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ABSTRACT
In this paper, I propose a model of rational inattention where the choice

variable is a deterministic function of the exogenous variables, and still only a
finite amount of information is being used. This holds provided the choice vari-
able is discrete rather than continuous; that is, the mapping from the realization
of the exogenous variables to the endogenous ones is piece-wise constant.
Thus, limited information is now a source of lumpiness in behavior, rather

than a source of noise. A central result is that the mutual information between
the exogenous variable and the endogenous one is simply equal to the entropy,
in the usual discrete sense, of the endogenous variable.
The approach is illustrated with two applications: a general linear-quadratic

problem with a uniform distribution, and a simple static model of price-setting
where individual price setters face aggregate monetary shocks and idiosyncratic
productivity shocks.
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1 Introduction

In a series of seminal papers, Sims (2003,2006) has proposed a novel approach

to bounded rationality. It is based on the view that people face information

capacity constraints defined using Shannon’s (1948) theory of information.

More precisely, the number of bits that one can use to process the exogenous

variables (like income) into the endogenous ones (like consumption) is limited.

That informational requirement is defined by Shannon’s mutual information

concept, which tells us the amount of information obtained on a variable

when one observes another, correlated one.

As a consequence of that information constraint, the endogenous variable

is noisy compared to the optimal behaviour that would prevail absent an in-

formational constraint. Thus, is many applications (such as Luo (2008), who

studies a consumption problem, and the papers cited below on price-setting)

the agents rationally allocates this noise so as to maximize its utility subject

to the information capacity constraint. The more noisy is the endogenous

variable in a given zone of the distribution of exogenous variables, the less the

agent pays attention to that zone and the greater the informational capacity

left for processing other zones.

As pointed out by Sims, the reason why noise must inevitably arise is that

if the distribution of the exogenous variables is continuous, then an infinite

amount of information would be needed to process a deterministic mapping

from the exogenous variables into the endogenous ones.

In some settings, the noise is inherent to the problem of measuring a signal

and the agents’ informational capacity is used to reduce such a noise. In

other settings, though, the result that behaviour adds noise to the exogenous

variables is unpalatable. If the realization of the latter is perfectly observed

then the agent would have to generate the noise artificially, but then it is

problematic to ignore the information needed to generate such noise. It would

then be more reasonable to assume that the behaviour of the agent remains

deterministic while the information processing constraint prevents it from
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targeting the optimal behaviour. However, that is not what is happening in

the rational inattention literature.

In this paper, I propose an alternative approach to that issue. The idea

is that the choice variable may be a deterministic function of the exogenous

one and still make use of a finite amount of information if the choice variable

is discrete rather than continuous; that is, the mapping from the realization

of the exogenous variables to the endogenous ones is piece-wise constant,

reflecting the fact that the agent can only elect a finite number of values for

the choice variable, because of the informational constraint.

Thus, limited information is now a source of lumpiness in behavior, rather

than a source of noise. The state space faced by the agent is partitioned into

clusters and all points in the same cluster yield the same action. Of course,

limited information is not the only source of lumpy behavior; it is well known

that there are other sources, such as fixed or linear adjustment costs. But

the approach proposed here yields many potentially testable predictions: In

general, we expect that the greater the information processing ability of an

economic entity, the less lumpy its behavior.

Another central result (Section 2) is that the mutual information be-

tween the exogenous variable and the endogenous one is simply equal to the

entropy, in the usual discrete sense, of the endogenous variable. That is, the

mutual information does not depend on the exact mapping from the exoge-

nous variable to the endogenous one but only on the probability weights of

the (discrete) distribution of the latter.

Sections 3 and 4 illustrate the kind of results that my approach would

deliver by applying it to two simple examples: a general linear-quadratic

problem with a uniform distribution, and a simple static model of price-

setting where individual price setters face aggregate monetary shocks and

idiosyncratic productivity shocks. The literature that has studied this issue

(in particular, Mackowiak and Wiederholt (2009a,b), Paciello (2007)) uses

Sim’s noisy approach and has shown that under rational inattention prices

were "sticky" in the sense that the aggregate price level was not reacting
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one for one to the aggregate money stock1. However, prices are not lumpy:

even a small monetary shock will generate a small (but non neutral) response

of individual prices (one notable exception is Moscarini (2004))2. Here, in

contrast, rational inattention leads to lumpy price-setting behavior; for prices

to change, the shocks faced by a firm must be large enough to trigger a move

to a different cluster.

Section 5 provides a more general discussion and concludes.

2 Continous and discrete entropy and mutual
information

It is somewhat important to realize that there are two different concepts of

entropy. For a discrete distribution with n outcomes and probabilities pi,

i = 1, ..., n, we may define entropy as

S = −
nX
i=1

pi log pi.

On the other hand, for a continuous distribution with density f(x), we

may define entropy as

H(f) = −
Z

f(x) log f(x).dx.

The reason why the two concepts do not coincide is as follows. A discrete

distribution is always the limit of a sequence of continuous distributions,

as they become more concentrated around the discrete outcomes. However,

the continuous entropy H of those approximations does not converge to the

corresponding S. Instead, it converges to −∞.
1The same result is reached by Saint-Paul (2005) in a world where firms are irrational

and experiment alternative price-setting rules, while exerting local spillovers on each other.
2In that paper, lumpiness arises for different reasons than here. Time is continuous

and there is a constraint on the flow of information processed by the agent. the exogenous
variable follows a diffusion process. A noisy signal of that variable can be obtained at a
cost. The cost structure of information is such that the signal will be drawn infrequently,
at discrete dates. Thus there is lumpiness "in time" rather than in the state space.
Consequently, the model is similar to that of Mankiw and Reis’s (2002) sticky information
paper.
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Take for example the extreme case where x = 0 with probability 1.

Clearly, S(x) = 0. This discrete distribution is the limit of the continuous one

defined by density fε(x) = f(x/ε)/ε, for any density f() over (−∞,+∞),
which is regular and has f(0) > 0, as ε goes to zero (in terms of distribution

theory, these distributions converge to a Dirac function δ(x)). Furthermore,

H(fε) = H(f) + log ε,

so that

lim
ε→0

H(fε) = −∞.

Entropy is lower, the more concentrated the distribution. For both dis-

crete and continuous distributions, the most concentrated one is when all the

mass is at a single point. But the lower bound of S is zero, while that of H

is -∞.

Let us now turn to mutual information, which plays a key role in the

theory of rational inattention. We consider two random variables x and y.

Their densities are g() and f(), respectively. For any realization of x, we

denote by f(y | x) the conditional distribution of y and its entropy is

H(y | x) = −
Z
y

f(y | x) log f(y | x).dy.

This can be averaged over x, which allows to define the conditional en-

tropy of y :

Hx(y) =

Z
x

H(y | x)g(x)dx.

Now it can be easily shown that the entropy of the joint distribution of

x and y, H(x, y), is such that3

H(x, y) = H(x) +Hx(y) = H(y) +Hy(x).

Consequently, we have that

H(y)−Hx(y) = H(x)−Hy(x) =M(x, y),

3In fact, that property is one of the axioms imposed by Shannon to derive his functional
form for entropy.
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which is the mutual information between x and y. This quantity tells us

how much knowledge of one variable reduces the entropy of the other, on

average. If the two variables are independent, then M(x, y) = 0. On the

other hand, if one had y = x, then the joint distribution is degenerate and

f(y | x) becomes equal to the Dirac function δ(y−x). Hence all the H(y | x)
are equal to −∞ and so is Hx(y). We then have that M(x, y) = +∞. This

means that knowledge of x gives us an infinite amount of information about

y. The same conclusion would be reached if instead of y = x, there was any

other mapping which allowed to retreive one variable from the other.

The theory of rational inattention, as proposed by Sims, assumes that

an agent receives a signal y (say, income), which must be processed into a

decision variable x (say, consumption). The agent’s ability to process infor-

mation is limited and that limit takes the form of a constraint on the mutual

information between the two variables:

M(x, y) ≤ K.

Since M(x, y) = +∞ if x is a deterministic function of y, this constraint

cannot be matched. The endogenous variable must be related to the ex-

ogenous one in a noisy fashion for the information capacity constraint to be

matched. In other words, processing a continuum of real values with perfect

precision requires an infinite amount of information.

I now show that there is an important exception to that principle, and

this is the case when x, while being a deterministic function of y, only takes

a finite number values. There is then no longer a mapping from y to x.

While x can be retreived from y, the converse is not true. In such a case, the

mutual information between x and y remains finite, and is in fact equal to

the discrete entropy S of the random variable x.

Let us consider a collection of values of x, X = {x1, ..., xn}, and assume
that any y is assigned to one of those values, called x(y). For any x ∈ X, we

define Tx = {y, x(y) = x}. To avoid manipulating infinite quantities, I will
consider my deterministic assignment as the limit, for ε→ 0, of the random
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variable x defined by its conditional distribution:

fε(x | y) =
1

ε
f̂

µ
x− x(y)

ε

¶
.

Here again, f̂() is any regular density such that f̂(0) > 0. We are again

in a situation where the conditional of x is a Dirac, now around x(y), and

we approximmate it by a density which becomes increasingly concentrated

around x(y). To fix ideas, one can just take the standard normal density for

f̂().

The conditional entropy of x, if x is distributed as fε, is

Hy(x; ε) = −
Z
y

f(y)

Z
x

1

ε
f̂

µ
x− x(y)

ε

¶
log

∙
1

ε
f̂

µ
x− x(y)

ε

¶¸
dxdy

= −
Z
y

f(y)

Z
z

f̂ (z) log

∙
1

ε
f̂ (z)

¸
dzdy

= H(f̂) + log ε.

So, clearly, limε→0Hy(x; ε) = −∞.

Consider now the entropy of x, given ε, denoted by H(x; ε). The uncon-

ditional density of x is

gε(x) =
nX
i=1

1

ε
f̂(

x− xi
ε

)F (Ti).

Thus,

H(x; ε) = −
Z
x

gε(x) log gε(x).dx

= −
nX
i=1

Z
x

1

ε
f̂(

x− xi
ε

)F (Ti) log

µ
1

ε
f̂(

x− xi
ε

)F (Ti)

¶
dx

= −
nX
i=1

Z
z

f̂(z)F (Ti) log

µ
1

ε
f̂(z)F (Ti)

¶
dz

= H(f̂) + log(ε) + S(X),

where S(X) is the discrete entropy of the random variable whose real-

ization is xi, with corresponding probability pi = F (Ti). Thus H(x; ε) also
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converges to −∞ when ε becomes nil, however, the mutual information re-

mains finite and

M(x, y; ε) = S(X).

This is independent of ε and equal to the discrete entropy of the random

variable xi. Obviously, it remains equal to that as ε→ 0. Hence the mutual

information of our assignment process is finite.

3 The linear-quadratic case

I now apply these ideas to the linear-quadratic case. In its simplest case, the

agent receives a continuous signal y with density f(y) and associated measure

F (M) =
R
M
f(y)dy, and wants to approximate it (in the least squares sense)

by a deterministic function x(y) which is constant over each subset of a finite

partition of the domain of y. Thus, using the preceding derivation for mutual

information in the discrete case, we can formulate the problem as follows (in

the sequel I will use natural logarithms in the definition of entropy. Thus K

is expressed in bits / ln 2).

(P) : min
n,S=(x1,...,xn),x():R→S

E(x(y)− y)2

s.t.−
nX
i=1

F (x−1(xn)) lnF (x
−1(xn)) ≤ K

A first property, which is unsurprising given the convexity of the loss

function, is that the optimum must be such that the sets x−1(xn), denoted

by Sn, have a convex interior.

Lemma 1 — Consider a solution to (P). Then C(S̊n) = S̊n∪∂S̊n is convex.
Proof — see Appendix.

Lemma 1 tells us that the Sn must be intervals, except for closed subsets

of measure zero. In practice those subsets are irrelevant so we will focus on

solution that are piece-wise constant.
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Lemma 2 — xn = E(y | y ∈ Sn). Therefore x(y) is non decreasing.

Proof: the first part is straightforward from the optimal choice of xn. The

second derives from the fact that the Sns are intervals except for subsets of

measure zero.

I now focus on the case where f() is uniform over [0, 1]. It is then possible

to fully characterize the equilibrium:

Theorem 1 — Assume f() is uniform. Then an optimal policy is such that

(i) The interval [0, 1] is partitioned into N adjacent intervals [yn, yn+1], y0 =

0, yN = 1.

(ii) N = INT+(eK), where INT+(z) is the smallest integer m such that

z ≤ m.

(iii) N − 1 intervals have the same length ∆, where ∆ is the smallest

solution to

−(N − 1)∆ ln∆− (1− (N − 1)∆) ln(1− (N − 1)∆) = K,

while the remaining interval has length 1− (N − 1)∆.

(iv)

∆ < 1/N < 1− (N − 1)∆

(v) For y ∈ [yn, yn+1], x(y) = xn =
yn+yn+1

2

(v) The resulting value function is V = (N − 1)∆3 + (1− (N − 1)∆)3

(vi) The arrangement of those intervals is irrelevant.

Proof – See Appendix.

Note that if capacity K is such that there is an integer number of bits,

then K = k ln 2 with k integer, and eK = 2k. In this important special case,

the optimal solution, quite naturally, consists in splitting the interval into 2k

intervals, since one needs exactly k bits to encode the actual interval to which

y is assigned. Furthermore, in this limit case where the capacity constraint is

marginally binding for N = 2k, all intervals will have the same length 1/2k.

If K/ ln 2 is not integer, then partitioning into equal intervals is not opti-

mal. Instead, we have one more interval than the largest number of intervals

8



that would allow us to have an equal partition while meeting the informa-

tional constraint. We pick N − 1 equally sized intervals of length ∆, and

the remaining one has length ∆0 = 1 − (N − 1)∆ > ∆. ∆ is such that the

informational constraint binds with equality.

4 An application to price-setting

We now discuss the implications of the approach derived above for the prob-

lem of price setting and the effects of monetary policy.

Let us consider the following static version of the standard new Keynesian

model4. There is a continuum of consumers-yeoman farmers of total mass 1.

They are indexed by i and they monopolistically supply an atomistic good

with the same index i. Thus there is also a continuum of goods of mass 1.

The utility function for individual j is

Vj = E ln

"µZ 1

0

cαijdi

¶ 1
2α
µ
mj

p

¶1/2
X−ψ − zjx

1+μ
j

#
,

where E is the expectations operator, cij consumption of good i, mj money

holdings, p the aggregate price level, zj an idiosyncratic supply shock and xj
the supply of good j. The term in X−ψ is a negative congestion externality,

where X is aggregate real output (defined below) and ψ ≥ 0. This will

allow me to pick the value of ψ so as to focus on a special case which is

computationally much simpler, while what is lost by doing so is independent

of the point being illustrated here.

For simplicity, the aggregate price level that deflates money holdings in

the utility function is assumed to be equal to the price index that is dual to

the aggregate consumption index

cj =

µZ 1

0

cαijdi

¶ 1
α

:

4See Weitzman (1985), Blanchard and Kiyotaki (1987).
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p =

∙Z 1

0

p
− α
1−α

i di

¸− 1−α
α

.

The usual derivations concerning demand functions and aggregation are

made in the Appendix. We can show that each yeoman farmer maximizes

the indirect utility function given by:

E ln

∙
p
− α
1−α

j − φjp
− 1+μ
1−α

j

¸
, (1)

where φj is a composite shock defined by

φj = zjM
μ+ψp1−ψ+

αμ
1−α (2)

is a composite shock and the second term is treated as constant by the agent

since it is independent of his pricing policy.

From now on, I will assume that ψ is such that the composite shock does

not depend on the aggregate price level: ψ = 1 + αμ/(1 − α). Thus, φj =

zjM
μ+1−α
1−α ; spillovers in price formation across firms are shut down, which

greatly simplifies the analysis. It is then useful do define γ as γ = μ+1−α
1−α .

As a benchmark, we can derive the flexible price equilibrium with no

informational constraint where a different price is set for each realization of

φj. The FOC for price-setting is equivalent to

pj =

µ
(1 + μ)φj

α

¶1/γ
(3)

=

µ
1 + μ

α

¶1/γ
z
1/γ
j M.

Integrating we get the aggregate price level:

p =Mz̃1/γ
µ
1 + μ

α

¶1/γ
,

where z̃ is an aggregate of z defined as

z̃ =

∙Z 1

0

z
− α
1−α+μ

j dj

¸− 1−α+μ
α

.
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Thus money is neutral, the aggregate price level is proportional to M,

and real aggregate output is constant and equal to

X =
Y

p
=

M

p
=

µ
z̃
1 + μ

α

¶−1/γ
.

Output is lower, the larger the aggregate cost index z̃, the larger the

elasticity of the disutility of effort μ, and the lower the elasticity of demand

for the individual goods, i.e. the larger the markup over marginal cost 1/α.

The New Keynesian literature takes this framework and imposes some

nominal price rigidity. I now introduce capacity constraints in processing in-

formation along the lines discussed above and derive the associated behaviour

of output and the price level.

Under rational inattention, people do not have the information processing

ability to pursue a rule like (3) for any value of φj. Instead they are going to

pursue a rule such that the mutual information between pj and φj satisfies

a capacity constraint. Let us assume that, as in the above analysis, they

pursue a discrete deterministic rule and partition the support of φj into

intervals Ik = [φ̄k, φ̄k+1] such that a constant value of pj, denoted by p̄k, is

pursued within each interval. We assume k varies between 0 and N +1, with

φ̄0 = 0 and φ̄N+1 = +∞.

The distribution of the composite shock φ has density

g(φ) =

Z +∞

0

f(M)M−γh(φM−γ)dM. (4)

Individuals select the number of intervals, their bounds and their associ-

ated price levels so as to maximize:

max
N,{φ̄k,k=1,...,N},{p̄k,k=0,...,N}

U =
NX
k=0

Z φ̄k+1

φ̄k

g(φ) ln

∙
p̄
− α
1−α

k − φp̄
− 1+μ
1−α

k

¸
dφ, (5)

subject to the information capacity constraint

−
NX
k=0

ÃZ φ̄k+1

φ̄k

g(φ)dφ

!
ln

ÃZ φ̄k+1

φ̄k

g(φ)dφ

!
≤ K. (6)
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An equilibrium is therefore a set {N, {φ̄k, k = 1, ..., N}, {p̄k, k = 0, ..., N}}
which maximizes (5) subject to (6). The solution to this problem then

delivers the aggregate price level as a function p(M) of the realization of

the aggregate money stock. Given M, a price-setter j is in interval Ik iff

φ̄k ≤ zjM
γ < φ̄k+1, which occurs with probabilityH(φ̄k+1M

−γ)−H(φ̄kM−γ).

Therefore, the aggregate price level p(M) is given by

p(M) =

Ã
NX
k=0

¡
H(φ̄k+1M

−γ)−H(φ̄kM
−γ)
¢
p̄
− α
1−α

k

!−1−α
α

, (7)

where by convention H(+∞) = 1. This in turn allows to compute output

X = M/p(M). Note that the assumption made on ψ guarantees that the

environment faced by each price-setter only depends on the exogenous vari-

ables and not on the prices set by other agents5. This greatly simplifies the

computations.

I solve for such an equilibrium numerically, performing global optimiza-

tion on all the possible partitions of the domain of φ into a finite number of

intervals which match the informational capacity constraint. To keep things

tractable the possible values for the jump points have been discretized6.

Table 1 reports some summary statistics for the simulations. I start from

a benchmark numerical exercise where both f() and h() are log-normal, with

E lnM = E ln z = 0 and Var(lnM) = Var(ln z) = 1. The other parameters

were μ = 1 and α = 0.5.

I first start by simulating this economy for K = 1.2 and I gradually

loosen the information capacity constraint by increasing K. Table 1 reports

the corresponding number of clusters along with the variance of log output.

Figure 1 reports the behavior of output as a function of the monetary shock

5Otherwise, the shock φ and its distribution g() would themselves depend on the aggre-
gate price level, and there would be no closed-form formula such as (7) for the latter—one
would then need to search for a fixed point equilibrium rather than just an optimum.

6More precisely, there are N̄ possible values of φ̄k separated by a probability weight
of 1/(N̄ + 1), i.e. if those eligible critical values are denoted by φ̃j , j = 1, ...., N̄ , thenR φ̃j+1
φ̃j

g(φ)dφ = 1/(N̄ + 1).

In the simulations, one has picked N̄ = 20.
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M.We see that for a wide range of values of the money stock the curve is quite

flat: despite the small number of clusters, heterogeneity due to idiosyncratic

shocks is enough to yield near neutrality at the aggregate level, a not unusual

result (Caplin and Spulber (1987), Caballero and Engel (1993), Burstein and

Hellwig (2007)). The curve is tilda-shaped: at small (resp. large) values of

M,most firms charge their minimum (resp. maximum) price, and an increase

in M boosts output. For intermediate values, a composition effect creates

a force in the opposite direction, as some firms move to a cluster with a

higher price. This composition effect creates a zone where money growth is

contractionary, which also happens in other models of price rigidity.

Figure 2 compares the flatter portion of the output curve between a low

information (K = 1.2) and a high information (K = 1.5) regime. We see

that output is substantially flatter in the latter case. Nevertheless, as Table

1 shows, for local increases in capacity, the variance of output may well go

up.

It is also interesting to look at the distribution of individual prices. They

are reported in Figures 3 (for K = 1.2) and 4 (for K = 1.6). The dimension

of each rectangle along the y-axis is the price and along the x-axis it is the

probability weight associated with the corresponding interval of values of φ.

We see that the probability weights on each price are decreasing with the

price, meaning that price-setters are devoting more attention to situations

where the required price is higher. This is presumably due to the marginal

disutility of labor schedule: the utility cost of not paying attention to these

states is high because if one charges too low a price the labor input must be

very high7.

7This clearly rests on my assumption that demand must be met; this might not remain
realistic for very high realizations of the demand shock.
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Entropy #of clusters Variance of output
1.2 4 0.17
1.3 5 0.18
1.4 5 0.187
1.5 5 0.1
1.6 6 0.1
Table 1.

Table 2 analyses the effect of an increase in the variance of monetary

shocks on the distribution of individual prices for K = 1.4. We compare the

benchmark situation to one such that Var(lnM) = 2 and E(lnM) = −0.5
(Implying that E(M) is the same as in the benchmark). We see that the

increase in the variance of money shocks compells price-setters to devote

more attention to high realization of those shocks8: the upper-tail of the

distribution of the composite shocks is split into more, and finer, clusters,

while the first interval is coarser. Also, the variance of log output increases

from 0.19 to 0.49.

Table 3c performs the reverse exercise of dividing the variance of monetary

shocks by 2, while again adjusting the mean log ofM to hold E(M) constant.

We see that the number of clusters is the same, and so is their size, but the

order is changed: the second cluster gets the biggest weight, while more

attention is paid to low realizations of the shock than before. The intuition

for this result is unclear.

Cluster Price Weight
1 0.95 0.43
2 1.96 0.24
3 3.74 0.19
4 7.0 0.095
5 23.63 0.048

8That is because of the skewness of the log-normal distribution along with the increasing
marginal disutility of labor property. But for even larger increases in the variance of
money shocks, the price setters will also spend information capacity on the lower tail of
the distribution. Thus, for Var(lnM) = 4, cluster 1 has a minimal weight of 0.048.
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Table 2a — K = 1.4, benchmark.

Cluster Price Weight
1 0.76 0.52
2 1.67 0.19
3 2.84 0.095
4 4.99 0.095
5 8.66 0.048
6 47.4 0.048

Table 2b — K = 1.4, Var(lnM) = 2 and E(lnM) = −0.5.

Cluster Price Weight
1 0.81 0.19
2 1.93 0.43
3 3.65 0.24
4 6.02 0.095
5 13.45 0.048

Table 2c — K = 1.4, Var(lnM) = 0.5 and E(lnM) = 0.25

5 Discussion

The general message of this paper is that information processing constraints

yield lumpy behavior. Thus, when the exogenous variables change, inat-

tention results in inaction, while in the standard approach it is associated

with inadequacy, i.e. embodies excess noise. In both cases, the endogenous

variable does not react enough to the exogenous one, although here there

will be a jump if one crosses the frontier between clusters.

The existence of lumpiness in the adjustment of economic variables has

been documented in a number of areas. For example, Doms and Dunne

(1998), studying investment at the plant level, find that "Many plants oc-

casionally alter their capital stocks in lumpy fashions. Of the plants in a

balanced panel, over half experience a capital adjustment of at least 37 %
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in one year, and by 50% in two consecutive years". In the area of price

setting, Klenow and Kryvstov (2008) find (table III) that individual price

changes are usually large, with a mean size of 14 %. Dhyne et al. (2006)

report similar findings, along with substantial heterogeneity in the degree of

lumpiness of price adjustment across sectors. Finally, evidence of lumpiness

in employment can be found in Davis et al (1996) or Caballero et al. (1997).

The latter, in particular, found that the distribution of employment changes

is typically bimodal.

Of course, rational inattention is not the only reason why there could

be lumpiness. The above literature has mostly focused on fixed and linear

adjustment costs and rational inattention and adjustment costs are not mu-

tually exclusive mechanisms. The rational inattention mechanism may be

of particular interest when large adjustment costs are implausible, as in the

area of price setting. Furthermore, a range of novel predictions may be gen-

erated regarding the determinants of lumpiness: The greater an economic

agent’s ability to process information, the less lumpy its behaviour. Thus

one may speculate that advanced in information technologies have reduced

lumpiness9, or that firms with a greater fraction of highly skilled workers

have less lumpy behavior — this may help explain, for example, the finding

by Doms and Dunne (1998) that smaller plants have a more lumpy adjuste-

ment, if one is willing to believe that smaller plants employ fewer skilled

workers, or by Dhyne et al (2006, fig. 1) that some sectors (like gasoline)

have much less lumpy price adjustment than others (like haircuts).

9This is the message of the empirical study by Bartel et al. (2005) inthe space of
product diversity.
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APPENDIX

Proof of Lemma 1.

Consider y ∈ S̊n and y0 ∈ S̊p for p 6= n. A swap between y and y0 would

be marginally improving iff

(xn − y0)2 + (xp − y)2 < (xn − y)2 + (xp − y0)2,

or equivalently

(xn − xp)(y − y0) > 0.

Let us now assume that for some n, ∂S̊n is not convex. Then we can find

y, y00 ∈ C(S̊n), and λ ∈ (0, 1) such that y0 = λy + (1− λ)y00 /∈ C(S̊n). Since y

and y00 are limits of sequences of elements of S̊n, we can simply assume they

are themselves interior. Since y0 /∈ C(S̊n) and C(S̊n) is closed, there exists

an interval I 0 = (λ − ε, λ + ε) such that y0(λ0) = λ0y + (1 − λ0)y00 /∈ C(S̊n)

for all λ0 ∈ (λ − ε, λ + ε). Since y, y00 ∈ S̊n, we can construct two intervals

J = (y − η, y + η) ⊂ S̊n and J 00 = (y00 − η, y00 + η) ⊂ S̊n and furthermore

choose them such that they do not intersect J 0 = y0(I 0). Finally there exists

a mapping y() from I 0 to J and y00() from I 0 to J 00 which allows us to index

those two sets by λ0.

For λ0 ∈ I 0 (y0(λ0) − y(λ0))(y0(λ0) − y00(λ0)) < 0. Thus, either (xn −
x(y0(λ0)))(y(λ0) − y0(λ0)) > 0 or (xn − x(y0(λ0)))(y00(λ0) − y0(λ0)) > 0. Let

y∗(λ0) be the element of {y(λ0), y00(λ0)} such that the inequality is satisfied.
Consider now the new assignment which, for all the λ0s, replaces x(y0(λ0))

with xn and sets x(y∗(λ
0)) = x(y0(λ0)) instead of xn. Each of those swaps is

marginally improving the objective function by an amount which is bounded

from below by a strictly positive number, since there is a finite number of

values of xn and | y0(λ0)−y∗(λ0) | is also bounded away from zero. Integrating
those gains over I 0 and noting that y() has full support, we see that the objec-

tive function must improve by a strictly positive amount, which contradicts

the initial optimality condition. Thus C(S̊n) must be convex. QED.

Proof of Theorem 1.

19



Lemma 1 implies that any optimummust be a partition by intervals, up to

a set of measure zero. It follows that one cannot improve on such a partition.

By Lemma 2, for any partition the optimal xn must be
yn+yn+1

2
, which proves

(v). Next, computing the value function for such a configuration, we get that

E(x(y)− y)2 =
1

12

N−1X
n=0

(yn+1 − yn)
3. (8)

For a given N, we minimize (8) subject to

y0 = 0,

yN = 1,

−
N−1X
n=0

(yn+1 − yn) ln(yn+1 − yn) ≤ K.

The FOCs are:

(yn−yn−1)2−(yn+1−yn)2 = λ(ln(yn−yn−1)−ln(yn+1−yn)), 0 < n < N. (9)

Note that absent the capacity constraint, optimality would imply that

yn − yn−1 = yn+1 − yn. All intervals would then be of constant length 1/N

and the resulting entropy would be lnN. Thus, if lnN < K, then λ = 0

and the optimal solution is the unconstrained one. However, one can always

improve on this by picking a larger N, since the initial configuration can

always be replicated by collapsing the additional interval to a set of measure

zero by equating their bounds. Therefore the optimal N will be such that

lnN ≥ K, i.e. the capacity constraint will be binding. Let us then consider

such an N. Call ∆n the length of interval n. The FOC (9) implies that

∆2
n − λ ln∆n is invariant across intervals. Since the function X2 − λ lnX

is U-shaped, ∆n can at most have two values, let us call them ∆ and ∆0.

Clearly, the invariance property is then satisfied for λ = ∆02−∆2

ln∆0−ln∆ . Without

loss of generality, assume ∆ ≤ ∆0. Let q the number of intervals of length ∆.

Since the whole [0,1] interval must be partitioned, it must be that

q∆+ (N − q)∆0 = 1
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and

−q∆ ln∆− (N − q)∆0 ln∆0 = K.

Eliminating ∆0, we get

∆0 =
1− q∆

N − q
,

and we see that ∆ must solve

φ(∆) = −q∆ ln∆− (1− q∆) ln

µ
1− q∆

N − q

¶
= K. (10)

The function φ(∆) is increasing and then decreasing and reaches its max-

imum at ∆ = 1/N, at which point we also have ∆0 = 1/N. Therefore, there

is at most one solution ∆ such that ∆ ≤ ∆0. Furthermore, φ(0) = ln(N − q)

and φ(1/N) = lnN. Therefore, there exists a solution for ∆ provided

ln(N − q) < K ≤ lnN.

In particular, for any N the set of values of q for which this holds is non

empty.

Despite that q is integer, equation (10) also defines a value of ∆ for any

real number q. Furthermore,

∂φ

∂q
= ∆(ln∆0 − ln∆) +∆−∆0 < 0.10

Since φ0(∆) > 0, it follows that d∆
dq

> 0.

Next, note that the resulting loss function, up to a positive multiplicative

constant, is equal to V = q∆3 + (N − q)∆03. Differentiating, we get

dV = (∆3 −∆03)dq − 3q∆02dq + 3∆03dq + 3q∆2d∆− 3q∆02d∆

= (∆3 −∆03)dq + 3∆02(∆0 − q)dq + 3q(∆2 −∆02)d∆.

Since d∆
dq

> 0, ∆ < ∆0, and ∆0 < 1 ≤ q, all terms are negative if dq > 0.

Therefore, V is a decreasing function of q; given N, the optimal value of q is

the largest possible one, i.e. q = N − 1. The resulting loss function is then

V = (N − 1)∆3 + (1− (N − 1)∆)3, (11)

10It can be checked that this expression is always negative by noting that it would be
equal to zero at ∆ = ∆0 and that its derivative with respect to ∆0 is ∆/∆0 − 1 < 0.
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and ∆ now solves

φ̃(∆) = −(N − 1)∆ ln∆− (1− (N − 1)∆) ln (1− (N − 1)∆) = K. (12)

What is the optimal value of N? First of all, differentiating φ̃ with respect

to N and ∆ we get

d∆

dN
= − ∆

N − 1(1 +
1

ln∆0 − ln∆) < 0. (13)

Next, differentiating (11) and using (13) we get that

dV

dN
= ∆3 − 3∆∆02 + 3∆(∆02 −∆2)(1 +

1

ln∆0 − ln∆).

This expression is positive if and only if

2∆2 <
3(∆+∆0)(∆0 −∆)

ln∆0 − ln∆ .

Calling θ = ∆0/∆ > 1, this is equivalent to ln θ < 3(θ2 − 1)/2, which is
always true.

Thus dV/dN > 0. Consequently, the optimal value of N is the smallest

one such that lnN ≥ K, i.e. N = INT (eK).

QED

Derivation of (1)-(2).

The budget constraint of the individual isZ 1

0

picij +mj ≤ yj + sj,

where yj = pjxj is his income and sj is rebated seignioriage. In equilibrium

the total money stock is M =
R 1
0
mjdj and we assume for simplicity that

seignoriage is rebated proportionally to the value of output produced by the

individual:

sj =M
yj
Y
, ∀j,

where

Y =

Z 1

0

yjdj
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is GDP. Aggregate real output is defined as X =
³R 1

0
xαj dj

´1/α
.

We assume that the money stock is drawn from a distribution with density

f(M) and c.d.f F (M).We also assume that the idiosyncratic shock is drawn

from a distribution with density h(z) and cumulative H(z).

Solving for the consumer’s optimal consumption and money holdings

yields, after a few steps, the following relationship:

cij =
mj

p
1

1−α
i p−

α
1−α

. (14)

Aggregating across individuals, this gives the demand curve for good i :

Ci =
M

p
1

1−α
i p−

α
1−α

. (15)

We assume that all producers meet demand. Therefore, xj = Cj.Next,

Y =

Z
pjxjdj

=

Z
pjCjdj

= M.

We can also wheck that X =
¡R

Cα
i di
¢1/α

=M/p.

Furthermore, aggregating (14) across goods we see that the aggregate

consumption index for individual j is equal to

cj =
mj

p
.

We also have that
R 1
0
picij = mj = pcj. Substituting into the budget

constraint, we get that

mj =
yj + sj
2

;

cj =
yj + sj
2p

.
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Noting that sj =M
yj
Y
and yj = pjxj we get an indirect utility function

Vj = E ln

"
c
1/2
j

µ
mj

p

¶1/2µ
M

p

¶−ψ
− zjx

1+μ
j

#

= E ln

"
pjxj(1 +M/Y )

2p

µ
M

p

¶−ψ
− zjx

1+μ
j

#
(16)

= .E ln

"
pjxj
p

µ
M

p

¶−ψ
− zjx

1+μ
j

#

It is this quantity that the individual maximizes when setting his price

pj subject to the demand curve (15). Substituting this demand curve into

(16) we can rewrite the objective function of the producer as

Vj = E ln

⎡⎣µpj
p

¶− α
1−α M

p

µ
M

p

¶−ψ
− zj

M1+μ

p
1+μ
1−α
j p−

α(1+μ)
1−α

⎤⎦
= E ln

∙
p
− α
1−α

j − φjp
− 1+μ
1−α

j

¸
+E ln

h
p
2α−1
1−α +ψM1−ψ

i
,

where φj is defined by (2). This clearly amounts to maximizing (1).
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