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Abstract

We develop a model of gross job and worker ‡ows and use it to
study how the wages and employment status of individual workers
evolve over time and how they are a¤ected by aggregate labor market
conditions. We also examine the e¤ects that labor market institutions
and public policy have on the gross ‡ows, as well as on the resulting
wage distribution, employment and aggregate output in the equilib-
rium. The model we propose also rationalizes various other features
of labor markets. For example, why do displaced workers tend to ex-
perience a signi…cant and persistent fall in wages? Why do workers
stay unemployed when on-the-job-search is at least as e¤ective as o¤-
the-job-search? Why is it that good jobs are not only better paid, but
often also more stable? From a theoretical point of view, we study
the extent to which the competitive equilibrium achieves an e¢cient
allocation of resources.

¤This draft is preliminary and incomplete. Please do not circulate.



1 Introduction

Recent theoretical and empirical studies on gross job creation and destruc-

tion have changed the way we think about the labor market. We now view

employment and unemployment as resulting from a large and continual job

reallocation process, and analyze how changes in public policy and the eco-

nomic environment a¤ect these gross ‡ows, which in turn a¤ect unemploy-

ment. However, behind these gross job ‡ows there are even larger worker

‡ows, because the number of workers who quit, get displaced and get hired

by each employer is at least as large as (and often signi…cantly larger than)

the net change of employment for each employer.

In this paper, we develop a model of gross job and worker ‡ows and use it

to study how the employment status and wages of individual workers evolve

over time and how they are a¤ected by aggregate labor market conditions. We

also examine the e¤ects that labor market institutions and public policy have

on the gross ‡ows, as well as on the resulting wage distribution, employment

and aggregate output in the equilibrium. Our framework of worker ‡ows

also rationalizes various other features of labor markets. For example, why

do displaced workers tend to experience a signi…cant and persistent fall in

wages? Why do workers stay unemployed when on-the-job-search is at least

as e¤ective as o¤-the-job-search? Why is it that good jobs are not only

better paid, but often also more stable? Why do workers in good jobs often

receive help from their employers to overcome personal problems (e.g. health

problems) so that they can preserve their jobs? From a theoretical point of
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view, we study the extent to which the competitive equilibrium achieves an

e¢cient allocation.

2 The Model

Time is continuous and the horizon in…nite. The economy is populated by

a continuum of …xed and equal numbers of workers and employers. We

normalize the size of each population to unity. Workers and employers are

in…nitely-lived and risk-neutral. They discount future utility at rate r > 0,

and are ex-ante homogeneous in tastes and technology.

A worker meets a randomly chosen employer according to a Poisson

process with arrival rate ®. An employer meets a random worker accord-

ing to the same process. Upon meeting, the employer-worker pair randomly

draws a production opportunity of productivity y, which represents the ‡ow

net output each agent will produce while matched. (Thus the pair produces

2y.) The random variable y takes one of N distinct values: y1; y2; : : : ; yN ,

where 0 < y1 < y2 < : : : < yN , and y = yi with probability ¼i for i = 1; :::; N .

For now, we assume y remains constant for the duration of the match.

Matched and unmatched agents meet potential partners at the same rate,

so when an employer and a worker meet and draw a productive opportunity

each of them may or may not already be matched with an old production

partner. Each worker and employer can form at most one productive part-

nership simultaneously. The realization of the random variable y that an

employer and worker draw when they …rst meet is observed without delay by
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them as well as by their current partners. In fact, the productivity of the new

potential match as well as the productivities of the existing matches are pub-

lic information to all the agents involved, i.e. the worker and the employer

who draw the new productivity and their existing partners if they have any.

On the other hand, each agent’s past history is private information, except

for what is revealed by the current production match.

When a worker and an employer meet and …nd a new productive oppor-

tunity, the pair and their old partners (if they have any) determine whether

or not the new match is formed (and consequently whether or not the ex-

isting matches are destroyed) as well as the once-and-for-all side payments

that each party pays or receives, through a bargaining protocol which we

will describe shortly. Utility is assumed to be transferable among all the

agents involved in a meeting. There is no outside court to enforce any formal

contract, so any e¤ective contract must be self-enforcing among the parties

involved. If the parties who made contact decide to form a new partnership,

they leave their existing partners who then become unmatched. In addi-

tion to these endogenous terminations, we assume any match is subject to

exogenous separation with a Poisson process separation rate ±.

We use nit to denote the measure of matches of productivity yi and n0t

to denote the measure of unmatched employers or workers at date t. Let

¿kijt be the probability that a worker with current productivity yi and an

employer with current productivity yj form a new match of productivity yk,

given that they draw an opportunity to produce yk at time t. (Hereafter, we

will suppress the time subindex when no confusion arises.) The measure of
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workers in each state evolves according to:

_ni = ®¼i
NX

j=0

NX

k=0

njnk¿ ijk ¡ ®ni
NX

j=0

NX

k=1

nj¼k
¡
¿ kij + ¿

k
ji
¢

¡ ±ni (1)

_n0 = ®
NX

i=1

NX

j=1

NX

k=1

ninj¼k¿kij + ±
NX

j=1

nj ¡ ®n20
NX

k=1

¼k¿ k00: (2)

The …rst term on the right hand side of (1) is the ‡ow of new matches of

productivity yi created by all types workers and employers. The second term

is the total ‡ow matches of productivity yi destroyed endogenously when

the worker or the employer leaves to form a new match. The last term

is the ‡ow of matches dissolved exogenously. On the right hand side of

equation (2), the …rst term is the ‡ow of workers who become unmatched

when their employers decide to break the current match to form a new match

with another worker. The second term is the ‡ow of workers who become

unmatched due to the exogenous dissolution of matches. The third term

is the ‡ow of new matches created by unmatched workers and employers.

(The creation of a new match involving an unmatched agent and a matched

agent does not a¤ect the aggregate number of unmatched agents, since one

previously unmatched agent becomes matched, while one previously matched

agent looses the partner to become unmatched.)

Before describing the competitive matching equilibrium with bargaining,

we solve the social planner’s problem. The planner chooses ¿kij 2 [0; 1] to

maximize the discounted value of aggregate output:

Z 1

0
e¡rt

XN

i=1
2yinidt
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subject to the ‡ow constraints (1) and (2), and initial conditions forn0 and ni

for i = 1; :::; N . Letting ¸i be the shadow price of a match with productivity

yi at date t, the Hamiltonian is

H =
NX

i=1

2yini¡±
NX

i=1

(¸i ¡ ¸0) ni+®
NX

i=0

NX

j=0

NX

k=1

ninj¼k¿kij (¸k + ¸0 ¡ ¸i ¡ ¸j) :

The optimality conditions are:

¿ kij

8
<
:

= 1 if ¸k + ¸0 > ¸i + ¸j
2 [0; 1] if ¸k + ¸0 = ¸i + ¸j
= 0 if ¸k + ¸0 < ¸i + ¸j

(3)

together with

r¸i ¡ _̧ i = 2yi ¡ ± (¸i ¡ ¸0) +

®
NX

j=0

NX

k=1

nj¼k
¡
¿ kij + ¿

k
ji
¢
(¸k + ¸0 ¡ ¸i ¡ ¸j) ;

r¸0 ¡ _̧
0 = ®

NX

j=0

NX

k=1

nj¼k
¡
¿ k0j + ¿ kj0

¢
(¸k ¡ ¸j) ;

and (1) and (2), for a given initial condition forn0 and ni at date 0. According

to (3), to achieve the optimal allocation the planner speci…es that a type i

worker and type j employer should form a new match of productivity yk

for sure, if and only if the sum of the shadow prices of the new match and

the unmatched worker and employee (which the new match would generate)

exceeds the sum of the shadow prices of the existing matches of productivity

yi and yj. From (3) we also learn that ¿ kij = ¿kji, possibly except for the case of

randomized strategies. Intuitively, there is no inherent asymmetry between

a worker and an employer, so the planner treats them symmetrically in the
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optimal allocation. These observations allow us to summarize the optimality

conditions as:

r¸i ¡ _̧
i = 2yi ¡ ± (¸i ¡ ¸0)

+2®
NX

j=0

NX

k=1

nj¼k max
0·¿ kij·1

¿ kij (¸k + ¸0 ¡¸i ¡ ¸j) (4)

r¸0 ¡ _̧
0 = 2®

NX

j=0

NX

k=1

nj¼k max
0·¿k0j·1

¿k0j (¸k ¡ ¸j) : (5)

3 Competitive Matching Equilibrium

In this section we characterize the competitive matching equilibrium with

the following bargaining procedure. When an agent draws an opportunity

to produce with a new partner, with probability a half, she makes take-it-

or-leave-it o¤ers to her new potential partner and her old partner (if she has

one) about production and side payments. She can rank these two o¤ers, by

making her o¤er to the old partner contingent on her o¤er to the new poten-

tial partner being rejected. With another probability half, her old partner (if

she has one) and new potential partner simultaneously make take-it-or-leave-

it o¤ers to her. After these o¤ers are made, the recipient of the o¤ers chooses

which one to accept. We also specify that matched agents split the surplus

symmetrically as long as neither agent encounters a production opportunity

with another potential partner.1

Because a worker and an employer who form a match are inherently
1Alternatively, we can think of the matched pair without an outside production op-

portunity as being involved in continual negotiations by which the expected value of side
payments net out to be zero.
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symmetric, hereafter we restrict our attention to symmetric equilibria in

which workers and employers are treated symmetrically and are distinguished

only by the productivity of their current match (or unmatched state). We

will refer to a match of productivity yi as a “type imatch”, and call a worker

or an employer in a type i match a “type i agent”. Let Vi be the value of

expected discounted utility of a type i agent (either a worker or employer),

and let V0 be the value of an unmatched agent. Let X kij be the value that

a type i agent o¤ers to a type j agent in order to form a new match of

productivity yk. Speci…cally, Xkij includes the value of the new match plus

the net side payment type j agent receives. Three qualitatively di¤erent types

of meetings can result from the random matching process: (i) an unmatched

employer and an unmatched worker meet and draw a production opportunity,

(ii) an matched agent and an unmatched agent meet and draw a production

opportunity, and (iii) a matched employer and a matched worker meet and

draw a production opportunity. We begin by describing the equilibrium

outcome of the bargaining for each of these three types of meetings, taking

Vi and V0 as given. Later, we will analyze how these values are determined

in equilibrium.

(i). An unmatched employer meets an unmatched worker.

Suppose an unemployed worker and an employer with a vacancy draw an

opportunity for each to produce yk. Since both are unmatched, the outside

option to each agent is V0. This case is illustrated in Figure 1, where we have

named the two agents involved in this meeting A and B.
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Figure 1: An unmatched employer meets an unmatched worker.

The bargaining unfolds as follows:

Subgame 1. With probability a half, the employer makes a take-it-or-

leave-it o¤er X k00 to the worker in order to maximize her own utility (which

minimizes his partner’s utility) subject to the constraint that his partner will

accept. Then Xk00 = V0, and the o¤er is accepted by the partner.

Subgame 2. With the same probability, the worker makes an o¤er Xk00 = V0

to the employer which is again accepted.

Let ¦j be the expected payo¤ to agent j = A;B and ¡j be her expected

gain. For this case we have ¦A = ¦B = 1
2V0 +

1
2 (2Vk ¡ V0) = Vk, and

¡A = ¡B = Vk ¡ V0: (6)

In this symmetric situation the expected value of the side payment is zero,

and both unmatched agents enjoy the same capital gains to becoming matched.

(ii). An matched agent meets an unmatched agent.

Suppose agent B, who is currently in a match of productivity yi with

9



agent A, meets agent C –who is unmatched– and they draw a productive

opportunity yk. This situation is illustrated in Figure 2.

Figure 2: A matched agent meets an unmatched agent.

The bargaining proceeds as follows:

Subgame 1. With probability a half, B makes a take-it-or-leave-it o¤er to

A or C. This o¤er involves payo¤s as well as a proposal to engage in joint

production. If B was to o¤er (continued) joint production to A, he would

o¤er A her minimum acceptable payo¤, XkBA = V0. A would accept the

o¤er and B’s payo¤ from continued production with A would be 2Vi ¡ V0.
Alternatively, if B o¤ers joint production to C, then he will o¤er C a payo¤

equal to her minimum acceptable level, XkBC = V0. C will accept the o¤er

and B’s payo¤ would be 2Vk ¡ V0. So clearly, if Vk > Vi then B o¤ers C

to produce together, she accepts, and the payo¤s to A, B and C will be V0,

2Vk ¡ V0, and V0 respectively. Conversely, if Vi > Vk, then B o¤ers A to
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continue to produce together, she accepts, and the payo¤s to A, B and C

will be V0, 2Vi ¡ V0, and V0.

Subgame 2. With probability another half, A and C simultaneously make

o¤ers to B. Because A’s outside option is the value of being unmatched, V0,

the maximum A is willing to o¤er to B to continue matching with productiv-

ity yi is 2Vi¡V0, (this o¤er leaves A with a payo¤ of V0). Similarly, the maxi-

mum C is willing to o¤er B in order to form a new match with productivity yk

is 2Vk¡V0. SinceA andC take each other’s o¤er as given, the competition be-

comes Bertrand, soA o¤ersB’s payo¤ to beXiAB = min(2Vi¡V0; 2Vk¡V0+"),
and C o¤ers B’s payo¤ to be XkCB = min(2Vi ¡ V0 + "; 2Vk ¡ V0), where "

is an arbitrarily small positive number. Thus, if Vk > Vi, then B accepts

C’s o¤er to form a new match and the payo¤s to A, B and C will be V0,

2Vi¡V0 and 2Vk¡ 2Vi+ V0 respectively. On the other hand, if Vi > Vk, then

B accepts A’s o¤er to continue the existing match and the payo¤s to A, B

and C will be 2Vi ¡ 2Vk + V0, 2Vk ¡ V0 and V0.

Notice that regardless of whether it is B who makes the take-it-or-leave-it

o¤er to A or C (subgame 1), or A and C who make the o¤ers to B (subgame

2), B leaves A for C for sure if and only if Vk > Vi; that is when the value of

the new match exceeds the value of the existing match. The expected payo¤

for this case is:
2
4

¦A
¦B
¦C

3
5 = 1

2

2
4

V0
2Vk ¡ V0
V0

3
5 + 1

2

2
4

V0
2Vi ¡ V0

2Vk ¡ 2Vi + V0

3
5 =

2
4

V0
Vk + Vi ¡V0
Vk ¡ Vi + V0

3
5 :
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The corresponding expected capital gains are:
2
4

¡A
¡B
¡C

3
5 =

2
4

¡(Vi ¡ V0)
Vk ¡ V0
Vk ¡ Vi

3
5 , if Vi < Vk: (7)

Notice that through the side payment of transferable utility, the expected

gains to the agents who form the new match is equal to the capital gains to

their new partner instead of the own capital gains: the gains to B and C are

Vk ¡ V0 and Vk ¡ Vi respectively.

On the other hand, if the value of the existing match exceeds the value

of the new match, Vi > Vk, then regardless of whether it is B or A and C

who make the o¤ers, B preserves the match with A, and expected payo¤s

are given by
2
4

¦A
¦B
¦C

3
5 =

1
2

2
4

V0
2Vi ¡V0
V0

3
5 +

1
2

2
4

2Vi ¡ 2Vk + V0
2Vk ¡ V0
V0

3
5 =

2
4
Vi ¡ Vk + V0
Vi + Vk ¡ V0

V0

3
5 :

And the expected gains are
2
4

¡A
¡B
¡C

3
5 =

2
4

¡(Vk ¡ V0)
Vk ¡ V0

0

3
5 , if Vk < Vi: (8)

Although the current match is not destroyed, the old partner, A, has to

transfer the expected value of utility Vk ¡ V0 to B in order to persuade him

to stay in the current match. The reason for this transfer is that Vk ¡ V0 is

the expected gain for B to form a new match with C (see (7)), so it is also

the opportunity cost for B to continue the existing match.

(iii). A matched employer meets a matched worker.
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Suppose agent B and agent C meet and draw a productive opportunity

yk. The situation now is that B is currently in a match of productivity yi

with agent A, while C, is currently in a match of productivity yj with agent

D. This case is illustrated in Figure 3.

Figure 3: A matched employer meets a matched worker.

The bargaining procedure is as follows:

Subgame 1. With probability a half, A and C simultaneously make o¤ers

to B. C also makes a take-it-or-leave-it o¤er to his existing partner D, and

this o¤er is contingent on his o¤er to B being rejected. C makes the smallest

acceptable o¤er to D, and since D has no other productive opportunities,

his proposed payo¤ to D is equal to the value of being unmatched, V0. The

resulting payo¤ to C from continuing to match with D is 2Vj ¡ V0, which

constitutes the opportunity cost for C to form a new match. Thus the maxi-

mum C is willing to o¤er B is 2Vk¡(2Vj¡V0). Because A’s opportunity cost
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of continuing to match is the value of being unmatched, V0, the maximum A

is willing to o¤er B is 2Vi ¡ V0. Since this valuation is positive, A will want

to make sure that B …nds her o¤er acceptable, and for this she must ensure

that B’s payo¤ is at least as large as V0. Therefore, A o¤ers B’s payo¤ to

be XiAB = MaxfV0;Min[2Vi ¡ V0; 2Vk ¡ (2Vj ¡ V0) + "]g and C o¤ers B’s

payo¤ to be XiCB = Min[2Vk ¡ (2Vj ¡ V0); 2Vi ¡ V0 + "] for an arbitrarily

small positive ". Then, B will accept C’s o¤er to form the new match if and

only if 2Vk ¡ (2Vj ¡V0) > 2Vi ¡V0, or Vk+ V0 > Vi + Vj, i.e., the sum of the

values of the new match and the unmatched exceeds the sum of the values

of the existing matches. The equilibrium payo¤s are2

2
664

V0
2Vi ¡ V0

2 (Vk ¡ Vi) + V0
V0

3
775 if Vi + Vj ¡ V0 < Vk

2
664

2 (Vi + Vj ¡ Vk) ¡ V0
2 (Vk ¡ Vj) + V0

2Vj ¡ V0
V0

3
775 , if Vj < Vk < Vi + Vj ¡ V0

2
664

2Vi ¡ V0
V0

2Vj ¡ V0
V0

3
775 , if Vk < Vj:

If Vk < Vi + Vj ¡ V0, then A and B preserve their match and whether or not

A may have to o¤er B a side-payment depends on whether the new potential

match of B and C is better or worse than C’s current match. If the new

potential match is better (i.e. Vj < Vk), thenC is willing to o¤erB as much as
2The …rst, second, third and fourth rows contain the payo¤s to agents A, B , C and D

respectively.
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V0+2 (Vk ¡ Vj) > V0 to convince him to leave A, and therefore A has to “bid

C away” by giving B a side-payment equal to C ’s valuation of B. However, if

Vk < Vj, then C is willing to o¤er B no more than V0+2(Vk ¡ Vj) < V0. But

since B can always get V0 on his own, in this case C’s o¤er poses no threat

to A who only has to transfer utility V0 to B to convince him to preserve

their current match.

Subgame 2. With probability another half, B and D simultaneously make

o¤ers to C. B also makes an o¤er to his existing partner, A, and this o¤er is

contingent on his o¤er toC being rejected. By an argument similar to the one

used above, we conclude that B o¤ers C’s payo¤ to be XiBC = Min[2Vk ¡
(2Vi ¡ V0); 2Vj ¡ V0 + "] and D o¤ers C’s payo¤ to be XiDC = MaxfV0;
Min[2Vj ¡V0; 2Vk¡ (2Vi¡V0) + "]g for an arbitrarily small positive ". Here,

2Vj ¡ V0 is the maximum D is willing to o¤er to C in order to continue

matching, and 2Vk ¡ (2Vi ¡ V0) is the maximum B is willing to o¤er to C in

order to form a new match. Hence C will accept B’s o¤er to form the new

match for sure if and only if 2Vk¡ (2Vi¡V0) > 2Vi¡V0, or Vk+V0 > Vi+ Vj,

i.e., the sum of the values of the new match and the unmatched exceeds the

sum of the values of the existing matches. The equilibrium payo¤s are now
2
664

V0
2 (Vk ¡ Vj) + V0

2Vj ¡ V0
V0

3
775 , if Vi + Vj ¡ V0 < Vk

2
664

V0
2Vi ¡ V0

2Vk ¡ 2Vi + V0
2Vj ¡ 2Vk +2Vi ¡ V0

3
775 , if Vi < Vk < Vi + Vj ¡ V0
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2
664

V0
2Vi ¡ V0
V0

2Vj ¡ V0

3
775 , if Vk < Vi:

So in the two possible sequences of bargaining (subgame 1 and subgame

2) we see that B and C abandon their old partners to form a new match for

sure if and only if the sum of the value of the new match and the unmatched

exceeds the sum of two existing matches. Without loss of generality, assume

Vj > Vi. Then the expected equilibrium payo¤s are given by:
2
664

¦A
¦B
¦C
¦D

3
775 =

2
664

V0
Vk + Vi ¡ Vj
Vk + Vj ¡ Vi

V0

3
775 , if Vi + Vj ¡ V0 < Vk

2
664

¦A
¦B
¦C
¦D

3
775 =

2
664

Vi ¡ Vk + Vj
Vi + Vk ¡ Vj
Vj + Vk ¡ Vi
Vj ¡ Vk + Vi

3
775 , if Vj < Vk < Vi + Vj ¡ V0

2
664

¦A
¦B
¦C
¦D

3
775 =

2
664

Vi
Vi

Vj + Vk ¡ Vi
Vj ¡ Vk + Vi

3
775 , if Vi < Vk < Vj

2
664

¦A
¦B
¦C
¦D

3
775 =

2
664

Vi
Vi
Vj
Vj

3
775 , if Vk < Vi:
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And the equilibrium expected gains are:
2
664

¡A
¡B
¡C
¡D

3
775 =

2
664

¡(Vi ¡ V0)
Vk ¡ Vj
Vk ¡ Vi

¡(Vj ¡ V0)

3
775 , if Vi + Vj ¡ V0 < Vk (9)

2
664

¡A
¡B
¡C
¡D

3
775 =

2
664

¡(Vk ¡ Vj)
Vk ¡ Vj
Vk ¡ Vi

¡(Vk ¡ Vi)

3
775 , if Vi < Vk < Vi + Vj ¡ V0 (10)

2
664

¡A
¡B
¡C
¡D

3
775 =

2
664

0
0

Vk ¡ Vi
¡(Vk ¡ Vi)

3
775 , if Vi < Vk < Vj (11)

2
664

¡A
¡B
¡C
¡D

3
775 =

2
664

0
0
0
0

3
775 , if Vk < Vi: (12)

In (9), when B and C form a new match, the equilibrium expected side

payment is such that the expected gains to each of them is equal to the

capital gains to the new partner, instead of their own capital gain.3 In (10),

although the existing matches continue, the old partner must on average pay

her current partner his opportunity cost of giving up the option to form a

new match. In (11), because the value of the new potential match is not

as large as the value of existing match between C and D, A has no need to

pay a side payment to B on average in order to persuade him to stay in the

existing match. But in expectation, D still needs to pay a side payment to

C in order to preserve their valuable match. In (12) the value of the new
3 If B and C were to form a new match and there were no side payements, then B

would gain Vk ¡ Vi and C would gain Vk ¡ Vj , but the equilibrium side payments imply
that these gains are swaped: B gains Vk ¡ Vj and C gains Vk ¡ Vi . So when a new match
is formed, the agent who is currently in the better match enjoys a larger capital gain.
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potential match betweenB andC is so small that on average A does not have

to make a side payment to B and D does not have to make a side payment

to C.

We summarize the main features of the bargaining outcomes in Proposi-

tion 1. The proof follows from the previous discussion.

Proposition 1 For given value functions, the matching decisions and side

payments are uniquely determined in the symmetric competitive matching

equilibrium through the sequence of bilateral bargaining. Moreover,

(a) When two agents …nd an opportunity to form a new match, whether or not

they form the new match abandoning their existing matches (if any) depends

on whether or not the sum of the values of new match and the unmatched

exceeds the total value of the existing matches.

(b) Through the side payment, the expected net gain to the agent who forms

a new match is equal to the capital gains of the new partner (instead of his

own capital gains).

In the equilibrium, the agents expected payo¤s satisfy the following Bellman

equations:

rVi ¡ _Vi = yi +®
NX

j=0

NX

k=1

nj¼k
£
Ákij

¡
Vk ¡ Vi + skji

¢
+

¡
1 ¡ Ákij

¢
bskij

¤

¡®
NX

j=0

NX

k=1

nj¼k
h
bÁkij (Vi ¡ V0) +

³
1¡ bÁkij

´
skij

i
¡ ± (Vi ¡ V0)
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for i = 1; :::; N , and

rV0 ¡ _V0 = ®
NX

j=0

NX

k=1

nj¼kÁk0j
¡
Vk ¡ V0 + skj0

¢
:

Here we are using skij to denote the net expected side payment that the agent

in the type imatch who met an agent in a type j match o¤ers her to convince

her to form a new match with productivity k. Note that skji = ¡skij. Also,

we let bskij be the side payment that type i agent’s old partner o¤ers him to

persuade him to stay in the old match. Type i agent’s choice of whether or

not to form a new match with type j agent is represented by Ákij 2 [0; 1].

Type i agent’s value function also depends upon his old partner’s choice,

which is represented by bÁkij.

A competitive matching equilibrium with bargaining is as set of value

functions, side payments and match formation decisions (Vi; skij; Á
k
ij)Ni;j=0;k=1

together with a population distribution of partnerships (ni)
N
i=0 such that:

(i) Each agent with the opportunity to make an o¤er chooses how much

side payment to o¤er to her potential partners, and the recipient of the

o¤er chooses whether to accept or reject, in order to maximize her expected

discounted utility, taking the strategies of the other agents and the population

distribution of partnerships as given; (ii) The population distribution and

the strategies of the other agents are equilibrium distribution and strategies.

In what follows, we concentrate on a steady state equilibrium in which the

population distribution and the strategies are constant over time.

From part (a) of Proposition 1 we know that Ákij = Ákji, and that Ákij = 1

if Vk + V0 > Vi + Vj, Ákij = 0 if Vk + V0 < Vi + Vj, and Ákij 2 [0; 1] if
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Vk + V0 = Vi + Vj. And from part (b) of Proposition 1 we know that if

Ákij = 1, then Vk ¡ Vi + skji = Vk ¡ Vj. Also using the fact that bskij = skij and

bÁkij = Ákij in a symmetric equilibrium, the value functions reduce to

rVi = yi + ®
NX

j=0

NX

k=1

nj¼k max
0·Ákij·1

Ákij (Vk + V0 ¡ Vi ¡ Vj)¡ ± (Vi ¡ V0)

rV0 = ®
NX

j=0

NX

k=1

nj¼k max
0·Ák0j·1

Ák0j (Vk ¡ Vj) :

Let us de…ne the value of a match to the pair, ¸ci = 2Vi for i = 0; 1; :::; N .

Then we …nd the value of the match to the pair satis…es:

r¸ci = 2yi ¡ ±(¸ci ¡ ¸c0)

+®
NX

j=0

NX

k=1

nj¼k max
0·Ákij·1

Ákij(¸
c
k + ¸

c
0 ¡ ¸ci ¡ ¸cj) (13)

r¸c0 = ®
NX

j=0

NX

k=1

nj¼k max
0·Ák0j·1

Ák0j(¸
c
k ¡ ¸cj): (14)

The competitive matching equilibrium can be summarized by a list (¸ci ; Á
k
ij; ni)

for i; j = 0; :::; N and k = 1; :::; N that satis…es (13), (14), and the laws of

motion (1) and (2). Notice that the equilibrium value of the match to the

pair satis…es very similar conditions to the ones that the shadow price of

the match must satisfy for a social optimum. In fact, conditions (13) and

(14) would be identical to (4) and (5), were it not for the fact that in the

optimality conditions there is a “2” in front of the contact rate ®. This di¤er-

ence is due to a search (or match-formation) externality: in the decentralized

economy, an individual agent does not take into account the impact that her

decisions to form and destroy matches have on the arrival of opportunities
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of the other agents. Although the arrival rate of any new opportunity is

constant here, the arrival rate of a new opportunity with a particular type

of agent is proportional to the measure of agents of that type. Also, whether

or not a new match is formed depends not only on the quality of the new

potential match, but also on the types of the existing matches. Therefore,

the relevant meeting rate is quadratic, because the total number of contacts

between type i agents and type j agents is equal to ®ninj.4 We summarize

these results as follows:

Proposition 2 The competitive matching equilibrium is similar to the plan-

ner’s economy, except that it does not take into account the search externality

due to the quadratic matching technology.

In the next section we use a special case of the general model to illustrate

the main properties of the payo¤s and allocations in the competitive matching

equilibrium and the planner’s solution.

4 A Special Case

Suppose N = 2; then the ‡ow conditions (1) and (2) reduce to

_n2 = ®¼
¡
n20 +2n0n1 + n21Á

¢
¡ ±n2

_n1 = ® (1¡ ¼) n20 ¡ 2®¼n0n1 ¡ 2®¼n21Á ¡ ±n1

_n0 = ± (n1+ n2) + ®¼n21Á ¡ ®n20:
4Mortensen (1982) shows that “mating models” in which an agent’s decisions a¤ect

other agents’ meeting probabilities typically fail to achieve the socially optimal allocation
due to a search externality.
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Here we have already recognized that Á20j = 1 for j = 0; 1 and that Áki2 = 0

for i = 0; 1; 2 and k = 1; 2. To simplify notation, we are letting Á = Á211 and

¼ = ¼2. The following lemma characterizes the steady state distribution of

matches taking as given the separation decision Á.

Lemma 1 A unique steady state distribution of workers exists for any given

Á 2 [0; 1]. The number of unemployed workers, n0, solves

£
®n20 ¡ ± (1¡ n0)

¤
(± + 2®¼n0)2 ¡ Á®¼

£
2± (1¡ n0)¡ ® (1 + ¼) n20

¤2 = 0:

The number of workers employed in matches with productivity y1 is n1 =
2±(1¡n0)¡®(1+¼)n20

±+2®¼n0
, and the number of workers employed in matches with pro-

ductivity y2 is n2 = 1 ¡ n0 ¡ n1.

Proof. See the Appendix.

In a stationary equilibrium the value functions satisfy:

rV2 = y2 ¡ ± (V2 ¡ V0)

rV1 = y1 ¡ ± (V1 ¡ V0) +®n0¼ (V2 ¡ V1) + ®n1¼Á (V2 + V0 ¡ 2V1)

rV0 = ®n0 [¼ (V2 ¡ V0) + (1¡ ¼) (V1 ¡ V0)] + ®n1¼ (V2 ¡ V1) :

From Proposition 1 we know that Á = 1 with certainty if and only if V2+V0¡
2V1 > 0. We can use the Bellman equations to eliminate the value functions

and write this inequality as

y2
y1
> 2 ¡ ® [¼n1 + (1 ¡ ¼) n0]

r + ± + ® (n0 + ¼n1)
; (15)
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where n0 and n1 are the steady state numbers of matches characterized in

Lemma 1. Since the right hand side of (15) is bounded, it is clear that

Á = 1 with certainty for y2=y1 large enough. In these cases, the agents

involved will destroy two middle-productivity matches in order to form a

single high-productivity match whenever the opportunity arises. Perhaps

more surprisingly, notice that there is always some " > 0 such that Á =

1 for all y2=y1 > 2 ¡ ". That is, there may be instances in which two

middle-productivity matches are destroyed to form a single high-productivity

match even if this entails a reduction in current output. To compute a

stationary equilibrium, let ni (Á) denote the steady state number of matches

of productivity yi as characterized in Lemma 1. Then de…ne the best-response

map © (Á) = y2
y1

+ ®[¼n1(Á)+(1¡¼)n0(Á)]
r+±+®[n0(Á)+¼n1(Á)]

¡ 2. From this we see that Á = 1 is an

equilibrium if © (1) > 0, Á = 0 is an equilibrium if © (0) < 0 and Á¤ 2 [0; 1]

is an equilibrium if © (Á¤) = 0.5

Given (15), Proposition 2 tells us that the social planner chooses to de-

stroy a pair of matches of productivity y1 to create a single match of produc-

tivity y2 if and only if

y2
y1
> 2¡ 2® [¼n1+ (1 ¡ ¼) n0]

r + ± + 2® (n0 + ¼n1)
; (16)

with n0 and n1 given by Lemma 1. Notice that also here, there are instances

in which the planner chooses to destroy two matches of productivity y1 to
5The equilibrium map © is continuous on [0;1], so there always exists a stationary

equilibrium. However, the map is highly nonlinear, so we cannot provide weak parametric
restrictions to guarantee uniqueness. We explored several reasonable parametrizations
numerically and have always found that the stationary equilibrium is unique. We report
several of these numerical exercises below.
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create a single match of productivity y2 at the cost of reducing current output.

Both in the competitive equilibrium and in the planner’s solution the basic

logic for this result goes as follows. Although unmatched agents generate

zero current output, they generate a positive expected discounted value of

output. Hence for some parametrizations (e.g. y2=y1 slightly below 2), the

planner may choose to reduce current output in order to maximize the present

discounted value of output. From a static point of view, this may come as

a surprise since unmatched agents are unproductive; but from the planner’s

dynamic perspective, unmatched agents are a valued input in the matching

process that makes production possible. This intuition can be formalized by

noticing that both (15) and (16) approach y2=y1 > 2 as r becomes large. The

higher the degree of impatience, the less willing the planner is to trade o¤

current for future production.

From (15) and (16) we also learn that being able to internalize the search

externality makes the planner more willing to destroy middle matches. The

reason is that the shadow value the planner assigns to a pair of unmatched

agents is larger than in their value in the competitive equilibrium (because

the planner also imputes as part of their return the fact that the unmatched

pair helps other agents climb the productivity ladder). Consequently, the

planner is relatively more willing to trade two matches of productivity y1

for two agents in a match of productivity y2 and two unmatched agents.

Figure 4 illustrates the di¤erence between the relevant destruction margins

in the e¢cient and the competitive solutions. On the horizontal axis is r, a

measure of impatience, and on the vertical axis y2=y1, the relevant measure
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of inequality in instantaneous productivities. Notice that the (n0; n1) pair

that appears in (15) is identical to that in (16) and is independent of y1, y2

and r. (See Lemma 1.) The solid lines with the higher and lower intercepts

Figure 4: Destruction regions for the case with N = 2.

are conditions (15) and (16) at equality respectively. As in the competitive

economy, we know that ¿ 20j = 1 for j = 0; 1; that ¿ ki2 = 0 for i = 0; 1; 2 and

k = 1; 2 and therefore we use ¿ to denote ¿ 211, the only nontrivial decision.

Double breaches occur in the competitive equilibrium only for parame-

trizations that lie above the higher solid line. In contrast, the planner im-

plements double breaches for parametrizations that lie above the lower solid

line. For any given degree of impatience r, the competitive and the e¢cient
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allocations coincide only if the ‡ow productivity di¤erential y2=y1 is either

large enough (i.e. above the higher solid line) or small enough (below the

lower solid line). For intermediate values (i.e. those that lie between the two

solid lines) the allocations di¤er: relative to the e¢cient benchmark, matches

of productivity y1 are too stable in the competitive economy.

It is possible to design policies that bring the competitive allocations

in line with their e¢cient counterparts. For example, suppose every agent

receives a payo¤ b > 0 while unmatched, and that this transfer is paid for by

levying a tax Ti from every match of productivity i.6 The balanced-budget

condition is bn0 = T1n1 + T2n2. The Bellman equations for the competitive

economy become

rV̂2 = y2 ¡ T2 ¡ ±(V̂2 ¡ V̂0)

rV̂1 = y1 ¡ T1 ¡ ±(V̂1 ¡ V̂0) +®n0¼(V̂2 ¡ V̂1) + ®n1¼Á(V̂2+ V̂0 ¡ 2V̂1)

rV̂0 = b+ ®n0
h
¼(V̂2 ¡ V̂0) + (1¡ ¼) (V̂1 ¡ V̂0)

i
+®n1¼(V̂2 ¡ V̂1):

Notice that for a given destruction decision Á, the stationary distribution of

agents across states is still as described in Lemma 1. However, now Á = 1

with certainty if and only if V̂2 + V̂0 ¡ 2V̂1 > 0, which can be rewritten as

y2 ¡ T2 ¡ b
y1 ¡ T1 ¡ b > 2¡ ® [¼n1 + (1¡ ¼)n0]

r + ± +® (n0 + ¼n1)
:

6For the discussion of this section we will ignore the issue of exactly how a government
may be able to collect taxes from agents in a random matching economy, as well as why
the same government is unable to facilitate the matching process.
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Now let T1 = T2 = T and note that for a given T , the budget equation

implies b = n1+n2
n0
T , so the above condition becomes

y2 ¡ T
n0

y1 ¡ T
n0

> 2¡ ® [¼n1 + (1¡ ¼)n0]
r + ± +® (n0 + ¼n1)

: (17)

Observe that if we let T = T ¤, where

T ¤ =
®n0 (r + ±) [¼n1 + (1 ¡ ¼) n0]

[r + ± + 2® (n0 + ¼n1)] (r + ± + ®¼n0)
y1;

then (16) and (17) coincide. In other words, the compensation b¤ = n1+n2
n0
T ¤

makes agents internalize the search externality in the competitive matching

equilibrium and implements the same destruction decisions as the planner’s.

Quite intuitively, note that b¤ approaches zero as either r ! 1 or y1 ! 0.

The model has clear predictions regarding individual agents’ employment

histories and the various attributes of di¤erent types of jobs. For example,

a job of productivity y2 is not only better paid, but also more stable than a

job of productivity y1. The …rst observation is immediate because y2 > y1

(and, in fact, also V2 > V1). The second follows from the fact that the ex-

pected time until a worker gets displaced is 1
± for a job of productivity y2

and 1
±+®¼(n0+Án1)

for a job of productivity y1. Displacement from a job with

productivity i is associated with a capital loss equal to Vi ¡ V0, and it takes

workers some time to climb back up to a job of productivity equal or higher to

the one they were displaced from. For example, suppose a worker is displaced

from a job of productivity y1 (i.e. his match is either hit by the exogenous

destruction shock ±, or his employer …res him in order to form a new match of

productivity y2 with another worker). The expected time it takes this worker
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to …nd a job at least as good as the one he lost is 1
®(n0+Á¼n1)

. Note that the

degree of inequality (say as measured by Vi¡Vj) as well as the shapes of the

various hazard rates depend crucially on the separation decisions Á. There-

fore, we can expect these variables to vary systematically across economies

with di¤erent labor-market policies that a¤ect this endogenous destruction

margin.

We can also construct the theoretical counterparts to the usual empirical

measures of job and worker ‡ows. For example, let JC, JD and WR de-

note gross job creation, gross job destruction and gross worker reallocation

respectively in the stationary equilibrium. Then we have

JC = ® (n0 + ¼n1) n0

JD = ®¼ (n0 + Án1) n1 + ± (n1 + n2)

WR = ®n0n0 + 2®n0n1¼ +®n1n0¼ +2®n1n1¼Á + ± (n1 + n2) :

Job creation includes all those unmatched employers who meet and start

productive relationships with either unmatched or matched workers. Job

destruction consists of all those …lled jobs which become un…lled. This occurs

every time an employed worker quits to form a better match with another

employer and also when the match is destroyed for exogenous reasons. It can

be veri…ed that, naturally, JC ¡JD = 0 since the net employment change is

zero in the steady state. Worker reallocation counts the number of workers

who change state. In the …rst term are the number of unemployed workers

who …ll vacant jobs. In the second term are the unemployed workers who

contact a …lled job and get hired. The “2” multiplying this term accounts
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for the change of state of the previously employed worker who gets displaced.

The third term represents the number of previously employed workers who

contact a vacant job and quit to form a more productive relationship. The

fourth term accounts for the number of workers who are employed and quit to

form a new match with an employer who was previously matched to another

worker, as well as for the corresponding displaced workers. The number of

workers who change state (i.e. become unemployed) for exogenous reasons

are accounted for in the last term.

Notice that the gross job and worker ‡ows satisfy:

WR = JC + JD + ®¼ (n0 + Án1)n1:

This relationship shows that in the model –as in the data– gross worker

reallocation is larger than gross job reallocation, JC + JD. Instances of

“replacement hiring” are behind this discrepancy, since job creation and de-

struction are unchanged when a …rm …res a worker to replace him with an

unemployed one. But also, in economies in which Á > 0, there is yet an-

other reason for worker reallocation in excess of job reallocation, since when

a matched employer and an employed worker decide to form a new match the

worker reallocation count increases by 2 while job reallocation only increases

by 1 (job creation is unchanged by this transition).7

7Several recent empirical studies argue that distinguising between job and worker ‡ows
is essential for a complete characterization of aggregate labor-market dynamics. See
Nagypál (2003) and Stewart (2002). Notice that in the macro labor model most com-
monly used, e.g. the one in Pissarides (2000), gross job and worker ‡ows are one and the
same by construction.
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A Appendix

Proof of Lemma 1. Let f (n0) ´ 2±(1¡n0)¡®(1+¼)n20
±+2®¼n0

. Combining the _n2 = 0

and _n0 = 0 conditions we see that n1 = f (n0). It can be shown that f 0 < 0 on

[0; 1], so to each n0 2 [0; 1] corresponds a unique n1. In addition, f (n0) ¸ 0

if n0 · n0 and f (n0) · 1 if n0 ¸n0, where

n0 =
p
±2+2®±(1+¼)¡±
®(1+¼) and n0 =

p
(±+®¼)2+®±(1+¼)¡(±+®¼)

®(1+¼) ;

with 0 < n0 < n0 < 1. Let

G (n0;Á) ´
£
®n20 ¡ ± (1¡ n0)

¤
(± + 2®¼n0)2¡Á®¼

£
2± (1¡ n0)¡ ® (1 + ¼) n20

¤2 :

Substituting n1 = f (n0) back into the _n0 = 0 delivers a single equation

in n0 which can be written as G (n0;Á) = 0. Direct calculations reveal

that G (n0;Á) = ®n20 ¡ ± (1 ¡ n0) > 0 for all Á 2 [0; 1]. Also, G (n0;Á) =

®n20 ¡ ± (1¡ n0) ¡ ®Á¼. Note that an increase in Á causes G to shift down

uniformly. Therefore, to ensure that G (n0;Á) < 0 for all Á it su¢ces to

guarantee that G (n0; 0) < 0. This condition can be written as

± >
hp

(±+®¼)2+®±(1+¼)¡(±+®¼)
i2

(1+¼)
h
®+±+2®¼¡

p
(±+®¼)2+®±(1+¼)

i ;

a parametric restriction that is always satis…ed. Finally, note that

@G (n0; ¿ )
@n0

¯̄
¯̄
G(n0;¿)=0

> 0;

which together with the fact that f 0 < 0 implies that the steady state is

unique whenever it exists.
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