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Abstract

We study how the issuance of long bonds affects optimal fiscal policy. Long bonds are

usually modelled as having two features that are not found in the data: a) zero coupons and

b) previously issued bonds are repurchased each period regardless of their time to maturity.

The literature has found that under a) and b) issuing long bonds provides fiscal insurance. We

show that these assumptions are not innocuous. Specifically we find that long bonds may not

complete the markets even in the absence of uncertainty and under certain assumptions (namely

those that are most empirically relevant) long bonds introduce additional tax volatility. This

may offset the attractiveness that long bonds provide through fiscal insurance, especially after a

period of very high deficits such as a war or financial recession. Introducing coupons alleviates

the additional tax volatility but only partially and does so by reducing the ability of long bonds

to provide insurance. Our focus on long bonds also forces us to consider issues of commitment.

We show that the role of commitment under incomplete markets is that the government

promises future tax changes in order to reduce current funding costs (interest rate twisting). This

introduces further additional tax volatility at different frequencies. If we remove assumptions a)

and b) interest rate twisting takes a very different form, showing again that those assumptions

matter. We propose an alternative to full commitment that eliminates interest rate twisting,

dramatically reduces both the state space and computational cost in a way that has relevance

for a wide class of models.
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1 Introduction

We study optimal fiscal policy when the government issues real riskless long bonds. Dynamic equi-

librium macro models under incomplete markets require specific modelling assumptions about the

type of government bonds available. The vast literature on DSGE models considers mostly the case

of one-period bonds. The same holds for the literature on optimal policy, as in Barro (1979) and

Aiyagari, Marcet, Sargent and Seppälä (2002). This focus on short bonds is surprising given that the

share of U.S. government bonds issued with maturity longer than one year is 64% on average.1 As

we show, when long bonds are introduced a number of additional assumptions on bond policy have

to be made compared to the case of one period bonds and we find that these issues matter for the

model outcome. Introducing long term bonds involves modelling the maturity of these bonds and

raises issues regarding when bonds are repurchased and the paying of coupons.

Most papers using long bonds assume zero-coupon payments and a full repurchase of previously

issued bonds each period regardless of outstanding maturity. This is the case for most of the work

on optimal debt management as in Angeletos (2002), Barro (2003), Buera and Nicolini (2004) in

a complete market setting, or Nosbusch (2008), Lustig, Sleet and Yeltekin (2009) in an incomplete

market setting. Other papers make simplifying assumptions aimed at making the model solution

easier. For instance, a number of papers model long bonds as perpetuities that pay geometrically

declining coupons - Woodford (2001), Broner, Lorenzoni and Schmulker (2013), Arellano and Ra-

manarayanan (2008), Chen, Curdia and Ferrero (2012), Conesa and Kehoe (2015) and Debortoli,

Nunes and Yared (2015). Whilst tractable these assumptions are not consistent with observed long

run debt instruments: most government bonds are not perpetuities and they always pay constant

coupons.

In this paper we consider the impact on the optimal properties of long bonds by varying modelling

assumptions around commitment, repurchasing bonds and coupon payments and find that doing so

leads to non-trivial variations and increases in tax volatility. We argue that some features of long

bonds that have been usually ignored in the literature are important in order to explain actual bond

issuance and its virtues. The existing literature has stressed the advantages of issuing long bonds

that arise from fiscal insurance (essentially the covariance of long bond prices with government

expenditure shocks) and their ability to achieve full insurance and complete markets. By contrast

we show that long bonds without repurchase cannot complete the market, even under certainty.

More generally, we find that the advantages of fiscal insurance that long bonds provide may be offset

by additional tax volatility. These limitations of long bonds are strongest when the assumptions we

make are closest to actual practice, namely when long bonds are not repurchased each and every

period and when coupons are fixed for the duration of the bond.2

Further the literature to date suggests that a sufficient set of measurability conditions for imple-

mentability constraints under incomplete markets is to require that the value of government debt

equals future discounted surpluses in each period. However we find that in the case of no-buyback, if

coupons are low, an additional boundedness condition is required for a sufficient set of measurability

conditions. This additional condition reflects the fact that long bonds under no-buyback may gener-

1This figure is for the period 1955-2011, taken from Faraglia, Marcet, Oikonomou and Scott (2014b).
2Faraglia, Marcet, Oikonomou and Scott (2014b) document that most US government bonds are not repurchased

or they are repurchased close to maturity date.
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ate additional tax volatility. We show that this additional tax volatility is not large during standard

business cycle fluctuations but it is very substantial in the case of a sequence of very large deficits

due, for example, to a war or a financial recession.

Throughout our analysis we take for granted the type of bonds that exist but introduce fea-

tures that are present in actually issued bonds. Most of the existing literature (including many

papers in our bibliography) takes a similar approach, studying optimal policy when the set of finan-

cial instruments available to the government is given, with the set of instruments considered justified

implicitly by similarity with instruments actually used by governments. Whether issuing a given

type of bond can be justified as a response to market imperfections is in our view an important

research agenda albeit one we do not pursue here.3 Our approach instead is to examine the role of

debt management and optimal fiscal policy under differing assumptions that arise when one models

long bonds as in the real world. Both through simulations and analytic examples we show that long

bonds potentially affect optimal policy in three ways - fiscal insurance, interest rate twisting and

rollover risk. Under previously used assumptions only the first channel is noticeable and long bonds

dominate short bonds in debt management. Under no repurchase the other effects become important

and lessen the appeal of long bonds.

The plan of the paper is as follows. We start in Section 2 with the usual assumptions about long

bonds found in the literature, namely, zero coupon payments and full repurchase each period. We

show how the government has an incentive to twist interest rates by committing to vary tax rates

at the redemption date in order to minimise funding costs. Whilst the fiscal insurance properties of

long bonds highlighted by Angeletos (2002), Barro (2003), Buera and Nicolini (2004) helps reduce

tax volatility this interest rate twisting effect increases their volatility. In the usual case where

only one period debt is considered this effect is conflated with the usual impact effect on taxes and

is not observed. By focusing on a long bond we disentangle the impact effect on taxes from this

intertemporal effect that occurs around redemption.

In Section 3 we consider the role of commitment and time consistency in this model with long term

debt. Denote the bond maturity date as N. A common numerical approach to solve for models of

optimal taxation involving long bonds is to use a recursive solution that introduces as state variables

N lags of the Lagrange multipliers λ attached to the government’s intertemporal budget constraint.

This makes solving models with long bonds computationally challenging as the state space quickly

becomes unwieldy with long maturities. From our reading of the debt management literature it is

unclear why these Lagrange multipliers are needed or how they influence optimal policy and neither

is there any explicit discussion of the role of commitment (with the notable exception of Lucas and

Stokey (1983) and Debortoli, Nunes and Yared (2015)). We show these two lacunae are related - the

role of the co-state variables λ is to enforce in the appropriate continuation problem the promises for

future taxes that drive optimal interest rate twisting. Having identified the channel through which the

state space quickly becomes cumbersome in the presence of long bonds we can then modify the model

set up to alleviate this problem. We do this by proposing a model of independent powers (IP) where

the government sets taxes but takes interest rates as given. This dramatically reduces the size of the

3Intuitively a number of justifications for not repurchasing spring to mind and are often cited by Debt Management
Offices - transaction costs, rollover risks, market disturbances due to large scale government interventions, moral hazard
and asymetric information. A theory of market turnover in the secondary market would be useful - a substantive agenda
not just for the debt management literature but the whole of finance.
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state vector and removes the interest rate twisting channel, hence comparing the full commitment

solution with independent power solution throughout the paper allows us to demonstrate the role of

commitment.

In Section 4 we perform simulations, we examine the magnitude of interest rate twisting and,

by comparing the full commitment model with our model of independent powers we show how

commitment introduces additional tax volatility.

In Section 5 we move from the standard assumption of full repurchase each period regardless of

maturity to the opposite assumption that every bond once issued is only repurchased at its scheduled

redemption date. As most of the literature we keep the assumption of zero coupons in this section.

This assumption influences allocations, first, because under incomplete markets the timing of cash

flows matter. Second, because no early buyback induces additional rollover cycles in taxes with the

same periodicity as the maturity of debt. A large deficit in t drives bN,t upwards due to a standard

buffer stock effect, this increases future interest payments. But higher future interests are only paid

in periods t+N, t+ 2N, ..., thus taxes in these periods are much higher than in the interim periods.

This introduces additional tax volatility, a one-period bond would spread interest payments over

all periods t, t + 1, t + 2, .... A simple example shows that, even under certainty, a long bond does

not complete the markets and introduces tax volatility. Not only are taxes more volatile but debt

displays more complicated dynamics than the martingale property documented by Aiyagari et al

(2002). We find that this additional tax volatility is not significant when we calibrate shocks to

standard business cycle fluctuations but it is very high when we calibrate initial conditions as they

would have been at the end of WWII if only long bonds were available. In this sense long bonds

generate greater tax volatility than short bonds, introducing a trade off between fiscal insurance and

roll over cycles.

In Section 6 we extend our analysis to positive coupons. Introducing coupons enables us to

introduce duration issues into our analysis of debt management. Duration reflects the average time

over which the cash payments associated with a bond are paid. This is important both because the

timing of cash flows matter under incomplete markets and because the responsiveness of bond prices

to shocks is directly proportional to the duration of the bond. Under the standard assumptions in

the literature, namely under short bonds or long bonds with full repurchase, there is no distinction

between duration and maturity. With long bonds, no buy back and coupons duration can vary for

a given maturity. Some analytic examples show how long bonds without repurchase do offer better

tax smoothing opportunities if coupons are sufficiently large, therefore alleviating the rollover cycles

emphasized in Section 5. We show how results on measurability constraints in Aiyagari et al. (2002)

and Angeletos (2002) can be generalized to the case of sufficiently high coupons, but they do not

hold under low coupons. Our numerical results also show that (maintaining no repurchase) the

introduction of fixed coupon bonds helps reduce tax volatility. For bonds of maturity N, the higher

N the more introducing coupons helps to reduce tax volatility and lessens the impact of N−period

rollover cycles. However whilst coupons help reduce N period volatility they shorten the duration

of a bond and so reduce the effectiveness of long bonds in achieving fiscal insurance. Even under

coupons we find that tax volatility after a war is very high under no repurchase.

A final section concludes. An appendix considers some analytical details as well as comparing

our fully specified approach to modelling long bonds with an approximation based on perpetuities
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which pay geometrically declining coupons.

2 Interest Rate Twisting

In this section we outline our base model, in essence an extension of Aiyagari et al. (2002) to the

case of a riskless real bond of maturity N where N > 1. We start with the standard modelling

assumptions of zero-coupon bonds and that the government buys back all previously issued bonds

each period regardless of maturity.

2.1 The Base Model

We assume the economy produces a single non-storable good with technology

ct + gt ≤ A− xt, (1)

for all t, where xt, ct and gt represent leisure, private consumption and government expenditure

respectively. The exogenous stochastic process gt is the only source of uncertainty. The consumer

is endowed with A units of time that she allocates between leisure and labour. The representative

consumer has utility function:

E0

∞∑
t=0

βt {u (ct) + v (xt)} (2)

and faces a proportional tax rate τt on labor income. The representative firm maximizes profits and

both consumers and firms act competitively by taking prices and taxes as given. Consumers, firms

and government all have full information, i.e. they observe all shocks up to the current period, and

all variables dated t are chosen contingent on histories gt = (gt, . . . , g0). All agents, including the

government, have rational expectations.

Agents can only borrow and lend in the form of a zero-coupon, risk-free, N -period bond so that

the government budget constraint is:

gt + pN−1,tbN,t−1 = τt (A− xt) + pN,tbN,t (3)

where bN,t denotes the number of bonds the government issues at time t. Each bond pays one unit of

consumption good in N periods time with complete certainty. The price of an i-period bond at time

t is pi,t. As is standard in the literature on long bonds, we assume that at the end of each period the

government buys back the existing stock of debt and then reissues new debt of maturity N , these

repurchases are reflected in the left side of the budget constraint (3). In addition, government bonds

have to remain within upper and lower limits M and M so as to rule out Ponzi schemes:4

M ≤ βNbN,t ≤M. (4)

The term βN in this constraint reflects the value of the long bond at steady state so that the limits

M , M appropriately refer to the value of debt and are comparable across maturities.5

4Similar debt constraints are assumed in Aiyagari et al (2002).
5Obviously the actual value of debt is pN,tbN,t, we substitute pN,t by its steady state value βN in this constraint
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We assume that after purchasing a long bond the household entertains only two possibilities: one

is to resell the government bond in the secondary market in the period immediately after having

purchased it, the other possibility is to hold the bond until maturity.6 Letting sN,t be the sales in

the secondary market the household’s problem is to choose stochastic processes {ct, xt, sN,t, bN,t}∞t=0

to maximize (2) subject to the sequence of budget constraints:

ct + pN,tbN,t = (1− τt) (A− xt) + pN−1,tsN,t + bN,t−N − sN,t−N+1

with prices and taxes {pN,t, pN−1,t, τt} taken as given. The household also faces debt limits analo-

gous to (4). We assume for simplicity that these limits are less stringent than those faced by the

government, so that in equilibrium the household’s problem always has an interior solution.

The consumer’s first order conditions of optimality are given by

vx,t
uc,t

= 1− τt (5)

pN,t =
βNEt (uc,t+N)

uc,t
(6)

pN−1,t =
βN−1Et (uc,t+N−1)

uc,t
(7)

where uc,t ≡ u′(ct) and vx,t = v′ (xt).

2.1.1 The Ramsey problem

We follow a standard definition of Ramsey equilibrium, assuming the government has full commit-

ment to implement the best sequence of (possibly time inconsistent) taxes and government debt

knowing equilibrium relationships between prices, taxes and allocations. Using (5), (6) and (7) to

substitute for taxes and consumption the Ramsey equilibrium can be found by solving

max
{ct,bN,t}∞

t=0

E0

∞∑
t=0

βt {u (ct) + v (xt)} (8)

s.t. βN−1Et (uc,t+N−1) bN,t−1 = St + βNEt (uc,t+N) bN,t (9)

and (4) with xt implicitly defined by (1). St = (uc,t − vx,t) (ct + gt)−uc,tgt is the “discounted” surplus

of the government.

We set up the Lagrangian

L = E0

∞∑
t=0

βt
{
u (ct) + v (xt) + λt

[
St + βNuc,t+NbN,t − βN−1uc,t+N−1bN,t−1

]
+ν1,t

(
M − βNbN,t

)
+ ν2,t

(
βNbN,t −M

)}
where λt is the Lagrange multiplier associated with the government budget constraint, i.e. the excess

burden of taxation, and ν1,t and ν2,t are the multipliers associated with the debt limits.

for simplicity.
6We need to introduce secondary market sales sN,t in order to price the repurchase of the bond.
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The first-order conditions for the planner’s problem with respect to ct and bN,t are

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t) + ucc,t (λt−N − λt−N+1) bN,t−N = 0 (10)

Et (uc,t+Nλt+1) = λtEt (uc,t+N) + ν2,t − ν1,t (11)

for all t = 0, 1, . . . , with λ−1 = . . . = λ−N = 0.

Assuming gt is a Markov process, Corollary 3.1 in Marcet and Marimon (2014) implies the solution

satisfies the recursive structure: bN,t

λt

ct

 = F (gt, λt−1, . . . , λt−N , bN,t−1, . . . , bN,t−N) (12)

λ−1 = . . . = λ−N = 0, given bN,−1 (13)

for a time-invariant policy function F . Therefore the state vector in this recursive formulation has

dimension 2N + 1.7

These FOCs help characterize some features of optimal fiscal policy with long bonds. Following

the discussion in Aiyagari et al. (2002) we see that, in the case where debt limits are non binding,

i.e. for t such that ν1,t = ν2,t = 0, (11) implies λt is a risk-adjusted martingale, with risk-adjustment

measure
uc,t+N

Et(uc,t+N)
, indicating that the presence of the state variable λ in the policy function imparts

persistence in the variables of the model.

The term

Dt = (λt−N − λt−N+1) bN,t−N (14)

in (10) is key for our analysis of long bonds and interest rate twisting as it captures the feature that

what happened in period t−N has a specific impact on today’s taxes. In particular, as we shall see,

this term captures the fact that governments when they issue debt at t−N make (time inconsistent)

commitments to influence future taxes in order to affect the interest rate payable on N period debt.

Before outlining some analytical insights consider the following intuition. Since in the first best

we have uc,t − vx,t = 0 and zero taxes, this suggests that the higher is Dt the further the model is

pulled away from the first best and taxes are higher. Thus when the term Dt is positive it can be

thought of as introducing a higher distortion in a given period. In periods when gt−N+1 is very high

we have that the cost of the budget constraint is high so λt−N+1 is high, and if the government is in

debt Dt < 0 and optimal policy is to lower taxes t. Of course this is not a tight argument, as λt also

responds to the shocks that have happened between t and t−N and λt also plays a role in (10), but

this argument is at the core of the interest rate twisting policy we identify below.

7This allows for a simpler recursive formulation than the promised utility approach, as the co-state variables λ do
not have to be restricted to belong to the set of feasible continuation variables so that the continuation problem is
well defined. In Section 3.1 we show this continuation problem explicitly.
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2.2 Analytic Results

2.2.1 A model under certainty

Assume for now that government spending is constant, gt = g. In this case long bonds complete

the market so that the standard result ensures that all equilibrium constraints are summarized in a

single implementability constraint, namely

∞∑
t=0

βt
St
uc,0

= bN,−1 pN−10 (15)

rewritten as
∞∑
t=0

βt St = bN,−1 βN−1uc,N−1.

Consider the case when the government is initially in debt such that bN,−1 > 0. It is clear that the

funding costs of initial debt bN−1 > 0 can be reduced by manipulating consumption so as to achieve

ct < c
N−1

for all t 6= N , as this lowers the total cost of initial debt on the right side of this equation.

As long as the elasticity of consumption with respect to wages is positive, which would be the case

for empirically reasonable calibrations, higher c
N−1

will be achieved by promising a tax cut in period

N − 1 relative to other periods. In other words, the planner sets

τt = τ for all t 6= N − 1 (16)

τ > τ
N−1

.

This promise achieves a reduction of uc,N−1 and so reduces the cost of outstanding debt by twisting

the long end of the yield curve downwards. This is the same interest rate manipulation channel

noted by Lucas and Stokey (1983) except here it is shifted N periods forward due to the maturity of

bonds. Note that even though there are no fluctuations in this economy, (16) shows that the optimal

policy implies that the government desires to introduce variability in taxes.

2.2.2 A model with uncertainty at t = 1

We now introduce uncertainty into our model, although in the interest of obtaining analytic results,

only in the first period, i.e. g is given by8:{
gt = g for t = 0 and t ≥ 2

g1 ∼ Fg

for some non-degenerate distribution Fg.

This is a special case of the model in Section 2.1 so the FOCs derived there apply. Since there

is no more uncertainty for t > 1 we have Et (λt+1) = λt+1 for all t ≥ 1, so the martingale condition

(11) implies λt+1uc,t+N = λtuc,t+N and

λt = λ1 t > 1. (17)

8The analytics of this economy are similar to those of Nosbusch (2008), except that this is an infinitely lived
economy so debt is not cancelled in period t = 2, but stays constant.
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Therefore, in the case of short bonds (N = 1), (10) and feasibility imply ct and τt constant for t ≥ 2

reflecting the fact that even though markets are incomplete the government smooths taxes after the

shock is realized. However, clearly c1 and τ1 will be a function of the realization of g1.

For the case of long bonds when N > 1, letting Dt = (λt−N − λt−N+1) bN,t−N the FOC with

respect to consumption (10) is satisfied for

Dt = 0 for t ≥ 0 and t 6= N − 1, N (18)

DN−1 = −λ0bN,−1 , DN = (λ0 − λ1) bN,0. (19)

Combining this with feasibility, (17) and the fact that g2 = g for all t ≥ 2 means that equilibrium

satisfies

ct = c∗ (g1) for all t ≥ 2 and t 6= N,N − 1 (20)

for a certain function c∗ i.e. consumption is the same in all periods t ≥ 2 except t = N,N − 1.

In this model, when the shock g1 is realised the government optimally spreads out the taxation

cost of this shock over current and future periods. Typically the government gets in debt in period

1 if g1 is high, so all future taxes for t ≥ 2 are higher and future consumption lower. This would also

happen with short bonds N = 1. What is new with long bonds is that optimal policy introduces an

additional source of tax volatility, since taxes vary in periods N − 1 and N , even though by the time

the economy arrives at these periods no more shocks have occurred for a long time.

To make this argument precise consider the utility function

c1−γct

1− γc
−B (1− xt)1+γl

1 + γl
(21)

for γc, γl, B > 0, and A = 1.

Result 1. Assume utility ( 21) and bN,−1 > 0. Then

τ1 = τt for all t ≥ 1, t 6= N − 1, N. (22)

Furthermore, for a high enough realization of g1 we have

τ1 > τN−1, τN . (23)

The inequalities are reversed if bN,−1 < 0 or if the realization of g1 is sufficiently low.

Proof.

Towards (22) note first that from (20) we have τt = τ2 for all t ≥ 2 and t 6= N − 1, N .

(10) and (17) give

uc,t
vx,t
− B + (γl + 1)λ1

(1 + (−γc + 1)λ1)B
+ (λt−N − λt−N+1)Ft = 0 for t ≥ 1

where Ft ≡ ucc,tbN,t−N

(1+(1−γc)λ1)B . Consider t = 1. For any long maturity N > 1 we have that λt−N =

λt−N+1 = 0 when t = 1 so that
uc,1
vx,1

=
B + (γl + 1)λ1

(1 + (−γc + 1)λ1)B
. (24)
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Therefore we can write

uc,t
vx,t
− uc,1
vx,1

= (λt−N+1 − λt−N)Ft = 0 for t ≥ 1. (25)

For N > 1 and from (13) we have λt−N+1 = λt−N = 0 when t = 2. This and (25) gives τ1 = τ2 so

that we have (22).

Towards (23) we now show that Ft < 0 for t = N − 1, N . Since λ1, B, γl > 0 we have that

B + (γl + 1)λ1 > 0. Since uc,1, vx,1 > 0 clearly (24) implies that (1 + (−γc + 1)λ1)B > 0. Since we

consider the case of initial government debt bN,−1 > 0 this leads to bN,0 > 0 and since ucc,1 < 0 we

have Ft < 0 for t = N − 1, N .

For t = N − 1 we have λt−N − λt−N+1 = −λ0 < 0 it follows

uc,N−1
vx,N−1

<
uc,1
vx,1

=⇒ τN−1 < τt for all t > 1, t 6= N − 1, N .

Also, it is clear from (24) that high g1 implies a high λ1. Since the martingale condition implies

Et (uc,Nλ1) = λ0E0 (uc,N) for higher than average g1 we have λ1 > λ0 Therefore, for t = N and g1

high enough we have λt−N − λt−N+1 = λ0 − λ1 < 0 so that (25) implies

uc,N
vx,N

,
uc,N−1
vx,N−1

<
uc,1
vx,1

=⇒ τN , τN−1 < τ1.�

Intuitively, in period t = N − 1 there is a tax cut for the same reasons as in Section 2.2.1. New

in this section is the tax cut (for high g1) at t = N . The intuition for this is clear: when an adverse

shock to spending occurs at t = 1 the government uses debt as a buffer so bN,1 > bN,0. This use of

debt as a buffer is typical of incomplete market models as it allows tax smoothing by financing part

of the adverse shock with higher future taxes. But since future surpluses are higher than expected

as the higher interest payments have to be serviced, the government can lower the cost of existing

debt by announcing a tax cut in period N , since this will reduce the price pN−1,0 of period t = 1

outstanding bonds bN,0. The tax cut at t = N is a stochastic analog of the tax cut described in

Section 2.2.1.

The above result shows that in this model tax policy is not independent of the maturity of

government debt. In models of optimal policy the government usually desires to smooth taxes.

Taxes would be constant in the above model if the government had access to complete markets. But

we find that the government increases tax volatility in period N , long after the economy has received

any shock. It is clear from this discussion that what will matter for the policy function is the term

DN = (λ0 − λ1)bN,0 which captures the government’s commitment to alter future tax and interest

rates. Therefore it is the interaction between past λ’s and past b’s that determines the size and the

sign of today’s tax cut.

To summarize, under incomplete markets and in the presence of an adverse shock to spending in

period t the government has to take three actions: i) increase taxes permanently, ii) increase debt

permanently, iii) announce a tax cut around the time when the outstanding debt matures, namely

at t + N . Effects i) and ii) are well known in the literature of optimal taxation under incomplete

markets, effect iii) is clearly seen in this model with long bonds since the promise is made N periods
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ahead. Obviously in the case of short maturity N = 1 of Aiyagari et al. (2002) the effect of D1 would

be felt in deciding optimally τ1 but would be confounded with the fact g1 is stochastic and influences

demand for the consumption good. However when N > 1 the two effects are disentangled and we see

how debt maturity introduces additional dynamics into taxes - i) reflects the usual increase in the

excess burden of taxation given the adverse fiscal shocks, ii) is the usual incomplete market result that

says the excess burden should follow a risk adjusted martingale leaving debt to fluctuate whereas iii)

captures a distinct interest rate twisting channel due to debt maturity whereby governments induce

additional tax volatility to reduce funding costs.

As mentioned earlier Lucas and Stokey (1983) also identify this interest rate twisting channel in

their discussion of maturity. However because ours is an incomplete market model we identify this

as a factor during all periods and not just the initial period, and because we have long bonds the

interest rate twisting influences consumption N periods ahead.

It is also worth distinguishing this channel, which focuses on real interest rates and how future

tax commitments influence current interest rates, from a number of related results in the literature

that rely on nominal debt and the role of inflation surprises. Chari et al (1991) show how inflation

surprises can bring about fluctuations in ex post real interest rates so as to achieve the complete

market outcome and Schmitt-Grohe and Uribe (2004) and Siu (2004) extend this case to consider how

this role is affected by introducing distortionary pricing. Lustig et al. (2009) develop this approach

yet further and like us consider the impact of introducing long term bonds. In their model long

bonds have the attraction of postponing and concentrating the increase in nominal interest rates

that adverse fiscal shocks produce. The Lustig et al. model is one of incomplete markets, sticky

prices, nominal bonds as well as long maturities. Their main focus is on extending the result of

Chari et al (1991), about how inflation surprises influence nominal interest rates to achieve fiscal

hedging in a model with long bonds.

3 Commitment and Independent Powers

We have so far followed the majority of the literature and assumed a Ramsey policy equilibrium with

perfect commitment. Governments in Section 2 achieve lower current funding costs by promising

lower future taxes but clearly this is a commitment governments would prefer to renege on. As

well shall see, it is this promise to cut future tax rates in order to influence current funding costs

that is at the heart of why solving optimal tax models under incomplete markets and long bonds is

so computationally demanding. Optimal time consistent policy requires keeping track of all these

promises over the last N periods and as the maturity of the bond increases so too does the state

space.

3.1 Time Inconsistency - a Continuation Problem

We stated in equation (12) that a recursive formulation of the full commitment solution involves

introducing N lags of bN and λ as co-state variables. We now discuss the role of these variables

in the solution and their link to interest rate twisting and compromises about future taxes. We

show how these state variables appear in an equivalent continuation problem, justifying their role as

co-state variables.

11



In this subsection we denote the Ramsey equilibrium as
{
cRt , b

R
N,t

}∞
t=0

. Assume the economy

has been following the Ramsey equilibrium until some period t > 0 and that, unexpectedly, the

government can choose alternative policies in the future by maximizing

Et

∞∑
t=0

βt [u(ct+t) + v (xt+t)] (26)

subject to equilibrium constraints (9), feasibility for t = t, t + 1, . . . and given initial conditions(
gt, b

R
N,t−1

)
. In general, this solution would be different from the continuation of the Ramsey policy{

cRt , b
R
1,t

}∞
t=t

. This is the well known time inconsistency problem.

Time inconsistency arises for two reasons in this model: the government maximizing (26) will try

to i) alter the cost of initial debt and, ii) it will “forget” promises that were previously made about

future tax cuts (or tax increases) to promote interest rate twisting.

To discuss issue i) we consider the case N = 1. We claim that in this case, if the government in

period t maximizes

Et

∞∑
t=0

βt [u(ct+t) + v (xt+t)] + λRt−1uc,tb
R
1,t−1 (27)

subject to (9) for t = t, t+1,... the solution will be precisely
{
cRt , b

R
1,t

}∞
t=t

. In other words, solving the

continuation problem where the term λR
t−1uc,tb

R
1,t−1 is added to the utility function (26) delivers the

Ramsey allocation from t onwards. The reader can convince herself of this statement by checking

that the FOC derived from maximizing (27) coincide with the FOC from the Ramsey equilibrium

for all periods t ≥ t. For a proof and a formal discussion see Marcet and Marimon (2014), Section

3.2 and Proposition 1.

The reason for this result (for N = 1) is that if bg1,−1 > 0 the government would like to induce a

high initial consumption, ie. there is a “bias for high c0”.9 The reason is that this lowers interest

paid on initial debt, an effect that can also be found in Lucas and Stokey (1983) under complete

markets. If the government would maximize (26) at t there would be a “bias for high ct”, leading

the government to choose a ct > cR
t

in a time-inconsistent policy. The reason the term λR
t−1uc,tb

R
N,t−1

needs to be added to the objective function (27) in the continuation problem is that this term lowers

the “total” marginal utility of ct (since the marginal utility of ct in (27) is uc,t+λR
t−1ucc,tb

R
1,t−1 < uc,t).

This avoids the “bias for high ct”.

The second reason for time inconsistency is easier to see in the general case N > 1. We now claim

that the equivalent continuation problem that delivers the Ramsey solution at t is to maximize

Et

(
∞∑
t=0

βt [u(ct+t) + v (xt+t)] +
N−2∑
t=0

βt DRt+t uc,t+t + βN−1 λRt−1 uc,t+N−1b
R
N,t−1

)
(28)

The terms Dt+t have been defined in (14) and they modify the weight that consumptions ct receive

for t = t, . . . , t + N − 2. These consumptions need to be reweighted because, as we have explained

in section 2.1.1, optimal Ramsey policy involves promises about consumption N periods ahead in

order to twist current interest rates. Such promises were made in periods t = t, t − 1, ..., t − N + 1

9This can be seen in the optimality conditions (10) because, given that λ−1 = 0, the term (λt−1 − λt) b1,t−1 is
definitely negative for t = 0, while the same term can be of either sign for t > 0 since Et−1 [(λt−1 − λt) b1,t−1] is
approximately zero due to the martingale property of multipliers.
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that involve consumptions for t = t, . . . , t + N − 1. The terms Dt+t that appear in (28) are needed

to guarantee that these promises are satisfied. The last term in (28) appears because the “bias for

high c0” becomes a “bias for high cN−1” in the presence of N−period bonds, as highlighted by the

example in section 2.2.1.

Notice that the terms added to agents’ utility in (28) involve N lags of λ, this is why these

multipliers are part of the state vector since they influence the objective function of the continuation

problem along with N lags of bN .

This discussion also clarifies why time inconsistency arises in models of incomplete markets: in

a model of long bonds we see how the effect from interest twisting is separate from the “initial

consumption bias” issue. These two effects are confounded in one period for short bonds, when

N = 1.

The above discussion also highlights why the lagrangean approach of Marcet and Marimon (2014)

is easier to apply to models of optimal policy over the promised utility approach. The latter would

require to compute the feasible set of N promised utilities (or in this case promised marginal utilities

uc,t) so as to promise policies that in the future can actually be equilibria. Computation of the feasible

set of marginal utilities can be highly involved. The lagrangean approach sidesteps the computation

of this set, the lagrange multipliers λ do not need a restriction of that type because the objective

functions (27) and (28) give a well defined maximization problem for any value of λ’s.

3.2 Independent Powers

The previous discussion shows that interest rate twisting arises because of the close connection

between current interest rates and future tax policy in our model. In this section we consider a

different institutional set up, one of independent powers, such that governments cannot commit to

influence future tax rates in order to affect current funding costs10.

More specifically, we relax the assumption of perfect coordination and assume the presence of a

monetary policy authority11 that fixes interest rates in every period. The fiscal/debt management

authority now takes interest rates as given and implements optimal policy given these interest rates,

knowing the relation between taxes and allocations given by (5) and feasibility. We examine an

equilibrium where the two policy makers play a dynamic Markov Nash equilibrium with respect to

the strategy of the other policy power and they both play Stackelberg leaders with respect to the

consumer. More precisely, the fiscal authority chooses taxes and debt given a sequence for interest

rates, the monetary authority simply chooses interest rates that clear the market and the fiscal

authority maximizes the utility of agents. This assumption sidesteps the issues of commitment, now

there is no room for interest rate twisting on the part of the fiscal authority since this agent takes

interest rates as given.

10Debortoli, Nunes and Yared (2015) examine the case when governments cannot commit to future tax policies
and focus on Markov Perfect Competitive Equilibrium rather than our institutional separation of powers. They also
use the complete market solution method of Angeletos (2002) to solve for the optimal portfolio model rather than
numerical state space based approaches.

11In practice there are three relevant agencies - a fiscal authority, a debt management office and a central bank.
In our simple model we can think of interest rates as either being set independently by the central bank or the debt
management office taking interest rates as given by the market and operating independently of the fiscal authority.
What we propose in this section is not intended as an accurate description of how interest rates are set in the economy
but merely to show the implications of independence between the two authorities.
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It is easy to think of models where even if the monetary authority is independent it cannot

deviate too much from equilibrium interest rates. Therefore we take a limit case and assume that

the monetary authority simply sets interest rates in equilibrium as:

pN,t =
βNEt (uc,t+N)

uc,t
(29)

pN−1,t =
βN−1Et (uc,t+N−1)

uc,t

given agent’s consumption. Formally we use the following

Definition An equilibrium under independent powers (IP) is a sequence of bond prices {pN,t, pN−1,t}
each contingent on gt, such that if the fiscal authority solves

max
{ct,bN,t}∞

t=0

E0

∞∑
t=0

βt {u (ct) + v (xt)} (30)

s.t. pN−1,tbN,t−1 =

(
1− vx,t

uc,t

)
(ct + gt)− gt + pN,tbN,t,

(1) and (4) taking bond prices as given then (29) holds.

We look for equilibria where bond prices are given by an interest rate policy functionR : R2 → R2

that satisfies

(pN,t, pN−1,t) = R(gt, bN,t−1), (31)

although the relation R is ignored by the authority solving (30).

An advantage of this model is that within equilibria of the form (31) there is no longer any reason

for longer lags to enter the state vector, as past Lagrange multipliers do not play a role. From the

point of view of the fiscal authority the problem now is a standard dynamic programming problem

with the vector of state variables (bN,t−1, gt).

Multiplying both sides of the budget constraint by uc,t the Lagrangian of (30) becomes

L = E0

∞∑
t=0

βt {u (ct) + v (xt) + λt [St + uc,t (pN,tbN,t − pN−1,tbN,t−1)] (32)

+ν1,t
(
M − βNbN,t

)
+ ν2,t

(
βNbN,t −M

)}
.

The first order condition with respect to consumption combined with the budget constraint gives

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t)− ucc,tλtSt/uc,t = 0. (33)

In addition, the FOC with respect to bonds combined with (29) gives

λtEt (uc,t+N) = Et (λt+1uc,t+N) + ν2,t − ν1,t. (34)

An IP equilibrium can be computed using these two equations along with the government budget

constraint, debt limits with their slackness conditions, feasibility and the fact that the only state

variables are (bN,t−1, gt).
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Notice that (34) takes the same form as the FOC under full commitment (11). Therefore λt is

again a risk-adjusted martingale off corners. Obviously, the value of λ will be different than in the

Ramsey equilibrium since consumption follows a different process under IP.

4 Stochastic Simulations

We now turn to a model where gt is stochastic in all periods. We assume a utility function:

c1−γ1t

1− γ1
+ η

x1−γ2t

1− γ2
.

We choose β = 0.98, γ1 = 1, γ2 = 2 and A = 100. We set η such that if the government’s deficit

equals zero in the non stochastic steady state agents work a fraction of leisure equal to 30% of their

time endowment. For the stochastic shock g we assume the following truncated AR(1) process:

gt =


g if (1− ρ) g∗ + ρgt−1 + εt > g

g if (1− ρ) g∗ + ρgt−1 + εt < g

(1− ρ) g∗ + ρgt−1 + εt otherwise

.

We assume εt ∼ N(0, 1.44)2, g∗ = 25, with an upper bound g equal to 35% and a lower bound

g = 15% of average GDP and ρ = 0.95. M is set equal to 80% of average GDP and M = −M .

4.1 Solving the Model with “Condensed PEA”

We solve the model applying the Parameterized Expectations Algorithm (hereafter PEA) of den Haan

and Marcet (1990) to approximate numerically the terms that appear in the equilibrium conditions

Et (uc,t+N), Et (uc,t+N−1) and Et (uc,t+Nλt+1) as functions of the state variables. As highlighted

before, in the model of Section 2 the dimension of the state vector is 2N + 1 which even if we only

consider bonds of 10 year maturities produces a state space of 21.

Faraglia, Marcet, Oikonomou and Scott (2014 a and b) suggest that in order to make the com-

putation of models with large N manageable it is important to reduce the number of states which

enter autonomously in the approximating polynomials. Using a refinement of the PEA called the

“Condensed PEA”, their approach is to partition the state space into variables that are of primary

importance for the solution and variables of secondary importance. The latter are introduced in the

approximating functions as successive linear combinations. We apply this methodology to solve the

commitment model and refer the reader to Faraglia et al. (2014 a and b) for an extensive discussion.

The independent powers model with its state vector of only two variables (gt, b
N
t−1) is solved applying

the standard PEA.

To approximate the optimal policy accurately we make sure that we visit all possible realizations

of the state vector with our simulations. This is more of an issue in our model since government

debt is very persistent and therefore it may be expected that different realizations of spending, or

different initial conditions of debt, may make the debt and tax series follow considerably different

paths. Our approximation to the parameterized expectation is based on 14000 samples each of 200

observations and with initial conditions for bonds uniformly distributed in the interval [M,M ]. When

15



we later report our simulation results we change our sample and describe the model’s performance

over different horizons for given initial conditions.

4.2 Interest Rate Twisting

Figures 1 and 2 display the impulse response functions of key variables to an unexpected positive

shock in gt. The vertical axis is in units of each of the variables and expresses deviations from the

value that would occur for the given initial condition if gt = g∗. Each subplot shows two lines: the

solid line represents the solution under full commitment of Section 2, the dashed line represents the

case of the “independent powers” model of Section 3.2. Both figures are for a maturity N = 10.

[Figures 1 and 2 About Here ]

Figure 1 presents the result when the government has zero inherited debt, bN,−1 = 0. The differ-

ences between the two models should highlight the effect of the government keeping past promises

summarised by the variable Dt. In this case there is no effect even under full commitment since

DN = 0. As the Figure shows the rise in spending leads to an initially smaller but more persistent

increase in taxes in the case of full commitment than under independent powers. However the effect

is moderate leading to only small differences. The two models are similar.

Figure 2 shows the results assuming a positive initial debt equal to bN,−1 = 0.5 y∗/βN where y∗

is steady state output. There is a blip in taxes at the time of maturity of the outstanding bonds

N = 10, reflecting the promise to cut taxes with the aim to twist interest rates as discussed in

Section 2.2. Interest rate twisting, and the blip in period t + N − 1, occurs each period gt is high

if the government is in debt. The size of the promised tax cut at t + N − 1 depends on how big

are relative past shocks, (λt−1 − λt) , and debt, bN,t−1. Besides the stronger persistence, the tax rate

with commitment shows clearly the effect to reduce the tax rate and increase consumption N − 1

periods after the shock. These anticipated changes affect also the deficit and the market value of

government debt as illustrated in the bottom panels.

Obviously, the IP model does not show the blip in N − 1 periods although other than that the

responses are similar in the two models. The only notable difference is that in periods other than

N − 1 the response of taxes is smoother under full commitment, reflecting the fact that interest rate

twisting has the beneficial effect of smoothing taxes in periods other than N − 1.

4.3 The Impact of Maturity

To further illustrate the link between the maturity of debt and interest rate twisting, we plot in Figure

3, the response of taxes12 to the shock under four different maturity structures, N = {5, 10, 15, 20}
The top left panel shows the case of commitment and zero initial debt, the top right high debt

with commitment. The bottom panels illustrate the response of the tax schedule in the independent

powers model.

[Figure 3 About Here ]

12For the case bN,−1 = 0.5y∗/βN .
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Consistent with the previous results all tax responses in the top right panel show the interest

rate twisting effect. Given our previous discussion it is clear why the blip in taxes keeps moving to

the right as we increase the maturity. In the case of zero debt, as well as in the case of independent

powers, the maturity structure shows little effect on optimal taxes.

4.4 Moments

We now evaluate the model properties reporting the first and second moments of some key model

variables. In the first four rows of Table 1 and 2 we show the means of consumption, taxes, deficit and

market value of debt for N = 5, 10, 15, 20. In the last four rows we report the standard deviations

of these variables in our simulations. The means and standard deviations are evaluated over three

different horizons: 40 periods (columns 1-4), 200 periods (columns 5-8) and 4500 periods13 (columns

9-12). These three cases enable us to clearly identify the influence of initial conditions on policy

outcomes.

Table 1 reports the result for the model with commitment. With the exception of debt and deficit

all the moments differ only to the second or third decimal place across maturities. However, with the

government only issuing one type of bond in each case, smoothing taxes is mainly achieved by using

debt as a buffer stock so that the fluctuations of the model variables are driven mostly by the strong

low frequency fluctuations of debt leaving only a relatively minor impact of interest rate twisting on

total variance.

The main exception are the levels of debt and deficit: the government in the long run holds assets,

but average asset holdings are lower for higher maturities. As is well known, in models of optimal

policy with incomplete markets, there is a force pushing the government to accumulate long bonds in

the long run. More precisely, extending the results in Aiyagari et al (2002) Section III one can easily

prove that in the case of linear utility (u(c) = c) the government would purchase a very large amount

of private long bonds in the long run, enough to abolish taxes. This accounts for the negative means

for debt shown in Table 1 and for the significant differences in the means of the market value of

debt which occur at longer horizons in the simulations.14 On the other hand, as argued in Angeletos

(2002), Buera and Nicolini (2004) and Nosbusch (2008), if the term premium is negatively correlated

with deficits (as it is in our model) it is optimal for the government to issue long bonds, as this

provides fiscal insurance. Hence the government is aware that accumulating a very large amount of

privately issued long bonds increases the volatility of taxes. This force accounts for the lower asset

accumulation with longer maturities shown in Table 1.

To identify the effect of commitment we report the same moments for the “independent powers”

models in Table 2. Comparing Table 1 and Table 2, it is evident that across all horizons and across

all maturity structures, the effect of the interest rate twisting channel is small.

[Tables 1 and 2 About Here.]

To conclude, under the standard assumptions on long bonds, namely that they pay zero coupons

and are purchased one period after issuance, the interest rate twisting policy channel is apparent but it

13To get rid of the influence of initial conditions we dropped the first 500 observations from each sample in columns
8-12.

14As the table shows the average market value becomes considerably more negative in the long run.
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does not substantially influence unconditional first and second moments. The model of “independent

powers” may be a good model to have in the toolkit as it retains many of the interesting features

of the Ramsey models, it has nearly the same moments, it avoids the technicalities arising from the

very large state vector and it avoids discussion on the role to commitment at very long horizons.

5 No-Buyback and Rollover Cycles

In this section we extend our model by assuming the government never repurchases previously issued

bonds, so that N -period government bonds are redeemed by the government N periods after issuance.

This is an extreme assumption: the US government has sometimes repurchased its own bonds, but as

shown in Faraglia et al (2014b) it only does so close to redemption date. Therefore, the no-buyback

assumption of this section is much closer to actual US practice than the buyback assumption that

is standard in the literature and Sections 2 to 4. As with interest rate twisting the implications of

no-buyback are absent with short bonds, since there is no room for the government to buy debt back

before it matures if N = 1.

Under no-buyback the budget constraint of the government becomes

bN,t−N =

(
1− vx,t

uc,t

)
(ct + gt)− gt + pN,tbN,t. (35)

Now a bond issued pays a given amount in N periods, while in Section 2 it paid an uncertain amount

pN−1,t+1 next period. Under incomplete markets this is not without loss of generality as the timing

of cash flows matter and so assuming no early buy back will lead to different outcomes. Also, this

budget constraint shows how long bonds only connect every N−th period: a large deficit in t drives

bN,t upwards due to a standard buffer stock effect, the cost of higher future payments is only borne

in periods t + N, t + 2N, ..., thus taxes in these periods are higher than in the interim periods,

hence taxes vary across periods. With one-period bonds the burden of higher debt servicing would

be spread out across all future t’s and this would help to smooth taxes.

Imposing the bond limits (4) in the current setup for a given value for M,M would result in a

larger total debt, since the government now holds on to N lags of previously issued bonds. Therefore

we modify the bond limits to
N∑
j=1

βjbit ∈
[
M, M

]
(36)

since M,M now give the same upper bound on the total value of debt as in the previous sections

when past bonds are valued at steady state prices pit = βi for maturity i.

Building a Lagrangian in an analogous way as we did in Section 2 gives that, off corners, the

first-order conditions for the planner’s problem with respect to ct and bN,t are15

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t) + ucc,t (λt−N − λt) bN,t−N = 0 (37)

Et (uc,t+Nλt+N) = λtEt (uc,t+N) . (38)

15See Faraglia, Marcet, Oikonomou and Scott (2014b) Section 6, for details on the Lagrangean and FOC.
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5.1 Impossibility of completing markets with a long bond

For a striking example of the impact of no early buyback, suppose as in the example of Section 2.2.1

that there is no uncertainty and gt = g for all t. To simplify even further, assume maturity N = 2

(although our results are valid for any N). Moreover assume the government inherits some non-zero

debt b2,−1, b2,−2 and that the (finite) bond limits M , M can be chosen arbitrarily large.

Since we have no uncertainty and bond limits can be arbitrarily large, it may seem at first sight

that one bond completes the markets, so that all equilibrium constraints are summarized in a single

implementability constraint setting

∞∑
t=0

βt
St
uc,0

= b2,−1β
uc,1
uc,0

+ b2,−2. (39)

But it turns out that this constraint is not sufficient for an equilibrium: a long bond does not complete

the markets, even under certainty.

To see this consider the optimal allocation when (39) is the only implementability constraint. It

is clear that optimal taxes would be constant for t ≥ 2 so that

St = S, uc,t = uc t = 2, 3, . . . (40)

The analog of equation (39) at period t gives that the bonds that implement this allocation satisfy

b2,t =
S/uc

(1− β)β
− 1

β
b2,t−1 t = 1, 2, . . . (41)

Since 1
β
> 1 this is an explosive difference equation in b2,t. Here b2,t would alternate in sign and go

to infinity in absolute value, thereby violating the bond limits (36) for any finite M , M .16

This shows that (39) can not be the only implementability constraint, because there are no bond

allocations that implement the optimal consumption allocation under this constraint.

What is going on? The problem is that the standard present value condition (39) is derived under

the assumption that the market value of debt b2,t−1β + b2,t−2 remains bounded and, indeed, it does

in this example. But bounded market value of debt goes along with bond limits that explode in

absolute value, and this is ruled out by the bond limits (36). It is reasonable to impose bond limits

and not only limits to total value: if b2,t−1 and b2,t−2 are eventually huge in absolute value and of

opposite signs (as determined by (41)), the government would hold very large amounts of private

debt and it would risk very high losses from a private default.

To summarize, with bond limits (39) is not a sufficient implementability condition. In fact, by

forward substitution in (35) one can see that under certainty a set of sufficient implementability

16Note that the values of initial conditions b2,−1, b2,−2 are independent on the constant S/uc

1−β for a given initial value

of debt, so that no end condition holds to guarantee that the difference equation (41) is generically stable. There is
one configuration of b2,−1, b2,−2 that does imply stability for a given wealth level b2,−1β

uc,1

uc,0
+ b2,−2, but this would

only happen by coincidence, almost all combinations of b2,−1, b2,−2 that give rise to the same wealth imply |b2,t| → ∞.
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conditions is given by the following two conditions

b2,−2 =
∞∑
t=0

β2t S2t

uc,0
(42)

b2,−1 =
∞∑
t=0

β2tS2t+1

uc,1
. (43)

These two conditions imply (39). But the converse is not true, many allocations satisfy (39) but

violate (42)-(43), including the optimal solution with (39). That is the optimal policy under (39)

implies that bond issuance goes to infinity and the bond limits are violated.

Intuitively: under no-buyback and N = 2 there is no way to transfer income between odd and

even periods. High income in, say t = 1, can be transferred to, say t = 7, but not to t = 2. Therefore,

for most initial conditions b2,−2, b2,−1 even and odd periods will have a different primary surplus so

that (40) can not hold. This proves the following:

Optimal policy in the example of this section is

τt = τ o for all t odd (44)

τt = τ e for all t even

where τ o 6= τ e generically.

Obviously, this implies that for the optimal policy there is an N−period cycle in bonds in this

example, hence

b2,t = b2,t−2 for all t ≥ 3. (45)

In this setup, long bonds impart tax variability, the opposite of fiscal insurance. Tax smoothing

takes place within odd periods and within even periods but not across all periods. Only when

b2,−2 = b2,−1 can we implement the complete markets allocation in this example.

5.2 Some analytic Results

Maintaining certainty and for arbitrary N note that from the standard first order conditions it holds

that17

λt = λt+N for all t, (46)

entailing that the multiplier λt follows an N cycle, since λ’s repeat every N periods but generally

λt 6= λt+1 6= . . . 6= λt+N−1. Taxes and consumption inherit this N cycle property. Furthermore,

interest rate twisting now causes taxes in the first N periods to respond to a shock differently

depending on current debt. This is because now the government in period t holds bonds issued at

t− 1, . . . , t−N and aims at twisting the interest rates of all these bonds to lower funding costs. We

state this with the following result:

Result 2. Assume no-buyback, an arbitrary non-random {gt} , and the utility function in (21).

17This follows from (38) and an argument parallel to the one leading to equation (17).
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Ramsey equilibrium is that there are cycles of order N in taxes for t ≥ N . More precisely

τt = τt+iN t = N, . . . , 2N − 1 for all i = 1, 2, . . . (47)

Assume further bN,−i > 0 for i = 1, ..,N then

τi+N > τi i = 0, . . . , N − 1. (48)

Proof.

We give details for N = 2, it is trivial to extend the proof to arbitrary N .

Equation (46) implies λt = λt−2 for all t ≥ 2. Plugging this into the first order condition of the

problem we have

uc,t − vx,t + λ0 (ucc,tct + uc,t + vxx,t (ct + g)− vx,t) = 0 for all t ≥ 2, t even (49)

uc,t − vx,t + λ1 (ucc,tct + uc,t + vxx,t (ct + g)− vx,t) = 0 for all t ≥ 3, t odd.

A standard derivation gives that for utility function (21) we have

τt = τ2 for all t > 2, t even (50)

τt = τ3 for all t > 3, t odd.

This proves (47) for N = 2.

Finally we show (48). For periods t = 0, 1 we have

uc,0 − vx,0 + λ0 (ucc,0c0 + uc,0 + vxx,0 (c0 + g)− vx,0)− ucc,0 λ0 b2,−2 = 0 (51)

uc,1 − vx,1 + λ1 (ucc,1c1 + uc,1 + vxx,1 (c1 + g)− vx,1)− ucc,1 λ1 b2,−1 = 0

The only difference between equations (51) and (49) is the presence of two extra terms that are

function of the initial condition of debt: ucc,0 λ0 b2,−2 and ucc,1 λ1 b2,−1. Since we have assumed that

b2,−2, b2,−1 > 0 these terms are clearly negative, implying that

τ2 > τ0

τ3 > τ1. �

This extends the result (44) to the case when g is time-varying but restricting the utility function

to (21). As discussed in Section 5.1, a long bond under no-buyback and bond limits does not complete

the markets, all dates t+ iN are now isolated for different t = 0, . . . , N −1. Therefore the N−period

cycle arises because of the budget constraint, not because of the way we model policy or because of

interest-rate twisting. To show more clearly that (47) depends on the budget constraint and not on

commitment, in an appendix we consider independent powers under no-buyback and find N -period

cycles emerge in that model as well. Notice that (45) does not generalize to the case of arbitrary

{gt} .
The inequality (48) shows that the government commits to twisting interest rates for all first N

periods. This is in contrast with (23) in Result 1 without buyback, where interest rates were only
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twisted around the N−th period. Under no-buyback the government holds bonds issued in the last

N − 1 periods so it commits to lowering taxes for the next N − 1 periods in order to cut the cost of

all bonds outstanding.

The following is a special case of Result 2 when {gt} follows the certainty analog of the AR(1)

process we use later in our simulations. This result gives intuition for the evolution of taxes we find

in Figure 4 below.

Result 3. Consider the assumptions of Result 2 except that, to isolate from interest rate twisting,

we assume bN,−i = 0 for i = 1, . . . , N − 1.

Assume in addition, that gt = (1− ρ) g∗ + ρgt−1 for g0 > g∗ > 0 and ρ ∈ (0, 1).

Then

τt > τt+1 t = 0, . . . , N − 1. (52)

Proof.

As argued in section 5.1 the budget constraints only link the periods of cycle N , so that the set

of sufficient implementability conditions can be written as

0 =
∞∑
i=0

βNi
uc,t+Ni
uc,t

[gt+Ni − τt+Ni (A− xt+Ni)] for t = 0, . . . , N − 1. (53)

For the g process assumed here gt is decreasing geometrically. Therefore it is clear that the

discounted sum of expenditures decreases as t grows from 0 to N − 1, formally

∞∑
i=0

βNi
uc,t+Ni
uc,t

gt+Ni >
∞∑
i=0

βNi
uc,t+1+Ni

uc,t+1

gt+1+Ni t = 0, . . . , N − 1.

Therefore, if (53) must hold the discounted sum of tax revenues also has to go down as t grows

from 0 to N −1. Since τ has to be in the increasing part of the Laffer curve in order to be an optimal

tax, it means that taxes go down as t grows from 0 to N − 1.�

This says that for the deterministic analog of the AR(1) process used in the simulations, taxes will

go down within each N -period cycle. Since (47) still applies, taxes initially decrease for N periods,

there is a jump at t = N to set τN = τ0, from then on taxes decrease again until t = 2N − 1, there

is a jump at t = 2N to set τ2N = τ0 and so on. Therefore, this is very similar to the dashed line we

find in Figure 4 below.

5.3 Interest Rate Twisting under no-buyback

We now argue that, as in Section 3, interest rate twisting also takes place under no-buyback in all

periods in response to shocks and that the role of the λ’s is to enforce promises involved in the

commitment to change future taxes. But this twisting takes a very different form. Now the presence

of an adverse shock causes all taxes during the next N -period cycle to be slightly different than in

previous cycles, causing an analog response as in (48) but for all periods. This is because under

no-buyback the government owes bonds of maturities 1, . . . , N − 1, since long bonds issued N − 1

periods ago have not yet been redeemed. Therefore the government promises cuts in taxes in order
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to affect consumption during this first cycle since each of them individually influences the value of

currently held debt.

Looking at the FOC of the no-buyback problem (37) and (38), there are only two differences with

respect to the buyback case in (10) and (11), now we have:

1. λt+N in (38) in place of λt+1 in (11) and

2. λt in (37) in place of λt−N+1 in (11).

The first difference implies that the martingale property of λ in Section 2 (see our discussion

after (13) ) now only holds every N−th period. This generates the N−period cycles in taxes that we

have already discussed. The second difference produces a more subtle effect. Notice that the term

that induces interest rate twisting is now (λt−N − λt) bN,t−N instead of Dt as defined in (14). The

difference (λt−N − λt) depends on all the shocks that have happened between t − N and t, while

in Section 2 we had (λt−N − λt−N+1) so that only the shock occurring at t − N + 1 mattered. Due

to (38) we should have λt−N ' λt if all shocks are close to the mean between t − N and t, but if

negative (positive) shocks to g happen between t − N and t the realized values will be λt−N < λt

(>) and the interest-rate twisting term will induce a lower (higher) consumption at t. This implies

that a shock in period t induces interest rate twisting for all taxes in periods t, . . . , t+N − 1. In this

sense the effect of a shock to gt on interest rates twisting is spread out over periods t + 1, ..., t + N .

This reflects a stochastic interpretation of the analytic result (48) that occurred in Result 2.

5.4 Simulations

5.4.1 Business Cycle Fluctuations

Consider again our simulations of Section 4 but now amend the model for the case of no buy back. The

calibration is the same as in the previous section, including initial value of debt and the total value for

bond limits M, M . We start with the case when initial conditions are symmetric, bN,−j = bN,−i for

all i, j = 1, ..., N. In section 5.4.2 we consider an alternative where initial conditions are asymmetric.

Figure 4 shows how taxes respond to an adverse government expenditure shock when the govern-

ment has initial debt equal to half of GDP. This Figure compares the case of buy back at the end

of each period (as in Section 2) and no-buyback zero coupons as in this Section. We see that the

behavior described by Results 2 and 3 arises: there are N−period cycles and taxes go down within

each cycle. Under buy back we saw clearly the interest rate twisting effect but under no-buyback

things are significantly different. The interest rate twisting effect is spread out across each of the

periods and it can be barely seen, however the N−period cycles due to cash flow requirements when

debt is rolled over are obvious.

[Tables 3 and 4 About Here]

Table 3 shows second moments of several variables found with repeated simulations. Comparing

with Table 1 shows that under no buy back the deficit and market value of debt are larger on average

and that taxes, deficit and consumption become more volatile for most maturities and most horizons

although the increase in volatility due to no-buyback is quantitatively minor.
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The reason for the minor change is the following: from our discussion around the end of Section

5.1 it is clear that the volatility across different N−period cycles is due to differences in the initial

conditions bN,−i across i = 1, ..., N. For the simulations summarized in Table 3, given our calibration,

surprises in g in any given period are relatively small. Furthermore, since debt is very persistent

under incomplete markets (as emphasized, for example, in Aiyagari et al. (2002) and Marcet and

Scott (2009)), there are no large differences in state variables bN,t−i across i = 1, ..., N. Therefore we

expect that the different taxes across N−period cycles are small.

The next section describes a relevant situation where tax volatility does occur under no-buyback

due to asymmetric initial conditions.

5.4.2 Tax volatility after a war

Consider an economy that has experienced large shocks to its deficit in the last few years and

the impact this would have, if only long bonds under no-buyback can be issued. As a reference,

consider the huge US deficits between 1942-45 of roughly 25%18, such that the initial period t = 0

is represented by year 1946, assume zero coupons and ten year bonds (N = 10). Under incomplete

markets high deficits translate into high bond issuance, this would justify calibrating initial conditions

as bN,−j = 25%GDP for j = 1, ..., 4. Consider, for simplicity, a situation where the government had

zero debt before 1942 so that bN,−j = 0 for j = 5, ..., 10. The upper bond limit corresponds to a

maximum value of debt/GDP ratio of 100% so that M = 100%GDP. We assume the government

can not buy private bonds, i.e. M = 0. All other parameters remain as in the previous calibration.

We compare this with a buyback model calibrated in an analogous way.19

Table 5 shows tax volatility after exiting the war under buyback and no-buyback. As we explained,

buyback is closer to a one-period bond in terms of maturity and, therefore, it allows for tax smoothing

after war. But as suggested by the results in section 5.1 the high levels of bond issuance for j = 1, ..., 4

reverberate into very high interest rate payments in ten-year cycles and, therefore, high taxes every

10 years. Tax volatility is four times higher under no-buyback in the first 20 years due to this cycle.

Tax volatility goes down as time goes by, since bonds revert to a situation where state variables are

symmetric in the long run.

[Table 5 About Here]

These results are robust to many changes. For example, if we loosen the lower bound of debt

to M = −M the standard deviation of taxes is still about four times larger: 0.024 for buyback and

0.095 for no-buyback at 20-year horizon. Even if we double the bounds M for the no-buyback case,

therefore giving a much better chance for tax smoothing under no-buyback, standard deviation of

taxes is still very large: 0.061, 0.052, 0.048 at the horizons 20, 40, 60.

18Respectively 14.2, 30.3, 22.7 and 21.5% from 1942 to 1945 of GDP, according to http://www.econdataus.com.
19More precisely, we set up initial conditions so that the value of initial debt (at steady state bond prices) is

exactly the same both under buyback and no-buyback. More precisely, in the model with buyback we assume that
βN−1bN,−1 = yss and b−j = 0 for j = 2, 10, where yss is output with a balanced budget and gt = E(gt). In the model

with no buyback we assume βj−1bN,−j = 0.25yss for j = 1, 4 so that total value of initial debt is
∑10
j=1 β

jbN,−j = yss.
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5.4.3 The Benefits of Shorter Duration

The results here show the importance of modelling explicitly when long bonds are repurchased. This

has implications for debt management and it suggests that, given no-buyback, shorter average bond

duration may be helpful for tax smoothing.

In particular, Faraglia, Marcet, Oikonomou and Scott (2014b) show that short bonds can play

a role at business cycle frequencies. The results in the previous Section 5.4.2 suggest that more

flexibility in maturity plays an important role after a war. Although we do not develop this issue

here, we provide the following intriguing fact: the US government did issue large amounts of callable

bonds precisely during WWII, but callable bonds progressively disappeared and they were no longer

issued after 1982.20 Section 6 shows that tax volatility decreases when long bonds pay coupons and,

therefore, their duration is shorter.

6 Coupon Bearing Bonds

A final issue we consider in modelling long bonds is the effect of introducing coupon payments. In

practice long bonds invariably pay a coupon at fixed regular intervals with the coupon fixed for the

duration of the bond (see FMOS (2014b) for documentary evidence). In the case of one period bonds

coupons are unimportant - if coupons are paid at the end when the bond is redeemed all interest

payments are paid at the maturity date and the duration of a bond is the same as its maturity. If

we assume buyback then the impact of coupons is uninteresting as cash flows are unaffected. But if

N > 1 and there is no early buyback then coupons make a substantive difference as duration will no

longer equal maturity.

In terms of the rollover cycles of the previous section by spreading interest payments over the life

of the bond and so reducing duration paying coupons should smooth taxes and reduce the N period

cycles. However the volatility of the price of a bond is a direct function of its duration so whilst

coupon payments will reduce the magnitude of N cycles they will also reduce the ability of long bonds

to provide the fiscal insurance that the optimal debt management literature has to date emphasised.

Given this it is worth investigating how the introduction of coupons affects the interest rate twisting,

N -period cycles and tax volatility we have identified above in a model with no-buyback.

Let κt be the coupon payment of a bond issued at t, this payment is constant from t to t+N −1.

In order to denote that non-zero coupon bonds have a different equilibrium price than zero coupon

bonds, let qNt be the price of such a bond. In equilibrium

qNt = κt

N−1∑
i=1

βiEt

(
uc,t+i
uc,t

)
+ βNEt

(
uc,t+N
uc,t

)
(54)

i.e. qNt is the sum of prices of zero coupon bonds of maturity j < N (pjt = βjEt

(
uc,t+i

uc,t

)
) weighted

by the coupon payments promised, plus an N period zero-coupon bond that pays one unit of con-

sumption at maturity (a normalization). We call this a “fixed coupon bond” as the coupon κt is the

same in all the periods that the bond is alive. Coupons, however, may differ across issuance dates

and they may depend on the shocks gt. Section 5 is a special case when κt = 0 for all t.

20See Faraglia, Marcet, Oikonomou and Scott (2014b).
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We normalize the payment at the end of the period to 1 unit of consumption. Therefore this

1-unit payment includes the principal (1 − κt) and the coupon paid in the period when the bond

matures. This is a normalization, it simplifies formulas below.

To determine the size of the coupon we note that in US data long bonds trade at or close to

par. In other words the debt management office designs coupons such that under current market

conditions the bond price is very close to the principal, i.e. qNt ≈ 1− κt.
The government budget constraint is now

qNt bN,t = bN,t−N +
N−1∑
j=1

bN,t−jκt−j + gt −
(

1− vx,t
uc,t

)
(A− xt). (55)

6.1 The Ramsey Program

The planner’s objective is to maximize the agent’s utility subject to (54), (55) and some ad hoc debt

limits. The Lagrangian for the planner’s program is now:

L = E0

∑
βt

{
u(ct) + v(T − ct − gt) + λt

[
bN,t(β

Nuc,t+N +
N−1∑
j=1

uc,t+jκt)

−bN,t−Nuc,t −
N−1∑
j=1

bN,t−jκt−juc,t + St)

]
+ v1,t(M̃N − bN,t) + v2,t(bN,t − M̃)

}
where the appropriate debt limits are :

bN,t ∈

[
M∑N−1

j=1 β
j + κ

∑N−1
j=1

∑j
i=1 β

i
,

M∑N−1
j=1 β

j + κ
∑N−1

j=1

∑j
i=1 β

i

]
≡ [M̃, M̃ ] (56)

for κ = E(κt). As in the zero-coupon model the limits ensure that the steady state market value of

debt is in [M, M ].

In the simulations we only consider cases when coupons are constant, i.e. κt = κ. From the above

Lagrangian the first order condition for consumption is:

uc,t−vx,t+λt(ucc,tct+uc,t+vxx,t(ct+gt)−vx,t)+ucc,tκ
N−1∑
j=1

(λt−j−λt)bN,t−j+ucc,t(λt−N−λt)bN,t−N = 0

(57)

and the condition for bNt :

λtEt(κ
N∑
j=1

βjuc,t+j + βNuc,t+N) = Et(κ
N∑
j=1

βjuc,t+jλt+j + βNuc,t+Nλt+N) + v2,t − v1,t. (58)

The optimal policies again satisfy bN,t

λt

ct

 = F (gt, λt−1, . . . , λt−N , bN,t−1, . . . , bN,t−N)

λ−1 = . . . = λ−N = 0, given bN,−1, ..., bN,−N .
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The state vector includes the lags of the multiplier λ and all the lags of the bond quantities so that

the dimensionality of the state vector is again 2N + 1.

Even when the government issues non-zero coupon bonds the incentive to twist interest rates is

present. This may seem surprising since the per period budget constraint in (55) is a function only

of one price, the issuance price. However, bonds which haven’t matured in t affect the governments

intertemporal constraint and its future income and financing needs so that the government will be

interested in twisting that price as well.

In the case of coupon bonds the government has the incentive to promise tax cuts in all periods

from t = 1 to N − 1. Moreover, from (57) we can identify the term Dt:

Dt = κ

N∑
j=1

(λt−j − λt)bNt−j + (λt−N − λt)bNt−N

which drives interest rate twisting. This highlights that not only the level of debt issued from t− 1

to t − N matters (as in the case of zero coupon long bonds and no-buyback) but also the coupon

payments matter to pin down the allocations in each period and in particular the level of taxation.

For instance, in the case of a constant coupon bond and no buy back we have that (58) follows a

complicated pattern which is a function of all the future terms uc,t+jλt+j for j = 1, 2, . . . , N weighted

by the promised payments.

6.2 Some Analytic Results

We already found in Section 5 that long bonds under no-buyback may generate undesired tax volatil-

ity. We now show that this effect is alleviated if bonds pay sufficiently high coupons. However, in

that case the bond positions are likely to be very volatile. We start with a general result.

Sufficiency of Measurability Conditions

We have already pointed out in Section 5.1 that under no-buyback and zero coupons, equilibrium

constraints cannot be summarized in a standard implementability condition, hence the complete

market allocation can not be achieved even under certainty. Now we explore in more generality the

issue of how to write down a set of sufficient implementability conditions by considering coupon

payments in a model with uncertainty.

Consider a feasible sequence of consumption {ct} and, associated with such a sequence, define

the discounted sum of surpluses zt as

zt = Et

∞∑
j=0

βj
uc,t+j
uc,t

[(
1− vx,t+j

uc,t+j

)
(ct+j + gt+j)− gt+j

]
.

The literature has so far focused on finding sufficient implementability conditions for three sep-

arate types of government bonds - complete markets, incomplete markets and effectively complete

markets. In these cases we have the following standard results: it is well known that under complete

markets, where a full range of state contingent securities, exists a necessary and sufficient condition

for equilibrium is that

z0 = b−1 (59)
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(see, for example, Lucas and Stokey (1983) and Chari, Christiano and Kehoe (1991)). If by contrast

markets are incomplete and consist of only a real riskless one-period bond (N=1) Aiyagari et al.

(2002) show that, in addition to (59), the following measurability conditions are needed for a set of

sufficient conditions

zt is a function of gt−1 for all t > 0. (60)

A {ct} that satisfies these conditions is supported by a sequence of bonds zt = b1,t−1 for all t > 0.

Finally Angeletos (2002) extends this result to the case of multiple riskless bonds when long bonds

are bought back one period after issuance (as in our Section 3) and assuming that there are enough

bonds to effectively complete the markets. For simplicity we only state this result for the case where

g takes two values and there are two bonds, a one- and an N -period bond denoted b1,t, bN,t. Angeletos

shows the sufficient equilibrium conditions are :

zt = b1,t−1 + Et

(
βN

uc,t+N
uc,t

)
bN,t−1 (61)

for random variables bi,t measurable with respect to gt for all t ≥ 0 i = 1, N . In this case the

equilibrium is supported by bond positions b1,t = b1,t and bN,t = bN,t for all t > 0.

All three of (59), (60), and (61) share the following feature: sufficient equilibrium conditions

require that private wealth in all periods must equal the discounted sum of primary surpluses zt. We

now show that when bonds are as in the current section the analog condition

N−1∑
j=1

bN,t−j

(
κt−j + qN−jt

)
+ bN,t−N = zt for all t (62)

is not sufficient for an equilibrium, where qN−jt is as in (54) with maturity N − j and coupon κt−j

(instead of κt).

To prove our point it is enough to show one case where (62) is not sufficient. We consider N = 2

so that (62) becomes

b2,t−1

(
κt−1 + βEt

(
uc,t+1

uc,t

))
+ b2,t−2 = zt. (63)

The example in Section 5.1 showed that for κ = 0 this equation is not sufficient. One may think

that removing the constraint κ = 0 could make (63) sufficient. Indeed, if coupons are contingent on

information available after the date of issuance markets, can be effectively completed. But contingent

coupons are easily ruled out due to issues of moral hazard and because the fluctuations in coupons

needed to complete the markets would be very large.21 Therefore we only consider fixed coupons in

the remainder of the section, where κt is determined at the date of bond issuance t and bN,t pays the

same coupon during all periods t+ 1, . . . , t+N .

21In particular, κt−1 can always be chosen contingent on gt so as to guarantee that (63) always holds for a ”properly
designed” coupon. This can be done as follows. A constant bond issuance b2,t = b2,−1 is implemented if κt−1 contingent
on gt can be chosen to satisfy

b2,−1 =
zt

1 + κt−1 + βEt(
uc,t+N

uc,t
)

for all gt so that (63) is certain to hold. In this case we are back to the standard case where (59) is the only
implementability constraint. Obviously such coupons would have very large fluctuations as they would have to match
fluctuations in the discounted sum zt.
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We can offer the following set of sufficient conditions

Result 4. Assume N = 2, fixed coupons {κt} , no-buyback. Consider a consumption sequence

{ct} such that the associated discounted sums of surpluses zt satisfies

1. z0 = b1,−1(q
1
0 + κ−1) + b2,−2 for given initial conditions b1,−1, b2,−2, κ−1;

2. (63) for all t > 0 as for some random variables b2,t(g
t).

If, in addition we have the following boundedness condition:

3. the random variables b2,t(g
t) mentioned in 2. satisfy bounds (56) for sufficiently large M , M

for all t a.s.

then {ct} is a competitive equilibrium.

The standard results mentioned above focused on conditions 1. and 2.. The main reason to write

the above result is to highlight that under no-buyback the boundedness condition 3. is also needed

under no-buyback. It will turn out that condition 3 does not hold in many cases.22 The proof follows

a usual pattern and we do not offer details.23

A reference point will be coupons that are, roughly speaking, close to the net real rate of interest,

so that bonds trade at (or close to) par. It follows from (54) that a coupon

κPt =
1− β2Et

(
uc,t+2

uc,t

)
1 + βEt

(
uc,t+1

uc,t

) (64)

causes the bond price to trade at par, namely q2t = 1− κPt .

Now, (63) can be rewritten as

b2,t−1 = −ztδt + δtb2,t−2 (65)

δt = −
(
κt−1 + βEt

(
uc,t+1

uc,t

))−1
.

Since this is similar to a first order stochastic difference equation in b2,t it should be clear that if

|δt| < 1 then it is “more likely” that a b2,t satisfying (65) does not explode and, therefore, it satisfies

the boundedness condition 3 of Result 4.

This shows in a generic way that high coupons help to smooth taxes, since a high κt−1 drives

|δt| below 1. But the boundedness condition 3. fails if coupons are small hence, in that case, the

standard measurability conditions 1. and 2. of Result 4 are not sufficient.

We used the word “generic” in the last paragraph because there is always a configuration of initial

conditions where the boundedness condition 3. holds even for low coupons: given a consumption

22In some cases fixed coupons can complete the markets and they can satisfy condition 3. For example, the portfolios
of Angeletos, Buera and Nicolini can be implemented with a fixed κt−1, but this would require a very large and negative
coupon. For the calibrated case of Buera and Nicolini a coupon of about minus 200% would implement the complete
market allocation with a constant level of bonds. Again, we find this case of little interest as governments can not
offer huge negative coupons.

23First prove necessity of (63). Then prove that if b2,t satisfies (63) the period-by-period budget constraints must
hold.
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sequence and a level of initial wealth b1,−1+(β+κ)b2,−2 there is always a value of b1,−1 that guarantees

that bond positions do not go to infinity even if |δ| > 1, this would be an initial condition that satisfies

a standard ending condition in difference equations, but for all other values of b1,−1 and same wealth

bonds go to infinity if |δ| > 1.

The following two results make this generic idea concrete for some special cases.

Result 5. Consider, as in Section 5.1 the case of gt = g and constant taxes. The boundedness

condition 3. is satisfied (generically) if and only if the bond trades at a price higher than par, that is

κt = κ ≥ κP = 1− β. (66)

It is clear that in this case zt = z and |δt| = (κ+ β)−1 so that if (66) holds then b2,t in (65) does

not explode and boundedness condition 3. is satisfied. But for a low coupon κ < κP = 1 − β then

b2,t−1 explodes and bonds violate any finite limit. The example of Section 5.1 is a special case of this

result for κ = 0.

If bonds trade at par κPt = 1− β (63) gives

b2,t−1 = z − b2,t−2

and b oscillates in a two-period cycle: b2,t = b2,t−2.

The next result shows a partial generalization to the case of uncertainty. It says that if coupons

are sufficiently high long bonds and short bonds can implement the same allocations, but with low

coupons long bonds implement fewer equilibria. Therefore one would expect less opportunities for

tax smoothing in the presence of long bonds with low coupons. For this result we make the following

assumptions:

A1 - u(c) = c;

A2 - gt iid, stochastic and a.s. bounded: Prob(|gt| < Kg) = 1 for some Kg < M where

M≡ maxx(1− vx)(A− x).

Notice that with this utility 1 − vx = τ , therefore M represents the maximum tax revenue that

can be generated in a given period in equilibrium (the maximum of the Laffer curve).

Define CENκ as the set of all competitive equilibrium allocations {ct}∞t=0 for long bonds of maturity

N , with a constant coupon κ. With this notation Result 4. can be restated as saying that an allocation

belong to CENκ if and only if it satisfies conditions 1,2,3. For short bonds we write CE1 as the coupon

is irrelevant.

Result 6. Assume A1 and A2 above. Consider two identical economies, the first economy has

a short bond N = 1 and the second N = 2 without buyback and coupon κ. Both economies have

identical initial wealth, b1,−1 = b2,−1 (κ+ β) + b2,−2.

a) If long bonds sell at higher than par, namely κ > κP = 1− β, then CE1 = CE2κ.

b) For zero coupons CE1 is strictly larger than CE20 (i.e. CE20 ⊂6= CE1).

Proof.
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We first show that CE2κ ⊂ CE1 for any coupon κ. Consider a given allocation {ct}∞t=0 ∈ CE2κ,

with associated discounted sum of surpluses zt and let {b2,t} the bond sequence that implements this

equilibrium with 2−period bonds. Since zt = b2,t−1 (κ+ β) + b2,t−2 it is clear that zt is measurable

with respect to information at t− 1. It follows from proposition 1 in Aiyagari et al. (2002) that this

allocation is also an equilibrium for N = 1 with b1,t−1 = zt. Obviously, since b2,t is uniformly bounded

so is b1,t. Therefore CE2κ ⊂ CE1.
All that remains for part a) is to show CE1 ⊂ CE2κ for sufficiently high κ. Given {ct}∞t=0 ∈ CE1

and the corresponding bond allocation b1,t we construct the following b2,t

b2,t = −b2,t−1
1

β + κ
+ b1,t =

t+1∑
j=0

(
− 1

β + κ

)j
b1,t−j +

(
− 1

β + κ

)t+2

b2,−2.

Clearly, since b1,t−j is uniformly bounded and 1
β+κ

< 1 this b2,t satisfies (63) and the boundedness

condition 3. This proves part a).

To show b) we construct one allocation in CE1 that is not in CE20 . Consider the case b1,−1 = 0.

Fix parameters α, η > 0. Consider a policy such that given the state variables (gt, b1,t−1) tax revenue

at t is given by

(1− vx,t)(A− xt) = E(gt) + α (gt − E(gt)) + ηb1,t−1. (67)

This obviously defines hours, consumption, etc. as a function of (gt, b1,t−1).

For this policy α ≤ 1 governs how much the deficit increases when g is higher than average, thus

it governs how much of an adverse shock is absorbed by deficit and debt. If we set α = 1 this leads

to a balanced budget and no tax smoothing. However if 0 < α < 1 there is some tax smoothing, an

adverse g causes a deficit and higher debt. Parameter η governs the effect of past debt on current

primary deficit. We assume α, η are chosen so that the right side of (67) is lower thanM so there is

always an xt that solves (67), more on this later.

The budget constraint implies that the corresponding bond sequence is

b1,tβ = (1− η)b1,t−1 + (1− α) [gt − E(gt)]

so that

b1,t =
t∑

j=0

β−j−1 (1− η)j (1− α) [gt−j − E(gt)] .

If η > 1 − β then b1,t is bounded above by 1−α
β+η−1 [K − E(gt)] so that (67) belongs to CE1 for any

α ∈ (0, 1) and η > 1−β such that revenue is feasible. Furthermore, from this equation it is clear that

there are many values of α, η guaranteeing that the right side of (67) is lower than M, as required

above.

Now we check that this allocation does not belong to CE20 . To implement the allocation (67) with
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N = 2 and κ = 0 we would need a b2,t such that b1,t = b2,tβ + b2,t−1 hence

b2,t =
t∑

j=0

(−β)−j−1 b1,t−j =
t∑

j=0

(−β)−j−1
t−j∑
i=0

β−i−1 (1− η)i (1− α) [gt−j−i − E(gt)]

= (−β)−t β−1
[
1 + (η − 1) + (η − 1)2 + . . .+ (η − 1)t

]
(1− α) [g0 − E(gt)]

+ (−β)−t β−1
[
1 + (η − 1) + (η − 1)2 + . . .+ (η − 1)t−1

]
(1− α) [g1 − E(gt)] + . . .

= − (−β)−t−1 (1− α)
t∑

j=0

1− (η − 1)j+1

2− η
[gt−j − E(gt)] .

Now

var(b2,t) = (−β)−2t−2 (1− α)2 (2− η)−2
(

t∑
j=0

[
1− (η − 1)j+1

])2

var(gt)

> (−β)−2t−4 (1− α)2 (2− η)−2 η2 var(gt)

where the inequality comes from
∣∣∣1− (η − 1)j+1

∣∣∣ > η for all j.

Since β < 1 then (−β)−2t−4 → ∞ and var(b2,t) → ∞ as t → ∞, therefore any bond limits will

be violated eventually and we can not find a b2,t that implements the policy (67). �

Notice that, in order to obtain a sharp analytic result we had to assume linear utility. For a risk-

averse u, the standard fiscal insurance effect of Angeletos, Buera and Nicolini would be present and

long bonds would help to smooth taxes. In a standard calibration with risk aversion and no-buyback

both effects will be present and the issue can only be resolved by numerical simulations, as we do

below.

Volatility of positions

The previous results suggest that selling long bonds at par may be enough to smooth taxes, but

this could be a bit too optimistic. The fact is that long bond positions that complete the markets

can be very volatile. To see this, take the case used in Result 5. If bonds are sold at par the optimal

solution implies

b2,t = z − b2,t−1. (68)

Therefore bonds display a two-period cycle b2,t = b2,t−2 for all t ≥ 2. Similarly, in a model with

uncertainty as in Result 6. and coupons at par, a shock in say, an even period, would cause higher

debt in all future even periods and not in odd periods, this imparting volatility across even and odd

periods.

Such fluctuations of bond positions would cause large variations in gross issuance of debt from one

period to the next when initial conditions are very asymmetric, as in the war calibration of section

5.4.2. In the current setting this can be a problem because it makes it more likely that the bond

limits are binding in many periods and, therefore, tax volatility arises. In general, high variability in

gross bond issuance is often seen as undesirable in actual debt management practice.

Summary

A summary of all these results is that long bonds without buyback impart rollover cycles of

periodicity N that cause taxes to be volatile. Coupons alleviate the problem but they may introduce
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large oscillations in gross bond issuance. If these oscillations are ruled out long bonds will not

complete the markets even with coupons near par.

6.3 Simulations with coupons

6.3.1 Business cycle fluctuations

To see in detail the impact of paying coupons under uncertainty we need to resort once more to

simulations. Consider again the case of Figure 4 based on persistent shocks, a ten year bond and

positive levels of initial debt. In our simulations we set κt = κ = 1 − β for all t, corresponding to

coupons that trade approximately at par (exactly at par only in the risk neutral case).

Figure 4 shows the response of taxes to an adverse expenditure shock. In Section 5 we showed

that no buy back induces greater volatility in taxes and produces a N period cycle. However as

Figure 4 shows paying coupons produces less volatile N cycles. The intuition is that coupons spread

the timing of cash payments from a bond and so reduce the magnitude of the N cycles.

Results 5. and 6. showed that in some cases coupons help sustain the same tax profile as with

short bonds. Figure 4 does not show such an extreme case, we still find rollover cycles, unlike the case

of short bonds N = 1, but the cycles are less pronounced than with zero coupons. What happens is

that the bond limits we impose make it impossible for the government to smooth taxes as in short

bonds because, as we explained in Section 6.2, this would cause a large variation in bond positions

in order for coupons to achieve tax smoothing as with short bonds and bond limits will bind more

often. Therefore the case with coupons is somewhere between zero-coupon long bonds and short

bonds.

Coupons are essentially short term debt and taxes can now be raised in all periods from t+ 1 to

t + N to finance the deficit caused by a high gt. This suggests a fairly immediate explanation for

why long term bonds pay coupons, governments can use coupons as a way of reducing tax volatility.

This is confirmed by comparing Tables 3 and 6 where paying coupons under no buy back reduces

the volatility of taxes and consumption compared to the case of no coupons and no buy back. It is

even further confirmed by the war calibration.

[ Table 6 About Here.]

6.3.2 Tax volatility after a war

Using the “end-of-war” calibration as in Section 5.4.2 in the model with coupons gives the moments

reported in the last column of Table 5. We can see that there is still a very large tax volatility

compared with buyback but that coupons at par do alleviate the rollover cycles. Again, modelling

repurchase of long bonds and coupons explicitly is important, and the results give a reason for coupon

payments.

6.4 Coupons, Commitment and Independent Powers

Having extended our model to allow for the empirically motivated features of no buy back and

coupons we return again to considering the role of commitment in optimal debt management and

fiscal policy. To that end, Figures 5 and 7 report the impulse responses of taxes and other model
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variables to a one standard deviation fiscal shock under both full commitment and our model of

independent powers. In both cases we assume that N = 10, in Figure 5 we study the case of zero

initial debt and in 7 positive initial debt. Figure 6 considers different maturities N . These figures

show the oscillations in tax rates, with evident N period cycles, these arise for reasons explained in

the previous section.

As hinted by inequalities (48) and the discussion in Section 5.3 we expect that if the government

is in debt the role of commitment is to lower taxes for the next N periods after the shock. Figure 7

shows the responses when initial government debt is positive and b−1 = .. = b−N . The government

now wishes to reduce taxes between t+ 1 and t+N to reduce the value of the initial debt burden in

response to a high gt. This causes a mild drop in tax response in these initial periods relative to the

case of zero initial debt in Figure 5. The intuition for this has already been given around equation

(48) and Section 5.3 so we do not repeat it here. In contrast, in an independent power model where

the tax schedule is a function only of the exogenous shock and the level of debt we do not see the

lower taxes in the first N periods when there is debt.

However the effect of interest rates twisting is overpowered by the considerably larger volatility

originated by the N cycle property.

[ Figures 5, 7 and 6 About Here.]

Figure 6 extends these results to different maturities.24

In Tables 6 and 7 we show sample moments generated by the simulations from the models of

this section. The basic patterns of taxes, consumption and the market value of debt are similar to

the ones generated by the model of the previous section. Debt is negative in the longer run because

governments wish to accumulate precautionary savings for tax smoothing purposes. The additional

volatility of taxes generated by independent powers however is larger now.

[ Table 7 About Here.]

To conclude, long bonds under no-buyback generate tax volatility causing spikes in the tax rates at

redemption dates. These patterns are mitigated under commitment as the tax smoothing objective,

summarized in the multipliers, influences the policy functions. Coupons help reduce the lumpiness

and volatility of tax rates. The volatility of taxes can be very high if bonds issued in the last N

periods have very different sizes, as it would happen after a war or a very deep recession.

7 Conclusions

In contrast to the case of short bonds, analysing long bonds requires numerous assumptions about the

institutional setup. We have considered two such assumptions here - does the government buyback

each period all outstanding government debt? do government bonds pay coupons?- These issues have

not been addressed directly in the literature on long bonds, but we find that they matter considerably

for the behaviour of taxes and debt.

24Clearly the N cycle property of the tax schedule coincides with the maturity date of debt in the figure. Across
all values for N considered the variability of taxes in independent powers prevails.
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Our focus has been to understand how a government issuing long bonds impacts on optimal fiscal

policy. It is well known in the literature that long bonds offer fiscal insurance in the sense that

in response to adverse expenditure shocks their price declines. However we have shown that over

and above fiscal insurance there are additional intertemporal channels - interest rate twisting and

rollover cycles - that create additional tax volatility. The closer the assumptions we make regarding

the structure of long bonds are to those we observe in practice (especially around no repurchase

before maturity) the more important these additional channels are. Thus whilst long bonds may

provide fiscal insurance they also may induce additional tax volatility lessening their attractiveness

and suggesting a role for short term debt - an issue we examine in Faraglia, Marcet, Oikonomou and

Scott (2014b)- and for callable bonds. Further not only is the attractiveness of long bonds offset

by this additional tax volatility but we find cases where long bonds are incapable of completing the

market even under certainty.

We have also considered the nature of commitment that the government faces under optimal

debt management. In the standard Ramsey institutional set up we have shown that the role of

commitment for optimal policy under incomplete markets is a repeated attempt at lowering current

interest rates by promising future tax cuts, depending on the current shock. It is this feature that

makes modelling long bonds so computationally demanding and which motivates us to suggest an

alternative institutional set up (independent powers) that is relatively easy to solve and that displays

clearly the relevance of commitment. This modelling approach has applicability in a wider class of

models than public finance.

We show our insights both through analytical examples and simulations. Our analytic examples

provide insight and intuition to the mechanisms at work with long bonds and these are borne out in

our simulations. With no-buyback, taxes and outcomes are more volatile than with buyback or short

bonds, coupon payments help reduce this volatility. However many of our analytic examples have

a form that emphasizes different factors from our business cycle focused simulations. In the face of

one off large shocks (such as wars or financial crises) some of the complexities of long bonds that

we highlight become very important. For instance, the impossibility result (that long bonds may

not complete the market) requires an uneven debt structure before the current period, an outcome

that is unlikely to occur in our simulations of business cycles with highly persistent shocks but that

happens naturally after a few very large deficits, such as caused by wars or deep recessions. This

suggests that having some flexibility with buyback is important after these events. This provides

some grounds for the use of short bonds and/or callable bonds, an issue that we leave for future

research.

The existing literature has taken a normative approach to debt management. It has assumed

a certain structure for bonds and shown how under this structure long bonds excel in providing

fiscal insurance and are key to optimal debt management. We examine different structures for long

bonds and show that the ability to achieve fiscal insurance through long bonds is both reduced and

offset by additional tax volatility making long bonds less attractive. An obvious response is to argue

that governments should not engage in no-buyback. If governments simply repurchased all existing

bonds regardless of maturity every period then the fiscal insurance benefits of long bonds would

stand unalloyed. Whilst debt managers give many reasons why they do not repurchase every period

and a few moments introspection can lead to many plausible theoretical candidates as to why they
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might not, it is indeed an important lacunae in our understanding of debt management as to why

governments repurchase only occasionally.

However until we have a better understanding of the reasons why debt managers don’t repurchase

and whether or not it is optimal to do so we are wary of restricting assumptions about long bonds to

the case of zero coupon and repurchase. Inevitably incomplete market models of debt management

have to assume some market imperfections exogenously. Most of the existing literature for instance

has assumed that bonds are simply risk free or that the government can issue bonds of only one

period and that period coincides with the frequency of government shocks. Similarly assuming that

the government buys back each and every bond every period is not grounded in any optimality and

neither is our opposite extreme assumption that governments never buyback until maturity. Our

assumption does however have the merit of being the closest to what we observe in practice and

the fact that we show it matters for the optimality of long bonds in debt management suggests the

analysis of maturity in government bonds is more complex than just the standard fiscal insurance

channel.

36



References

[1] Aiyagari, R., A. Marcet, T.J. Sargent and J. Seppälä. (2002) “Optimal Taxation without State-
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Table 5: Wars and Taxes
Horizon Buyback No Buyback

Coupon=0 Coupon at par
20 mean 0.283 0.305 0.300

std 0.025 0.101 0.077
40 mean 0.278 0.281 0.279

std 0.028 0.078 0.062
60 mean 0.273 0.274 0.272

std 0.031 0.068 0.056

Notes: Tax mean and standard deviation at different horizons after the war for different types of
long bonds.
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Figure 1: Impulse Responses under Zero Initial Debt: Buyback Model
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The starting value of debt is zero.
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Figure 2: Impulse Responses under Positive Initial Debt: Buyback Model
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The initial debt level is 50
par
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Figure 3: Impulse Responses of Taxes: Buyback Model
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Notes: The Figure plots the impulse response of taxes to a spending shock. The top panels
show the commitment model under buyback with zero (left) and positive (right) debt levels.
The solid line shows the response of the tax schedule when the maturity is N = 5. The dashed
line corresponds to N = 10 and the crossed and dashed-dotted lines to N = 15 and N =
20 respectively. The bottom panels in the figure show the analogous responses in the case of
independent powers.
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Figure 4: Impulse Response of Taxes: Commitment Models
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Notes: The Figure plots the impulse response of taxes to a spending shock. The solid line is the
response under the assumption that debt is bought back in every period, the dashed line shows
the case of no buyback and zero coupons. Finally, the crossed line shows the case of non zero
coupon bonds.
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Figure 5: Responses under Zero Initial Debt: No-Buyback Model with Coupons
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The starting value of debt is zero.
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Figure 6: Impulse Responses of Taxes: Buyback Model

0 5 10 15 20
0.02

0.025

0.03

0.035

0.04

0.045

0.05

Period

T
ax

 

0 5 10 15 20
0.02

0.025

0.03

0.035

0.04

0.045

0.05

Period

T
ax

 

0 5 10 15 20
0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20
0.02

0.025

0.03

0.035

0.04

0.045

0.05

N=5

N=10

N=15

N=20

Notes: The Figure plots the impulse response of taxes to a spending shock. The top panels
show the commitment model under decaying coupons with zero (left) and positive (right) debt
levels. The solid line shows the response of the tax schedule when the maturity is N = 5. The
dashed line corresponds to N = 10 and the crossed and dashed-dotted lines to N = 15 and
N = 20 respectively. The bottom panels in the figure show the analogous responses in the case
of independent powers.
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A Derivations- No Commitment Models

A.1 Independent Powers - Constant Coupons and no-buyback

Consider the first model of Section 3. In the no-commitment case (independent powers) we have the

following Lagrangian:

L = E0

∑
βt
{
u(ct) + v(T − ct − gt) + λt [bNt q

N
t uc,t −bNt−Nuc,t − κ

N∑
j=1

bNt−juc,t + St)

]
+ v1,t(M̃N − bNt ) + vN2,t(b

N
t − M̃N)}

and taking first order conditions we have:

uc,t − vx,t + λt(ucc,tct + uc,t + vxx,t(ct + gt)− vx,t − ucc,tλt[bNt qNt − κ
N∑
j=1

bNt−j − bNt−N ] = 0

which through substitution of the budget constraint gives:

uc,t − vx,t + λt(ucc,tct + uc,t + vxx,t(ct + gt)− vx,t − ucc,tλt[gt − (1− vx,t
uc,t

)(ct + gt)] = 0.

Moreover, off corners the analogous condition bNt is:

λtEt(κ
N∑
j=1

βjuc,t+j + βNuc,t+N) = Et(κ
N∑
j=1

βjuc,t+jλt+j + βNuc,t+Nλt+N).

We utilize the above first order conditions to solve the optimal no-commitment model. Notice

that in order to solve this model we have to apply the “Condensed PEA” methodology of FMOS

(2014 b). The state vector for this model includes gt bN,t−j, j = 1, 2, . . . , N . This gives N + 1 state

variables.
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B Appendix: Decaying Coupon Perpetuities

In order to overcome the problem of dimensionality some authors model long bonds as perpetuities

with decaying coupon payments where the rates of decay mimic differences in maturity (e.g Woodford

(2001), Broner, Lorenzoni and Schmulker (2013), Arellano and Ramanarayanan (2008), Chen, Curdia

and Ferrero (2012)). Our independent powers model can be considered as an alternative means of

achieving the same computational parsimony.

In this case governments issues perpetuities, b, with coupon payments that decay geometrically

i.e. a bond with decay factor δL pays a coupon equal to δjLbj in period j. The decay rate determines

effective bond maturity as duration is defined by 1/(1− δL) so that a bond of effective maturity 10

years has δL = 0.1. In this case total payments from all previously and currently issued perpetuities

are then given by Bt = bt + δLbt−1 + δ2Lbt−2 + . . . + δtLb0 which follows the recursive structure Bt =

δLBt−1 + bt. Treating this as the outstanding stock of the perpetuity we have a convenient way of

dealing with long maturity bonds which dramatically reduces the state space as it is only necessary

to keep track of the total number of bonds issued and not the number of bonds issued in each period.

This reduction in the state space means that the “Condensed PEA” is no longer required and the

model can be solved using more conventional methods.

Whilst assuming decaying coupon payments has great computational merit it is not without

modelling consequences. One justification for assuming decaying payoffs is that it mimics a bond

portfolio with fixed shares that decay with maturity. This however does not seem to comply with

the empirical evidence of US debt management whereby shares of long and short bonds are indeed

time varying, though highly persistent and dont decline with maturity (see Section 2 in FMOS (2014

b)). Further, modelling bond payoffs in this way is contrary to the structure of most government

portfolios where the majority of the payoff occurs at the time of maturity, as we have modelled in

this paper, whereas with decaying coupons the majority of cash flow is paid out in the early years.

Moreover if our goal is to build a model of debt management where the object is precisely to study the

appropriate portfolio weights, assuming fixed portfolio weights would seem inappropriate. However

this approach has been used in the literature and does offer substantial computational efficiency so

it is worth comparing it with our own approaches.

Under perpetual bonds the government budget constraint becomes:

Bt−1 = St/uc,t + pt (Bt − δLBt−1)

where Bt − δLBt−1 = bt is the amount of bonds that the government issues in period t and Bt−1 is

the amount of coupons and maturing bonds that the government has to repay in the same period.
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The Ramsey problem then becomes:

max
{ct,Bt,pt}

E0

∞∑
t=0

βt {u (ct) + v (xt)}

Bt−1 = St/uc,t + pt (Bt − δLBt−1)

pt =
βEt (uc,t+1 (1 + δLpt+1))

uc,t
δ

1− δβ
bN,t ∈

[
M, M

]
.

The price of the bond can be rewritten as pt =
βEt(

∑∞
j=0(βδL)

j−1uc,t+j)
uc,t

, that shows that it is a

function of all the future marginal utilities since the bond will pay an income for the rest of the time.

B.1 The Ramsey Program

We can rewrite the Lagrangian of the problem as:

L = E0

∞∑
t=0

βt {u (ct) + v (xt) + λt [St + uc,tpt (Bt − δLBt−1)− uc,tBt−1]

+uc,t (µtpt − βµt−1 (1 + δLpt))}

dropping the debt limits for brevity.

The first order conditions of the decaying coupon model are as follows:

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t)

+ucc,t [λtpt (Bt − δLBt−1)− λtBt−1 + µtpt − µt−1 (1 + δLpt)] = 0 (69)

λtuc,tpt = βEt (λt+1uc,t+1 (1 + δLpt+1)) (70)

µt = δLµt−1 − λt (Bt − δLBt−1) . (71)

A new state variable, µt, emerges and the state space becomes {gt, µt−1, Bt−1}. Using (71) µt

may be expressed as:

µt = −
∞∑
j=0

δjLλt−j (Bt−j − δLBt−1−j) (72)

where µt is a function of all the past government promises, λ’s. Equation (72) can be substituted in

(69)

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t)

−ucc,t

[
Bt−1λt −

∞∑
j=0

δjLλt−j−1 (Bt−j−1 − δLBt−2−j)

]
= 0
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which can be further rearranged into:

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t)− ucc,t

[
∞∑
j=0

δjL(λt−j − λt−j−1)Bt−j−1

]
= 0 (73)

According to (73) we have: Dt =
∑∞

j=0 δ
j
L(λt−j − λt−j−1)Bt−j−1. This implies that interest rate

twisting now concerns the entire history j = 0, 1, 2, . . . of issuances weighted by δjL, since bonds

payout coupons forever.

This result can be further simplified if we follow the same steps taken in Section 2. We can write

the implementability constraint as:

Et

∞∑
j=0

βjSt+j = Bt−1Et

∞∑
j=0

(δLβ)j uc,t+j =

(
t∑
i=1

δi−1L bt−i

)
Et

∞∑
j=0

(δLβ)j uc,t+j.

If we assume no uncertainty this becomes:

∞∑
j=0

βjSt+j =

(
t∑
i=1

δi−1L bt−i

)
∞∑
j=0

(δLβ)j uc,t+j.

It becomes clear that the government has an incentive to affect the interest rates and consequently

the taxes on an infinite horizon with decaying weights.25 On the other hand under independent powers

these terms have no direct influence on fiscal policy.

B.2 Independent Powers - Decaying Coupons and no-buyback

Consider now the second model of Section 3, the decaying coupon model. Under no-commitment we

have:

L = E0

∞∑
t=0

βt {u (ct) + v (xt) + λt [St + uc,tpt (Bt − δLBt−1)− uc,tBt−1]}

therefore, the planner is assumed to not control bond prices pt and we have dropped for brevity the

debt limits.

The first order conditions are as follows:

uc,t − vx,t + λt (ucc,tct + uc,t + vxx,t (ct + gt)− vx,t) + ucc,t [λtpt (Bt − δLBt−1)− λtBt−1] = 0

and

λtuc,tpt = βEt (λt+1uc,t+1 (1 + δLpt+1)) .

The appropriate state variables for this model are obviously Bt−1, gt.

25This is exactly the same as the case of a model with no buyback. The budget constraint there becomes:

∞∑
j=0

βjSt+j =

N∑
i=0

pN−i,tbN,t−i.
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B.3 Simulation Results

We now consider the properties of the numerical solution to the decaying coupon model. In Figures

7 , 8 and 9 we plot the responses of taxes and other key model variables in the case of decaying

coupons under both commitment and independent powers.

[Figures 7 , 8 and 9 About Here]

Following a spending shock tax rates are now much smoother than the ones generated by the

constant coupons and no-buyback model analysed in the text, even though the assumption of no-

buyback is maintained. This smoothness (relative to the responses shown in figures 5 and 7) obviously

derives from the timing of payments which now is considerably different. Given this is an incomplete

markets setting the timing of cash flows is crucial and the decaying coupon bonds smooth the cash

flow. When the government issues b0 in t = 0 they have to pay b0 in t = 1 using taxes and new debt,

b0δL + b1 in t = 2 and b0δ
t
L + b1δ

t−1
L + . . .+ bt−1 in any generic t. This explains the mild hump shape

response we see in the figures.

Note that there are significant differences between the allocations generated by the full commit-

ment and the independent powers model, even when initial debt is zero (Figure 7). In the independent

powers model the government has no incentive by construction to engage in interest rate twisting.

The differences are due to the different set of state variables of each model. As we have seen earlier,

in the commitment model the state vector includes the entire history of the λs, in the independent

powers model taxes are a function of the inherited debt stock and the level of spending26. These

results persist also when initial debt is positive (Figure 8). The effects of interest rate twisting a

vaguely noticeable, the dominant force behind the tax response is the timing of payments. Figure 9

shows that these results survive when other maturities are considered.

[ Tables 8 and 9 About Here.]

Now considering the short and long horizon simulations, Table 9 shows that taxes are more

volatile under independent powers and the standard deviation increases with the horizon of the

simulations. In short samples when the two models generate a similar (negative) average market

value of debt, tax volatility of the independent power model is 50% higher than the one of the

commitment model. At longer horizons and under independent powers the government accumulates

a larger stock of precautionary savings. This brings the standard deviations of the tax rates closer

to the commitment model. Nonetheless only part of the gap is closed: taxes are 20% more volatile

in the independent power model.

B.4 Model Comparisons

We now compare the behaviour of the three models. We simulate all our models (buyback, decaying

coupon, no buy back with coupons) under full commitment and independent power models, with the

same 200 period shock sample and assuming b0 to be 60% of GDP (the average of government debt

in the US economy in the period 1955-2011).

26Notice that this reasoning helps explain the differences in taxes in the first period across the two models, since
these initial conditions influence one allocation but not the other.
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In Figure 10 we show tax rates under commitment in the top panel and independent powers in

the bottom one. The solid line represents the buyback model of Section 2, the dashed line shows

taxes under constant coupons and no-buyback and the dashed dotted line shows the case of the

decaying coupons model. In the case of commitment the tax schedules exhibit very similar behavior

mirroring our previous results that under full commitment tax smoothing is a key policy objective.

The variables which mainly influence taxes are the level of government spending and the level of

debt. However, in the independent power model tax rates exhibit dramatically different behaviors

due to the buyback assumption. The volatility of tax rates increases and the difference from the

commitment models is much greater under no-buyback.

In Figure 11 we show the behavior of the market value of debt expressed as a percentage of

GDP for the same shock sample that generated the tax rates. The evolution of the debt aggregate

confirms the previous results. In the case of full commitment the three debt levels in the top panel

track closely one another. But under no commitment the deviations are considerable. Under long

bonds, changes in the institutional set up can generate substantially different debt behaviour.

[ Figures 10 and 11 About Here.]
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Figure 7: Responses under Zero Initial Debt: Decaying Coupons
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The starting value of debt is zero.
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Figure 8: Responses under Positive Initial Debt: Decaying Coupons
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Notes: The Figure plots the impulse response of taxes (top- left panel), consumption (top-right
panel), deficit (bottom- left) and the market value of debt (bottom-right) to a one standard
deviation shock in government spending. The maturity of long debt is N = 10 years. The
quantities represented by the solid (blue) lines correspond to the optimal commitment allocation
and the quantities plotted with dashed (red) lines correspond to the independent power model.
The initial debt level is 50
par
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Figure 9: Impulse Responses of Taxes: Decaying Coupons
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Notes: The Figure plots the impulse response of taxes to a spending shock. The top panels
show the commitment model under decaying coupons with zero (left) and positive (right) debt
levels. The solid line shows the response of the tax schedule when the maturity is N = 5. The
dashed line corresponds to N = 10 and the crossed and dashed-dotted lines to N = 15 and
N = 20 respectively. The bottom panels in the figure show the analogous responses in the case
of independent powers.

57



Figure 10: Tax Simulations: Various Models
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Notes: The Figure plots a simulated path for tax rates. The top panel show the case of the
commitment model and the bottom panels the case of no commitment. We assume a starting
value of government debt equal to 60 per cent of steady state GDP.
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Figure 11: Market Value of Debt Simulations: Various Models
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Notes: The Figure plots a simulated path for the market value of debt. The top panel show the
case of the commitment model and the bottom panels the case of no commitment. We assume a
starting value of government debt equal to 60 per cent of steady state GDP.
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