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Abstract

In textbook expositions of the equity-premium, riskfree-rate and variability-mismatch

puzzles, growth rates are typically normally distributed. But then simply recognizing

that the implied distribution conditional on realized data is Student-t entails a star-

tling antipuzzle pattern, which reverses everything needing to be explained. This paper

shows generally that the unobservable nature of structural parameters adds to expec-

tation beliefs a permanent thick-tailed background layer of uncertainty, which connects

the three puzzles by one parsimonious unifying principle: measured in marginal utiles,

future growth prospects are potentially much more uncertain than might be believed

from merely simulating past growth rates.

1 Introduction: Structural Uncertainty and Asset Prices

The �equity premium puzzle�refers to the spectacular failure of the standard representative-

agent growth model of dynamic stochastic general equilibrium to explain a historical di¤er-

ence of some six or so percentage points between the average return to a representative

stock market portfolio and the average return from a representative portfolio of relatively

safe stores of value. Such a large risk premium suggests either that people are perceiving

much more marginal-utility-adjusted uncertainty about future growth rates than past data

would at �rst glance appear to indicate, or else that something is fundamentally wrong with

�(e-address: mweitzman@harvard.edu) For helpful detailed comments on earlier drafts of this paper,
but without blaming them for its remaining defects, I am grateful to Andrew Abel, Evan Anderson, Gary
Chamberlain, Xavier Gabaix, Alfred Galichon, John Geweke, Jerry Hausman, Joseph Kadane, Narayana
Kocherlakota, Lawrence Kotliko¤, Angelo Melino, Jonathan Parker, and Je¤ Strnad.
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the standard formulation of the problem in terms of a non-bizarre, comfortably-familiar

coe¢ cient of relative risk aversion, say with conventional values 
 � 2� 1:
For this same risk-aversion coe¢ cient of 
 � 2, the stochastic generalization of the

basic Ramsey formula from equilibrium growth theory predicts a riskfree interest rate in the

approximate neighborhood rf � 5�6%, while what is actually observed is more in the rangebrf � 0� 1%. The large discrepancy between these two values is the �riskfree rate puzzle,�
which represents another big disappointment with the standard neoclassical model.

If the aggregate stock market can be seen as some kind of a proxy for the portfolio

of all wealth in an economy and if its payo¤s are a proxy for total consumption, then in

principle returns on comprehensive economy-wide equity should re�ect more-fundamental

growth expectations about the underlying real economy. What is being called here the

�variability mismatch puzzle�refers to the counterintuitive empirical fact that actual returns

on a representative stock market index appear to be about an order of magnitude excessively

more variable than any �fundamental�that might be driving them.

The point of departure for this paper is to note that macroeconomic asset pricing is dom-

inated by the paradigm of so-called �rational expectations�(which more aptly might have

been named �ergodic expectations�). In this benchmark parable of a stationary-ergodic equi-

librium, insider agents have e¤ectively learned their way into knowing the �true�structural

parameters of the stochastic growth process. Simultaneously, outsider econometricians have

accumulated enough data to justify having a su¢ ciently high level of statistical con�dence

to e¤ectively allow substituting sample-frequency moments for �true�population moments

when �tting an Euler equation (which, strictly speaking, holds only in ex-ante subjective-

belief expectations). While such classical methodology may well be appropriate for many

economic applications, the paper will contend that this way of framing the issues �and even

just writing an Euler equation in ex-post empirically-realized frequencies �is a fatally �awed

procedure for the particular application of analyzing aversion to structural uncertainty, which

underlies (or, more accurately, should underlie) all asset-pricing calculations.

In a nonstationary (or evolutionary) world, insider agents and outsider econometricians

are as one in being perennially uncertain about the underlying structural parameters of

the future growth process, because learning is not converging to an ergodic distribution of

growth rates. All other things being equal, by excluding evolutionary change the �rational

expectations�vision of empirical asset pricing makes the distribution of future growth rates

seem more thin-tailed and less uncertain than it actually is. When underlying coe¢ cients do

not have �true�constant values because the stochastic growth process is evolutionary with

hidden structural parameters, then classical-frequentist statistical inference can understate

enormously the amount of thick-tailed predictive uncertainty about the future marginal-
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utility-weighted stochastic discount factor. This potentially unbounded prediction bias in

forecasting expected future marginal utility spills over into severe pricing-kernel errors, which

cascade into dramatically incorrect asset valuations, culminating in the bedeviling family of

asset-return puzzles. Such type of e¤ect is con�rmed dramatically by just plugging into the

relevant asset-pricing formulas a Student-t distribution where a normal standardly goes, and

then noting the startling antipuzzle reversal of all inequalities needing to be explained.

This paper will show that �rational expectations�is an inappropriate and misleading equi-

librium concept for pricing assets because it represents an unstable knife-edge balance, which

jumps discontinuously into a very di¤erent kind of asset-pricing equilibrium with radically

dissimilar properties whenever just the tiniest amount of non-ergodic evolutionary-structural

uncertainty is appended to the core model. Understood in a context of Bayesian statistical

learning-inference, the fact that structural growth parameters of the model are unknown

hidden variables introduces an extra layer of posterior uncertainty, which derives ultimately

from the refusal of nondogmatic prior beliefs to preclude the evolution of unforeseen bad

future histories, and whose repercussions do not dampen down to zero for any number of

sample observations. Such omnipresent background uncertainty spreads out critically the

probability distribution of future growth rates and is capable of acting strongly upon as-

set prices to increase signi�cantly the values of both the equity premium and variability

mismatch, while simultaneously decreasing markedly the riskfree interest rate.

This paper is far from being the �rst to investigate the e¤ects of Bayesian statistical

uncertainty on asset pricing. Earlier examples having some Bayesian features or overtones

include Barsky and DeLong (1993), Timmermann (1993), Bossaerts (1995), Cecchetti, Lam

and Mark (2000), Veronesi (2000), Brennan and Xia (2001), Abel (2002), Brav and Heaton

(2002), Lewellen and Shanken (2002), and several others. Broadly speaking, these papers

indicate or hint, either explicitly or implicitly, that the need for (transient) Bayesian learning

about structural parameters (along the path to a �rational expectations�equilibrium) may

(temporarily) reduce the degree of one or another equity anomaly. What has been utterly

missing from this literature, however, is any sense of the potentially unlimited power of

the permanent strong force that distribution-spreading structural parameter uncertainty can

bring to bear on asset pricing equations when an evolutionary stochastic process derails the

ergodic convergence required to underpin �rational expectations.� In e¤ect, the direction

of this Bayesian prior-in�uenced structural model uncertainty is (somewhat) appreciated in

(some of) the literature, but not the stunning magnitude of the sustained �strong force�

that it is capable of unleashing via its overwhelming ability to dominate so completely the

numerical outcome of standard expectation formulas involving stochastic discount factors.

A sole possible exception in the vast sea of equity-puzzle literature is a terse six-page
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communication by Geweke (2001), which applies a Bayesian framework to the most standard

model prototypically used to analyze behavior towards risk and then notes the extraordinary

fragility of the existence of �nite expected utility itself.1 In a sense the present paper begins

by accepting this shattering non-robustness insight, but pushes it further to argue that the

inherent sensitivity of the standard prototype formulation constitutes a signi�cant clue for

unraveling what is driving the asset-pricing puzzles and for giving them a uni�ed general-

equilibrium interpretation that parsimoniously links together the stylized time-series facts.

The paper will end up arguing that the three equity macro-puzzles are not nearly so puz-

zling in a Bayesian evolutionary-learning framework that includes hidden-structure model-

parameter uncertainty. Instead, the arrow of causality in a uni�ed Bayesian explanation is

reversed: the puzzling numbers being observed empirically are trying to tell a revealing story

about the implicit background subjective distribution of future growth-structure uncertainty

that investors actually have, and which is generating such data. In the �nal section of the

paper the three puzzling time-series sample averages of the equity premium, riskfree rate and

variability mismatch are inverted to back out the implicit subjective probability distribution

of the future growth rate. The paper suggests empirically that the �strong force�of evolu-

tionary structural uncertainty is a far more powerful determinant of asset prices and returns

than the �weak force�of stationary �rational expectations�ergodic risk. Measured in the

appropriate welfare-equivalent space of expected utiles, a world view about the subjective

uncertainty of future growth prospects emerges that is much closer in expected-marginal-

utility terms to what is being suggested by the relatively stormy volatility record of stock

market wealth than it is to the far more placid smoothness of past consumption.

2 The Three Macro Puzzles in Dual-Canonical Form

The critical issue for this paper is whether the appearance of the three related asset-return

�macro puzzles� might essentially be attributable to background evolutionary-structural

uncertainty. To cut sharply to the analytical essence of this central issue, a super-stark dual-

canonical model is used where everything else except the most basic architecture of the model

has been set aside. Heroically assumed away are the details in such diversionary (for this

paper) complications as leverage, illiquidity, defaults, taxes, autocorrelation, irrationality,

heterogeneous agents, exotic preferences, borrowing constraints, adjustment costs, business

cycles, timing frictions, incomplete markets, idiosyncratic risks, and the like.

Let t denote the present period. From the present perspective, consumption Ct+i in

1I am grateful to two readers of the �rst draft of this paper for informing me of Geweke�s pioneering
earlier note, after seeing that I had independently derived results with a similar �avor.
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future period t+ i (here with i � 1) is a random variable, which, for the time being at least,
comes from a very general evolutionary stochastic process. The population consists of a

large �xed number of identical people. The utility U of consumption C is speci�ed by the

isoelastic power function

U(C) =
C1�


1� 

(1)

with corresponding marginal utility

U 0(C) = C�
; (2)

where the coe¢ cient of relative risk aversion is the positive constant 
.

The pure-time-preference multiplicative factor for discounting one-period-ahead utility

into present utility is �. At the present time t the representative agent�s welfare is

Vt = Et

"
1

1� 


1X
i=0

�i(Ct+i)
1�


#
; (3)

where throughout this paper the expectation operator Et is understood as being taken over

a subjective distribution of future growth rates, conditioned on all information available at

time t. The marginal rate of substitution between Ct and Ct+1 is Mt+1 � �U 0(Ct+1)=U
0(Ct),

and for any asset � whose gross return in period t+1 is R�t+1, the relevant Euler equation is

�Et

"�
Ct+1
Ct

��

R�t+1

#
= 1: (4)

The paper will also soon treat an AK-type production version of a dynamic stochastic

general equilibrium (with comprehensive K and uncertain A), but �rst begins with the sim-

plest most-heroic version of the textbook workhorse formulation of a Lucas-Mehra-Prescott

endowment-growth economy, which is ubiquitous as a benchmark point of departure through-

out the �nance-economics literature.2 In this endowment-exchange model of general equilib-

rium, consumption growth is given by an exogenous stochastic process and all asset markets

are like phantom entities because no one actually ends up taking a net position in any of

them. The paper concentrates on three basic investment vehicles: a �riskfree�asset, �one-

2The famous fruit-tree model of asset prices in a growing economy traces back to two seminal articles:
Lucas (1978) and Mehra-Prescott (1985). For applications, see the survey articles of Campbell (2003) or
Mehra and Prescott (2003), both of which also give due historical credit to the other pioneering originators
of the important set of ideas and the stylized empirical facts used throughout this paper. Citations for
the many sources of these (and related) seminal asset-pricing ideas are omitted here only to save space, and
because they are readily available, e.g., in the above two review articles and in the textbook expositions of
Cochrane (2001), Du¢ e (2001), or Gollier (2001).
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period-ahead�equity, and �comprehensive�equity, all of which are abstractions of reality.

Gross returns are asset payo¤s divided by asset price, with consumption as numeraire.

The �riskfree�asset e¤ectively guarantees that this period�s consumption will also be

paid in the next period, and is approximated in an actual economy by a portfolio of the

safest possible stores of value, including hard currency, Swiss bank accounts, U.S. treasury

bills, and inventories of real goods. In the theoretical fruit-tree economy, substituting the

payo¤ of this period�s consumption into the Euler equation (4) gives the price of the riskfree

asset at time t as

P ft = (Ct)
1+
�Et

�
(Ct+1)

�
� ; (5)

while the realized gross one-period return on the riskfree asset Rft+1 in period t+ 1 is

Rft+1 =
Ct

P ft
: (6)

�One-period-ahead�equity is a hypothetical asset that pays only next period�s consump-

tion endowment and thereafter expires. The price of this risky asset at time t is

P 1et = (Ct)

�Et

�
(Ct+1)

1�
� ; (7)

while its realized gross return is

R1et+1 =
Ct+1
P 1et

: (8)

�Comprehensive�equity is approximated in the real world by a broad-based representa-

tive index of publicly-traded shares of stocks whose aggregation weights mimic the wealth

portfolio of the entire economy. In the theoretical fruit-tree endowment economy, �compre-

hensive� equity is modeled abstractly as a claim on the stream of all future consumption

dividends. Thus, in period t the ex-dividend price of equity P et is the price of fruit trees

claiming ownership of all dividends accruing from time t+ 1 onward, which by repeated use

of the Euler condition can be written as

P et = (Ct)



1X
i=1

�iEt
�
(Ct+i)

1�
� : (9)

The realized gross return on comprehensive equity between periods t and t+ 1 is

Ret+1 =
Ct+1 + P et+1

P et
: (10)

Combining (7), (8) with (9), (10) and rewriting terms gives a tight connection between
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the two realized equity returns, expressed symmetrically in welfare-utility fundamentals as

Ret+1
R1et+1

=
Vt+1
Ut+1

�
Et[Ut+1]

Et[Vt+1]

�
: (11)

For any time t, comprehensive �nancial wealth in this endowment-exchange economy is

Wt = Ct + P et : (12)

Substituting (1), (3), (9) into (12) and cancelling redundant terms gives

Vt
Ut

=
Wt

Ct
; (13)

which suggests that volatile wealth and volatile consumption have a symmetric relationship

to welfare, an important theme that will be pursued further in Section 6 of the paper.

Turning now to the dual production side (but for brevity omitting details of a rigorous

proof), it should not be di¢ cult to grasp intuitively that comprehensive �nancial wealth

in the pure endowment-exchange dynamic stochastic general equilibrium is dual-isomorphic

to comprehensive production capital in the optimal stochastic growth problem of a linear-

production AK-type model with uncertain productivity. The identi�cation key to this full

duality of endowment-production equivalence is At+i $ Ret+i and Kt+i $ Wt+i, where the

symbol �$ �means mathematical isomorphism for all i � 0. �Comprehensive production
capital�is intended here to represent the capitalized value (at stochastic general equilibrium

prices) of returns to all factors of production, including labor, land, minerals, human and

intangible (as well as reproducible) capital. In the AK production version with comprehen-

sive K and stochastic A, the control variable Ct+i is chosen (just before At+i+1 is realized)

to maximize Vt+i in an expression of the form (3). The system�s state-transition equation is

Kt+i+1 = At+i+1[Kt+i � Ct+i] $ Wt+i+1 = Ret+i+1[Wt+i � Ct+i]; (14)

where the dual-isomorphic comprehensive-wealth equation of motion in (14) comes from (12),

(10). Therefore, it matters not whether stochastic consumption fCt+ig is taken as primitive
in the endowment economy while stochastic returns fRet+ig are derived and subsequently
taken as primitive stochastic productivity fAt+ig(= fRet+ig) for the production economy, or
whether stochastic productivity fAt+ig(= fRet+ig) is taken as primitive in the production
economy while optimal consumption fCt+ig is derived and subsequently taken as primitive
for the endowment economy, because the two equilibria are not operationally distinguishable

to an outside observer. The reason for stressing here this mathematical isomorphism of the
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�nancial-wealth side with the production-capital side is to lay the groundwork for claiming

later that the venerated �discipline imposed by general equilibrium modeling�does not allow

one interpretation to take priority over the other, since at the level of abstraction of this

macro-model comprehensive capital is comprehensive wealth and both must work in unison.

For all times t, de�ne xt by the equation

xt = lnCt+1 � lnCt; (15)

which means that xt represents the geometric growth rate of consumption during period

t. At about this point in developing the argument, which up to now applies for a very

general evolutionary stochastic process, the expository literature introduces the assumption

of a stationary-ergodic �rational expectations�structure. Consistent with the spirit of using

a simple formulation, here the super-stationary postulate is now imposed that the random

variables fxtg are i.i.d. with a known distribution �but this assumption is intended to apply
only for expository purposes throughout the remainder of this section of the paper. In this

special i.i.d. case, the riskfree-rate formula (6), (5) in logarithmic form becomes

rf = �� lnE[exp(�
x)]; (16)

where � � � ln � is the instantaneous rate of pure time preference and rft+1 � lnR
f
t+1.

When the random variables fxtg are i.i.d., it is readily shown from (7) and (9) that the

price-earnings ratios P 1et =Ct and P
e
t =Ct for both forms of risky-asset equity are constants

independent of t and (from combining (8), (10), (11), (14)) that

Re(x) = R1e(x) = A(x) =
exp(x)

�E[exp((1� 
)x)]
: (17)

Taking the natural logarithm of the expected value of (17) and subtracting (16), the

ergodic-average equity premium in each period (under the i.i.d.-growth assumption) is

lnE[Re]� rf = lnE[R1e]� rf = lnE[exp(x)] + lnE[exp(�
x)]� lnE[exp((1� 
)x)]: (18)

Equation (18) is a theoretical formula for calculating the equity risk premium, given any

coe¢ cient of relative risk aversion 
, and, more importantly here, given the i.i.d. probability

distribution of the uncertain future growth rate x. Concerning the relative-risk-aversion

taste parameter 
, there seems to be some rough agreement within the economics profession

as a whole that an array of evidence from a variety of sources suggests that it is somewhere

between about one and about three. More precisely stated, any proposed solution which
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does not explain the equity premium for 
 � 4 would likely be viewed suspiciously by most
members of the broadly-de�ned community of professional economists as being dependent

upon an unacceptably high degree of risk aversion.

By way of contrast with preferences, which are standardly conceptualized as being �xed

over time, much less is known about what is the appropriate probability distribution to use

for representing future growth rates. The reason for this traces back to the unavoidable

truth that, even under the best of circumstances (with a given, stable, stationary stochastic

speci�cation that can accurately be extrapolated from the past onto the future), no one

can know with certainty the critical structural parameters of the distribution of x. At this

juncture in the story, the best that anyone can do is to infer from the past some estimate of

the probability distribution of x. The rest of the story hinges on specifying the form of the

assumed probability density function of x, and then looking to see what the data are saying

about its likely parameter values. The functional form that naturally leaps to mind is the

normal distribution

x � N(�; V ); (19)

which is the ubiquitous benchmark case assumed throughout the asset-pricing literature.

The equity premium literature generally proceeds by implicitly presuming that the �true�

structural parameters � and V are constants known by the agents inside the economy (al-

though perhaps not known to an outside observer), and then continues on by substituting

the normal distribution (19) into formula (18), which reduces (18) to a simple analyzable

expression. Instead of allowing representative agents in the economy to be aware that � and

V are unknown random variables, the standard practice essentially uses the �rst two sample

moments and then goes on pretending that normality still holds (in place of substituting into

(18) the relevant Student-t statistic to account for structural-uncertainty sampling error).

Let bx be the sample mean and bV be the sample variance of a long time series of past

growth rates. Implicitly in the �rational expectations�interpretation, the sample size is pre-

sumed large enough to make bx and bV be su¢ ciently accurate estimates of their underlying

�true�values � and V so that agents inside the economy can be imagined as having substi-

tuted (bx; bV ) for (�; V ) in their subjective Euler equations. However, little formal attempt

is made either to de�ne carefully for this context �su¢ ciently accurate�or to con�rm just

exactly what happens to formula (18) if the estimates, and therefore the approximations,

are not �su¢ ciently accurate.� When (19) is assumed along with the extreme point-mass

dogmatic-prior case E[x] = bx, V [x] = bV , then using the formula for the expectation of a
lognormal random variable and cancelling the many redundant terms simpli�es (18) into the

standard expression

lnE[Re]� rf = 
V [x]; (20)
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and for this special deterministic-structure case the equity premium puzzle is readily stated.

Considering the U.S. as a prime example, in the last century or so the average annual real

arithmetic return on the broadest available stock market index is taken to be lnE[Re] � 7%.3

The historically observed real return on an index of the safest available short-maturity bills

is less than 1% per annum, implying for the equity premium that lnE[Re]� rf � 6%. The
mean yearly growth rate of U.S. per capita consumption over the last century or so is about

2%, with a standard deviation taken here to be about 2%, meaning bV � 0:04%. Suppose


 � 2. Plugging these values into the right hand side of (20) gives 
 bV � 0:08%.
Thus, the actually observed equity premium on the left hand side of equation (18) exceeds

the estimate (20) of the right hand side by some seventy-�ve times. If this were to be

explained with the above data by a di¤erent value of 
, it would require the coe¢ cient of

relative risk aversion to be 150, which is away from acceptable reality by about two orders

of magnitude. This is the form or variant of the equity premium puzzle applicable to the

above dual-isomorphic endowment-production general-equilibrium model, and it is apparent

why characterizing such a result as �embarrassing�may be putting it very mildly. Plugging

in some reasonable alternative speci�cations or di¤erent parameter values can have the e¤ect

of chipping away at the puzzle, but the overwhelming impression is that the equity premium

is o¤ by at least an order of magnitude. There just does not seem to be enough variability

in the recent past historical growth record of advanced capitalist countries to warrant such a

high risk premium as is observed. Of course, the underlying model is extremely crude and

can be criticized on any number of valid counts. Economics is not physics, after all, so there

is plenty of wiggle room for a paradigm aspiring to be the �standard economic model.�Still,

two orders of magnitude seems like an awfully large base-case discrepancy to be explained

away ex post factum, even coming from a very primitive model.

Turning to the riskfree rate puzzle, the meaning given in the asset-pricing literature

to equation (16) parallels the interpretation given to the equity premium formula. The

literature typically proceeds from (16) by postulating the normal distribution (19), but

then imagines that the representative agent ignores the statistical uncertainty inherent in

estimating the �true�values of � and V . Substituting the deterministic-structure point-

mass-parameter dogmatic-prior version E[x] = bx, V [x] = bV into (16), and then using the

formula for the expectation of a lognormal distribution, gives

rf = �+ 
E[x]� 1
2

2V [x]; (21)

3These numbers are from Mehra and Prescott (2003) and/or Campbell (2003), who also show essentially
similar summary statistics based on other time periods and other countries (but most of which naturally
have somewhat lower values of lnE[Re] than �America in the American century�).
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which is a familiar generic equation appearing in one form or another all throughout equi-

librium stochastic-growth theory. (Its origins trace back to the famous neoclassical Ramsey

optimal-growth model of the 1920�s.)

Non-controversial estimates of the relevant parameters appearing in (21) (calculated on

an annual basis) are: bx � 2%, bV � :04%, � � 2%, 
 � 2. With these representative

parameter values plugged into the right hand side of (21), the left hand side of (16) becomes

rf � 5:9%. When compared with an actual real-world riskfree rate brf � 1%, the theoretical
formula is too high by � 4:9%. This gross discrepancy is the riskfree rate puzzle. With the
other base-case parameters set at the above values, the value of 
 required to explain the

riskfree interest rate discrepancy is essentially 
 � 0, whereas 
 � 150 is required to explain
the equity risk premium. Choosing a coe¢ cient of relative risk aversion to ease the riskfree

rate puzzle exacerbates the equity premium puzzle, and vice versa. The simultaneous

existence of two strong contradictions with reality, which, in addition, seem to be strongly

contradicting each other, might be characterized as being �disturbing times three.�

Yet another enigma is the �variability mismatch puzzle.� From duality isomorphism,

the assumption of i.i.d. primitive x (= lnA) for the endowment economy is symmetrically

isomorphic to the assumption of i.i.d. primitive re (= lnA + fE[re] � E[lnA]g) for the
production economy and, whatever the direction of causality in (14), from (17) it must hold

identically for all i that

ret+i � E[re] = xt+i � E[x]: (22)

In this i.i.d. economy, the entire �nancial-economic system vibrates in unison. According

to (22), the realized deviation from the mean of continuously-compounded �nancial returns

on comprehensive equity-wealth re � E[re] should, for this simple �rational expectations�

equilibrium, coincide exactly with the realized deviation from the mean of its underlying

real �fundamental�x � E[x], implying that all higher-order moments of the two distribu-

tions should match. However, it is painfully obvious in the time-series sample that even just

the two empirical second-moment variabilities are badly mismatched because the (geomet-

rically calculated) standard deviation of equity returns b�[re] � 17% is much bigger than the
(geometrically calculated) standard deviation of growth rates b�[x] � 2%.
The relevant macroeconomic form of the �variability mismatch puzzle�is understood here

to be the stylized fact that, contrary to the simple theory, in actuality the historical returns

to a broad-based stock market index counterintuitively appear to be about an order of mag-

nitude more variable than the underlying fundamental of an aggregate-output real-growth

payout, for which representative equity is supposed to be the surrogate claimant. Con-

forming once again with the all-too-familiar quantitative asset-pricing macro-puzzle family

pattern, it turns out that substituting alternative speci�cations or di¤erent parameter values
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can lessen the initial order-of-magnitude discrepancy (here of the degree of variability mis-

match between the real-production side of an economy and its dual �nancial-wealth side),

but something central of the mystery remains that still seems way o¤ base. Note for later

reference that endowment-production duality is perfectly symmetric (and completely silent)

on the critical question: which sample variability (b�[x] or b�[re]) should be taken to calibrate
welfare in the i.i.d.-normal case when it turns out empirically that b�[x] 6= b�[re]?
Summing up the scorecard for this super-simple i.i.d.-normal version of a dual endowment-

production dynamic-stochastic-general-equilibrium growth model, we have two strong con-

tradictions with reality and two serious internal contradictions, making the total add up to

a conundrum that is disturbing times four. The next section of the paper examines what

happens to the family of asset-return puzzles when the relevant structural parameters take

on the familiar t-type sampling distributions that arise naturally in a nonstationary learning

environment when sample points are drawn independently from a normal population.

A decent heuristic intuition for what is coming up next can be gotten simply by substitut-

ing a Student-t distribution from an arbitrarily large (but �nite) sample of observations for

the normal distribution in formulas (16) and (18). When the limits of the relevant inde�nite

integrals containing the Student-t distribution are evaluated, it is readily seen from formula

(16) that rf ! �1, while from (18) careful limit calculations show that lnE[Re]�rf ! +1:

These extreme limiting values hint at the potentially enormous power of the �strong force�of

structural parameter uncertainty to reverse categorically the asset-pricing puzzles, thereby

raising into sharp prominence the core question: what are we supposed to be explaining here?

Should we be trying to explain the puzzle pattern: why is the actually-observed equity pre-

mium so embarrassingly high while the actually-observed riskfree rate is so embarrassingly

low (relative to a theoretical formula based on the normal distribution)? Or should we be

trying to explain the opposite antipuzzle pattern: why is the actually-observed equity pre-

mium so embarrassingly low while the actually-observed riskfree rate is so embarrassingly

high (relative to a theoretical formula based on a Student-t distribution that is operationally

indistinguishable from the normal for which it is a su¢ cient statistic)? The luxury of ignor-

ing these critical questions is not a viable option when the contradictions are so staggering

from simply recognizing that the distribution implied by the normal conditional on any �nite

sample of realized data is the Student-t, and therefore something is seriously wrong here.

The next section of the paper shows how to pose and answer such questions rigorously

in a non-ergodic general-equilibrium setting by using a hybrid distribution whose tail prop-

erties are midway between a normal and a Student-t. The formulation will �contain the

t-explosion�by introducing an ad hoc bound on the prior (to conveniently get rid of the in-

�nities), and then, by arti�cially manipulating the bound, the model will force the resulting
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hybrid probability density function of x to go to the i.i.d. limit of a �Bayesian-t learning

distribution� when the number of degrees of freedom is e¤ectively made to approach in-

�nity. This limiting hybrid �Bayesian-t learning distribution� looks like an i.i.d.-normal

but in its impact on investor sentiments acts more like an i.i.d.-t, thereby generating time

series data that seem highly anomalous when mistakenly judged to be the outcome of a

stationary-ergodic �rational expectations�stochastic equilibrium.

3 Hidden-Structure Expectations of Future Growth

Perhaps surprisingly, it turns out for asset-pricing implications that the most critical single

issue involved in Bayesian learning about the probability distribution of future growth rates

concerns the variance being unknown. (The case of the mean being unknown garners the

lion�s share of attention in the asset-price-learning literature, partly because of its greater

analytical tractability and partly because of a widespread perception that with large samples

in continuous time it is relatively easy to learn the �true�variance.) For notational and

conceptual simpli�cation, it is very convenient to be able to postulate straightaway a situa-

tion where E[x] is a given known constant �, so that the only genuine statistical uncertainty

in the system concerns the estimation of the hidden value of the variance V [x]. The case

where E[x] and V [x] are both unknown is less neat, but gives essentially the same results.

To indicate where the argument is now and where it is heading, the assumptions behind

the model to be used throughout the rest of the paper are stated formally here. The Euler

equation (4) is presumed to hold for the utility function (1) in ex-ante subjective expecta-

tions (as contrasted with holding in ex-post realized frequencies �more on this distinction

later). The presumed conditional-i.i.d. probability distributions are: x � N(�; V ) and

re � N(E[re]; V [re]). The following six quasi-constants of the model are e¤ectively assumed

known: E[re], V [re], rf , �, 
, �. Only one structural parameter is unknown and must be

estimated statistically: V = V [x].

The point of what next follows is to show that the startling asset pricing antipuzzle pattern

(from Student-t-distributed growth rates) persists whenever there are variance shocks �even

with unlimited data . If there were an in�nite record of bygone observations, then, at any

time t,

�t =
1

n

1X
i=1

(1� 1

n
)i�1 (xt�i � �)2 (23)

is an exponentially-weighted average back to the remotest past of all previous realized vari-

ances, which gives progressively greater in�uence to more recent events. The hyperparameter

n appearing in (23) is a known positive integer called the e¤ective sample size. It would be
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neat if the standardized random variable (ext � �)=
p
�t were distributed as a Student-t with

n� 1 degrees of freedom, which would make the probability density function of x = ext with
� = �t be

�(x j �) = 1p
(n� 1)��

�(n
2
)

�(n�1
2
)

�
1 +

(x� �)2

(n� 1)�

��n=2
; (24)

because then we might have some heuristic-poetic license to tell a story as if just before xt is

observed the random variable ext is distributed as the Student-t statistic naturally associated
with the outcome of �running a regression� to determine its mean (at time t � 1, on a
sample of n past realizations). Having (24) hold for all periods t is intuitively analogous

to randomly losing one of n �ctitious observations during each period, which is replaced by

a new observation at the period�s end �thus forcing the Student-t distribution to always

have n � 1 degrees of freedom. The evolutionary stochastic volatility process (23), (24) is

well de�ned. Heuristically, n might remain constant over time (instead of increasing with

the actual number of observations, thereby making the Student-t distribution converge to

its underlying normal density) if the information gained from a new realization of xt in

(24) is counterbalanced by the information lost from a variance shock that changes �t+1.

What next follows gives an evolutionary-Bayesian rationale for this intuitively-appealing

story about Student-t-distributed growth rates having an unchanging degree of freedom.

History testi�es that over time new uncertainties evolve, concerning events or situations

not previously encountered. If we wish to model perceptions of new forms of uncertainty as

nonstationary phenomena, then posterior probability updating must go beyond the standard

familiar application of Bayes�s rule in a stationary environment. The most well-known for-

malization of such kind of ongoing evolutionary uncertainty is the simple optimal-forecasting

adaptive-expectations exponentially-distributed-lag model of a hidden-structure i.i.d.-normal

stochastic process, the latent mean of which is a random walk whose nonobservable �true�

current value is a moving target that can never be fully learned because the distribution-

narrowing new information from one more noisy observation is just o¤set in informational

equilibrium by the distribution-spreading new uncertainty from one more hidden random

step. In that familiar model, the reduced form of the information-evaporation mecha-

nism is an ad hoc, analytically tractable, mean-preserving linear spread per forecast-period

ahead of the (known) future variance. Analogously, the setup of this paper (where the

expected growth rate is always a known constant but the latent variance is unknown) wants

some similarly-tractable distribution-spreading loss-of-information mechanism for making

the nonobservable �true� current value of the variance be an evolving not-fully-learnable

moving target, even as more information is being gathered over time.

Presuming the normal speci�cation (19), for notational tractability the Bayesian litera-
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ture tends to work with the random variable � � 1=V , called the precision. Suppose for the
sake of argument that the posterior probability density function of the precision � takes the

gamma form

'(� j a; b) = ba

�(a)
�a�1 exp(�b �) (25)

for some yet-to-be-derived data-dependent parameters a and b. (Later it will be proved

by induction on the number of past observations that (25) must be the relevant functional

form of the distribution of �, but meanwhile it is just taken as given.) Assume at time

t � 1 that, conditional on � = �t, the one-period-ahead random-variable growth rate ext is
independent-normal: ext j �t � N(�; 1=�t): (26)

Divide any period t into two sub-periods: t� symbolizing �morning,�and t� symbolizing

�evening.� The �morning�sub-period t� represents the time segment just after the infor-

mation contained in xt�1 has been observed at the conclusion of period t� 1, but just before
any newly-evolved uncertainty has materialized in period t. The �evening� sub-period t�

represents the time segment of period t just after the newly-evolved distribution-spreading

signal has been perceived (of additional future growth uncertainty from a random change

in the �true� �), but just before the new information contained in a fresh value of xt has

arrived. (Arrival of xt occurs at the �midnight instant�exactly ending period t).

With the gamma distribution (25), E[�] = a=b and V [�] = a=b2. Therefore, the only

way to engineer a mean-preserving spread of � that maintains the tractable form (25) is

to have a and b decrease by the same proportionality factor. Towards this goal, suppose

that the relationship transforming the gamma parameters a; b = a�t ; b
�
t (for the less-uncertain

�morning�) into the gamma parameters a; b = a�t ; b
�
t (for the more-uncertain �evening�)

always takes the reduced form4

a�t = (1� 1

n
) a�t ; (27)

b�t = (1� 1

n
) b�t : (28)

The hyperparameter 1=n in (27), (28) is the fractional increase of the variance of the

precision in sub-period t� relative to the variance of the precision in sub-period t�: Since

(27), (28) is a mean-preserving spread of �t, from (26) it is also a mean-preserving spread ofext. A stationary environment corresponds here to the special situation n =1, for which case
4Let �� be the hidden �true� precision. The random meander of f��t g that justi�es the reduced form

(27), (28) is of the martingale form ��t = �t�
�
t�1n=(n� 1), having multiplicative i.i.d. shocks f�tg with beta

density / ���1(1��)��1 for 0 < � < 1, where � = a�t (1�1=n), � = a�t =n. (It will later be shown that with
in�nite data a�t = n=2.) Shephard (1994) used such kind of gamma-beta conjugacy in a parallel context.
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a conventional application of Bayes�s rule allows the �true�variance to be learned exactly

as the asymptotic-ergodic limit of the average from an in�nite number of past observations

(representing an idealization perhaps most easily imagined in continuous time).

The basic reason for modeling evolutionary uncertainty here by the particular ad hoc

�leaky posterior information�reduced form (27), (28) is essentially the Markovian tractabil-

ity it will deliver by compressing all of an in�nite past into just one su¢ cient-statistic

distributed-lag state variable �t satisfying (23). Note that objections against (27), (28) are

not operational when n is a free parameter allowed in perturbation exercises to be larger

than a googol: G = 10100. The overarching message of the paper is that asset pricing is

critically dependent upon the subjectively-chosen prior distribution even when n > G , and

therefore �rational expectations�cannot be relied upon to enable asset prices to learn their

way out of the unavoidable in�uence of subjective prior beliefs. The simple reduced-form

speci�cation (27), (28) merely represents a convenient way to transmit this core message.

Each xt is the independent realization of a normal random variable whose mean is known

to be �, but whose precision is unknown. Conditional on the precision being �t, the distrib-

ution of ext just before it is realized or observed is given by (26), while the probability density
function of �t is given by (25) for a = a�t and b = b�t . The joint probability (just before the

realization xt is observed) of the pair f�t; extg occurring together in this nonstationary setup
is

pt(�t; ext) _ p
�t exp

�
�(ext � �)2�t=2

�
�a

�
t�1 exp(�b�t �t); (29)

and regrouping terms in (29) just after x = xt has been observed gives (via the relevant

application to this nonstationary setup of Bayes�s rule) a new probability density function

'(�t+1 j a�t+1; b�t+1) _ �
a�t� 1

2
t+1 exp

�
�
�
b�t + (xt � �)2=2

�
�t+1

�
: (30)

From matching (27), (28) with (25), (30), we have thus derived the recursions

a�t+1 = a�t +
1

2
; (31)

b�t+1 = b�t +
(xt � �)2

2
: (32)

Turning to the prior distribution of � (conceptualized as having been imposed a priori

at some time � < t), for analytical tractability it is also assumed to be of the gamma form

'(� j a� ; b� ) =
ba��
�(a� )

�a� �1 exp(�b� �); (33)
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which, coming after (31), (32) and (27), (28), completes the induction argument in the proof

that the posterior must be of the gamma form (25). The mean of the gamma prior (33) is

a�=b� , while its variance is a�=b� 2. Thus, the prior mean and variance of � can be assigned

any values just by judiciously selecting a� and b� . When the simultaneous limits b� ! 1
and a�=b� ! �� are taken, the prior is describing a known (point mass) precision ��, while it

turns out that classical statistical analysis essentially parallels the di¤use-prior case where

a� and b� are both arbitrarily small.

It is analytically convenient to assume an in�nite number of past observations, for which

case � = �1, and any remnants of prior a�1 or b�1 are then completely overridden in

the posterior by the data-evidence because (27), (28) (with (31), (32)) converges from any

initial conditions a�1, b�1 to

a�t =
n� 1
2

; (34)

b�t =
n� 1
2

�t; (35)

where �t is given by equation (23).

The fact that the unconditional or marginal probability of the random variable ext must
be a (non-standardized) Student-t distribution with n � 1 degrees of freedom of the form

(24) then follows directly from integrating out of (26) the dummy variable �t, whose gamma

probability density function is '(�t j a�t ; b�t ) with parameter values given by (34), (35). The
moment generating function of a Student-t distribution is unboundedly large, thereby caus-

ing the explosion of expected marginal utility that creates the startling antipuzzle pattern

described at the end of Section 2 (where all of the puzzling inequalities needing to be ex-

plained are dramatically reversed). To rectify such an embarrassing situation, there are any

number of conceivable ad hoc �dampening speci�cations� that might be used to contain

the e¤ects on expected marginal utility of a Student-t-induced explosion. In one way or

another, all such �dampening speci�cations�impose arbitrary a priori restrictions on proba-

bility distributions or utility functions �and they all give essentially the same �nal message.

As a compromise between generality and tractability, here one particularly neat conjugate-

parametric family structure is created as follows. Let � be a non-negative hyperparameter

representing an imposed a priori lower-bound support for the distribution of �. Assume

that in place of (33), the Bayesian prior distribution of the precision is now a truncated

gamma probability density function (with truncation hyperparameter �) of the form:

'�(�� j a� ; b� ) =
�at�1� exp(�b� �� )

1R
�

�at�1� exp(�b� �� ) d��
(36)
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for �� � �, while '�(�� j a� ; b� ) = 0 for �� < �. Because the entire conjugate-recursive

normal-gamma family structure is preserved for � > 0, all of the results that were previously

derived continue to hold with the obvious modi�cation now that for all periods t the posterior

gamma distribution of �t is truncated at �t = �. Notice, signi�cantly, that unlike a�1 and

b�1, whose remnants in the posterior vanish without a trace, the remnant of prior � remains

completely intact in the posterior because the condition � � � was imposed a priori.

When choosing � to be positive, the model is dogmatically banning forever all variances

above 1=�. The mathematical reason for declaring permanently impermissible future

worlds of unboundedly high variance is to make the integral de�ning the moment generating

function of x converge to a �nite value (because the Student-t does not). However, the

implicit subtext is that nobody has the slightest idea about what is actually an appropriate

value of �, which theoretically re�ects underlying prior thoughts at the in�nitely-remote past

time � = �1 but might appear to exist only for the seemingly minor mathematical purpose

of placing some arbitrary �nite upper bound above expected future marginal utility.

The model is made consistently recursive henceforth by now de�ning for any time t

the fundamental state variable of the economy to be the distributed-lag sample variance �t
de�ned by (23). Note that the only dependence on time t of the above system of equations

enters via the state-variable value �t. Hereafter throughout the rest of the paper the

subscript t is dropped from notation in this now-fully-time-autonomous hidden-structure

dynamic system. Within this setup the �true�value of � is obscured by hidden uncertainty,

but the parameters (n, �) and the state variable � are known with complete certainty.

To summarize here, the asymptotic posterior-predictive probability density function of

the precision is

 (� j �; n; �) =
�
n�1
2
�1 exp(�n�1

2
� �)

1R
�

�
n�1
2
�1 exp(�n�1

2
� �) d�

(37)

for � � �; while  (� j �; n; �) = 0 for � < �.

From combining (37) with (26) and integrating out � = �t, the unconditional (or mar-

ginal) posterior-predictive probability density function of the future growth rate x is

g(x j �; n; �) =

1R
�

exp(� �(x��)2
2

) �
n
2
�1 exp(�n�1

2
� �) d�

1R
�1

1
f
R
�

exp(� �(x��)2
2

) �
n
2
�1 exp(�n�1

2
� �) d�g dx

: (38)

Of course an outside observer cannot know directly what value of � describes an investor�s

prior beliefs, as � can only be inferred indirectly from the data. A favorite default setting
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would be the case � = 0, which e¤ectively corresponds to the familiar classical normal-

linear regression case because (38) approaches the Student-t form (24) as � ! 0. Speaking

generally, with power utility the formula for �expected future marginal utility�or �expected

stochastic discount factor�or �expected pricing kernel�re�ects the mathematical properties

of the moment generating function of x. The moment generating function of a Student-t

distribution such as (24) is unboundedly large because the de�ning integral diverges to plus

in�nity as � ! 0 in (38). A situation can therefore always be synthesized where expected

pricing kernels or stochastic discount factors are made arbitrarily large simply by choosing

for (38) a su¢ ciently small value of �, no matter what value of n <1 has been given.

Translated into Bayesian terms here, a bare-minimum necessary prerequisite for the va-

lidity of the frequentist law-of-large-numbers justi�cation behind calibration (the notion to

�just let the data speak for themselves�) is that as the number of observations approaches in-

�nity, asset-pricing expectation formulas involving marginal utility should become uniformly

free of the initial or prior state. To have �rational expectations�serve as a robust and trust-

worthy basis upon which to understand asset returns presupposes that the observed data

should asymptotically dominate uniformly (in marginal utility space) any reasonable repre-

sentation of a prior distribution of beliefs, which here means that the past data-information

contained in � should asymptotically override the in�uence of any positive value of � �just

like � overrides any positive initial values of a�1 and b�1. Asymptotic dominance of the

data over the prior often accompanies a Markov-stationary environment, but such ergodicity

does not emerge here, essentially because the stochastic process is evolutionary and learning

never �catches up�with the moving target of the unobservable �true�value of �. �Rational

expectations�is a deeply �awed equilibrium concept for pricing assets because it is describing

an unstable razor-thin equilibrium in prices, having probability-of-existence measure zero,

which unravels completely in the presence of even an in�nitesimally-small bit of structural

uncertainty. For any given n < 1, the value of � chosen for the prior manifests itself as
a smear of background uncertainty that refuses, even with the interdiction of an arbitrarily

large amount of past data, to relinquish its potentially decisive hold on in�uencing present

expectations of future asset-pricing kernels.

From a Bayesian perspective, we �just let the data speak for themselves� in a di¤erent

sense from the classical frequentist law-of-large-numbers interpretation of this phrase. The

remaining sections of the paper will each �just let the data speak for themselves�by telling

us, for the particular ad hoc dampening speci�cation chosen for this paper, what are the

implied values of �(�; n) that real-world investors must implicitly be using for their priors

in state-of-mind � to be consistent with one or another stylized fact about asset returns

appearing as an empirical pattern in the actual asset-return sample.
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Because they can be driven to an arbitrary extent by the �ckle whimsicality of investor-

agents concerning what value of the coe¢ cient � to select for the prior, asset prices in

this sense always have the potential of depending critically upon prior beliefs (regardless

of the amount of data accumulated) and, at least hypothetically, they might swing wildly

in reaction to just the tiniest changes in �. It follows that classical asset-pricing-kernel

regressions trying to �t �rational expectations� ex-post-empirical realizations of an Euler

condition are fundamentally misspeci�ed from the beginning, and perhaps it is then of little

wonder that such a stationary-frequentist pure-ergodic-risk methodology typically ends up

e¤ectively rejecting the Euler equation itself by producing pricing errors and paradoxes. The

message of this paper that an asset-pricing equilibrium must necessarily be based upon a

permanent �strong force�of structural uncertainty, in which imperceptible changes in prior

beliefs have the potential to trump data-evidence every time, provides the crucial missing

link in a uni�ed Bayesian approach capable of connecting parsimoniously the three asset-

pricing puzzles. Whether such a theory is better labeled stationary or non-stationary in one

or another particular state space is essentially beside the point here, the substantive issue

being that no amount of data generated by this model enables a statistician to disconnect the

posterior-predictive stochastic discount factor from the e¤ects of prior information in order

to infer some hypothetical prior-belief-free purely-data-determined �objective�structure.

Taking (37) and (38) as the representative agent�s subjective probability density func-

tions, the remainder of this paper is devoted to exploring what are intended merely to be

some analytically-tractable partial-equilibrium suggestive examples of the general theme that

(contrary to �rational expectations�) subjective prior beliefs can (and presumably must) play

a critical role in generating the asset-return patterns observed as stylized facts in the data.

For each such suggestive example, the sharpest insight comes from having in mind the mental

image of a double-limiting situation where simultaneously n!1 and � ! 0, so the value of

� de�ned by (23) approaches some known constant that is unchanging over time, and also the

probability density function g(x j �; n; �) de�ned by equation (38) converges to the normal
distribution x � N(�; �). This prototype double-limiting situation comes arbitrarily close

to the standard familiar textbook case of growth-rate risk being i.i.d. normal with known

parameters, only the model never quite gets to such a stationary-ergodic normal distribution

because some very small (but nevertheless consequential for asset pricing) new uncertainty

evolves and subsequent learning occurs whenever n <1. Such an extreme thought experi-

ment creates a situation that is operationally indistinguishable from the textbook workhorse

�rational expectations� i.i.d.-normal speci�cation, and therefore it is ideal for focusing the

mind very sharply on understanding intuitively a core Bayesian structural model-uncertainty

mechanism common to the entire family of asset-return puzzles.
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4 The Hidden-Structure Equity Premium

Rewriting (5) in state notation, the price of the riskfree asset (normalized per unit of con-

sumption) is P f (�; n; �) = �E[exp(�
x)]. From (7), the price of one-period-ahead equity

(normalized per unit of consumption) is P 1e(�; n; �) = �E[exp((1� 
)x)]. In both cases x

is a random variable whose probability density function g(x j �; n; �) is given by (38). The
realized one-period ahead equity premium in ratio form is then

R1e(x j �; n; �)
Rf (�; n; �)

=
P f (�; n; �)

P 1e(�; n; �)
exp(x); (39)

where

P f (�; n; �)

P 1e(�; n; �)
=

1R
�1
exp(�
x) g(x j �; n; �) dx

1R
�1
exp((1� 
)x) g(x j �; n; �) dx

: (40)

The following proposition contains two related types of results. First, for all n <1 (and

� > 0) some value of � matches any given feasible one period ahead asset-price ratio (40).

Second, by choosing carefully �(n; �) and then going to the limit n ! 1, essentially any
desired one-period-ahead equity premium can be replicated in a simulated data generating

process as if it came from the super-simple i.i.d.-normal model of Section 2. (In what

follows, � plays the role of representing the current value of the state variable �t, while � 0

plays the role of representing future values of �t+i for any i � 1.)

Theorem 1 First part: let 
 > 1
2
. Let q be any given value of the equity premium needing to

be �explained.� Then for every n <1 and � 0 satisfying 
� 0 < q, there exists a �q(n; � 0) > 0

such that
P f (� 0; n; �q(n; �

0))

P 1e(� 0; n; �q(n; � 0))
= exp(q � �� 1

2
� 0): (41)

Second part: Suppose � = �t < q=
. Then for any positive integer i, as n ! 1, the
random variable xt+i converges to the i.i.d. random variable �+

p
�z with z � i:i:d:N(0; 1),

where the convergence is uniform for all � � 0 and of the same strength as the convergence of
a Student-t distribution to a normal when the number of e¤ective observations n approaches

in�nity. Furthermore, if � is simultaneously chosen as �q(n; � 0) for 0 < � 0 < q=
, then the

limiting realized equity premium R1et+i=R
f
t+i in (39) converges to the i.i.d. lognormal random

variable exp(q � 1
2
� +

p
�z) as n!1:

Proof. Using (26) and the formula for the expectation of a lognormal random variable
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rewrite (40) (after cancelling redundant terms in �) as

P f (� 0; n; �)

P 1e(� 0; n; �)
= exp(��)

1R
0

exp(
2=2�) (� j � 0; n; �) d�
1R
0

exp((1� 
)2=2�) (� j � 0; n; �) d�
: (42)

As � ! 0, the probability density function g(x j �; n; �) de�ned by (38) approaches the
Student-t distribution (24), whose moment generating function is unbounded. Consequently,

as � ! 0 both integrals in (40) and in (42) approach +1. Therefore, from (42),

lim
�!0

P f (� 0; n; �)

P 1e(� 0; n; �)
= exp(��) lim

�!0

exp(
2=2�)

exp((1� 
)2=2�)
: (43)

Because

ln
exp(
2=2�)

exp((1� 
)2=2�)
=


 � 1
2

�
; (44)

plugging (44) into (43) for 
 > 1
2
gives

lim
�!0

P f (� 0; n; �)

P 1e(� 0; n; �)
= lim

�!0


 � 1
2

�
= +1: (45)

At the other extreme of �, from (40) it is apparent that as � !1, then P f (� 0; n; �)=P 1e(� 0; n; �)!
exp(��), because the economy is then e¤ectively in the deterministic growth case. The

function P f (� 0; n; �)=P 1e(� 0; n; �) de�ned by (40) is continuous in �. Since

P f (� 0; n;1)
P 1e(� 0; n;1) < exp(q � �� 1

2
� 0) <

P f (� 0; n; 0)

P 1e(� 0; n; 0)
(46)

for q > 
� 0 with 
 > 1
2
, condition (41) follows and the �rst part of the theorem is proved.

Turning to the second part of the theorem, to save space this notation-intensive section of

the proof is only sketched here. The fact that as n!1 the random variable xt+i converges

uniformly (for all � � 0) to an i.i.d. random variable � +
p
�z with z � i:i:d:N(0; 1), in

the same mode as a Student-t distribution converges to a normal as n ! 1, essentially
comes from (24). As n!1, from (23) � 0 � �t+i ! �, implying � 0 < q=
 with probability

! 1. If � is chosen to be �q(n; � 0), it then follows (from (39), (41), and x ! � +
p
�z)

that as n!1 the realized one-period-ahead (ratio) equity premium converges to the i.i.d.-

lognormal random variable exp(q � 1
2
� +

p
�z).

The essence of the Bayesian statistical mechanism driving the �rst part of Theorem 1 can

be intuited by examining what happens in the limiting case. As � ! 0 for any �xed n <1,
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� > 0, the limit of (38) is a Student-t distribution of the form (24), the same as would

emerge if a regression had been run on n data points. With the presumed prototype case

n huge and � tiny, the central part of the t-like distribution (38) is approximated extremely

well by a normal curve with mean � and variance � �tting the data throughout its middle

range. However, for applications involving the implications of uncertainty-aversion, such

as calculating the equity premium, to ignore what is happening away from the center of

the distribution has the potential to wreak havoc on subjective-expectation-based asset-

price calculations. For these applications, such a normal distribution may be a very bad

approximation indeed, because the more-spread-out dampened-t distribution (38) is capable

in principle of producing an explosion in asset pricing formulas like (40), implying in the

limit as � ! 0 an unboundedly large equity premium. Within the Bayesian framework of

this model, therefore, the statistical fact that the moment generating function of a Student-t

distribution is in�nite has the important economic interpretation that, at least hypothetically,

evolving model-structure uncertainty has the potential in such a normal-gamma world to be

a far more signi�cant determinant of asset prices than pure stationary-ergodic risk. In

the limit as � ! 0 (for �xed n < 1), the representative agent becomes explosively more
averse to the �strong force�of statistical uncertainty about the future growth process, whose

structural parameters are unknown and must be estimated, than is this agent averse to the

�weak force� of the pure risk per se of being exposed to the same underlying stochastic

growth process, except with known structural parameters. The key to understanding the

�rational expectations�dilemma concerning how to interpret the �equity premium puzzle�is

that the �premium�is not on pure ergodic risk alone, but rather it is a combined premium

on ergodic risk plus (potentially vastly more signi�cant) structural uncertainty.

An explosion of the equity premium does not happen in the real world, of course, but a

contained near-explosive outcome remains the mathematical driving force behind the scene,

which imparts the statistical illusion of an enormous equity premium incompatible with the

standard neoclassical paradigm. When people are peering forward into the future they are

also looking back at their own prior, and what they are seeing there is a spooky re�ection of

their own present insecurity in not being able to judge accurately the possibility of unforeseen

bad evolutionary mutations of future history that might conceivably ruin equity investors

by wiping out their stock market holdings at a time just when their world has already taken

a very bad turn. This eerie sensation of low-� di¤use background shadow-risk may not be

simple to articulate, yet it frightens investors away from taking a more aggressive stance in

equities and scares them into a more apprehensive position of wanting to hold instead (on the

margin) a portfolio of some safer stores of value, such as hard-currency cash, inventories of

real goods, Swiss bank accounts, U.S. or U.K. short-maturity treasury bills, perhaps precious
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metals, or even stockpiles of food �as a hedge against unforeseen bad future evolutions of

history. Consequently, in an evolutionary equilibrium where there is zero net demand for

them, these relatively-safe assets bear very low, even negative, real rates of return.

I do not believe that such type of Bayesian statistical explanation is easily dismissable.

The equity premium puzzle is the quantitative paradox that the observed value of lnE[Re]�rf

is too big to be reconciled with the standard neoclassical stochastic growth paradigm having

familiar parameter values. But compared to what is the observed value of lnE[Re]� rf �too
big�? Essentially, the answer given in the equity-premium literature is: �compared to the

right hand side of formula (20) when bV � 0:04% and 1 � 
 � 4.�Unfortunately for this

logic, the point-calibrated right hand side of (20) gives a terrible prediction for the observed

realizations of Re=Rf because in the underlying calculation all assets have been priced by a

�rational expectations�formula that makes the future seem far less uncertain than it actually

is. Anyone wishing to downplay this line of reasoning in favor of the status quo ante would

be hard pressed to come up with their own Bayesian rationale for calibrating variances of

nonobservable subjectively-distributed future growth rates by point estimates equal to past

sample averages. In essence, the �rational expectations�approach that produces the family

of asset-pricing puzzles avoids the consequences (on marginal-utility-weighted asset-pricing

kernels) of overpowering sensitivity to low values of prior � only by e¤ectively imposing

from the very beginning the extremely-brittle deterministic-structure pure-ergodic-risk case

n =1 of a normal distribution with known parameters.

An early attempt to explain the equity premium puzzle by Rietz (1988) can be interpreted

as essentially arguing through numerical examples that either the sample or the imposed

structure of the model (or both) may not be adequately representing a worst-imaginable-

case scenario of large negative future growth rates. The impact on �nancial equilibrium

of a situation where there is a tiny probability of a catastrophic out-of-sample or wrong-

structure-indicating event has been dubbed the �peso problem.�In a peso problem, the small

probability of a disastrous future happening (such as a collapse of the presumed structure

from a natural or socio-economic catastrophe) is taken into account by real-world investors

(in the form of a �peso premium�) but not necessarily by the calibrated model, because

such an event may not be in the sample being used for the calibration. In a sense this

paper is providing a statistical-decision-theoretic microfoundation for explaining why a form

of peso-problem logic is unavoidable in asset pricing because it is genetically ingrained.

Theorem 1 is trying to tell us that the statistical architecture of something conceptually

akin to a peso problem is inescapably hardwired into the �deep structure�of how Bayesian

inferences (about future economic growth, at unknown rates) interact with any concave util-

ity function U(C) having the innocuous curvature property �CU"(C )=U 0(C) > 1
2
. Bayesian
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inferences about the unknown hidden-structure variance fatten the posterior tails of probabil-

ity density functions with dramatic consequences when expressed in subjective-expectation

units of future marginal utility � as the example of replacing the workhorse normal dis-

tribution by its t-like posterior distribution demonstrates. This �Bayesian-statistical peso

problem�means that for asset pricing applications it is not the least bit absurd or unsci-

enti�c to adhere to the non-rational-expectations non-ergodic idea that no amount of data

may be large enough to identify all of the relevant structural uncertainty concerning future

economic growth. The Bayesian peso problem is essentially saying that to calibrate an

exponential evolutionary process having an uncertain future growth rate by plugging the

sample variance of observed past growth rates into an �extremely bad�approximation of the

subjectively-distributed stochastic discount factor, is to underestimate �extremely badly�

the comparative utility-risk of a real-world gamble on the unknown structural potential for

future economic growth, relative to a safe investment in a near-money sure thing.

Translated into classical-frequentist statistical language, the second part of the theorem

has the following rigorous interpretation. For given � = �t, pick any equity premium q > 
�,

name some sample size k, and choose any desired level of statistical con�dence relative to

the supposedly �true�data generating process. Then there exists some su¢ ciently large n

and accompanying function � = �q(n; �
0) (where for � 0 will be substituted future realizations

of �t+i, with 1 � i � k) such that the empirically observed frequency distribution of the k

realized values of the one-period-ahead equity premium simulation-generated by this hidden-

structure model is guaranteed to di¤er only insigni�cantly (in terms of the desired level of

statistical con�dence) from the sampling distribution that would be simulation-generated in

a sample of size k if the �true� equity premium r1e � rf were i.i.d. N
�
q � �

2
; �
�
. (Note

that the data generating process being described here makes the �rst moment of the equity

premium match statistically the empirical data, but it counterfactually makes the second

moment be � = bV [x] instead of bV [re] �more on this variance mismatch later.)
Of course, what is being presented here is but one illustrative example of the economic

consequences of a hidden-structure tail-fattening e¤ect, but I believe that it is very di¢ cult

to get around the moral of this story. For any �nite value of n, however large, the results of

Bayesian distribution-spreading will cause the equity premium to be very sensitive to seem-

ingly negligible changes in the assumed prior distribution of the variance, when, according

to the key stationary-ergodic assumption behind �rational expectations,�such seemingly in-

nocuous prior-belief changes should have been learned away by the data-evidence long ago.

This kind of extraordinary fragility to subjective prior beliefs even with unlimited data ef-

fectively renders unbelievable the standard �rational expectations�parable of asset pricing.

The dominant statistical-economic force behind the puzzles is that seemingly thin-tailed
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probability distributions (like the normal), which actually are only thin-tailed conditional on

known structural parameters of the model, become thick-tailed (like the Student-t) after in-

tegrating out the parameter uncertainty. Intuitively, no �nite sample of e¤ective size n <1
can accurately assess tail thickness, and therefore the attitude of a risk-averse Bayesian agent

towards investing in various risk-classes of assets may be driven to an arbitrarily large extent

by this unavoidable feature of Bayesian expectational uncertainty.

The important result in Schwarz (1999) can be interpreted as saying that for essentially

any reasonably-speci�ed non-dogmatic probability density function, the conclusions from

which are scale-invariant to measurement units, the moment generating function of the

posterior distribution is in�nite (i.e., the posterior distribution has a �thick�tail) even when

the random variable is being drawn from a thin-tailed parent distribution whose moment

generating function is �nite. Such a result means that there is a generic sense in which, at

least hypothetically-potentially, people are signi�cantly more afraid of not knowing what are

the structural-parameter settings inside the black box, whose data generating process drives

the pure-ergodic-risk part of stochastic growth rates, than are they averse to the pure risk

itself. When investors are modeled as perceiving and acting upon these inevitably-spread-out

subjective posterior-predictive distributions, then a fully-rational equilibrium interpretation

can weave through the family of equity puzzles a parsimonious unifying Bayesian strand, as

the next three sections of the paper (when combined with this section) will indicate.

5 The Hidden-Structure Riskfree Interest Rate

We can use the same mathematical-statistical apparatus to calculate the hidden-structure

riskfree interest rate. (Actually, the last section of the paper and this section might well

have been reversed sequentially because the riskfree rate is much easier to calculate and

understand than the equity premium.) For all other parameter values �xed, let f(�; n; �)

be the value of rf that comes out of formula (16) when the probability density function of

x is g(x j �; n; �) de�ned by equation (38). Plugging the subjective posterior-predictive

distribution (38) into the right hand side of equation (16), the result is

f(�; n; �) � �� ln
1Z
�1

exp(�
x) g(x j �; n; �) dx: (47)

Theorem 2 Let rf (� 0) be any given continuous function of � 0 satisfying rf (� 0) < � + 
��
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1
2

2� 0 for all � 0 > 0. Then for every n <1, � 0 > 0, there exists a �f (n; � 0) > 0 such that

rf (� 0) = f(� 0; n; �f (n; �
0)): (48)

Furthermore, the limiting realized riskfree rate can be made to converge to the same constant

value rf if, in every future state � 0 = �t+i, the value of � is chosen to be �f (n; � 0) for

rf (� 0) = rf and then the limit n!1 is taken.

Proof. As � ! 0, the probability density function g(x j �; n; �) de�ned by (38) approaches
the Student-t distribution (24), whose moment generating function is unbounded. From

(47) therefore, f(� 0; n; 0) = �1. It is apparent that as � ! 1, then f(� 0; n;1) = � + 
�,

because the economy is then e¤ectively in a situation of deterministic growth. Thus,

f(� 0; n; 0) < rf < f(� 0; n;1); (49)

and, since f(� 0; n; �) de�ned by (47) is continuous in �, the conclusion (48) follows. The

convergence to a constant value for all future periods follows from the fact that � e¤ectively

becomes constant over time as n ! 1, so that the condition rf (� 0) = rf < � + 
�� 1
2

2� 0

holds on the future trajectory with probability ! 1 as n!1.
The discussion of Theorem 2 so closely parallels the discussion of Theorem 1 that it is

largely omitted in the interest of space. The driving mechanism again is that the random

variable of subjective future growth rates behaves somewhat like a Student-t statistic in its

tails and carries with it a potentially explosive moment generating function re�ecting an

intense aversion to unforeseen low-precision evolutionary-mutational future histories. The

bottom line once more is that a �Bayesian peso problem�causes incorrect stationary-ergodic

�rational expectations�inferences about expected future utility, which are based upon mim-

icking the observed historical frequency of past growth rates, to underestimate enormously

just how relatively much more attractive are safe stores of value when compared with a real-

world Bayesian gamble on the uncertain growth-structure of an unknown future economy.

The relevant classical-frequentist statistical statement here about the relationship be-

tween the riskfree rate that is observed in the data and the supposedly �true�data generat-

ing process parallels the equity premium version. Pick rf = rf < �+
�� 1
2

2�, name some

number k, and choose any desired level of statistical strength, here representing measurement

accuracy. Then there exists some (large) n and accompanying � = �f (n; �
0) such that the

frequency distribution of the k riskfree-rate realizations generated by this hidden-structure

model is guaranteed statistically to di¤er only within measurement error from what would

be generated in a sample of size k if the �true�riskfree rate were the constant value rf .
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6 Welfare-Equivalent as if Normal Growth Variability

It has already been amply demonstrated that the dynamic evolution of future asset prices

is wickedly sensitive to prior beliefs, even with in�nite past data. Such a complicated

story about asset-return trajectories just cannot be distilled down into the neat form of a

tightly-compressed parable about a stationary-ergodic world. Since it seems to be hardwired

into the human brain to want desperately to cling to any kind of simplifying mental image

conceivably available to help comprehend the evolution of an extraordinarily complicated

universe, this section of the paper is openly heuristic in pursuing that aim. It is o¤ering

nothing more than a quick-and-dirty intuitive interpretation of the �variability mismatch

puzzle�expressed in subjective as-if-stationary expected-utility-welfare terms. Its purpose is

merely to convey some feel for the magnitude of the cost of structural uncertainty by phrasing

it in a user-friendly welfare-equivalent version of the familiar i.i.d.-normal distribution.

For the dual-equivalent endowment-production i.i.d. equilibrium in Section 2 of this

paper, equity returns vibrate consistently with growth rates as prescribed by equation (22).

According to (22), for an economy-wide comprehensive wealth index embodying an implicit

claim on the future aggregate consumption of the underlying real economy, all higher-order

central moments of x (= lnA) and re (= lnA+fE[re]�E[lnA]g) should match subjectively
and objectively under �rational expectations.� Alas, the empirical second moments of x and

re are not even remotely matched in the time-series data because bV [re]=bV [x] � 75. In the
evolutionary version of the model, however, future x is subjectively perceived as being much

more variable than it seems to be from past time series data in the sense that the relevant

stochastic discount factor M = � exp(�
x) is subjectively expected to be much larger in
expected utiles than what would appear to be indicated by simply identifying the variance of

future as-if-normal x with its past sample average �, which would give the plug-in lognormal

expected-utile value � exp(�
�+ 1
2

2�)� E[M ].

The price-earnings ratio P e=C of comprehensive equity in (9) depends on expectations

over an in�nite future horizon, and is extraordinarily sensitive to � (presumably even more so

than the riskfree rate, which depends only on one-period-ahead expectations). Such extreme

sensitivity to subjective prior beliefs suggests very strongly that a fuller more-complicated

model could be built around a �trembling hand� inducing measurement errors that cause

tiny contaminations of � to become ampli�ed into large animal-spirit-like price �uctuations,

thereby potentially introducing into the model elements of what might look like �predictabil-

ity.� However that may be, as a practical matter (whatever is the causal mechanism produc-

ing large swings in stock-market prices), to proceed further here analytically requires some

simplifying assumption about the reduced form of equity returns. The textbook bench-
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mark assumption (which is ubiquitous throughout expository �nance economics and which

is consistent with the time-series data for low-frequency periods of a year or more) is that

continuously-compounded equity returns are i.i.d.-normal. For the purposes of analytical

tractability, this section of the paper merely follows the literature blindly by accepting as

a given point of departure the workhorse reduced-form assumption that equity returns are

independently normally distributed with known mean and variance. The rest of the general

equilibrium system will now be made to revolve around this centerpiece assumption.

From the basic duality isomorphism between production and endowment versions of the

core dynamic stochastic model and from the �discipline imposed by general equilibrium

modeling,� if the productivity-return re (= lnA + fE[re] � E[lnA]g) is known to be i.i.d.-
normal then so too must the growth rate x (=lnA) be i.i.d.-normal, and with the same

standard deviation. In this case equation (22) holds with the arrow of causal reasoning going

from the presumed-known value of �[re] to the implied value of �[x](= �[re]). Equation (13)

seems to be suggesting that volatile wealth is �welfare equivalent�to volatile consumption.

In a sense, this section of the paper is trying to answer the critical question: between the

two observed variability alternatives (b�[re] standing in for the left hand side of equation (22)
and representing the past variability of wealth returns or b�[x] standing in for the right hand
side and representing the past variability of consumption growth), which empirical variability

(wealth or consumption) better matches the agent�s true welfare situation?

Waving aside the �rationality� of such beliefs, suppose for the sake of the thought-

experimental quick-and-dirty heuristics in this section of the paper that

xN(x j �; n; �) � N(E[xN ]; �2[xN ]) (50)

is a random variable function of the random variable x representing the agent�s subjective

probability belief that future growth rates are i.i.d.-normal with known parameters E[xN ]

and �[xN ]. Let this agent also have a subjective probability belief in a stock-market payo¤

implicitly representing a unit claim on the lognormally-i.i.d. future aggregate consumption

corresponding to (50). Such a payo¤ claim gives rise to the subjective probability belief of a

(geometrically measured) return on comprehensive economy-wide equity rN(xN) satisfying

rN(xN(x))� E[rN ] = xN(x)� E[xN ]; (51)

which is exactly the normal counterpart here of equation (22). It will turn out that i.i.d.

as-if-normal growth rates can be made to yield the same expected one-period return on

equity as the formulation in previous sections of the paper, so that E[rN ] = E[r1e], which,

provided also that �[rN ] = b�[re], signi�es here that observed equity data alone cannot refute
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this as-if-normality hypothesis about subjective future growth beliefs, given the standard

assumption that equity returns are known by the agents to be i.i.d. normal in the �rst place.

The following representation theorem establishes the existence of a conceptually-useful

consequence of expected-utility indi¤erence between xN and x. In the framework of this

model, it turns out that forcing xN by construction to give the same expected utility as x

is intimately connected with the important implication for welfare calibration that �[xN ] �b�[re]. This third proposition of the paper can therefore be interpreted as providing at

least a sense in which there might be some rationale for telling an as-if parable wherein the

representative agent has a subjective normally-distributed welfare-equivalent belief, which is

consistent with (51) and the equity-return data, �as if� the future growth rate is xN with

known variability equal to the observed variability of returns on wealth. In this subjective

interpretation (�as if� growth rates are i.i.d.-normal with known mean and variance), the

welfare situation of the agent is represented by the relatively high variability of returns

on equity-wealth, rather than by the relatively low variability of realized past growth rates.

Because here �[rN ] = �[xN ], at least fromwithin the framework of this arti�cially constructed

welfare-equivalent as-if-i.i.d.-normal-growth parable, there is no longer a jarring mismatch of

variabilities wanting to be explained between equity returns and underlying fundamentals.

Theorem 3 Let � > 0 be any given continuous function of � satisfying �2 > � for all � > 0.

Let rN(xN(x)) be a solution of (50), (51). Then for every n < 1, � > 0, there exists a

�s(n; �) > 0 such that the following four conditions are simultaneously satis�ed:

E[rN(xN(x))] = E[r1e(x)]; (52)

�[rN(xN(x))] = �[xN(x)] = �; (53)

E[xN(x)] = E[x] = �; (54)

8C > 0 : E[U(C exp(xN(x)))] = E[U(C exp(x))]: (55)

Proof. De�ne s(�) to be the implicit solution of the equation

1p
2�s(�)

1Z
�1

exp

�
(1� 
)xN � (x

N � �)2

2s(�)2

�
dxN =

1Z
�1

exp((1� 
)x) g(x j �; n; �) dx; (56)

and note for this de�nition that (55) and (54) are satis�ed by construction.

It can readily be shown that

r1e(x) = x+ f�� lnE[exp((1� 
)x)]g; (57)

30



and, analogously,

rN(xN) = xN + f�� lnE[exp((1� 
)xN)]g; (58)

so that (52) then follows from (54), (56), (57), (58).

As � !1, the probability density function g(x j �; n; �) goes to the deterministic point
distribution x = �, so consequently the integral on the right hand side of equation (56)

approaches exp((1 � 
)�, implying s(1) = 0: As � ! 0, the probability density function

g(x j �; n; �) de�ned by (38) approaches the Student-t distribution (24), whose moment
generating function is unbounded, implying the right hand side of (56) is also unbounded,

meaning s(0) =1: Thus

s(1) < � < s(0); (59)

and, by continuity of the function s(�), there must exist a �s(n; �) > 0 satisfying

s(�s) = �; (60)

which, when combined with (51), proves (53) and concludes the proof.

The force behind Theorem 3 is the same �strong force� that is driving the previous

two theorems: intense aversion to the structural parameter uncertainty embodied in fat-

tailed t-distributed subjective future growth rates. Compared with the Student-t distribution

x � g(x j �; n; � = 0), a representative agent will always prefer, for any �nite s; the normal
distribution x � N(�; s2). Theorem 3 results when the limiting undampened explosiveness of

the moment generating function of g(x j �; n; � = 0+) with a non-dogmatic prior is contained
by the substitution of g(x j �; n; � = �s) with a dogmatic dampening prior �s(n; �) > 0.

Theorem 3 is e¤ectively saying that if you want to force the wickedly complicated dynamic

behavior of super-prior-sensitive asset prices under evolutionary uncertainty into the ana-

lytically tractable image conveyed by a prior-free �rational expectations�as-if-i.i.d.-normal-

growth story, then the calibration �[xN ] = b�[re] tells the better as-if welfare parable than the
calibration �[xN ] = b�[x]. To an outsider classical-frequentist statistician imposing a station-
ary speci�cation, however, agent-investors inside this as-if-rational-expectations economy

will appear to be irrationally incapable of internalizing what the data are clearly saying

about b�[x] � 2%. Instead, with n!1 these agents seem to be clinging stubbornly in their

mind�s eye to an unshakably-consistent, but highly irrational, mental image as if their future

welfare depends via the stochastic discount factor upon the realization of some hypothetical

much-more-variable normally-distributed growth rate whose counterfactual standard devia-

tion is �[xN ] = b�[re] � 17%. With, say, one hundred independent observations, however, the
frequentist hypothesis that the observed sample value of b�[xN ] = 2% could have been gen-
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erated by (agents having in their heads) a �true�(welfare equivalent) value of �[xN ] = 17%

is classically rejected by a chi-square test at the 99.99% con�dence level!

7 Some Bayesian as if Normal Calibration Exercises

Viewing the three theorems of the paper through the lens of the welfare-equivalent as-if-

i.i.d.-normal-growth story of Theorem 3 delivers the package of a neat analytically-tractable

relationship among q, f , and s of the closed form (20), (21), which accompanies the well-

known formula for the expectation of a lognormal random variable. The three theorems

themselves are only partial equilibrium statements in the sense that each one matches just

one side of the whole asset-pricing-puzzle triangle. The �(n; �) function that works for any

one theorem will not work for the other two �essentially because a system parameterized

with just one degree of freedom cannot match three observables simultaneously. Suppose

however (what at this stage is merely an unproved, but not implausible, conjecture) that a

more general higher-dimensional parameterization can be made to deliver a situation �as if�

the same �(n; �) function works for all three theorems. The following question then arises

naturally: does the simple relationship among q, f , and s of the closed form (20), (21)

hold empirically, conditional upon the same �(n; �) function working for all three theorems?

The answer is �yes.� The experimental outcome that all three stylized-fact values of the

equity premium, riskfree rate, and equity variability ��t,�in the sense that they come close

to matching simultaneously the theoretically-predicted as-if-lognormal relationship among

themselves, conveys at least some intuitive feel for the degree to which this heuristic way of

looking at things represents a relatively coherent theoretical-empirical mental construct.

The proposed exercise will test whether the welfare-equivalent interpretation of Theorem

3 that the future growth rate x is subjectively distributed as if it were the i.i.d.-normal

random variable xN with mean E[xN ] = bx and standard deviation �[xN ] = b�[re] renders,
along with (51), an internally-consistent as-if story connecting together the actual stylized

facts of our economic world. In Table 1, quasi-constant parameter settings have been se-

lected that, I think, represent stylized-fact numbers well within the �comfort zone�for most

economists. All rates are real and given by annual values. The data are intended to be an

overall approximation of what has been observed for many countries over long time periods.

With any given n <1, � > 0, the model �explains�endogenously three quasi-constants,
written here for simplicity (by suppressing dependence on n and �) as q(�), f(�), s(�) �all

three being functions of the one free parameter �. For conceptual-notational convenience,

pretend that h = 6:625 � 10�34 represents some arbitrarily small quantum threshold of ob-

servability, below which � is considered to be �e¤ectively zero�and the relationship between
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Quasi-Constant Parameter Value
Mean arithmetic return on equity lnE[Re] � 7%
Geometric standard deviation of return on equity �[re] � 17%
riskfree interest rate rf � 1%
Implied equity premium lnE[Re]� rf � 6%
Mean growth rate of per-capita consumption E[x] � 2%
Standard deviation of growth rate of per-capita consumption �[x] � 2%
Rate of pure time preference � � 2%
Coe¢ cient of relative risk aversion 
 � 2

Table 1: Some Economic "Stylized Facts"

�q, �f , and �s becomes so blurred by indeterminacy that the situation is treated as if the same

�(n; �) function (being indistinguishable from zero) works for all three theorems. Under such

circumstances, we will not be able to observe or calculate the underlying primitive values of

�q, �f , and �s directly (although we know in theory that there exists some astronomically-

large value of n > G = 10100, for which simultaneously �q < h, �f < h, and �s < h, because

n!1 implies that �q ! 0, �f ! 0, and �s ! 0). However, and more usefully here, an indi-

rect calibration experiment can be performed by setting any one of the three quasi-constants

q j f�q < hg, f j f�f < hg, and s j f�s < hg equal to its observed value in Table 1 and
then backing out the implied values of the other two remaining quasi-constants by invert-

ing the two analytically-tractable as-if-i.i.d.-lognormal-consumption equations of the closed

form (20) and (21). Because there are two equations ((20) and (21)) uniformly-continuous

in three unknown variables, if any one of fbq, bf , bsg is �su¢ ciently near�to explaining the
other two, then each of fbq, bf , bsg must also be �su¢ ciently near� to explaining the other
two. The following calibration exercise shows empirically that the entire i.i.d.-lognormal

system is �su¢ ciently near�to fbq, bf , bsg in the distance-metric of what might be considered
on intuitive grounds to be the most natural topology to use here.

De�ning �s < h to be an implicit solution of

�s = s�1(�[re]) = s�1(17%);

we then have, from (20) with V [x] � s2(�s),

lnE[Re]� rf = 
s2(�s) = q j f�s < hg = 5:8%;

to be compared with q j f�q < hg = 6%. From (21) with V [x] � s2(�s),

rf = �+ 
E[x]� 1
2

2s2(�s) = f j f�s < hg = 0:2%;
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to be compared with f j f�f < hg = 1%.

De�ning �q < h to be the implicit solution of

�q = q�1(lnE[Re]� rf ) = q�1(6%);

we then have, from (21) and (20),

rf = �+ 
E[x]� 
q(�q)=2 = f j f�q < hg = 0% ;

to be compared with f j f�f < hg = 1%. From (20) with V [x] � �2[re],

�[re] =
q
q(�q)=
 = s j f�q < hg = 17%;

to be compared with s j f�s < hg = 17%.

De�ning �f < h to be an implicit solution of

�f = f�1(rf ) = f�1(1%);

we then have, from (21) and (20),

lnE[Re]� rf = 2[�+ 
E[x]� f(�f )]=
 = q j f�f < hg = 5%;

to be compared with q j f�q < hg = 6%. From (21) with V [x] � �2[re],

�[re] =
q
2[�+ 
E[x]� f(�f )]=
 = s j f�f < hg = 16%;

to be compared with s j f�s < hg = 17%.

As a kind of a test for the internal consistency and raw �t of the as-if-i.i.d.-normal-

growth story (hypothetically conditional on a higher-dimensional version of the same �(n; �)

function working for all three theorems), the results of these Bayesian calibration exercises

�t nearly exactly. At the very minimum, therefore, this model provides some story about

why everything coheres almost perfectly in the bare-bones canonical i.i.d.-normal �rational

expectations�model when, by just the simplest substitution, a welfare-equivalent growth

variability �[xN ] = b�[re] equal to the observed standard deviation of equity-wealth returns
replaces the observed real-growth variability b�[x]: Otherwise, such a near-perfect �t must be
interpreted as merely happening to be some kind of a miraculous coincidence in the data.

Continuing on with the above as-if-i.i.d.-normal-growth scenario, consider next a purely

hypothetical thought experiment in which the magic trick is performed of eliminating all
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future variability � of consumption. With i.i.d. lognormality of fCt+1=Ctg, the imaginary
deterministic path having the same mean consumption as the stochastic trajectory (15) is

Ct+1 = exp(�� 1
2
�2)Ct: (61)

Using formula (61), it can readily be shown (following Lucas (2003)) that the welfare

gain from a mean-preserving shrinkage that compresses the stochastic trajectory Ct+1 =

Ct exp(xt) into the deterministic path (61) is equivalent to a change in each period�s con-

sumption of

�Ct = (exp(
1

2

�2)� 1)Ct: (62)

When 
 � 2 and the historical value of � = b�[x] � 2% is used in (62), then �Ct=Ct �
0:04%, which is the kind of magnitude sometimes used to argue that the cost of growth

variability is so counterintuitively low that even a complete removal of all conceivable macro-

economic uncertainty would be worth very little. Such a number, however, captures only the

�weak force�of stationary-ergodic growth-rate risk. The welfare equivalent of a magic-trick

elimination of all uncertainty about future growth, including the �strong force�of structural

uncertainty, is better assessed by using the subjective value � = b�[xN ] = b�[re] � 17% in

formula (62), for which case �Ct=Ct � 2:9%. Accounted in this welfare-equivalent metric

of shrunken consumption therefore, structural uncertainty about the evolving future growth

process turns out empirically to be far more signi�cant than pure growth-rate risk.

8 Conclusion

The hidden-structure evolutionary model of this paper is predicting that a classical story

based upon a misspeci�ed ex-post-realized-frequency interpretation of the Euler equation

will generate data appearing to show an �equity premium puzzle,�a �riskfree rate puzzle,�

and a �variability mismatch puzzle,�whose magnitudes of discrepancy are close numerically

to what is observed empirically. This paper argues that such numerical �discrepancies�are

puzzles, however, only when seen through a �rational expectations�lens. From a Bayesian

learning perspective, the �puzzling�numbers being observed in the data are telling a rational

(but not �rational expectations�in the conventional stationary-recurrent-ergodic sense) story

about the implicit subjective distribution of background structural-parameter uncertainty

accompanying the uncertain evolutionary growth process actually generating such data.

In principle, consumption-based representative agent models provide a complete answer

to all macroeconomic asset pricing questions and give a uni�ed theory integrating together

the economics of �nance with the real economy. In practice, consumption-based representa-
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tive agent models with standard preferences and a traditional degree of relative risk aversion

work poorly when the variance of the growth of future consumption is point-calibrated to

the sample variance of its past values. The theme of this paper is that with evolutionary-

structural uncertainty there is some theoretical justi�cation for treating the subjective vari-

ability of the future growth rate as if it were equivalent in welfare to the observed variability

of a comprehensive economy-wide index of equity-wealth returns, for which as if interpreta-

tion the simple standard model may have the potential to work well in practice.
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