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Abstract: Despite their widespread use as predictors of the spot price of oil, oil futures prices 
tend to be less accurate in the mean-squared prediction error (MSPE) sense than no-change 
forecasts. This result is driven by the variability of the futures price about the spot price, as 
captured by the oil futures spread. This variability can be explained by the marginal convenience 
yield of oil inventories. Using a two-country, multi-period general equilibrium model of the spot 
and futures markets for crude oil we show that increased uncertainty about future oil supply 
shortfalls under plausible assumptions causes the spread to decline. Increased uncertainty also 
causes precautionary demand for oil to increase, resulting in an immediate increase in the real 
spot price. Thus the negative of the oil futures spread may be viewed as an indicator of 
fluctuations in the price of crude oil driven by precautionary demand. An empirical analysis of 
this indicator provides independent evidence of how shifts in the uncertainty about future oil 
supply shortfalls affect the spot price of crude oil and how they undermine the forecast accuracy 
of oil futures prices. Our model is consistent with a number of empirical regularities and results 
obtained by alternative methodologies. 
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1. Introduction  

The surge in the price of crude oil since 2002 has renewed interest in the question of what 

determines the spot and futures price of crude oil and has highlighted the importance of being 

able to predict as accurately as possible the evolution of the spot price of oil (see, e.g., Greenspan 

2004a,b, 2005; Bernanke 2004, 2006; Gramlich 2004; Davies 2007; Kohn 2007). In this paper, 

we use insights provided by a theoretical model of the spot and futures market for crude oil in 

conjunction with empirical analysis to shed light on the relationship between the spot price of 

crude oil, expectations of future oil prices, the price of crude oil futures, and the oil futures 

spread (defined as the percent deviation of the oil futures price from the spot price of oil). 

The paper is organized as follows. In section 2, we document the use of oil futures prices 

as predictors of spot prices at central banks and international organizations. Futures-based 

forecasts of the price of crude oil inform monetary policy decisions and affect financial markets’ 

perceptions of the risks to price stability and sustainable growth. It is widely believed that oil 

futures prices can be viewed as effective long-term supply prices (see, e.g., Greenspan 2004a) or 

as the expected price of oil (see, e.g., Bernanke 2004). We put this common practice to the test. 

Using a newly constructed data set of oil futures prices and oil spot prices that includes data up 

to February 2007, we assess empirically whether forecasts based on the price of oil futures are 

more accurate than forecasts from alternative models excluding futures prices. We show that 

forecasts based on oil futures prices and forecasts based on the oil futures spread tend to be less 

accurate than forecasts from alternative easy-to-use models such as the no-change forecast under 

standard loss functions including the mean-squared prediction error (MSPE). They also are more 

biased than the no-change forecast. 

The result that futures prices are neither unbiased predictors nor the best possible 

predictors in the MSPE sense is new and surprising because it contradicts widely held views 

among policymakers and financial analysts. It also differs from some earlier empirical results in 

the academic literature based on shorter samples. Moreover, it contrasts with related results in 

the foreign exchange literature. Although the no-change forecast has been shown to work well in 

other contexts such as exchange rate forecasting, there are important differences between the 

foreign exchange market and the crude oil market. Forecast efficiency regressions for oil markets 

generate the expected signs and magnitudes for all coefficients, whereas similar regressions for 

foreign exchange markets generate coefficients of the wrong sign and magnitude (see, e.g., Froot 
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and Thaler 1990). Thus, the superiority of the random walk predictor of oil prices compared with 

futures prices is by no means expected.  

In section 3, we conduct a systematic evaluation of the out-of-sample predictive accuracy 

of a broader set of oil price forecasting approaches based on the forecast evaluation period 

1991.1-2007.2.  A robust finding across all horizons from 1 month to 12 months is that the no-

change forecast tends to be more accurate than forecasts based on other econometric models and 

much more accurate than professional survey forecasts of the price of crude oil. This makes the 

no-change forecast a natural benchmark.  

In section 4 we show that the cause of the large mean-squared prediction error (MSPE) of 

futures-based forecasts relative to the no change forecast is not so much that these forecasts are 

so different on average, but rather the variability of the futures price about the spot price, as 

captured by the spread of oil futures. We document that there are large and persistent fluctuations 

in the oil futures spread that are unlike the fluctuations observed in the spread of foreign 

exchange futures (see, e.g., Taylor 1989).  

In section 5, we show that these differences can be linked to the existence of a marginal 

convenience yield for crude oil that is absent in foreign exchange markets. Oil inventories, unlike 

inventories of many financial assets, may serve to avoid interruptions of the production process 

or to meet unexpected shifts in demand. This option value is reflected in a convenience yield 

(see, e.g., Brennan 1991; Pindyck 1994, 2001; Routledge, Seppi and Spatt 2000; Schwartz 1997). 

We study the implications of the marginal convenience yield for the oil futures spread in the 

context of a multi-period, two-country general equilibrium model of the spot and futures markets 

for crude oil. We show that shifts in the uncertainty about futures oil supply shortfalls may 

explain the excess variability of oil futures prices relative to the spot price that is responsible for 

their poor predictive accuracy. 

In the model, an oil-producing country exports oil to an oil-consuming country that uses 

oil in producing a final good to be traded for oil or consumed domestically. Oil importers may 

insure against uncertainty about stochastic oil endowments by holding above-ground oil 

inventories or buying oil futures. Oil producers may sell oil futures to protect against endowment 

uncertainty. The model abstracts from oil below the ground. The spot and futures prices of oil are 

determined endogenously and simultaneously. Using comparative statics, we establish that under 

plausible conditions increased uncertainty about future oil supply shortfalls causes the oil futures 
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spread to fall. Such uncertainty shifts also raise the current real spot price of oil, as precautionary 

demand for oil inventories increases in response to increased uncertainty. Increased uncertainty 

about future oil supply shortfalls in the model will cause the real price of oil to overshoot 

initially with no response of oil inventories on impact, followed by a gradual decline of the real 

price of oil, as inventories are gradually accumulated gradually over time. The model implies 

that the oil futures spread declines, as the component of the real spot price of oil driven by 

precautionary demand for crude oil increases. Hence, the negative of the oil futures spread may 

be viewed as an indicator of fluctuations in the spot price of crude oil driven by shifts in 

precautionary demand for oil. 

In section 6, we evaluate these predictions of our model empirically. First, we show that 

the proposed indicator moves as expected during events such as the Persian Gulf War that a 

priori should be associated with large shifts in precautionary demand for crude oil. We also find 

evidence of shifts in the spread associated with the Asian financial crisis, with 9/11 and with the 

2003 Iraq War, for example. Our findings corroborate earlier results in the literature based on 

regression dummies as well as historical decompositions derived from structural vector 

autoregressive (VAR) models. Second, our indicator is highly correlated with an independent 

estimate of the precautionary demand component of the spot price of crude oil proposed in 

Kilian (2007a,b). That alternative estimate is based on a structural VAR model of the global 

crude oil market and does not rely on data from the oil futures market. We show that the VAR-

based measure and the futures-based measure have a correlation as high as 79 percent during 

1989.1-2003.12. Third, we show that the overshooting pattern of the response of the real price of 

oil to a precautionary demand shock in the Kilian (2007a) VAR model is consistent with the 

predictions of our theoretical model. The concluding remarks are in section 7. 
 

2. Do Oil Futures Prices Help Predict the Spot Price of Oil? 

It is commonplace in policy institutions, including many central banks and the International 

Monetary Fund (IMF), to use the price of NYMEX oil futures as a proxy for the market’s 

expectation of the spot price of crude oil.1 A widespread view is that prices of NYMEX futures 

                                                 
1 Futures contracts are financial instruments that allow traders to lock in today a price at which to buy or sell a fixed 
quantity of the commodity in a predetermined date in the future. Futures contracts can be retraded between inception 
and maturity on a futures exchange such as the New York Mercantile Exchange (NYMEX). The NYMEX offers 
institutional features that allow traders to transact anonymously. These features reduce individual default risk and 
ensure homogeneity of the traded commodity, making the futures market a low-cost and liquid mechanism for 



 4

contracts are not only good proxies for the expected spot price of oil, but also better predictors of 

oil prices than econometric forecasts. Forecasts of the spot price of oil are used as inputs in the 

macroeconomic forecasting exercises that these institutions produce. For example, the European 

Central Bank (ECB) employs oil futures prices in constructing the inflation and output-gap 

forecasts that guide monetary policy (see Svensson 2005). Likewise the IMF relies on futures 

prices as a predictor of future spot prices (see. e.g., International Monetary Fund 2005, p. 67; 

2007, p. 42). Futures-based forecasts of the price of oil also play a role in policy discussions at 

the Federal Reserve Board (see, e.g., Greenspan 2004a,b; Bernanke 2004; Gramlich 2004). This 

is not to say that forecasters do not recognize the potential limitations of futures-based forecasts 

of the price of oil. Nevertheless, the perception is that oil futures prices, imperfect as they may 

be, are the best available forecasts of the spot price of oil.  

 There are subtle differences in how oil futures prices are interpreted by policymakers. In 

its strongest form, the price of oil futures is viewed as the best predictor of the spot price of oil. 

This interpretation is exemplified by Greenspan’s (2004a) remark that “… oil futures prices … 

can be viewed as effective long-term supply prices.” A weaker interpretation is that oil futures 

prices represent the expected spot price of oil. That view is illustrated by Bernanke’s (2004) 

statement that “… futures prices of $20 a barrel suggest that traders expect oil prices to remain at 

that level”. Before studying the theoretical support for these statements, in his section we 

examine their empirical support. We formally evaluate the predictive power of oil futures prices 

for the spot price of oil since the creation of oil futures markets in the 1980s. 
 

2.1. Forecasting Models 

2.1.1. The Benchmark Model 

Let )(h
tF  denote the current nominal price of the futures contract that matures in h periods, tS  the 

current spot price of oil, and ][ htt SE +  the expected future spot price at date t+h conditional on 

information available at t.  A natural benchmark for forecasts based on the price of oil futures is 

provided by the random walk model without drift. This model implies that changes in the spot 

price are unpredictable, so the best forecast of the future spot price of crude oil is simply the 

current spot price: 
 

                                                                                                                                                             
hedging against and for speculating on oil price risks. The NYMEX light sweet crude contract is the most liquid and 
largest volume market for crude oil trading (NYMEX 2007a). 
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(1)  ttht SS =+ |
ˆ   1, 3, 6, 9,12h =   

Below we consider two types of forecasting models based on the price of oil futures. The first 

model simply treats the current level of futures prices as the predictor; the second model is based 

on the futures spread. 
 

2.1.2. Futures Prices as Future Spot Prices   

The Greenspan (2004a) quote of the introduction implies the forecasting model: 
 

(2)  ( )
|

ˆ h
t h t tS F+ =   1, 3, 6, 9,12h = . 

 

2.1.3. Forecasts Based on the Futures Spread 

An alternative approach to forecasting the spot price of oil is to use the spread between the spot 

price and the futures price as an indicator of whether the price of oil is likely to go up or down 

(see, e.g., Gramlich 2004). If the futures price equals the expected spot price, as stated by 

Bernanke (2004), the spread should be an indicator of the expected change in spot prices, 

although not necessarily an accurate predictor of the change in spot prices in the MSPE sense. 

The rationale for this approach is clear from dividing ( ) [ ]h
t t t hF E S +=  by ,tS  which results in 

( )[ ] .h
t t h t t tE S S F S+ =  We explore the forecasting accuracy of the spread based on several 

alternative forecasting models. The baseline model is: 

(3)  ( )( )
|

ˆ 1 /ln( )h
tt tt h tS S F S+ += ,   1, 3, 6, 9,12h =  

To allow for the possibility that the spread may be a biased predictor, it is common to relax the 

assumption of a zero intercept: 

(4)  ( )( )
|

ˆ 1 /ˆ ln( )h
tt tt h tS S F Sα+ += + ,  1, 3, 6, 9,12h =  

Alternatively, one can relax the proportionality restriction: 

(5)  ( )( )
|

ˆ 1 /ˆ ln( )h
tt tt h tS S F Sβ+ += ,  1, 3, 6, 9,12h =  

Finally, we can relax both the unbiasedness and proportionality restrictions: 

(6)  ( )( )
|

ˆ 1 /ˆˆ ln( )h
tt tt h tS S F Sα β+ += + ,  1, 3, 6, 9,12h = . 

 

2.2. Data Description and Timing Conventions 

2.2.1. Data Construction 

In section 2.3, we will compare the real-time forecast accuracy of models (1)-(6). Our empirical 
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analysis is based on daily prices of crude oil futures traded on the NYMEX from the commercial 

provider Price-Data.com. The time series begins in March 30, 1983, when crude oil futures were 

first traded on the NYMEX, and extends through February 28, 2007. Crude oil futures can have 

maturities as long as 7 years. Contracts are for delivery at Cushing, OK. Trading ends four days 

prior to the 25th calendar day preceding the delivery month. If the 25th is not a business day, 

trading ends on the fourth business day prior to the last business day before the 25th calendar day 

(NYMEX 2007b). A common problem in constructing monthly futures prices of a given maturity 

is that an h-month contract may not trade on a given day. We identify the h-month futures 

contract trading closest to the last trading day of the month and use the price associated with that 

contract as the end-of-month value. For all horizons, we obtain a continuous monthly time series 

based on a backward-looking window of at most five days. For maturities up to three months, the 

backward-looking window is at most three days. Our approach is motivated by the objective of 

computing in a consistent manner end-of-month time series of futures prices for different 

maturities. This allows us to match up end-of-month spot prices and futures prices as closely as 

possible.2 The daily spot price data are obtained from Datastream and refer to the price of West 

Texas Intermediate crude oil available for delivery at Cushing, OK. Figure 1 plots the monthly 

prices of oil futures contracts for maturities of 1 through 12 months and the spot price of crude 

oil starting in 1983.1. Note that contracts of longer maturities only gradually became available 

over the course of the sample period. 
 

2.2.2. The Choice of Maturities in the Empirical Analysis 

The perception that futures prices contain information about future spot prices implicitly relies 

on the assumption that futures contracts are actively traded at the relevant horizons. In this 

subsection we investigate how liquid futures markets are at each maturity h. This question is 

important because one would not expect )(h
tF  to have predictive content for future spot prices, 

unless the market is sufficiently liquid at the relevant horizon. 

 Policymakers and the public widely believe that the oil futures market provides effective 

insurance against risks associated with crude oil production shortfalls and conveys the market’s 

                                                 
2 Our approach differs from that in Chernenko, Schwarz, and Wright 2004). Their approach is to treat futures prices 
from a window in the middle of the month as a proxy for the futures price in a given month. Yet another approach is 
to substitute the price of a j-month contract for a given day for the missing price of the h-month contract on that day 
where hj ≠ , (see Bailey and Chan 1993).  
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assessment of the evolution of future supply and demand conditions in the crude oil market. If 

the market were effectively pricing the possibility of, say, a shutdown of the Iranian oil fields or 

the demise of the Saudi monarchy within the next five years, one would expect active trading at 

such long horizons. The evidence below, however, suggests otherwise. Figure 2 shows the 

monthly trading volume corresponding to a futures contract with a fixed horizon that is closest to 

the last trading day of the month. Volume refers to the number of contracts traded in a given 

month.3 As illustrated in Figure 2, over the past 25 years, trading volume in the futures market 

has grown significantly, particularly at the 1-month and 3-month horizon, and to a lesser extent 

at the 6-month horizon. In 1989, the NYMEX introduced for the first time contracts exceeding 

twelve months and in 1999, a 7-year contract was first introduced. Although such contracts are 

available, the market remains illiquid at horizons beyond one year even in recent years. Trading 

volumes fall sharply at longer maturities.  

This observation is important for our forecast evaluation because one would not expect 

forecasts based on futures with long maturities to provide accurate predictions, when only a 

handful of contracts are trading. Given the evidence in Figure 2, we therefore will restrict 

ourselves to futures contracts of up to one year in the empirical analysis below. In addition, the 

evidence in Figure 2 suggests that the public and policymakers have overestimated the ability of 

oil futures markets to provide insurance against long-term risks such as political instability in the 

Middle East or the development of oil resources in the Caspian Sea. Policymakers routinely rely 

on futures prices for long maturities in predicting future oil prices. For example, Greenspan 

(2004a) explicitly referred to the 6-year oil futures contract in assessing effective long-term 

supply prices. For similar statements also see Greenspan (2004b), Gramlich (2004) and Bernanke 

(2004). As our volume data in Figure 2 show, there is very little information contained in futures 

prices beyond one year, making it inadvisable to rely on such data. This conclusion is also 

consistent with prior studies of the crude oil futures market between 1983 and 1994 (see 

Neuberger 1999) and with perceptions of industry experts.4  
 

                                                 
3 In contrast to open interest, volume measures the total number of contracts, including those in a position that a 
trader closes or that reach delivery, and thus gives a good sense of the overall activity in the futures market. Our 
method of data construction is consistent with the conventions used in constructing the monthly futures prices. 
4 According to sources within the oil industry who wish to remain anonymous, oil companies are fully aware of how 
thin the market is at longer horizons and do not rely on futures price data for such maturities. The perception is that 
one trader signing a couple of contracts with a medium-term horizon may easily move the futures price by several 
dollars on a given day. 
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2.3. Real-Time Forecast Accuracy of Futures-Based Forecasting Models 

Tables 1 through 5 assess the predictive accuracy of various forecasting models against the 

benchmark of a random walk without drift for horizons of 1, 3, 6, 9, and 12 months. The forecast 

evaluation period is 1991.1-2007.2. The assessment of which forecasting model is best may 

depend on the loss function of the forecaster (see Elliott and Timmermann 2007). We present 

results for the MSPE and the mean absolute prediction error (MAPE). We also report the bias of 

the forecasts, and we report the number of times that a forecast correctly predicts the sign of the 

change of the spot price based on the success ratio statistic of Pesaran and Timmermann (1992). 

In addition to ranking forecasting models by each loss function, we formally test the null that a 

given candidate forecasting model is as accurate as the random walk without drift. Suitably 

constructed p-values are shown in parentheses. 
 

2.3.1. Oil Futures as Predictors of Oil Spot Prices 

The first two rows of Tables 1 through 5 document that the no-change forecast has lower MSPE 

than the futures forecast at the 1-month, 6-month, 9-month and 12-month horizon. Only at the 3-

month horizon is the futures forecast more accurate, but the improvement in accuracy is not 

statistically significant. Moreover, based on the MAPE metric, the random walk forecast is more 

accurate at all horizons. In all cases, the random walk forecast is less biased than the futures 

forecast. Nor do futures forecasts have important advantages when it comes to predicting the 

sign of the change in oil prices. Only at the 9-month and 12-month horizons is the success ratio 

significant at the 10 percent level and 5 percent level, respectively, but the improvement is only 

2.6 and 3.6 percentage points. The observation that futures prices are worse predictors of the 

price of oil than simple no-change forecasts is important because it contradicts commonly held 

views that current futures prices are a good guide to the evolution of future spot prices, as 

exemplified by the Greenspan (2004a) and Bernanke (2004) quotations.  
 

2.3.2. Oil Future Spreads as Predictors of Future Spot Prices 

Rows 3-6 in Tables 1-5 document that the no-change forecast has lower MSPE than spread-

based forecasts at horizons of 6, 9 and 12 months. At horizons 1 and 3 in some cases the spread 

models has lower MSPE, but the improvement is never statistically significant and no one spread 

model performs well systematically. Based on the MAPE rankings, the no-change forecast is 

superior at all horizons. These results are broadly consistent with the earlier evidence for the 
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futures forecasts. Finally, rows 3-6 reveal some evidence that spread models may help predict the 

direction of change at horizons of 9 and 12 months. The gains in accuracy are statistically 

significant, but quite moderate. There is no such evidence at shorter horizons.5 
 

2.3.3. Relationship with Forecast Efficiency Regressions 

It is useful to compare our results for the spread model in Tables 1 through 5 to the closely 

related literature on forecast efficiency regressions (see, e.g., Chernenko et al. 2004; Chinn, 

LeBlanc, and Coibion 2005).  Consider the full-sample regression model: 
 

( )( ) , 1,3,6,9,12,h
t h t t t hs f s u hα β+ +Δ = + − + =  

 

where lower-case letters denote variables in logs and t hu + denotes the error term. Forecast 

efficiency in the context of the oil futures spread means that the hypothesis 0 : 0, 1H α β= =  

holds. A rejection of these restrictions is interpreted as evidence of the existence of a time-

varying risk premium (see, e.g., Fama and French 1987, 1988; Chernenko et al. 2004).6 

Chernenko et al. report that the hypothesis of forecast efficiency cannot be rejected at 

conventional significance levels. It is important to bear in mind that such evidence does not 

necessarily mean that oil prices are forecastable based on the spread in practice. First, non-

rejection of a null hypothesis does not imply that the null model is true. In fact, we showed that 

the forecasting model (3) that imposes this null does not dominate the no-change forecasts in 

out-of-sample forecasts. Second, as our forecasting results show, relaxing one or more of the 

restrictions implied by forecast efficiency may either improve or worsen the forecast accuracy of 

the spread model, depending on the bias-variance trade-off. In particular, such models require the 

estimation of additional parameters compared with the no-change forecast, and the resulting loss 

in forecast precision may outweigh the benefits from reduced forecast bias. Thus, there is no 

contradiction between our results and the forecast efficiency results in the literature. 

In addition, it can be shown that the results in Chernenko et al. are not robust to updating 

the sample. Despite differences in the timing conventions used in constructing the monthly 

futures price data, we are able to replicate their results qualitatively using our data, but their 

                                                 
5 Motivated by term-structure models, we also experimented with models including a weighted average of spreads at 
different horizons. These models consistently performed so poorly that no results will be reported. 
6 Such tests implicitly postulate that the trader’s loss function coincides with the econometrician’s quadratic loss 
function. If that is not the case, forecast efficiency tests tend to be biased in favor of the alternative hypothesis (see 
Elliott, Komunjer, and Timmermann 2005). 
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sample period. For the full sample, however, we do reject the hypothesis of forecast efficiency at 

horizons 6 and 12 (see Table 6). This pattern is consistent with the earlier forecasting results. 

This rejection of forecast efficiency occurs despite the fact thatα̂ is close to zero and β̂  fairly 

close to 1, as suggested by theory, and very much unlike in the foreign exchange literature (see, 

e.g., Froot and Thaler 1990).  
 

3. What is the Best Predictor of the Spot Price of Oil? 

The preceding section demonstrated that simple no-change forecasts of the price of oil tend to 

more accurate in the MSPE sense than forecasts based oil futures prices. This does not mean that 

the no-change forecast is necessarily the best predictor of the spot price. The first part of this 

section broadens the scope of forecasting methods to include other predictors. One alternative 

approach to measuring market expectations is the use of survey data. While economists have 

used survey data extensively in measuring the risk premium embedded in foreign exchange 

futures (see Chinn and Frankel 1995), this approach has not been applied to oil futures, with the 

exception of recent work by Wu and McCallum (2005). Yet another approach is the use of more 

sophisticated econometric forecasting models of the spot price of crude oil.  
 

3.1. Other Candidate Forecasting Models 

3.1.1 Survey Forecasts 

Given the significance of crude oil to the international economy, it is surprising that there are 

few organizations that produce monthly forecasts of spot prices. In the oil industry, where the 

spot price of oil is critical to investment decisions, oil firms tend to make annual forecasts of 

future spot prices for horizons as long as 15-20 years, but these are not publicly available. The 

U.S. Department of Energy’s International Energy Agency (IEA) uses a structural econometric 

model of crude oil supply and demand to produce quarterly forecasts of the spot price of oil, but 

these forecasts are available only beginning in late 2004. The Economist Intelligence Unit has 

produced annual forecasts since the 1990s for horizons of up to 5 years. None of these sources 

provides monthly forecasts. 

A standard source of monthly forecasts of the price of crude oil is Consensus Economics 

Inc., a U.K.-based company that compiles private sector forecasts in a variety of countries. 

Initially, the sample consisted of more than 100 private firms; it now contains about 70 firms. Of 

interest to us are the survey expectations for the 3- and 12-month ahead spot price of West Texas 



 11

Intermediate crude oil, which corresponds to the type and grade delivered under the NYMEX 

futures contract. The survey provides the arithmetic average, the minimum, the maximum, and 

the standard deviation for each survey month beginning in October 1989 and ending in February 

2007. We use the arithmetic mean at the relevant horizon: 

(7)   | ,
ˆ CF

t h t t hS S+ =    3, 12h =  
 

3.1.2. Econometric Forecasts 

An alternative to modeling expectations of spot prices for crude oil is based on econometric 

models. One example of such econometric models is the random walk model without drift 

introduced earlier. In this section, we introduce the random walk with drift and the Hotelling 

model as additional competitors. Given that oil prices have been persistently trending upward (or 

downward) at times, it is natural to consider a random walk model with drift. One possibility is 

to estimate this drift recursively, resulting in the forecasting model:  

(8)  ( )|
ˆ 1tt h tS S α+ +=   1, 3, 6, 9,12h =  

Alternatively, a local drift term may be estimated using rolling regressions: 

(9)  )1(ˆ )(
|

l
tttht sSS Δ+=+   1, 3, 6, 9,12h = , 1, 3, 6, 9,12l =   

where thtS |
ˆ
+  is the forecast of the spot price at t+h; and )(1 l

tsΔ+ is the geometric average of the 

monthly percent change for the preceding l months, i.e., the percent change in the spot price 

between t and t-l+1. This model postulates that traders extrapolate from the spot price’s recent 

behavior when they form expectations about the future spot price. The local drift model is 

appealing in that it may capture “short-term forecastability” that arises from local trends in the 

oil price data. 

An alternative approach is motivated by Hotelling’s (1931) model, which predicts that 

the price of an exhaustible resource such as oil appreciates at the risk free rate of interest: 
 

(10)  | ,
ˆ (1 )t h t t t hS S i+ = +   3, 6,12h =  

where ,t hi  refers to the interest rate at the relevant maturity h.7 Although the Hotelling model  

                                                 
7 Assuming perfect competition, no arbitrage, and no uncertainty, oil companies extract oil at a rate that equates: (1) 
the value today of selling the oil less the costs of extraction; (2) and the present value of owning the oil, which, 
given the model’s assumptions, is discounted at the risk free rate. In competitive equilibrium, oil companies extract 
crude oil at the socially optimal rate. 
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seems too stylized to generate realistic predictions, we include this method given recent evidence 

that the Hotelling model does well in forecasting the future spot price of oil (see Wu and 

McCallum 2005). We use the Treasury bill rate as a proxy for the risk free rate.8 
 

3.2. Real-Time Forecast Accuracy of Other Forecasting Approaches 

In this subsection, we compare the real time forecast accuracy of models (7)-(10) to that of the 

no-change forecast in (2). Section 2.3 established that the no-change forecast tends to be more 

accurate than models based on the price of oil futures. An obvious question is whether the no-

change forecast can be improved upon, for example, by using information on interest rates. 
 

3.2.1. Hotelling Model 

Row 7 in Tables 2, 3, and 5 shows that the random walk model has lower MSPE than the 

Hotelling model at horizons of 3 and 6 months, whereas at the 12-month horizon the ranking is 

reversed. This reversal is not statistically significant, however. Based on the MAPE, the no-

change forecast is superior at all three horizons. The Hotelling forecasting model has 

systematically lower bias at all three horizons than the no-change forecast. It also is 

systematically better at predicting the sign of the change in oil prices than futures forecasts, 

although we cannot assess the statistical significance of the improvement, given that there is no 

variability at all in the sign forecast. 
 

3.2.2. Random Walk Models with Drift 

The next six rows in Tables 1-5 document that allowing for a drift in no case significantly lowers 

the MSPE of the random walk model, when the drift is estimated based on rolling regressions, 

and only in one case, when the drift is estimated recursively. Allowing for a drift lowers the 

MAPE at some horizons and for some models, but the gains are not systematic and different 

models work well for different horizons. Again, the Clark and West (2005) test rejects the null of 

no predictability in several cases (mainly at the nine-month horizon). As discussed earlier, that 

rejection does not necessarily translate into accuracy gains in real time forecasting, as evidenced 

by the MAPE rankings. In some cases, allowing for a drift also improves significantly the ability 

to predict the sign of the change of the oil price at longer horizons, but only when the drift is 

estimated recursively. In general, the results for the random walk with drift are quite sensitive to 

                                                 
8 Specifically, we use the 3-month, 6-month, and 12-month constant-maturity Treasury bill rates from the Federal 
Reserve Board’s website http://federalreserve.gov/releases/H15/data.htm 
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the model specification and forecast horizon, and they do not account for the “specification 

mining” implicit in considering a large number of alternative models with drift (see Inoue and 

Kilian (2004) and the references therein). There is no evidence that such models dominate the 

no-change forecast. 
 

3.2.3. Professional Survey Forecasts 

The last row in Tables 2 and 5 shows that the consensus survey forecast has much higher MSPE 

than the no-change forecast at both the 3-month and 12-month horizons. It also has a larger bias 

and higher MAPE and there is no statistically significant evidence that it is better at predicting 

signs than a coin flip. The survey forecast is also inferior to the futures forecasts, suggesting that 

survey respondents do not rely on futures price data alone in forming their expectations. 
 

3.3. Why the No-Change Forecast is a Plausible Measure of the Expected Spot Price 

The central result of section 3.2 is that no-change forecasts of the price of oil tend to be more 

accurate than forecasts based on econometric models and more accurate than survey forecasts.9 

This result is consistent with views among oil experts. For example, Peter Davies, chief 

economist of British Petroleum, has noted that “we cannot forecast oil prices with any degree of 

accuracy over any period whether short or long” (see Davies 2007). The favorable forecasting 

performance of the no-change forecast also is consistent with the observed high persistence of 

the nominal spot price of oil (see, e.g., Diebold and Kilian 2000). The high autocorrelation of 

commodity prices in general has been widely recognized in the literature (see, e.g., Deaton and 

Laroque 1992, 1996). Finally, it is important to stress that the superior forecast accuracy of the 

random walk model without drift does not contradict theoretical results in the literature that oil 

prices are endogenous with respect to global macroeconomic conditions (see, e.g., Barsky and 

Kilian 2002). The first point to keep in mind is that macroeconomic determinants such as U.S. 

interest rates, U.S. inflation, or global economic growth are but one of many determinants of the 

price of oil. For example, many of the major oil price increases in recent decades have been 

                                                 
9 This result differs from at least some earlier studies. For example, Chernenko et al. (2004) report evidence that 
futures-based forecasts have marginally lower MSPE than the no-change forecast at horizons of 3, 6 and 12 months. 
In related work, Wu and McCallum (2005) find that futures prices are generally inferior to the no-change forecast, 
but report that spread regressions have lower MSPE than the no-change forecast at short horizons (also see Pagano 
and Pisani 2006). These findings do not contradict our results. The differences in MSPE rankings can be traced 
mainly to differences in the sample period. The sample period considered in our paper is longer than in any previous 
study. Further sensitivity analysis suggests that evidence of accuracy gains, sometimes obtained in samples shorter 
than ours, tends to vanish when the full sample is examined. 
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associated with unforeseen political disturbances in the Middle East and rising concerns about 

future oil supply shortfalls. Hence, one would not expect forecasting models based on 

macroeconomic fundamentals alone to be successful in practice. The second point to bear in 

mind is that predictability that exists in population may be difficult to exploit in real time in 

finite samples. The link from macroeconomic fundamentals to the price of oil is complicated and 

likely to be nonlinear. Even if the spot price of crude oil does not truly follow a random walk, 

random walk forecasts tend to be attractive in terms of their mean-squared prediction error 

(MSPE) since the reduction in variance from excluding other predictors in small samples will 

typically more than offset the omitted variable bias. Thus, the superior forecast accuracy of the 

no-change forecast does not invalidate economic models of the crude oil market.  
 

4. Why Is the MSPE of Oil-Futures Prices so Large Relative to the No-Change Forecast? 

The preceding section demonstrated that under the MSPE metric the best predictor of the 

nominal price of oil is the no-change forecast. This section examines in greater detail the 

differences between the no-change forecast and the forecast based on oil futures prices. A formal 

analysis of what precisely goes wrong with the oil futures forecast will help motivate the 

theoretical analysis of the oil spot and futures markets in the next section. For this purpose it is 

convenient to express the deviation of the futures price from the no-change forecast in 

percentage terms as ( ) .h
t tf s−   

There are two possible reasons for the higher MSPE of ( )h
tF  relative to .tS  One is higher 

forecast bias; the other is a higher forecast variance. In Table 7, we first evaluate the possibility 

that ( )h
tF  is different on average from .tS  For expository purposes, we focus on the 3-month and 

12-month horizons. Our sample period is 1989.1-2007.2, as a contiguous time series for the 12-

month spread becomes available only starting in 1989.1. Using heteroskedasticity and 

autocorrelation consistent (HAC) standard errors, on average both the 3-month and 12-month 

spread are statistically different from zero at the 1% level. Although the rejection is decisive, 

Table 7 shows that the mean deviation is comparatively small in magnitude (about 1% at the 3-

month horizon and below 5% at the 12 month horizon).   

 Whereas the bias of futures prices relative to the no-change forecast may seem small, the 

variability about the no-change forecast is not. As Table 7 shows, at any point in time, the 

discrepancy between the futures price and the spot price may be very large and go in either 
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direction. It is this variability of the deviation of futures prices from spot prices rather than the 

differences in mean that drives the larger MSPE of futures-based forecasts and that makes the 

use of such oil price forecasts inadvisable. The time-variation in the spread is not only large, but 

highly persistent. In Table 7, we measure this persistence by modeling the spread as an 

autoregression with the lag order selected by the Akaike Information Criterion. Based on the 

fitted autoregressive models, we compute the sum of the autoregressive coefficients as a measure 

of persistence as suggested by Andrews and Chen (1994). The estimated persistence for the 3-

month spread in the first column is 0.74, whereas that for the 12-month spread is 0.81. 

The evidence in Table 7 is important because it suggests that the key to understanding the 

poor predictive accuracy of oil futures prices relative to the no-change forecast is to understand 

the causes of the excess variability of oil futures prices relative to the spot price of oil. The 

existence of such large fluctuations in the oil futures spread may seem surprising at first, 

considering the much lower variability and persistence of the futures spread in the widely studied 

foreign exchange futures market. The spread of foreign exchange futures prices over the spot 

exchange rate is well explained by the bilateral interest rate differential because the spread 

captures the opportunity cost of holding assets in one currency as opposed to another. This 

covered interest rate parity result has been documented, for example, by Taylor (1989). 

Considering the typical size of interest rate differentials, the spread in major foreign exchange 

markets tends to be small. This point is illustrated in Figure 3. The oil futures spread is far more 

variable than the U.S.-U.K. foreign exchange futures spread. 

In the next section we propose a theoretical explanation of this discrepancy. We observe 

that the difference between the oil futures price and the expected spot price of oil is not 

accounted for by the interest rate alone, but that it also reflects the value that firms derive from 

having ready access to oil, a fact commonly referred to as the convenience yield. The presence of 

this convenience yield makes the analysis of oil futures markets fundamentally different from the 

analysis of the market for foreign exchange futures. We propose a theoretical model that explains 

the persistent and large fluctuations in the spread in terms of fluctuations in the marginal 

convenience yield. The model implies that fluctuations in the marginal convenience yield can be 

directly linked to shifting fundamentals in the form of expectation shifts about future oil supply 

shortfalls. Whereas concerns about future supply shortfalls may in principle arise in any 

commodity market, there is reason to believe that such concerns historically have been 
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particularly relevant in the crude oil market and may explain both large and sharp fluctuations in 

the spread over time.  
 

5. A Two-Country General Equilibrium Model of the Oil Futures and Oil Spot Markets 

5.1. Model Description 

The model in this section can be viewed as a generalization of the analysis in Pindyck (1994, 

2001). There are two countries, the United States and Saudi Arabia. Saudi Arabia trades its oil  

endowment with the United States in exchange for a consumption good that the United States 

produces from oil to be delivered at the end of the period. The United States consumes some of 

the final consumption good and sells the rest to Saudi Arabia. Saudi Arabia is treated as an 

endowment economy in recognition of the fact that capacity constraints have been binding in 

global crude oil production in recent years (see Kilian 2008). The existence of capacity 

constraints implies that extracting less oil today does not permit more oil to be extracted in the 

future. Each period, Saudi Arabia receives a random oil endowment .tω  The oil endowment in 

period t  is t tω ω ε= +  with probability θ ; and ˆt tω ω ε= −  with probability 1 θ−  and 

ˆ (1 )t tε θε θ= −  such that ( ) .tE ω ω=  The variance of the oil endowment is 2.εσ   

 In each period, the United States chooses: (1) next period’s above-ground inventory 

holdings of oil ( tI ); (2) the number of oil futures contracts that deliver one barrel of oil next 

period; (3) the number of risk-free one-period bonds that yield , 1(1 ) ,t tr ++  and (4) the quantity of 

oil to use in the production of the consumption good. Saudi Arabia chooses the number of oil 

futures contracts and the number of risk-free bonds it wishes to hold. The price of the 

consumption good in period t  is tP  and the spot price of oil is tS . The price of the consumption 

good is the numeraire. 
 

5.2. The United States’ Demand for Oil 

The United States chooses the amount of oil to use in the production of the consumption good; 

and the amount of oil to store as above-ground inventory. Imported oil can be transformed into 

the consumption good using the production function ( )tF Z , where tZ  is the quantity of oil the 

United States uses in producing the consumption good. We postulate that ( ) 0tF Z′ > , ( ) 0tF Z′′ < , 

( ) 0tF Z′′′ > , and 
0

l im ( )
t

tZ
F Z

→
′ = ∞ . The United States chooses tZ  such that the marginal product 
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of oil equals the real price of oil in terms of the consumption good 
 

(11)    ( )t t tS P F Z′= , 

which implies the demand schedule: 
 

    1( , ) ( )t t t tZ S P F S P−′≡ . 

The resource constraint for crude oil is given by the identity 

    ( ),t t t tI Z S PωΔ ≡ − . 

Re-interpreting equation (11) as a demand function in ,tIΔ  we obtain the inverse net demand 

function expressed as a function of the random Saudi oil endowment and the change in 

inventories: 

( ) ( , )t
t t t t

t

S F I D I
P

ω ω′= − Δ ≡ Δ . 

If t tS P  is drawn on the vertical axis and tIΔ  on the horizontal axis, ( , )t tD Iω Δ  is upward -

sloping in tIΔ . 
 

5.3. No-Arbitrage Condition 1: The Oil Futures Market 

If we are willing to impose, in addition, that both the United States and Saudi Arabia are risk 

neutral, as Bernanke (2004) explicitly assumed, then by the no-arbitrage condition that the 

expected return from holding inventories must equal the real price of oil today, it follows that 
    

[ ] [ ]1 1 1t t t t t tE F P E S P+ + += .  

Using a linear Taylor series approximation, we obtain that 

[ ]1t t tF E S +≈  

Thus, the futures price will be an approximately unbiased predictor of the spot price.  
 

5.4. No-Arbitrage Condition 2: The Bond Market 

Under risk neutrality, the real value of a bond today must equal the discounted real present value 

of a bond tomorrow: 

(12)   , 1
1 , 1 1

1 1 1 1(1 )
(1 )t t t t

t t t t t t

r E E
P P r P P

β
β+

+ + +

⎡ ⎤ ⎡ ⎤
= + ⇔ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

. 

 

A linear Taylor series approximation implies that: 
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(12′ )   , 1 , 11 (1 ) 1 1 1t t t tr rβ β+ ++ ≈ ⇔ ≈ −  
 

5.5. No-Arbitrage Condition 3: The Market for Storage 

The distinguishing feature of our model is the existence of a market for storage. Storage takes the 

form of holding above-ground oil inventories. The term convenience yield in the literature refers 

to the benefits arising from access to crude oil in the form of inventories such as the ability to 

avoid disruptions of the production process or the ability to meet unexpected demand for the 

final good. The convenience yield is a commonly used modeling device (see, e.g., Brennan 1991; 

Fama and French 1988; Gibson and Schwartz 1990; Pindyck 1994; Routledge et al. 2000; 

Schwartz 1997).  Its microeconomic foundations have been discussed in Williams (1987), 

Ramey (1989), Litzenberger and Rabinowitz (1995), and Considine (1997), among others. We 

denote the convenience yield by 2( , ) .tg g I εσ=  Let 2
1 1( , )tg g I εσ= denote the marginal 

convenience yield associated with holding additional above-ground inventories between t  and 

1.t +  Following the commodity pricing literature, we impose that 1 110, 0,g g> < and 12 0,g >  

where ig  denotes the derivative of g with respect to its thi  argument and ijg  the cross-partial 

derivative of g with respect to the arguments i  and .j  As increases in the variance make 

production shortfalls more likely, the marginal convenience yield from holding inventories is 

increasing in the variance. Throughout the paper we also postulate that the Inada condition  

     ( )2
10

lim ,
t

tI
g I εσ→

= ∞   

holds, which ensures that the U.S. holds strictly positive inventories. With 2
1( , )tg I εσ  on the 

vertical axis and above-ground inventory holdings on the horizontal axis, the intersection of the 
2

1( , )tg I εσ  curve and inventory holdings tI  describes the equilibrium in the market for storage. 

 Abstracting from costs of storage, no arbitrage implies that storing a barrel of oil above 

ground for one period and simultaneously selling short a one-period futures contract is a risk-free 

strategy: 

1 1
, 1 1 , 1 1

1 1 1 1

Return from stor ing oil Return from sel l ing
futures  contract

(1 ) (1 )t t t t t t
t t t t t t t t

t t t t t t

S S F S S Fr g E E E r g E
P P P P P P

+ +
+ +

+ + + +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + − + − = + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
. 

By no arbitrage, the returns to this investment must equal the return on investing the same 
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amount at the risk-free rate: 

, 1 , 1 1
1

(1 )t t t
t t t t t

t t t

S S Fr r g E
P P P+ +

+

⎡ ⎤
= + − + ⎢ ⎥

⎣ ⎦
. 

Since [ ]1t t t t tE F P F P+ ≈  given equation (12), we obtain: 

(13)    , 1 , 1 1(1 ) (1 )t t
t t t t

t t

S Fr r g
P P+ ++ − ≈ +  

Equation (13) shows that the difference between the capitalized real spot price and the real 

futures price is equal to the capitalized marginal convenience yield. 
 

5.6. A Permanent Mean-Preserving Spread of Oil Endowments 

In this subsection, we derive two comparative statics results under risk neutrality. The first result 

is that an increase in uncertainty about the future oil supply shortfalls immediately raises the real 

spot price of oil; the second result is that under plausible assumptions this increase in uncertainty 

lowers the oil futures spread. We model the increase in uncertainty as a mean-preserving 

increase in the spread of the oil endowment shock. The thought experiment is an increase in .tε   

The mean preserving spread helps us abstracts from changes in the conditional mean of 

oil supplies and focus on changes in the conditional variance. The motivation for this modeling 

choice is best seen by focusing on the example of the Persian Gulf War. Events such as the 

invasion of Kuwait in August of 1990 have two distinct effects. First, they cause a reduction in 

expected oil supply. This oil supply shock represents a change in the conditional mean of oil 

supplies. It has been documented in the literature that such a shock indeed occurred in 1990, but 

that this supply shock fails to explain the bulk of the movements in the real price of oil in 

1990/91. Second, there is an increase in uncertainty about future oil supply shortfalls. Indirect 

evidence that the price spike of 1990/91 was driven by increased uncertainty about future oil 

supply shortfalls has been presented in Kilian (2008). To keep the model tractable, we model this 

increased uncertainty as an increase in the conditional variance of oil supplies, implicitly 

abstracting from the global business cycle or any other change in the conditional mean.    
 

5.6.1. Result 1: An Increase in Uncertainty Increases the Real Spot Price  

We solve the no-arbitrage condition (13) for t tS P  and substitute for ( ), 11 (1 )t t tr P++  from 

equation (12) to obtain 
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2
1

1

( , )t t
t t

t t

S FE g I
P P εβ σ

+

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
 

[ ] [ ]1 1t t t t t tE F P E S P+ +=  by the no-arbitrage condition in the futures market. Using equation (12) 

to substitute for the real price of oil in terms of the marginal product, we arrive at: 
 

[ ] 2
1 1 1( ) ( ) ( , )t t t t t tF I E F I g I εω β ω σ+ +′ ′− Δ = − Δ + , 

 

implying that the United States equates the marginal benefits and marginal costs of these 

inventory holdings. The mean-preserving spread drives a wedge between the left-hand and right-

hand side of this intertemporal marginal efficiency condition. Because ( . )F ′  is convex, the 

mean-preserving spread increases [ ]1 1( )t t tE F Iω + +′ − Δ  by Jensen’s inequality (Hirshleifer and 

Riley 1992). It also increases the marginal willingness to pay for inventories, given by 2
1( , )tg I εσ . 

To re-establish intertemporal marginal efficiency, the United States must increase its inventory 

holdings such that equality is re-established.  

 Figure 4 illustrates the dynamic adjustment process of the real price of oil and of U.S. oil 

inventories in response to an exogenous increase in uncertainty about future oil supply shortfalls. 

Figure 4a plots the marginal convenience yield. Figure 4b shows the corresponding inverse U.S. 

demand function for oil. In the model, date t  inventory holdings are determined by the quantity 

of inventories the U.S. decided to hold at time 1.t −  Suppose that we are at point A  in Figure 4a 

at the beginning of the period. When there is a mean-preserving increase in the endowment 

spread, the marginal convenience yield schedule shifts upwards instantaneously, because the 

U.S. values each unit of inventory more than it did prior to the increase in uncertainty. We move 

along the inventory schedule from point A to point .B  Consequently, by the concavity of its 

production function, the United States finds it optimal to increase its future inventory holdings 

relative to last period’s inventory holdings. Thus 1t tI I ∗− ≠  and 1 0t t tI I I∗
−Δ = − > . This implies a 

decrease in the real price of oil over time, starting from point B , as the United States moves 

along the marginal convenience yield schedule towards point .C  The accumulation of additional 

inventories is associated with a decline in the real price of oil, as the marginal convenience yield 

falls. The real price of oil in the new long-run equilibrium will be higher than its level at 1,t −  

but lower than its impact level. To summarize, we expect the real price of oil to overshoot in 

response to increased uncertainty about future oil supply shortfalls, whereas inventories will be 
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accumulated only gradually over time. The overshooting result for the real price of oil is 

analogous to the overshooting of the exchange rate in the Dornbusch (1976) model. It is driven 

by the assumption that inventories are predetermined and will not adjust fully to an increase in 

uncertainty on impact. 
 

5.6.2. Result 2: An Increase in Uncertainty Decreases the Oil Futures Spread 

By rearranging equation (13), we obtain an expression for the spread: 

(14)   
2

1
, 1 , 1

( , )(1 )t t t
t t t t

t t t

F S g Ir r
S S P

εσ
+ +

−
= − + . 

A sufficient condition for the oil futures spread to decrease in response to a mean-preserving 

spread is that 
2

, 1 , 1 1

2
2 2 2

, 1 11 12 12

(1 ) ( , )

1(1 ) ( , ) ( , ) ( , ) 0

t t t t t

t t t t

t t
t t t t t

t t t

dr d r g I
d d S P

d I d F d Ir g I g I g I
F d d F d

ε

ε
ε ε ε

σ
ε ε

σσ σ σ
ε ε ε

+ +

+

+ ⎡ ⎤
− −⎢ ⎥

⎣ ⎦
⎧ ⎫⎡ ⎤ ′′Δ Δ⎪ ⎪+ + + <⎨ ⎬⎢ ⎥′ ′⎪ ⎪⎣ ⎦⎩ ⎭

 

Since , 1 0t t tdr dε+ ≈ , the first two terms in this expression are zero. The sign of the expression 

depends on the relative magnitudes of (1) the decrease in the marginal convenience yield 

associated with the increase in inventories triggered by the shock to the endowment distribution; 

and (2) the increase in the marginal convenience yield associated with the increase in 2
εσ  

triggered by the same shock. The spread declines if and only if 

(15)    
2

11 1
12

1 .t

t t

d F d Ig g
d g F d

εσ
ε ε

′′ Δ⎡ ⎤> − +⎢ ⎥′⎣ ⎦
 

We can express both 2
td dεσ ε  and t td I dεΔ  in terms of the model’s parameters and show that 

expression (15) is equivalent to: 

 (15′ )    12
(1 ) ,

2 (1 )t

Bg λ θ
θε λ

−
>

−
 

where ( )11 1 1 11( ) , 0 1g g F F g A gλ λ′′ ′≡ − + − < < ; and  

[ ]1 1

1 1

( ) ( ) 0
ˆ[ ( ) ( ) ] 0

t t t t t

t t t t t t

A F I E F I
B F I F I

ω β ω
βθ ω ε ω ε

+ +

+ +

′′ ′′= − − Δ − − Δ >

′′ ′′= + − Δ − + − Δ >
 

Hence, for a given stock of inventories and increase in tε , the spread will decline, provided 12g  



 22

is large enough. The term 12g  measures the shift in the marginal convenience yield induced by 

the mean-preserving spread. It represents the sensitivity of the marginal value of inventories in 

response to an increase in uncertainty. The shift of 1g reflects the fact that following an increase 

in uncertainty each unit of inventory has greater value as insurance against supply shortfalls. In 

other words, the oil futures spread will decline if agents’ willingness to pay for an extra barrel of 

oil to be used as insurance against oil supply shortfalls increases sufficiently in response to an 

unanticipated shift in uncertainty. It is well-documented that during past uncertainty shocks in 

the crude oil market, traders were willing to pay exorbitant prices to procure extra stocks of oil 

(see, e.g., Penrose 1976; Terzian 1985). Thus, large values of 12g  seem empirically plausible. 

Uncertainty shocks driven by exogenous events provide an economic explanation for the large 

and persistent fluctuations in the spread that undermine the forecasting accuracy of oil futures 

prices.10 
 

6. Model Evaluation 

6.1. Test 1: Can the Model Explain the Poor Forecast Accuracy of Oil Futures Prices? 

The theoretical model predicts that under risk neutrality [ ]( )h
t t t hF E S +≈ , which is approximately 

the result asserted by Bernanke (2004). Given this result, it may seem puzzling at first that the 

forecast accuracy of oil futures prices is poor in practice. This result follows naturally from the 

model, however. Sections 2 and 3 established that the best proxy for [ ]t t hE S +  is the no-change 

forecast .tS  There is no presumption in the theoretical model that [ ] .t t h tE S S+ =  In fact, equation 

(14) implies that in equilibrium ( )h
tF  may be larger than, smaller than or equal to .tS  Thus, the 

evidence in Table 7 that on average over our sample period ( )h
tF  is slightly smaller than tS  is 

fully consistent with the theoretical model. Nevertheless, on average the (approximate) model 

expectation ( )h
tF  is fairly close to the econometric expectation .tS   

                                                 
10 Earlier we documented that the oil futures spread is highly persistent, but mean reverting (see Table 7). We also 
documented that the no-change forecast is the best predictor of the nominal spot price of oil. The conclusion that 
under plausible conditions the mean-reverting spread is associated with changes in the precautionary demand 
component of the spot price may seem to contradict the random walk result. This is not the case. First, the result 
about the forecast accuracy refers to the nominal price of oil, whereas the comparative statics result is for the real 
price of oil. Second, the forecasting results are for total spot price of oil, whereas the results of this section are only 
for one of the components of the real price of oil. Third, as Diebold and Kilian (2000) demonstrate, for 
autoregressive processes with degrees of persistence in the range documented in Table 7 an incorrectly specified 
random walk model will tend to have lower MSPE than the correct mean-reverting model in small samples. 
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The reason that ( )h
tF  is a poor predictor is not so much that it is different on average from 

,tS  but that it fluctuates widely relative to .tS  At any point in time, the discrepancy between the 

futures price and the spot price may be very large and go in either direction. Taking the spot 

price of crude oil to be $65, about its level in late March 2007, for example, the minimum and 

maximum value of the 12-month spread implies that the futures price may differ from the best 

predictor by as much as $20 in one direction or by as much as $18 in the other (see Table 7). 

Thus, policymakers relying on oil futures prices are likely to overestimate or underestimate the 

expected price of oil substantially at any given point in time, and the fact that these mistakes 

largely average out in the long run is of little consolation. Put differently, it is not that 

Bernanke’s (2004) assertion that oil futures prices can be viewed as expected spot prices is 

necessarily wrong, but that it of limited use in practice given the large fluctuations in the futures 

price relative to the best predictor. Our theoretical model provides an explanation of this excess 

variability. In the model, fluctuations in the spread arise naturally from shifts in uncertainty 

about future oil supply shortfalls and will be indicative of fluctuations in the spot price of oil 

driven by precautionary demand for crude oil, provided 12g  is large enough.11 Hence, the 

theoretical model helps us understand the poor forecast accuracy of oil futures prices. Whether 

this explanation is empirically plausible is a question that we turn to next. 
 

6.2. Test 2: Does the Proposed Indicator Move as Expected During Known Episodes of 

Uncertainty Shifts? 

One way of judging the empirical content of the model is to verify that the spread moves in the 

expected direction at times of major unforeseen events such as the outbreak of the wars. In 

Figure 5, we focus on several clearly defined events in recent history that should have been 

associated with shifts in the market’s uncertainty about future oil supply shortfalls such as the 

Persian Gulf War and the 2003 Iraq War (which should have caused the spread to fall) and the 

Asian financial crisis and 9/11 (which should have caused the spread to increase as world 

demand for crude oil fell, making a shortfall less likely). Clearly, expectations shifts of the type 

embodied in our theoretical model are not the only possible reason for shifts in the spread, but 
                                                 
11 Strictly speaking, this link holds if and only if a change in demand for oil inventories is confronted with an 
inelastic supply of oil. In the model, this inelasticity is represented in the form of an endowment structure. While 
this assumption may be unrealistic for the early 1980s, throughout much of the sample that we consider below this is 
a reasonable assumption. Kilian (2008) documents that capacity constraints in world crude oil production have been 
binding since the early 1990s. 
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arguably they are the most important reason.  

Figure 5 plots the negative of the spread for 1989.1-2007.2 by horizon. This 

normalization allows us to interpret positive spikes as increases in the precautionary demand 

component of the real spot price. The plot confirms the conclusion in Kilian (2008) that the sharp 

spike in oil prices during the Persian Gulf War was driven by expectations shifts reflected first in 

higher precautionary demand, as Iraq invaded Kuwait, and then in lower precautionary demand, 

as the U.S. troop presence in the region increased (also see Kilian 2007a). Likewise, the spike 

after mid-2002 in the period leading up to the 2003 Iraq War is as expected, given that the Iraq 

War was anticipated by the market starting in the summer of 2002 (see Barsky and Kilian 2004). 

The plot also indicates that the temporary decline in oil prices following the Asian crisis (and its 

reversal after 1999) reflected fluctuations in precautionary demand.  There is a similar but 

smaller temporary decline following the adverse demand shock associated with 9/11. Anecdotal 

evidence suggests that the spike in 1996 was associated with concerns about tight oil supplies 

and the spike in 2000 with concerns arising from strong demand for crude oil. In addition, the 

plot suggests a persistent decline in precautionary demand in recent years. Such a decline seems 

highly implausible on a priori grounds, given that recent years have been characterized by 

widespread concerns about future oil supply shortfalls, a point to which we will return below. 

 

6.3. Test 3: How does the Proposed Indicator Compare to Alternative Measures of 

Precautionary Demand Shifts? 

The indicator of expectations-driven oil price increases proposed in this paper is not the only 

possible measure. Recently, an alternative measure of the component of the spot price of crude 

oil that is driven by shocks to precautionary demand has been proposed by Kilian (2007a,b) 

based on different data and a different methodology. Unlike the measure developed in this paper, 

that estimate was based on a structural VAR decomposition of the real price of crude oil. The 

structural representation of the underlying trivariate autoregressive model is 

0
1

p

t i t i t
i

A z A zα ε−
=

= + +∑ , 

Where p denotes the lag order, tε  is the vector of serially and mutually uncorrelated structural 

innovations and tz  a vector variable including the percent change in global crude oil production, 

a (suitably detrended) index of global real economic activity that captures fluctuations in the 
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global demand for all industrial commodities (including crude oil), and the real price of oil (in 

that order), measured at monthly frequency.  

Let te  denote the reduced form VAR innovations such that 1
0t te A ε−= . The structural 

innovations are derived from the reduced form innovations by imposing exclusion restrictions on 
1

0A− . The identifying assumptions are that (1) crude oil supply will not respond to oil demand 

shocks within the month, given the costs of adjusting oil production and the uncertainty about the 

state of the crude oil market; that (2) increases in the real price of oil driven by shocks that are 

specific to the oil market will not lower global real economic activity within the month. In this 

model, innovations to the real price of oil that cannot be explained by oil supply shocks or 

demand shocks that are common to all industrial commodities by construction must be demand 

shocks that are specific to the oil market. The latter oil-specific demand shock by construction 

captures fluctuations in precautionary demand for oil driven by fears about the availability of 

future oil supplies. Kilian (2007a) makes the case that this shock effectively can be interpreted as 

a precautionary demand shock, given the absence of plausible alternative interpretations and 

given the time path of this shock during specific historical episodes, during which we would 

expect precautionary demand to shift.  

The structural VAR model postulates a vertical short-run supply curve for crude oil and a 

downward sloping short-run demand curve that is being shifted by innovations to the business 

cycle in global industrial commodity markets as well as shifts in the demand for oil that are 

specific to the oil market such as shifts in the precautionary demand for crude oil. Given these 

assumptions, one can use the structural moving average decomposition of the VAR model to 

construct a time series of the component of the real price of oil that can be attributed to shifts in 

the precautionary demand for crude oil in response to changes in the uncertainty about future oil 

supply shortfalls. While it is not possible to compare this VAR-based measure of the 

precautionary demand component of the spot price to the futures-based measure for the full 

sample period of 1973-2006 considered in Kilian (2007a), given the limited availability of oil 

futures price data, we may compare these two measures for the period 1989.1-2006.12, which 

includes several major oil price spikes. Since the oil futures-based measure is essentially an 

index and the VAR-based measure is not, the appropriate metric of comparison is their 

contemporaneous correlation.  

Table 8 shows that the two measures in general are highly correlated despite the 
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differences in their method of construction. For the sample period of 1989.1 through 2006.12, the 

correlation ranges from 39% at the 3-month horizon to 61% at the 12 month horizon. The fit 

improves monotonically with the horizon, consistent with the view that shifts in precautionary 

demand are primarily concerned with expectations beyond the short run. Thus, we focus on the 

12-month spread. A correlation of 61% between two independently constructed measures of the 

fluctuations in the spot price of oil driven by precautionary demand is remarkably high. The 

correlation is even higher if we exclude the last three years of data, for which the spread seems 

implausibly high, as discussed above. Table 8 shows that, excluding the last three years, the 

correlation of the two measures rises to 79% at the 12 month horizon. A correlation of near 80% 

for most of the sample is evidence both of the predictive power of our theoretical model of the 

oil futures and spot markets and of the realism of the identifying assumptions underlying the 

VAR-based measure.  

Not only does the correlation weaken after 2003.12, but the spread data and the VAR-

based measure of the precautionary demand component of the spot price of oil paint a somewhat 

different picture (see Figure 6). Whereas the VAR-based measure on average remains at a high 

level after 2003.12, consistent with the perception of sustained uncertainty about future oil 

supply shortfalls, the futures-based measure systematically declines. This evidence casts further 

doubt on the credibility of the negative of the spread as an indicator of fluctuations in the 

precautionary demand component of the spot price over the last three years of the sample. These  

observations suggest that a structural change may have occurred around 2003.12 that is beyond 

the scope of the theoretical model in section 5. Indeed, it has been suggested in the financial 

press that the nature of the oil futures markets has changed in recent years, as hedge funds and 

other investors with no ties to the oil industry attempted to capitalize on rising oil prices. Data 

from the Commodity Futures Trading Commission (not shown to conserve space) shed light on 

the share of speculators among oil futures traders since 1989 and reveal an unprecedented 

increase in speculative activities after 2003.12. To the extent that increased speculative trading 

tends to raise the price of oil futures more than the spot price (and hence increases the spread), 

this fact might provide an explanation for the weakening of the correlations at the end of the 

sample. Establishing such a link is left for future research. 
 

6.4. Test 4: Does the VAR Response of the Real Price of Oil Match the Model Predictions? 

Another implication of the theoretical model is that the real price of oil will overshoot in 
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response to a mean-preserving spread, while inventory holdings will increase only gradually. If 

the Kilian (2007a) measure of the precautionary demand shock is valid, the response of the real 

price of oil in that VAR should exhibit overshooting, as predicted by the theoretical model. 

Figure 7 confirms that the response to an oil-specific demand shock indeed displays 

overshooting, suggesting that the interpretation of this shock as a precautionary demand shock is 

justified and indirectly supporting the interpretation of the futures-based indicator as a measure 

of expectations shifts. There is no evidence of such a pattern in response to other oil demand or 

oil supply shocks. 
 

6.5. Implications for Crude Oil Inventories 

Whereas we have focused on the empirical relationship between increased concerns about future 

oil supply shortfalls and the precautionary demand component of the real spot price of oil, the 

model also has implications for the behavior of inventories in response to increased uncertainty. 

Testing these implications is not straightforward, given that inventories move for many reasons 

other than shifts in uncertainty about future oil supply shortfalls. First, whereas for the real price 

of oil we were able to use a VAR decomposition to focus specifically on the precautionary 

demand component of the real price, no similar measure of the precautionary demand component 

in oil inventories exists, making it impossible to identify the consequences of precautionary 

demand shocks for inventories. Second, inventory data are trending, and measures of the 

comovement between the precautionary demand component of the spot price and inventories 

tend to be sensitive to the method of detrending.  

There is, however, anecdotal evidence from oil industry experts documenting that shifts 

in precautionary demand coincide with a strong motive for inventory accumulation. This 

situation has been aptly described by Terzian (1985) in the context of the 1979 oil price shock: 

“Spot deals became more and more infrequent. The independent refineries, with no access to direct 
supply from producers, began to look desperately for oil on the so-called ‘free market’. But from the 
beginning of November, most of the big oil companies invoked force majeure and reduced their oil 
deliveries to third parties by 10% to 30%, when they did not cut them off altogether. Everybody was 
anxious to hang on to as much of their own oil as possible, until the situation had become clearer. The 
shortage was purely psychological, or ‘precautionary’ as one dealer put it.” (p. 260) 
 

 

Penrose (1976, p. 46) describes a similar hoarding phenomenon in the period leading up to the 

1973 oil price shock, as oil companies became concerned with the possibility of being 

expropriated. In her words, “the major oil companies became increasingly cautious about outside 
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sales as uncertainty increased”. These accounts are consistent with the implications of our 

theoretical model. 
 

\7. Conclusion 

We introduced a two-country, multi-period general equilibrium model of both the spot market 

and the futures market for crude oil to provide fresh insights about the interpretation of oil 

futures prices and related statistics such as the oil futures spread. The key insights can be 

summarized as follows: First, it is widely believed that prices of oil futures are accurate 

predictors of forecast spot prices in the MSPE sense. Using observations up to February of 2007, 

we showed that the price of crude oil futures is not an accurate predictor of the spot price of 

crude oil. Many users of oil futures-based forecasts are aware of this caveat and understand that 

futures-based forecasts may be poor, but still believe that they provide the best available forecast 

of spot prices of crude oil. We showed this not to be the case. Futures-based forecasts are inferior 

to simple and easy-to-use forecasting methods such as the no-change forecast. No-change 

forecasts are also more accurate than commercial survey-based forecasts.  

Second, we showed that the large MSPE of oil futures-based forecasts is driven not by 

the bias, but by the variability of the futures price about the spot price. We documented large and 

time-varying deviations of oil futures prices from the spot price of oil, as measured by the oil 

futures spread. For example, given a spot price of $65, the 12-month futures price may deviate as 

much as $20 from the expected spot price or as little as $0, which helps explain the poor 

forecasting accuracy of oil futures prices.  

Third, our analysis demonstrates that fluctuations in the oil futures spread are larger and 

more persistent than fluctuations in the spread of foreign exchange futures. We showed that this 

anomaly is linked to the presence of a marginal convenience yield in the oil futures market that is 

absent in the foreign exchange futures market. We proposed a theoretical model of the oil spot 

market and oil futures market that incorporates this marginal convenience yield. The model 

implies that the oil futures spread is directly linked to shifts in oil market fundamentals. We 

showed that shifts in the uncertainty about future oil supply shortfalls cause fluctuations in the 

oil futures spread not found in models of the foreign exchange futures market. Our model 

explains the excess variability of oil futures prices relative to the no-change forecast and the 

resulting poor forecast accuracy of oil futures prices. 

Fourth, we showed that, under plausible conditions, the oil futures spread will decline, as 
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the precautionary demand component of the real spot price of crude oil increases. Thus, the 

negative of the spread may be viewed as an indicator of fluctuations in the real price of crude oil 

driven by precautionary demand for oil. The time path of the oil futures spread since 1989 

suggested major shifts in precautionary demand for oil during the Persian Gulf War and 

following the Asian crisis, for example. These results provided independent evidence of how 

shifts in market expectations about future oil supply shortfalls affect the spot price of crude oil. 

Such expectation shifts have been difficult to quantify, yet play an important role in explaining 

oil price fluctuations (see, e.g., Kilian 2008). In addition, we documented that our measure of oil 

price movements driven by uncertainty shifts matches up well with independently obtained VAR 

based measures, and that our model predicts the overshooting of the real price of oil found in 

VAR analysis. Our analysis also is consistent with anecdotal evidence of hoarding in oil 

inventory markets during times of crisis. 
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Table 1: 1-Month Ahead Recursive Forecast Error Diagnostics 
 

1|
ˆ

t tS +  MSPE 
(p-value) Bias MAPE 

(p-value) 
Success Ratio 

(p-value) 
tS  6.998 0.172 1.941 N.A. 
(1)

tF  
 

7.106 
(0.809) 

0.210 
 

1.949 
(0.770) 

0.443 
(0.898) 

( )(1)ˆˆ1 ln( / )
t t t

S F Sα β+ +  

 
6.994 

(0.175) 
0.200 

 
1.954 

(0.580) 
0.479 

(0.529) 

( )(1)ˆ1 ln( / )
t t t

S F Sβ+  

 
6.975 

(0.104) 
0.156 

 
1.948 

(0.462) 
0.423 

(0.984) 
( )(1)ˆ1 ln( / )

t t t
S F Sα+ +  7.138 

(0.799) 0.162 1.948 
(0.439) 

0.526 
(0.257) 

( )(1)1 ln( / )
t t t

S F S+  
 

7.106 
(0.807) 0.212 1.949 

(0.676) 
0.443 

(0.898) 
ˆ(1 )tS α+  

 
7.013 

(0.384) 
0.186 

 
1.945 

(0.522) 
0.479 

(0.497) 
(1)(1 )t tS s+ Δ  

 
13.946 
(0.457) 

-0.061 
 

2.604 
(0.003) 

0.490 
(0.646) 

(3)(1 )t tS s+ Δ  
 

10.044 
(0.717) 

 0.015 
 

2.235 
(0.151) 

0.521 
(0.294) 

(6)(1 )t tS s+ Δ  
 

8.293 
(0.835)  0.005 2.050 

(0.087) 
0.495 

(0.567) 
(9)(1 )t tS s+ Δ  

 
8.155 

(0.932) 
-0.016 

 
2.057 

(0.806) 
0.495 

(0.567) 
(12)(1 )t tS s+ Δ  

 
7.405 

(0.305) 
-0.023 

 
1.943 

(0.521) 
0.505 

(0.443) 
Notes: The forecast evaluation period is 1991.1-2007.2. The initial estimation window is 1983.4-1990.12. For 
regressions based on 6-month futures prices the estimation window begins in 1983.10; for the 9-month 
futures price in 1986.12; for the 12-month futures price in 1989.1. ( )h

tF is the futures price that matures in h 

periods; ,t mi  is the m month interest rate; and ( )l
tsΔ  denotes the trailing geometric average of the monthly 

percent change for l months. p-values are in parentheses. All p-values refer to pairwise tests of the null of a 
random walk without drift. Comparisons of nonnested models without estimated parameters are based on the 
DM-test of Diebold and Mariano (2005) with N(0,1) critical values. Nested model comparisons with 
estimated parameters are based on Clark and West (2006). For the rolling regression estimates of the random 
walk with drift we use N(0,1) critical values under quadratic loss; for recursive estimates under quadratic loss 
and for all estimates under absolute loss we use bootstrap critical values as described in Clark and West. The 
sign test in the last column is based on Pesaran and Timmermann (1992).
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Table 2: 3-Month Ahead Recursive Forecast Error Diagnostics 
 

3|
ˆ

t tS +  MSPE 
(p-value) Bias MAPE 

(p-value) 
Success Ratio 

(p-value) 
tS  19.560 0.435 3.099 N.A. 
(3)

tF  
 

19.038 
(0.347) 

0.631 
 

3.172 
(0.920) 

0.479 
(0.648) 

( )( 3)ˆˆ1 ln( / )
t t t

S F Sα β+ +  

 
24.217 
(0.870) 

0.253 
 

3.610 
(0.990) 

0.407 
(0.996) 

( )( 3)ˆ1 ln( / )
t t t

S F Sβ+  

 
22.826 
(0.983) 

0.804 
 

3.541 
(0.998) 

0.407 
(0.992) 

( )( 3)ˆ1 ln( / )
t t t

S F Sα+ +  22.090 
(0.747) 0.315 3.365 

(0.965) 
0.397 

(0.998) 
( )( 3)1 ln( / )

t t t
S F S+  

 
19.036 
(0.348) 0.649 3.176 

(0.920) 
0.479 

(0.648) 

,3(1 )t tS i+  
 

19.811 
(0.715) 

0.167 
 

3.111 
(0.632) 

0.541 
N.A. 

ˆ(1 )tS α+  
 

19.699 
(0.351) 

0.484 
 

3.114 
(0.345) 

0.485 
(0.413) 

(1)(1 )t tS s+ Δ  
 

27.857 
(0.710) 

0.210 
 

3.620 
(0.119) 

0.510 
(0.418) 

(3)(1 )t tS s+ Δ  
 

24.702 
(0.961) 

0.238 
 

3.461 
(0.707) 

0.500 
(0.524) 

(6)(1 )t tS s+ Δ  
 

22.098 
(0.893) 

0.213 
 

3.231 
(0.315) 

0.485 
(0.685) 

(9)(1 )t tS s+ Δ  
 

20.242 
(0.531) 

0.224 
 

3.105 
(0.023) 

0.557 
(0.061) 

(12)(1 )t tS s+ Δ  
 

20.013 
(0.454) 

0.223 
 

3.071 
(0.005) 

0.546 
(0.101) 

,3
CF
tS  

 
30.726 
(0.997) 

-1.905 
 

4.148 
(0.999) 

0.500 
(0.338) 

 
 

Notes:  See Table 1. 
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Table 3: 6-Month Ahead Recursive Forecast Error Diagnostics 
 

6|
ˆ

t tS +  MSPE 
(p-value) 

Bias MAPE 
(p-value) 

Success Ratio 
(p-value) 

tS  34.058 0.937 4.466 N.A. 
(6)

tF  
 

36.334 
(0.716) 

1.615 
 

4.608 
(0.906) 

0.485 
(0.483) 

( )( 6 )ˆˆ1 ln( / )
t t t

S F Sα β+ +  

 
51.809 
(0.738) 

1.012 
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(0.794) 

0.485 
(0.613) 

( )( 6 )ˆ1 ln( / )
t t t

S F Sβ+  

 
47.143 
(0.917) 

1.959 
 

5.200 
(0.904) 

0.464 
(0.703) 

( )( 6 )ˆ1 ln( / )
t t t

S F Sα+ +  40.640 
(0.710) 1.074 4.692 

(0.528) 
0.485 

(0.576) 
( )( 6 )1 ln( / )

t t t
S F S+  

 
36.475 
(0.721) 1.684 4.621 

(0.910) 
0.485 

(0.483) 

,6(1 )t tS i+  
 

34.906 
(0.713) 

0.382 
 

4.509 
(0.708) 

0.557 
N.A. 

ˆ(1 )tS α+  
 

33.942 
(0.132) 

1.093 
 

4.678 
(0.155) 

0.515 
(0.021) 

(1)(1 )t tS s+ Δ  
 

44.981 
(0.780) 

0.543 
 

4.898 
(0.275) 

0.505 
(0.501) 

(3)(1 )t tS s+ Δ  
 

41.100 
(0.874) 

0.605 
 

4.738 
(0.571) 

0.479 
(0.762) 

(6)(1 )t tS s+ Δ  
 

35.936 
(0.691) 

0.671 
 

4.531 
(0.170) 

0.510 
(0.424) 

(9)(1 )t tS s+ Δ  
 

33.812 
(0.293) 

0.585 
 

4.372 
(0.988) 

0.557 
(0.091) 

(12)(1 )t tS s+ Δ  
 

34.379 
(0.437) 

0.708 
 

4.465 
(0.085) 

0.510 
(0.411) 

 
Notes:  See Table 1. 
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Table 4: 9-Month Ahead Recursive Forecast Error Diagnostics 
 

9|
ˆ

t tS +  MSPE 
(p-value) 

Bias MAPE 
(p-value) 

Success Ratio 
(p-value) 

tS  46.574 1.791 5.161 N.A. 
(9)

tF  
 

53.798 
(0.887) 

2.892 
 

5.370 
(0.926) 

0.526 
(0.080) 

( )( 9 )ˆˆ1 ln( / )
t t t

S F Sα β+ +  

 
54.225 
(0.471) 

2.515 
 

5.406 
(0.296) 

0.546 
(0.035) 

( )( 9 )ˆ1 ln( / )
t t t

S F Sβ+  

 
54.939 
(0.632) 

3.163 
 

5.411 
(0.452) 

0.536 
(0.026) 

( )( 9 )ˆ1 ln( / )
t t t

S F Sα+ +  55.042 
(0.725) 2.502 5.313 

(0.361) 
0.546 

(0.025) 
( )( 9 )1 ln ( / )

t t t
S F S+  

 
54.642 
(0.898) 3.017 5.403 

(0.948) 
0.526 

(0.080) 
ˆ(1 )tS α+  

 
46.107 
(0.111) 

2.090 
 

5.150 
(0.130) 

0.557 
(0.000) 

(1)(1 )t tS s+ Δ  
 

59.202 
(0.876) 

1.408 
 

5.623 
(0.342) 

0.495 
(0.611) 

(3)(1 )t tS s+ Δ  
 

51.025 
(0.658) 

1.492 
 

5.258 
(0.245) 

0.510 
(0.431) 

(6)(1 )t tS s+ Δ  
 

46.300 
(0.303) 

1.556 
 

5.116 
(0.092) 

0.595 
(0.581) 

(9)(1 )t tS s+ Δ  
 

45.428 
(0.168) 

1.581 
 

5.082 
(0.048) 

0.510 
(0.401) 

(12)(1 )t tS s+ Δ  
 

46.229 
(0.315) 

1.578 
 

5.139 
(0.109) 

0.500 
(0.516) 

 
Notes:  See Table 1. 
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Table 5: 12-Month Ahead Recursive Forecast Error Diagnostics 
 

12|
ˆ

t tS +  MSPE 
(p-value) Bias MAPE 

(p-value) 
Success Ratio 

(p-value) 
tS  65.978 2.540 5.885 N.A. 

(12)
tF  
 

77.204 
(0.898) 

4.009 
 

6.212 
(0.767) 

0.536 
(0.021) 

( )(12 )ˆˆ1 ln( / )
t t t

S F Sα β+ +  

 
78.414 
(0.523) 

3.874 
 

6.272 
(0.362) 

0.526 
(0.032) 

( )(12 )ˆ1 ln( / )
t t t

S F Sβ+  

 
84.275 
(0.768) 

4.352 
 

6.411 
(0.623) 

0.541 
(0.004) 

( )(1 2 )ˆ1 ln( / )
t t t

S F Sα+ +  76.682 
(0.710) 3.839 6.138 

(0.427) 
0.515 

(0.028) 
( )(12 )1 ln( / )

t t t
S F S+  

 
79.007 
(0.916) 4.189 6.279 

(0.789) 
0.536 

(0.021) 

,12(1 )t tS i+  
 

65.285 
(0.480) 

1.439 
 

6.018 
(0.804) 

0.582 
N.A. 

ˆ(1 )tS α+  
 

64.709 
(0.108) 

3.200 
 

5.968 
(0.269) 

0.552 
(0.001) 

(1)(1 )t tS s+ Δ  
 

71.550 
(0.282) 

2.218 
 

6.181 
(0.303) 

0.505 
(0.499) 

(3)(1 )t tS s+ Δ  
 

68.673 
(0.484) 

2.268 
 

6.056 
(0.478) 

0.490 
(0.668) 

(6)(1 )t tS s+ Δ  
 

65.632 
(0.314) 

2.321 
 

5.964 
(0.355) 

0.438 
(0.966) 

(9)(1 )t tS s+ Δ  
 

64.931 
(0.234) 

2.340 
 

5.929 
(0.274) 

0.469 
(0.816) 

(12)(1 )t tS s+ Δ  
 

64.986 
(0.238) 

2.346 
 

5.906 
(0.199) 

0.479 
(0.728) 

,12
CF
tS  

 
107.866 
(0.979) 

-4.808 
 

6.957 
(0.954) 

0.515 
(0.122) 

 
 

Notes:  See Table 1. 
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Table 6: Asymptotic p-Values for Forecast Efficiency Regressions 
 

Horizon α̂  β̂  0 : 0H α =  0 : 1H β =  0 : 0, 1H α β= =
 

3-month 
 

 
0.029 

 
1.160 

 

 
0.063 0.398 0.247 

 
6-month 

 

 
0.057 

 

 
0.766 

 
0.037 

 
0.685 

 

 
0.037 

 
 

12-month 
 

 
0.111 

 

 
0.731 

 
0.008 

 
0.777 

 

 
0.004 

 
 

Notes:   For the 3- and 6-month regressions, the sample period is 1989.4-2007.2. For the 12-month regression, the  
 sample is 1990.1-2007.2. All t-and Wald-tests have been computed based on HAC standard errors. 
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Table 7: Time Series Features of ( )h
t tf s−  

(Percent) 
 

 3 Month 12 Month

Mean 
(p-value) 

-1.12 
(0.00) 

-4.88 
(0.00) 

Mean Abs.  
Deviation 

2.72 8.89 

Max 12.3 30.1 

Min -10.1 -27.7 

Persistence 0.74 0.81 

 
Notes: The sample for the 3-month forecasts is 1983.4-2007.2; and that for the 12-month 
forecast is 1990.1-2007.2, reflecting the data constraints. The p-values of the test for a 
zero mean are based on HAC standard errors. The measure of persistence is the sum of 
the autoregressive coefficients proposed by Andrews and Chen (1994). The 
autoregressive lag order is determined using the AIC with an upper bound of 24 lags. 

 
 
 
 
Table 8: Contemporaneous Correlation of ( )h

t ts f−  and the VAR Estimate of 
the Precautionary Demand Component of Real Spot Price of Crude Oil 

(Percent) 

 

 
 

 
 
 
 
 

 
 

NOTES: Computed based on Figure 5 and the VAR estimates of the precautionary demand  
component of the spot price of crude oil in Kilian (2007).  

 
 
 
 

Horizon 1989.1-2006.12 1989.1-2003.12 
3 39.1 57.9 
6 49.7 69.9 
9 56.4 75.8 
12 61.4 79.4 
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Figure 1: Prices of Oil Futures Contracts and Spot Price of Oil 
1983.3-2007.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Source: Computed as described in the text based on daily NYMEX oil futures prices and the daily WTI spot price. 
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Figure 2: Volume of NYMEX Oil Futures Contracts 
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Source: Price-data.com 
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Figure 3: Oil Futures Spread and Foreign Exchange Futures Spread 
3-Month Horizon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTES: The interest rates are end-of-month Treasury bill rates from the Bank of England and the Federal Reserve Board.
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Figure 4a: The Effect of an Increase in Uncertainty on the  
Marginal Convenience Yield 

 

2
1 1( , )tg I σ

2
1 2( , )tg I σ

2 2
1 2σ σ<

2
1( , )tg I εσ

tI1tI −

2
1 1 2( , )tg I σ−

2
1 1 1( , )tg I σ−

2
1 2( , )g I σ∞

I∞

A

B

C

 
 

Figure 4b: The Effect of an Increase in Uncertainty on the  
Demand for Oil 
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Figure 5: ( )h
t ts f−  by Horizon 

1989.1-2007.2 
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Figure 6: 12
t ts f−  and VAR-Based Estimate of Precautionary Demand Component of Spot Price  

1989.1-2006.12 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: The spread has been scaled by -1.5 to improve the readability of the graph. Since the spread is essentially an index that transformation 
does not involve any loss of generality.
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Figure 7: Response of the Real Price of Oil to a Positive Precautionary Demand Shock  
Point Estimate with One- and Two-Standard Error Bands 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SOURCE: Kilian (2007a). The sample period is 1973.2-2006.12. The model is described in the text. 




