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ABSTRACT. Using the idea of generalized dummy observations, we extend the

methods of Del Negro and Schorfheide, who have proposed a way to use a dy-

namic stochastic general equilibrium (DSGE) model to generate a prior distribu-

tion for a structural vector autoregression (SVAR). The method proposed here is

more explicit and systematic about the prior’s assertions about the SVAR identifi-

cation, and it provides a mechanism for varying the tightness of the prior across

frequencies, so that for example the long run properties of the DSGE can be as-

serted more confidently than its short-run behavior.

In every large scale macro modeling project we make compromises. Models

whose properties we understand and can interpret behaviorally are generally not

rich enough, either in number of variables or in dynamics, to fit the data well.

Models that are rich enough to fit well become complex and can end up hav-

ing implications that we believe are implausible. Practical macro modelers who

face real-time demands for forecasts and policy projections have struggled contin-

uously with these tradeoffs.
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Forecasts and short-term policy projections from models are often modified with

“add factors”. Longer term policy analysis exercises with models often leave es-

timated equations aside altogether, or impose properties on the model’s behavior

that the data are not allowed to alter. These measures reflect a fact about modeling:

often we construct a model, find it does not have quite the properties we would

like, and then intervene by one means or another to push its results in a more rea-

sonable direction. In principle of course, the right course would be to reformulate

the model so that it stops displaying the properties we find unreasonable, but there

are two problems with this suggestion. One is that reformulating the model may

be difficult; if we clearly understood the mapping from the model structure to the

model implications that bother us, we probably would not have built the model

to produce these results in the first place. Another is that repeated, unsystematic,

alterations of the model to fix one unwanted property or result after another can

increase the complexity of the model and introduce new types of unwanted be-

havior faster than it fixes old ones.

Bayesian procedures hold the promise of letting us make the interaction of our

beliefs about desirable model properties with the model formulation process more

explicit and systematic. There are two ways to proceed here, both of which show

up even in some of the earliest papers in the literature [DeJong et al., 1996, 2000,

Ingram and Whiteman, 1994]. One can use Bayesian methods to allow use of more

densely parameterized behavioral models, or one can use Bayesian methods to im-

port beliefs based on behavioral models (perhaps not so densely parameterized)
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into densely parameterized models without a complete behavioral interpretation.

Bayesian methods are important for the first approach because they allow us, us-

ing modern Bayesian computational methods, to handle inference on models with

many parameters. Also, with models that are richly enough parameterized to fit

the data well, use of prior distributions is essential to any reasonable inference.

The first approach has advantages. It provides us with more complete stories

about what behavioral mechanisms produce a given forecast, forecast error, or pol-

icy scenario. As we develop more models of this type, we will learn what aspects

of a behavioral model the macroeconomic data does or does not pin down. It

has disadvantages also, however. At the current stage, it seems that these mod-

els more often than not fail to fit as well as models with little or no behavioral

structure. Furthermore, as they try to come close to fitting as well as descriptive

time series models, the behavioral models tend to introduce frictions and lags that,

while essential to the fit, have weak foundations in economic theory.

The second approach has been pursued recently by DelNegro and Schorfheide

[2004].1 It is computationally practical, and as they have implemented it results

in a structural VAR (SVAR) model with a prior informed by a dynamic general

equilibrium (DSGE) model. A model formulated this way is likely to fit quite a bit

better than a purely behavioral model, and since it is a structural VAR, it allows for

1A recent paper [DelNegro et al., 2006] uses the same methods, but discusses results as if it is

using the less structured model to inform estimation of a behavioral model. In fact, in both papers

the data is modeled as generated by a structural VAR. The behavioral model is only a means to

generation of a prior.
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a substantial part of the “story-telling” that goes into discussing policy scenarios

and the reasons for forecast failures. In SVAR’s, each event or forecast is generated

by independent, behaviorally interpretable disturbances. What is missing is only

the possibility of using the model itself to evaluate welfare effects of policies or the

effects of drastic policy interventions.

Bayesian methods in the abstract seem to require that one proceed directly to

specifying prior beliefs about model parameters. As we have already noted, in

practice economists tend to have ideas about how a model should behave that are

not easy to translate into properties of a probability distribution for the parame-

ters. It can therefore be helpful to note that priors can be built up from “dummy

observations”. This is an idea that perhaps began with Theil’s adding mental ob-

servations to the data set to resolve multicollinearity in linear regression models.

But the idea is more general than that. For example, suppose we have prior beliefs

about a model’s impulse responses. The full set of impulse responses in a SVAR

model is a large 3-dimensional array, larger than the vector of parameters in the

SVAR, usually. This means that any prior on the impulse responses that could

be translated into a prior on the parameters of the SVAR would be singular, con-

centrated on a low-dimensional manifold in the full space of impulse responses.

Furthermore, the mapping between parameters and impulse responses is highly

nonlinear, so that computationally and intuitively demanding Jacobian terms are

involved in connecting a pdf for impulse responsess to one for the model parame-

ters.
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But mental observations on the impulse responses need involve no Jacobian

terms, and there is no need for them to be limited in dimension to the number

of parameters in the model. They provide a much more intuitively clear route to

building up a prior distribution in high-dimensional models than a direct attack

on formulating a pdf for parameters. The idea is simple — independent men-

tal observations (dummy observations) are combined as a product of functions

of parameters (like, e.g., e to minus the mean square deviations of some impulse

response from an a priori likely form) that penalize implausible behavior of the

model. Technical details, and a discussion of how a prior formulated this way

affects model comparisons, appear in Sims [2005]

This paper presents a proposed extension of the DelNegro/Schorfheide method-

ology. It attempts to be more consistent and explicit about the connection of the

DSGE to the equations of the SVAR and to develop posterior inference directly on

the parameters of those equations. It also uses an approach that allows giving dif-

ferent emphasis to prior beliefs at different frequencies. And it does these things

with an approach based on the idea of generalized dummy observations.

I. USING A DSGE AS A STRUCTURAL PRIOR

We take the model that generates the data and that allows our structural inter-

pretation of the sources of variation in the data to be in the form

A(L)yt = c + εt , (1)
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where ε is a vector of independent normal shocks whose variances are one or zero.

In other words, εt ∼ N(0, Γ), where Γ is a diagonal matrix with ones and zeros on

the diagonal. Not all the elements of y are necessarily observable. While this model

has the form of a structural vector autoregression (SVAR), it differs from SVAR’s

in exiting literature in that it allows for zero-variance elements of εt and postulates

that the yt vector is not necessarily the observed data vector. Dynamic stochastic

general equilibrium models (DSGE’s), when linearized, usually have this form,

with c and A(L) both functions of the model’s behavioral parameters.

We will in fact assume we have available a DSGE model that considers the same

yt vector and εt vector and can be linearized around a (possibly non-unique) steady

state to take the form

A(L; θ)yt = c(θ) + εt . (2)

We assume that, like most DSGE’s in the literature, this model is too tightly pa-

rameterized to fit the data in detail. Nonetheless we expect it to be a fairly good

approximation, and it is all we have available as a source of identifying restrictions

to let us interpret historical variation and project the effects of possible current and

future events or policy actions.

We use the DSGE together with a prior distribution for its parameters θ to gen-

erate a prior distribution for A(L), the SVAR parameters. We postulate that con-

ditional on θ, (A(L), c) has a distribution that is centered on
(

A(L; θ), c(θ)
)
, the

linearized DSGE coefficients. It is likely that the DSGE has very low order dynam-

ics, so the order of our A(L) polynomial for the SVAR model is likely to be higher
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than implied by the DSGE. This means that the A(L; θ) polynomial we take as a

mean for A(L) has some zero coefficient matrices at higher order lags.

We express our beliefs about the connection of A(L), c to A(L, θ), c(θ) via a set

of dummy observations, with the j’th dummy observation taking the form

A(L)ȳj − cx̄j = A(L; θ)ȳj − c(θ)x̄j − ε̄j . (3)

The dummy observation shocks ε̄j have a diagonal covariance matrix ∆ that does

not depend on j, though not necessarily the same covariance matrix Γ as the SVAR

shocks. We have to scale the dummy observations to reflect the relative strength of

our beliefs in them. The x̄j’s that multiply c in the dummy observations in place of

the usual unit vector can arise from this scaling; they can also arise from dummy

observations that make assertions about coefficients in A(L) without reference to

c.

These dummy observations are interpreted as “mental observations” on A, c, not

as observations on data satisfying the model (1). That is, we regard each dummy

observation as generating a factor in the log prior density of the form

− 1
2 log |∆| − 1

2 ∑
∆ii 6=0

(ε̄
j
i)

2

∆2
ii

, (4)

i.e. a standard Gaussian density for ε̄j, with ε̄j defined by solving (3).

If there are n elements of y and k lags in the system, any set of n(k + 1) + 1 or

more dummy observations of this form with linearly independent ȳj, x̄j vectors

will define a proper Gaussian prior for A(L), c with mean A(L; θ), c(θ). (Here of

course we are, to be more precise, putting a distribution on the coefficients in A(L)
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and A(L; θ), not the matrix polynomials in the lag operator themselves.) A prior

formulated this way is not a completely general Gaussian prior on these coeffi-

cients. If we use A∗ to refer to the n × (nk + 1) matrix [A0, A1, . . . , c] and ȳj∗ to

refer to the column vector obtained by stacking up the current and lagged variable

vectors in ȳj and x̄j, then we are using dummy observations only of the form A∗ȳk∗.

In other words, the ȳj weights applied to coefficients in one equation (row of A∗)

also apply to every other equation. This means that, while we can make the means

of coefficients vary across equations, their covariance matrix has the same form,

up to a scalar multiple, in every equation. The form of the distribution implied by

the dummy observations is Gaussian with

E[A∗] = A∗(θ) (5)

Var(~A∗) =
(
∑ ȳj∗ȳj∗′

)−1 ⊗ ∆ . (6)

There is a one-dimensional redundancy in this parameterization, which can be

resolved for example by setting one diagonal element of ∆ to one as a normalizing

convention.

∆ may contain zeros on the diagonal, for example for equations that are identi-

ties. The corresponding equations in the SVAR are then constrained by the prior to

exactly match their counterparts in the DSGE. If all the behavioral equations in the

DSGE have error terms, then all the zeros on the diagonal of ∆ will correspond to

those on the diagonal of Γ in the DSGE. More generally, though, the DSGE might

contain fewer shocks than the SVAR, so that Γ has more zeros than ∆.
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Allowing for more general Gaussian priors on A∗ is straightforward, but can

lead to much higher-dimensional matrix algebra in evaluating the posterior. In

particular applications, with particular motives for a more general specification

of the covariance matrix, problem-specific coding could keep the dimensionality

increase from being too great; and the computations may be feasible in general, if

somewhat slower than with pure dummy observation priors of the form described

above. In the application considered in this paper we stick to these pure dummy

observation priors.

If we use this prior as it stands, there is an undesirable byproduct. The inverse of

the model’s implied covariance matrix of one-step-ahead forecast errors is A′0A0.

Our Gaussian density puts positive density on singular A0 matrices, hence on un-

bounded covariance matrices of prediction errors. It turns out that with A∗ nor-

mal, some elements of the reduced form coefficient matrix B∗ = A−1
0 A∗ will be

distributed with Cauchy tails, i.e. have no finite moments of integer order. This

can be easily seen for the trivial special case where A∗ is 1 × 2 with mean zero

and identity covariance matrix, in which case the single reduced form coefficient

is b = a1/a0, well known to be exactly a Cauchy random variable with pdf propor-

tional to 1/(1 + b2).

If ȳj were data generated by the model, the first column of ȳj, representing cur-

rent data, would be thought of as the realization of a random variable correlated

with ε̄j, and conversion of the pdf for ε̄j to one for ȳj would require inclusion of |A0|

as a Jacobian term. The natural conjugate prior for this model — a prior that takes
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the same form, as a function of the parameters as does the likelihood — therefore

includes an |A0|q Jacobian term, where q in the likelihood would correspond to the

number of observations. This enforces zero density at points where A0 is singular.

Such a term in the prior to downweight singularities in A0 is reasonable. Because

the determinant is just the product of eigenvalues, it is invariant to orthogonal ro-

tations of A0 and thus in itself puts no restrictions on the location of zeros in A0,

for example. In a sense it expresses beliefs about the overall scale of A0, not its

form. Note that unlike the case where a prior is placed on B∗, the reduced form

coefficient matrix, here we do not need the |A0|q term to make the prior integrable

in A(L), c. It will be integrable even with q = 0. It is a good idea to choose q ≥ 1,

however, in order to avoid giving much weight to singular A0’s.

With q > 0 the mode of A0 is shifted away from A0(θ) in the direction of larger

absolute values of its eigenvalues, though the amount of shift is modest if the

dummy observations, prior to the premultiplication by |A0|q, were fairly tightly

concentrated around A0(θ). A rough idea of the effect can be obtained from the

scalar case, where the derivative of the log of the mode of the A0 distribution with

respect to q is ∆/
(
∑(ȳj)2A0(θ)2). In other words, the effect of a unit increase in

q on the prior mode is small if the ratio of the standard deviation of the initial

Gaussian form of the prior to that distribution’s prior mean is small. If the prior

standard error of the Gaussian form is one quarter of its mean, for example, a unit

increase in q increases the prior mode of A0 about 6%. Of course this gives only
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a rough idea of the effect for multivariate cases, and it therefore is reasonable to

check sensitivity of results to the choice of q.

II. CHOOSING THE DUMMY OBSERVATION WEIGHTS

The most straightforward way to set the prior would be to have one independent

dummy observation setting the prior mean for each variable and lag, plus one for

the constant term. Such a dummy observation would have ȳj = 0 except at one lag

for one variable. Indeed in the first version of the Minnesota prior, as described

in Litterman [1986], the prior took exactly this form (except that it was on reduced

form VAR, rather than on SVAR, coefficients). Users of Bayesian VAR’s (BVAR’s)

soon realized, though, that they got better performance from a more realistic prior

that was more assertive about low-frequency than high-frequency variation in the

data. Dummy observations that asserted independent normal priors for sums of

coefficients, as in Doan et al. [1984], proved useful. Such dummy observations

imply negative cross-correlation in beliefs about coefficients at different lags and

focus on the implied low-frequency behavior of the data.

Economists seem to put more credence in the implications of DSGE’s at low

frequencies than at higher ones, at least compared to linear time series models.

This is evident in the practice at central banks of using models with a “core” that

is more or less insulated from influence by data. The notion of a core model is

most explicit in the recent Bank of England Quarterly model [Harrison et al., 2005],

where the core is a DSGE, but it is also present in the US Federal Reserve Board’s
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FRBUS and in a number of central bank models that have followed the lead of the

Bank of Canada’s QPM.

We can mimic the behavior of the Minnesota prior and, roughly, the revealed

priors of policy modelers, by using ȳj’s with different frequency characteristics

and weighting them differently. To be specific we can use, where k is the number

of lags (and hence k + 1 the numbers of columns in A∗ corresponding to y’s rather

than x’s)

ȳji
i` =





ασi
1√
2

j = 1

ασi cos
(

π j(`− 1)
k + 1

)
`γ

(
j
2

)−ω

j even, 1 < j < k+1
2

ασi sin
(

π(j− 1)(`− 1)
k + 1

)
`γ

(
j− 1

2

)−ω

j odd, 1 < j < k+1
2

ασi
(−1)`−1
√

2
j even, j = k + 1 .

(7)

ȳji
h` = 0, h 6= i (8)

Each dummy observation asserts, with more or less confidence determined by the

weighting, that a pattern of variation in the data that produces a given residual

vector in the DSGE should produce a similar residual vector in the SVAR. Here j, i

indexes the dummy observation, i indexes variables, and ` indexes the lag. The

γ parameter, when positive, makes the prior tighter for more distant lags. The ω

parameter, when positive, makes the prior bind less tightly at higher frequencies.

The σi parameters are prior estimates of the relative scales of variation in the vari-

ables. α is an overall scale parameter determining the tightness of the prior. The

most natural interpretation of the dummy observations in this group are that they
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make assertions about the effects of deviations form the steady state or trend path,

and the x̄ji’s, the weights on the constant term are therefore set to zero.

Note that these ȳij’s, as functions of `, are the standard entries in a finite Fourier

transform matrix, except that the term in γ makes them increase with lag length

and the term in ω makes the rows smaller at higher frequencies. They are also

closely analogous to the dummy observations that form the Minnesota prior. The

j = 1, or zero-frequency, components are the “sums of coefficients” dummy ob-

servations used in the Minnesota prior, except for the γ term and the fact that

they shrink toward the DSGE rather than toward independent random walks. The

Minnesota prior includes separate dummy observations for each variable and lag

in addition to the sums-of-coefficients dummy observations. Here instead we in-

clude the higher frequency dummy observations. The Minnesota prior approach

is equivalent to giving the dummy observations on different frequencies equal

weights at all frequencies other than zero.

We have so far just (k + 1)n dummy observations and need one more to have

a proper prior over all of the Aj’s and c. We can add one, call it ȳ1,n+1, in which

all variables take their j = 1 values from (7) with γ = 0 and x̄ji 6= 0. We choose

x̄ji so that this dummy observation asserts that the SVAR has approximately the

same steady state as the DSGE. To do this, in case the DSGE is stationary, we set

ȳ1,n+1 = λȳ0(θ) at all lags, where ȳ0(θ) is the steady state, and x̄1,n+1 = λ. If

the DSGE implies some unit roots then ȳ0(θ) should be chosen consistent with all
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the stationary linear combinations of y being at their steady states and the non-

stationary ones being at the values implied by the initial conditions in the data.

III. INFERENCE

To characterize the joint pdf of parameters and {yt} now requires just specifica-

tion of a prior on θ, which will be model-specific. Then we will have a marginal

pdf for θ (the prior on θ), a conditional pdf for A∗ given θ (the conditional prior

laid out in the previous section), and a conditional pdf for the data given A∗ (the

standard SVAR pdf). Their product is the joint pdf. We do not assume, though,

that the full y vector is observed. Observations are zt = Cyt, where zt is a shorter

vector than yt. The Kalman filter gives us an algorithm for proceeding recursively

through the sample with A(L), c given to obtain the posterior pdf value for {zt}

given A(L), c.

However, while constructing the conditional pdf of A∗ | θ, {yt} is straightfor-

ward, constructing that for A∗ | θ, {zt} is not. The z process will be an ARIMA

process with coefficients nonlinear functions of A∗. It is therefore convenient to

treat the unobserved dimensions of yt explicitly and conduct inference jointly on

them, A∗, and θ. A recursive algorithm similar to the Kalman filter will allow us

also to generate a sample from the conditional distribution of the unobserved com-

ponents of yt conditional on the observed zt’s. Conditional on those y values and

θ, the posterior pdf of A∗ is in a standard form and can be evaluated analytically

or sampled from directly.
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Our expanded parameter vector A∗, θ, {yt} thus has two high-dimensional com-

ponents, A∗ and {yt}, and one of moderate dimension, θ. For each high-dimensional,

component we know how to maximize analytically or sample from directly the

posterior conditional on the other parameters. In the maximization phase of infer-

ence, therefore, we will use an alternate-directions-search algorithm, maximizing

in one of the three parameter blocks at a time. Such methods generally work well

in the initial phases of optimization, but can become very slow near the optimum

if there is strong dependence across the alternating directions. Since we are aim-

ing at using the optimization mainly to generate a good starting point for MCMC

posterior sampling, the possibility that it slows down near the optimum is not

necessarily a serious problem.

For MCMC sampling from the posterior, alternating directions corresponds to

Gibbs sampling. In the two high-dimension blocks, we can sample directly from

the conditional posterior. For the θ block, some version of Metropolis-Hastings

sampling will be required. As is well known, sampling sequentially from alternate

blocks of parameters leads to a legitimate MCMC sampler. However here too there

could be difficulties if there is strong dependence across the dimensions. It seems

likely that uncertainty about unobserved states is not strongly dependent on the

values of other parameters. When the prior is tight, though, dependence between θ

and A∗ can be arbitrarily strong. It may therefore be necessary to use an occasional
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independence Metropolis-Hastings MCMC step2 on θ and A∗ jointly to break the

dependence.

The Kalman filter requires that we initialize the filter with a pre-observation dis-

tribution for y1. If the A(L), c model is stationary, the obvious choice is the ergodic

distribution for y1 implied by the model. However it is common for DSGE’s to

imply unit roots, and even if a given θ implies only roots near 1, the conditional

posterior will put some probability on A(L), c values that imply non-stationarity.

The common practice in VAR and SVAR models is to use the pdf for the data from

k + 1 onwards, conditional on the initial conditions for t = 1, . . . , k. That will

generally be possible here, also, since we can expect that zt captures all the dimen-

sions of non-stationarity in the model. In that case the conditional distribution of

y1 given z1 will be well-defined, even if there is no unconditional distribution for

y implied by the model, and we can initiate the Kalman filter with this conditional

distribution. Conditioning on initial conditions this way wastes information, as

the stationary dimensions of variation in initial z will carry information about the

parameters that is ignored. Also, as explained in Sims [revised 1996, 2000], con-

ditioning on initial conditions tends to lead to model fits that attribute too much

explanatory power to deterministic components dependent on initial conditions.

The use of the DSGE prior probably mitigates this latter tendency, but the world

awaits a better systematic approach to handling initial conditions than condition-

ing on them.

2See Robert and Casella [2004] for a discussion of Metropolis-Hastings algorithms.
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Evaluation of the marginal data density — the integrated posterior density — is

required for making Bayesian model comparisons. Here the availability of analytic

integration over {yt} | θ, A∗, {zt} or {A∗ | θ, {yt}} will increase accuracy for the

usual modified harmonic mean method of evaluating the marginal data density. It

seems that only one of these simplifications is usable at a time, though one could

try each.

It is worth mentioning here that standard DSGE solution programs do not pro-

duce results in the form (2). The program gensys, for example. produces a solu-

tion in the form

yt = G(θ)yt−1 + H(θ)εt . (9)

Here H(θ), called the impact matrix in gensys, is generally non-square and less

than full rank, so premultiplying (9) by H(θ)−1‘ to achieve the SVAR-like form (2)

is not an option. In fact, with H(θ) singular there is not in general a unique A0(θ).

Nonetheless it is possible to define an algorithm that maps I − G(θ)L and H(θ)

into a unique A(L; θ) for every theta. The normalization that delivers a unique θ

has no effect on the equations defining ε or on the model’s implied behavior of the

data. The mechanics of the translation are described in the Appendix.

IV. RELATION TO PREVIOUS WORK

There has been continuing interest in using Bayesian methods to connect behav-

iorally interpretable macroeconomic models with statistical models that fit well,

going back at least to Ingram and Whiteman [1994] and DeJong et al. [1996, 2000].

In the first of these papers a DSGE model is used to generate a prior for a reduced
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form VAR. In the last a prior is placed on parameters of a simple linearized DSGE,

which is then compared with a BVAR in a forecasting exercise. More recently Smets

and Wouters [2003a,b,c] demonstrated that this latter approach could be extended

to models more closely approaching the type and scale of those used in central

bank policy analysis.

The most closely related previous work is that of DelNegro and Schorfheide

[2004], DelNegro et al. [2006] and Sims and Zha [1998]. Like Ingram and Whiteman

[1994], Del Negro and Schorfheide use a DSGE to develop a prior for a VAR. They

go beyond the earlier work in making the model for the data a structural VAR, but

their approach does not admit any direct specification of the degree of uncertainty

about the DSGE’s A0 matrix. They do produce a prior on A0 (actually, directly on

H) based on θ but they do so via a mapping that depends on an arbitrary ordering

of variables. The result is that some identifying restrictions from the DSGE are

imposed deterministically and others stochastically, with the exact nature of the

prior depending on the arbitrary ordering in ways that are difficult to grasp. As

in this paper, they construct a prior that, conditional on A0 and θ, is conjugate,

but in their published and circulated work they do not consider applying different

weights by frequency.3 Finally, their approach does not produce distributions for

A(L), c, only for the reduced form parameters and H. An advantage of producing

posteriors directly on A(L; θ) is that uncertainty about the coefficients in a given

3From conversation with them, I understand that they have research underway that does so,

though through a different approach than that taken here.
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equation in this form corresponds to uncertainty about whether the shock is well-

determined by the prior and the data. For example, if the data and prior allow

fairly precise identification of the monetary policy shock, but weak identification

of the distinction between technology shocks and labor supply shocks, this would

be evident from distributions for the equations defining these shocks.

The paper by Zha and myself takes an approach similar to that in this paper, but

focuses entirely on SVAR’s, shrinking toward independent random walks.

V. AN EXAMPLE APPLICATION

TO BE WRITTEN

APPENDIX A. FROM H TO A0

Suppose we are given a system of the form

yt
n×1

= Gyt−1 + H
n×m

ε . (10)

We can find a singular value decomposition of H as

UDV ′ = H , (11)

where U and V are orthonormal and square and D has the dimensions of H and

is diagonal (meaning its only non-xero elements are on the diagonal of its upper

m×m matrix). If D is singular, some linear combinations of the shocks have no in-

fluence at all on y. This could happen, for example if only the sum of two demand

shocks matters, or if the total number of behvioral shocks exceeds the length of the

y vector. In such cases it is likely to be true that we can redefine ε to be of lower
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dimension, but still mutually uncorrelated, so that D is full rank. We will not lay

out a general method for dealing with such cases here, however.

With D non-singular, we can set

A0 =




V 0

0 I







D−1 0

0 I


 U′ (12)

A1 = A0G (13)

to obtain

A0yt = A1yt−1 +




ε

0


 (14)
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