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1 Introduction

Impulse Response (IR) functions are a key tool to summarize the dynamic effects of

structural shocks on economic time series. While Vector Autoregressions (VAR) have

been traditionally used to identify structural shocks and simultaneously recover the cor-

responding IRs, the rising popularity of the narrative identification approach popularized

the use of an alternative nonparametric IR estimation approach: the Local Projections

(LP) of Jordá (2005).1

In its basic formulation, the LP approach consists in running a sequence of predictive

regressions of a variable of interest on a structural shock for different prediction horizons.

The IR is then given by the sequence of regression coefficients of the structural shock.

Unlike VARs, the LP method does not impose any underlying dynamics on the variables

in the system. This confers a number of advantages: The technique is more robust to

misspecification, does not suffer from the curse of dimensionality inherent to VARs, and

can more easily accommodate nonlinearities.2 However, the nonparametric nature of the

LP method comes at an efficiency cost: LP is still expensively parametrized and the IR

estimator can be excessively noisy (Ramey, 2012, 2016).

In this work we introduce an IR estimation methodology called Smooth Local Pro-

jections (SLP) that aims at striking a balance between the VAR and LP approaches.

Intuitively, our approach aims at improving the efficiency of LP by imposing that impulse

responses are smooth functions of the forecast horizons. Specifically, we work within the

LP framework but with the additional assumption that the IR is a smooth function of

the prediction horizon. To carry out inference, we rely on a semi-parametric regression

technique called penalized B-splines regression (Eilers and Marx, 1996). Our approach

1The narrative identification approach was first proposed by Romer and Romer (1989). For recent uses
of the narrative identification approach, see Romer and Romer (2004) and Monnet (2014) for monetary
shocks, Romer and Romer (2010) for tax shocks, Ramey (2011) and Ramey and Zubairy (2014a) for
government spending shocks, Romer and Romer (2014) for shocks to government transfer payments and
Romer and Romer (2015) for financial market shocks.

2Auerbach and Gorodnichenko (2012), Ramey and Zubairy (2014b) and Jordá and Taylor (2016) use
non-linear LPs to estimate the extent of state dependence in the effect of shocks to government spending,
while Tenreyro and Thwaites (2016) and Santoro, Petrella, Pfajfar, and Gaffeo (2014) explore the extent
of state dependence in the effect of monetary shocks.
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consists in (i) approximating the sequence of LP coefficients using a linear combination of

B-splines basis functions and (ii) estimating the model using a shrinkage estimator that

penalizes non-smooth behavior of the LP coefficients. The penalized B-splines approach

has a number of highlights. First, SLP estimation boils down to a linear ridge regres-

sion that is straightforward to implement in practice. Second, by appropriately choosing

the penalty function of the ridge estimator, the LP coefficients can be shrunk towards a

polynomial of a given order (choosen by the user). This is attractive for macroeconomic

applications when prior knowledge on the shape of the IR is available.3 When the degree

of penalization imposed in the ridge regression is sufficiently large, SLP reduces to the Al-

mon (1965) distributed lag model, in which the impulse response function is parametrized

as a polynomial function.

The SLP approach can be used to recover structural IRs with a number of identification

schemes. In this work we show how to recover the causal impact of a structural shock

when the shock (i) is observed, (ii) is not observed but can be recovered through control

variables, or (iii) is not observed and it can be recovered through instrumental variables.

Three applications of SLP are of particular interest for macro-economists. First, we show

that the popular recursive identification scheme found in many structural VARs is a

particular case of (ii), so that the structural IR can be obtained directly from a (S)LP,

provided that the right set of control variables is included. Second, we show that the

increasingly popular proxy-SVAR (Stock and Watson, 2008; Mertens and Ravn, 2013)

can be seen as a particular case of (iii) and can therefore be easily implemented in the

(S)LP framework.4 Last, we show how the SLP approach can be used to estimate certain

classes of nonlinear IRs, and in particular, we show how to identify and estimate state

dependent IRs, which have recently been of great interest to macro-economists. While

most studies have relied on regime-switching models, which are expensively parametrized

3For instance, the impulse response functions to shocks is often theoretically predicted to be monotonic
or hump-shaped (e.g. Christiano, Eichenbaum, and Evans, 1999; Walsh, 2010) in the context of monetary
policy), and in such case, one may want to shrink the estimated IR towards a second-order polynomial.

4In other words, while researchers have relied on VARs to implement identification schemes based on
a Cholesky ordering or an external instrument, we show that it is possible to bypass the VAR entirely
and thus reduce the risk of model mis-specification.
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and can be computationally intensive, SLP offers a flexible semi-parametric alternative

that is straightforward to implement.

A simulation study is used to illustrate the performance of SLP for IR estimation. We

consider two DGP settings labeled as “rough” and “smooth”. In the rough setting IRs can

change abruptly across horizons whereas in the smooth case IRs change smoothly. We find

that SLP delivers substantial improvements over LP for both DGPs, with especially large

gains in the smooth setting. SLP performs better even when the DGP is rough, because

LP is so expensively parametrized that shrinkage estimation can produce substantial gains

even when the IR is not smooth.

We illustrate our methodology by studying the effects of monetary shocks on GDP

growth and inflation. We use two different identification strategies: (i) timing restrictions

and (ii) instrumental variables using the Romer and Romer (2004) narrative shocks as

an instrument. We use two identification schemes in order to highlight the benefit of

being able to implement different identification schemes using the same methodology,

something that was not possible before and that could create some degree of confusion

when comparing studies.5 We find that a contractionary shock lowers GDP growth and

inflation by similar magnitudes across the two identification methods. Our results also

highlights that while LP-based IRs can be erratic, SLP-based IRs are less noisy and thus

much easier to interpret. We then explore the state-dependent effects of monetary policy,

and find again that SLP delivers a clear message: the effect of a contractionary shock on

GDP growth is substantially larger in recessions, i.e., when growth is weak. The response

of inflation is also weaker in recessions (the price puzzle is larger), which is consistent,

at least qualitatively, with a Keynesian narrative: monetary policy will have a stronger

impact on real quantities if prices react less.

Our paper is related to different strands of the literature. First, it contributes to a

rapidly growing macroeconomic literature that relies on LPs to estimate structural impulse

5As studied in Coibion, Gorodnichenko, and Silvia (2012), this problem was particularly salient in
the monetary policy literature. The range of estimates was wide across identification schemes, but the
source of the discrepancy was unclear, because the different identification schemes were implemented
using different methods. By being able to implement two different identifying schemes using the same
methodology, LP provides a framework that enables a easier comparison across identification schemes.
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responses. Influential contributions in this literature includes the work of Auerbach and

Gorodnichenko (2012), Jordá and Taylor (2016) and Ramey (2016). In terms of methodol-

ogy, our approach relates to the recent Gaussian Mixture Approximation (GMA) method

of Barnichon and Matthes (2016) which consists in approximating IRs with a small number

of Gaussian basis functions. While the GMA is a non-linear model, SLP has the advantage

of being linear, which preserves the ease of estimation and flexibility of the original LP.

Finally, our approach can be cast in the broader literature on semi-parametric and sieve

estimation in statistics and econometrics. Among others, White (2006), Chen (2007),

Hastie and Friedman (2009) and Hansen (2014) contain general surveys in this area.

The rest of the paper is structured as follows. Section 2 introduces SLP methodology.

Section 3 contains the simulation study. Section 4 contains the empirical application.

Concluding remarks follow in Section 5.

2 Methodology

2.1 Smooth Local Projections

Let yt, xt and wi t for i from 1 to p be stationary time series observed from t = 1 to

T . Note that the set of variables wi t may include lagged values of yt and xt. We are

interested in the estimation of the dynamic multiplier of yt+h with respect to a change in

xt for h ranging from 0 to H, keeping all other variables constant. There are two main

approaches to recover the dynamic multiplier.

In the first approach, the multiplier is obtained from the regression coefficient β(h) of

the following set of h-step ahead predictive regressions

yt+h = α(h) + β(h)xt +

p∑
i=1

γi (h)wi t + u(h) t+h, (1)

where u(h) t+h is a prediction error term with Var(u(h) t+h) = σ2
(h). The set of regressions in

(1) is named Local Projections (LP) by Jordá (2005) and it may be estimated by running

H + 1 separate linear regressions. In analogy to the forecasting literature we label this
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approach “direct”, as it obtains the multiplier of interest by specifying a regression model

for the dependent variable at the horizon of interest (see Marcellino, Stock, and Watson,

2006).

The alternative approach that can be used to recover the multiplier of yt+h on xt con-

sists in specifying a dynamic model for the variables in system. In empirical applications

this is typically carried out by assuming that the system evolves according to a VAR. For

example, let yt and xt be generated by a zero-mean bivariate stable VAR

yt
xt

 = A

yt−1

xt−1

+ ut,

where A is a 2× 2 matrix and ut is an innovation term. Then, by recursive substitution

we have that yt+h
xt+h

 = Ah

yt
xt

+ u(h) t+h,

where u(h) t+h is the h-step ahead innovation. Thus, the dynamic multiplier of yt+h with

respect to xt keeping yt constant is the (1,2) element of the matrix [Ah]. In analogy to

the forecasting literature we label this approach “iterated”, as one obtains the multiplier

of interest by iterating the dynamic system forward.

The direct and iterated IR estimation approaches have opposite strengths and weak-

nesses. The iterated method produces efficient parameter estimates if the model is cor-

rectly specified but is prone to misspecification. On the contrary, the direct method is

robust to misspecification but it delivers nosier estimates of the multiplier if the true DGP

is approximated sufficiently well by a dynamic model like a VAR.

In this work we propose a methodology that attempts to strike a balance between LP

and VARs. We work within the LP framework under the additional assumption that the

coefficients in (1) are a smooth function of the forecast horizon. Such an assumption can

be justified from the fact that most dynamic models, whether statistical models (e.g., VAR

model) or models grounded in economic theory (e.g., DGSE models), produce multipliers

that are indeed smooth function of the forecast horizon.
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In order to carry out inference on the model in (1) under our smoothness assumption

we resort to semi-parametric estimation methods, and specifically penalized B-splines.

Penalized B-splines smoothing was popularized in statistics by Eilers and Marx (1996),

and it consists in (i) approximating the unknown function of interest using a linear com-

bination of B-splines basis functions and (ii) estimating the parameters of this linear

combination via shrinkage. As we illustrate in this section, penalized B-splines can be

particularly attractive in our context.

2.1.1 Semi-parametric Modeling using B-splines

We begin by approximating the coefficient β(h) using a linear B-splines basis function

expansion in the forecast horizon h, that is

β(h) ≈
K∑
k=1

bkBk(h), (2)

where Bk : R→ R for k = 1, ..., K is a set of B-spline basis functions and bk for k = 1, ..., K

is a set of scalar parameters. We proceed analogously with the other coefficients α(h) and

γi (h), so that the LP of (1) can be approximated as

yt+h ≈
K∑
k=1

akBk(h) +
K∑
k=1

bkBk(h)xt +

p∑
i=1

K∑
k=1

ci kBk(h)wi t + u(h) t+h. (3)

The top panel of Figure 1 shows the set of B-splines basis functions used throughout

this work. B-splines are a basis of humped shaped functions indexed by a set of knots. A

B-spline basis function is made up of q + 1 polynomial pieces of order q. The polynomial

pieces join on a set of q + 2 inner knots and are calibrated in a way such that derivatives

up to the order q − 1 are continuous at the inner knots. Moreover, the B-splines basis

function is nonzero over the domain spanned by the q+ 2 inner knots and zero elsewhere.

The left-most inner knot is used to index the B-spline basis function and the order of

the polynomial pieces determines the order of the B-spline basis (i.e. if the polynomial

pieces are order q the B-spline basis is said to be of order q). For illustration purposes,
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the bottom panel of Figure 1 shows the B-splines basis of knot 6 together with the inner

knots used to construct this function. In this work we will use a cubic B-splines basis

with equidistant knots ranging from −2 to H − 1 with unitary increments.6 Eilers and

Marx (1996) contains code for computing the B-spline basis in MATLAB and R.

A few comments are in order. First, B-splines have good approximation properties, are

simple to compute and lead to a well conditioned regression model (unlike, for instance,

classic splines). Second, as it is customary in the smoothing literature, we use a relatively

large number of terms in the linear basis expansion in (2) to ensure that any sufficiently

smooth function can be approximated with adequate accuracy. For notation simplicity

we are using the same set of basis functions and number of knots for all variables but

it is straightforward to generalize this if needed. Last, while here we are interested in

smoothing all the coefficients of (1), one can choose to smooth only a subset of the

coefficients by appropriately adjusting (3).

An appealing feature of the projection in (3) is that it retains linearity with respect to

the parameters, so that standard linear regression methods can be applied for estimation

(see e.g. White, 2006). To this extent, it is convenient to introduce the matrix represen-

tation of the approximated model (3). Denote by θ the vector of B-splines parameters

(a1, ..., ak, b1, ...bk, c11, ..., c1k, ..., cp1, cpk)
′. Let Y be a

(
T (H + 1)− H(H+1)

2

)
×1 vector with

the (1+(t−1)(H+1)+h) entry defined as yt+h for each t = 1, ..., T and h = 0, ..., H. Let Xβ

be a
(
T (H + 1)− H(H+1)

2

)
×K matrix with the (1+(t−1)(H+1)+h, k) element defined

as Bk(h)xt for each t = 1, ..., T , h = 0, ..., H and k = 1, ..., K. Let Xα, Xγi for i = 1, ..., p

be defined analogously to Xβ. Last, let X be the
(
T (H + 1)− H(H+1)

2

)
×K(2+P ) matrix

obtained by stacking horizontally the matrices Xα, Xβ and Xγi i = 1, ...p, that is

X =
[
Xα Xβ Xγ1 ... Xγp

]
.

Then, (3) can be compactly be represented as a linear model

Y = X θ + U , (4)

6See Boor (1978) for a textbook presentation of B-splines and Eilers and Marx (1996) for a concise
summary on their properties.
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where U denotes the vector prediction error term of the regression.

2.1.2 Penalized Estimation

The model of Equation (4) is typically expensively parameterized, and the least squares

estimator may suffer from excessive variability. To address this issue, it is common practice

in the smoothing literature to resort to shrinkage estimation. In particular in this work we

resort to generalized ridge estimation, that is we estimate θ by minimizing the penalized

residual sum of squares given by

θ̂ = arg min
θ

(Y − X θ)′(Y − X θ) + λθ′Pθ,

= (X ′X + λP)−1X ′Y (5)

where λ is a positive shrinkage parameter determining the amount of shrinkage and P is

a symmetric positive semi-definite penalty matrix. The shrinkage coefficient λ determines

the bias/variance tradeoff of the estimator: When λ is zero the estimator coincides with

the least square estimator (zero bias but potentially large variance) whereas when λ is

large the estimator is biased but has smaller variance than the least squares estimator.

The behaviour of the generalized ridge estimator also depends on the choice of the penalty

matrix P. For example, if P is the identity matrix large values of λ shrink the B-spline

parameter estimates towards zero.

A few comments on the practical implementation of the estimator are in order. First,

to implement the estimator one has to chose the shrinkage parameter λ in (5). There is

a large number of data-driven criteria for the choice of the shrinking parameter and here

we resort to k-fold cross validation (see also Racine, 1997). Second, the dimensionality

of the parameter θ can be large in empirical applications. However, an appealing feature

of the penalized B-splines framework used in this work is that the matrices X ′X and P

are band matrices, making the computation of the estimator numerically straightforward

using appropriate algorithms designed for these type of matrices.

One of the highlights of the B-splines framework is that generalized ridge regression can
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be used with a family of penalty matrices P that allows to shrink the estimated dynamic

multiplier towards a polynomial of a given order. To illustrate this feature, we consider for

simplicity a constrained version of the model in (1) in which no intercept and no control

variables are present and the only parameter that has to be estimated is the dynamic

multiplier β(h). As it is well known in the B-splines smoothing literature (Eilers and

Marx, 1996), the derivatives of order r of the approximated multiplier
∑K

k=1 bkBk(h) with

respect to the horizon h can be expressed as a linear combination of the finite differences

of order r of adjacent B-splines coefficients bk. This makes it possible to control for the

degree of smoothness of the multiplier by appropriately constraining the finite differences

of adjacent B-splines coefficients. In particular this motivates to estimate the model using

the penalty function

λ
K∑

k=r+1

(∆rbk)
2 , (6)

where ∆r denotes the difference operator of order r. A large value of λ in (6) leads to

shrinking the finite order differences of order r to zero, and thus the derivative of order

r to zero. This in turns shrinks the estimated dynamic multiplier to a polynomial of

order r − 1. The attractive feature of the penalty in (6) is that it can be used within the

generalized ridge regression framework. Let Dr denote the matrix representation of the

r-th difference operator ∆r.7Then the penalty can be expressed as

λ

K∑
k=r+1

(∆rbk)
2 = λ(Drb)

′(Drb) = λb′D′rDrb ,

so that the penalty in (6) can be imposed in the estimator defined in (5) by simply

setting P = D′rDr. It is straightforward to generalize this estimation strategy for

all coefficients the model in (3). In order to shrink the B-splines approximation of

7For instance, with r = 2, we have

D2 =


1 −2 1 0 ...
0 1 −2 1 0 ...
... 0 1 −2 1 0 ...

... 0 1 −2 1 0
... 0 1 −2 1

 .
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all the α(h), β(h), ..., γp (h) coefficients to, respectively, polynomials of order r1 − 1, r2 −

1, .., r2+p − 1 the penalty matrix P may be set to a block diagonal matrix with matrices

D′r1Dr1 ,D
′
r2

Dr2 , ...,D
′
r2+p

Dr2+p on the diagonal.

It is important to emphasize that one can easily construct penalty matrices that allow

for further shape restrictions. Here we just mention one extension of interest in our

context. Consider again the restricted version of model (1) comprising of the xt term

only. It may be reasonable in some applications to assume that the dynamic multiplier

β(h) vanishes at a large enough horizon, for instance because there are economic reasons

to believe that the effect of the shock dies out at long horizons. To this extent one may

want to shrink the multiplier towards a r − 1 degree polynomial constrained to be zero

at, say, horizon H. It is straightforward to check that one can set such a shrinking target

by setting P to

P =

 Dr

e′K


′  Dr

e′K

 ,

where eK is a K × 1 vector with a one in position K and zero otherwise.

Last, we discuss how to construct confidence bands for the dynamic multipliers of

the SLP. Confidence bands for flexible models like the one considered in this work can

be challenging to construct (Härdle, 1990). Moreover, as Chen (2007) points out, the

asymptotic distribution theory for semi-parametric estimators needed to construct such

intervals has only been partially developed in the literature so far (see also Andrews, 1991;

Huang, 2003). Here, we construct confidence intervals using the following approach. The

dynamic multipliers in (3) are a linear combination of the elements of θ, which makes the

computation of their standard errors straightforward given an estimate of the variance of

θ̂. As in Jordá (2005), we use HAC methods to estimate the variance covariance matrix of

the θ̂ estimator. One of the challenges in constructing the confidence intervals lies in the

fact that the ridge estimator is biased which in turns delivers a biased estimator of the

multiplier. To this extent, the confidence interval of the estimated dynamic multipliers

are based on an undersmoothed estimate of θ to reduce the extent of the bias.
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2.2 Estimating Structural Impulse Responses

One of the main goals of macroeconomic analysis is carrying out inference on the dynamic

effects of structural shocks. In this section we consider yt as an endogenous variable in

a macroeconomic system of interest and we are concerned with the estimation of its re-

sponse to a structural shock εt. We follow the definition of Ramey (2016) and define a

structural shock εt as a variable (i) which is exogenous with respect to the other cur-

rent lagged endogenous variables in the system, (ii) is uncorrelated with other exogenous

shocks and (iii) represents either unanticipated movements in exogenous variables or news

about future movements in exogenous variables (see also Blanchard and Watson (1986),

Bernanke (1986) and Stock and Watson (2016)). The structural IR of yt to a structural

shock εt is then defined as8

IR(h, δ) = E(yt+h|εt = δ)− E(yt+h|εt = 0), h = 0, ..., H .

In this section, we show how LP may be used to recover structural IRs when the structural

shock (i) is observed, (ii) is not observed and it can be recovered through control variables,

or (iii) is not observed and it can be recovered through instrumental variables.

2.2.1 Observed Structural Shock

If the structural shock εt is observed then the IR(h, δ) can be obtained from the LP of yt

on εt (without having to include any additional regressors), that is

yt+h = α(h) + β(h)εt + u(h) t+h .

The coefficient β(h) captures the causal effect of the structural shock εt and the IR is given

by IR(h, δ) = β(h)δ, which can readily be estimated as ÎR(h, δ) = β̂(h)δ. This approach has

recently been used by Auerbach and Gorodnichenko (2012) and Tenreyro and Thwaites

(2016) using the narratively identified monetary shock of Romer and Romer (2004). Notice

8Note that our definition is closely related to the “Mean of generalized impulse response function
conditional on shock” defined in Koop, Pesaran, and Potter (1996).
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that additional regressors may be included to “mop up” the residual variance of the

regression and obtain more precise estimates (Ramey, 2016).

2.2.2 Identification through Controls

Unfortunately, structural shocks are seldom observable. However, it is sometimes possible

to recover structural shocks as the innovation of an endogenous variable in the system

conditional on an appropriate set of controls. Specifically, in some cases, the structural

shock εt is given by the residual of the endogenous variable xt conditional on a set of

control variables, namely

εt = xt − E(xt|w1 t, ..., wp t) , (7)

and that this conditional expectation is linear in wi t for i = 1, ...p. Then, the β(h)

coefficient of the LP of yt+h on xt and wi t for i = 1, ..., p in equation (1) captures the

effect of the structural shock εt (see also Angrist, Jordá, and Kuersteiner, 2016; Jordá

and Taylor, 2016).

The recursive identification scheme put forward in Sims (1980) may be seen as special

case of such an approach. Sims (1980) proposes timing assumptions among the exogenous

shocks in a VAR to disentangle the causal chain of events and identify structural shocks

of interest. In the LP setting, the timing restrictions correspond to a specific choice of

control variables. We illustrate this with an example below, and we provide a formal

proof in the appendix.

Consider a system comprising output gdpt inflation πt and the fed funds rates ffrt.

The objective is to estimate the IR of output to a monetary shock to the fed funds rate.

Assuming that the system evolves according to a VAR of order 1 and that the monetary

shocks do not affect the other variables on impact, one can recover the IR of output

from the LP by setting yt+h = gdpt+h, xt = ffrt and w′t = (gdpt, πt, gdpt−1, πt−1,ffrt−1)′.

Intuitively, we achieve identification by controlling for the contemporaneous values of

variables ordered before the shock of interest (in this case, output and inflation).

Importantly, note that the LP approach allows to use recursive identification beyond
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linear VAR to nonlinear DGPs provided that the set of variables is appropriately aug-

mented. For instance, the set may possibly have to include nonlinear transformation of

the variables in the system.

2.2.3 Identification through Instruments

Even when condition (7) fails, it may still be possible to recover the structural shock of

interest if an appropriate instrumental variable is available. For instance, when the set of

control variables does not allow to identify the structural shock of interest, we may have

that

εt + et = xt − E(xt|w1 t, ..., wp t) ,

where et is a serially uncorrelated measurement error.

In these cases an instrument can allow to recover the effect of interest. Specifically,

we define an instrument zt to be a time-series satisfying

corr(εt, zt) 6= 0 and corr(et, zt) = 0, (8)

in other words zt is assumed to be relevant and exogenous. Then, we can recover the IR

of yt to a structural shock εt from (S)LP (1) using zt as an instrument.

To illustrate our instrumental approach, we use our previous monetary example and

consider the series of monetary shocks narratively identified by Romer and Romer (2004).

The example of Section 2.2.1, assumed the Romer and Romer (2004) shock series to

be a perfect measurement of the true monetary shock. A more reasonable assumption

however may be to posit that the Romer and Romer (2004) shocks can only proxy for

the true monetary shocks, in that they are correlated with the true monetary shocks and

uncorrelated with other structural shocks. In that case, the Romer and Romer (2004)

shock series satisfies the instrumental variable conditions (8), and we can recover IR to

monetary shocks from (S)LP and two-stages least squares where ffrt is instrumented with

the Romer and Romer (2004) shocks series zt. Specifically, in the first stage, we regress

ffrt on zt and in the second stage, we estimate SLP with yt+h = gdpt+h, xt = ff̂rt where
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ff̂rt is the fitted value of the first stage regression. Then, the β(h) coefficient captures the

effect of a monetary shock on output. As previously discussed in Section 2.2.1 additional

regressors may be included to “mop up” the residual variance of the regression.

Our proposed instrumental approach parallels the “external” instruments approach pi-

oneered by Stock and Watson (2008) and Mertens and Ravn (2013) in the context of VAR

identification and referred to as “proxy SVAR” by Ramey (2016). Our proposed approach

allows to take advantage of all the appealing features of (S)LP within the instrumental

variable framework.

2.3 Estimating State-dependent Structural Impulse Responses

In this section, we discuss the identification and estimation of non-linear IRs with (S)LP,

and more specifically state-dependent IRs, which have recently been the subject of im-

portant interest in macroeconomics.9

A significant number of contributions focus on proposing methodologies to estimate

state-dependent IRs. These contributions typically rely on regime-switching models, in

which a state variable (observed or not) controls the dynamics of the economy (e.g., Hamil-

ton, 1989, Hubrich and Terasvirta, 2013). These model can be expensively parametrized

(allowing for only a small number of states) and computationally intensive to estimate.

(S)LP offer an alternative approach to estimate state-dependent IRs. To capture state-

dependence, we allow β(h) to depend linearly on the value of an observed state variable

st, that is

β(h) = β0 (h) + β1 (h)st .

Note how the state variable affects the IR in a continuous fashion. This is in contrast

to regime-switching models where there is a discrete (and small) number of states with a

separate IR for each state.

In what follows the β1 (h) coefficient capturing the amplification/contraction effect due

to the state variable st is called state multiplier. Note that in this case the model in (1)

9See e.g, Auerbach and Gorodnichenko (2012), Ramey and Zubairy (2014b), Jordá and Taylor (2016),
Tenreyro and Thwaites (2016) and Santoro et al. (2014)
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becomes

yt+h = α(h) +
(
β0 (h) + β1 (h)st

)
xt +

p∑
i=1

γi (h)wi t + u(h) t+h

= α(h) + β0 (h)xt + β1 (h)xtst +

p∑
i=1

γi (h)wi t + u(h) t+h

which can still be approximated using standard (S)LP. In particular, the model can be

estimated using the SLP methodology outlined in the previous sections.

Importantly, identification of the structural IRs proceeds similarly to the linear case.

We provide a formal proof in the appendix where we show how one can use LP to con-

sistently estimate (non-linear) structural IRs when the DGP is a vector moving-average

whose coefficients satisfy β(h) = β0,(h) + β1,(h)st. In this case, the set of controls wi t has

to include those of the linear case plus their interaction with the state variable.

To give a concrete application, consider our previous monetary example identified

with a recursive identifying scheme. We are interested in knowing whether monetary

policy has a larger effect on output during recessions. Taking our state variable in-

dicator st to be the level of GDP growth at the time of the shock, one can recover

the state-dependent IR of GDP from the LP by setting yt+h = gdpt+h, xt = ffrt and

w′t = (gdpt, πt, gdptst, πtst, {χt−k}
K
k=1 , {χt−kst−k}

K
k=1)′ where χt = (gdpt, πt,ffrt)

′.

3 Simulation Study

In this section we carry out a simulation study to illustrate our proposed methodology as

well as to benchmark the performance of IR estimation based on SLP against (regular)

LP and SVARs.

We consider a system comprising GDP growth gdpt, inflation πt and fed funds rate
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ffrt. The trivariate system (gdpt, πt,ffrt)
′ is generated as

gdpt =
H∑
h=0

β11 (h)ε
gdp
t−H+h +

H∑
h=1

β12 (h)ε
π
t−H+h +

H∑
h=1

β13 (h)ε
ffr
t−H+h

πt =
H∑
h=0

β21 (h)ε
gdp
t−H+h +

H∑
h=0

β22 (h)ε
π
t−H+h +

H∑
h=1

β23 (h)ε
ffr
t−H+h (9)

ffrt =
H∑
h=0

β31 (h)ε
gdp
t−H+h +

H∑
h=0

β32 (h)ε
π
t−H+h +

H∑
h=0

β33 (h)ε
ffr
t−H+h

where εgdp
t , επt and εffr

t are i.i.d. structural normal shocks with mean zero and variances

equal to, respectively, σ2
gdp, σ2

pi and σ2
ffr. The horizon parameter H is set to 20. Notice

that standard timing restrictions are imposed on the contemporaneous impact of the

shocks in the system. In particular, GDP growth shocks have a contemporaneous impact

on all series in the system, inflation shocks have a contemporaneous impact on inflation

and the fed funds rate, and the fed funds rate/monetary shocks have a contemporaneous

impact on the fed funds rate only. These restrictions allow to identify the full set of

structural impulse response functions in the system using standard methods (see Section

2.2). Throughout this section the focus is on the estimation of the IRs of gdpt and πt to

a monetary shock εffr
t from the model of Equation (9) up to horizon H = 20 using SLP,

LP and VARs.

INSERT FIGURE 2 ABOUT HERE

We consider two different parameter settings for the model of Equation 9 labelled as

rough and smooth. In order to entail realistic data dynamics, the DGPs considered in

this study are based on estimates obtained from a quarterly macro dataset comprising of

GDP growth, PCE inflation and the fed funds rate from from 1959-Q1 to 2007-Q4.10 In

the rough setting, the parameters of model (9) are obtained from the estimates of the nine

structural IRs obtained by LP from our reference macro dataset. Specifically, we identify

the IRs of the structural shocks in (9) through controls (see Section 2.2.2) by including in

10We exclude the latest recession as the fed funds rate was constrained at zero and no longer captured
variations in the stance of monetary policy.
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the LP regression the appropriate subset of contemporaneous series as well as four lags of

all variables in the system. For example, the IRs associated with inflation shocks επt are

identified by setting xt = πt and w′t = (gdpt, gdpt−1, πt−1,ffrt−1, . . . , gdpt−4, πt−4,ffrt−4)′.

In the smooth setting, we use the same parameters as in the rough one except that we

use smoothed versions of the dynamic multipliers of GDP growth and PCE inflation to

a fed funds rate shock. These smoothed multipliers are obtained by regressing the LP

estimates on a sine/cosine basis

β̂ij h = c1 sin

(
2π

H
h

)
+ c2 cos

(
2π

H
h

)
+ c3 sin

(
2π

H
2h

)
+ c4 cos

(
2π

H
2h

)
+ uh ,

for i = 1, 2 and j = 3 and then using the fitted values of the regression as the new set

of dynamic multipliers.11 Figure 2 plots the IRs of gdpt and πt used in respectively the

rough and the smooth settings. In the rough case IRs can exhibit abrupt changes across

horizons whereas in the smooth case IRs change smoothly across horizons.

We estimate the IRs of gdpt and πt to a monetary shock using SLP, LP, and a SVAR

using timing restrictions consistent with our DGP. For all three estimators we set the

number of lags to 4.

A number of details on the implementation of the SLP estimator used in this study are

in order. First, we only impose smoothness on the coefficients associated with the IR and

we do not smooth the coefficients of the control variables. It is important to emphasize

that this allows us to compare more easily the LP and SLP estimators but makes the

exercise more disadvantageous for our SLP methodology as further efficiency gains could

be attained by imposing smoothness on the remaining coefficients. As far as the choice

of the penalty matrix is concerned, here we opt for a näıve approach and shrink towards

a polynomial roughly consistent with the IR estimated by the standard LP. We shrink

towards a line for GDP growth and towards a quadratic polynomial for inflation, that

is, we penalize the SLP using a difference penalty of order r = 2 for GDP and r = 3

for inflation. Last, the shrinkage parameter λ is chosen by 5-fold cross-validation. For

11Note that we use a different smoothing method than P-splines in order to not bias our results in
favor of SLP.
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comparison purposes, we also report the estimation results of the Oracle SLP estimator,

that is the SLP estimator estimated using the shrinkage parameter λ that minimizes the

MSE of the IR estimator of the target IR of interest. The Oracle shrinkages level is

determined by simulation.

INSERT FIGURE 3 ABOUT HERE

3.1 Illustration

We use one simulation from the smooth DGP to illustrate some aspects of our SLP

methodology. In this example, the sample size of our simulated system is 200.

Figure 3 shows the IR estimates based on SLP (based on cross-validation), LP and

SVAR for the two IRs of interest. Note that despite the population IRs being smooth, the

LP delivers IR estimates that are quite rough, a well known feature of LP (e.g. Ramey,

2016). We can see that SLP essentially smooths the LP, and in this particular replication,

delivers a more precise estimate of the IRs. Last, the VAR IRs deviates substantially

from the true IR at medium/long horizon in both cases.

INSERT FIGURE 4 ABOUT HERE

Figure 4 shows how the SLP IR estimates change as a function of the shrinkage

parameter λ. When λ is small the SLP estimate is practically indistinguishable from the

regular LP estimate, but as λ increases the estimated IR becomes progressively smoother

and closer to the target polynomial implied by the choice of the penalty matrix. In other

words, SLP nests two important IR estimation methods: When the penalty parameter

is set to zero, SLP reduces to a (nonparametric) standard LP, and when the penalty

parameter is large, SLP reduces to a (parametric) Almon distributed lag model, in which

the IR is given by a polynomial function.

INSERT FIGURE 5 ABOUT HERE

The top two panels of Figure 5 show how the choice of the penalty matrix determines

the limiting behaviour of the SLP IR estimator. We consider different target polynomials
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with r ranging from 0 to 3, which correspond to the following target polynomials: A zero

function, a constant, a line and a parabola. To obtain the specific polynomial implied

by the data, we estimate SLPs using a large amount of shrinkage (λ = 106). The figure

shows that when λ is large the SLP estimator collapses to the best fitting polynomial of

order r − 1. As we increase the order of the polynomial, the target polynomial adjusts

and allows for richer shapes of the target IR. The bottom two panels of Figure 5 consider

a refined penalty matrix in which we impose that the target polynomial equals zero at

horizon 20 as explained in Section 2.1.2.

3.2 Simulation Results

We replicate our simulation exercise for the rough DGP and smooth DGP using a sample

size equal to 50, 100, 200, 300 and 400. The simulation is replicated 1000 times for

each setting and sample size. The performance of each IR estimator is measured by its

integrated MSE defined as

MSE = E

[
H∑
h=0

(ÎR(h, δ)− IR(h, δ))2

]
,

which is approximated using the Monte Carlo average across replications.

INSERT TABLE 1 AND FIGURE 6 ABOUT HERE

Table 1 reports the average MSE of VAR, LP, SLP and Oracle SLP. Results show

that SLP out-performs LP in both the rough and smooth setting. Although perhaps

surprising, the superior performance of SLP in the rough setting comes from the benefits

of shrinkage regression.12 The SLP and LP also perform better than the VAR approach

provided that the sample size is larger than 50 observations.

In order to inspect the simulation results more easily, in Figure 6 we plot the MSE of

each estimator as a function of sample size for the case of the smooth DGP. A number of

comments are in order.

12In other words, in these simulations, the estimation variance of LP is such an acute problem in short
samples that shrinkage delivers a lower MSE even if the underlying DGP is not smooth.
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First, we can see that SLP performs better than LP for all sample size, but also that

the improvement is largest for small samples. This result is to be expected, since SLP

precisely helps IR estimation by reducing the estimation variance through shrinkage. In

larger samples, estimation variability is less of a concern, and the advantage of SLP over

LP diminishes. However, for samples with T = 50 or 100, the large gains offered by

SLP are particularly promising, since such relatively sample sizes are often encountered

in macro applications.13

INSERT FIGURE 7 ABOUT HERE

Second, comparing SLP with the VAR, we can see that while SLP dominates in large

samples, the VAR delivers better performances in shorter samples (when T = 50). To

better understand this result, we decompose the total MSE of each IR estimator into the

contribution of the different horizons and in Figure 7 we plot E
[
(ÎR(h, δ)− IR(h, δ))2

]
.

The top panels plot the decomposition for a sample size of T = 50 and the bottom panels

for T = 400. Detailed inspection of the results reveals that the VAR IRs have a bias

which is particularly severe for both IRs from horizon 12 to 16 (especially in the case of

inflation). This is apparent in the figures where the VAR MSE exhibits noticables bumps

for both IRs. When the sample size is small, the parametric nature of VAR produces

better results relatiave to (S)LP despite its bias. On the other hand, when the sample is

large enough, the bias of the VAR leads to a significant performance deterioration with

respect to (S)LP.

Finally, comparing the performances of the Oracle SLP with the cross-validated SLP

we see that there are no large differences between using the optimal λ and selecting a

λ from cross-validation, hinting that, for the class of DGPs considered in this study,

cross-validation performs satisfactorily.

13This is often the case with non-US data. For instance, empirical work with eurozone data is limited
to about 15 years of data, that is 60 quarters.
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4 Empirical Application

In this section we use our proposed methodology to study the effects of monetary shocks,

which have been the subject of extensive research (see Ramey (2016) for a review). Here

we apply our SLP approach using the two main identification schemes used in the litera-

ture: (i) identification based on timing restrictions and (ii) identification using instrument

variables.

4.1 The Linear Effects of Monetary Shocks

We consider a system comprising of GDP growth, PCE inflation and federal funds rate.

The dataset spans from 1959-Q1 to 2007-Q4. We exclude the latest recession where the

fed funds rate was constrained at zero and no longer captured variations in the stance of

monetary policy.

We first identify the IR of monetary shocks using timing restrictions on the base of

the argument that monetary policy affects macro variables with a lag. More precisely,

we assume that that we can identify the IR of GDP growth (inflation) to a monetary

shock from a (S)LP of GDP growth (inflation) on the fed funds rate using as controls the

contemporaneous value of GDP growth and inflation as well as 4 lags of GDP growth,

inflation and the fed funds rate.

Figure 8 plots the IRs of GDP growth and inflation to a one standard-deviation mon-

etary shock. The top panel plots the impulse responses obtained from LPs, while the

bottom panel plots the IRs obtained from SLP. Following a contractionary shock, GDP

growth and inflation decline, as previously found in numerous studies. Note however,

that unlike previous studies, the recursive identification assumption is used directly in

the local projections and no VAR is estimated.

An important advantages of SLP over LP are apparent in Figure 8. Namely, the IRs

obtained by regular LP can be erratic with sometimes sharp fluctuations within a quarter

as with GDP growth at h = 3. This makes the interpretation of certain features of the

IR difficult, since it is not clear whether these movements are real features of the IR or
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just artifacts of noisy measurements (see e.g., Ramey (2012) for a concrete example of

such a problem). In contrast, thanks to smoothing, the SLP IRs are easier to interpret.

For instance, the sharp movements of GDP growth at h = 3 disappears under smoothing,

indicating that this is not a robust feature of the data.

Next, Figure 9 plots the same IRs using an instrument variable identification scheme.

As external instrument for movements in the fed funds rate, we use the Romer and Romer

monetary shocks series (Romer and Romer, 2004) and extended until 2007 by Coibion

et al. (2012). The sample spans 1966-Q1 to 2007-Q4. As controls, we include 4 lags

of GDP growth, inflation and the fed funds rate. The IRs are similar to the recursive

identification case, with again erratic LP estimates.

Finally, note that our SLP framework has an important additional advantage over

previous approaches: it allows to implement different identifying schemes using the same

methodology. In previous studies, the magnitude of the effect of monetary shocks could

vary a lot across identification methods (recursive versus narrative), and in the literature

on the effects of monetary shocks, the discrepancy across methods was so large that it

was not clear whether the effect of monetary policy was “big or small” (Coibion, 2012).14

One of the issue was that the recursive identification strategy was implemented in VARs

(e.g. Christiano et al., 1999) while the narrative identification strategy was implemented

using ADL methods (Romer and Romer, 2004). In contrast, when we implement the two

identification schemes using the same SLP approach, we obtain similar IR estimates for

both GDP and inflation.

4.2 The State-Dependent Effects of Monetary Shocks

We now explore whether the state of the cycle can affect the effectiveness of monetary

policy, a topic that has received much attention in the recent years.15

We use the 7-quarter centered moving-average of GDP growth as the cyclical indicator

st, following Auerbach and Gorodnichenko (2012), and we use a recursive identification

14See the reconciliation study of Coibion (2012).
15See e.g., Tenreyro and Thwaites (2016), Santoro et al. (2014), Barnichon and Matthes (2016).
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scheme.

Figure 10 plots the response of GDP growth and inflation to a monetary shock that

takes place (i) in a recession (st = −1σ(st)), (ii) in an “average” state (st = 0) and (iii)

in an expansion (st = +1σ(st)). Figure 11 plots the state multipliers obtained from LP

(top row) or SLP (bottom row). Recall that the state multiplier captures the extent to

which the state affects the IR at each horizon, so that a positive value implies that the

IR response is more negative when the economy is in a recession (the state variable is

negative).

Again, while LP delivers erratic estimates with large confidence intervals (especially

for inflation), SLP delivers a clear message about the state-dependent effect of monetary

policy. The effect of a contractionary shock on GDP growth is substantially larger in

recessions, i.e., when growth is negative: While a contractionary monetary shock lowers

GDP growth by 0.5 percentage point on average, the same shock lowers GDP growth

by more than one percentage point if the shock takes place during a period of slow

growth. Interestingly, our results also imply that monetary policy has almost no effect on

real variables during expansions. The response of inflation is also state dependent and is

weaker in recessions (the price puzzle is larger), which according to a a Keynesian narrative

is consistent (at least qualitatively) with the stronger response of GDP in recessions:

monetary policy will have a stronger impact on real quantities if prices react less.

5 Conclusions

This paper proposes a novel IR estimation approached based on Smooth Local Projection

(SLP). SLP aim at combining the flexibility of Local Projections with the efficiency of

VARs. SLP consists in using Penalized-B splines to estimate local projections while

imposing smoothness on the IR coefficients. While different smoothing techniques are

possible, P-splines have a number of unique advantages. First, P-splines estimation is

straightforward, because it takes the form of a standard ridge regression. Second, P-

splines are flexible and can be used to not only impose smoothness on the impulse response
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function, but also to impose shapes on the estimated IR. This is particularly attractive

in macroeconomics when prior knowledge on the shape of the IR is available.

We obtain two sets of results that are of particular interests for macro-economists.

First, SLP can be used with common identification schemes –timing restrictions or in-

strumental variables– to directly estimate structural IRs. In other words, while researchers

have relied on VARs to implement identification schemes based on a Cholesky ordering or

an external instrument, we show that it is possible to bypass the VAR entirely and thus

reduce the risk of model mis-specification. Second, for the estimation of state-dependent

IRs, SLP offers a flexible semi-parametric alternative to regime-switching models, which

are expensively parametrized (allowing for only a small number of states) and computa-

tionally intensive to estimate.

To illustrate the benefits of SLP with a concrete example, we use SLP to study the

effects of monetary shocks with different identification schemes and to study how the

effects of monetary policy varies with the state of the economy.
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Table 1: IR estimators comparison

Rough DGP Smooth DGP
VAR LP SLP VAR LP SLP

T CV Oracle CV Oracle

50 2.685 6.942 4.865 4.664 2.175 6.327 2.563 2.241
100 2.127 3.321 2.666 2.600 1.687 3.151 1.338 1.202

gdpt 200 1.850 1.693 1.494 1.427 1.452 1.619 0.776 0.655
300 1.787 1.200 1.088 1.047 1.369 1.130 0.577 0.465
400 1.729 0.931 0.852 0.828 1.330 0.915 0.488 0.381
50 17.161 21.350 19.477 19.309 15.365 21.172 17.995 17.774
100 12.576 10.069 9.388 9.302 11.632 10.146 8.711 8.595

πt 200 10.467 5.365 5.200 5.168 9.455 5.040 4.333 4.272
300 9.586 3.688 3.666 3.626 8.437 3.384 2.915 2.860
400 9.123 2.846 2.869 2.817 8.055 2.638 2.277 2.234

The table reports the MSE of the IR of GDP growth and inflation to a monetary policy shocks estimated via VAR, LP,
SLP (based on cross-validation) and SLP (based on the Oracle shrinkage).

Figure 1: B-Spline Basis

The figure shows the graph of the B-splines basis functions. The top panel displays the set of B-splines basis used in
this work. The bottom panel shows in detail the B-splines basis of knot 6.
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Figure 2: Simulation Study Population IRs

GDP Growth Inflation

The figure displays the population IRs used in the simulation study. The left shows the IRs of GDP growth to a
monetary shock in the rough DGP (squares) and smooth DGP (circles). The right shows the IRs of inflation to a monetary
shock in the rough DGP (squares) and smooth DGP (circles).

Figure 3: IR estimators comparison

GDP Growth Inflation

The figure displays the estimated IR in one replication of the simulation study for the smooth DGP. The panels show
the estimated IR of a VAR (triangle), LP (square) and SLP (circle) as well as the population IR (solid line) for GDP growth
(left panel) and inflation (right panel).
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Figure 4: SLP and the degree of shrinkage

GDP Growth Inflation

The figure displays the estimated IRs obtained from SLP using different degrees of shrinkage in one replication of the
simulation study for the smooth DGP for GDP growth (left panel) and inflation (right panel). Thicker lines correspond to
estimates obtained using a higher degree of penalization.
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Figure 5: SLP and target polynomial

GDP Growth Inflation

The top panels of the figure display the limiting shrinkage IR estimates for GDP growth (left panel) and inflation (right
panel) obtained by setting the order of the degree penalty r to 0 (zero function) 1 (constant), 2 (line) and 3 (parabola).
The bottom panels of the figure display the limiting shrinkage IR estimates for GDP growth (left panel) and inflation (right
panel) obtained by setting the order of the degree penalty r to 2 and imposing shrinkage at zero at horizon 20.
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Figure 6: Integrated MSE as a function of the sample size

GDP Growth Inflation

The figure displays the (integrated) MSE of the IR estimators of GDP growth (left panel) and inflation (right panel)
for the smooth DGP obtained from the VAR, LP, SLP (based on cross-validation) and SLP (based on Oracle shrinkage) as
a function of the sample size.
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Figure 7: Point MSE as a function of the horizon

GDP Growth Inflation

(a) (b)

(c) (d)

The figure displays the (pointwise) MSE of the IR estimators of GDP growth (left panels) and inflation (right panels)
as a function of the horizon for the smooth DGP obtained from the VAR, LP, SLP (based on cross-validation) and SLP
(based on Oracle shrinkage) as a function of the sample size. The top figures show the MSE for a sample size equal to 50
and the bottom for a sample size of 500.
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Figure 8: IR to a monetary shock using timing restrictions

GDP Growth Inflation

The figure displays the IR of GDP growth (left panels) and inflation (right panels) to a monetary shock identified
using timing restrictions and estimated using LP (top panels) and SLP (bottom panels). The shaded area denotes the 90%
confidence interval.
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Figure 9: IR to a monetary shock using instrumental variables

GDP Growth Inflation

The figure displays the IR of GDP growth (left panels) and inflation (right panels) to a monetary shock identified using
instrumental variables and estimated using LP (top panels) and SLP (bottom panels). The shaded area denotes the 90%
confidence interval.
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Figure 10: State-dependent IR to a monetary shock

GDP Growth Inflation

The figure displays the state-dependent IR of GDP growth (left panels) and inflation (right panels) to a monetary
shock estimated using LP (top panels) and SLP (bottom panels). The state variable st respectively takes the values -1 (a
recession), 0, and +1 (an expansion) units of σ(st).
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Figure 11: State multiplier of State-dependent IR to a monetary shock

GDP Growth Inflation

The figure displays the state multiplier of the state-dependent IR of GDP growth (left panels) and inflation (right
panels) to a monetary shock estimated using LP (top panels) and SLP (bottom panels). The shaded area denotes the 90%
confidence interval.
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A Appendix

In this appendix, we show how a partial identification scheme with a timing restriction is
a particular case of “identification through controls” and thus can be easily implemented
in a LP estimation.

Recursive identification in a linear DGP

Denote χt an (L× 1) vector generated by a VAR of order 1 (wlog)

χt = Aχt−1 +Cεt, (10)

where C has full rank and ones on the diagonals, and εt is the vector of structural
innovations with Eεt = 0 and Eεtε

′
t = Σ a positive definite diagonal matrix.

It will be convenient to adopt the following conventions for notation:

• Denote χ`,t the `th variable of vector χt and denote χt
<` = (χ1,t, ...,χ`−1,t)

′ the
vector of variables ordered before variable χ`,t in χt. Similarly, we can define χt

≤`

or χt
>`.

• For a matrix C of size L×L and (i, j) ∈ {1, ..., L}2, denote C<i,<j the (i−1)×(j−1)
submatrix of C made of the first (i − 1) rows and (j − 1) columns. Similarly, we
denote C>i,>j the (L− i)× (L−j) submatrix of C made of the last (L− i) rows and
(L−j) columns. In the same spirit, we denote Ci,<j the submatrix of C made of the
ith row and the first (j − 1) columns. Ci,<j is in fact a row vector. A combination
of these notations allows us to denote any submatrix of C. Finally, denote Cij the
ith row jth column element of C.

With these notations, we can now state the partial recursive ordering assumption

Assumption 1 (Partial recursive ordering). The contemporaneous impact matrix C of
dimension L× L is of the form

C =

 C<`,<` 0<`,` 0<`,>`

C`,<` 1 0`,>`

C>`,<` C>`,` C>`,>`

 .
with ` ∈ {1, .., L}, C<`,<` and C>`,>` matrices of full rank and 0 denoting a conformable
matrix of zeros.

Assumption 1 states that the shock of interest ε`,t, ordered in `th position in εt, affects
the variables ordered from 1 to `− 1 with a one period lag, and that the first ` variables
in χt do not react contemporaneously to shocks ordered after ε`,t in εt.

We can now state our result:

Proposition 1. If C satisfies Assumption 1 (the partial recursive ordering assumption),
then an estimate of the structural impulse response of χi,t to a structural shock δ to χ`,t
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at horizon h, is given by β(h)δ with β(h) the coefficient estimated from the smooth local
projection

yt+h = α(h) + β(h)xt + γ ′(h)wt + u(h),t+h, t = 1, ..., T −H (11)

with yt = χ
i,t

, xt = χ`,t and w′t = (χ<`t ,χt−1)′.

Proof. Iterating on (10), we have

χt+h = Ah+1χt−1 +AhCεt +Ah−1Cεt+1 + ...+ Cεt+h (12)

which immediately gives that the impulse response of vector χt to shock ε`,t at horizon h
is

β(h) = AhC≤L,`

i.e., that the vector of impulse responses to shock ε` is the `th column of the matrix AhC.

We now show that the VAR (10) with a partial recursive ordering implies the local
projection representation (11) where Eχ`,tu(h),t+h = 0, which ensures that OLS provides
a consistent estimate of β(h).

We first write the reduced-form innovation et = Cεt as the sum of three L×1 vectors:

Cεt = C≤L,<`ε<`t +C≤L,`ε`,t +C≤L,>`ε>`t

where C≤L,<` =

 C<`,<`

C`,<`

C>`,<`

, C≤L,` =

 0<`,`

1
C>`,`

and C≤L,>` =

 0<`,>`

0`,>`

C>`,>`

 are the

three ”block-columns” of C shown in (1). The first component captures the contribution
to χt of shocks ordered before ε`,t, the second component captures the contribution of
ε`,t, and the third component captures the contribution of shocks ordered after ε`,t.

Thanks to the recursive ordering assumption, ε<`t , the vector of shocks ordered before
ε`,t, is a function of contemporaneous values of χ<`t and past values of χt−1, and can
then be recovered from observables (i.e., controls) at time t. Specifically, because the
upper-right block of C is filled with zero, we have

ε<`t =
(
C<`,<`

)−1
e<`t

=
(
C<`,<`

)−1
(χt −Aχt−1)<`

=
(
C<`,<`

)−1
χ<`t −

(
C<`,<`

)−1
(Aχt−1)<` . (13)

Similarly, ε`,t, the shock of interest, is a function of the contemporaneous value of χ`,t,
χ<`t and past values of χt−1. Indeed, from the VAR, we have

χ`,t = (Aχt−1)` + ε`,t +C`,<`ε<`t ,

so that using (13) we get

ε`,t = χ`,t −C`,<`
(
C<`,<`

)−1
χ<`t −C`,<`

(
C<`,<`

)−1
(Aχt−1)<` − (Aχt−1)` . (14)
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Substituting the components of (13) and (14) into (12), we get

Yt+h = Ah+1Yt−1 +AhCεt +Ah−1Cεt+1 + ...+Cεt+h

= AhC≤L,`︸ ︷︷ ︸
β(h)

χ`,t +Dχ<`t +Bχt−1 + ut+h (15)

with D and B some (L × L) matrices that depend on A and C, and where ut+h =

Ah

 0<`,>`

0`,>`

C>`,>`

 ε>`t + f(εt+h)h>0, where f(.)h>0 denotes a function of shocks at time

t+ h, h > 0.
Expression (15) is a Local Projection where the IR vector at horizon h, β(h), is given

by the coefficient on χ`,t. Thanks to the recursive assumption, we have Eut+hχ`,t = 0,
since Eε>jt χ`,t = 0 (and since Eεt+hχ`,t = 0), so that OLS on (15) consistently estimates
β(h), as stated in Proposition 1.

Recursive identification in a DGP with state dependence

We now extend Proposition 1 to a DGP with state dependence.
Denote χt an L× 1 vector given by the structural VMA model

χt =
K∑
k=0

Ck(st−k)εt−k (16)

where εt is the vector of stuctural shocks at time t and Cj(st−j) is the matrix of impulse

response functions at horizon k. K is either finite or infinite with
∞∑
k=0

(Ck(st−k))
2 <∞.

With state dependence, the value of the stationary time series st affects the impulse
responses to a structural shock to χ`,t according to

C≤L,`j (st−k) = Γ≤L,`k +Θ≤L,`k st−k

where Γ≤L,`k and Θ≤L,`k are two (L− `) column vectors.
Note that model (16) includes a VAR DGP –in fact, a VAR(∞)– as a special case

when there is no state dependence.
To allow identification, we posit a partial recursive ordering as in Assumption 1 while

allowing for state dependence for the effect of the identified shock, that is by allowing
that C>`,`

0 to depend on st with C>`,`
0 (st) = Γ>`,`

0 + Θ>`,`
0 st.

We now show how to obtain the non-linear IR to to a structural shock to χ`,t:

Proposition 2. If C0 satisfies Assumption 1 with C>`,`
0 (st) = Γ>`,`

0 + Θ>`,`
0 st, then an

estimate of the structural impulse response of χi,t to a structural shock δ to χ`,t at horizon
h, is given by

(
β0,(h) + β1,(h)st

)
δ with β0,(h) and β1,(h) the coefficients estimated from the

smooth local projection

yt+h = α(h) + β0,(h)xt + β1,(h)xtst + γ ′(h)wt + u(h) t+h, t = 1, ..., T −H (17)
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with yt = χ
i,t

, xt = χ`,t and w′t = (χ<`,t,χ<`,tst, {χt−k}∞k=1 , {χt−kst−k}
∞
k=1)′.

Proof. We first show the following Lemma:

Lemma 1. There exist (L× L) matrices P1, P2, Q1, Q2, R1, R2 (linear functions of
{Ck}Kk=0) such that the vector of contemporaneous shocks εt can be expressed as

ε<`t =
(
C<`,<`

0

)−1

χ<`t +
∑∞

j=1 (G1 +G2st)Yt−j

ε`,t = χ`t + C`,<`
0 ε<`t +

∑∞
j=1 (H1 +H2st)Yt−j

ε>`t =
(
C>`,>`

0

)−1 (
χ>`t −C>`,≤`

0 (st)ε
≤`
t +

∑∞
j=1 (P1 + P2st)Yt−j

) (18)

Proof. We proceed by induction and posit that (18) holds for {εt−k}k>0. Starting from
the DGP of χt and rearranging to put εt−k on the left-hand side, we can express {εt−k}k>0

as a function of lagged values of χt using (18) for {t− k}∞k=1 and obtain (18).

Using (18), we can now express the time t shocks as function of current and past
observables Yt, i.e., re-write the DGP of χt+h as a local projection. To see that, first
re-write the DGP of χt+h as

χt+h = Ck(st−k)εt +
∞∑
k=1

Ck(st−k)εt−k + f(εt+h)h>0,

where f(.)h>0 denotes a function of shocks at time t+ h, h > 0.
Then, combining with (18) to express εt as a function of contemporaneous and lagged

values of Yt, we get

χt+h = Γkχ`,t+Θkχ`,tst−k + D0χ
<`
t + D1χ

<`
t st +

∞∑
k=1

(B0 + B1st)χt−k + ut+h, (19)

with D0, D1, B0 and B1 some (L×L) matrices that are linear functions of {Ck}Kk=0 and

where ut+h = F

 0<`,>`

0j,>`

C>`,>`
0

 ε>`t + f(εt+h)h>0.

Expression (19) is a Local Projection where the IR coefficients are given by the co-
efficient of χ`,t and χ`,tst. Thanks to the recursive assumption, we have Eut+hχ`,t = 0,
since Eε>`t χ`,t = 0 (and since Eεt+hχ`,t = 0), so that OLS on (19) consistently estimates
Γk and Θk, as stated in Proposition 2.
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