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This paper proposes a method and a toolkit for solving optimal policy with imperfect
commitment. As opposed to the existing literature, our method can be employed in the
medium- and large-scale models typically used in monetary policy. We apply our method
to the Smets and Wouters model [American Economic Review 97(3), 586–606 (2007)], for
which we show that imperfect commitment has relevant implications for interest rate
setting, the sources of business cycle fluctuations, and welfare.
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1. INTRODUCTION

In the modern macroeconomic literature, economic outcomes result from the
interactions between policy makers and rational firms and households. A common
feature of these models is that economic decisions (e.g., consumption, hours
worked, prices) depend on expectations about future policies (e.g., taxes, interest
rates, tariffs). As shown by Kydland and Prescott (1977), optimal policy plans in
this class of models are subject to time inconsistency.

The modern literature has taken different approaches to addressing this prob-
lem. One possibility is to assume that policy makers can fully commit—a sin-
gle optimization is undertaken and the chosen policies are then implemented in
all subsequent periods. This approach is known as full commitment or simply
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commitment. An alternative, often referred to as discretion or no commitment, as-
sumes that policy makers cannot commit and that policy plans always need to be
time-consistent. Although many types of time-consistent equilibria can be studied,
one of the most common approaches is to solve for Markov-perfect equilibria, for
which policy functions only depend on payoff relevant state variables.

Both the full commitment and discretion approaches are to some extent unre-
alistic. Commitment does not match the observation that governments and other
institutions have defaulted on past promises. Discretion rules out the possibility
that governments achieve the benefits of making and keeping a promise, despite the
ex post incentive to renege. Roberds (1987) developed an approach—recently ex-
tended by Schaumburg and Tambalotti (2007) and Debortoli and Nunes (2010)—
that escapes the “commitment vs. discretion” dichotomy. Policy makers are en-
dowed with a commitment technology, but with some exogenous and common-
knowledge probability they may succumb to the temptation to revise their plans.
This approach has been labeled quasi-commitment or loose commitment.

Several questions can be addressed with the loose commitment approach. What
are the gains of achieving more credibility? How does the possibility of future
reoptimizations affect current outcomes and promises? What are the consequences
of revising policy plans? How do occasional reoptimizations affect the shock prop-
agation, volatilities, and cross correlations between relevant variables? To answer
these questions and derive the associated positive and normative implications,
one must depart from the frameworks of commitment and discretion and consider
loose commitment instead.

Nevertheless, because of some technical difficulties, the loose commitment ap-
proach has so far been limited to relatively simple and stylized models. The goal of
this paper is to overcome this limitation. We propose a simple and relatively general
algorithm to solve for the optimal policy plan under loose commitment in medium-
and large-scale models typically used for monetary policy analysis. We show how
these types of problems reduce to solving systems of linear difference equations,
and do not present any additional challenges with respect to the commitment or
discretion cases.

Our framework allows us not only to address the questions posed in com-
plex monetary policy models, but also to pose new questions and examine how
additional economic features interact with imperfect commitment. For instance,
central banks often and carefully devise communication strategies in which future
actions may be revealed to the public. In one of our applications, we distinguish the
shocks that require more commitment and may call for a more detailed planning
and communication strategy.

Assuming plans’ revisions to be stochastic events, rather than endogenous de-
cisions, is clearly a simplification analogous in spirit to the Calvo pricing model.
Although more complex credibility settings can easily be imagined (e.g., an en-
dogenous timing of reoptimizations), such complexity may become prohibitive in
medium- and large-scale models. In those type of models, the tractable though
simplified approach employed here is particularly valuable.
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This paper is related to the literature on optimal monetary policy in linear–
quadratic frameworks. Solution algorithms for full commitment, together with
a discussion about the computational aspects, have been developed by Currie
and Levine (1993) and Söderlind (1999), among others. Methods of solving for
(Markov-perfect) time-consistent equilibria are described in Backus and Driffill
(1985), Söderlind (1999), and Dennis (2007). The main contribution of our paper
is to extend these methodologies to address problems under loose commitment. To
illustrate the benefits of our approach, the methodology is then applied to analyze
the effects of commitment in the medium-scale model of Smets and Wouters
(2007), which has arguably become one of the benchmark models in the dynamic
stochastic general equilibrium literature.1

The paper continues as follows. In Section 2 we introduce the general formula-
tion of the model. In Section 3 we study the optimal-policy problem and describe
the solution algorithm. Section 4 discusses the role of commitment in the Smets
and Wouters (2007) model, and Section 5 concludes. We provide as supplementary
material a collection of codes and documentation that implement our algorithm in
a variety of models.

2. GENERAL FORM OF THE MODELS

Consider a general linear model, whose structural equations can be cast in the
form

A−1yt−1 + A0yt + A1Etyt+1 + Bvt = 0, ∀t, (1)

where yt indicates a vector of endogenous variables and vt is a vector of serially
uncorrelated exogenous disturbances with zero mean and Evtv

′
t = �v . The vast

majority of the models used for monetary policy analysis can be mapped into such
a formulation.

The common approach in the monetary policy literature is to assume that central
banks have a quadratic loss function,

∞∑
t=0

βty ′
tWyt . (2)

In some cases, a purely quadratic objective function is consistent with a second-
order approximation of a general time-separable utility function around an efficient
steady state [see, e.g., Woodford (2003a)].2 Moreover, quadratic loss functions
have been shown to describe a central bank’s behavior realistically, even if they
do not necessarily reflect the preferences of the underlying society.3 In fact, and
following Rogoff (1985), appointing a central banker who is more averse toward
inflation than the overall public may be desirable in the limited-commitment
settings considered here.

Throughout the analysis, we therefore maintain the assumption that the central
bank’s loss function is purely quadratic and may or may not reflect social pref-
erences. Besides obvious tractability considerations, this feature guarantees that
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our methodology is flexible and directly applicable to most of the models used for
monetary policy analysis.4

3. OPTIMAL POLICY UNDER LOOSE COMMITMENT

In a loose commitment setting, it is assumed that policy makers have access to a
commitment technology but may occasionally revise their plans. More formally,
suppose that the occurrence of a reoptimization is driven by a two-state Markov
stochastic process,

ηt =
{

1 with probability γ

0 with probability 1 − γ.
(3)

At any given point in time, if ηt = 1, previous commitments are honored. This
event occurs with probability 0 ≤ γ ≤ 1. If instead ηt = 0, previous promises are
reneged on and a new policy plan is formulated. This formulation nests both the
full commitment and discretion approaches as limiting cases for which γ = 1 and
γ = 0, respectively. More importantly, this formulation also spans the continuum
between those two extremes.

Considering stochastic reoptimizations is a necessary simplification to address
large-scale models. Such an assumption also seems justified if the timing of plan
revisions can be uncorrelated with the state of the economy. One possible candidate
for such events is a change in the dominating view within a central bank because of
time-varying composition of its decision-making committee. Another candidate
is outside pressures of varying intensity exerted by politicians and the financial
industry.5 Alternatively, our approach can be interpreted as the reduced form of a
model in which commitment to a policy is sustained by the threat of punishment
in case of reoptimization. If the punishment requires a priori coordination among
private agents and in some random periods cannot be implemented, then such
a model may bear similarities with our approach.6 These are reasons for which
our model can bear similarities to one in which the reoptimization decision is
endogenous. Whether our approach is plausible from an empirical perspective
would require an estimation exercise. In later sections we do contrast our model
with the data.

Following Schaumburg and Tambalotti (2007) and Debortoli and Nunes (2010),
the policy maker’s problem can be written as

y ′
−1Py−1 + d = min

{yt }∞t=0

E−1

∞∑
t=0

(βγ )t
[
y ′

tWyt + β (1 − γ ) (y ′
tPyt + d)

]
(4)

s.t. A−1yt−1 + A0yt + γA1Etyt+1 + (1 − γ )A1Ety
r
t+1 + Bvt = 0 ∀t ≥ 0.

The terms y ′
t−1Pyt−1 + d summarize the value function at time t , when a reop-

timization occurs (ηt = 0). Because the problem is linear–quadratic, the value
function is quadratic and summarized by the state variables yt−1 and a term
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reflecting the stochastic nature of the problem. The matrix P and the scalar d

have to be obtained in the solution procedure, as shown in later sections.7 The
Appendix discusses additional details related to the problem defined.

The objective function is given by an infinite sum discounted at the rate βγ ,
summarizing the history in which reoptimizations never occur. Each term in the
summation is composed of two parts. The first part is the period loss function. The
second part indicates the value the policy maker obtains if a reoptimization occurs
in the next period.

The policy maker faces a sequence of constraints, for which in any period t

expectations of future variables are an average between two terms. The first term
(yt+1), with weight γ , relates to the allocations prevailing when current plans are
honored. The second term, yr

t+1, with weight (1−γ ), refers to the choices made in
period t + 1 if a reoptimization occurs (i.e. if ηt+1 = 0). As in the Markov-perfect
literature, we assume that expectations about choices following a reoptimization
depend only on state variables:

Ety
r
t+1 = H̃yt . (5)

The policy maker cannot decide directly on the allocations implemented if a
reoptimization occurs, and therefore the matrix H̃ is taken as given.

For any H̃ , the policy maker’s problem can be solved using recursive methods.
We follow the approach of Kydland and Prescott (1980) and Marcet and Marimon
(2009) and write the Lagrangian associated with the optimal policy problem

L ≡ E−1

∞∑
t=0

(βγ )t
{
y ′

t [W + (1 − γ ) βP ] yt + λ′
t−1β

−1A1yt

+ λ′
t

[
A−1yt−1 + (

A0 + (1 − γ )A1H̃
)
yt + Bvt

] }
, (6)

λ−1 = 0,

H̃ , y−1 given.

This Lagrangian can be written recursively by expanding the state of the econ-
omy to include the Lagrange multiplier vector λt−1. The solution to the problem
is then characterized by a time-invariant policy function[

yt

λt

]
=

[
Hyy Hyλ

Hλy Hλλ

] [
yt−1

λt−1

]
+

[
Gy

Gλ

]
vt , (7)

where the matrices H and G depend on the unknown matrix H̃ .
When a reoptimization occurs in a given period t , the vector λt−1 must be

reset to zero. This result, formally proved by Debortoli and Nunes (2010), has
an intuitive interpretation. A reoptimization implies that all the past promises
regarding current and future variables are no longer binding.
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According to equation (7) and setting λt−1 = 0, yr
t = Hyyyt−1 +Gyvt . Moving

this equation forward one period and taking expectations, one obtains Ety
r
t+1 =

Hyyyt . For this expression to be consistent with equation (5), it must be that in a
rational expectations equilibrium

Hyy = H̃ . (8)

Given our formulation, the optimal policy under loose commitment can be found
as the solution of a fixed-point problem in the matrix H . In what follows, we
propose an algorithm to solve for that fixed point.

3.1. Solution Algorithm

We start by writing the first-order conditions of the Lagrangian (6):

∂L
∂λt

= [
A0 + (1 − γ )A1Hyy

]
yt + γA1Etyt+1 + A−1yt−1 + Bvt = 0, (9)

∂L
∂yt

= 2Wyt + β (1 − γ )A′
−1Etλ

r
t+1 + [

A0 + (1 − γ )A1Hyy

]′
λt

+ Iγ β−1A′
1λt−1 + βγA′

−1Etλt+1 = 0. (10)

The vector equation (9) corresponds to the structural equation (1), where we
have used equations (5) and (8) to substitute for the term Ety

r
t+1. As a result,

the unknown matrix Hyy enters equation (9). That matrix also enters equation
(10), reflecting that yt can be used to affect the expectations of yr

t+1. The term
λr

t+1 in equation (10) constitutes the derivative of the value function w.r.t. yt . This
derivative can be obtained using the envelope condition

∂y ′
tPyt

∂yt

= 2Pyt = A′
−1Etλ

r
t+1. (11)

Finally, the term Iγ in equation (10) is an indicator function,

Iγ =
{

0, if γ = 0
1 otherwise,

(12)

and is used for convenience so that equation (10) is also valid under discretion
(γ = 0), where the term β−1A′

1λt−1 would not appear.8

There are many methods for solving linear rational expectation systems such as
(9)–(10), and standard routines are widely available [e.g., Klein (2000), Collard
and Juillard (2001), Sims (2002)]. Our computational implementation is based on
the method of undetermined coefficients.
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For a given guess of the matrix H , the law of motion (7) can be used to compute
the expectations terms

Etyt+1 = Hyyyt + Hyλλt , (13)

Etλt+1 = Hλyyt + Hλλλt , (14)

Etλ
r
t+1 = Hλyyt , (15)

where the last equation follows from resetting the Lagrange multiplier λt to zero
because of the reoptimization at t + 1. Substituting these formulas into (9) and
(10), one obtains

�0

[
yt

λt

]
+ �1

[
yt−1

λt−1

]
+ �vvt = 0, (16)

with

�0 ≡
[

A0 + A1Hyy γA1Hyλ

2W + βA′
−1Hλy A′

0 + (1 − γ )H ′
yyA

′
1 + βγA′

−1Hλλ

]
,

�1 ≡
[
A−1 0

0 β−1Iγ A′
1

]
, �v ≡

[
B

0

]
.

The resulting law of motion is[
yt

λt

]
= −�−1

0 �1

[
yt−1

λt−1

]
− �−1

0 �vvt , (17)

where we are assuming the matrix �0 to be nonsingular.
The final step consists in verifying that this law of motion coincides with the

initial guess, i.e., H = −�−1
0 �1. If not, the guess-and-verify procedure is repeated

until convergence. In summary, the algorithm proceeds as follows:

1. Using a guess Hguess, form �0 and �1.
2. Compute H = −�−1

0 �1.
3. Check if ||H − Hguess|| < ξ , where ||.|| is a distance measure and ξ > 0. If the guess

and the solution have converged, proceed to step 4. Otherwise, update the guess as
Hguess = H and repeat steps 1–3 until convergence.

4. Finally, form �v and compute G = −�−1
0 �v .

Clearly, there are many alternative algorithms to the one proposed. For example,
for a given H , the system of equations (9)–(10) could be solved using a generalized
Schur decomposition, as in Blanchard and Kahn (1980), or solving a quadratic
matrix equation, as in Uhlig (1995). For this reason, the nonsingularity of the
matrix �0 is not essential. Also, the solution of the fixed-point problem on
the matrix H could be performed using a Newton-type method. Nevertheless,
the procedure described earlier proved to be computationally more efficient.

The main message of our analysis is that solving for an optimal policy problem
under loose commitment only requires solving a fixed-point problem, which in a
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linear–quadratic framework is as simple as solving a system of linear equations. In
addition, a loose commitment approach nests the full commitment and discretion
cases.

There are other practical advantages. For instance, Blake and Kirsanova (2010)
show that some linear–quadratic models may display multiple equilibria under
discretion. Those models may thus also exhibit multiple equilibria for intermediate
commitment settings, depending on the initial guess for H . The advantage of our
loose commitment approach, as implemented in the companion toolkit, is that there
is a natural initial guess: the full commitment solution, which is typically unique.
The probability of commitment is then gradually reduced from full commitment
to discretion, using as a guess the solution from the previous iteration.

In these iterations, the gradual reductions from γ = 1 to γ = 0 can be ar-
bitrarily small, and this procedure can be viewed as a potential selection device
among multiple discretionary equilibria.9 Finally, even though multiple equilibria
are a theoretical possibility, we found a unique solution in all the applications
considered.10

3.2. Simulations and Impulse Responses

Once the matrices H and G have been obtained, it is straightforward to simulate
the model for different realizations of the shocks and compute second moments
and impulse response functions. For given initial conditions y−1, λ−1, and histories
of the shocks {vt , ηt }Tt=0, the model simulation follows the formula[

yt

λt

]
= H

[
yt−1

ηtλt−1

]
+ Gvt . (18)

The peculiarity of the loose commitment setting is that a history of the shock
driving the reoptimizations (ηt ) should also be specified. Whenever ηt = 0, the
Lagrange multiplier λt−1 is reset to zero.

3.3. Welfare

For any initial condition [y ′
t−1 λ′

t−1] the welfare measure, unconditional on the
first realization of v0, is given by[

yt−1

λt−1

]′
P̂

[
yt−1

λt−1

]
+ d. (19)

The matrix P̂ can be obtained by taking the derivative of the recursive formulation
of the Lagrangian (6), thus obtaining

P̂ = 1

2

[
0 A′

−1
β−1A1 0

]
H. (20)
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Notice that in the most pertinent case with initial conditions λt−1 = 0 the only
relevant term would be the upper left block of P̂ , which equals A′

−1Hλy .
The constant d is given by

d = 1

1 − β
tr

[
�v

(
G′Ṽ G + G′

[
0
B

])]
(21)

with

Ṽ =
[

W 0
A0 + (1 − γ )A1Hyy 0

]
+ β (1 − γ )

[
A′

−1Hλy 0
0 0

]
+ βγ P̂ .11 (22)

Alternatively, one can compute welfare conditional on the first realization of
the shock, which is defined as follows:⎡⎣yt−1

λt−1

vt

⎤⎦′

P̃

⎡⎣yt−1

λt−1

vt

⎤⎦ + d̃ = y ′
tWyt

+βγEt

⎛⎝⎡⎣ yt

λt

vt+1

⎤⎦′

P̃

⎡⎣ yt

λt

vt+1

⎤⎦ + d̃

⎞⎠
+β (1 − γ )Et

⎛⎝⎡⎣ yt

0
vt+1

⎤⎦′

P̃

⎡⎣ yt

0
vt+1

⎤⎦ + d̃

⎞⎠ . (23)

By the definition of conditional welfare, it must be that

Et

⎛⎝⎡⎣ yt

λt

vt+1

⎤⎦′

P̃

⎡⎣ yt

λt

vt+1

⎤⎦ + d̃

⎞⎠ =
([

yt

λt

]′
P̂

[
yt

λt

]
+ d

)
, (24)

and equation (23) can be rewritten as⎡⎣yt−1

λt−1

vt

⎤⎦′

P̃

⎡⎣yt−1

λt−1

vt

⎤⎦ + d̃

=
(

H

[
yt−1

λt−1

]
+ Gvt

)′
Ṽ

(
H

[
yt−1

λt−1

]
+ Gvt

)
+

(
H

[
yt−1

λt−1

]
+ Gvt

)′ ([
0 β−1A′

1
A−1 0

] [
yt−1

λt−1

]
+

[
0
B

]
vt

)
+ βd. (25)

We can thus obtain the conditional welfare, for any given initial condition, by just
evaluating the right-hand side of this last expression.

In these derivations we have computed welfare using the recursive formulation
of the Lagrangian (6). As mentioned earlier, that formulation is equivalent to the
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original problem (4) only after the initial condition λ−1 = 0 is imposed. If one
wants to evaluate the welfare according to the original formulation of equation
(2), but for a different value of λ−1, one needs to subtract λ−1β

−1A1E−1y0 and
λ−1β

−1A1y0 from equations (19) and (25), respectively.12

4. APPLICATION: A MEDIUM-SCALE CLOSED ECONOMY MODEL

In this section, we apply our methodology to the Smets and Wouters (2007) model.
Needless to say, our purpose is neither to match business cycle properties nor to
test the empirical plausibility of alternative commitment settings. We instead focus
on examining the role of commitment in this benchmark medium-scale model.

The model includes nominal frictions in the form of sticky price and wage set-
tings allowing backward inflation indexation. It also features real rigidities—habit
formation in consumption, investment adjustment costs, variable capital utiliza-
tion, and fixed costs in production. The dynamics are driven by six orthogonal
shocks: total factor productivity, two shocks affecting the intertemporal margin
(risk premium and investment-specific technology shocks), two shocks affecting
the intratemporal margin (wage and price-markup shocks), and an exogenous
government spending shock. The model equations are omitted here for brevity
and all parameters are calibrated to the posterior mode as reported in Smets and
Wouters (2007).

Unlike Smets and Wouters (2007), we do not consider a specific interest rate
rule nor the associated monetary-policy shock. Instead, we assume that the central
bank solves an optimal policy problem. By doing so, we exemplify how the degree
of commitment and the reoptimization shocks affect the behavior of the central
bank. We are not dismissing interest rate rules either from a normative or from a
positive perspective. In fact, it is widely known that optimal policy plans can be
implemented in a variety of ways, including targeting rules and instrument rules,
of which interest rate rules are a subcase.

We explore the implications of two purely quadratic loss functions commonly
used in the literature. The benchmark formulation is given by

Ub
t = wππ2

t + wyy
2
t + wb

i (it − it−1)
2, (26)

where πt , yt , and it denote respectively price inflation, output gap, and the nominal
interest rate. The alternative specification takes the form

Ua
t = wππ2

t + wyy
2
t + wa

i i
2
t . (27)

Following Woodford (2003b), we set the parameters wπ = 1, wy = 0.003,
wb

i = 0.0176, and wa
i = 0.0048. The plausibility of these formulations and of

the corresponding calibration is discussed in the following sections, where we
analyze the importance of commitment from different perspectives. As explained
in Section 2, deriving and carrying out the analysis with a micro-founded utility
function is an interesting approach but goes beyond the scope of this paper.13 The
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FIGURE 1. Welfare. The figure plots the welfare gains from commitment for the benchmark
(left panel) and the alternative (right panel) objective function. The continuous line (left
scale) indicates the relative gains from full discretion to a degree of commitment γ , i.e.,
(Vγ − Vγ=0)/(Vγ=1 − Vγ=0). This measure corresponds to conditional welfare and the
results are robust to unconditioning on the shocks. The dashed line (right scale) indicates
equivalent permanent deviation from the inflation target according to equation (28), i.e.,
m2 = (1 − β) (Vγ=1 −Vγ )/wπ . We plot the negative of −m for the convenience of plotting
an increasing function in γ .

type of loss functions considered in this paper are used widely in central banks
[e.g., Norges Bank (2011)] and in the literature describing or characterizing central
bank behavior [see, e.g., Rogoff (1985), Svensson (1999), Dennis (2004), Ilbas
(2012)].

4.1. What Are the Gains from Commitment?

In Figure 1, we plot the conditional welfare gains obtained for different levels of
credibility. The continuous line (left axis) standardizes welfare by the total gains
of changing credibility from discretion to full commitment. This standardization
has the advantage that any affine transformation of the central bank’s objective
function would leave this welfare measure unchanged.

As expected, higher credibility leads to higher welfare.14 More importantly, the
figure suggests that if a central bank has low credibility to start with, a partial
enhancement of its credibility will not deliver much of the welfare gains that
credibility can potentially offer. On the other hand, a central bank with high
credibility should be especially cautious. It will face severe welfare losses if its
credibility is deemed to have been minimally affected. These results contrast
with those obtained by Schaumburg and Tambalotti (2007) using a more stylized
monetary policy model.

Figure 1 also considers another welfare measure that is useful in gauging
losses for the objective functions employed by central banks and is described, for
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FIGURE 2. Credibility and volatility. The figure plots the volatilities of inflation, output
gap, and interest rate for different credibility levels. The left and right panel change the
weight on inflation and output gap, respectively. The two panels plot several weights from
half to double the benchmark value. The solid and dashed lines assume the probability of
commitment to be 0.5 and 1, respectively.

instance, in Jensen (2002). This measure (m) is the permanent deviation in the
inflation target that would leave the central bank indifferent between full commit-
ment and another credibility level γ ,

E−1

∞∑
t=0

βt
[
wπ

(
πt,γ=1 − m

)2 + wy

(
yt,γ=1

)2 + wb
i (it,γ=1 − it−1,γ=1)

2
]

= E−1

∞∑
t=0

βt
[
wππ2

t,γ + wyy
2
t,γ + wb

i (it,γ − it−1,γ )2
]
. (28)

In other words, this measure plots the permanent increase or decrease in the
inflation level relative to the target of zero that would leave the central bank
indifferent between the two credibility cases. A complete loss of credibility would
be equivalent to a permanent change in the inflation rate of around 0.47%.15

Credibility may also affect the relative contribution of inflation and output-gap
volatilities to the overall welfare loss. A higher credibility level translates into
better management of the policy trade-offs because forward guidance is more
effective as a policy tool. Therefore one might conjecture that higher credibility
would reduce the volatilities of all welfare-relevant variables. Figure 2 illustrates
that such a conjecture does not always hold. The figure shows that for a given
relative weight in the objective function, a loss in credibility leads to a rise in
inflation volatility but a reduction in output-gap volatility. The reason is that
stabilizing inflation is the most important welfare objective. A central bank with
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high credibility can achieve higher welfare by promising to stabilize inflation even
if doing so implies more output-gap volatility.

Figure 2 also discriminates among the points on the policy frontiers associated
with doubling or halving wπ or wy relative to the baseline calibration. Even
considering such extreme calibrations of the welfare function does not change
the results qualitatively. The finding that a loss in credibility increases inflation
volatility but reduces output-gap volatility holds for those extreme calibrations as
well.

4.2. Loose Commitment and Simple Interest Rate Rules

The optimal policy under loose commitment can be implemented through targeting
rules or through an appropriately defined interest rate rule.16 In dynamic stochastic
general equilibrium (DSGE) monetary policy models it is instead common to adopt
simple reduced-form interest rate rules to describe the central bank’s behavior.
Clearly, such behavior is affected by the degree of commitment γ . An open
question is how changes in γ are captured by the parameters of a simple rule. To
address this question, we perform a Monte Carlo exercise, taking our model as the
pseudo-true data generating process but estimating the interest rate rule

it = φiit−1 + φππt + φyyt + εt , (29)

where εt is assumed to be i.i.d. and normally distributed.
As a clarification, this exercise does not aim at finding the coefficients φi, φπ , φy

that would maximize welfare, which implies commitment to a simple interest rate
rule. That is also an interesting approach, followed for instance in Levine et al.
(2008a). Here, we generate data from the model for several degrees of commitment
and, as an econometrician would do, estimate the coefficients φi, φπ , φy .

Table 1 presents the regression results. The coefficient estimates are similar to
those found using actual data. In most cases, the coefficient on output gap is small
(and in some cases not significant), the coefficient on inflation is plausible, and
there is a considerable degree of interest rate smoothing.17 Most of the motive
for interest rate smoothing comes from commitment. Commitment implies that
past policies matter for current allocations, thus introducing history dependence.18

As a result, when commitment is high, the estimated values of φi are high even
under the alternative loss function, for which per se there is no interest rate–
smoothing motive. Overall, the coefficient φi is more plausible for relatively loose
commitment settings rather than with full commitment.

Simple interest rate rules have been widely adopted to study central bank
behavior across different periods of time. In that respect, our exercise shows that
a change in the interest rate parameters (φi, φπ , φy) should not necessarily be
interpreted as a change in the central bank’s preferences. Even if preferences
remain unaltered, the reduced-form interest rate parameters may change because
of a loss of credibility.
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TABLE 1. Interest rate regressions

Benchmark loss function Alternative loss function
U.S. Data

1 0.90 0.50 0 1 0.90 0.50 0 (1970–2008)

φπ 0.241 0.207 1.204 1.914 0.175 0.057 0.725 2.334 0.128
(0.047) (0.103) (0.141) (0.048) (0.043) (0.138) (0.312) (0.072) (0.039)

φy 0.002 −0.003 0.059 0.105 0.002 −0.010 −0.030 0.12 0.042
(0.003) (0.007) (0.014) (0.005) (0.002) (0.009) (0.033) (0.008) (0.009)

φi 0.971 0.926 0.875 0.75 0.972 0.843 0.503 0.159 0.926
(0.022) (0.033) (0.038) (0.015) (0.022) (0.06) (0.062) (0.027) (0.028)

R2 0.923 0.865 0.843 0.977 0.921 0.759 0.416 0.930 0.947

Notes: The table displays the coefficients and standard deviations corresponding to estimating equation (29) in
the original model. The Monte Carlo exercise is composed of 1,000 estimations of 200 periods each (roughly
corresponding to the size of actual samples). The average standard deviations across simulations are reported in
parentheses. The last row displays R2. The panels on the left and in the center correspond to the benchmark and
alternative welfare functions, respectively. The sample regarding the U.S. data goes from 1970:Q1 until 2008:Q3,
where the latest data are determined by the beginning of the zero–lower bound period. The output-gap data correspond
to the CBO measure.

The simple rule (29) captures fairly well the interest rate behavior, as signaled
by the high value of R2. This R2 is plausible but lower at intermediate degrees of
commitment. The reason is that reoptimizations imply a nonlinear change in the
policy setting that the linear regression is not capturing well. The reoptimization
uncertainty vanishes with full commitment or discretion, and therefore those two
cases can be better described by a linear rule. Also, R2 is lower for the alternative
specification of the loss function. In that case, the absence of an interest rate–
smoothing motive in the objective function causes the interest rate to change more
abruptly when reoptimizations occur. This result suggests that our benchmark loss
function is more consistent with available estimates of the central bank behavior.

4.3. Business Cycle Properties under Loose Commitment

We now analyze the effects of commitment on business cycle properties. To
that end, the probability of commitment is set to γ = .90, implying that policy
reoptimizations occur on the average every 10 quarters. That specific value is the
one that minimizes the (weighted) difference between the (benchmark) model and
the data, with respect to the Taylor-rule coefficients reported in Table 1, and the
statistics summarized in Table 2.19

Impulse responses to different shocks are reported in Figures 3–5. The solid line
considers the specific history where reoptimizations do not occur over the reported
horizon (ηt = 1,∀t). On impact, the sign of the responses does not change with
the commitment assumption. However, for each of the shocks considered, after
about six quarters the response of the nominal interest rate does not lie between
full commitment (dashed line) and discretion (dash-dotted line). These differences
arise because of the uncertainty about future reoptimizations, a feature unique to
loose commitment settings.
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TABLE 2. Effects of loose commitment on second moments

Model

Loose comm. U.S. Data
Full comm. γ = 0.9 Discr. (1970–2008)

Standard deviation (w.r.t. output)
Output gap 0.83 0.84 0.83 0.74
Price inflation 0.04 0.04 0.07 0.21
Wage inflation 0.08 0.08 0.09 0.26
Interest rate 0.09 0.15 0.18 0.29

Cross correlations with output
Output gap 0.87 0.88 0.86 0.90
Price inflation 0.05 −0.17 −0.70 −0.13
Wage inflation 0.21 0.13 −0.38 0.05
Interest rate −0.34 −0.49 −0.56 −0.32

Notes: The table displays several statistics for the output gap, price inflation, wage inflation, and
the interest rate. The model statistics are computed with 1,000 simulations of 200 periods each.
The sample regarding the U.S. data goes from 1970:Q1 until 2008:Q3, where the latest data are
determined by the beginning of the zero–lower bound period. The output-gap data correspond to
the CBO measure.

For example, the interest rate response to a positive wage-markup shock, shown
in Figure 3, peaks after about 10 quarters—as opposed to a negligible response
at a similar horizon under both full commitment and discretion. In turn, the
output-gap response is more prolonged, whereas both price and wage inflation
are close to the values prevailing under commitment. Intuitively, the promise of
a deeper and longer recession dampens inflation expectations and helps achieve
higher welfare. When the central bank reoptimizes (line with crosses), it reneges
upon past promises. It then reduces the interest rate, causing inflation to increase
and the output gap to become closer to the target. The bottom right panel shows
that the welfare gain of reoptimizing in a given quarter—a measure of the time
inconsistency at each moment in time—is maximum after roughly nine quarters.
The central bank is fulfilling the promise of a deep recession, which becomes
especially costly at that time because inflation is already below target and the
output gap is at its lowest level.

Similar reasoning also applies to productivity and government spending
shocks.20 In response to the latter shocks—as well as to other demand-type
shocks—the output gap and the two measures of inflation are well stabilized.
This occurs regardless of the degree of commitment, and as long as the central
bank sets its policy optimally. This suggests that commitment would not be very
important if these shocks were the main sources of business cycle fluctuations.21

Also, the time-inconsistency problem, measured by the gains from reoptimizations
(bottom right panel), is much smaller in response to technology and government
spending shocks than in response to wage markup shocks.
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FIGURE 3. Impulse responses to a wage markup shock. The figure plots the impulse
responses to a one–standard deviation shock under different commitment settings. The
solid line refers to a particular history in which the probability of commitment γ = .90 and
reoptimizations do not occur (ηt = 1, ∀t). The line with crosses refers to a particular history
where the probability of commitment γ = .90 and a single reoptimization occurs after 10
quarters (η10 = 0, ηt = 1, ∀t �= 10). For any quarter, the gains from reoptimization are
computed as the welfare difference between keeping the announced plan and reoptimizing
in that particular quarter.

Table 2 shows how commitment affects the second moments for some rele-
vant variables. The correlation of output with the two measures of inflation is
positive under full commitment and becomes negative at intermediate degrees of
commitment. The reason is that under full commitment, output and inflation are
positively correlated not only conditionally on demand shocks, but also condition-
ally on technology and markup shocks. In response to the latter shocks, output
and inflation move in opposite directions on impact, but after about five quarters
they comove. With loose commitment, especially if a reoptimization has occurred,
inflation and output move in opposite directions for a longer horizon. As a result,
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FIGURE 4. Impulse responses to a productivity shock. The figure plots the impulse responses
to a one–standard deviation shock under different commitment settings. The solid line refers
to a particular history where the probability of commitment γ = .90 and reoptimizations
do not occur (ηt = 1, ∀t). The line with crosses refers to a particular history where the
probability of commitment γ = .90 and a single reoptimization occurs after 10 quarters
(η10 = 0, ηt = 1, ∀t �= 10). For any quarter, the gains from reoptimization are computed
as the welfare difference between keeping the announced plan and reoptimizing in that
particular quarter.

the correlation between inflation and output conditional on nondemand shocks, as
well as the unconditional counterpart, changes sign with even a small departure
from the full commitment assumption.22

Table 2 also shows that in the data the correlation between output and price
inflation is mildly negative, whereas the correlation between output and wage
inflation is mildly positive—a feature that the loose-commitment model with
γ = .90 matches quite well. In addition, the relative volatility of interest rates is
also more plausible with limited-commitment settings.

Finally, loose commitment changes the relative contribution of alternative
shocks to business cycle fluctuations, as summarized in Figure 6. This pattern
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FIGURE 5. Impulse responses to a government spending shock. The figure plots the impulse
responses to a one–standard deviation shock, under different commitment settings. The
solid line refers to a particular history where the probability of commitment γ = .90 and
reoptimizations do not occur (ηt = 1, ∀t). The line with crosses refers to a particular history
where the probability of commitment γ = .90 and a single reoptimization occurs after 10
quarters (η10 = 0, ηt = 1, ∀t �= 10). For any quarter, the gains from reoptimization are
computed as the welfare difference between keeping the announced plan and reoptimizing
in that particular quarter.

is mostly evident for interest rate fluctuations. Under full commitment about 55%
of the fluctuations can be attributed to demand shocks. A small loss of credibility
(γ = .90) is enough for this proportion to drop dramatically to about 17%.
The contribution of wage and price markup shocks increases from 43% to 72%.
The reason is that the interest rate response to a demand shock does not change
much with the degree of commitment. Instead, in response to markup shocks, the
interest rate barely responds under commitment, whereas it increases and remains
high for a long period in limited commitment settings. For almost all the other
variables, when commitment is lower, price markup shocks lose importance and
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FIGURE 6. Variance decomposition. The figure displays the contributions of different shocks
to the variance of our variables, under different commitment scenarios. For convenience,
risk-premium, investment-specific, and government-spending shocks have been grouped as
“demand” shocks. The model statistics are computed with 1,000 simulations of 200 periods
each.

wage-markup shocks become more relevant. Hence, the variance decompositions
and the earlier plots measuring time inconsistency suggest that commitment is
particularly important to stabilize wage markup shocks.

In summary, loose commitment has large effects on price and wage inflation
dynamics and nominal interest rates—the main variables for which the central bank
is responsible. The impulse responses to different shocks, as well as the interest
rate volatility, are not necessarily in between full commitment and discretion.
Finally, small departures from full commitment change the sign of the correlation
between output and inflation. In addition, the relative contribution of wage-markup
shocks to business cycle fluctuations increases dramatically, especially for interest
rates and inflation.

5. CONCLUSIONS

Imperfect commitment settings overcome the dichotomy between full commitment
and discretion. In practice, policy makers have some degree of commitment that
is not perfect—in some cases they keep a previously formulated policy plan,
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whereas in other cases they reformulate such plans. Recent proposals for imperfect
commitment settings have been restricted to relatively simple and stylized models.

The contribution of this paper is to propose a method and a toolkit that extend
the applicability of loose commitment to medium- and large-scale linear–quadratic
models typically used in monetary policy. We exemplified the method in the Smets
and Wouters (2007) model, where we posed a variety of questions that our method
can address and that would otherwise remain unanswered.

Our easy-to-use toolkit permits several modeling extensions. For instance, it
would be interesting to incorporate financial frictions, commodity price shocks,
and unemployment dynamics and determine the importance of commitment in
those cases. Because the optimal policy under loose commitment is not the aver-
age of the polar cases of full commitment and discretion, examining the policy
responses to such shocks would be interesting per se and shed light on recent
economic developments. Also, considering alternative intermediate-credibility
settings is certainly desirable, but the technical and computational complexity
of addressing the medium- and large-scale models considered here may become
prohibitive. On a different note, our methodology could be exploited to analyze the
plausibility of alternative commitment settings through an appropriate estimation
exercise. We plan to pursue these projects in the near future.

NOTES

1. We have also tested our methodology with bigger models used for monetary policy analysis,
such as the Norwegian Economy Model (NEMO) of the Norges Bank.

2. In the presence of steady state distortions, a purely quadratic objective can be obtained using
a simple linear combination of the structural equations approximated to second order. However, as
shown by Debortoli and Nunes (2006), this requires imposing the so-called “timeless perspective”
assumption, which contrasts with the loose commitment settings considered in this paper. For an
alternative approach, see Schmitt-Grohe and Uribe (2005).

3. See for example the empirical analysis of Dennis (2004) and Ilbas (2012).
4. In the companion code, models with more lags, leads, constants, and serially correlated shocks

are automatically transformed to be consistent with the formulation in equations (1) and (2). Stochastic
targets and preference shocks can also be incorporated by suitably expanding the vector yt .

5. In the case of the United States, the reserve bank presidents serve one-year terms as voting
members of the FOMC on a rotating basis, except for the president of the New York Fed. Furthermore,
substantial turnover among the reserve bank presidents and the members of the Board of Governors
arises because of retirement and outside options. With the (up to) seven members of the Board of
Governors being nominated by the U.S. President and confirmed by the U.S. Senate, the composition
of views in the FOMC may be affected by the views of the political party in power at the time of the
appointment. Chappell et al. (1993) and Berger and Woitek (2005) find evidence of such effects in the
United States and Germany, respectively.

6. Such a framework would build on the seminal contributions of Chari and Kehoe (1990), and
Kehoe and Levine (1993). A related approach using a model of imperfect information is described
in Sleet (2001). Most of these frameworks model the private sector as a representative household
therefore avoiding the coordination problem.

7. The functional form of the value function is discussed, for instance, in Ljungqvist and Sargent
(2004), (Ch. 5). In the initial period, the policy maker does not have to fulfil any previous promise, and
this period is therefore equivalent to a reoptimization.
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8. The indicator function is only needed because in deriving equation (10) we have divided all
terms by (βγ )t , which can be done only if γ �= 0.

9. Dennis and Kirsanova (2010) propose alternative selection devices based on the concepts of
robustness and learnability.

10. A recent work by Himmels and Kirsanova (2011) considers a model with multiple discretionary
equilibria and shows that a minimal degree of commitment is enough to eliminate that multiplicity. The
authors also propose a way to detect and compute multiple equilibria, which we view as a complement
to our analysis.

11. The associated derivations, which follow the steps in Ljungqvist and Sargent (2004), (Ch. 5),
are omitted for brevity and are available upon request.

12. Our sample codes incorporate these correction terms.
13. The reader is referred to Benigno and Woodford (2005), (2006), Levin et al. (2005), and Levine

et al. (2008a, 2008b).
14. Debortoli and Nunes (2010) formally proved that welfare is increasing in the probability of

commitment. Also, as discussed there, the shape of the relative welfare gains changes with the com-
mitment metric. Here, we are considering and comparing results in the literature along the probability-
of-commitment metric.

15. Computing the same measure relative to the output-gap target yields the value of 8.52%. This
value is higher because the weight on output-gap stabilization is rather small. If, as stated in some
central bank treaties such as the ECB, the only goal of the central bank is to stabilize inflation, then this
value will be infinity. Also, note that this value is unrelated to consumption-equivalent gains computed
with a micro-founded utility function.

16. Evans and Honkapohja (2003) discuss how interest rate rules can implement the optimal policy
plan, whereas targeting rules are discussed by Giannoni and Woodford (2010) in a general framework
and by Debortoli and Nunes (2011) in a loose commitment setting.

17. For comparability with some studies, the coefficients on inflation and output-gap should be
adjusted as φπ/(1 − φi) and φy/(1 − φi), respectively.

18. For example, an optimal policy plan under full commitment displays history dependence even
when all the disturbances are i.i.d. and in the absence of natural state variables. See, e.g., Galı́ (2008,
Ch. 5).

19. In particular, we chose the value of γ through the simulated method of moments, using the
(inverse) of the estimated variance–covariance matrix of the statistics over the sample 1970:Q1–
2008:Q3 as the weighting matrix. The resulting value of γ would be very similar if targeting only the
Taylor-rule coefficients (.93), or with the alternative objective function (.94).

20. The responses to other shocks also present the same features and are omitted for brevity, but are
available upon request.

21. However, this result is not obvious in the current model. The presence of both price and
wage rigidities implies a trade-off between inflation and output stabilization, and thus a scope for
commitment, even in response to demand and technology shocks.

22. The conditional cross correlations are omitted for brevity and are available upon request.
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APPENDIX
The problem of the central bank under full commitment is

V0 = min
{yt }∞t=0

E−1

∞∑
t=0

βty ′
tWyt (A.1)

s.t. A−1yt−1 + A0yt + A1Etyt+1 + Bvt = 0 ∀t ≥ 0,

where V0 is the value function obtained at time 0. Treating the vector yt as state vari-
ables and noting that the value function is quadratic, one obtains V0 = y ′

−1Py−1 + d ,
where the matrix P and the constant d need to be determined in the equilibrium
solution.

The problem under limited commitment needs to be adapted because the central bank can
only choose directly the allocations corresponding to histories where it retains commitment.
If the commitment technology is broken in a certain time period, previous decisions are
disregarded and policy is reoptimized—such an event is analogous to a new central bank
or chairman taking over. Although the formulation (A.1) remains valid, before taking first-
order conditions, it is helpful to write explicitly the allocations upon which the central bank
appointed at t = 0 is deciding.
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The treatment of the constraints is easier and needs to be adapted according to

A−1yt−1 + A0yt + A1Prob(ηt+1 = 1)Et (yt+1|ηt+1 = 1) (A.2)

+ A1Prob(ηt+1 = 0)Et

(
yr

t+1|ηt+1 = 0
) + Bvt = 0,

where yr
t+1 refers to the allocations in case a reoptimization occurs. Given our assumptions

on the distribution of the reoptimization shocks, this expression is simplified to

A−1yt−1 + A0yt + γA1Etyt+1 + (1 − γ ) A1Ety
r
t+1 + Bvt = 0, (A.3)

where we simplify the notation on the expectations operator because we already distinguish
yt+1 from yr

t+1.
The objective function also needs to be adapted using similar steps. Whenever a reopti-

mization occurs, a new central bank takes over and the current central bank cannot decide
on those allocations directly. However, the allocations decided by the new central bank still
provide utility for the current central bank. Such lifetime utility in the case of reoptimization
is conveniently summarized through a value function V r . Writing a few terms of the central
bank’s objective function,

t = 0 : y ′
0Wy0, (A.4)

t = 1 : +β
[
γy ′

1Wy1 + (1 − γ ) V r
1

]
,

t = 2 : +β2
[
γ 2y ′

2Wy2 + γ (1 − γ ) V r
2

]
,

t > 2 : + . . . .

In period t = 0, the welfare terms are written explicitly because the current central bank
decides directly on those. In period t = 1, discounted at rate β, the central bank chooses
the allocations in case a reoptimization does not occur. This event has probability γ . With
probability (1 − γ ) a reoptimization occurs and the lifetime utility from that node onward is
summarized by V r

1 . Period t = 2, as well as later periods, follows the same logic. Grouping
all those terms together yields

∞∑
t=0

(βγ )t
[
y ′

tWyt + β (1 − γ ) V r
t+1

]
. (A.5)

We solve for an equilibrium at which the problems of the current and future central banks
coincide. In the initial period t = 0, the central bank does not have to fulfil any previous
promises, and this period is therefore equivalent to a reoptimization. For these reasons, we
obtain V r

t+1 = y ′
tPyt + d; the matrix P and scalar d are the same as before, but now one

considers the state variables for the corresponding period. Making the relevant substitutions,
the planner’s problem is therefore given by (4).

Several details of this formulation are available in Debortoli and Nunes (2010). In that
paper, we show in detail that all the nodes of the possible tree of events are covered. We also
show that, given the value functions V r

t+1 and the policy functions when a reoptimization
occurs (Ety

r
t+1 = H̃yt ), the problem is well posed and fits the framework of Marcet and

Marimon (2009). As described in the main text, the solution procedure requires that V r
t+1

and Ety
r
t+1 be consistent with the equilibrium (through the matrices P and H̃ and the

scalar d).
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