

we compute moments or interval frequencies from a large number of draws of pZY and

pY . Draws from pZY are straightforward to obtain as follows: draw a realization of

parameter values θ from the approximate fixed point gZ , and then draw Y from

p(·|θ). We apply this procedure in our empirical applications below. For example,

as an advance of future results, the reader can now glance at Figure 3 plotting the

quantiles of the prior on observables (blue shaded area) and the quantiles of the

distribution of the observables implied by the approximate fixed point (solid line).

Also, as an example, we do a Monte Carlo experiment to study the performance

of the approximate fixed point algorithm. We use a setup where problem (4) has a

known high-dimensional solution pθ and check if our algorithm recovers this solution.

With random starting points g0 the algorithm always recovers the 667 parameters that

index pθ with great precision in under 5 minutes on a standard personal computer.

Details of this Monte Carlo experiment are in the Online Appendix.

4 Empirical Applications

This section presents three applications of priors on observables to the estimation of

structural VARs. All three examples are well known VARs that have been estimated

many times in the literature. Example 1 is the fiscal policy VAR of Blanchard and

Perotti (2002), Example 2 is the study of the effects of monetary policy shocks by
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Christiano et al. (1999) and Example 3 is a study on the same topic by Romer and

Romer (2004).

The aim of the section is to show, first, that different standard priors on parameters

available in the literature give significantly different results, and that there are few

reasons a-priori to choose from among these alternatives. Second, we show that

some of these priors on parameters imply a prior on observables that can not possibly

represent prior knowledge of the analyst, therefore it is unjustified to use the resulting

posterior from a Bayesian point of view. Third, we find that the algorithm proposed in

section 3.4 is feasible in practical applications and that it gives an accurate solution to

the inverse problem. Fourth, the examples show how to set up the prior on observables

in various ways: in the first example the prior summarizes the ideas expressed by

the authors of the original paper about the likely behavior of the variables, in the

second example we use an empirical Bayes prior, and in the third we use a structural

economic model. We show that the prior on observables does affect the results and

gives useful guidance, in fact changing considerably the empirical outcome relative

to some published results. To the extent that this prior on observables may be a

better representations of the analyst’s prior knowledge we contend that the resulting

posterior is better justified from a Bayesian point of view.

We first show the results from four standard priors for θ used commonly in the

VAR literature. The first one is the flat (noninformative) prior, where the posterior

mean of B is the OLS estimate. All three papers from which we take our examples,

Blanchard and Perotti (2002) Christiano et al. (1999) and Romer and Romer (2004),

use OLS estimation, hence the flat prior comes closest to replicating their results

(apart from small discrepancies between their bootstrap and our Bayesian uncertainty

bands). We add to that three informative priors for VARs in the Litterman, Sims

and Zha tradition, using three off-the-shelf choices for the settings of these priors.
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We refer to them respectively as ‘Minnesota’ prior (the default prior in the RATS

computer package), ‘Sims Zha (1998)’ prior (a widely used version of the prior) and

‘Dynare’ prior (the default prior in the Dynare computer package). See Appendix C

for precise definitions of these priors. We find that in two of the three applications

these standard priors produce very disparate results. Moreover, many of them could

be easily ruled out because they imply priors about observables that are completely

unreasonable. Although sometimes one of these standard priors happens to produce

results close to the results we obtain with our prior on observables, it is hard to

predict ex ante for which prior on parameters this will occur in a given application.

We then apply our approach to each example. In each application we choose a

different way to specify the prior on observables, appealing to different approaches

used in Bayesian econometrics: i) the prior for Example 1 is formulated based on

the experts’ view about observables, as expressed by Blanchard and Perotti in their

paper, ii) we apply an empirical Bayes prior to Example 2,18 iii) we apply a prior

based on a structural economic model to Example 3. Notice that in all three cases

we use a simple auxiliary model to construct the prior density of observables. The

auxiliary model in each case is such that all its parameters have a clear interpretation

in terms of the behaviour of observables, but the model is too simple to be of interest

per se. Having specified a prior on observables we then translate this density into a

prior for the VAR parameters using the algorithm described in section 3.4. Finally,

we use Bayes’ theorem in the standard way to compute the posterior.

In all three examples the VARs are specified in levels and the variables entering

them are clearly nonstationary. Therefore, the prior density of these variables must

be conditional on some initial state. A natural choice is to use as the initial state

18Empirical priors are contentious but they have been used in the literature nevertheless, and they

have the virtue of transparency.
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the P first observations in the sample, where P is the number of lags. The VAR

likelihood function conditions on the same P observations, so it is logically consistent

that the prior and the likelihood condition on the same initial state.

The structure of the presentation is the same in all the three examples: we present

the empirical application, show results obtained with standard priors for VARs, com-

pare the implied prior on observables that emanates from these standard priors, state

our prior about observables, study the accuracy of the algorithm in computing the

translated prior, and finally we show the posterior implied by the prior about observ-

ables.

4.1 Blanchard and Perotti (2002) VAR

In this subsection we estimate the effects of tax and government spending shocks fol-

lowing Blanchard and Perotti (2002). Their VAR includes taxes, government spending

and GDP and the estimation sample is 1960Q1-1997Q4.19 They identify structural

shocks to taxes and spending using restrictions on the relations between reduced

form residuals and structural shocks. Their key identifying restriction separates tax

shocks from their endogenous responses using the elasticity of tax innovations to out-

put innovations estimated separately from disaggregated data. Using priors about

observables in this application is natural, as Blanchard and Perotti themselves state

their beliefs about the relation between output, tax revenues and spending, beliefs

that inspire our subjective prior on observables.

4.1.1 Results with standard priors

Figures 1 and 2 show the effects of, respectively, tax and spending shocks. We report

the quantiles 0.16 and 0.84 of the posterior distributions of the impulse responses.

19We downloaded the data from Olivier Blanchard’s webpage.
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The variables are quarterly, in log levels, and we rescale the responses so that they

correspond to a one percent shock to, respectively, taxes or spending. The blue shaded

regions (common to all plots in a given row) report the posteriors obtained with the

flat prior, so they are the closest to the OLS estimation of the VAR by Blanchard and

Perotti.20 The black lines report the posteriors obtained with informative priors, each

column of graphs representing the results with a different estimation procedure. The

first three columns are for the standard informative priors: the Minnesota prior, the

Sims and Zha (1998) prior and the Dynare prior, and we ask the reader to disregard

the fourth column for now.

Figure 1 shows that responses to a tax shock differ widely across standard VAR

priors. What is common is that after a one percent tax shock taxes increase, spending

falls with some delay, and GDP starts falling immediately, but the time profiles of

these responses differ strongly. For example, under the flat prior taxes revert to

the baseline after about 10 quarters, and under the Minnesota prior they are only

marginally more persistent. By contrast, under the Sims and Zha (1998) prior taxes

remain permanently higher by about 0.7 percent, while under the Dynare prior taxes

remain permanently higher by about 0.45 percent. There are also differences in the

responses of GDP: under the flat and Minnesota priors GDP falls, reaching -0.2

percent after about 10 quarters and then starts to gradually return to the baseline.

Under the Sims and Zha (1998) and Dynare priors GDP falls by only about 0.07 and

20Blanchard and Perotti (2002) estimation has some nonstandard features: they estimate four

sets of VAR coefficients, one for each quarter of the year, to account for seasonal patterns and

they subtract time-varying stochastic trends or linear trends. Subsequent literature has followed

Blanchard and Perotti’s identification but mostly ignored these nonstandard features. We follow

this literature and estimate standard VARs in levels (which is the closest to their specification with

stochastic trends). Nevertheless, the impulse responses we obtain with approximately flat priors are

similar to Blanchard and Perotti’s impulse responses.
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0.15 percent respectively, but this fall appears to be permanent. Figure 2 reports

similarly large differences in responses to the spending shock, the most striking ones

in the response of spending itself.
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Figure 1 – Response to a Tax Shock: OLS estimation (shaded area, the same across

columns) and Bayesian estimations using four informative priors. Quantiles 0.16 and

0.85.

This shows that Bayesian VARs can produce very different results under different

priors. These differences are relevant for evaluating the effects of austerity: the output

costs of increasing taxes more than doubles with a flat prior compared with the Sims

and Zha (1998) prior, and they are even larger for the Minnesota prior. The output

costs of cutting spending are very uncertain with all the estimation procedures and

for a given initial cut in spending they are the largest under the Dynare prior.

However, most researchers will find little reason to choose one prior over another
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Figure 2 – Response to a Spending Shock: OLS estimation (shaded area, the same

across columns) and Bayesian estimations using four informative priors. Quantiles 0.16

and 0.85.

based on a priori grounds, because it is difficult to interpret priors on VAR parameters

directly.

Furthermore, these priors on parameters imply priors about data behavior that no

analyst would ever hold, hence they can not represent an analyst’s prior information.

Figure 3 reports the densities of each variable implied by plugging in the left side

of (4) the corresponding prior on parameters. Thus the figure shows the prior on

observables that would be consistent with the priors on parameters found in the

literature. The figure plots the quantiles of the density of each variable for periods

t = 1, 2, ..., 15 at the start of the sample. The blue shaded region shows the prior

about observables expressed by Blanchard and Perotti in their paper, we describe
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this density in more detail below in section 4.1.2. This blue shaded region shows

that uncertainty gradually increases as time goes by, as more error terms accumulate,

consistent with the model used. It also shows that output is on average expected to

grow. The solid black line gives the quantiles for the fixed point that we compute,

please ignore this line for now. The dashed and dotted lines show the quantiles for

the priors on observables implied by the standard VAR priors used in estimation. We

can see that in some cases these priors are quite counterintuitive. The Minnesota

and noninformative (flat) priors are the most striking, as they place almost a uniform

distribution on growth rates over the real line (the quantiles look vertical given the

scale of the plot).21 These priors imply, for example, that a yearly output growth

of more than 100% is much more likely than a growth rate of between 0 and 4% a

year. We contend that no analyst will deem this to properly represent his/her views

about the economy. The other two priors are less unreasonable but still have some

problems: Sims-Zha is centered on the scenario of zero output growth and Dynare

on negative growth, while placing nonnegligible probability on very large positive or

negative growth rates of some variables, e.g. taxes.

This figure is meant to show that standard priors on parameters cannot represent

the opinion of the analyst in this application. Hence, the posteriors found with these

prior distributions are not valid on Bayesian grounds. This is why we consider priors

specified explicitly on observables instead.

4.1.2 A prior about observables

We now formulate a prior about observables, pY . The prior is about the dynamics of

GDP, taxes and spending in the beginning of our estimation sample. We base this

21This is a consequence of assuming a flat prior on the intercept so it should hold for any application

of flat and Minnesota priors.
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Figure 3 – Density of Taxes, Spending and GDP implied by alternative priors. Quantiles

0.05 and 0.95 of the distribution in periods 1-15 of the estimation sample.

prior on the data from the period preceding the estimation sample, and on subjective

priors about the relations of taxes and spending with GDP inspired by Blanchard

and Perotti (2002). One aspect of these priors is cointegration, for an alternative

approach to priors about cointegration in VARs see Giannone et al. (2016).

The data that inform our prior are on real GDP for the period 1947-1960 and

on taxes and spending in 1960.22 We fit an AR(2) model into the GDP data for

22Blanchard and Perotti’s estimation starts in 1960Q1, but it is ok to use the data from 1960 to

inform our prior because the VAR has four lags and when estimating it we condition on the data

for the four quarters of 1960 anyway. The replication dataset does not include taxes before 1960Q1.

Moreover, as discussed in Blanchard and Perotti (2002), government spending before 1960Q1, while

available in the replication dataset, is unusually volatile due to the Korean War expenditures in the

1950s, so in our baseline prior about observables we ignore these data and use only GDP before

1960.
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1947Q1 to 1960Q4 and generate the predictive density of GDP after 1960Q4. Then,

following Blanchard and Perotti (2002), we consider cointegration relations between

variables, and we use their model of innovations. Specifically, we postulate that taxes

and spending are cointegrated with GDP and follow

τt = δx + τt−1 − βτ (τt−1 − xt−1 − cτ ) + a1u
x
t + στετt , (15a)

gt = δx + gt−1 − βg(gt−1 − xt−1 − cg) + σgεgt , (15b)

where τt is the log of taxes, gt is the log of spending, uxt is the innovation to GDP, ετt

and εgt are the tax and spending shocks, both i.i.d. standard normal random variables,

and δx, β
τ , βg, cτ , cg, a1, στ , σg are scalar parameters. We set the constant term

δx equal to the average growth rate of GDP in the 1947Q1-1960Q4 sample. We set

cτ , cg, i.e. the logs of the equilibrium shares of taxes and spending in GDP, to the

average values of τt − xt and gt − xt in 1960 (where xt is the log of GDP). We set

βτ = βg = 0.5, implying a fast convergence of taxes and spending to these equilibrium

shares in GDP. We assume that the standard deviations of tax and spending shocks,

στ and σg, are both 1%. Finally, a1 = 2.08 is the elasticity of tax innovations to GDP

innovations that Blanchard and Perotti estimated from disaggregated data and used

in their VAR identification. They argue that the elasticity of spending innovations to

GDP innovations is zero, hence we do not include uxt in the equation for spending. The

implied predictive density of taxes, spending and GDP is our prior about observables.

We impose this predictive density for 15 quarters, as then the dimension of the prior

density of the observables (15 × 3) equals the dimension of the prior density of the

parameters B and Σ (i.e. N(NP + 1) + N(N + 1)/2 = 45). We have plotted draws

from the above prior density and both their dynamics and comovement do resemble

plots of actual GDP, taxes and spending.

After specifying this density of the observables we run the approximate conjugate

algorithm from section 3.4 where G is the family of Normal-Inverted Wishart densities
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(see the Online Appendix for the details on the implementation). Using different ran-

dom starting points g0, the algorithm always converges to a similar Normal-Inverted

Wishart density. Figure 4 presents the evolution of two of the parameters of the

Normal-Inverted Wishart density as we iterate from ten different starting points. We

plot the top-left elements of matrices M and S, denoted M(1, 1) and S(1, 1) respec-

tively. The third plot shows the evolution of the Kullback-Leibler divergence between

p(Y ) and
∫

Θ
p(Y |θ) gz(θ)dθ (the left-hand side and the right-hand side of equation

(4)) estimated from a sample of 1000 draws from each density.23 We can see that

after about 200 iterations the K-L divergence reaches the vicinity of zero (thereafter

it fluctuates because of the estimation noise). In what follows we present results

based on one thousand iterations on the algorithm, which take about 12 minutes on

a standard PC, but we obtain very similar results already after 200 iterations.

iteration
0 500 1000
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0

1

2
M(1,1)

iteration
0 500 1000

0

50

100
S(1,1)

iteration
0 500 1000

0

20

40

K-L div. from target

Figure 4 – Two parameters of gz along the iterations and the estimated Kullback-Leibler

divergence between p(Y ) and
∫

Θ p(Y |θ) g
z(θ)dθ along the iterations.

Finally, we check the accuracy of the fixed point that we find by comparing the

implied density of observables with the stated density in the prior. Figure 3 shows

23We use p(Y ) as the weighting function in Kullback-Leibler divergence, i.e., we estimate∫
Y p(Y ) log

(
p(Y ) /

∫
Θ
p(Y |θ) gz(θ)dθ

)
dY . We compute the estimate using the TIM package for

Matlab (Rutanen, 2011), which implements the nearest-neighbor estimator the Kullback-Leibler

divergence proposed by Wang et al. (2009).
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with the shaded region the quantiles according to the prior on observables. The solid

lines are the quantiles with our approximate fixed point. As can be seen the match

is nearly perfect.

4.1.3 Results with the prior about observables

The rightmost columns of Figures 1 and 2 report the responses to tax and spending

shocks implied by the subjective prior about observables. The responses to the tax

shock (Figure 1) are closest to those obtained with the Minnesota prior. The main

difference is that the immediate response of spending is negative (instead of being

close to zero) and, consistently with this, the negative response of output is slightly

stronger. The responses to the spending shock (Figure 2) obtained with the prior

about observables imply a larger government spending multiplier than according to

any of the other methods. The response of output to a 1% shock is about 0.4% after

12 quarters, compared with about 0.2% according to the OLS estimation, Minnesota,

and Sims and Zha (1998) priors. The response of output obtained with the Dynare

prior is close to 0.4% after 12 quarters, but it is associated with a much higher

spending (about 1.5% above the benchmark after 12 quarters, as opposed to less

than 1% when the prior about observables is used). Summing up, the subjective

prior about observables yields plausible impulse responses, with the effects of tax

shocks on output that are more negative than under the flat prior and much more

negative than under the Sims Zha (1998) and Dynare priors, and with more positive

effects of spending shocks on output than under alternative priors. From the point

of view of our prior about observables, standard VAR priors underestimate fiscal

multipliers.
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4.2 Christiano et al. (1999) VAR

In this subsection we estimate the effects of monetary policy shocks following Chris-

tiano et al. (1999) (CEE). They estimate a VAR in levels with output (real GDP),

prices, commodity prices, federal funds rate, total reserves, nonborrowed reserves and

money, using quarterly US data from 1965 to 1995.24 The monetary policy shock is

identified as the Choleski shock to the federal funds rate, with the above ordering of

the variables.

4.2.1 Results with standard priors

Figure 5 shows the effect of monetary policy shocks on output. We report the quantiles

0.05 and 0.95 of the posterior distributions of the impulse response of GDP. Responses

of the remaining variables are reported in the Online Appendix. GDP is quarterly,

in log levels, and the responses correspond to a one standard deviation shock. The

shaded regions (common to all four plots) report the posterior obtained with the flat

prior, so they are the closest to the OLS estimation of the VAR by the CEE.

Panels A to C illustrate that the persistence of output responses differs dramat-

ically depending on the prior on parameters used. The flat prior (shaded) produces

a short-lived effect (the shaded 90% posterior probability range contains zero after

about 10 quarters). The Minnesota prior in panel A produces similar persistence as

the flat prior but narrower error bands. The Sims Zha (1998) prior in panel B and

the Dynare prior in panel C tend to produce permanent responses of output (and, in

panel C, a quite high probability of an explosive response). The permanent responses

in panels B and C are inconsistent with the long-run neutrality of money and thus

they pose a challenge to most standard economic theories, which almost always imply

long-run neutrality of money. Again, as in the Blanchard and Perotti (2002) example,

24We downloaded the data from Larry Christiano’s webpage.
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we find that different standard priors produce different results, so it is important to

think about whether or not the priors can represent the anlysts’ prior information.
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Figure 5 – Response of output to a monetary policy shock: OLS estimation (shaded

area, the same across columns) and Bayesian estimations using four informative priors.

Quantiles 0.05 and 0.95.

Figure 6, analogous to Figure 3, plots over time the quantiles of the observables

implied by different standard priors and we find that they miss on some key aspects.

The Minnesota and noninformative (flat) priors are the most extreme ones as they

imply that huge growth rates are very likely. The Sims Zha (1998) and Dynare priors

are consistent with a zero average inflation and no growth of money supply, reserves

and GDP. To the extent that this does not represent the analysts’ opinion on the

behavior of observables we conclude that the posterior is not convincing on Bayesian

grounds.
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Figure 6 – Density of the observables implied by alternative priors. Quantiles 0.05 and

0.95 of the distribution in periods 1 to 4 of the estimation sample.

4.2.2 A prior about observables

This time we formulate a minimalistic prior about observables. The prior is about

the initial growth rates of all the variables. We call it minimalistic for two reasons.

First, it conveys very simple ideas about the dynamics of the observables, namely,

that the observables follow independent random walks, shadowing the idea behind

the priors in the Litterman, Sims and Zha tradition. Second, we specify this prior for

only a few periods, fewer than necessary to define the density of parameters uniquely.

This is because given the simplicity of the prior we do not want to impose it too

dogmatically.

We specify our prior on the growth rates in the initial P periods conditional on

the observed pre-sample values yo−P+1, ..., y
o
0 (where the superscript o stands for ‘ob-

served’). In this way, the prior is akin to the assumptions in the so-called ‘exact

likelihood’ approach, and to most frequentist small sample bias corrections that re-

late initial conditions to the true parameters, so it has the advantage of allowing to
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compare the results with this literature.25

Thus, we specify a density on a P × N dimensional vector of observables

p∆y1,...,∆yP |yo−P+1,...y
o
0

as our prior about observables. Specifying a prior on growth

rates does not mean we impose a unit root, it is done only for convenience, obviously

this prior is equivalent with a certain density for the levels py1,...,yP |yo−P+1,...y
o
0
. The

density could be drawn from the purely subjective prior opinion of the user, but here

we take an empirical Bayes approach and use the growth rates observed in the data

to inform our prior.26 Therefore, our prior conveys the idea that the growth rates

of the first P observations behave similarly as the rest of the sample. The way we

implement this idea is the following: we estimate an auxiliary model ∆yn,t = αn+εn,t,

εn,t ∼ N (0, σ2
n) for each variable n = 1, ...N and use as py1,...,yP |yo−P+1,...y

o
0

the density

of the observables implied by the posteriors of αn, σ
2
n. In the Online Appendix we

report the growth rates observed in our sample and discuss other variants of the prior

that use data from various subsamples and from the period preceding the estimation

sample.

The blue region in Figure 6, shows the distribution of observables implied by the

empirical Bayes prior on observables. As we can see, it differs from the standard

informative priors because output, prices, reserves and M1 are expected to grow over

time.

25See Jarociński and Marcet (2010), section 2 for a discussion.

26The empirical Bayes approach is controversial because it makes the prior dependent on the data.

The advantages and disadvantages of this approach have been discussed at length in the literature,

see Morris (1983) for a classical reference or Efron (2010) for a more recent reference. Our use of the

empirical Bayes approach here follows Berger (1985, section 3.5.2) who suggests the data themselves

as a possible source of information about the marginal density of the data.
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4.2.3 Results with the prior about observables

After specifying our density of the observables we again run the approximate conju-

gate algorithm from section 3.4. This time, using different random starting points g0

for the algorithm we find different approximate fixed points consistent with the stated

prior density of the observables. This happens because our prior about observables

does not define a unique prior about parameters. Our prior states a distribution for

a vector of Y ’s of dimension NP = 28, while the number of parameters for which it

defines a prior pθ is much larger.27 Therefore, we need to impose some more restric-

tions in order to choose from among the many fixed points that we find. First, we

restrict the marginal prior density of Σ to be the same as in the Minnesota, Sims Zha

(1998) and Dynare priors. Then we find 300 approximate fixed points that satisfy

the restriction on p(Σ). We stop at 300 because the lessons drawn based on 300 fixed

points are the same as those based on the first 200. Finding each fixed point requires

about 200 iterations and takes about 5 minutes with Matlab on a standard personal

computer.

From these 300 fixed points we choose two: the one with the highest marginal

likelihood and the one with the highest entropy. These choices somehow represent

two opposite criteria: the highest marginal likelihood is the fixed point that best fits

the data actually observed,28 while maximum entropy can be interpreted as impos-

ing as little prior knowledge as possible.29 It also happens to be the case that the

maximum-marginal-likelihood fixed point has one of the lowest entropies, and that

27B contains N(NP + 1) parameters and Σ contains N(N + 1)/2 parameters. Since N = 7 and

P = 4, the total dimension of the parameter vector is 231.

28The marginal likelihood is
∫
p(yo|·)pθ, where yo is the observed data.

29Entropy, defined as as
∫
θ

log p(θ)dp(θ) measures the amount of information carried by a distri-

bution. We obtained an analytical expression for the entropy of a Normal-Inverted Wishart density

with the help of Proposition 3 of Gupta and Srivastava (2010).
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the maximum-entropy fixed point has one of the lowest marginal likelihoods in the

studied set of fixed points.

To check accuracy we look at the implications for observables of the approximate

fixed points that we find. The solid lines in Figure 6 show the quantiles implied by the

left hand side of (4) at a representative approximate fixed point with the restriction

on p(Σ). The solid lines are close to the edges of the shaded regions that represent our

desired prior about observables. This shows that, in spite of its approximate nature,

its very large dimensionality and the restriction on p(Σ), the approximate conjugate

algorithm delivers a density of observables that is reasonable and close to the desired

prior.30

The posterior for the fixed point with the highest marginal likelihood in the sample

is plotted with the solid line in panel D of Figure 5. The posterior shows a much

more persistent effect of monetary shocks than OLS: output takes about 20 quarters

to recover, instead of about 10 quarters with the flat prior. The effect of the shock

in the first two years is weaker with our prior but it becomes stronger afterwards.

The median total output loss after 5 years is 30% larger according to our prior than

with the flat prior (1.85% of yearly output loss in our case versus 1.40%).31 More

importantly, the dynamics of output is mean-reverting, consistently with the long-run

neutrality of money. Note, also, that the error bands are narrower in our posterior

30In the absence of the restriction on p(Σ) we find fixed points for which the solid lines are

indistinguishable from the edges of the shaded region. However, we do impose the restriction on

p(Σ) because the fixed points obtained without this restriction put a lot of probability mass on small

values of Σ and compensate it by the large variance of B conditional on Σ. We find these priors not

to be reasonable so an easy way to select reasonable behavior is to restrict the prior p(Σ).

31To compute “total output loss in the first 5 years” due to a monetary policy shock we sum the

median impulse response of the quarterly GDP in the first 5 years, and then divide by 4 in order to

convert the result into annual GDP.
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than with a flat prior, implying that we have incorporated useful information in the

estimation.

The dashed line in panel D of Figure 5 plots a posterior corresponding to the fixed

point with the highest entropy. It is comforting that this posterior confirms the main

features of the highest marginal likelihood plotted with the solid line: higher per-

sistence than OLS and mean reversion. As is well known, higher entropy is roughly

related to higher dispersion, so it is intuitive that this fixed point shows larger pos-

terior variance.

We report prior sensitivity analysis in the Online Appendix. We show that a range

of reasonable priors on initial growth rates supports the conclusion that the response

of output to a monetary policy shock is consistent with long-run neutrality of money.

Moreover, most of these priors imply that the effect of a monetary shock is stronger

and more persistent than in CEE, although the prior based on the data preceding the

estimation sample is an exception here.

4.3 Romer and Romer (2004) VAR

In this subsection we estimate the effects of monetary policy shocks in the US following

Romer and Romer (2004). They first construct monetary policy shocks using a version

of the ‘narrative approach.’ Next, to measure the effects of the shocks on the economy

they estimate a VAR with the log of industrial production, the log of the producer

price index, and the cumulated monetary policy shocks. The observations are monthly

and the estimation sample is from January 1966 to December 1996.32 The VAR

includes 36 lags.

32We took the data from the Data Appendix at the AER website.
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4.3.1 Results with standard priors

Figure 7 shows the effects of a one percentage point monetary policy shock estimated

with the standard priors. We plot the impulse responses for 48 quarters. The blue

shaded regions common to all plots in a given row report the posteriors obtained with

the flat prior, so they are the closest to the OLS estimation of the VAR by Romer

and Romer.33 The solid lines report the posteriors obtained with informative priors.

The first three columns are for the standard priors: the Minnesota prior, the Sims

and Zha (1998) prior and the Dynare prior.

Figure 7 shows that in this case the impulse responses from all four standard

priors on parameters are rather similar to each other.

Figure 8, analogous to Figures 3 and 6, plots the quantiles for the distribution of

the first few dates of observables implied by the priors. We can see that standard

priors for VARs imply that very large output and price changes are highly likely.

As in the previous examples, the large divergence of some of these priors questions

from reasonable priors on observables questions the Bayesian grounds of the estimates

derived from these priors.

4.3.2 A prior about observables

In most of the paper and in the previous two applied examples our reasoning has been

that analysts have priors on observables based on their own experience and that this

33Romer and Romer (2004) include their cumulated shock as the last variable and compute the

responses to the Choleski shock of this variable. This implies that the immediate responses of output

and prices are zero by construction. For reasons we explain later we include the cumulated shock as

the first variable and compute the responses to the Choleski shock. Hence, our responses show some

small immediate effects of monetary shocks on output and prices. Otherwise, the impulse responses

we obtain are similar to those they report, although they do imply somewhat smaller medium run

effects of monetary policy.
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Figure 7 – Response to the Romer and Romer (2004) monetary shock: OLS estimation

(shaded area, the same across columns) and Bayesian estimations using four informative

priors. Quantiles 0.16 and 0.85.

should be used in estimation. In this example we take a somewhat different approach:

we take take for granted that an economist does believe in a certain structural model

and that this economist uses this model to express his prior knowledge about the

behavior of the observables. A related motivation underlies the priors used by Del

Negro and Schorfheide (2004) and others.

We now formulate a prior about observables, pY , based on a simple structural
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economic model:

yt = b1(rt − Etπt+1) + Etyt+1 + vt, (16a)

πt = (1− φ)Etπt+1 + φπt−1 + α(yt − ȳt) + ut, (16b)

rt = (1− µ3) [r + πt + µ1(πt − π∗) + µ2(yt − ȳt)] + µ3rt−1 + et, (16c)

where yt is the log of output, πt is inflation, rt is the nominal interest rate, and vt, ut

and et are exogenous shocks. Equation (16a) is a New-Keynesian IS equation, (16b)

is a New-Keynesian Phillips curve and (16c) is a Taylor-type monetary policy rule,

with et representing a monetary policy shock. We take this model from McCallum

(2001). McCallum discusses further details of the model and how it can be derived

from optimizing behavior of households and firms under nominal rigidities. We chose

this specific model because, first, we wanted a simple model in which monetary policy

is nonneutral, to justify the interest in the effects of monetary policy shocks. Second,
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we wanted a model with enough built-in inertia to produce delayed, hump-shaped

impulse responses, which seem to be a feature of the data. However, although the

model impulse responses are hump-shaped, monetary policy does have some imme-

diate effects in it, and this is why we also allow for immediate effects of monetary

policy in the VAR, by ordering the shock as the last variable.

The calibration of the model parameters is also taken from McCallum, except for

adjustments that roughly adapt his quarterly calibration to our monthly data: we

reduce α and µ2 by a factor of 3, we increase µ3 by raising it to the power 1/3, we

reduce the variances of shocks and add autocorrelation of 0.5 to the shock processes,

which are originally i.i.d. We divide shock standard deviations by 3, except for

the monetary policy shock et, which has standard deviation of 0.0034 (the standard

deviation of the shock constructed by Romer and Romer). When simulating the

model, we add a trend output growth drawn from a normal distribution with mean

2.5 percent annualized and standard deviation of two percentage points. To inflation

we add a trend inflation drawn from a normal distribution with mean 4 percent

annualized and standard deviation of two percentage points. We also tried introducing

uncertainty about shock standard deviations and some other model parameters, but

these modifications did not affect our key findings.

To generate the density of the observables we repeat the following sequence of

steps. 1) We draw all the parameters that have nondegenerate prior distributions. 2)

We solve the model using the gensys procedure of Sims (2001). 3) We draw the shocks

for 111 periods and compute the evolution of yt and πt implied by these shocks. 4) We

compute the cumulated monetary policy shock et, the log level of output and the log

level of prices. The obtained 111 periods long sequences of the three series are a draw

from our prior density of the observables. We impose this density for 111 months,

as then the dimension of the prior density of the observables (111 × 3) equals the
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dimension of the prior density of the parameters B and Σ (N(NP+1)+N(N+1)/2 =

333). We use our approximate conjugate fixed point algorithm to translate this prior

about observables into a prior about parameters. Starting from random points the

algorithm converges to approximately the same density in less than 200 iterations,

which takes about 30 minutes.

Figure 8, shows that McCallum’s model implies reasonable evolution of the series

and that the fixed point we compute approximates this prior on observables reason-

ably well.

4.3.3 Results with the prior about observables

The fourth column of Figure 7 shows that a researcher approaching Romer and

Romer’s data with McCallum’s prior finds much weaker effects of monetary pol-

icy. The medium term responses of output and prices are reduced by a factor of

three. This is perhaps unsurprising, as the impulse responses to monetary policy

shocks found by Romer and Romer (2004) have quite a different dynamics from the

impulse responses in McCallum (2001): in Romer and Romer prices only start falling

after about 20 months, and before that time they remain basically constant, while in

McCallum’s model most of the response of prices occurs within the first 20 months.

Therefore, a researcher who needs to reconcile this conflicting prior and data evidence

settles for weak effects of monetary policy. This exercise highlights that the monetary

policy effects in Romer and Romer are quite at odds with quantitative predictions of

a standard New Keynesian model. It shows how a Bayesian researcher starting with

McCallum’s model should downweigh Romer and Romer’s evidence.
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5 Conclusions

We have proposed using priors about observables and applied them to the estimation

of Bayesian VARs. Priors about observables are easy to interpret and, as shown by

our empirical applications, they often make a significant difference in empirical work.

To our knowledge we are the first to derive the posterior consistent with these pri-

ors in a formal way. We show the inverse problem that defines the prior on parameters

that is consistent with a prior on observables, reformulate it as a fixed point problem,

we give a numerical algorithm to find this fixed point and we show this algorithm

converges in the discrete case. This algorithm works even in very high-dimensional

problems that we consider.

Application of Bayesian priors to VARs has obviously been a successful line of re-

search. Standard priors on parameters such as those of Litterman, Sims and Zha have

been useful in forecasting. But the specification of such priors is mostly experience-

based, and often not fully justified from a subjective point of view. Often these

standard priors give very different results and, as we show, might represent prior

knowledge about observables that most economists would not hold. This presents

serious problems when a researcher hopes that a VAR procedure will uncover un-

observable features of the economy, such as e.g. impulse responses: if the stated

prior does not represent the analysts’ prior belief, the resulting posterior is not the

best estimate of the unobservable quantities. In a way we advocate a ‘more Bayesian’

approach, providing a more natural representation of prior knowledge about the econ-

omy by focusing on observables.

Thus, the priors on observables we propose in this paper can serve as a cross-check

on the standard priors and as an alternative to them.

Is it obvious how to formulate priors on observables? Certainly not. A researcher

specifying a prior on observables needs to think hard about these observables and take
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a multitude of specification choices. In each of our three examples we used a different

reasoning to arrive at the prior density and we do not doubt that many alternative

reasonable priors could be constructed for these cases, possibly with different impli-

cations for the posterior. However, we contend that the approach we propose is more

intuitive than the standard approach of specifying a prior about parameters directly.

The possible different priors on observables can be evaluated much more intuitively

as the issue is simply what is a best representation of our prior knowledge about

observables, for which most analysts do have a clear prior idea. In any case the joint

density of VAR parameters is a very high-dimensional object as well, and formulating

it also requires lots of specification choices, ‘weights’ and ‘shrinkage factors.’ When

thinking of the plausibility of these choices we are in the dark, because the VAR

parameters are hard to interpret unless for their implications on observables.

Much future work remains. The empirical examples we have considered are mostly

demonstrative and could be investigated further. Other ways of specifying priors on

observables should be explored. Priors on observables could be used in many other

applications and econometric models. Extending our analytical results would be

useful. For example, our convergence result in Proposition 5 should be generalized

in various directions, including the case of multiple solutions to the inverse problem

and continuous distributions. Studying convergence when the fixed point problem

does not have a solution may be useful in practice, as it may lead to systematic

ways of modifying pY so as to guarantee existence. The algorithm can be used for

non-parametric estimation along the lines discussed in footnote 12.
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Appendix A Proofs of Propositions 1 to 5 and Re-

sult 1

Proof of Proposition 1

Clearly for g = pθ we have
∫

Θ
pY |θ(Y ; ·) g = pY (Y ) > 0 so that F is well defined

at g = pθ.

We have for all θ ∈ Θ

F(pθ)(θ) =

∫
Y
pY |θ(Y ; θ) pθ(θ) dY = pθ(θ)

∫
Y
pY |θ(·; θ) = pθ(θ).

The first equality holds from the definition of F and (4), the second equality takes

pθ(θ) before the integral since it does not depend on Y . The last equality holds

because pY |θ(·; θ) is a probability density and therefore it integrates to 1 over Y . �

Proof of Proposition 2

Let pθ > 0 be the solution of (4) considered in the statement of the proposition

and consider p̃θ another solution of (4) and. We have

E

(
p̃θ(θ)

pθ(θ)

∣∣∣∣Y) =

∫
Θ

pY |θ(Y ; θ) p̃θ(θ)∫
Θ
pY |θ(Y ; ·) pθ

dθ =

∫
Θ

pY |θ(Y ; θ) p̃θ(θ)∫
Θ
pY |θ(Y ; ·) p̃θ

dθ = 1.

The first equality follows by writing pθ|Y in terms of Bayes’ formula, the second

because p̃θ satisfies (4).

Take δ(θ) = p̃θ(θ)
pθ(θ)
− 1, completeness with respect to θ implies p̃θ = pθ, therefore

the solution is unique.�

Proof of Proposition 3

Consider the set Y 0 ≡
{
Y ∈ Y : pY |θ(Y ; ·) = 0

}
. Let IY o be the indicator function.

By definition of Y 0 we have that E(IY o(Y ) | θ) = 0 for all θ. By completeness this

implies that Prob( Y ∈ Y 0) = 0. Therefore g∗ > 0 implies
∫

Θ
pY |θ(Y ; ·) g∗ > 0 a.s. in

Y so that F is well defined at g∗.
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At a fixed point we have g∗(θ) =
∫
Y

pY |θ(Y ;θ)g∗(θ)∫
Θ pY |θ(Y ;·) g∗ pY (Y ) dY . Given g∗ > 0 we

cancel g∗(θ) from both sides and we have that a.s. in θ

1 =

∫
Y

pY |θ(Y ; θ)∫
Θ
pY |θ(Y ; ·) g∗

pY (Y ) dY = E

(
pY (Y )∫

Θ
pY |θ(Y ; ·) g∗

∣∣∣∣ θ)
Therefore, taking δ(Y ) = pY (Y )∫

Θ pY |θ(Y ;·) g∗−1, completeness implies that
∫

Θ
pY |θ(Y ; ·) g∗ =

pY (Y ) for almost all Y ∈ Y . �

Proof of Proposition 4

We first show that F(g∗) is well defined. Since πkj ≥ 0 and gk > 0 we have

∑
k

πkjg
∗
k ≥ 0 all j = 1, ..., N. (A.1)

Since gi > 0 for all i, the only way that (A.1) could hold as equality for some given j is

if πkj = 0 for all k. But this would violate invertibility of Π. Therefore
∑

k πkjgk > 0

for all j and F(g) is well defined.

Using g∗i > 0, the fixed point condition implies that

∑
j

πij∑
k πkjg

∗
k

pY (Y j) = 1 for all i = 1, ..., N. (A.2)

Let h ∈ RN have hj =
pY (Y j )∑
k πkjg

∗
k

as typical element. Let 1 ∈ RN have all elements

equal to 1. Equation (A.2) can be written as

Πh = 1 (A.3)

Since all the rows of Π add up to 1 we have Π1 = 1. Premultiplying both sides of

the last equation by Π−1 we have that h = 1 and it follows that

∑
k

πkjg
∗
k = pY (Y j) for all j = 1, ..., N (A.4)

so that g∗ solves (3). �
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Proof of Proposition 5

At the beginning of the proof of Proposition 4 we argued that if g∗ > 0 then

Πg∗ > 0. The same argument proves that under assumptions i) and ii) in the current

proposition Πgθ > 0. Therefore F(g) is well defined near gθ and taking derivatives of

F mechanically we have

∂F(g)i
∂gn

=


∑

j
πij∑
k πkjgk

pY (Y j)−
∑

j

πnj πij pY (Y j )

(
∑
k πkjgk)

2 gi for n = i

−
∑

j

πnj πij pY (Y j )

(
∑
k πkjgk)

2 gi for n 6= i.

Using
∑

k πkjgθ,k = pY (Y j) > 0, letting ∆∗ be the matrix with a typical element

∆∗in =
∑

j πnj
πijgθ,i∑
k πkjgθ,k

, we can evaluate this derivative at gθ to obtain

∂F(gθ)i
∂gn

=

 1−∆∗in for n = i

−∆∗in for n 6= i,

so that

∂F(gθ)

∂g′
= I −∆∗. (A.5)

Denote the possibly complex eigenvalues of ∆∗ by λn. We now show that for all

n = 1, ..., N

λn is a real number and 0 < λn ≤ 1 (A.6)

It is easy to verify that the rows of ∆∗′ add up to 1. A well known property of

such matrices is that |λn| ≤ 1 for all n = 1, ..., N .

Next we discard the possibility that the eigenvalues λn are complex and/or neg-

ative. Let G∗ and D be diagonal matrices with the j-th diagonal entry equal to gθ,j

and 1∑
k πkjgθ,k

respectively. We can write

G∗∆∗ = G∗ΠDΠ′G∗ (A.7)

showing that G∗∆∗ is a symmetric positive semidefinite matrix. Furthermore, since

gθ and
∑

k πkjgθ,k are strictly positive and Π is invertible all matrices involved in
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the right side of (A.7) are invertible so that no eigenvalues of G∗∆∗ can be zero.

Therefore, G∗∆∗ is positive definite, hence all its eigenvalues are real and strictly

positive. It remains to show that all eigenvalues of ∆∗ inherit this property.

Obviously

∆∗ = (G∗)−1G∗∆∗. (A.8)

Clearly (G∗)−1 is symmetric and positive definite and we already know that G∗∆∗

is symmetric and positive definite. When two matrices are symmetric and positive

definite then all the eigenvalues of their product are real and strictly positive (e.g.

this is a special case of Serre (2010) Proposition 6.1). Hence, we have shown that all

real numbers λn > 0 for all n. This ends the proof of (A.6).

The eigenvalues of (I −∆∗) are 1− λn, hence by (A.6) and (A.5) we have that all

eigenvalues of ∂F(gθ)
∂g′

are strictly less than one in absolute value. A standard argument

implies that successive approximations on F locally converge to gθ. �

Proof of Result 1

EF(g)(q(θ)) =

∫
Θ

q(θ)

(∫
Y
pgθ|Y (θ|Y ) pY (Y ) dY

)
dθ

=

∫
Y

(∫
Θ

q(θ) pg(θ|·) dθ
)
pY = EpY

(
Epg(·|Y )(q(θ))

)
(A.9)

The first equality above holds by definition of F(g), the second by Fubini’s theorem

and the third by definition of EpY . This proves (9). �

Appendix B A Discrete Approximation to the

continuous case

We describe a discretization of continuous distributions and find conditions guaran-

teeing that the fixed points of this modified problem converge to a solution of the
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continuous inverse equation (4) as the step size goes to zero. Combining this re-

sult with Proposition 5 we can state that for sufficiently many iterations on F and

sufficiently small step size ε we can approximate the continuous pθ that solves (4)

arbitrarily well.

Building ε−partitions

Fix a scalar ε > 0. An ε−partition is a collection of non-overlapping intervals

{Yε
i }
Nε
i=1 where Yε

i ⊂ Y ⊂ RM with Nε <∞ ( that cover the support of Y . Formally,

we require that Yε
i ∩Yε

j = ∅ for all i 6= j and that ∪Nεi=1Y
ε
i = supp(Y) where supp(Y)

denotes the set of Y values that have a positive density for some θ ∈ Θ. The sides of

all intervals are either of length less than ε or infinite. If Y is not compact we allow

for infinite intervals but the probability of sets Yε
i with infinite sides has to go to zero

as ε→ 0.

More specifically, these intervals can be constructed as follows: for each dimension

m = 1, ...,M we choose a given set of Iε < ∞ interval endpoints Y ε,i
m , i = 1, ..., Iε

where Y ε,i
m ∈ R for i = 2, ..., Iε−1 but Y ε,1

m , Y ε,Iε
m ∈ R∪{−∞,∞}. The endpoints have

to cover the whole support so that Y ε,1
m ≤ infsupp(Ym) and Y ε,Iε

m ≥ supsupp(Ym) where

Ym is the projection of supp(Y) on its m-th coordinate. We require Y ε,i
m < Y ε,i+1

m

i = 1, ..., Iε − 1, |Y ε,i
m − Y ε,i+1

m | < ε for i = 2, ..., Iε − 2 and for the lowest endpoint

|Y ε,1
m − Y ε,2

m | < ε if infsupp(Ym) > −∞, similarly for the highest endpoint Y ε,Iε
m . Finally,

in the case infsupp(Ym) = −∞ (sup) we require that Y ε,2
m → −∞ (Y ε,Iε−1

m →∞).

We consider all intervals of the form
M∏
m=1

(Y ε,im
m , Y ε,im+1

m ] for some im ∈

{1, ..., Iε − 1} , clearly Y is included in the union of these intervals. Finally we con-

struct sets Yε
i ⊂ Y by overlapping each interval with Y , that is we set Yε

i =

supp(Y)∩
M∏
m=1

(Y ε,im
m , Y ε,im+1

m ] for all the intervals where the intersection is non-empty

(empty sets have to be excluded if Πε is to be invertible). Let Nε ≤ (Iε)
M be the

number of these intervals.

54



We consider analogous partitions {θεi}
Nε
i=1 of Θ, where the number of sets Nε is the

same both in the partitions of Y and Θ. However, for our proof to work we need to

exclude intervals for θ with infinite sides, so that all the endpoints θε,im , i = 1, ..., Iε are

such that |θε,im | <∞. In the case where Θ has infinite support we require −θε,1m , θε,Iεm →

∞ as ε→ 0. This guarantees that all θεi are compact and ∪Nεi=1θ
ε
i ↗ supp(Θ) as ε→ 0.

Discretizing pY and pY |θ

We discretize pY by forming an Nε-dimensional probability vector as follows. Let

pεY,i ≡
∫
Yε
i

pY

and let pεY be the vector with a typical element pεY,i. Clearly pεY defines a discrete

probability distribution of Y .

We discretize pY |θ defining

πεij ≡
∫

Yε
j×θεi

pY |θ

and letting Πε be the matrix with a typical element πεij. Clearly Πε is a special case

of the likelihood matrix Π considered in section 3.1, as its rows add up to 1. This

follows from the fact that the ε-partition is chosen so that ∪Nεi=1Y
ε
i = supp(Y).

Let gεθ ∈ RNε be a discrete distribution that satisfies the discrete inverse equation

Πε′gεθ = pεY (B.1)

We assume for now that this solution gεθ exists. Let Gε
θ be a cumulative distribution

function for a continuous random variable θ defined as being uniform in θεj and such

that

∫
θεj

dGε
θ = gεθ,j for all j = 1, ..., Nε. Notice that Gε

θ is well defined because we have

restricted the intervals θεj to be compact, a uniform distribution would not exist over

an interval with an infinite side.

We prove that Gε
θ becomes arbitrarily close to a solution of the continuous inverse

equation (4) as ε→ 0. We first prove the following Lemma.
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Lemma 1. Fix ε−partitions of Y and Θ. We make the following assumptions on the

likelihood function pY |θ and the density of observables pY .

i) Πε is invertible for all ε.

ii) pY |θ is bounded, pY |θ(Y ; ·) is continuous a.s. in Y with respect to pY and pY is

continuous in Y.

iii) The solution to (B.1) satisfies gεθ ≥ 0.

Then the limit of any convergent subsequence of Gεk
θ solves (4). More precisely,

for a subsequence {Gεk
θ }
∞
k=1 with εk → 0 such that

Gεk
θ → G̃θ weakly as k →∞

for some distribution G̃θ, we have that G̃θ solves (4).

Invertibility of Πε can be checked numerically for a given ε. The interpretation

of this assumption is similar to the interpretation of completeness: the model should

identify θ for any possible value of the observables.

Proof of Lemma 1

Given Y ∈ Y it follows from the assumptions that

Y∫
−∞

pY |θ(Ỹ ; ·)dỸ is a bounded

continuous function of θ, therefore by weak convergence

∫
Θ

 Y∫
−∞

pY |θ(Ỹ ; ·)dỸ

 dGεk
θ →

∫
Θ

 Y∫
−∞

pY |θ(Ỹ ; ·)dỸ

 dGθ as k →∞. (B.2)

Applying Fubini’s theorem to both sides of this limit we have

Y∫
−∞

∫
Θ

pY |θ(Ỹ ; ·)dGεk
θ

 dỸ → Y∫
−∞

∫
Θ

pY |θ(Ỹ ; ·)dGθ

 dỸ as k →∞. (B.3)

For a given k and subset Yεk
j

∫
Y
εk
j

∫
Θ

pY |θ(Y ; ·)dGεk
θ

 dY =

∫
Y
εk
j

Nεk∑
i=1

∫
θ
εk
i

pY |θ(Y ; ·) gεki

 dY =
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Nεk∑
i=1

∫
Yε
j×θεi

pY |θ(Y ; θ) gεki d(Y , θ) =

Nεk∑
i=1

πεkij g
εk
i = pεY,j (B.4)

where the first equality follows from the fact that θεi are non-overlapping, that Gεk
θ

puts probability one on ∪Nεi=1θ
ε
i and that Gεk

B is uniform in each subset θεi , the third

equality follows from the definition of πεkij and the last from (B.1).

Let
{
i : Yεk

i ⊂ (−∞, Y ]
}

include the indexes of all the sets in the εk−partition

that are fully included in the interval (−∞, Y ]. We have

∫
∪{Yεk

i :Y
εk
i ⊂(−∞,Y ],i=1,...,Nεk}

∫
Θ

pY |θ(Y ; ·)dGεk
θ

 dY =
∑

i:Y
εk
i ⊂(−∞,Y ]

pεkY,i →
Y∫

−∞

pY as k →∞.

(B.5)

The equality follows from the fact that the intervals Yεk
i are disjoint and (B.1).

One has to be careful arguing for the convergence part in (B.5), one can not simply

claim that the set ∪
{
Yεk
i : Yεk

i ⊂ (−∞, Y ], i = 1, ..., Nεk

}
converges to (−∞, Y ],since

convergence of sets is a problematic concept. Convergence in (B.5) follows from the

following argument. Let the m-th element of Y ε(Y ) ∈ RM be defined as the highest

interval endpoint in the ε−partition that is lower than Y , more precisely,

Y ε(Y )m = max
Y ε,im ≤Ym

{
Y ε,i
m ; i = 1, ..., Iε

}
Then we have∣∣∣∣∣∣∣

∑
i:Y

εk
i ⊂(−∞,Y ]

pεkY,i −
Y∫

−∞

pY

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Y εk (Y )∫
−∞

pY −
Y∫

−∞

pY

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Y∫

Y εk (Y )

pY

∣∣∣∣∣∣∣
By construction

∣∣Y ε(Y )m − Y m

∣∣ < ε hence the sets{
Y ∈ RM : Y ε(Y )m ≤ Ym ≤ Y m

}
have Lebesgue measure that converges to

zero, therefore

∣∣∣∣∣∣∣
Y∫

Y εk (Y )

pY

∣∣∣∣∣∣∣ → 0 because of continuity of pY . The convergence part in

(B.5) follows.
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A similar argument gives

∫
∪{Yεk

i :Y
εk
i ⊂(−∞,Y ],i=1,...,Nεk}

∫
Θ

pY |θ(Y ; ·)dGεk
θ

 dY → Y∫
−∞

∫
Θ

pY |θ(Y ; ·)dGθ

 dY
and by (B.3) we have

Y∫
−∞

∫
Θ

pY |θ(Y ; ·)dGθ

 dY =

Y∫
−∞

pY ,

implying that the inverse equation (4) holds for the distribution functions implied by

the densities pθ and pY .�

Assuming uniqueness we have

Proposition 6. (Approximation by step functions) If the (continuous) inverse

equation (4) has a unique solution density pθ with a corresponding cdf Gθ, and the

assumptions of Lemma 1 hold, then Gε
θ → Gθ weakly as ε→ 0.

The proof follows immediately from the previous lemma and the fact that the

space of distributions is compact so that any sequence has a convergent subsequence.

Appendix C Standard priors for VARs

The flat (noninformative) prior is p(B,Σ) ∝ |Σ|−N+1
2 , following e.g. Zellner (1971),

Ch.8.

The remaining priors, ‘Minnesota’ prior, the ‘Sims Zha (1998)’ prior and the

‘Dynare’ prior, originate in Litterman (1979) and Doan et al. (1984). For reasons

discussed in these and other papers, all these priors are centered at parameter values

implying that the variables follow independent Random Walks, but they have different

prior variances.
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The functional form of the priors is Normal-Inverted Wishart form with parame-

ters M,Q, S, v, see (12)-(13). All three priors use the same values of M,S, v and they

differ only in the value of Q. The matrix M has 1s in the positions corresponding

to the first own lag of each variable and 0s everywhere else, reflecting the postulate

that the variables follow independent random walk models. We follow common rules

of thumb when setting the remaining parameters. Namely, we set the parameters

S, v using the ‘empirical Bayes’ approach. This approach is common practice and

consists of the following steps. First, we estimate a univariate autoregression with

P lags for each of the variables, using the estimation sample. Then we set S and

v such that E(Σ) is a diagonal matrix with the error variances of these univariate

autoregressions on the diagonal. We set the degree of freedom parameter to v = 10 in

order to have a rather loose prior. Next, we build three versions of the parameter Q.

The Q in the Minnesota prior approximates the prior of Litterman (1986) and follows

the baseline recommendations of the RATS software manual (Doan, 2000). The Q

in the Sims and Zha (1998) prior combines the Minnesota prior with the ‘dummy

observations prior’ following Sims and Zha (1998). The Q in the Dynare prior also

combines the Minnesota prior with the dummy observations prior but with somewhat

different settings, namely with the settings used e.g. in Sims (2002) and implemented

as the default in the Dynare software (Adjemian et al., 2011). In terms of Sims and

Zha (1998) notation, in the the Minnesota prior we take λ1 = 0.2, λ2 = 1, λ3 = 1,

λ4 = 105, µ5 = 0, µ6 = 0; in the Sims and Zha (1998) prior we take λ1 = 0.2, λ2 = 1,

λ3 = 1, λ4 = 1, µ5 = 1, µ6 = 1; and in the Dynare prior we take λ1 = 0.33, λ2 = 1,

λ3 = 0.5, λ4 = 105, µ5 = 2, µ6 = 5.
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