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1. Introduction

Following the seminal papers by Christiano, Eichenbaum and Evans (2005), and Smets and
Wouters (2003), the interest to build and estimate dynamic stochastic general equilibrium
(DSGE) models for welfare and policy analysis have increased sharply in both academic and
policy surroundings. A recent paper by Canova and Sala (2006), however, suggests that it is
difficult to ensure identification of parameters in DSGE models, casting doubts on the reliability
of the results in the empirical DSGE literature. The models considered by Canova and Sala
are stylized, and the number of estimated parameters is typically smaller than what has been
estimated in the literature, e.g. in the seminal paper by Smets and Wouters (2003).

Most of the papers in the recent literature on estimated New-Keynesian type of DSGE models
have used Bayesian estimation techniques. The choice of applying this approach can certainly
be partly explained by compelling arguments why Bayesian methods are appropriate when
thinking about macroeconomic models and policy applications. But there is also the possibility
that Bayesian methods have been applied because “they work”. If a given set of variables in
the data set is not informative about some particular set of parameters in the model, i.e. if
all parameters in the model are not identified by the data, the priors provide curvature for the
posterior and thus enable “successful” estimation of the model.1

In this paper, we provide a study of the small sample properties of the classical maximum
likelihood (ML) estimator in order to examine identification issues in the New-Keynesian small
open economy DSGE model of Adolfson et al. (2006).2 A log-linearized version of this DSGE
model is used to generate artificial samples applying Adolfson et al’s posterior median estimates
of the parameters. The estimation strategy in the subsequent Monte Carlo exercise is essentially
identical to the one adopted by Adolfson et al. (2006) with the exception that classical ML
methods are used instead of Bayesian techniques. The key issue in the analysis is of course to
understand whether identification is a generic problem for the new generation of DSGE models,
or whether there are circumstances where DSGE models are identifed and can therefore (in
principle) be successfully estimated with classical techniques. In addition, it is also well known
that it is very difficult to conduct ML estimation of DSGE models on actual data. One possible
explanation as to why classical ML methods appear to fail on actual data is that the DSGE
models that we consider today are misspecified (see e.g. Del Negro et al., 2007 and Adolfson et
al., 2006), and that some parameters are therefore driven to implausible values in reflection of
the misspecification. By generating artifical samples where the DSGE model is in fact the data
generating process, we know that there are no problems with misspecification, and we can then
make an assessment of whether classical ML methods should be without problems. If this is the
case, it would be tempting to draw the conclusion that the difficulties with ML estimation on
actual data is due to problems with model misspecification rather that identification.

A limitation of our analysis is that it is restricted to one baseline model. So even if this
1A good hint about identification can be given by analyzing plots of the prior vs. the posterior; if the prior

and posterior is identical for some parameters, this signals that those parameters are not properly identified.
However, even if the prior equals the posterior, one cannot directly draw the conclusion that the parameter is not
identified because it might be the case that the prior happens to coincide with what the data prefer. This latter
possibility can of course be tested by changing the prior and redo the estimation, but that is not always done
for all parameters in the recent empirical applications. However, even if the priors differ from the posteriors, it
is not obvious that the model is identified. Suppose the following simple model yt = a1

a2
yt−1 + et = ρyt−1 + et,

where the econometrician buts two different priors on a1 and a2. From the data, ρ is identified but not a1 and a2
simultaneously, but if the priors are such that a1/a2 6= ρ, the posteriors for both a1 and a2 will differ from their
priors and both parameters will appear to be identifiable separately although they are actually not.

2With the exception for the uncovered interest rate parity condition, this model is essentially identical to the
model originally developed by Adolfson et al. (2007).
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particular model is identified, it does not allow us to draw general conclusions about identification
in new Keynesian DSGE models. There are however three reasons why we think our analysis
should be of interest nevertheless. First, we work with a model that has well-documented good
empirical properties (see e.g. Adolfson et al. 2006). For the type of exercise that we conduct in
the paper, we think this is of key importance as we can then make a case that our results are
based on an empirically plausible model. Without imposing this restriction on the analysis, one
could probably figure out examples of models that would lead to different conclusions than the
one drawn here. The second reason why we think our analysis should be of particular interest,
is that many models in the open economy literature are similar in spirit (see e.g. Cristadoro
et al., 2007, Justiniano and Preston, 2006, Rabanal and Tuesta, 2005 and Smets and Wouters,
2002), and that many central banks are also currently working with similar models (e.g., FRB’s
SIGMA model (Erceg et al., 2006), ECB’s NAWM model (Christoffel et al., 2007), and IMF’s
GEM model (Pesenti, 2003)). Third, given that the work of Canova and Sala (2006) focuses
on the minimum distance estimator (by comparing impulse response functions in the model
and a structural VAR), we add to their analysis by considering maximum likelihood estimation
instead.

Preliminary results suggest that when an informative set of variables is included when match-
ing the model to the data, most estimates are unbiased (with a few exceptions where the data
is weakly informative). Moreover, when the sample size increases from 100 to 400 observations,
the few cases where there are small sample biases disappear and the marginal distributions
collapse around the true parameters. From this, we conjecture that all parameters are consis-
tently estimated by classical ML techniques, and that all parameters in the DSGE model are
identified given the set of variables we include in the estimation. But we also document in our
analysis that some parameters suffer from problems with weak identfication.3 The problem with
weak identification pertains to some parameters in the policy rule, but more worrisome is that
is a characteristic for the estimated degree of nominal wage stickiness in the model. [To be
continued.]

Another interesting finding is that when we shrink the set of observed variables to include
only “domestic” variables when estimating the model, we run into severe problems with weak
identification of certain parameters as the parameter distributions pertaining specifically to the
open economy aspects of the model become much more wide and also biased. This begs the need
to consider which variables are required to be included among the observables if the purpose is
to identify all parameters in the model.

The paper is organized as follows. In the next section, we desribe the open economy DSGE
model that we use as the data generating process, and briefly describe how the model has been
estimated on actual data. In Section 3, we describe how we estimate the model with classical
ML techniques and how the small sample distribution of these estimates is obtained from the
generated articfical data sets. In Section 4, we show the the results of the Monte Carlo exercises,
with the aim to provide a better understanding of how to achieve improved identification of the
model parameters, and why the classical ML estimator has poor properties for some parameters.
Finally, we provide some concluding remarks in Section 5.

3 Identification has to do with the ability to do inference about a particular set of model parameters given an
observed set of variables. Following Canova and Sala (2006), we define a DSGE model to suffer from observational
equivalence if different parameterizations of the model are indistinguishable from the point of view of the likelihood
function. Another, perhaps more relevant case in practice, is a situationen there the DSGE model is plauged by
weak identfication, i.e. where the likelihood function has a unique but weak curvature for (some of) the parameters
that the econometrician tries to estimate. In the former case, the ML estimator will be inconsistent, wheras in
the latter case, the ML estimator will be consistent but a very large sample is required to learn from aggregate
data about (all) the parameters of the DSGE model.
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2. The DGP - a New Keynesian open economy model

The model is an open economy DSGE model identical to the model presented and estimated in
Adolfson et al. (2006). It shares its basic closed economy features with many recent new Key-
nesian models, including the benchmark models of Christiano, Eichenbaum and Evans (2005),
Altig, Christiano, Eichenbaum and Lindé (2003), and Smets and Wouters (2003). This section
gives an overview of the model and presents the key equations of it. We also discuss how the
model is parameterized by reporting how it has been estimated on Swedish data by Adolfson et
al. (2006) using Bayesian techniques.

2.1. The Model

The model economy includes four different categories of operating firms. These are domestic
goods firms, importing consumption, importing investment, and exporting firms, respectively.
Within each category there is a continuum of firms that each produces a differentiated good and
set prices. The domestic goods firms produce their goods using capital and labour inputs, and
sell them to a retailer which transforms the intermediate products into a homogenous final good
that in turn is sold to the households. The final domestic good is a composite of a continuum
of i differentiated goods, each supplied by a different firm, which follows the constant elasticity
of substitution (CES) function

Yt =

⎡⎣ 1Z
0

(Yi,t)
1

λdt di

⎤⎦λ
d
t

, 1 ≤ λdt <∞, (1)

where λdt is a stochastic process that determines the time-varying flexible-price markup in the
domestic goods market. The demand for firm i’s differentiated product, Yi,t, follows

Yi,t =

Ã
P d
i,t

P d
t

!− λdt
λdt−1

Yt. (2)

The domestic production is exposed to unit root technology growth as in Altig et al. (2003).
The production function for intermediate good i is given by

Yi,t = z1−αt �tK
α
i,tH

1−α
i,t − ztφ, (3)

where zt is a unit-root technology shock capturing world productivity, �t is a domestic covariance
stationary technology shock, Ki,t the capital stock and Hi,t denotes homogeneous labour hired
by the ith firm. A fixed cost ztφ is included in the production function. We set this parameter
so that profits are zero in steady state, following Christiano et al. (2005).

We allow for working capital by assuming that a fraction ν of the intermediate firms’ wage
bill has to be financed in advance through loans from a financial intermediary. Cost minimization
yields the following nominal marginal cost for intermediate firm i:

MCd
t =

1

(1− α)1−α
1

αα
(Rk

t )
α [Wt(1 + ν(Rt−1 − 1))]1−α 1

(zt)1−α
1

�t
, (4)

where Rk
t is the gross nominal rental rate per unit of capital, Rt−1 the gross nominal (economy

wide) interest rate, and Wt the nominal wage rate per unit of aggregate, homogeneous, labour
Hi,t.
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Each of the domestic goods firms is subject to price stickiness through an indexation variant
of the Calvo (1983) model. Since we have a time-varying inflation target in the model we allow
for partial indexation to the current inflation target, but also to last period’s inflation rate in
order to allow for a lagged pricing term in the Phillips curve. Each intermediate firm faces
in any period a probability (1 − ξd) that it can reoptimize its price. The reoptimized price is
denoted P d,new

t .4 The different firms maximize profits taking into account that there might not
be a chance to optimally change the price in the future. Firm i therefore faces the following
optimization problem when setting its price

max
Pd,new
t

Et
∞P
s=0

(βξd)
s υt+s[(

¡
πdtπ

d
t+1...π

d
t+s−1

¢κd ¡π̄ct+1π̄ct+2...π̄ct+s¢1−κd P d,new
t )Yi,t+s

−MCd
i,t+s(Yi,t+s + zt+sφ

j)],

(5)

where the firm is using the stochastic household discount factor (βξd)
s υt+s to make profits

conditional upon utility. β is the discount factor, and υt+s the marginal utility of the households’
nominal income in period t+s, which is exogenous to the intermediate firms. πdt denotes inflation
in the domestic sector, π̄ct a time-varying inflation target of the central bank and MCd

i,t the
nominal marginal cost.

The first order condition of the profit maximization problem in equation (5) yields the
following log-linearized Phillips curve:³bπdt − b̄πct´ =

β

1 + κdβ

³
Etbπdt+1 − ρπ b̄πct´+ κd

1 + κdβ

³bπdt−1 − b̄πct´ (6)

−κdβ (1− ρπ)

1 + κdβ
b̄πct + (1− ξd)(1− βξd)

ξd (1 + κdβ)

³cmcdt +
bλdt´ ,

where a hat denotes log-deviation from steady state (i.e., X̂t = lnXt − lnX).
We now turn to the import and export sectors. There is a continuum of importing consump-

tion and investment firms that each buys a homogenous good at price P ∗t in the world market,
and converts it into a differentiated good through a brand naming technology. The exporting
firms buy the (homogenous) domestic final good at price P d

t and turn this into a differentiated
export good through the same type of brand naming. The nominal marginal cost of the im-
porting and exporting firms are thus StP ∗t and P d

t /St, respectively, where St is the nominal
exchange rate (domestic currency per unit of foreign currency). The differentiated import and
export goods are subsequently aggregated by an import consumption, import investment and
export packer, respectively, so that the final import consumption, import investment, and export
good is each a CES composite according to the following:

Cm
t =

⎡⎣ 1Z
0

¡
Cm
i,t

¢ 1
λmc
t di

⎤⎦λ
mc
t

, Imt =

⎡⎣ 1Z
0

¡
Imi,t
¢ 1

λmi
t di

⎤⎦λ
mi
t

, Xt =

⎡⎣ 1Z
0

(Xi,t)
1
λxt di

⎤⎦λ
x
t

,

(7)
where 1 ≤ λjt < ∞ for j = {mc,mi, x} is the time-varying flexible-price markup in the import
consumption (mc), import investment (mi) and export (x) sector. By assumption the continuum
of consumption and investment importers invoice in the domestic currency and exporters in the
foreign currency. In order to allow for short-run incomplete exchange rate pass-through to
import as well as export prices we therefore introduce nominal rigidities in the local currency

4For the firms that are not allowed to reoptimize their price, we adopt the indexation scheme P d
t+1 =

πdt
κd (π̄ct+1)

1−κd P d
t where κd is an indexation parameter.
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price, following for example Smets and Wouters (2002). This is modeled through the same type
of Calvo setup as above. The price setting problems of the importing and exporting firms are
completely analogous to that of the domestic firms in equation (5), and the demand for the
differentiated import and export goods follow similar expressions as to equation (2). In total
there are thus four specific Phillips curve relations determining inflation in the domestic, import
consumption, import investment and export sectors.

In the model economy there is also a continuum of households which attain utility from
consumption, leisure and real cash balances. The preferences of household j are given by

Ej0

∞X
t=0

βt

⎡⎢⎣ζct ln (Cj,t − bCj,t−1)− ζhtAL
(hj,t)

1+σL

1 + σL
+Aq

³
Qj,t

ztPd
t

´
1− σq

1−σq⎤⎥⎦ , (8)

where Cj,t, hj,t and Qj,t/P
d
t denote the j

th household’s levels of aggregate consumption, labour
supply and real cash holdings, respectively. Consumption is subject to habit formation through
bCj,t−1, such that the household’s marginal utility of consumption is increasing in the quantity
of goods consumed last period. ζct and ζht are persistent preference shocks to consumption and
labour supply, respectively. To make cash balances in equation (8) stationary when the economy
is growing they are scaled by the unit root technology shock zt. Households consume a basket
of domestically produced goods and imported products which are supplied by the domestic and
importing consumption firms, respectively. Aggregate consumption is assumed to be given by
the following constant elasticity of substitution (CES) function:

Ct =

∙
(1− ωc)

1/ηc
³
Cd
t

´(ηc−1)/ηc
+ ω

1/ηc
c (Cm

t )
(ηc−1)/ηc

¸ηc/(ηc−1)
, (9)

where Cd
t and Cm

t are consumption of the domestic and imported good, respectively. ωc is the
share of imports in consumption, and ηc is the elasticity of substitution across consumption
goods.

The households invest in a basket of domestic and imported investment goods to form the
capital stock, and decide how much capital to rent to the domestic firms given costs of adjusting
the investment rate. The households can increase their capital stock by investing in additional
physical capital (It), taking one period to come in action. The capital accumulation equation is
given by

Kt+1 = (1− δ)Kt +Υt

³
1− S̃ (It/It−1)

´
It, (10)

where S̃ (It/It−1) determines the investment adjustment costs through the estimated parameter
S̃00, and Υt is a stationary investment-specific technology shock. Total investment is assumed to
be given by a CES aggregate of domestic and imported investment goods (Idt and Imt , respec-
tively) according to

It =

∙
(1− ωi)

1/ηi
³
Idt

´(ηi−1)/ηi
+ ω

1/ηi
i (Imt )

(ηi−1)/ηi
¸ηi/(ηi−1)

, (11)

where ωi is the share of imports in investment, and ηi is the elasticity of substitution across
investment goods.

Further, along the lines of Erceg, Henderson and Levin (2000), each household is a monopoly
supplier of a differentiated labour service which implies that they can set their own wage. After
having set their wage, households supply the firms’ demand for labour at the going wage rate.
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Each household sells its labour to a firm which transforms household labour into a homogenous
good that is demanded by each of the domestic goods producing firms. Wage stickiness is
introduced through the Calvo (1983) setup, with partial indexation to last period’s CPI inflation
rate, the current inflation target and the technology growth. Household j reoptimizes its nominal
wage rate Wnew

j,t according to the following

max
Wnew
j,t

Et
P∞

s=0 (βξw)
s [−ζht+sAL

(hj,t+s)
1+σL

1+σL
+

υt+s
(1−τyt+s)
(1+τwt+s)

³¡
πct ...π

c
t+s−1

¢κw ¡π̄ct+1...π̄ct+s¢(1−κw) ¡μz,t+1...μz,t+s¢Wnew
j,t

´
hj,t+s],

(12)

where ξw is the probability that a household is not allowed to reoptimize its wage, τ
y
t a labour

income tax, τwt a pay-roll tax (paid for simplicity by the households), and μz,t = zt/zt−1 is the
growth rate of the permanent technology level.5

The households can accumulate capital, save in domestic and foreign bonds, and also hold
cash. The choice between domestic and foreign bond holdings balances into an arbitrage con-
dition pinning down expected exchange rate changes (i.e., an uncovered interest rate parity
condition). To ensure a well-defined steady-state in the model, we assume that there is a pre-
mium on the foreign bond holdings which depends on the aggregate net foreign asset position of
the domestic households, following, e.g., Lundvik (1992), and Schmitt-Grohé and Uribe (2001).
Our specification of the risk premium also includes the expected change in the exchange rate
EtSt+1/St−1 which is based on the vast empirical evidence of a forward premium puzzle in the
data (i.e., that risk premia are strongly negatively correlated with the expected depreciation of
the exchange rate), see e.g. Fama (1984) Duarte and Stockman (2005), an observation which
is not consistent with a standard UIP condition. Our modification enables the model to induce
endogenous persistence in the exchange rate and generates a hump-shaped response of the real
exchange rate after a shock to monetary policy, see Adolfson et al. (2006) for a more detailed
discussion. The risk premium is given by:

Φ(at, St, φ̃t) = exp

µ
−φ̃a(at − ā)− φ̃s

µ
EtSt+1
St

St
St−1

− 1
¶
+ φ̃t

¶
, (13)

where at ≡ (StB∗t )/(Ptzt) is the net foreign asset position, and φ̃t is a shock to the risk premium.
The UIP condition in its log-linearized form is given by:

bRt − bR∗t = ³1− eφs´Et∆bSt+1 − eφs∆bSt − eφabat + beφt. (14)

By setting φ̃s = 0 we obtain the UIP condition typically used in small open economy models
(see, e.g., Adolfson et al., 2005a).

Following Smets and Wouters (2003), monetary policy is approximated with a generalized
Taylor (1993) rule. The central bank is assumed to adjust the short term interest rate in response
to deviations of CPI inflation from the time-varying inflation target, the output gap (measured

as actual minus trend output), the real exchange rate
³
x̂t ≡ Ŝt + P̂ ∗t − P̂ c

t

´
and the interest rate

set in the previous period. The instrument rule (expressed in log-linearized terms) follows:

bRt = ρR,t bRt−1 +
¡
1− ρR,t

¢ £b̄πct + rπ,t
¡
π̂ct−1 − b̄πct¢+ ry,tŷt−1 + rx,tx̂t−1

¤
(15)

+r∆π,t∆π̂
c
t + r∆y,t∆ŷt + εR,t,

5For the households that are not allowed to reoptimize, the indexation scheme is Wj,t+1 =
(πct)

κw (π̄ct+1)
(1−κw) μz,t+1W

new
j,t , where κw is an indexation parameter.
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where εR,t is an uncorrelated monetary policy shock.
The structural shock processes in the model is given in log-linearized form by the univariate

representation

ς̂t = ρς ς̂t−1 + ες,t, ες,t
iid∼ N

¡
0, σ2ς

¢
where ςt = { μz,t, �t, λjt , ζct , ζht , Υt, φ̃t, εR,t, π̄

c
t , z̃

∗
t } and j = {d,mc,mi, x} .

The government spends resources on consuming part of the domestic good, and collects taxes
from the households. The resulting fiscal surplus/deficit plus the seigniorage are assumed to be
transferred back to the households in a lump sum fashion. Consequently, there is no government
debt. The fiscal policy variables - taxes on capital income, labour income, consumption, and
the pay-roll, together with (HP-detrended) government expenditures - are assumed to follow an
identified VAR model with two lags.

To simplify the analysis we adopt the assumption that the foreign prices, output (HP-
detrended) and interest rate are exogenously given by an identified VAR model with four lags.
Both the foreign and the fiscal VAR models are being estimated, using uninformative priors,
ahead of estimating the structural parameters in the DSGE model.6

To clear the final goods market, the foreign bond market, and the loan market for working
capital, the following three constraints must hold in equilibrium:

Cd
t + Idt +Gt + Cx

t + Ixt ≤ z1−αt �tK
α
t H

1−α
t − ztφ, (16)

StB
∗
t+1 = StP

x
t (C

x
t + Ixt )− StP

∗
t (C

m
t + Imt ) +R∗t−1Φ(at−1, eφt−1)StB∗t , (17)

νWtHt = μtMt −Qt, (18)

where Gt is government expenditures, Cx
t and Ixt are the foreign demand for export goods,

and μt = Mt+1/Mt is the monetary injection by the central bank. When defining the demand
for export goods, we introduce a stationary asymmetric (or foreign) technology shock z̃∗t =
z∗t /zt, where z∗t is the permanent technology level abroad, to allow for temporary differences in
permanent technological progress domestically and abroad.

To compute the equilibrium decision rules, we proceed as follows. First, we stationarize all
quantities determined in period t by scaling with the unit root technology shock zt. Then, we
log-linearize the model around the constant steady state and calculate a numerical (reduced
form) solution with the AIM algorithm developed by Anderson and Moore (1985).

2.2. Parameterization of the model on actual data

We start the empirical analysis by estimating the DSGE model on actual data, using a Bayesian
approach and placing a prior distribution on the structural parameters. We use quarterly
Swedish data for the period 1980Q1 − 2004Q4. All data were taken from Statistics Sweden,
except the repo rate which were taken from Sveriges Riksbank. The nominal wage is taken from
Statistics Sweden and is deflated by the GDP deflator. The foreign variables on output, the

6The reason why we include foreign output HP-detrended and not in growth rates in the VAR is that the
level of foreign output enters the DSGE model (e.g., in the aggregate resource constraint). In the state-space
representation of the model, which links the theoretical model to the observed data, we subsequently add the
unit-root world productivity shock and the stationary asymmetric (or foreign) technology shock to the business
cycle component of foreign output in order to obtain the observed level of foreign GDP. This enables us to identify
the stationary asymmetric technology shock, since the process for detrended foreign output is identified from the
VAR and the process for the (unit root) world productivity is identified from this and the domestic quantities.
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interest rate and inflation are weighted together across Sweden’s 20 largest trading partners in
1991 using weights from the IMF.7

We include a large set of variables in the observed data vector, and match the following 15
variables: the GDP deflator, the real wage, consumption, investment, the real exchange rate,
the short-run interest rate, hours worked, GDP, exports, imports, the consumer price index
(CPI), the investment deflator, foreign output, foreign inflation and the foreign interest rate.
As in Altig et al. (2003), the unit root technology shock induces a common stochastic trend in
the real variables of the model. To make these variables stationary we use first differences and
derive the state space representation for the following vector of observed variables

Ỹt =
[ πdt ∆ ln(Wt/Pt) ∆ lnCt ∆ ln It x̂t Rt Ĥt ∆ lnYt...

∆ ln X̃t ∆ ln M̃t πcpit πdef,it ∆ lnY ∗t π∗t R∗t ]0.
. (19)

The growth rates are computed as quarter to quarter log-differences, while the inflation and
interest rate series are measured as annualized quarterly rates. It should be noted that the
stationary variables x̂t and Ĥt are measured as deviations around the mean, i.e. x̂t = (xt − x) /x
and Ĥt = (Ht −H) /H, respectively. We choose to work with per capita hours worked, rather
than total hours worked, because this is the object that appears in most general equilibrium
business cycle models.8

In comparison with prior literature, such as for example Justiniano and Preston (2004) and
Lubik and Schorfheide (2005), we have chosen to work with a large number of variables because
we believe that it facilitate identification of the parameters and shocks we estimate. We estimate
13 structural shocks of which 8 follow AR(1) processes and 5 that are assumed to be identically
independently distributed. In addition to these there are eight shocks provided by the exogenous
(pre-estimated) fiscal and foreign VARs, whose parameters are kept fixed at their posterior mean
estimates throughout the estimation of the DSGE model parameters. The shocks enter in such a
way that there is no stochastic singularity in the likelihood function.9 To compute the likelihood
function, the reduced form solution of the model is transformed into a state-space representation
mapping the unobserved state variables into the observed data. We apply the Kalman filter to
calculate the likelihood function of the observed variables, where the period 1980Q1-1985Q4 is
used to form a prior on the unobserved state variables in 1985Q4 and the period 1986Q1-2004Q4
for inference.

We choose to calibrate those parameters which we think are weakly identified by the variables
that we include in the vector of observed data. These parameters are mostly related to the
steady-state values of the observed variables (i.e., the great ratios: C/Y , I/Y and G/Y ), see

7The shares of import and export to output are increasing from about 0.25 to 0.40 and from 0.21 to 0.50
respectively during the sample period. In the model, import and export are however assumed to grow at the
same rate as output. Hence, we decided to remove the excess trend in import and export in the data, to make
the export and import shares stationary. For all other variables we use the actual series (seasonally adjusted with
the X12-method except the variables in the GDP identity which were seasonally adjusted by Statistics Sweden).

8We used working age population to generate hours per capita. See Christiano, Eichenbaum and Vigfusson
(2003) for a discussion on using per capita adjusted hours versus non-adjusted hours.

9Even if there is no stochastic singularity in the model we include measurement errrors in the 12 domestic
variables, since we know that the data series used are not perfectly measured and at best only approximations
of the ’true’ series. In particular it was hard to remove the seasonal variation in the series, and there are still
spikes in for example the inflation series, perhaps due to changes in the collection of the data. The variance of
the (uncorrelated) measurement errors is set to 0 for the foreign variables and the domestic interest rate, 0.1
percent for the real wage, consumption and output, and 0.2 percent for all the variables. This implies that the
fundamental shocks explain about 90-95% of the variation in most of the variables. It should also be noted that
the measurement errors are capturing some of the high frequency movements in the data and not business cycle
fluctuations.
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Table 1. An alternative approach could be to include these parameters in the estimation.
However, such a strategy would require a different set of variables to ensure proper identification,
and would yield similar results since these parameters would simply capture the sample mean
of the great ratios.

The parameters we choose to estimate pertain mostly to the nominal and real frictions in
the model as well as the exogenous shock processes. Table 2 shows the assumptions for the
prior distribution of the estimated parameters. The location of the prior distribution of the 43
estimated parameters with no break in the monetary policy rule corresponds to a large extent
to those in Adolfson et al. (2005a) on Euro area data, and are more thoroughly discussed in
Adolfson et al. (2006).

The joint posterior distribution of the estimated parameters is obtained in two steps. First,
the posterior mode and Hessian matrix evaluated at the mode is computed by standard numerical
optimization routines. Second, the Hessian matrix is used in the Metropolis-Hastings algorithm
to generate a sample from the posterior distribution (see Smets and Wouters (2003), and the
references therein, for details). Table 2 reports the median estimates based on a sample of
500,000 post burn-in draws from the posterior distribution.

3. Maximum likelihood estimation on artificial data

In this section, we describe in detail how the parameter distributions have been generated from
the artificial samples obtained out of the DSGE model. The following steps are conducted:

1. Solve the DSGE model using the calibrated parameters (see Table 1) and the posterior
median of the estimated parameters (see Table 2).

2. Generate an artifical sample of length T by simulating the solved model 1000+ T periods
initiated from the steady state. The first 1000 observations are discarded as burn-ins.
The innovations in the shock series were drawn from the normal distribution, where we
set the seed for each sample to i = 1, ..., N where N is the number of artificial samples
considered.10

3. The calibrated parameters in Table 1 and the size of the measurement errors are kept
fixed at the ‘true’ values used to generate the artifical data. As a consequence, the ML
estimation results will not reflect any uncertainty stemming from these parameters.

4. Given the artificial data (and the calibrated parameters), we estimate the parameters in
Table 2 by maximizing the likelihood function using the same set of observable variables
as on the actual data (see eq. 19). We use Chris Sims’ optimizer CSMINWEL to perform
the estimation.11

10An alternative to sampling from the normal distribution would be to bootstrap the innovations in the shock
processes from the empirical distribution of the 2-sided estimates. But given that the purpose of the paper is to
examine whether ML estimation can retrieve the true parameters used in the underlying data generating process,
the bootstrapping approach is not appealing since the 2-sided estimates of the shock innovations are most likely
heteroscedastic, autocorrelated and cross-correlated, which is at odds with the assumptions in the DSGE model.
11 In the ML estimations, we impose the lower (bl) and upper bounds (bu) reported in the last two columns

in Table 2. In cases where the solution algorithm fail to solve the model, the log-likelihood function is set to
−200, 000. We use the following smooth mapping function pmod = bu − bu−bl

1+epo p t
between the model parameters

(pmod) and the parameters that we optimize over (popt ). Notice that pmod converges to bu when popt approaches
∞, and that pmod converges to bl when popt approaches ∞.
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5. We store the resulting parameter estimates along with the likelihood information, inverse
hessian, seed number used to generate the sample, and convergence diagnostics.

6. We repeat Step 1 to 6 a sufficiently large number of times to obtain a distribution that
is stable. In practice it took between 1, 000 and 1, 500 estimations to obtain approximate
convergence in mean and variance in the distribution for each estimated parameter.

One important difference w.r.t. how the model was estimated on actual data in the previous
Section, is that we do not include measurement errors in the estimation. Also, we fix the
parameters of the exogenous foreign and fiscal policy VARs at their true values throughout the
analysis. The only reason for this is to simplify the interpretation of the results, and focus
on the key model parameters in Table 2. But we have also conducted ML estimations when
we add measurement errors to the artificial model data in line with how they were calibrated
on Swedish data. In this case, we also used artifical data to estimate VAR(4) and VAR(2)
models for the foreign and fiscal variables respectively (where the foreign output gap variable
and government expenditure series are computed using the HP-filter) instead of treating the
VARs for the foreign and fiscal variables to be known and kept fixed at their true values in
each estimation. This alternative approach of incorporating measurement errors and estimated
fiscal and foreign VARs did not change the bias and consistency properties of the ML estimation
results reported in the figures and tables below, but it widened the dispersion in the parameter
distributions somewhat.12

We consider two sample size values. As a benchmark, we set T = 100, which is equivalent
to the size of our actual sample. In order to examine potential small sample problems and
check consistency of the ML estimator we also generate distributions when we set T = 400.
The results in the tables and figures below are based on the convergent estimations only, but
we will provide the fraction of simulations that did not converge. This choice reflects our belief
that the econometrician would not be satisfied with an estimation that led to a non-convergent
estimation, and would redo the estimation by perturbing the starting values of the optimization
until a satisfactory convergence was found. However, we instead decided to draw a new sample
and continue. As will be clear later, however, this choice do not seem to be critical.

We initiate the estimations with the true parameter values, but we will also report results for
alternative starting values. This will be done in two ways. First, we randomize the starting values
by sampling parameters from the prior distribution. Second, we also conduct some estimations
when we initialize the estimation with the prior mode values of the parameters instead of the
posterior median.

We will also report results when the model is estimated on a subset of variables, namely
the 7 “domestic” variables matched by Smets and Wouters (2003). That is, we drop all “open”
economy variables such as for example the real exchange rate and exports and imports. Finally,
to learn more about the curvature of the likelihood function, we compute a distribution of
estimates based on only one artificial sample, using different starting values in the estimations
by sampling these from the prior distribution. This exercise has two interesting aspects. First,
in the best of worlds, one would hope that these estimations always converge to the same log-
likelihood function value regardless of starting value. Second, even if the ML estimator does not
converge to the same likelihood in all estimations when we sample intial starting values from
the prior distributions, it should at least be the case that the estimations on a given sample all
produce identical estimates at every time the estimation converges to roughly the same likelihood
function. If the marginal distributions of the parameters have not collapsed although the ML
12These results are available in Appendix A.1. See in particular Figures A1.a-c.
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estimations have returned to the same log likelihood, it is a strong sign that some parameters
are weakly identified.

4. Monte-Carlo simulation results

In this section we provide the results of the Monte-Carlo simulations. We report statistics of the
simulated distributions in Tables 3 and 4, and in Figures 1-6, we report kernel density estimates
of the various parameter distributions. In order to impose that all kernel density estimates in
the figures are within the plausible range for the parameters (e.g. between 0 and 1 for the Calvo
parameters), the kernel density estimates are computed in the unbounded parameter space in
which the optimizer actually works.13 The kernel density estimates are then transformed to the
bounded parameter space and depicted in the figures below.

4.1. Benchmark results: initializing estimations from the true parameters

In Table 3, we report the results when initializing the optimizations from the true parameter
values. Results for two sample sizes are reported, T = 100 and T = 400. As can be seen from the
table, almost every parameter’s mean and median estimates equal the true parameter already for
a sample size of T = 100. So the ML estimator appears to be an unbiased estimator for almost
every parameter in the model. Two important exceptions are the coefficients in the policy rule,
rπ and ry, which both have mean estimates that are much higher than their true values. However,
the medians for the two parameters are of the right magnitude, suggesting that the high mean
values are driven by outliers in the distribution. Given the specification of the instrument rule,
where ρR multiplies the coefficients in the policy rule (see eq. 15), it is perhaps not surprising
that the distributions for these two parameters can be skewed to the left. In samples when ρR
becomes high, rπ and ry can easily end up at very high values. The fourth column of Table 3
shows the standard deviation of the simulated distributions, and not surprisingly the standard
deviations are very high for these two parameters. The standard deviations are also relatively
high for the investment adjustment cost parameter, S̃00, suggesting that also this parameter is
sometimes driven to a very high number. In addition to the standard deviations of the resulting
parameter distribution, Table 3 reports in the fifth column the median standard deviation of the
estimates in each sample using the inverse Hessian matrix.14 The median standard deviations
for each of the ML estimates are generally somewhat smaller than the standard deviations in the
parameter distributions, and in this sense they appear to underestimate the uncertainty about
the ML parameters. However, the median standard deviations based on the inverse Hessian are
at least accurate in the sense that they convey more uncertainty for those parameters where the
standard deviations of the simulated parameter distributions are high. But for the parameters
that are skewed, like S̃00 and rπ and ry the median standard deviations clearly underestimate
the true degree of uncertainty.

Turning to the results for T = 400, we see that the mean and median parameter estimates
are getting more similar in general, and for S̃00 and rπ and ry in particular. Both the mean and
13See the mapping function in Footnote 11.
14The inverse Hessian has full rank and is positive definite with the exception of a few simulations (22 out of

the convergent 1474) in the benchmark estimations. When a number of variables are excluded in the information
set that is used to estimate the model, the number of inverse Hessians that do not have full rank and are
positive definite increases sharply. Notice that since the parameter optimizations are done in the transformed
parameter space (see Footnote 11), the standard deviations are computed by assuming normality of the estimated
parameters in each optimization and using the inverse Hessian and point estimates in the unbounded space to
form a distribution in the bounded parameter space, for which the covariance matrix is computed.
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median is now also very similar to the true parameter values. In addition, it is clear that the
distributions start to collapse around the true values as the standard deviations of the marginal
distributions have been reduced by at least a factor of 2, and in some cases even more. The
median standard deviations of the estimates are also more accurate for this sample size, but
there is still a tendency of underestimating the uncertainty in the parameter distribution.

In Figures 1a-1c, we complement the information in the table by plotting the kernel density
estimates of the marginal parameter distrubutions. The figure confirms the picture in Table
3 and shows that the distributions for S̃00 and rπ and ry are clearly skewed to the left. But
the figure also makes it very clear that this set of data suffices for identification of the true
parameters in the notion of Rothenberg (1971): as the sample size increases, the parameter
distributions start to collapse around the true parameters. So conditional on this number of
variables and the parameter we seek to estimate, the ML estimator appear to be consistent.15

The results sofar describe a somewhat different picture than the one by Canova and Sala
(2006), who question the ability to achieve identification in DSGE models. However, although
the marginal distributions are satisfactory from a frequentistic perspective, the arguments brought
to the table by Canova and Sala (2006) are partly supported by computing pairwise correlations
between parameters, and graphing the bivariate distributions. In Figure 2, we show all the
pairwise parameter combinations with correlation above 0.5. In the graph, we also include the
parameter correlation coefficient. The figure gives clear support for the idea that there is a large
but not perfect degree of substitutability between some of the parameters in the model. Some
parameter combinations imply a certain degree of partial identification. In particular, Figure
2 suggests that this problem pertains to three sets of parameters. First, we see that many of
the parameters in the policy rule are highly correlated with each other. For example, there is a
clear positive and non-linear relationship between ρR and {rπ,ry} and negative correlation be-
tween ρR and rx, which is not surprising given that these coefficients enter multiplicative in the
Taylor rule (15). The second set of parameters which exhibit a high degree of substitutability is
some of the persistence and standard deviation parameters of the shock processes. This feature
pertains to the unobserved AR(1) shock process for the unit root technology shock (μz,t), the
investment specific technology shock (Υt), the exchange risk-premium shock (φ̃t) and the labor
supply shock (ζht ). There is quite naturally a negative correlation between these parameters,
suggesting that the ML estimator has difficulties in distinguishing whether the combination of
either high persistence/low variance of the innovations or low persistence/high variance of the
innovations is most plausible for these parameters. Again, this result is not surprising. The
third set of parameters which exhibit a high degree of linear dependence is a set of parame-
ters pertaining to the open economy aspects of the model. In particular, some of the markup
parameters on imported consumption and investment goods, and the elasticity of substitution
between domestically and imported investment goods are highly correlated. Especially the pair-
wise correlation between λmi and ηi is very high, suggesting that one of them could have been
calibrated and not been included in the estimation.16 Perhaps more surprisingly, there is a clear
15 In addition to matching quantity variables in first differences, we have also studied the properties of the

ML estimator when including the true co-integrating vectors in the set of observed quantity variables. These
results are reported in Appendix A.2. The results show that there are only very small efficiency gains for ML
estimation when matching the co-integrating vectors as opposed to matching the quantities and the real wage in
first differences.
16However, below we will argue that this is not the case in a more global sense. The high degree of linear

dependence between the markup and import/export elasticity parameter is only locally in the parameter space,
e.g. for λm,i between 1.1 and 1.2. They are well identified more globally (i.e. the data is really informative that
λm,i should be in the 1.1-1.2 range and not for example 1.6. [Do pairwise contour plots to show this feature
of the model (for a given sample?)]
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positive relationship between the standard deviation of the risk premium shock (σφ) and the
endogenous risk premium coefficient φs. Finally, there are a number of parameters pertaining
to exports that are highly correlated. This is not a surprising finding, however, because the only
variable that is directed at pinning down the parameters pertaining to the export sector is the
export quantity variable. Because of the local currency pricing assumption for the exporting
firms, we have not been able to include an export price variable as observable in the estimation
of the model. If this was possible, it is quite clear that the problems pertaining to the export
parameters would be moderated.

4.2. Initiating estimations by sampling from the prior distributions

In the previous subsection, a key feature of the estimations was that they were initiated from
the true parameter values. This is a clear advantage for the ML estimator in a large model, and
perhaps an unrealistic assumption in practice. If we always start out with the true parameters
- why bother doing estimations at all? In addition, if the multidimensional likelihood surface is
characterized by many local maximas, there is the possibility that the favorable results in the
previous subsection was driven by the very good guesses that intialized the estimations. In this
subsection we therefore relax this assumption and instead initialize the optimizations by sampling
from the prior distribution in Table 2 that were used to estimate the model on actual data. We
construct a joint distribution of the parameters in the following way. First, we make 30, 000
draws from the prior distribution. Then we compute the 2.5 and 97.5th percentiles for each
parameter in this distribution, and select all draws in the joint distribution that simultaneously
are within the 2.5th and 97.5th percentiles. This procedure gives a distribution of starting values
that in some cases differ substantially from the true parameter values because some of the priors
in Table 2 are relatively uninformative (in particular the priors for the standard deviations of
the shock processes). Therefore, we expect a larger fraction of non-convergent estimations in
the ML estimations. This is also confirmed in the simulations, where only about 700 out of the
N = 1, 500 simulations converge. However, this number of convergent simulations is sufficient
to obtain a fairly stable distribution (as argued below).

In Table 4, we report the mean, median and standard deviation of the distributions when
starting out the optimizations from the prior distribution and when starting out from the true
parameter values for the same set of convergent samples. So in both cases, only results for the
same samples are reported in order to be able to make an accurate comparison. The results in
the Table 4 can also be compared to the results in Table 3 for T = 100, which were based on
nearly all the 1, 500 samples. From this comparison, it is clear that the distributions are roughly
the same, so the results in Table 4 are not plauged by having to few convergent samples.

But an even more interesting comparison is to compare the distribution from “true initializa-
tion” against the distribution resulting from “prior initialization”. By doing so, it is clear from
Table 4 that there are very few differences between the two distributions, so the intial guess does
not seem to be imperative for the performance of the ML estimator. The exceptions are not
surprisingly the three parameters S̃00 and rπ and ry which have higher and distorted means, but
their median estimates are still accurate, which is a clear indication that their means are driven
by outliers. So even if we start out from non-true starting values, the ML estimator is unbiased
in most cases if we consider the median estimates. There is one problem with this interpretation
though, namely that it might be the case that the only estimations that have converged are
associated with starting values very close to the true parameters. And if this is true, the results
in Table 4 cannot be taken as basis for declaring success.

For this reason, we compare the distribution resulting from “true initialization” (solid black)
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against the distribution resulting from “prior initialization” (dashed black) along with the actual
starting value distribution (dotted line) in Figure 3. From the figure, it is clear that the prior
distributions for the 700 convergent estimations we used are clearly off relative to the true
parameter values in line with the priors used on actual data (see Table 2). So it is not the case
that the ML estimator is able to find the optimum only for starting values sampled from the
prior that are nearly identical to the true parameters. The optimizations can be initiated with
parameters that are far off optimum and convergence can still be achieved. Another striking
feature of Figures 3a-3b is that the distributions are very similar in most cases. Basically the
95-percent bands are identical, but the tails are fatter in the distribution resulting from the prior
initialization, suggesting that the ML estimator sometimes sets off for implausible parameter
regions. This affects the standard deviations of the distributions as can be verified in Table 4
(should consider including 2.5th and 97.5th percentiles in Table 4).

To sum up, the main conclusion is that the satisfactory performance of the ML estimator
still holds, even if the econometrician does not have a perfect guess of the starting value of the
parameters.

4.3. Sampling initial values from the prior distributions: One artifical data set

To complement the analysis above, and to get a deeper understanding of which parameters are
associated with weak identification, we take a given dataset (i.e. the dataset that is generated
when the seed is set to 1). For this dataset, we perform 1, 500 estimations where the starting
values in the optimizations are sampled from the prior distribution as in the previous subsection.
Out of the 1, 500 estimations, 638 converged according to the criterias of csminwel. Out of these
638 convergent optimizations, 545 optimizations converged to interior solutions (i.e. did not
hit neither the upper nor the lower bounds) with plausible likelihood values. To study how
informative the likelihood function is about the parameters, we use all simulations that have
converged to the same likelihood out.of the 545 remaining samples In practice, we took the
best likelihood function value and accepted samples with up to 0.1 units lower log likelihood
(the maximum log likelihood equals -1440.425 for this particular sample). By this procedure, we
obtain 489 samples that have converged to very similar log-likelihood values. Now the interesting
issue is: does this imply that the parameter estimates have converged to the same values as well?

In Figures 4a-4c, we plot the resulting parameter estimates as histograms, along with the
kernel density estimates of the prior distributions that were used as starting values in the opti-
mizations. As can be seen from the graphs, it is clear that some of the parameters are charac-
terized by weak identification problems, in the sense that quite some variation in the parameter
results in little variation in the log-likelihood function. Perhaps surprisingly, one of the most
problematic parameters are ξw, the degree of nominal wage stickiness. But also other other
parameters like rπ, ry, the inflation target shock (σπ̄) and the persistense coefficient for the
consumption preference shock (ρξc) vary substantially. The results in Figures 4a-4c therefore
complement the information contained in Figures 1a-1c and Figure 2, but also give a somewhat
different perspective on identification. For instance, according to Figure 2, one would be tempted
to draw the conclusion that λm,i and λm,c are not well identified. But according to Figure 4a,
they are separately very well identified to a specific neighboorhood. But in this neighboorhood,
they are very highly correlated and very weakly identified.

Our finding that a key parameter like ξw is weakly identified raises the issue of what feature
in the DSGE model that leads to this finding.17 The parameterization of the data generating
17From Appendix A.2, it is clear that imposing the true co-integrating vector for the real wage in the estimations,

i.e. matching ln (Wt/Pt) − lnYt instead of ∆ ln (Wt/Pt) does not mitigate the problem with weak identification
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process (i.e. the median estimates in Table 2) is characterized by a high degree of price stickiness
and a high variance of the labor supply shocks. Our conjecture at this point, is that this drives
the weak identification results for ξw, but this needs to be confirmed in simulations where we
lower the variance of the labor supply shocks and the degree of nominal price stickiness in the
model. [Remains to be done. Do simualations where we shrink the sticky price
parameters and the variance of the labor supply shocks.]

4.4. Estimation on a subset of observable variables

In both subsections above, we used all the 15 variables in eq. (19) as observables when taking
the model to the data. To understand how the performance of the ML estimator depends on
the choice of observed variables, we now assume now that, for some reason, the econometricican
only includes 7 variables when estimating the model. More specifically, we assume that the the
following subset of variables in (19) is used:

Ỹ subset
t = [ πdt ∆ ln(Wt/Pt) ∆ lnCt ∆ ln It Rt Ĥt ∆ lnYt ]0 . (20)

The variables in (20) are the “closed economy” variables used by Smets and Wouters (2003),
but for the sake of the argument we assume that the econometrician still tries to estimate all 43
parameters in Table 2.

For the sample size T = 100, we plot the resulting distributions (dashed line in Figures
5a-5c) based on (20) along with the distribution that is obtained when all 15 variables are used
as observables (i.e. the benchmark results for T = 100 reported in Table 3 and Figures 1a-1c).
In both cases, we initialize the estimations with the true starting values.

As can be seen from Figures 5a-5c, restricting the set of observable variables in (20), leads to
substantially more dispersion in the parameter distributions. In particular, this is the case for
the parameters related to the open economy aspects of the model. For instance, the uncertainty
about ξm,c, ξm,i and ξx as measured by the standard deviation in the simulated distributions
are now substantially higher. It is also the case that the number of convergent estimations fall
from 1, 452 to 1, 147, and around 160 times, the inverse Hessian fails the rank test in Matlab,
suggesting that the DSGE model estimated on the variables in (20) only is close to rank deficient
in many cases and therefore is on the borderline of being identified in the Rothenberg (1971)
sense (i.e. suffer from a very stong degree of weak identification).

This exercise demonstrates that the econometrician needs to be very careful when selecting
the number of variables in estimating the model. If classical estimation techniques are applied,
it is imperative to think hard about the structure of the model and which variables that needs
to be included in order to ensure identification of a given set of parameters in small samples.18

5. Concluding remarks

In this paper we have analyzed the properties of maximum likelihood in a state-of-the-art open
economy new Keynesian DSGE model. Our analysis suggests that our open economy DSGE

for ξw.
18However, in Appendix A.3, we show results for T = 1600 and T = 6400 observations in each sample, for which

the estimations are initiated from the prior mode in Table 2 instead. By doing so, we can learn if there is some
information asymptotically to identify the parameter, and to what extent the results in Figures 5a-5c are driven
by the fact that we start out from the true values in the optimizations. Perhaps surprising, the results show that
the ML estimator is consistent even if only the variables in equation (20) are used, and that the optimizations
converge to the true parameter values even in this case when the sample size is increased. So the results in Figures
5a-c are not driven by the fact that we start out from the true parameters in the optimizations.
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model is identifiable in the notion of Rothenberg (1971): if an appropriate set of variables are
used to estimate the DSGE model, the ML distributions collapse at the true parameters as
the sample size is increased. In this sense, our results based on full information methods go
against the limited information results in Canova and Sala (2006), who questions identification
in the the new generation of DSGE models. However, the results in this paper also lends
some support to the arguments in Canova and Sala (2006) regarding weak identification of
some parameters.With weak identification we mean that quite some variation in certain of the
parameters were consistent with only marginal changes in the likelihood. In the parameterization
of the model we considered, one such parameter is the degree of nominal wage stickiness. As
this is a key parameter in the new generation of DSGE models, we need to explore the reason
for the weak idenfication pertaining to this parameter. Another feature of estimated DSGE
models emphazied by Canova and Sala (2006) is that there appears to be a high but not perfect
degree of substitutability between some of the parameters in the model.[Write more about
our findings in this regard.]

We think our results warrants the use of more pre-checking and carefulness about which
variables that needs to be included when bringing a model to the data. Basically, the econo-
metrician that consider applying ML estimation needs to perform the sort of tests conducted in
this paper to learn about the properties of the model before taking the model to actual data.
In the case the econometrican considers a Bayesian approach, the issues discussed in this pa-
per might not appear to be problematic, because the posterior for the parameters where the
observed variables are not informative will equal the prior and thus inform the econometrician
that some of the parameter are very weakly identified. However, we still think there are at least
two distinct reasons why a Bayesian econometrician should pay attention to the issues analyzed
in this paper. First, a Bayesian investigator would certainly be interested to know what set of
variables he needs to include in the set of variables used in estimation to be able to update his
priors from the observed data sample in an efficient way. Second, the Bayesian econometrician
needs to consider that the estimation results can be driven by the fact that (some of) his priors
are more informative than others. For instance, the estimation results for an exogenous shock
process can be (at least in a local neighbourhood) driven by the fact that the prior for the
persistence coefficient of a shock (typically a rather informative beta prior) is more informative
relative to the standard deviation of the innovation for the shock process (typically a rather
uninformative inverse gamma prior).

Finally, there are at least three interesting aspects that certainly deserves future attention.
First, and perhaps most importantly, Rubio and Villaverde (2005) compares maximum likeli-
hood estimation of a real business cycle model and argues that estimations based on a non-linear
(i.e. second-order) approximation are much more informative about the underlying parameters
as opposed to estimations when the underlying DSGE model is log-linearized. Therefore, an
interesting extension of the work here would be to examine to what extent the properties of
maximum likelihood would be enhanced by working with the second-order approximations in-
stead of a log-linearized represention of the model.

Second, there is also more work to be done in understanding the role of various real and
nominal frictions for acheiving identification, and why a key parameter like the degree of nominal
wage stickiness suffer from weak identification. One potential explanation for the latter issue
can be the relatively high variance of the wage markup/labor supply shock and the high degree
of sticky prices in the datagenerating process.[Write about our findings.]

Third, the issue about smaller models vs. larger models and larger sets of observed variables
is an interesting extension as well. For instance, one could estimate the closed economy version
of the model above and see if we learn more efficiently about the closed economy parameters in
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a closed economy setting compared to the open economy setting.
[To be continued.]
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Table 1: Calibrated parameters

Parameter Description Calibrated value
β Households’ discount factor 0.999
α Capital share in production 0.25
ηc Substitution elasticity between Cd

t and C
m
t 5

σa Capital utilization cost parameter 1, 000, 000
μ Money growth rate (quarterly rate) 1.010445
σL Labor supply elasticity 1
δ Depreciation rate 0.01
λw Wage markup 1.05
ωi Share of imported investment goods 0.70
ωc Share of imported consumption goods 0.40
ν Share of wage bill financed by loans 1
τy Labor income tax rate 0.30
τ c Consumption tax rate 0.24
ρπ̄ Inflation target persistence 0.975
gr Government expenditures-output ratio 0.30
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 Table 2: Prior and posterior distributions 
  Prior distribution  Posterior 

distribution 
  

Bounds 
        

Parameter  type mean std. dev. / df  median  lower upper 

Calvo wages  wξ  beta 0.750 0.050  0.765  0.01 0.99 
Calvo domestic prices dξ  beta 0.750 0.050  0.825  0.01 0.99 
Calvo import cons. prices cm ,ξ  beta 0.750 0.050  0.900  0.01 0.99 
Calvo import inv.  prices im ,ξ  beta 0.750 0.050  0.939  0.01 0.99 
Calvo export prices  xξ  beta 0.750 0.050  0.874  0.01 0.99 
Indexation prices  pκ  beta 0.500 0.150  0.227  0.01 0.99 
Indexation wages wκ  beta 0.500 0.150  0.323  0.01 0.99 
Investment adj. cost  ''~S  normal 7.694 1.500  8.584  0.1 100 
Habit formation  b  beta 0.650 0.100  0.679  0.01 0.99 
Markup domestic  dλ  truncnormal 1.200 0.050  1.195  1.01 10 
Subst. elasticity invest.  iη  invgamma 1.500 4  2.715  0.01 20 
Subst. elasticity foreign fη  invgamma 1.500 4  1.531  0.01 20 
Markup imported cons.  cm ,λ  truncnormal 1.200 0.050  1.584  1.01 10 
Markup.imported invest.  im ,λ truncnormal 1.200 0.050  1.134  1.01 10 
Technology growth  zμ  truncnormal 1.006 0.0005  1.005  1.0001 1.01 
Risk premium  φ~  invgamma 0.010 2  0.050  0.0001 10 
UIP modification 

sφ
~  beta 0.500 0.15  0.606  0.0001 1 

Unit root tech. shock persistence 
zμρ  beta 0.850 0.100  0.845  0.01 0.9999 

Stationary tech. shock persistence ερ  beta 0.850 0.100  0.925  0.01 0.9999 
Invest. spec. tech shock persistence Υρ  beta 0.850 0.100  0.694  0.01 0.9999 
Risk premium shock persistence φρ ~  beta 0.850 0.100  0.684  0.01 0.9999 
Consumption pref. shock persistence 

cζ
ρ  beta 0.850 0.100  0.657  0.01 0.9999 

Labour supply shock persistence 
hζ

ρ  beta 0.850 0.100  0.270  0.01 0.9999 
Asymmetric tech. shock persistence *~zρ  beta 0.850 0.100  0.964  0.01 0.9999 

Unit root tech. shock std. dev. zσ  invgamma 0.200 2  0.133  0.01 10 
Stationary tech. shock std. dev. εσ  invgamma 0.700 2  0.668  0.01 10 
Imp. cons. markup shock std. dev. 

cm ,λσ invgamma 1.000 2  1.126  0.01 400 
Imp. invest. markup shock std. dev. im ,λσ invgamma 1.000 2  1.134  0.01 400 
Domestic markup shock std. dev. λσ  invgamma 1.000 2  0.807  0.01 100 
Invest. spec. tech. shock std. dev. Υσ  invgamma 0.200 2  0.396  0.01 100 
Risk premium shock std. dev. φσ ~  invgamma 0.050 2  0.793  0.01 10 
Consumption pref. shock std. dev. 

cζ
σ  invgamma 0.200 2  0.263  0.01 5 

Labour supply shock std. dev. 
hζσ  invgamma 1.000 2  0.386  0.01 15 

Asymmetric tech. shock std. dev. *~zσ  invgamma 0.400 2  0.188  0.01 2 
Export markup shock std. dev.  

xλ
σ  invgamma 1.000 2  1.033  0.01 20 

Monetary policy shock  ,Rσ  invgamma 0.150 2  0.239  0.01 2 
Inflation target shock  cπ

σ  invgamma 0.050 2  0.157  0.01 1.5 
Interest rate smoothing  Rρ  beta 0.800 0.050  0.913  0.01 0.99 
Inflation response  πr  truncnormal 1.700 0.100  1.674  1.01 1000 
Diff. infl response  πΔr  normal 0.300 0.050  0.098  -0.5 5 
Real exch. rate response  xr  normal 0.000 0.050  -0.016  -5 5 
Output response  yr  normal 0.125 0.050  0.125  -0.5 5 
Diff. output response  yrΔ  normal 0.063 0.050  0.178  -0.5 5 

*Note: For the inverse gamma distribution the mode and the degrees of freedom are reported.  Also, for the parameters 
imcmfid  ,   , ,,,, λληηλ and 

zμ  the prior distributions are truncated at 1.  



 Table 3: Distribution results from different sample sizes using true starting values 
   100 observations  400 observations 

Parameter  
True 
esti-

mates 

Mean of 
distri-
bution 

Median 
of distri-
bution 

Std. of 
distri-
bution 

Median 
std. of 
inverse 

Hessians 

 
Mean of 
distri-
bution 

Median of 
distri-
bution 

Std. of 
distri-
bution 

Median  
std. of 
inverse 

Hessians 

Calvo wages  wξ  0.77 0.74 0.75 0.13 0.07  0.76 0.76 0.05 0.03 
Calvo domestic prices dξ  0.83 0.81 0.82 0.04 0.03  0.82 0.82 0.02 0.01 
Calvo import cons. prices cm ,ξ  0.90 0.90 0.90 0.02 0.01  0.90 0.90 0.01 0.01 
Calvo import inv.  prices im ,ξ  0.94 0.94 0.94 0.02 0.01  0.94 0.94 0.01 0.01 
Calvo export prices  xξ  0.87 0.86 0.86 0.04 0.02  0.87 0.87 0.01 0.01 
Indexation prices  κ  0.23 0.22 0.22 0.06 0.05  0.22 0.22 0.03 0.02 
Indexation wages wκ  0.32 0.32 0.32 0.15 0.07  0.32 0.32 0.07 0.04 
Investment adj. cost  ''~S  8.58 8.98 8.08 4.08 2.02  8.64 8.54 1.36 0.99 
Habit formation  b  0.68 0.67 0.67 0.07 0.05  0.68 0.68 0.03 0.02 
Markup domestic  dλ  1.20 1.21 1.20 0.14 0.09  1.20 1.20 0.06 0.04 
Subst. elasticity invest.  iη  2.72 2.72 2.71 0.13 0.11  2.71 2.71 0.06 0.05 
Subst. elasticity foreign fη  1.53 1.59 1.45 0.59 0.23  1.54 1.53 0.13 0.09 
Markup imported cons.  cm ,λ  1.58 1.58 1.58 0.01 0.01  1.58 1.58 0.00 0.00 
Markup.imported invest.  im ,λ 1.13 1.14 1.13 0.02 0.02  1.13 1.13 0.01 0.01 
Technology growth  zμ  1.01 1.01 1.01 0.00 0.00  1.01 1.01 0.00 0.00 
Risk premium  φ~  0.05 0.06 0.05 0.02 0.01  0.05 0.05 0.01 0.00 
UIP modification 

sφ
~  0.61 0.61 0.60 0.05 0.03  0.61 0.61 0.02 0.01 

Unit root tech. persistance 
zμρ  0.85 0.80 0.83 0.14 0.06  0.84 0.85 0.05 0.03 

Stationary tech. persistance ερ  0.93 0.89 0.90 0.08 0.03  0.92 0.92 0.02 0.01 
Invest. spec. tech. persist.  Υρ  0.69 0.65 0.67 0.13 0.06  0.69 0.69 0.04 0.03 
Risk premium persistence φρ ~  0.68 0.65 0.65 0.11 0.06  0.68 0.68 0.04 0.03 
Consumption pref. persist. 

cζ
ρ  0.66 0.59 0.61 0.18 0.08  0.64 0.65 0.07 0.04 

Labour supply persistance  
hζ

ρ  0.27 0.26 0.26 0.13 0.07  0.27 0.27 0.06 0.04 
Asymmetric tech. persist.  *~zρ  0.96 0.73 0.84 0.28 0.09  0.93 0.95 0.11 0.02 

Unit root tech. shock 
zμσ  0.13 0.14 0.14 0.05 0.03  0.13 0.13 0.02 0.01 

Stationary tech. shock  εσ  0.67 0.66 0.65 0.06 0.05  0.67 0.67 0.03 0.03 
Imp. cons. markup shock 

cm ,λσ 1.13 1.13 1.12 0.11 0.10  1.13 1.13 0.05 0.05 
Imp. invest. markup shock im ,λσ  1.13 1.14 1.13 0.11 0.10  1.14 1.13 0.05 0.05 
Domestic markup shock   

dλ
σ  0.81 0.82 0.82 0.08 0.08  0.81 0.81 0.04 0.04 

Invest. spec. tech. shock   Υσ  0.40 0.42 0.41 0.09 0.06  0.40 0.40 0.03 0.03 
Risk premium shock   φσ ~  0.79 0.82 0.80 0.21 0.12  0.80 0.80 0.08 0.06 
Consumption pref. shock   

cζ
σ  0.26 0.27 0.27 0.05 0.04  0.27 0.26 0.02 0.02 

Labour supply shock   
hζσ  0.39 0.39 0.39 0.06 0.04  0.38 0.38 0.03 0.02 

Asymmetric tech. shock   *~zσ  0.19 1.13 1.09 0.41 0.21  1.04 1.03 0.11 0.08 
Export markup shock   

xλ
σ  1.03 0.15 0.16 0.06 0.04  0.18 0.18 0.02 0.02 

Monetary policy shock  Rσ  0.24 0.24 0.23 0.02 0.02  0.24 0.24 0.01 0.01 
Inflation target shock  cπ

σ  0.16 0.14 0.14 0.10 0.04  0.16 0.16 0.03 0.02 
Interest rate smoothing  Rρ  0.91 0.91 0.91 0.05 0.03  0.91 0.91 0.02 0.02 
Inflation response  πr  1.67 3.80 1.59 5.08 2.70  2.06 1.65 1.59 0.61 
Diff. infl response  πΔr  0.10 0.11 0.10 0.04 0.03  0.10 0.10 0.02 0.01 
Real exch. rate response  xr  -0.02 -0.07 -0.02 0.15 0.02  -0.03 -0.02 0.04 0.01 
Output response  yr  0.13 0.35 0.13 0.63 0.07  0.17 0.12 0.18 0.04 
Diff. output response  yrΔ  0.18 0.19 0.18 0.05 0.03  0.18 0.18 0.02 0.02 
    

 

Note: Out of the 1500 estimations for the small sample (100 obs.), the results above is based on 1452 convergent estimations. Out of the 1000 estimations for the large 
sample (400 obs.), the results above is based on 999 convergent estimations.  



 Table 4: Distribution results from different starting values (no. of observations = 100) 
   Starting from true values  Starting from a distribution of prior values 
      

Parameter  
True 
esti-

mates 

Mean of 
distribution 

Median of 
distribution 

Std. of 
distribution  Mean of 

distribution 
Median of 
distribution 

Std. of 
distribution 

Calvo wages  wξ  0.77 0.74 0.75 0.13  0.73 0.74 0.16 
Calvo domestic prices dξ  0.83 0.81 0.82 0.04  0.81 0.82 0.06 
Calvo import cons. prices cm ,ξ  0.90 0.90 0.90 0.02  0.90 0.90 0.03 
Calvo import inv.  prices im ,ξ  0.94 0.94 0.94 0.02  0.93 0.94 0.04 
Calvo export prices  xξ  0.87 0.86 0.86 0.04  0.86 0.86 0.05 
Indexation prices  κ  0.23 0.22 0.22 0.06  0.23 0.22 0.11 
Indexation wages wκ  0.32 0.32 0.32 0.15  0.33 0.32 0.18 
Investment adj. cost  ''~S  8.58 8.98 8.08 4.08  10.04 8.54 7.85 
Habit formation  b  0.68 0.67 0.67 0.07  0.68 0.68 0.08 
Markup domestic  dλ  1.20 1.21 1.20 0.14  1.35 1.20 1.10 
Subst. elasticity invest.  iη  2.72 2.72 2.71 0.13  2.72 2.71 0.18 
Subst. elasticity foreign fη  1.53 1.59 1.45 0.59  1.60 1.43 0.94 
Markup imported cons.  cm ,λ  1.58 1.58 1.58 0.01  1.58 1.58 0.01 
Markup.imported invest.  im ,λ 1.13 1.14 1.13 0.02  1.14 1.14 0.03 
Technology growth  zμ  1.01 1.01 1.01 0.00  1.01 1.01 0.00 
Risk premium  φ~  0.05 0.06 0.05 0.02  0.07 0.05 0.11 
UIP modification 

sφ
~  0.61 0.61 0.60 0.05  0.60 0.60 0.09 

Unit root tech. persistance 
zμρ  0.85 0.80 0.83 0.14  0.81 0.85 0.14 

Stationary tech. persistance ερ  0.93 0.89 0.90 0.08  0.88 0.90 0.09 
Invest. spec. tech. persist.  Υρ  0.69 0.65 0.67 0.13  0.66 0.67 0.14 
Risk premium persistence φρ ~  0.68 0.65 0.65 0.11  0.66 0.66 0.12 
Consumption pref. persist. 

cζ
ρ  0.66 0.59 0.61 0.18  0.60 0.62 0.20 

Labour supply persistance  
hζ

ρ  0.27 0.26 0.26 0.13  0.27 0.26 0.16 
Asymmetric tech. persist.  *~zρ  0.96 0.73 0.84 0.28  0.73 0.83 0.28 

Unit root tech. shock 
zμσ  0.13 0.14 0.14 0.05  0.14 0.13 0.08 

Stationary tech. shock  εσ  0.67 0.66 0.65 0.06  0.66 0.65 0.13 
Imp. cons. markup shock 

cm ,λσ 1.13 1.13 1.12 0.11  1.24 1.12 2.02 
Imp. invest. markup shock im ,λσ  1.13 1.14 1.13 0.11  1.39 1.13 6.64 
Domestic markup shock   

dλ
σ  0.81 0.82 0.82 0.08  0.87 0.82 1.14 

Invest. spec. tech. shock   Υσ  0.40 0.42 0.41 0.09  0.42 0.41 0.09 
Risk premium shock   φσ ~  0.79 0.82 0.80 0.21  0.83 0.80 0.46 
Consumption pref. shock   

cζ
σ  0.26 0.27 0.27 0.05  0.28 0.27 0.19 

Labour supply shock   
hζσ  0.39 0.39 0.39 0.06  0.42 0.39 0.58 

Asymmetric tech. shock   *~zσ  0.19 1.13 1.09 0.41  0.16 0.16 0.12 
Export markup shock   

xλ
σ  1.03 0.15 0.16 0.06  1.16 1.10 0.45 

Monetary policy shock  Rσ  0.24 0.24 0.23 0.02  0.25 0.24 0.11 
Inflation target shock  cπ

σ  0.16 0.14 0.14 0.10  0.16 0.14 0.14 
Interest rate smoothing  Rρ  0.91 0.91 0.91 0.05  0.91 0.91 0.05 
Inflation response  πr  1.67 3.80 1.59 5.08  4.80 1.50 13.47 
Diff. infl response  πΔr  0.10 0.11 0.10 0.04  0.12 0.10 0.24 
Real exch. rate response  xr  -0.02 -0.07 -0.02 0.15  -0.05 -0.01 0.56 
Output response  yr  0.13 0.35 0.13 0.63  0.41 0.11 0.83 
Diff. output response  yrΔ  0.18 0.19 0.18 0.05  0.20 0.18 0.32 

 

Note: Out of the 1500 estimations, the results above are based on 688 commonly convergent estimations.  
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Figure 1a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line show the
parameter distribution for N = 100, and the dashed line shows the distribution for N = 400 observations. The vertical bar shows true parameter
value, and the cross on the x-axis denotes the starting value in the optimizations.
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Figure 1b: Kernel density estimates of the small sample distribution for the estimates of the shock parameters. The solid line shows the parameter
distribution for N = 100, and the dashed line shows the distribution for N = 400 observations. The vertical bar shows true parameter value, and the
cross on the x-axis denotes the starting value in the optimizations.
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Figure 2: Pairwise estimates for parameters with cross-correlations above 0.5. N = 100, initializing the optimizations with the true parameters.
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Figure 3a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the
parameter distribution when initializing the estimations with the true parameters (vertical bars), and the dashed lines show the distribution when
initializing the estimations using a sample from the prior (dotted).
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Figure 3b: Kernel density estimates of the small sample distribution for the estimates of the shock process parameters. The solid line shows the
parameter distribution when initializing the estimations with the true parameters (vertical bars), and the dashed lines show the distribution when
initializing the estimations using a sample from the prior (dotted).
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Figure 3c: Kernel density estimates of the small sample distribution for the estimates of the policy rule parameters. The solid line shows the
parameter distribution when initializing the estimations with the true parameters (vertical bars), and the dashed lines show the distribution when
initializing the estimations using a sample from the prior (dotted).
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Figure 4a: Histogram for the deep model parameters estimated on one given artificial sample, based on the estimations that has converged to the
same likelihood. The dashed line shows the distribution for the starting values used in the estimations.
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Figure 4b: Histogram for the shock process parameters estimated on one given artificial sample, based on the estimations that has converged to
the same likelihood. The dashed line shows the distribution for the starting values used in the estimations.
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Figure 4c: Histogram for the policy rule parameters estimated on one given artificial sample, based on the estimations that has converged to the
same likelihood. The dashed line shows the distribution for the starting values used in the estimations.
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Figure 5a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the
parameter distributions when the estimations are based on the full set of observable variables, and the dashed line when the estimations are based
on fitting only a subset of variables (i.e., 7 “closed economy” variables). The true parameters are given by the vertical bars, and red crosses on the
x-axes show starting values in the estimation.
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Figure 5b: Kernel density estimates of the small sample distribution for the estimates of the shock parameters. The solid line shows the parameter
distribution when the estimations are based on the full set of observable variables, and the dashed line when the estimations are based on fitting only
a subset of variables (i.e., 7 “closed economy” variables). The true parameters are given by the vertical bars, and red crosses on the x-axes show
starting values in the estimation.
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Figure 5c: Kernel density estimates of the small sample distribution for the estimates of the policy rule parameters. The solid line shows the
parameter distribution when the estimations are based on the full set of observable variables, and the dashed line when the estimations are based
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Appendix A. Additional simulation results

In this appendix, we present additional simulation results for three experiments.

A.1. Adding measurement errors and reestimating the fiscal and foreign VARs

In the first case, we add measurement errors to the simulated data as described in Section 3. The
measurement errors are assumed to be i.i.d. and normally distributed and in the estimations
they are calibrated at their true values (see Footnote 9). In addition, we also reestimate the
fiscal and foreign VAR models for each sample in the same way that they are estimated on actual
data rather than fixing the VAR coefficients at their true values in each simulation.

A priori, we expect this strategy, which exactly mimics the estimation strategy on actual
data, to generate more dispersed parameter distributions, as the added measurement errors and
estimated VARs induce additional uncertainty in the estimations. This prior is confirmed by
the simulation results reported in Figures A1.a-c, where we see that the resulting parameter
distributions are somewhat wider for some of the parameters. However, the key results are
unaffected, the ML estimator is still unbiased in most cases and it is consistent as well.

A.2. Exploiting the co-integrating vectors in the simulations

One possible explanation to the problems with weak identification of the degree of nominal wage
stickiness is that we do not exploit the cointegrating vectors when we match the model to the
data. Instead of matching the variables in equation (19) where all quantities and the real wage
are in quarterly growth rates, we therefore match the following set of variables instead

Ỹt =
[ πdt ln(Wt/Pt)− lnYt lnCt − lnYt ln It − lnYt x̂t Rt Ĥt ∆ lnYt...

ln X̃t − lnYt ln M̃t − lnYt πcpit πdef,it lnY ∗t − lnYt π∗t R∗t ]0.
(A.1)

The set of variables in (A.1) impose the model’s true cointegrating vectors in the estimations,
and by doing so it should provide more efficient estimation of the underlying parameters in the
model.

However, as is clear from Figures A2.a-c, the efficiency gains from matching the co-integrating
vectors are not very large. In most cases the resulting parameter distributions are essentially
identical.

A.3. Consistency properties of ML estimator for T = 1600 and T = 6400

In Table A.1, we check the consistency properties of the ML estimator by increasing the sample
size in each of the N samples to T = 1600 and T = 6400 observations. We report results for
the case when we match all 15 variables in eq. (19) and the “closed economy” variables in eq.
(20). As this is a very time-consuming exercise, we only report results for N = 20 samples for
T = 1600 observations, and N = 10 samples for T = 6400 observations. To be able to study
whether the ML estimator actually is consistent for the “closed economy” variables set, the intial
values in the optimizations when we match the closed economy variables are initiated by the
prior mode values in Table 2.19

19The exceptions are the persistence and standard devation for the labor supply shock process, which are
intiated by their true values. The reason being that the priors for these parameters are so far off the posterior
mode (i.e. the true values used to generate the samples), that they induce an implausible amount of volatility in
the real wage and causes problems for the CSMINWEL algorithm.

19



From Table A.1, we see that the parameter distributions are collapsing at the true parameter
values as T = 6400, but the standard deviations of the distributions indicate that the rate of
convergence is substantially slower for many parameters when only the closed economy variables
are matched in the estimations. A perhaps striking result is, however, that the ML estimator
is actually consistent also for a relatively small set of variables. But clearly, it is much more
efficient to match a larger set of variables.
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 Table A1: Distribution results from one particular sample of different sizes, matching two sets of variables 
   1600 observations  6400 observations 

   All variables Closed variables  All variables Closed variables 

Parameter  
True 
esti-

mates 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

 
Mean of 
distri-
bution 

Std. of 
distri-
bution 

Mean of 
distri-
bution 

Std. of 
distri-
bution 

Calvo wages  wξ  0.77 0.74 0.07 0.76 0.02  0.77 0.01 0.77 0.01 
Calvo domestic prices dξ  0.83 0.82 0.02 0.83 0.01  0.83 0.00 0.83 0.00 
Calvo import cons. prices cm ,ξ  0.90 0.90 0.00 0.89 0.03  0.90 0.00 0.90 0.01 
Calvo import inv.  prices im ,ξ  0.94 0.94 0.00 0.93 0.01  0.94 0.00 0.94 0.00 
Calvo export prices  xξ  0.87 0.87 0.01 0.85 0.04  0.87 0.00 0.87 0.02 
Indexation prices  κ  0.23 0.24 0.03 0.23 0.02  0.23 0.01 0.24 0.01 
Indexation wages wκ  0.32 0.34 0.07 0.33 0.03  0.32 0.02 0.32 0.02 
Investment adj. cost  ''~S  8.58 8.93 0.70 8.69 0.92  8.52 0.31 8.64 0.66 
Habit formation  b  0.68 0.67 0.02 0.68 0.02  0.68 0.01 0.68 0.01 
Markup domestic  dλ  1.20 1.18 0.04 1.20 0.03  1.20 0.02 1.20 0.02 
Subst. elasticity invest.  iη  2.72 2.73 0.03 2.46 0.65  2.72 0.01 2.58 0.38 
Subst. elasticity foreign fη  1.53 1.51 0.05 1.49 0.54  1.53 0.01 1.50 0.29 
Markup imported cons.  cm ,λ  1.58 1.58 0.00 1.56 0.07  1.58 0.00 1.58 0.05 
Markup.imported invest.  im ,λ 1.13 1.13 0.01 1.19 0.10  1.13 0.00 1.15 0.04 
Technology growth  zμ  1.01 1.01 0.00 1.01 0.00  1.01 0.00 1.01 0.00 
Risk premium  φ~  0.05 0.05 0.00 0.06 0.01  0.05 0.00 0.05 0.01 
UIP modification 

sφ
~  0.61 0.58 0.03 0.63 0.04  0.61 0.00 0.61 0.02 

Unit root tech. persistance 
zμρ  0.85 0.82 0.03 0.85 0.05  0.85 0.01 0.84 0.02 

Stationary tech. persistance ερ  0.93 0.92 0.01 0.92 0.01  0.92 0.01 0.92 0.01 
Invest. spec. tech. persist.  Υρ  0.69 0.69 0.04 0.69 0.03  0.70 0.01 0.70 0.01 
Risk premium persistence φρ ~  0.68 0.75 0.09 0.53 0.36  0.68 0.01 0.66 0.14 
Consumption pref. persist. 

cζ
ρ  0.66 0.73 0.06 0.65 0.04  0.65 0.01 0.64 0.02 

Labour supply persistance  
hζ

ρ  0.27 0.26 0.08 0.27 0.02  0.27 0.01 0.27 0.01 
Asymmetric tech. persist.  *~zρ  0.96 0.97 0.03 0.81 0.11  0.96 0.01 0.86 0.02 

Unit root tech. shock 
zμσ  0.13 0.13 0.01 0.13 0.03  0.13 0.00 0.13 0.01 

Stationary tech. shock  εσ  0.67 0.67 0.01 0.67 0.01  0.67 0.01 0.67 0.01 
Imp. cons. markup shock 

cm ,λσ 1.13 1.11 0.03 1.08 0.22  1.12 0.01 1.14 0.20 
Imp. invest. markup shock im ,λσ  1.13 1.12 0.03 1.18 0.29  1.13 0.01 1.12 0.13 
Domestic markup shock   

dλ
σ  0.81 0.80 0.01 0.80 0.01  0.80 0.01 0.80 0.01 

Invest. spec. tech. shock   Υσ  0.40 0.39 0.03 0.39 0.02  0.39 0.01 0.39 0.01 
Risk premium shock   φσ ~  0.79 0.68 0.15 1.54 1.40  0.80 0.01 0.88 0.44 
Consumption pref. shock   

cζ
σ  0.26 0.25 0.01 0.26 0.01  0.26 0.00 0.26 0.01 

Labour supply shock   
hζσ  0.39 0.40 0.03 0.39 0.01  0.39 0.00 0.39 0.00 

Asymmetric tech. shock   *~zσ  0.19 0.19 0.01 0.46 0.41  0.19 0.00 0.41 0.21 
Export markup shock   

xλ
σ  1.03 1.05 0.03 1.02 0.51  1.02 0.01 1.06 0.22 

Monetary policy shock  Rσ  0.24 0.24 0.01 0.24 0.00  0.24 0.00 0.24 0.00 
Inflation target shock  cπ

σ  0.16 0.29 0.22 0.17 0.03  0.15 0.01 0.15 0.01 
Interest rate smoothing  Rρ  0.91 0.89 0.03 0.91 0.01  0.91 0.01 0.92 0.01 
Inflation response  πr  1.67 1.31 0.44 1.56 0.31  1.65 0.14 1.73 0.18 
Diff. infl response  πΔr  0.10 0.09 0.01 0.09 0.01  0.10 0.00 0.10 0.00 
Real exch. rate response  xr  -0.02 -0.01 0.01 -0.01 0.01  -0.02 0.00 -0.02 0.01 
Output response  yr  0.13 0.08 0.05 0.12 0.05  0.12 0.02 0.13 0.02 
Diff. output response  yrΔ  0.18 0.16 0.02 0.17 0.01  0.18 0.01 0.18 0.01 
    

 

Note: The results above are based on 20 (convergenrt) estimations for the small sample (1600 obs.), and 11 (convergent) estimations for the large sample (6400 obs.). The 
optimizations are intialized by the prior mode values in Table 2 for the closed variables set and for the all variables set by the true parameters except for the shocks which 
are intialized by their prior mode values.  
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Figure A1a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the
parameter distribution when estimating the model without measurement errors and keeping the foreign and fiscal VAR models fixed, and the dashed
line shows the distribution when estimating the model with measurement errors and reestimating the foreign and fiscal VAR models for each sample.
The vertical bar shows true parameter value, and the cross on the x-axis denotes the starting value in the optimizations. N = 100 observations.
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Figure A1b: Kernel density estimates of the small sample distribution for the estimates of the shock parameters. The solid line shows the
parameter distribution when estimating the model without measurement errors and keeping the foreign and fiscal VAR models fixed, and the dashed
line shows the distribution when estimating the model with measurement errors and reestimating the foreign and fiscal VAR models for each sample.
The vertical bar shows true parameter value, and the cross on the x-axis denotes the starting value in the optimizations. N = 100 observations.
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Figure A1c: Kernel density estimates of the small sample distribution for the estimates of the policy parameters. The solid line shows the
parameter distribution when estimating the model without measurement errors and keeping the foreign and fiscal VAR models fixed, and the dashed
line shows the distribution when estimating the model with measurement errors and reestimating the foreign and fiscal VAR models for each sample.
The vertical bar shows true parameter value, and the cross on the x-axis denotes the starting value in the optimizations. N = 100 observations.
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Figure A2a: Kernel density estimates of the small sample distribution for the estimates of the deep model parameters. The solid line shows the
parameter distribution when estimating the model in first differences, and the dashed line shows the distribution when estimating the model using the
true cointegrating vectors. The vertical bar shows true parameter value, and the cross on the x-axis denotes the starting value in the optimizations.
N = 100 observations.
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Figure A2b: Kernel density estimates of the small sample distribution for the estimates of the shock parameters. The solid line shows the
parameter distribution when estimating the model in first differences, and the dashed line shows the distribution when estimating the model using the
true cointegrating vectors. The vertical bar shows true parameter value, and the cross on the x-axis denotes the starting value in the optimizations.
N = 100 observations.
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Figure A2c: Kernel density estimates of the small sample distribution for the estimates of the monetary policy parameters. The solid line shows
the parameter distribution when estimating the model in first differences, and the dashed line shows the distribution when estimating the model
using the true cointegrating vectors. The vertical bar shows true parameter value, and the cross on the x-axis denotes the starting value in the
optimizations. N = 100 observations.




