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Abstract

We study a market with free entry and exit of firms, who can produce a high
quality output if making a costly, but efficient, initial unobservable investment.
If there is no learning about this investment, there is an extreme ’lemons prob-
lem’ where no firm invests. Learning introduces reputation incentives such that
a fraction of entrants do invest. If the market operates with spot prices, simple
regulation can enhance the role of reputation to induce investment, mitigating
the ’lemons problem’ and improving welfare.
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1 Introduction

In many market settings, the “lemons problem” (Akerlof (1970)) is an impediment
to trade — if buyers are unable to verify the quality of the goods or services being
provided by sellers and sellers of low quality goods are free to enter the market, then
adverse selection can lead to market outcomes that are inefficient. If buyers have ac-
cess to public signals of the quality of sellers’ goods or services upon which a seller’s
reputation can be based, then sellers’ concern for their reputation is one mechanism
through which the lemons problem is mitigated.1 But does sellers’ concern for their
reputation in markets subject to a lemons problem lead to allocations that are con-
strained efficient? Can regulation of markets subject to a lemons problem enhance
the role of reputation in improving welfare? If so, what form should this regulation
take?

These questions take on added urgency in the aftermath of the 2008 financial cri-
sis. In 1963, former Federal Reserve chairman Alan Greenspan wrote ”Reputation,
in an unregulated economy, is a major competitive tool...Left to their own devices,
it is alleged, businessmen would attempt to sell unsafe food and drugs, fraudulent
securities, and shoddy buildings...but it is in the self-interest of every businessman to
have a reputation for honest dealings and a quality product”.2 Forty five years later,
in his remarks before the House of Representatives he declared ”Those of us who
have looked to the self-interest of lending institutions to protect shareholders’ equity,
myself included, are in a state of shocked disbelief”.3 So, does regulation substitute
or complement reputation forces?

In this paper we argue that, as a general matter, simple regulatory interventions in
markets subject to a lemons problem can in fact enhance market learning to foster
reputation incentives and improve welfare. We do so in a general equilibrium model
in which the production of one good is subject to an endogenous lemons problem
when traded in spot markets. We consider the possibilities for welfare enhancing
regulation under various assumptions about the information available to the regula-

1For an excellent survey of the literature on this subject, see Part IV of the book by Mailath and
Samuelson (2006).

2”The Assault on Integrity”. The Objectivist Newsletter, August 1963. See also this statement from
Goldman Sachs’ 2009 Annual Report “Our assets are our people, capital and reputation. If any of these
is ever diminished, the last is the most difficult to restore.”

3New York Times, ”Greenspan Concedes Error on Regulation”, October 24th, 2008
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tor. We find that even if a regulator has access to much less information than private
agents, simple forms of regulation can leverage reputation in mitigating the lemons
problem and thus enhance welfare.

In our model, consumers have utility over two final goods: a homogenous good that
we term the numeraire good and a final good that we term the experience good. The ex-
perience good is produced aggregating a continuum of intermediate goods of uncer-
tain quality as inputs. The lemon’s problem occurs in the market in which producers
of the experience good purchase these intermediate goods.4 Individual producers of
these intermediate goods are long-lived and have zero marginal cost of production
at each moment in time up to a capacity constraint. Entering producers of the in-
termediate good decide whether to make a costly investment of the numeraire good
to become high quality or to not make the investment and to enter with low quality.
A unit of the intermediate good provided by a high quality producer has a posi-
tive marginal product if used in the production of the experience good while a unit
provided by a low quality producer has a negative marginal product if used in the
production of the experience good. Producers of intermediate goods exit for exoge-
nous reasons at a fixed rate and can also choose to exit endogenously at a higher rate,
if it is optimal for them to do so. A steady-state in this economy has ongoing entry
and exit of intermediate good producers.

The socially optimal allocation has entry of high quality producers of intermediate
goods, each making the required initial investment of the numeraire good, until the
discounted present value of output of the marginal high quality intermediate pro-
ducer (valued at consumers’ marginal utility for the experience good) is equal to the
required initial investment of the numeraire good. There are no low quality interme-
diate producers in this allocation as these producers have a negative marginal prod-
uct. Under full information, this optimal allocation is also the equilibrium outcome
in a market in which intermediate good producers are paid a price in a spot market
equal to the marginal product of their current output valued at consumers’ marginal
utility for the experience good.

The lemons problem in this spot market arises when it is not possible to observe
if individual producers of intermediate goods have made the investment required

4Our assumption that consumers consume the experience good as an aggregate of underlying in-
termediate goods of uncertain quality simplifies the computation of equilibrium and allows us to con-
struct a straightforward measure of social welfare.
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to be high quality — it cannot be the case that all intermediate producers are paid
a positive price for their output in equilibrium or else low quality producers will
earn positive profits. In the absence of information about intermediate producers’
quality, this lemons problem leads to no production of the experience good at all in
equilibrium.

The lemons problem is mitigated if producers of the experience good have access to
a public signal of each intermediate goods producer’s quality that serves as the basis
for that producer’s reputation. In a spot market with such signals, at each moment
of time, individual intermediate producers are paid the expected marginal product
of their intermediate good valued at consumers’ marginal utility for the experience
good, where that expectation is based on the individual producer’s current reputa-
tion. The reputation at entry of a given intermediate good producer depends on the
equilibrium ratio of high to low quality entrants at the moment of entry. Intermediate
good producers’ reputations then evolve over time according to the stochastic struc-
ture of the public signals and the endogenous exit decisions of high and low quality
producers.

In equilibrium, the ratio of high to low quality entrants must be consistent with an
initial reputation at which the expected discounted payoff to entry for low quality en-
trants is zero while that for high quality entrants is sufficient to recoup these entrants’
initial investment in quality. Likewise, because exit is also free, producers choose to
cease production whenever the value of continuing with a given reputation falls to
zero. In this sense, the severity of the lemons problem in this environment is en-
dogenous. Depending on the stochastic structure and precision of the public signal,
equilibrium either features very little entry of low quality producers of the intermedi-
ate good and high level of production of the experience good, similar to the outcome
with full information, or entry dominated by low quality producers of the intermedi-
ate good and a low level of production of the experience good as in the outcome with
no information about intermediate producers’ quality.

In this paper, we characterize the steady-state equilibrium in this economy with pro-
ducers of the experience good competing to purchase intermediate goods at spot mar-
ket prices given a fixed stochastic signal structure that conveys some, but not com-
plete, information about quality and we ask whether a regulator can, through the use
of taxes and transfers, improve on the spot market equilibrium outcome.
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We find that the extent to which a regulator can improve spot market outcomes de-
pends on the information available to that regulator. We show that if the regulator
can observe intermediate producers’ reputations just as well as buyers in the market,
then he can achieve an allocation resulting in welfare arbitrarily close to the informa-
tional unconstrained first best by committing to a scheme of taxes and subsidies that
reward intermediate producers with good reputations more than the reward offered
in the spot market. In this case, regulation can virtually eliminate the lemons problem
with a combination of a fixed regulatory cost imposed each period on all active pro-
ducers of intermediate goods per period of operation and a subsidy of intermediate
producers’ profits proportional to their reputation. We show that this simple regula-
tory scheme is sufficient to drive low quality producers of the intermediate good out
of the market while, at the same time, offering high quality producers sufficient com-
pensation for their initial investment in quality to achieve a high level of production
of the experience good.

We interpret this finding as indicating that the lemons problem in this environment
is a problem of commitment, not one of information — regulation is a means of im-
plementing outcomes that could be achieved privately if buyers and sellers could
commit to long-term contracts designed to solve the underlying incentive problem.

We next ask what if a regulator has access to limited information on activity in the
market? What are the possibilities for welfare improvement here? We consider a
case in which a regulator does not observe (or cannot verify) producers’ reputations
and instead can only observe the initial entry of intermediate goods producers. In this
case, the regulator cannot use subsidies and taxes based on reputation but instead can
only contemplate transfers to or from producers of the intermediate good at entry.5

A priori, it is not clear that imposition of a regulatory fixed entry cost on interme-
diate goods producers will enhance welfare relative to the unregulated spot market
equilibrium outcome. A regulatory entry cost has two effects on the equilibrium al-
location: it alters the equilibrium mix of high and low quality producers at entry and
it alters the equilibrium level of production of the experience good. We show that
for some public signal structures, an entry cost serves not only to increase the av-
erage quality of producers in the market but also serves to expand the equilibrium

5The regulator could also consider quantitative restrictions on entry. However, the set of allocations
that can be achieved using quotas is just a subset of the set of allocations that can be achieved using
entry costs, which may also involve an increase in production.
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production of the experience good relative to the unregulated spot market outcome.
In this case, regulatory entry costs have a double benefit of raising average quality
and expanding trade and hence clearly improve welfare. For other signal structures,
however, there is a tradeoff between these two objectives — a regulatory entry cost
raises the average quality of producers in the market but reduces production of the
experience good relative to the unregulated spot market equilibrium.

Our main qualitative result is that the optimal regulatory entry cost is positive even
if the stochastic signal structure is such that the imposition of this entry cost comes at
the expense of reducing the volume of trade. This result is based on the finding that,
starting from zero entry costs, the increase in average quality of intermediate good
producers that results from a small increase in entry costs has a first order impact on
welfare while the reduction in production of the experience good has only a second
order impact on welfare.

A technical contribution of the paper is the analytical derivation of the firms’ value
functions in continuous time when exit is an endogenous choice and firms know their
type. We do this for three different processes of stochastic signals: one we term bad
news, one we term good news, and Brownian motion. This result allows the analyti-
cal comparison between entry conditions for high and low quality firms, providing
tractability in welfare comparisons across different regulation policies. Furthermore,
since in this paper types are not assumed but are the result of investment decisions,
we are able to obtain the reputation assigned to entrants and the extent of adverse
selection in the market endogenously from entry conditions. Hence the strength of
reputation incentives in the market are obtained in general equilibrium.

Literature Review

This paper is related to two strands of literature that to date have not been system-
atically connected: reputation and regulation. With respect to the reputation strand,
there is a rich literature showing the effectiveness of reputation as a disciplining de-
vice provided by the market to discourage firms’ opportunistic behavior, in partic-
ular the incentives to sell goods of poor quality. MacLeod (2007) recently provides
a survey of the literature that analyzes the importance of reputational incentives in
complementing contract enforcement to sustain discipline in markets. Mailath and
Samuelson (2001) and Tadelis (1999 and 2002) interpret reputation as a valuable asset
that modifies firms’ actions. In these models firms differ in an unobservable exoge-
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nous type and they enter at an exogenous reputation to replace those that exoge-
nously die. Relaxing this last assumption, Horner (2002), Bar-Isaac (2003) and Daley
and Green (2010) introduce endogenous exit of firms, when these firms know their
own type.

Our model departs from this literature in two relevant aspects. First, the unobserv-
able types are not assumed exogenous but are endogenously determined by the deci-
sion of otherwise identical firms. Second, we introduce free entry to endogenize the
reputation assigned to entrants, which determines in general equilibrium the level of
adverse selection in a market. From a technical viewpoint, ours is the first paper that
fully characterizes value functions with exit decisions in continuous time, when firms
know their type and have the option to exit.6 Other papers of reputation in contin-
uous time are Board and Meyer-ter Vehn (2010) and Faingold and Sannikov (2011),
however they do not consider entry and exit decisions.

With respect to the regulation strand, this paper contributes to Leland (1979), ex-
tended later by Shaked and Sutton (1981) and most notably to Shapiro (1983 and
1986), who introduce moral hazard and investment decisions in markets with asym-
metric information. Our paper also complements von Weizsacker (1980), who dis-
cusses how barriers to entry may increase welfare once we consider economies of
scale and differentiated products. More recently, Lizzeri (1999) and Albano and Lizzeri
(2001) analyze the efficiency effects of certification intermediaries, but without mak-
ing reference to reputation concerns while Garcia-Fontes and Hopenhayn (2000) fo-
cus on entry restrictions, while we allow for more general regulation possibilities and
taxing schemes.

This paper extends the discussion raised by Prescott and Townsend (1984) and Arnott,
Greenwald, and Stiglitz (1993) about whether or not, in a world with adverse selec-
tion and moral hazard, even if information imperfections cannot be corrected, gov-
ernment interventions can be Pareto improving. Here we show than in a model with
endogenous adverse selection and learning, the market outcome with spot trade be-
tween producers and buyers is not constrained Pareto optimal. However this result
does not arise from information asymmetry per se, but from the assumption that buy-
ers and sellers are unable to commit to optimal prices, which are different than spot
prices. Closely related to our paper, Klein and Leffler (1981, pp 168) find that ”mar-

6Prat and Alos-Ferrer (2010) solve similar value functions but without endogenous exit.
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ket prices above the competitive price and the presence of nonsalvageable capital are
means of enforcing quality promises.” Our paper shows how a government can en-
hance this result even further with very simple taxes and subsidies, or even optimal
entry costs. In this sense government intervention is Pareto improving only if the pri-
vate sector cannot reproduce the commitment that a government can introduce with
very simple taxes and subsidies.

Even when our paper proposes simple taxing schemes to replicate commitment, some
papers have proposed ways for the market to achieve such a commitment. Boyd and
Prescott (1986), show the relevance of large financial intermediaries as a way to allow
for a welfare improving separating equilibrium. In our case, such an intermediary
would allow an improvement on endogenous quality. Our model also gives rise to
a justification for horizontal integration to cross subsidize divisions with different
reputation, which is different than the reputational justification provided by Cai and
Obara (2009), based on eliminating idiosyncratic shocks of individual markets and
allowing firms for more sophisticated deviations.

In the next Section we describe the economy and characterize the spot market equilib-
rium for two extreme benchmarks: full information and no learning. In Section 3 we
characterize the spot market equilibrium in steady state with imperfectly informative
signals. In Section 4 we study the role of regulation in improving welfare relative to
a spot market economy under two settings, one where the regulator can observe rep-
utation, as the market does, and another where the regulator can only observe entry.
In Section 5 we obtain analytically the value functions that characterize the solutions
and provide a numerical illustration. In Section 6 we make some final remarks.

2 The Model

In this section we describe the economic environment, characterize the socially op-
timal allocation, and solve for the spot market equilibrium under two informational
benchmarks: full information, in which the quality of the producers of the intermedi-
ate goods is fully observable, and no information, in which there are no signals of the
quality of the intermediate good producers.
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2.1 The Economy

Time is continuous and denoted by t ∈ [0,∞). At each time t, consumers in this econ-
omy derive utility from the consumption of two final goods: one which we term the
experience good and one which we term the numeraire good. Let Yt denote consumption
of the experience good and Nt consumption of the numeraire good at t. Consumers’
utility is given by ∫

t

e−r̂t [U(Yt) +Nt] dt (1)

where U ′ > 0, U ′′ < 0 and r̂ is the discount factor.

At each time t, there is an endowment of 1 unit of the numeraire good. This good
is not storable. The experience good is produced with a constant returns to scale
technology that uses produced intermediate goods as the only inputs.

At each point in time t, there is a stock of “trees” in the economy that yield a flow
of the intermediate good as “fruit” at zero marginal cost. Each tree yields a flow of
one unit of the intermediate good per unit time for as long as the tree remains active.
Trees become inactive for exogenous reasons at a rate δ > 0 per unit time and can also
be rendered inactive to remove them from production. Trees that become inactive at
t cannot be returned to production at later dates.

Trees can be one of two types, high quality (H) or low quality (L), depending on an
initial investment made when the tree enters production (is planted). To plant a high
quality tree at t, an investment of C units of the numeraire good is required at that
moment. Low quality trees can be planted at zero cost at any moment. We refer to
the planting of new trees as entry.

The quality of the tree yielding a flow of the intermediate good as fruit determines
the expected productivity of those units of the intermediate good in use as an input
to produce the experience good. One unit of the intermediate good from a high qual-
ity tree contributes y(1) > 0 units of output of the experience good at the margin,
while one unit of fruit from a low quality tree yields y(0) < 0 units of output of the
experience good at the margin.7

7The assumptions of zero marginal cost of production for the intermediate good and a negative
marginal product of low quality intermediate goods are normalizations that simplify the exposition.
Assuming positive production costs and positive marginal product of low quality intermediate goods
with marginal product less than marginal cost delivers the same results but makes the equations less
straightforward.
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Let φ denote the public belief regarding the probability that a given tree is high qual-
ity. We refer to φ as the tree’s reputation. The expected output of the experience good
obtained from a unit of the intermediate good from a tree with reputation φ is denoted
y(φ) and is given by the affine function

y(φ) = φy(1) + (1− φ)y(0). (2)

The resource constraint for the experience good is then given by

Yt = y(1)mt(1) + y(0)mt(0), (3)

where mt(1) is the measure of active high quality trees at t and mt(0) is the corre-
sponding measure of active low quality trees.

We denote the flow of new trees entering at t byme
t ≥ 0. The fraction of these entrants

who invest to become high quality is denoted φet ∈ [0, 1]. The corresponding resource
constraint for the numeraire good is

Nt = 1− Cφetme
t , (4)

where Cφetme
t are the resources invested in planting high quality trees at t.

A tree entered into production of the intermediate good at t starts production with
reputation φet . As long as this tree is active, it generates signals that evolve over time
at a stochastic rate dSt. We refer to the removal of active trees from production as exit.
We denote the rate of exit of a tree of quality i = {L,H}, reputation φt and signal dSt
at t by ωit(φt, dSt) ∈ [δ,∞), where δ > 0 is the exogenous rate of exit.

The evolution of the stocks of high and low quality trees over time specified in an
allocation is required to be consistent with the initial distribution of reputations across
trees, the dynamic evolution of those reputations for high and low quality trees, and
the entry and exit rates specified in the allocation. To be concrete, we assume that at
each t, there is a measure of reputations across high quality trees νHt(φ) and across
low quality trees νLt(φ). These measures evolve over time as implied by the dynamics
of reputation specified by Bayes Rule given the stochastic signal structure dSt and the
exit rates ωit(φt, dSt).

Considering that each tree with reputation φ generates an individual signal dSt at
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time t, we define the rate of exit of trees with reputation φ at time t as

$i
t(φ) =

∫
dSt

[ωit(φ, dSt)νit(φ, dSt)]d(dSt)

where νit(φ, dSt) is the measure of trees of quality i ∈ {L,H} with reputation φ that
generates a signal dSt at moment t.

For an allocation to be feasible, we must have

mt(1) =

∫
φ

dνHt(φ), (5)

mt(0) =

∫
φ

dνLt(φ), (6)

dmt(1) = [φetm
e
t −

∫
φ

d$H
t (φ)]dt, (7)

and
dmt(0) = [(1− φet )me

t −
∫
φ

d$L
t (φ)]dt. (8)

Note that at t = 0 we assume that is is feasible to have an atom of entry allowing for
an immediate increase in either m0(1) or m0(0) or both.

An allocation in this environment is a sequence of consumption of the experience and
numeraire good for the representative household {Yt, Nt}, rates of entry of trees and
initial reputations for entrants {me

t , φ
e
t}, exit rates {$i

t(φ)} and reputational distribu-
tion {νit(φ)} for i = {L,H}, and corresponding measures of active high and low qual-
ity trees {mt(1),mt(0)}. An allocation is feasible if it satisfies the final good resource
constraints (3) and (4) and the constraints on the evolution of the stocks of high and
low quality trees (5)-(8).

2.2 Signal Structures and Reputation

In what follows, we consider five signal structures on which reputation can be based,
which we term full information, no information, bad news, good news, and Brownian mo-
tion. We define these signal structures here.
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Under full information, there is an immediate, perfect signal of agents’ quality so that
the reputation of a high quality tree jumps to φ = 1 immediately upon entry while
that for a low quality tree jumps to φ = 0 immediately upon entry.

Under no information, there are no signals so that the reputation of a tree entered into
production with reputation φet evolves over time only if the exit rates for different
quality trees differ.

In the bad news case, if the tree is of low quality, a signal that reveals that quality
arrives at rate λ > 0. No such signal can arrive if the tree is high quality.

In the good news case, the assumption is reversed — if the tree is of high quality, a
signal that reveals that quality arrives at rate λ > 0. No such signal can arrive if the
tree is low quality.

Finally, in the Brownian Motion case, signals about tree’s quality arrive continuously.
Specifically,

dSt = µidt+ σdZt, (9)

where i = {L,H}, St is a Brownian motion with drifts that depend on the tree’s type
µH > µL and the noise σ is the same for both types.

We interpret the signals in the bad news, good news, and Brownian motion cases
as public signals of the quality of each tree. These signals might be interpreted as
ratings in some widely published guide derived from either specialized testing or
noisy surveys of past customers’ experiences with the intermediate good obtained
from each tree. Under this interpretation, past buyers of the intermediate good from
a particular tree have more precise information about that tree’s quality from their
past consumption experience, but this experience is not fully revealed by a survey.

Alternatively, one might interpret the signals as reflecting a noisy outcome of pro-
duction of the experience good with the intermediate output supplied by a particular
tree. Then, we can interpret St as the cumulative output of the experience good from
the fruit of a particular tree from the time that the tree was originally planted. Since
there is a continuum of trees, it is possible to construct noisy production processes
that fulfill the resource constraint for the experience good in equation (3) for all our
signaling structures.
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2.3 A Spot Market Equilibrium

We now consider the equilibrium allocation in a market in which the owners of trees
sell the intermediate goods obtained as fruit from their trees to producers of the expe-
rience good at each time t at a spot market price pt(φ) that depends on the reputation
of the tree. We assume that this spot market price is equal to the expected value
of the marginal product for the intermediate good, with expectations based on the
reputation of the tree. This expected value of the marginal product has two compo-
nents: the relative price of the experience good with respect to the numeraire good
and the expected marginal product of the intermediate good from a tree with a given
reputation, y(φ) from equation (2).

We assume the experience and numeraire final goods are transacted at spot prices in
each moment t. We denote this relative price by Pt. In equilibrium, this price of the
experience good relative to the numeraire good is given by the marginal utility of the
experience good:

Pt = U ′(Yt). (10)

Then, the spot market price at t in units of the numeraire good, for a unit of the inter-
mediate good from a tree that is believed to be of high quality with probability φ is
given by

pt(φ) = y(φ)Pt. (11)

Given that trees produce a flow of one unit of the intermediate good as fruit at zero
marginal cost, the spot market prices pt(φ) also correspond to the flow of profits from
an active tree with reputation φ at t. Given a specified signal structure and exit rates
for high and low quality trees with reputation φ, the owner of an active tree of quality
i = {L,H} expects a discounted present value of profits at spot market prices denoted
by Wit(φ) and given by

Wit(φt) = max {0, πt(φt)dt+ (1− rdt)Et (Wi,t+dt(φt+dt)) |i, φt} . (12)

In a spot market equilibrium, we require that entry for both high and low quality
trees have non-positive profits, i.e.:

WHt(φ
e
t )− C ≤ 0, (13)
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with equality if φetme
t > 0, and

WLt(φ
e
t ) ≤ 0, (14)

with equality if (1− φet )me
t > 0.

Also, as required in equation (12) active trees continue in production if they have
positive profits and exit if they have negative profits, that is, ωit(φ) = δ if

Wit(φ) > 0, (15)

and ωit(φ) = 1 if Wit(φ) < 0 for i = {L,H}.

A spot market equilibrium is a feasible allocation together with prices {Pt, pt(φ)} consis-
tent with (10) and (11), value functions {Wit(φt)} consistent with (12) and the specified
exit rates that satisfy the optimality conditions on entry and exit from (13)-(15).

A steady-state spot market equilibrium is a spot market equilibrium in which all prices
and quantities are constant over time.

In the next two subsections, we solve for the steady-state spot market equilibrium un-
der two extreme informational benchmarks: full information and no information. We
show that under full information, the socially optimal allocation can be implemented
as a spot market equilibrium while under no information, there is no production of
the experience good in a steady-state spot market equilibrium.

2.4 Full Information Benchmark

We now show that the socially optimal allocation can be implemented as a spot mar-
ket equilibrium outcome.

It is straightforward to characterize the socially optimal allocation in the full infor-
mation case. We have that the measure of reputation across trees has mass mt(0) on
φ = 0 and mt(1) on φ = 1, with no trees with intermediate reputations. The evolution
of the stocks of trees (7) and (8) is given by

dmt(1) = [φetm
e
t − ωHt (1)mt(1)]dt, (16)

and
dmt(0) = [(1− φet )me

t − ωLt (0)mt(0)]dt, (17)

14



since$H
t (1) = ωHt (1)mt(1) and$L

t (0) = ωLt (0)mt(0) in this extreme case with a perfect
and immediate signal about the quality of the tree.

Clearly, since the output of a tree known to be low quality is expected to subtract
from production of the experience good (y(0) < 0), it is optimal to set ωLt (0) = 1 and
φet = 1. Likewise, since an existing tree known to be of high quality can contribute y(1)

to production of the experience good at zero cost as long as it continues in production,
it is optimal to set ωHt (1) = δ, its minimum value. These results then characterize the
optimal exit decisions.

Now consider the optimal level of entry of high quality trees. The marginal social
cost, in terms of utility, of creating a new tree at t with probability φet = 1 of being
high quality is given by C while the marginal benefit is given by∫

s≥0

e−rsU ′(Yt+s)y(1)ds,

where r = r̂ + δ is the effective discount rate taking into account the exogenous exit
rate δ. An allocation with constant consumption of the experience good is optimal at
level Yt = Ȳ where

y(1)U ′(Ȳ ) = Cr. (18)

Therefore, there is an optimal stock of high quality trees in steady-state determined
by equation (3), m̄(1) = Ȳ /y(1).

The optimal choice of entry me
t is a dynamic choice. Because utility is quasi-linear, if

y(1)m0(1) is less than this optimal level Ȳ , the regulator creates an atom of new high
quality trees at t = 0 to attain the optimal stock m̄(1) of high quality trees immediately.
If y(1)m0(1) exceeds this optimal level, the regulator creates no new trees until the
stock of existing high quality trees has depreciated down to this level at rate δ. Once
this optimal stock of high quality intermediate goods trees is attained, the regulator
chooses a flow of new trees me = δm̄(1) to maintain the stock at a constant level.

The value function associated with a high quality tree in the socially optimal alloca-
tion is

WHt(1) =

∫
s≥0

e−rsy(1)U ′(Yt+s)ds > 0
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while that associated with operating a low quality tree is

WLt(0) = 0.

This last result follows from the assumption that y(0) < 0, so it is always optimal
to remove a low quality tree from production as rapidly as possible. Note also that
WHt(1) = C whenever there is positive entry and WHt(1) < C in the transition to
steady-state from above when there is no entry.

Clearly, the spot market prices implement the value functions above and hence the
optimal allocation, characterized by entry of high quality trees, φe = 1, and high
production of the experience good, Ȳ .

2.5 No Information Benchmark

In contrast to the full information case, in the extreme case of non-observable invest-
ment and no signals from which to learn, the adverse selection problem associated
with free entry of low quality trees is so severe that there is no production of the
experience good in steady-state.

This result follows from the observation that it is impossible to offer high quality
producers of the intermediate good a positive price for their good without attracting
unbounded entry of low quality trees. With no dependence of the public signal on
the quality of the tree, reputation for high and low quality trees will not change over
time if both types of trees have the same exit rates ωit(φ). Likewise, both types of
trees will have the same exit rates if reputation does not evolve because, if reputation
does not evolve, then they both expect the same profits, that is, WHt(φ) = WLt(φ).
Of course, this equality of value functions means that it is impossible to satisfy the
entry condition for high quality trees (13) as an equality (with positive entry of high
quality trees) without violating the entry condition (14) for low quality trees. As a
result, there can be no positive production of the experience good once the initial
stock of high quality trees dies out. Thus, the optimal steady-state allocation with no
information has Y = 0.
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3 Reputation with Imperfectly Informative Signals

In this section, we establish a procedure to construct steady-state spot market equi-
librium allocations and prices when we assume that public signals about each inter-
mediate goods producing tree are revealed over time as long as the tree continues
in operation, so that it is possible for experience goods producers to learn over time
whether a given tree has invested in quality or not upon entry. We focus on three
specific stochastic processes for the signals: the bad news case, the good news case,
and Brownian motion.

We solve for the steady-state spot market equilibrium for these three signal struc-
tures by solving explicitly for the value functions (describing the discounted expected
value of profits) of high and low quality trees. Before we delve into the specifics of
the solution to the model under these different signal structures, it is useful to con-
sider the basic features of equilibrium allocations when the economy has reached a
steady-state. Once these basic features are laid out intuitively, it will be clear what
technical results are needed to give more rigorous foundations to our analysis.

In a steady-state, the allocation, prices, and value functions are constant over time. To
keep the notation simple, we suppress the time subscript. If p(φ) is the steady-state
spot market price for intermediate goods based on reputation and Y is the steady-
state production of the experience good, we find it useful to define prices q(φ) nor-
malized by the marginal utility of the experience good

q(φ) = p(φ)/U ′(Y ),

so q(φ) = y(φ) in a spot market with no regulations. Likewise, it is useful to define
value functions for high and low quality trees VH(φ) and VL(φ) normalized by the
marginal utility of the experience good, for i = {L,H}

Vi(φ) = Wi(φ)/U ′(Y ).

Assume that reputation is updated using Bayes’ rule, both based on signals and con-
tinuation decisions. Using the normalized spot prices q(φ) and value functions VH(φ)

and VL(φ) with certain basic properties, we characterize the steady-state allocations
implemented by those spot prices and in Section 5, we show that, for the bad news,
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good news, and Brownian motion cases, these allocations generate value functions
with the assumed properties.

It is important to highlight at this point that there may be equilibria with different
allocations, but only based on specific and arbitrary off-equilibrium beliefs. For ex-
ample, if producers of the experience good believe that high quality trees always
exit, regardless of their reputation, then the market would cease to exist. This type
of equilibrium satisfies the Cho and Kreps (1987) intuitive criterion because the only
difference between the two types of trees is their productivity, and then spot prices
only depend on reputation, so that arbitrary extreme beliefs have exactly the same
effect on the price for both types of tree.

The equilibrium allocations described in the next Proposition are based on the natural
restriction that reputation contingent on continuation is non-decreasing in the repu-
tation prior. In other words continuation should constitute a positive signal about the
tree’s type. However, there still be multiplicity when imposing such a monotonic-
ity on beliefs. Loosely, at relatively low reputation levels, high quality trees’ con-
tinuation depends on what buyers believe about their continuation strategy. Hence
different equilibria may be sustained by different off-equilibrium beliefs, even when
restricting attention to monotonic beliefs non-decreasing in the reputation prior.

Bar-Isaac (2003) shows that in discrete time there is a unique limit of equilibria among
a class of equilibria that satisfies the restriction of monotonicity on beliefs. The unique
limit is obtained by imposing an arbitrarily high upper bound on the exit probability.
This bound allows to eliminate in the limit the off-equilibrium beliefs that generate
the multiplicity.

However this refinement cannot be used when signals are unbounded, such as is
the case under Brownian motion. As we will show next, exit strategies should com-
pensate potentially negative unbounded signals, and hence exit cannot be bounded.
However, with a continuum and unbounded signal structure, the potential multiplic-
ity problem only arises exactly at reputation φ = 0, which implies that effectively the
next Proposition describes a limit unique equilibrium among the class of equilibria
with monotonic beliefs non-decreasing in the reputation prior.
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Proposition 1 Steady-state spot market equilibrium.

Assume normalized spot market prices q(φ) = y(φ) and corresponding normalized value
functions VH(φ) and VL(φ) that satisfy the following two conditions:

(a) Vi(φ) are both continuous and non-decreasing on φ ∈ (0, 1), with Vi(ε) = 0 for some
ε > 0 and limφ→1 Vi(φ) > 0.

(b) Let φ̄ be the largest value of φ such that VL(φ̄) = 0. We refer to φ̄ as the exit threshold.
Assume VH(φ) > VL(φ) for all φ ∈ [φ̄, 1) and VH(1) = VL(1).

The steady-state normalized spot market equilibrium implemented by q(φ) is characterized by
the following four results:

(i) There is entry of some low quality trees, (φe < 1),

(ii) Reputations of all active trees in steady state are in the interval [φ̄, 1]. High quality trees
always strive to remain active, i.e. ωH(φ) = δ. Low quality trees randomize exit with a
probability ωL(φ) ∈ [δ, 1], proportional to the signal dSt, such that their reputation, if
they remain active, does not fall below the exit threshold φ̄.

(iii) The steady-state equilibrium entry reputation equals the exit threshold: φe = φ̄

(iv) The steady-state equilibrium level of production of the experience good Y satisfies

VH(φe)U ′(Y ) = C. (19)

Proof To prove (i) observe that φe = 1 is an absorbing reputation, hence VH(1) = VL(1)

and thus we cannot satisfy the incentive constraints (13) and (14) at φe = 1.8

To prove (ii), note first that φ̄ ∈ (0, 1) is well-defined, which follows from properties
(a) of the value functions. From property (b), we have VH(φ) > 0 on [φ̄, 1) while
VL(φ) > 0 on (φ̄, 1) and equal to zero at φ̄.

Suppose both low and high quality trees only exit exogenously, this is ωH(φ, dS) =

ωL(φ, dS) = δ regardless of their signal dS. In equilibrium, φ evolves following a

8Note that we do not require continuity of the value functions at φ = 1. VL(φ) is not continuous at
1 in the bad news case.
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Bayes’ rule purely based on signals for all reputation levels. Denote this ”naive”
reputation updating φ̂.

φ̂t = Pr(H|St) =
φePr(St|H)

φePr(St|H) + (1− φe)Pr(St|L)
.

The continuity of updating and q(φ) increasing in φ imply that VL(φ̂) < VL(φ̄) = 0

for all φ̂ < φ̄. In this case, given equation (12), the best reaction of low quality trees
is to exit as soon as signals push their reputation below φ̄ (this is, ωL(φ, dS) = 1 if
the update is φ̂t(φe, St) such that φ̂ < φ̄, or which is the same Pr(Contt|St, L) = 0).
Assuming that high quality trees in the same situation choose to exit less likely (just
to guarantee the assumption of belief monotonicity), the Bayesian updating that also
considers exit decisions is

φt = Pr(H|St, Contt)

=
φePr(St|H)Pr(Contt|St, H)

φePr(St|H)Pr(Contt|St, H) + (1− φe)Pr(St|L)Pr(Contt|St, L)
.

However, when the signal St pushes the reputation of a tree φ̂t below φ̄ and low
quality trees exit for sure (i.e., Pr(Contt|St, L) = 0), the updating rule implies that
reputation jumps from φ̂t to 1 instantaneously. In this case low quality trees always
prefer to continue since they enjoy a perfect reputation instantaneously. As discussed
earlier, this does not constitute an equilibrium.

Hence, low quality trees with reputation φ < φ̄ exit randomly at a rate ωL(φ, dS),
exactly proportional to the signal realization dS, such that reputation jumps from
φ < φ̄ to φ̄ instantaneously following continuation, and then VL(φ) = VL(φ̄) = 0 for all
φ < φ̄.9 Zero value functions for φ < φ̄ imply that low quality trees are indeed willing
to randomize continuation in the range of reputation φ ∈ (0, φ̄]. Exactly at φ = 0,
reputation is an absorbing state, regardless of the signals or exit decisions. Since both
high and low quality trees have incentives to exit, their decisions ultimately depend
on off-the-equilibrium beliefs.10

9When signals follow a Brownian motion, Pr(St|i) is unbounded. As Pr(St|H) → 0 with respect
to Pr(St|L), we require a continuation strategy Pr(Contt|St, L)→ 0 to maintain reputation at φ̄, then
the exit rate cannot be bounded as in Bar-Isaac (2003).

10It is possible to bound reputation away from φ = 0 introducing an arbitrarily small probability that
low quality trees become high quality. As in Mailath and Samuelson (2001), this technical assumption
eliminates the potential discontinuity of strategies at exactly φ = 0.
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From property (b), VH(φ) = VH(φ̄) > 0 for all φ ∈ (0, φ̄], which implies that high
quality trees always want to continue (this is, ωH(φ, dS) = δ for all φ and all dS). These
continuation strategies in equilibrium imply that effectively no tree in the market will
hold a reputation below φ̄. Any tree that is pushed by signals to a region φ < φ̄ and
still continues, experiences an instantaneous jump of reputation up to φ̄.

Result (iii) follows from the condition (14) that low quality trees earn zero profits in
equilibrium and the previous result that the only reputation sustainable with such a
value is φ̄.

Result (iv) follows from taking the difference between (13) and (14) evaluated as
equalities, given VL(φe) = VL(φ̄) = 0. Q.E.D.

These four results are very useful in helping us characterize a steady state spot market
equilibrium with imperfectly informative signals. From result (i), we have that it is
impossible to attain the full information first best. We show below, however, that
if the regulator observes reputations and can modify payments q(φ) based on those
reputations, then it is possible to implement allocations in the steady-state that are
arbitrarily close in terms of welfare to the full information allocation.

Results (ii − iv) provide us with a procedure to construct steady-state spot market
equilibrium allocations in a fairly simple manner as follows:

Take prices q(φ) as given. First solve for the exit threshold φ̄ by computing VL(φ)

for φ ≥ φ̄ and finding the fixed point at which VL(φ̄) = 0. To do this, one must
compute the evolution of reputations for low quality trees using Bayes Rule taking
the no exit decisions for φ > φ̄ as given. We derive the analytical solution for these
value functions in our three informational cases in Section 5 below.

Once one has found the exit threshold φ̄, one can solve for VH(φ) for φ ≥ φ̄ in a
similar manner. At this point, one can verify that these value functions have the
required properties for proposition 1. We have the entry reputation φe = φ̄ and solve
for steady-state output Y from (19).

Given φ̄, φe, and Y , one then constructs the rest of the steady-state allocation by find-
ing the entry rate me that will induce a steady state distribution of active high and
low quality trees m(1) and m(0) needed to produce Y . The steady-state value of N is
then found from the resource constraint for the numeraire good.
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We now use this construction procedure to show that the lemons problem that arises
with imperfectly informative signals leads to a reduction in the output of the experi-
ence good relative to the full information steady-state.

Proposition 2 Comparison of equilibrium outcome with full-information benchmark.

The steady-state level of experience good output when signals about trees’ quality are not
perfectly informative is lower than that in the full information benchmark. That is Y < Ȳ .

Proof Regardless of the information structure VH(1) = y(1)/r. Using (18) from the
full information benchmark, this implies that the first best level of experience good
production is given by VH(1)U ′(Ȳ ) = C.

With imperfectly informative signals, from result (iii) in Proposition 1, the fraction of
high quality trees that enter is equal to the lowest level of reputation sustained by the
market, this is φe = φ̄. From result (iv) in Proposition 1, the output of the experience
good is given by VH(φ̄)U ′(Y ) = C. Since VH(φ̄) < VH(1), then Y < Ȳ . Q.E.D.

As we see from this proof, although reputation mitigates the lemons problem and al-
lows for some positive production of the experience good (relative to the no-information
benchmark), the need for high quality trees to endure lower profits after entry as they
accumulate a good reputation constrains efficient production.

4 Regulation with Imperfectly Informative Signals

We now use this procedure for constructing the steady-state spot market equilibria
to study the role of regulation in improving welfare relative to a market economy
with reputation based on imperfectly informative signals. We examine the extent to
which regulation can improve on welfare in the spot market outcome with reputation
under alternative assumptions about what a regulator can observe. We begin with the
assumption that the regulator can condition taxes and transfers on reputations, and
hence control the equilibrium normalized prices q(φ). We then relax this assumption
and consider whether a regulator can improve welfare if the regulator cannot alter
the spot market prices (so q(φ) = y(φ)) and instead can only charge regulatory entry
costs F rebated lump-sum to consumers.
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4.1 Regulation with Policies Conditioned on Reputation

In the case that the regulator can condition payments on reputation, we show that
simple linear transfers of the form

q(φ) = b(y(φ)− a)

for given a and b are sufficient to implement an allocation that achieves steady-state
welfare arbitrarily close to that achieved in the full information first best allocation.

We show this result by construction adapting the constructive procedure used in Sec-
tion 3. In Section 3, we presented a constructive procedure for finding the steady-state
spot market equilibrium and in section 5 we solve explicitly for the value functions for
the bad news, good news, and Brownian information cases. Our constructive proce-
dure and the method we use in Section 5 to solve for the normalized value functions
corresponding to given normalized prices {q(φ)} are both valid under the assump-
tions that these prices q(φ) are linear and increasing in φ. We now use this procedure
to establish our result that a regulator who can use taxes and transfers to alter the
slope and intercept of q(φ) can implement a steady-state spot market equilibrium al-
location with regulation achieving welfare arbitrarily close to the first best.

Let Ȳ and N̄ denote the full information optimal steady-state levels of consumption
of the experience and numeraire good. We then have the following proposition

Proposition 3 Optimal regulation with policies based on reputation.

A regulator who is able to make policies based on reputation to implement normalized prices
of the form

q(φ) = b(y(φ)− a)

can implement a steady-state allocation with Y = Ȳ and N = N̄ − ε for any ε > 0.

Proof To prove this proposition, first observe that a regulator can, with a choice of
b = 1 and a arbitrarily close to y(1) ensure that the solution to the equation VL(φ̄) = 0

occurs at φ̄ arbitrarily close to 1. Second observe that the regulator does not alter
the solution for φ̄ by choosing an alternative value of b > 0. This follows because
the reputation of active trees remains in the interval [φ̄, 1] and hence multiplying the
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rewards to reputations by alternative values of b simply scales the value function
VL(φ) on this interval by b, leaving the exit threshold unchanged. Third, observe that
multiplying the rewards to reputations by alternative values of b also scales the value
function VH(φ) on the interval [φ̄, 1] by b. Since VH(φ̄) > 0 when b = 1, the regulator
has complete control over the value of VH(φ̄) with the appropriate choice of b.

To prove our proposition, have the regulator choose b so that (19) is satisfied at Ȳ .
The corresponding value of φeme needed to produce Ȳ is slightly higher than in the
full-information, first-best case because there is a small fraction (less that φe) of low
quality active trees in steady-state detracting from the output of the experience good.
Specifically, under full information, the steady-state measure of high quality trees is
m(1) = Ȳ /y(1), so the rate of entry of high quality trees is δȲ /y(1) and the associated
consumption of the numeraire good is N̄ = 1 − CδȲ /y(1). In the equilibrium with
regulation described here, because a fraction (1− φ̄) of entering trees are low quality
in steady-state, there is a fraction of all active trees that is low quality, where this
fraction is positive but bounded above by 1− φ̄. Denote the equilibrium steady-state
ratio of low to high quality trees by m̄(0)/m̄(1). From the resource constraint for the
experience good (3) in steady-state, to produce output Ȳ there must be a stock of m̄(1)

high quality trees given by

m̄(1) =
Ȳ

y(1) + y(0)m̄(0)/m̄(1)
,

and a steady-state entry rate of high quality trees of φeme = δm̄(1) is required to
maintain that production. As a result of this required elevated rate of entry of high
quality trees, N = 1 − Cδm̄(1) is slightly below N̄ as more of the numeraire good
needs to be spent on planting high quality trees. The gap between N and N̄ can be
made arbitrarily small by choosing a to set φ̄ as close to one as is required to drive
m̄(0)/m̄(1) sufficiently close to zero. Q.E.D.

We interpret this proposition as indicating that the lemon’s problem in this economy
is one of commitment rather than one of information. The lemon’s problem arises
because the competitive market prices based on the spot gains to trade between a
buyer and a seller do not offer sufficient rewards to reputation to ensure high quality.
There is a welfare gain to be achieved here if buyers are able to commit to pay prices
that reward good reputation or punish poor reputation.
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In some environments, it may be possible to achieve such commitment through long-
term contracts between buyers and sellers. If a contract between a buyer and seller
with prices based on reputation can be enforced, then the two parties can, with an
appropriate choice of parameters a and b, design an incentive contract the ensures that
the vast majority of sellers entering into the contract do indeed make the investment
to be high quality. Here we interpret the relationships between the buyers and sellers
of intermediate goods as one-shot or short lived and hence long-term contracts are
not feasible. In this case, taxation is a substitute for missing private capabilities to
commit.

Remark on the regulator observing reputations: Note that if the experience good
is sold as a final good in the market, then it is not strictly necessary for a regulator
to observe reputations of intermediate producers. The regulatory scheme proposed
here can be implemented simply with a fixed operating cost imposed on active inter-
mediate good producers of ab per unit of time, combined with a subsidy to final sales
of the experience good of (b− 1). This subsidy will alter the spot market normalized
price of the intermediate goods as required in the proposition. Here though we have
not introduced additional margins that might be distorted by such a tax and subsidy
scheme and hence we consider a regulator with more limited instruments in the next
section.

Remark on non-Markov transfers: One can also see immediately that our assump-
tion that transfers are based on reputation rather than the full history of signals for
each tree is restrictive. With transfers conditioned on reputation, the standard result
that a reputation of φ = 1 is an absorbing state implies that VL(1) = VH(1) so it is
impossible to have only high quality trees enter (φe = 1). We can get arbitrarily close
to having only high quality trees enter, but not all the way there.

In contrast, if we allowed the regulator to make transfers based on the full history
of signals of quality associated with each tree, then, for a wide range of stochastic
signal structures, the regulator could implement an allocation with φe = 1. This re-
sult follows if the distribution of signal histories for low and high quality trees differs
sufficiently such that over time, arbitrarily precise statistical tests of tree quality can
be performed given long-enough realized signal histories. A transfer scheme that
backloads payments to trees and conditions them on this statistical test of signal his-
tories can then reward the investment of a high quality tree and (with an entry cost
F > 0) and, at the same time, deter entry by low quality trees by leaving them with
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strictly negative expected profits upon entry. This is not possible with transfers that
are Markov in reputation because buyers ignore further signals of quality once φ = 1.

4.2 Regulation with Policies not Conditioned on Reputation

We now relax the assumption that the regulator has access to the same information
as private agents and hence can condition transfers on reputation. Instead, we con-
sider the alternative social planning problem in which the regulator takes as given
that transfers to active trees are given by the spot market prices q(φ) = y(φ) and
the regulator can only use fixed regulatory entry costs F (rebated lump-sum to con-
sumers) to influence steady-state welfare. We show below that for the three infor-
mation structures that we consider, it is always possible for the regulator to improve
on the steady-state spot market outcome with no regulation by choosing a strictly
positive fixed regulatory entry cost F > 0.

We saw above that when a regulator has the ability to condition policies on reputa-
tion, he can raise the average quality of trees at entry and the overall level of pro-
duction of the experience good arbitrarily close to their levels in the full information
first best steady-state outcome by distorting the spot market prices. In contrast, when
the regulator cannot condition transfers on reputation and instead has access only to
fixed regulatory entry costs, he cannot independently control both average quality
and the scale of production. This is because now we restrict the regulator to have ac-
cess just to a single regulatory instrument. We now extend our procedure to compute
steady-state spot market equilibria to allow for fixed regulatory entry costs.

Proposition 4 Steady-state spot market equilibrium with positive regulatory entry costs.

Assume that there exists a feasible steady state allocation implemented as a steady-state spot
market equilibrium by prices q(φ) strictly increasing in reputation and corresponding value
functions VH(φ) and VL(φ) that satisfy the conditions in Proposition 1.

Assume there are fixed regulatory entry costs F > 0. Results (i), (ii) from Proposition 1 still
hold, while results (iii) and (iv) change to,

(iii′) The steady-state equilibrium entry reputation φe satisfies

VL(φe)

VH(φe)
=

F

C + F
. (20)
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(iv′) The steady-state equilibrium level of production of the experience good Y satisfies

(VH(φe)− VL(φe))U ′(Y ) = C. (21)

Proof The proof follows trivially from the entry conditions with fixed regulatory en-
try costs F .

WL(φe) ≡ VL(φe)U ′(Y ) = F

WH(φe) ≡ VH(φe)U ′(Y ) = C + F.

Result (i) from Proposition 1 does not change because φe = 1 is still an absorbing
reputation, independent of F . Result (ii) from Proposition 1 does not change because
fixed entry costs only affect entry conditions and not exit conditions. Results (iii′)

and (iv′) follow trivially from taking the ratio and difference of the entry conditions
with fixed regulatory entry costs. Q.E.D.

From result (iii′) in Proposition 4, we see that fixed entry costs determine the repu-
tation of entrants φe through the ratio of the value functions VL(φe)/VH(φe) and then,
from result (iv′) in that proposition, the steady-state scale of production of the expe-
rience good Y through the difference of the value functions VH(φe) − VL(φe). Thus,
the impact of a fixed entry cost F on average quality at entry and the scale of produc-
tion Y depends on the properties of the ratio and the difference of the value functions
Vi(φ) as φ changes under different information structures. We show that, depending
on the information structure, an increase in the fixed cost F can increase both en-
try quality and production of the experience good Y (bad news), or it can increase
entry quality and decrease production of Y (good news), or a combination of these
two, first increasing entry quality and production and then further increasing quality
but decreasing production (Brownian motion). The quantitative solution to the social
planning problem in these different cases will clearly depend on the specific shape of
these value functions. We show as a qualitative result, however, that in all of these
cases, the optimal fixed regulatory entry cost is strictly positive.

We now present a characterization of the value functions VL(φ) and VH(φ) for the bad
news, good news, and Brownian motion cases with profits of trees given as a linear
function of reputation, which applies to the spot market since spot market prices
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q(φ) = y(φ) are linear in reputation. We derive analytically the value functions for all
these cases, and prove these properties in Section 5.

Proposition 5 Properties of value functions with linear profits and bad news.

• Conditions (a) and (b) of Proposition 1 hold.

• The ratio VL(φ)
VH(φ)

is increasing in φ for φ > φ̄.

• The difference VH(φ)− VL(φ) is increasing in φ for φ > φ̄.

Proposition 6 Properties of value functions with linear profits and good news.

• Conditions (a) and (b) of Proposition 1 hold.

• The ratio VL(φ)
VH(φ)

is increasing in φ for φ > φ̄.

• The difference VH(φ)− VL(φ) is decreasing in φ for φ > φ̄.

• ∂VH(φ̄)
∂φ

= ∂VL(φ̄)
∂φ

= 0.

Proposition 7 Properties of value functions with linear profits and Brownian motion.

• Conditions (a) and (b) of Proposition 1 hold.

• The ratio VL(φ)
VH(φ)

is increasing in φ for φ > φ̄.

• The difference VH(φ) − VL(φ) is increasing from φ̄ to φ∗ and decreasing from φ∗ to 1,
where φ∗ is characterized by ∂VH(φ∗)

∂φ
= ∂VL(φ∗)

∂φ
.

• ∂VH(φ̄)
∂φ

= ∂VL(φ̄)
∂φ

= 0.

These propositions imply that in all three cases, bad news, good news, and Brownian
motion, with linear profits, the value functions satisfy the conditions (a) and (b) in
Proposition 1 we need for our construction of the unique steady-state spot market
equilibrium. Also, in all three of these cases with different stochastic signal structures,
we have that the ratio VL(φ)/VH(φ) rises monotonically from zero to some positive
number (1 in the case of good news and Brownian motion, something less than one
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in the case of bad news). Thus, from result (iii′) in Proposition 4, a regulator can
implement any entry reputation φe ≥ φ̄ desired with an appropriate choice of F ≥ 0.
From result (iv′) in Proposition 4, however, we see that the regulator does not have
independent control of the scale of production of the experience good Y — a choice
of F pins down φe and thus also pins down Y . Thus, a regulator potentially faces a
conflict in choosing F between increasing average quality at entry φe and encouraging
production of the experience good Y . Recall from proposition 2 that the steady-state
spot market equilibrium has production of the experience good below that in the full
information first best, so the regulator would like to improve both average quality at
entry and output of the experience good if possible.

The trade-off that a regulator faces between the average quality of entrants and the
equilibrium level of production of the experience good depends on the details of the
signal process. From Proposition 5, we see that in the case of bad news, the regulator
does not face a direct conflict between the objectives of increasing quality at entry
φe and increasing production of the experience good Y . This follows from the result
that both the ratio VL(φ)/VH(φ) and the difference VH(φ) − VL(φ) are increasing in φ

for φ > φ̄. Thus, a regulator who increases F increases φe and Y simultaneously. In
this case the regulator wants to increase F to drive φe arbitrarily close to 1. (Note
that in the bad news case limφe→1 VL(φe)/VH(φe) < 1 so that this is achieved with a
finite value of F .) From Proposition 5, we have that Y increases as φe increases and
from Proposition 2 we have that Y remains below Ȳ for all values of φe. Hence, in the
bad news case, a policy of increasing the entry cost F to drive the average quality of
entrants φe towards one is always welfare improving.

From Proposition 6, we see that in the case of good news, the regulator does face a
direct conflict between the objectives of increasing quality φe and increasing produc-
tion of the experience good Y . This follows from the result that the ratio VL(φ)/VH(φ)

is increasing and the difference VH(φ) − VL(φ) is decreasing in φ for φ > φ̄. Thus, a
regulator who increases F > 0 increases φe but reduces Y simultaneously.

Likewise, from Proposition 7, we see that in the case of Brownian motion, the regula-
tor may face a direct conflict between the objectives of increasing quality at entry φe

and increasing production of the experience good Y . If φ̄ < φ∗, then VL(φ)/VH(φ) and
the difference VH(φ) − VL(φ) are increasing in φ for φ ∈ (φ̄, φ∗) while VL(φ)/VH(φ) is
increasing and the difference VH(φ)− VL(φ) is decreasing in φ for φ ∈ (φ∗, 1).
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Still, our main qualitative result is that for all three information structures and all
parameters values, positive entry costs F > 0, improves welfare relative to the steady-
state spot market outcome. We establish this result in the next two propositions. We
first show that an increase in the fraction of trees that invest at entry in steady state φe

increases the average quality of high quality trees in steady-state. We use this result
in the second proposition to establish that a higher steady-state average quality of
trees at entry (φe) allows for a given level of steady-state production of the experience
good with a smaller flow of investment of the numeraire good.

Proposition 8 The average quality of trees in steady-state increases with the quality at entry.

Assume there is a constant flow of me trees entering the market. The aggregate output of the
experience good Y obtained in steady-state increases with the fraction of high quality trees
that enter, φe.

Proof Assume, without loss of generality, that me = 1. First it is important to note
that, if exit were only exogenous, then this would be trivial since we would have in
steady-state that the portion of high quality trees was always φe and that of low qual-
ity trees (1−φe) and hence output would be Y = y(φe)/δ which is clearly increasing in
φe. With endogenous exit of low quality trees, however, we have that the steady-state
fraction of high quality trees is greater than φe and is endogenous to φe.

The strategy of the proof is to show the proposition holds when the interest rate is
r̂ = 0, and then extend the argument for r̂ > 0.

Assume r̂ = 0. If we have a constant flow of 1 tree per instant enter with φe of that
flow being high quality trees and (1 − φe) being low quality trees, then steady-state
output is given by

φeVH(φe) + (1− φe)VL(φe).

Why is this the right measure of steady-state output? This is because, when the inter-
est rate is zero, then the expected discounted value of profits (output since marginal
cost is zero) for all trees at entry is equal to the integral across the cross section of prof-
its in the steady-state. What about endogenous exit? The computation of the value
function VL(φ) takes the impact of endogenous exit on the cross-section of output into
account.
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A sufficient condition for the steady state output to be increasing in φe is that VH(φe) ≥
VL(φe) and V ′H(φe) and V ′L(φe) both greater than or equal to zero. These are the condi-
tions (a) and (b) assumed in Proposition 1. We prove in Section 5 that these conditions
hold for the signal structures and the payoff functions we impose.

When the interest rate is positive, then we no longer have the argument that expected
discounted value of profits for high and low quality trees is equal to the integral
across the cross section of profits in steady-state because of discounting by the inter-
est rate. Instead, to compute steady-state output of the experience good, we must
construct new value functions ṼH and ṼL based on the discounted expected value of
profits with an interest rate of zero, where, in the case of low quality trees, the dis-
tribution over future values of φ is computed under the assumption that these trees
exit at the threshold φ̄ at the rate required by Bayes Rule (the equilibrium rate) in
equilibrium.

In this case, the steady-state output is given by

φeṼH(φe) + (1− φe)ṼL(φe),

which is increasing in φe when the two sufficient conditions ṼH(φe) ≥ ṼL(φe) and
Ṽ ′H(φe) and Ṽ ′L(φe) both greater than or equal to zero, hold. We show this is the case
when the value functions VH(φe) and VL(φe) fulfill conditions (a) and (b) in Proposi-
tion 1, when r̂ > 0.

We know in general, regardless of the signal structure, that

Vi(φ) = max {0, y(φ)dt+ (1− rdt)E (Vi(φ
′)|i, φ)} ,

and we want to characterize the properties of value functions with r = δ (i.e., r̂ = 0)
for φ ∈ [φ̄, 1].

Ṽi(φ) = y(φ)dt+ (1− δdt)E
(
Ṽi(φ

′)|i, φ
)
.

We can use Vi(φ) as an initial guess for Ṽi(φ). In the first iteration it is clear that Ṽi(φ) >

Vi(φ) for all φ. The reason is that, by construction Vi(φ) > 0 for all φ and E
(
Ṽi(φ

′)|i, φ
)

is discounted at a lower rate, δ < r. Since we’re maintaining the evolution of φ fixed
in this exercise, iterating over an increasing sequence of value functions, generate that
Ṽi(φ) is increasing in φ. This is the first sufficient condition, Ṽ ′i (φ) ≥ 0 for i ∈ {L,H}.
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The second sufficient condition (ṼH(φ) ≥ ṼL(φ)) is also fulfilled because, regardless of
r, the difference between L and H comes from the construction of E

(
Ṽi(φ

′)|i, φ
)

. For
high quality trees, reputation is a submartingale. For low quality trees reputation is a
supermartingale. At φ̄, the expected future reputation of high quality trees is higher
than that of low quality trees.

E
(
φ′|H, φ̄

)
> E

(
φ′|L, φ̄

)
for all φ

where the sign of the inequality does not depend on the exiting of low quality trees.

Since Ṽi(φ′) is an increasing function of φ′, the second sufficient condition ṼH(φ) >

ṼL(φ) for all φ ∈ [φ̄, 1] is also satisfied. Q.E.D.

In the next proposition we show that for all three signal structures, the solution to the
social planning problem has F > 0 regardless of parameters. This result is immediate
in the case of bad news and, in the good news and Brownian motion cases, follows
from the observation that an increase in fixed entry cost F , when evaluated at F = 0,
has a first order impact on quality φe and a second order impact on the volume of
production of experience goods Y .

Proposition 9 Optimal regulation when only entry costs are available.

With either bad news, good news, or Brownian motion signals, the solution to the social
planning problem with transfers given by spot market prices q(φ) = y(φ) has fixed entry cost
F > 0.

Proof We have already proved this proposition for the bad news case, where an in-
crease in F increases both φe and Y . We now consider the good news and Brownian
motion cases. We make use of the results in Propositions 6 and 7 that

∂VH(φ̄)

∂φ
=
∂VL(φ̄)

∂φ
= 0.

We can use equation (20) to define an implicit function F (φe) mapping φe ∈ [φ̄, 1]

to F ∈ [0,∞) to restate the social planning problem in this case as one of choosing
φe directly. Likewise, we can use equation (21) to define an implicit function Y (φe).
Evaluating dY (φe)/dφe at φe = φ̄, we find that this derivative is zero. Hence, in the
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good news and Brownian cases, the regulator can, at least initially, increase the av-
erage quality of entrants above φ̄ without diminishing aggregate production of the
experience good Y .

However, as we show in Proposition 8, an increase in φe pushes up the production of
Y , by increasing the average quality in the market m(1)/m(0). In steady state, from
equation (7) that show the evolution of high quality trees

φeme =

∫
φ

d$H(φ)

Using the results that ωH(φ, dS) = δ for all φ > 0 and dS, and that m(1) =
∫
φ
dνH(φ)

(equation 5),
m(1)

m(0)
=

meφe

δm(0)
,

Also in steady state, from equation (8) that shows the evolution of low quality trees,

(1− φe)me =

∫
φ

d$L(φ)

Evaluating the increase of φe at φ̄, exit rates of low quality firms do not change because
∂VL(φ̄)
∂φ

= 0. This implies that a marginal increase in φe does not modify any ωL(φ, dS),
having a first order effect in reducing m(0) =

∫
φ
dνL(φ) (equation 6).

Then, the average quality in the market m(1)/m(0) grows more than the quality of
entrants φe. This is,

∂[m(1)/m(0)]

∂φe
|φe=φ̄ > 1

Evaluating the increase of φe at φ̄, Y does not change in equilibrium. To maintain Y

constant we need a decline inme greater than the increase in φe to maintainm(1)/m(0)

constant, or which is the same a decrease in meφe. This implies an increase in the con-
sumption of the numeraire good from equation (4), while maintaining the consump-
tion of the experience good Y , improving welfare. Q.E.D.

Remark on other regulatory tools: In the previous section we considered the extreme
case in which the government can use taxes and subsidies conditioned on reputation,
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and can achieve an allocation arbitrarily close to the unconstrained first best. At the
other extreme, this section considers the case in which the government is restricted to
use only simple entry costs, still achieving a welfare improving allocation.

Naturally, the government can use other unconditional tools, additional to entry
costs, to achieve better results. For example, the regulator can also impose opera-
tional subsidies. Loosely, on the one hand these subsidies are expected to compensate
mostly high quality trees, since in expectation they live longer. On the other hand,
these subsidies delay exit of low quality trees, since they prefer to wait longer to be
lucky. Depending on this trade-off, operational subsidies can position the market in
a situation where entry costs can increase welfare even further.

Closer to the previous section, it is also possible to consider policies that subsidize
variables more likely to be experienced by high quality trees, such as age, or that
punish variables more likely to be experienced by low quality trees, such as exit.
Even when welfare improving, since these two variables are only imperfect signals of
reputation, these tools are likely not as effective as taxes and subsidies that condition
directly on reputation to improve welfare.

There is a wide array of policy combinations the regulator can use to improve welfare.
More or less directly, all of them should aim at front-loading costs and back-loading
subsidies. The effects of policies that affects per period payoffs can be obtained from
the analytical solutions of the value functions we derived. The effects of lump sum
transfers can be obtained from the interplay of entry conditions we characterize. In
this paper we just consider two extremes of such policies, but we conjecture other
combinations can be designed to achieve allocations that lie between these two ex-
tremes in terms of welfare.

5 Value Functions for Different Information Structures

Here we obtain analytical solutions for the value functions Vi(φ), under bad news,
good news, and Brownian Motion, for general payment functions π(φ). We also show
the properties described in Propositions 5-7 hold when the function π(φ) is linear in
φ, as we assume is the case with spot prices where π(φ) = q(φ) = y(φ). In this Section,
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for notational simplicity we denote,

y(φ) = a1φ− a0

where a1 = y(1)− y(0) > 0 and a0 = −y(0) > 0.

5.1 Bad News

In this case dSt ∈ {0, 1}, which means either there is a signal or not at each t. The bad
news case is defined by Pr(dSt = 1|H) = 0 and Pr(dSt = 1|L) = λdt, which means
there is a positive Poisson arrival only for low quality trees. When a signal arrives
the tree is revealed to be of low quality and hence the public belief about its quality
drops to φ = 0. With this reputation, the tree would never be able to sell its output
at a non-negative price. Thus, following this event, it is optimal for the tree to cease
production and exit as quickly as possible.

It is convenient to use a transformed variable l = (1 − φ)/φ : [0, 1] → (∞, 0] to sum-
marize the reputation level of a tree. The evolution of l is determined by,

dlt
dt

=

[
Pr(dSt|L)− Pr(dSt|H)

Pr(dSt|H)

]
lt.

When bad news arrive (i.e., dSt = 1)

dlt
dt

=

[
λdt− 0

0

]
lt =∞,

and reputation jumps immediately to l = ∞. Since φ = 1
1+l

, this means reputation
drops immediately to φ = 0.

While there are no news (i.e., dSt = 0), reputation increases. From the Poisson dis-
tribution, the probability that a high quality tree does not generate news during t

periods is e−λt. Then, after t periods of no news, accumulating the change in reputa-
tion

lt =

[
Pr(St = 0|L)

Pr(St = 0|H)

]
l0 =

[
e−λt

1

]
l0 = e−λtl0,

where l0 = 1−φe
φe

. This means lt is decreasing (reputation is increasing) over time
at a rate λ ∈ [0,∞). While there are no news, the evolution of reputation for trees
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with high and low quality is the same. After bad news, a tree exits and obtains zero
thereafter. Then, the value functions for both types only differ in their discount factor.

Proposition 10 Value functions for general profit functions and bad news

A value function for a low quality tree with reputation l, for a general π(l), is

V̂L(l) =

∫ ∞
s=0

e−(r+λ)sπ(e−λsl)ds

and the value function for a high quality tree with reputation l is

V̂H(l) =

∫ ∞
s=0

e−rsπ(e−λsl)ds

Solving explicitly the integrals for the case of linear payoffs and no marginal costs,
π(φ) = y(φ) = a1φ− a0 (hence π(l) = a1

1+l
− a0),

V̂L(l) =
1

r + λ

[
a1Υmr+λ(−l)− a0

]
, (22)

V̂H(l) =
1

r
[a1Υmr(−l)− a0] , (23)

where Υm(−l) =2 F1(1,m;m+ 1,−l) is an hypergeometric function, and

mr =
r

λ
> 0 and mr+λ =

r + λ

λ
= 1 +mr.

The hypergeometric function has well defined properties when m > 0. In particular,
it is monotonically increasing in φ (from 0 to 1) and monotonically decreasing in m.

Υm

(
−1− φ

φ

)
: [0, 1]→ [0, 1] and

∂Υm(·)
∂m

< 0.

Now we denote Vi(φ) = V̂i(l) for all φ and i ∈ {L,H}. Since limφ→0 VL(φ) = − a0

r+λ
< 0

with no exit, there is a φ = φ̄ such that VL(φ̄) = 0. Hence φ̄ is the highest reputation
at which low quality trees are indifferent between exiting or not. As discussed above,
exiting strategies imply that in equilibrium, no tree has a reputation below φ̄. Value
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functions in the range [φ̄, 1] are

VL(φ) : [φ̄, 1]→ [0,
a1 − a0

r + λ
]

VH(φ) : [φ̄, 1]→ [VH(φ̄),
a1 − a0

r
],

where VH(φ̄) = 1
r

[
a1Υmr

(
−1−φ̄

φ̄

)
− a0

]
> 0 (since mr < mr+λ).

The properties of these value functions (directly from the properties of hypergeomet-
ric functions) are summarized in Proposition 5.

5.2 Good News

In this case Pr(dSt = 1|H) = λdt and Pr(dSt = 1|L) = 0. When a signal arrives the
tree is revealed to be of high quality and hence the public belief φ regarding this tree
jumps up to φ = 1. After good news the tree maintains a reputation of φ = 1 until it
exits exogenously.

Again, we use the variable l = (1− φ)/φ. When good news arrive (i.e., dSt = 1)

dl

dt
=

[
0− λdt
λdt

]
lt = −lt,

and reputation jumps immediately to l = 0, or φ = 1.

While there are no news (i.e., dSt = 0), reputation decreases. After t periods of no
news, accumulating the change in reputation

lt =

[
Pr(St = 0|L)

Pr(St = 0|H)

]
l0 =

[
1

e−λt

]
l0 = eλtl0,

which means lt is increasing (reputation is decreasing) over time at a rate λ.

Denoting π(l(1)) the payoffs for a tree with φ = 1, the value function for a tree that
has experienced good news is,

V (l(1)) =
π(l(1))

r
.

There is a key difference between good news and bad news. Under bad news, repu-
tation only increases, which means exit never occurs, unless a bad signal is revealed.
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Under good news, reputation continuously decrease and low quality trees that hit φ̄
will exit at a rate λ such that reputation never drifts below φ̄.

Proposition 11 Value functions for general profit functions and good news

The value function for a low quality tree with reputation l is

V̂L(l) =

∫ T (l)

s=0

e−rsπ(eλsl)ds (24)

The value function for a high quality tree with reputation l is

V̂H(l) =

∫ T (l)

s=0

e−(r+λ)s

[
π(eλsl) + λ

π(l(1))

r

]
ds+

∫ ∞
s=T (l)

e−(r+λ)(s−T (l))λ
π(l(1))

r
ds (25)

where T (l) is the time required for l to increase up to l̄ = 1−φ̄
φ̄

.

T (l) =
log(l̄/l)

λ
> 0. (26)

In the case of linear payoffs and no marginal costs, the reputation at which low quality
trees are willing to exit is given by π(l̄) = a1

1+l̄
− a0 = 0. In this case, l̄ is given by

the reputation above which profits are negative. Then l̄ = a1−a0

a0
and T (l) is given

following equation (26). Value functions are,

V̂L(l) =
1

r

[
a1

(
1−Υmr

(
−1

l

))
− a0

]
(27)

−e
−rT (l)

r

[
a1

(
1−Υmr

(
− a0

a1 − a0

))
− a0

]
,

V̂H(l) =
1

r + λ

[
a1

(
1−Υmr+λ

(
−1

l

))
− a0 + λ

a1 − a0

r

]
(28)

−e
−(r+λ)T (l)

r + λ

[
a1

(
1−Υmr+λ

(
− a0

a1 − a0

))
− a0

]
.

Now we denote Vi(φ) = V̂i(l) for all φ and i ∈ {L,H}. Since T (l(1)) = ∞, using the
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previously discussed properties of the hypergeometric functions,

VL(φ) : [φ̄, 1]→ [0,
a1 − a0

r
],

VH(φ) : [φ̄, 1]→ [
λ

r + λ

a1 − a0

r
,
a1 − a0

r
].

The properties of these value functions (also direct consequences of hypergeometric
functions properties) are summarized in Proposition 6.

5.3 Brownian Motion

Assume now the signal process follows a Brownian motion

dSt = µidt+ σdZt

where i = {L,H}, drifts depend on the tree’s type µH > µL and the noise σ is the
same for both types.

The following Proposition shows that reputation, both for high and low quality trees,
also follows a Brownian motion process when based purely on signals. As discussed
in Proposition 1, given the equilibrium exit rates, this is also the updating rule for all
φ > φ̄, while the updating for all φ < φ̄ follows an immediate jump up to φ̄. The proof
is in Appendix A.1.

Proposition 12 Reputation process based on Brownian motion signals.

The reputation process high quality trees expect is a submartingale

dφHt =
λ2(φt)

φt
dt+ λ(φt)dZt, (29)

and the reputation process low quality trees expect is a supermartingale

dφLt = − λ2(φt)

(1− φt)
dt+ λ(φt)dZt, (30)

where λ(φt) = φt(1− φt)ζ and ζ = µH−µL
σ

is the signal to noise ratio.
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Four clear properties arise from inspecting equations (29) and (30). First, high quality
trees expect a positive drift in their evolution of reputation while low quality trees
expect a negative drift. Second, when reputation φt is either 0 or 1, drifts and volatil-
ities are zero, which means at those points reputation do not change, both for high
and low quality trees. Third, reputation varies more at intermediate levels of φt, and
volatilities are larger. Finally, the drift for high quality trees is higher than for low
quality trees for bad reputations and lower for good reputations, since φt is in the
denominator of the drift for high quality trees, while (1−φt) is in the denominator of
the drift for low quality trees.

We can now write the ordinary differential equations that characterize the value func-
tions for high and low quality trees. The discussion about the determination of these
ODEs is in Appendix A.2.

rρVL (φ) = ρπ (φ)− φ2 (1− φ)V ′L (φ) +
1

2
φ2 (1− φ)2 V ′′L (φ) , (31)

rρVH (φ) = ρπ (φ) + φ (1− φ)2 V ′H (φ) +
1

2
φ2 (1− φ)2 V ′′H (φ) , (32)

where
ρ =

σ2

(µH − µL)2
. (33)

Solving these ODEs we can obtain the value functions for high and low quality trees.
Imposing that these value functions are non-negative introduces endogenous exit,
which regulates the reputation process. The discussion about the determination of
these value functions is in Appendix A.3.

Proposition 13 Value functions for general profit functions and Brownian motion

The value function of low quality trees with reputation l is

V̂L (l) = K

{∫ 1

0

θγ−1π (θl) dθ −
∫ 1

χ/l

θ−γπ (θl) dθ

}
. (34)

The value function of high quality trees with reputation l is

V̂H (l) = K

{∫ 1

0

θγ−2π (θl) dθ −
∫ 1

ψ/l

θ−γ−1π (θl) dθ +
π(0)

γ

(
ψ

l

)−γ}
, (35)
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where θ = l′/l,

γ =
1

2
+

√
1

4
+ 2rρ and K =

ρ√
1
4

+ 2rρ
.

Boundary conditions (value matching and smooth-pasting for low and high types)
must be satisfied at l̄. These conditions jointly determine l̄, χ and ψ:11

V̂L
(
l̄
)

= V̂ ′L
(
l̄
)

= V̂ ′H
(
l̄
)

= 0.

Using the formal expressions of the value functions and derivatives (in the Appendix),

V̂L(l̄) = 0⇒
∫ 1

χ/l̄

θ−γπ
(
θl̄
)
dθ =

∫ 1

0

θγ−1π
(
θl̄
)
dθ,

l̄V̂ ′L(l̄) = 0⇒ (1− γ)

∫ 1

χ/l̄

θ−γπ
(
θl̄
)
dθ = γ

∫ 1

0

θγ−1π
(
θl̄
)
dθ.

Combining the two conditions, we find the equation that pins down l̄:∫ 1

0

θγ−1π
(
θl̄
)
dθ = 0, (36)

and the equation that pins down χ∫ 1

χ/l̄

θ−γπ
(
θl̄
)
dθ = 0. (37)

Finally, the condition that pins down ψ is

(1− γ)

∫ 1

0

θγ−2π(θl̄)dθ = γ

[∫ 1

ψ/l̄

θ−γ−1π(θl̄)dθ − π(0)

γ

(
ψ

l̄

)−γ]
. (38)

These expressions completely characterized value functions and the reputation at

11Value matching and smooth pasting conditions for low quality trees arise from optimal exiting
decisions and the smooth pasting condition for high quality trees arises from the belief process that is
reflecting at φ̄
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which low quality trees exit. Proposition 7 lists the main properties of the value func-
tions. The proof is in Appendix A.4.

5.4 Limits of Information

In this section we show that, regardless of the information structure, the steady-state
spot market equilibrium converges to the benchmark without information as the pre-
cision of signals go to zero and converges to the benchmark with perfect informa-
tion as the precision of signals go to infinity. Hence, as the effectiveness of learning
improves, the equilibrium ranges from complete market shut down to the uncon-
strained first best.

Proposition 14 (Limits of Information)

In the three information structures considered (bad news, good news and Brownian motion),
the spot market equilibrium converges to Y = 0 as the precision of signals go to zero and to
the unconstrained first best Y = Ȳ , as the precision of signals go to infinity.

Proof We split the proof in two parts.

1) As the precision of signals go to zero.

In this case, to prove the steady-state spot market equilibrium converges to the bench-
mark without information (Y → 0), it is enough to prove that VH(φ) → VL(φ) for all
φ. This is because, from equation (21), Y → 0 as VH(φe)→ VL(φe).

In the bad and good news cases, the precision of signals is zero when λ = 0, hence
there are no news about the true type of the firm. It is trivial to see, from Propositions
10 and 11, that VL(φ) = VH(φ) = π(φ)/r for all φ when λ = 0.

In the Brownian motion case, the precision of signals is zero when the signal to noise
ratio µH−µL

σ
= 0, and then ρ =∞. From the ODEs 31 and 32, VH(φ) = VL(φ) = π(φ)/r.

2) As the precision of signals go to infinity.

In this case, to prove that the steady-state spot market equilibrium converges to the
unconstrained first best benchmark with perfect information (Y → Ȳ ), it is enough
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to prove that VH(φ)→ VH(1) and VL(φ)→ 0 for all φ > 0, as precision goes to infinity.
This is because, from Proposition 1, VH(φe)U ′(Y ) = C. As precision goes to infinity,
low quality firms exit fast, and the reputation at entry does not matter to determine
the average quality of firms in steady state (this is, m(1)

m(0)+m(1)
→ 1 regardless of φ̄ > 0).

In the bad and good news cases, the precision of signals is infinity when λ =∞, hence
news about the true type of the firm arrive immediately. In this case low quality firms
spend almost no time with a reputation different than 0. From Propositions 10 and
11, it is straightforward to check that VH(φ) = π(1)/r and VL(φ) = 0 for λ =∞ and all
φ > 0. Even when φ̄ < 1, since all low quality firms almost instantaneously leave the
market when λ→∞, effectively m(1)

m(0)+m(1)
→ 1 in the market.

In the Brownian motion case, the precision of signals is infinite when the signal to
noise ratio µH−µL

σ
=∞. Then ρ = 0 and γ = 1. From evaluating equation (32) at l with

ρ = 0, V ′′H(l) = 0 for all l. Combining this result with equations (38) and the definition
of V ′H(l) in the Appendix, V ′H(l̄) = 0. This implies that VH(φ̄) = VH(1), and then the
production of the experience good is Ȳ . Furthermore, even when φ̄ < 1, since all low
quality firms almost instantaneously leave the market, effectively m(1)

m(0)+m(1)
→ 1 in the

market. Q.E.D.

This result shows that more precise signals are welfare improving, since they move
the equilibrium output closer to the unconstrained first best benchmark. The infor-
mation precision also affects the effectiveness of regulatory policies.

Remark on the effectiveness of regulation: The effectiveness of regulation is non-
monotonic on the precision of signals. When the precision goes to zero, entry costs
do not increase Y much, since the difference between value functions is negligible.
However, since the production of the experience good is very small, the marginal
welfare gain can still be important. At the other extreme, when the precision goes
to infinity, there is no much room for improvement in the market by regulating it,
since its outcome is already close to the unconstrained first best. This implies that
regulatory policies are more effective in improving the outcome of a market with
spot-prices when the precision of signals is intermediate.
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5.5 Numerical Exercise

In this section we provide a numerical illustration of the value functions derived
above under linear profits for the bad news, good news and Brownian motion cases.

We assume U(Y ) = 2
√
Y (hence U ′(Y ) = Y −0.5) and the following set of parameters:

C = 1, r = r̂ + δ = 0.1, y(0) = −0.2 and y(1) = 0.6 (hence a1 = 0.8 and a0 = 0.2).

The first best is characterized by φe = 1 and

Ȳ =

[
y(1)

rC

]2

= 62 = 36.

5.5.1 Bad and Good News

We assume λ = 0.1 in both cases. With bad news, the value functions in Figure 1
illustrate the steady state spot market outcome, which is φe = φ̄ = 0.16 and

Y =

[
VH(φ̄)

C

]2

= 0.92 = 0.8.

With good news, the value functions in Figure 2 illustrate the steady-state spot market
outcome, which is φe = φ̄ = 0.25 and

Y =

[
VH(φ̄)

C

]2

= 32 = 9.

When a market is characterized by good news, it achieves an allocation closer to
the first best than a market characterized by bad news. Since quality and production
under good news are higher, economies characterized by this signaling structure have
an unequivocally higher welfare.

In the case of bad news, trees enter with a lower reputation φe = 0.16. This is because
reputation increases with time, allowing low quality trees to be able to reap some
profits in the future and motivating them to start at lower reputation levels, suffering
negative profits initially. While both high and low quality trees experience an always
increasing reputation, low quality trees can generate bad news at a rate λ, case in
which they are forced to exit. Since entry happens at the reputation with the smallest
gap between value functions, production of the experience good Y is low.
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Figure 1: Value Functions - Bad News
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Figure 2: Value Functions-Good News
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In the case of good news, trees enter with reputation φe = 0.25 at which profits are
zero. High quality trees operate at that reputation until they generate a good signal
and jump to operate at reputation φ = 1, just then obtaining positive profits. Low
quality trees always operate at reputation φ = 0.25 and randomize exiting at a rate
λ, always obtaining zero profits. In an unregulated spot market economy, trees en-
ter at the reputation with the highest gap between value functions, allowing for a
production of the experience good Y higher than in the bad news case.

5.5.2 Brownian Motion

We assume σ = 0.2, µH−µL = 0.2 (hence ρ = 1 from equation 33). The value functions
in Figure 3 illustrate the steady state spot market outcome, which is φe = φ̄ = 0.11

and

Y =

[
VH(φ̄)

rC

]2

= 3.72 = 14.

The results on this case cannot be compared with bad and good news cases so directly.
However we can see that value functions combine those two cases. As in the bad
news case, the gap between value functions increases at low reputation levels. As
in the good news case, the gap between value functions decreases at high reputation
levels, disappearing at φ = 1.
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Figure 3: Value Functions - Brownian motion
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6 Conclusions

We have argued that the lemons problem in markets with imperfect signals about
sellers’ quality is a problem of commitment and not a problem of information — the
lemons problem can be essentially eliminated if buyers can commit to offer sellers
incentives strong enough to invest in high quality so as to improve their reputation.
When a regulator can design taxes and subsidies contingent on sellers’ reputation, a
simple taxing scheme may provide the commitment required to mitigate the lemons
problem.

Even if a regulator does not have the ability to tax or subsidize sellers contingent on
their reputation, that regulator still has the ability to improve welfare by mitigating
the lemons problem in a spot market equilibrium by imposing a positive fixed entry
cost that is then rebated lump sum to household. However, the regulator faces a
tradeoff between increasing the average quality of entering sellers and restricting the
overall volume of production. We show, however, that this tradeoff is resolved in
favor of increasing quality, at least for small entry costs.

Entry costs are typically criticized for reducing production and market size. The main
logic is clearly exposed in Hopenhayn (1992): Higher entry costs must be compen-
sated by higher aggregate prices, hence by less total output. This argument has been
widely used by the economic literature - from supporting trade liberalization to ex-
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plaining TFP differences across countries - and by international organisms in propos-
ing policy reforms to underdeveloped countries. Still, as shown by Djankov et al.
(2002), there is heavy regulation of entry for start up firms around the world, under
the main justification of discouraging the entry of low quality firms. In this paper
we provide a unifying framework to study the trade off that entry costs create be-
tween production and quality. Interestingly we show there is a range of entry costs
that increase quality without reducing total output – sometimes also increasing total
output – and we characterize the optimal level of entry costs that maximize welfare
by enhancing market provided reputation incentives.

From a technical viewpoint we contribute in providing analytical solutions in con-
tinuous time for a model of reputation with free entry and exit of firms that know
their type – since they know their own initial investments that determine their type.
The explicit analytical solution allows a complete welfare comparison across differ-
ent regulation policies. We also endogenize the initial reputation assigned to entrants
in a market, since the ’lemons problem’ is generated by an endogenous decision in
general equilibrium of ex-ante identical firms.

An important next step in understanding optimal regulation in the presence of rep-
utation concerns is considering moral hazard problems at each moment. We have
assumed that quality is fixed as the result of a one-time investment decision. There
is a large literature that examines outcomes when sellers must maintain ongoing in-
vestments to preserve quality.12 We anticipate that our first main result will extend
to this setting — the problem of moral hazard arises because buyers cannot commit
to pay sellers prices contingent on reputation that are high enough to preserve the
incentives to invest in quality. We conjecture then that a regulator with sufficient flex-
ibility to design transfers contingent on reputation would be able to mitigate both the
lemons problem and the moral hazard problem associated with investments to main-
tain quality. We are not able to derive these results formally as the required transfer
schemes are likely to be non-linear in reputation and thus outside the scope of what
we can solve at this time.

Another natural extension is to study mechanisms and institutions the market can
endogenously create to reduce commitment problems and align learning and repu-
tation compensations to improve welfare. Possible institutions are vertical integra-

12See for example Marvel and McCafferty (1984), Maksimovic and Titman (1991) and, more recently,
Board and Meyer-ter Vehn (2010)
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tion between experience good producers and intermediate good producers that relax
informational problems and financial intermediaries or horizontal integration of in-
termediate goods producers that commit to cross subsidize members with different
reputation (in the spirit of Biglaiser and Friedman (1994)).

Similarly, an alternative channel that markets can use to replicate positive entry costs
is burning money at the moment of entry as a signal of investment. There are mul-
tiple equilibria introducing this possibility, all of them sustained by an implausible
degree of coordination among producers of the intermediate good. Based on this re-
quired degree of coordination, but beyond the scope of this paper, we conjecture the
only robust equilibrium, from an evolutionary perspective, is the one we characterize
without money burning. Furthermore, money burning is an inefficient way to replace
entry fees, unless that money goes back to the economy, as we assume the regulator
does by making lump sum transfers of the entry fees to households.

Finally it is important to mention that most of the literature that studies the effects
of costly certifications to enter into a market, focuses in the informational element of
certificates as screening of the initial investment (see Lizzeri (1999) and Albano and
Lizzeri (2001)). Our case is more extreme, and suggests that even if certification does
not provide any additional information about the quality of new firms, it may still be
welfare improving, just because it is costly to entrants.
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A Appendix

A.1 Proof Proposition 12

The activities of the two types of trees induce two different probability measures over
the paths of the signal St. Fix a prior φe and assume exogenous exit. Then reputation
evolves following the equation:

φt =
φePr(St|H)

φePr(St|H) + (1− φe)Pr(St|L)

or
φt =

φeξt
φeξt + (1− φe)

(39)

where ξt is the ratio between the likelihood that a path Ss : s ∈ [0, t] arises from
type H and the likelihood that it arises from type L. As in Faingold and Sannikov
(2011), from Girsanov’s Theorem, this ratio follows a Brownian motion characterized
by µξ = 0 and σξ = ξtζ ,

dξt = ξtζdZ
L
s (40)

where ζ = µH−µL
σ

and dZL
s = dSt−µLdt

σ
is a Brownian motion under the probability

measure generated by type L.13

By Ito’s formula,

dφ = [φ′µξ +
1

2
φ′′σ2

ξ ]dt+ φ′σξdZ
L
s

dφt = −1

2

2φe2(1− φe)
(φeξt + (1− φe))3

ξ2
t ζ

2dt+
φe(1− φe)

(φeξt + (1− φe))2
ξtζdZ

L
s

and from equation (39) we can express it in terms of φt rather than φe

dφt = −φ2
t (1− φt)ζ2dt+ φt(1− φt)ζdZL

s

dφt = φt(1− φt)ζ[dZL
s − φtζdt]

replacing by the definition of dZL
s ,

dφt = λ(φt)dZ
φ
t (41)

where dZφ
t = 1

σ
[dSt − (φtµH + (1− φt)µL)dt] and

λ(φt) = φt(1− φt)
µH − µL

σ
(42)

13It is also possible to solve the problem defining ξt = Pr(St|L)
Pr(St|H) such that φt = φe

φe+(1−φe)ξt
, where

dξt = ξtζdZ
H
s

51



Conversely, suppose that φt is a process that solves equation (41). Define ξt using
equation (39),

dξt = −1− φe

φe
φt

1− φt
By applying Ito’s formula again, ξt satisfies equation (40). This implies ξt is the ratio
between the likelihood that a path Ss : s ∈ [0, t] arises from type H and the likelihood
it arises from type L. Hence φt is determined by Bayes rule.

Finally, consider that different types will have different paths, that in expectation will
move their reputation. Replacing dSit in dZφ

t in equation (41) for the two different
types of trees, deliver equations (29) and (30).

A.2 Ordinary Differential Equations with Brownian motion

Here we obtain the differential equations that characterizes the values functions.

Proposition 15 Define Ψ the space of progressively measurable processes ψt for all t ≥ 0

with E[
∫ T

0
ψ2
t dt] < ∞ for all 0 < T < ∞. A bounded process W i

t for all t ≥ 0 is the
continuation value for type i = {H,L} if and only if, for some process ψit in Ψ we have,

dW i
t = [rW i

t − rπ(φt)]dt+ ψitdZt (43)

Proof The flow continuation value W i
t for type i is the expected payoff at time t,

W i
t = rEi

t

[∫ ∞
t

e−r(s−t)π(φs)ds

]
Denote U i

t the discounted sum of payoffs for type i conditional on the public infor-
mation available at time t,

U i
t = rEi

t

[∫ ∞
0

e−rsπ(φ)ds

]
=

∫ t

0

e−rsrπ(φs)ds+W i
t (44)

Since U i
t is a martingale, by the Martingale Representation Theorem, there exist a

process ψit in Ψ such that,
dU i

t = e−rtψitdZt (45)

Differentiating (44) with respect to time

dU i
t = e−rtrπ(φt)dt− re−rtW i

t dt+ e−rtdW i
t (46)

Combining (45) and (46), we can obtain (43). Q.E.D.
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In a Markovian equilibrium, we know W i
t = Vi(φt). Since this continuation value

depends on the reputation, which follows a Brownian motion, using Ito’s Lemma,

dVi(φ) =

[
µi,φV

′
i (φ) +

1

2
σ2
φV
′′
i (φ)

]
dt+ σφV

′
i (φ)dZ (47)

where µH,φ = λ2(φ)
φ

, µL,φ = − λ2(φ)
(1−φ)

and σφ = λ(φ) from Proposition 12.

Matching drifts of equations (43) and (47) for each type i, yields the linear second
order differential equation that characterizes continuation values VH(φ) and VL(φ),

1

2
λ2(φ)V ′′L (φ)− λ2(φ)

(1− φ)
V ′L(φ)− rVL(φ) + π(φ) = 0 (48)

and
1

2
λ2(φ)V ′′H(φ) +

λ2(φ)

φ
V ′H(φ)− rVH(φ) + π(φ) = 0 (49)

Using the definition for λ(φ) from equation (42) we can rewrite the second order dif-
ferential equations as

rρVL (φ) = ρπ (φ)− φ2 (1− φ)V ′L (φ) +
1

2
φ2 (1− φ)2 V ′′L (φ)

rρVH (φ) = ρπ (φ) + φ (1− φ)2 V ′H (φ) +
1

2
φ2 (1− φ)2 V ′′H (φ)

where

ρ =
σ2

(µH − µL)2

A.3 Proof Proposition 13

A.3.1 Solving the ODE’s

Changing variables to l = (1− φ) /φ and defining V̂ (l) = V (φ), the ODEs above can
be written as

rρV̂L (l) = ρπ (l) + lV̂ ′L (l) +
1

2
l2V̂ ′′L (l)

rρV̂H (l) = ρπ (l) +
1

2
l2V̂ ′′H (l)
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a) Solving for V̂L (l): We conjecture a solution of the form:

V̂L (l) = K

[
l−γ
∫ l

χ1

l′γ
π (l′)

l′
dl′ − lγ−1

∫ l

χ2

l′1−γ
π (l′)

l′
dl′
]

for some parameters γ and K. With this, we have

V̂ ′L (l) = K

[
(−γ) l−γ−1

∫ l

χ1

l′γ
π (l′)

l′
dl′ − (γ − 1) lγ−2

∫ l

χ2

l′1−γ
π (l′)

l′
dl′
]

V̂ ′′L (l) = K

[
(−γ) (−γ − 1) l−γ−2

∫ l

χ1

l′γ
π (l′)

l′
dl′ − (γ − 1) (γ − 2) lγ−3

∫ l

χ2

l′1−γ
π (l′)

l′
dl′
]

+K (1− 2γ)
π (l)

l2

lV̂ ′L (l) +
1

2
l2V̂ ′′L (l) =

γ (γ − 1)

2
V̂L (l) +K

(
1− 2γ

2

)
π (l)

which solves the ODE when 2rρ = γ (γ − 1) and K (1− 2γ) = −2ρ, or

γ =
1

2
+

√
1

4
+ 2rρ and K =

ρ√
1
4

+ 2rρ

Recall γ(ρ) : [0,∞] → [1,∞] and K(ρ) > 0. The parameters χ1 and χ2 will be deter-
mined later from boundary conditions.

b) Solving for V̂H (l): Define: ∆H (l) = π (0)− V̂H (l), π̄ (l) = π (0)− π (l). Notice π̄ (l)
is increasing in l.

Rewriting the ODE for the high type as

ρ∆H (l) = ρπ̄ (l) +
1

2
l2∆′′H (l)

Proceeding as above we conjecture a solution of the form:

∆H (l) = K

[
l1−γ

∫ l

ψ1

l′γ−1 π̄ (l′)

l′
dl′ + lγ

∫ ψ2

l

l′−γ
π̄ (l′)

l′
dl′
]
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for the same parameters γ and K defined previously. With this, we have

∆′H (l) = K

[
(1− γ)l−γ

∫ l

ψ1

l′γ−1 π̄ (l′)

l′
dl′ + γlγ−1

∫ ψ2

l

l′−γ
π̄ (l′)

l′
dl′
]

∆′′H (l) = K

[
−γ (1− γ) l−γ−1

∫ l

ψ1

l′γ−1 π̄ (l′)

l′
dl′ + γ (γ − 1) lγ−2

∫ ψ2

l

l′−γ
π̄ (l′)

l′
dl′
]

+K (1− 2γ)
π̄ (l)

l2

1

2
l2∆′′H (l) =

γ (γ − 1)

2
∆H (l) +K

(
1− 2γ

2

)
π (l)

that fulfill the ODE by construction with the parameters γ and K defined above. The
parameters ψ1 and ψ2 will be determined later also from boundary conditions.

A.3.2 Dealing with the boundary conditions at l = 0

Notice that we need liml→0 V̂L (l) = liml→0 π (l) = π(0), and liml→0 ∆H (l) = liml→0 π̄(l) =
liml→0 π (l) − π(0) = 0. The two limiting properties hold if and only if χ1 = 0 and
ψ1 = 0 (we then relabel χ2 = χ and ψ2 = ψ).

We will proceed with the proof for the high type. The proof for the low type is related.
Using Lipschitz continuity of π̄ (l), assuming π̄ (l) ≤ Λl, and ψ2 ≤ ∞:

∆H (l) = K

[
l1−γ

∫ l

ψ1

l′γ−1 π̄ (l′)

l′
dl′ + lγ

∫ ψ2

l

l′−γ
π̄ (l′)

l′
dl′
]

≤ ΛK

[
l1−γ

∫ l

ψ1

l′γ−1dl′ + lγ
∫ ψ2

l

l′−γdl′
]

= ΛK

[
l1−γ

(
lγ

γ
− ψγ1

γ

)
+ lγ

(
ψ1−γ

2

1− γ
− l1−γ

1− γ

)]
= ΛK

[
l

(
1

γ
− 1

1− γ

)]
= Λl

if and only if ψ1 = 0 and assuming ψ2 = ∞. Hence, liml→0 ∆H (l) = 0 if and only if
ψ1 = 0. A similar analysis delivers liml→0 V̂L (l) = π(0) if and only if χ1 = 0
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A.3.3 Simplifying Value Functions

Changing variables inside the integrals: θ = l′/l, so ldθ = dl′ and the limits of integra-
tion. We start from obtaining VH(l).

∆H (l) = K

{∫ 1

0

θγ−2π̄ (θl) dθ +

∫ ψ/l

1

θ−γ−1π̄ (θl) dθ

}

Since π̄(θl) = π(0)− π(θl) and V̂H(l) = π(0)−∆H(l)

V̂H (l) = π(0)

(
1−K

∫ 1

0

θγ−2dθ −K
∫ ψ/l

1

θ−γ−1dθ

)

+K

{∫ 1

0

θγ−2π (θl) dθ +

∫ ψ/l

1

θ−γ−1π (θl) dθ

}

V̂H (l) = π(0)

[
K

γ

(
ψ

l

)−γ]
+K

{∫ 1

0

θγ−2π (θl) dθ +

∫ ψ/l

1

θ−γ−1π (θl) dθ

}

Hence

V̂H (l) = K

{∫ 1

0

θγ−2π (θl) dθ −
∫ 1

ψ/l

θ−γ−1π (θl) dθ +
π(0)

γ

(
ψ

l

)−γ}
(50)

Similarly, the low type’s value function can be written as

V̂L (l) = K

{∫ 1

0

θγ−1π (θl) dθ −
∫ 1

χ/l

θ−γπ (θl) dθ

}
(51)

In reduced form

V̂L (l) = K[BL(l)− AL(l)] and (52)
V̂H (l) = K[BH(l)− AH(l)] (53)

where

BL(l) =

∫ 1

0

θγ−1π (θl) dθ and AL(l) =

∫ 1

χ/l

θ−γπ (θl) dθ

BH(l) =

∫ 1

0

θγ−2π (θl) dθ and AH(l) =

∫ 1

ψ/l

θ−γ−1π (θl) dθ − π(0)

γ

(
ψ

l

)−γ
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A.3.4 Derivatives

Taking derivatives of V̂L(l) components and multiplying by l,

l
∂AL(l)

∂l
=

∫ 1

χ/l

θ−γπ′ (θl) θldθ −
(χ
l

)−γ
π(χ)

(
−χ
l2

)
l

Integrating the first term by parts∫ 1

χ/l

θ1−γπ′ (θl) ldθ = θ1−γπ(θl)|1χ/l −
∫ 1

χ/l

(1− γ)θ−γπ(θl)dθ

= π(l)−
(χ
l

)1−γ
π(χ)− (1− γ)

∫ 1

χ/l

θ−γπ(θl)dθ

Then

l
∂AL(l)

∂l
= π(l)− (1− γ)

∫ 1

χ/l

θ−γπ(θl)dθ = π(l)− (1− γ)AL(l)

Similarly

l
∂AH(l)

∂l
= π(l) + γ

∫ 1

ψ/l

θ−γ−1π(θl)dθ − π(0)

γ
(−γ)

(
ψ

l

)−γ−1(
−ψ
l2

)
l

= π(l) + γ

∫ 1

ψ/l

θ−γ−1π(θl)dθ − γπ(0)

γ

(
ψ

l

)−γ
= π(l) + γAH(l)

l
∂BL(l)

∂l
= π(l)− γ

∫ 1

0

θγ−1π(θl)dθ = π(l)− γBL(l)

l
∂BH(l)

∂l
= π(l)− (γ − 1)

∫ 1

0

θγ−2π(θl)dθ = π(l)− (γ − 1)BH(l)

The derivatives can then be simplified as follows,

lV̂ ′L (l) = K[−γBL(l) + (1− γ)AL(l)] and (54)
lV̂ ′H (l) = K[(1− γ)BH(l)− γAH(l)] (55)

A.4 Proof Proposition 7

First we prove the ratio of value functions VL(φ)/VH(φ) is monotonically increasing
with φ. Then we prove the difference between value functions VH(φ) − VL(φ) is in-
creasing for low reputation levels and decreasing for high reputation levels when the
public signal follows a Brownian motion.
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A.4.1 Increasing Ratio VL(φ)/VH(φ)

The ratio VL(φe)
VH(φe)

is an increasing function of φe, or which is the same VL(l0)
VH(l0)

is a decreas-
ing function of l0, that maps from l0 = [0, l̄] to [1, 0].

First, we define the domain and image of the function. The lowest possible reputation
in the market is l̄, where V̂L(l̄) = 0 and V̂H(l̄) > 0. We also know that V̂L(1) = V̂H(1) >

0. Finally, 0 < V̂L(l) < V̂H(l) for all other l0 ∈ [0, l̄). This implies V̂L(l0)

V̂H(l0)
is a mapping

from l0 = [0, l̄] to [1, 0].

We show the ratio V̂L(l)

V̂H(l)
is monotonically decreasing in l ∈ [0, l̄]. This is the case if

lV̂ ′L(l)

V̂L(l)
<
lV̂ ′H(l)

V̂H(l)

−γBL(l)− (γ − 1)AL(l)

BL(l)− AL(l)
<
−(γ − 1)BH(l)− γAH(l)

BH(l)− AH(l)

BL(l)− AL(l)

BH(l)− AH(l)
<

γBL(l) + (γ − 1)AL(l)

(γ − 1)BH(l) + γAH(l)

After some algebra, dropping the argument l, this condition implies,

BH [(BL − AL) + (2γ − 1)AL] > AH [2γ(BL − AL) + (2γ − 1)AL]

or

BH

[(
1− γAH

BH

)
(BL − AL) + (2γ − 1)AL

]
> AH [γ(BL − AL) + (2γ − 1)AL] (56)

We show the left hand side of (56) is positive and the right hand side of (56) is negative
for all l ∈ [0, l̄], hence the condition is always satisfied and the ratio of value functions
decreasing in that range.

1. BH(l) > 0 for all l ∈ [0, l̄]

First, we develop the integrals BL(l) and BH(l).

Recall the profit function is linear in φ, (y(φ) = a1φ− a0) and φ = 1
1+l

,

π(θl) =
a1

1 + θl
− a0
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and consider the general solution to the following integral (see Abramowitz and
Stegun (1972)),∫

θm
(

a1

1 + θl
− a0

)
dθ = a1θ

m+1Φ(−θl, 1,m+ 1)− θm+1

m+ 1
a0

where Φ(−θl, 1,m+ 1) is a Hurwitz Lerch zeta-function.

Applying this result to BL,

BL(l) =

∫ 1

0

θγ−1

(
a1

1 + θl
− a0

)
dθ =

[
a1θ

γΦ(−θl, 1, γ)− θγ

γ
a0

]1

0

BL(l) = a1Φ(−l, 1, γ)− a0

γ

and similarly,
BH = a1Φ(−l, 1, γ − 1)− a0

γ − 1

Our strategy is to prove first BL(l) > 0 for all l ∈ [0, l̄] an then to prove BH(l) >
BL(l) for all l ∈ [0, l̄].

Important properties of Herwitz Lerch zeta functions for the parameters we are
considering (γ ≥ 1) are (see Laurincikas and Garunkstis (2003)):

• Φ(0, 1, γ) = 1
γ

• ∂Φ(−l,1,γ)
∂l

= 1
l

[
1
l+1
− γΦ(−l, 1, γ)

]
< 0

• (γ − 1)Φ(−l, 1, γ − 1) > γΦ(−l, 1, γ)

By construction, BL(l̄) = 0, hence Φ(l̄, 1, γ) = a0

γa1
. Given the properties above

BL(l) : [0, l̄]→ [
a1 − a0

γ
, 0]

Furthermore, BL(l) is monotonically decreasing in the range

BH(l) > BL(l) for all l ∈ [0, l̄] if

γ(γ − 1)[Φ(−l, 1, γ − 1)− Φ(−l, 1, γ)] >
a0

a1

Considering the third property above,

(γ− 1)Φ(−l, 1, γ− 1) > Φ(−l, 1, γ) + (γ− 1)Φ(−l, 1, γ) >
a0

γa1

+ (γ− 1)Φ(−l, 1, γ)
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and hence, BH(l) > 0 for all l ∈ [0, l̄]

2. AH(l) < 0 for all l ∈ [0, l̄]

We develop the integral AL(l) and AH(l) following the steps above.

AL(l) =

∫ 1

χ/l

θ−γ
(

a1

1 + θl
− a0

)
dθ =

[
a1θ

1−γΦ(−θl, 1, 1− γ)− θ1−γ

1− γ
a0

]1

χ/l

AL(l) = a1

[
Φ(−l, 1, 1− γ)− (χ/l)1−γΦ(−χ, 1, 1− γ)

]
+

a0

γ − 1

(
1− (χ/l)1−γ)

and,

AH(l) = a1

[
Φ(−l, 1,−γ)− (ψ/l)−γΦ(−ψ, 1,−γ)

]
+
a0

γ
− a1

γ
(ψ/l)−γ

Consider AH(0) = AH(ψ) = −a1−a0

γ
< 0. We show that, if the function grows,

the maximum is still negative. This is, we prove that AH(l̂) < 0 where l̂ =

argmaxAH(l) (hence ∂AH(l)
∂l
|l=l̂ = 0).

∂AH(l)

∂l
=
a1

l

[(
1

1 + l
+ γΦ(−l, 1,−γ)

)
− γ(l/ψ)γΦ(−ψ, 1,−γ)

]
− a1

l
(l/ψ)γ

The condition satisfied at l ∂AH(l)
∂l

= 0 is,

[
Φ(−l, 1,−γ)− (ψ/l)−γΦ(−ψ, 1,−γ)

]
=

1

γ
(l/ψ)γ − 1

1 + l

Evaluating AH(l̂) considering that condition,

a1

[
1

γ
(l/ψ)γ − 1

1 + l

]
+

a0

γ − 1

(
1− (χ/l)1−γ) < 0

since
γa1

1

1 + l
> a0

Hence, AH(l) < 0 for all l ∈ [0, l̄]
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Finally, just for completeness, AL(0) = −a1−a0

γ−1
< 0, AL(χ) = 0 because χ/l = 1

and AL(l̄) = 0 by construction. It can be further shown that AL(l) < 0 for all
l ∈ (0, χ) and AL(l) > 0 for all l ∈ (χ, l̄).

3. γ(BL(l)− AL(l)) + (2γ − 1)AL(l) > 0 for all l ∈ [0, l̄]

Recall γ(BL − AL) + (2γ − 1)AL = γBL + (γ − 1)AL = − lV̂ ′L(l)

K
.

By construction γBL + (γ − 1)AL = 0 at l = 0 and l = l̄.

For l ∈ (χ, l̄), since AL(l) ≥ 0 and BL(l) > 0, γBL + (γ − 1)AL > 0. In particular,
at l̄, AL(χ) = 0 and γBL(χ) > 0.

As shown above, for l ∈ [0, χ],BL(l) > 0 monotonically increasing andAL(l) < 0
monotonically increasing. This implies γBL+(γ−1)AL goes monotonically from
0 at l = 0 to γBL(l̄) > 0, and hence positive in the whole range.

4.
[(

1− γAH(l)
BH(l)

)
(BL(l)− AL(l)) + (2γ − 1)AL(l)

]
> 0 for all l ∈ [0, l̄]

First, recall (γ − 1)BH + γAH = − lV̂ ′H(l)

K
. Hence, as in the point above, (γ −

1)BH + γAH = 0 at l = 0 and l = l̄ by construction, which we can rewrite as
1− γAH(0)

BH(0)
= 1− γAH(l̄)

BH(l̄)
= γ. Hence at these two extreme points, the term in the

left hand side is 0, the same as the one in the right hand side.

More generally (γ − 1)BH + γAH > 0 (and then 1 < 1 − γAH(l)
BH(l)

< γ). Since

AL(χ) = 0,
(

1− γAH(l)
BH(l)

)
BL(l) > 0. By the same monotonicity arguments above,[(

1− γAH(l)
BH(l)

)
(BL(l)− AL(l)) + (2γ − 1)AL(l)

]
> 0 for all l ∈ [0, l̄].

A.4.2 Non-monotonic Difference VH(φ)− VL(φ)

First, V̂ ′L(φ̄) = V̂ ′H(φ̄) = 0 by construction and V̂ ′L(1) = V̂ ′H(1) = 0, from the expressions
above. Second V̂ ′L(φ) and V̂ ′H(φ) are positive for all φ ∈ (φ̄, 1). Third, these derivatives
are single peaked and the reputation that maximizes V̂ ′H(φ) is lower than the reputa-
tion that maximizes V̂ ′L(φ). Finally, V̂ ′′H(φ̄) > V̂ ′′L (φ̄) and V̂ ′′H(1) < V̂ ′′L (1), which means
the two derivatives cross only one time, at φ∗. These properties arise from inspection
of the derivatives of linear profits value functions and from properties of the hyper-
geometric functions that characterize them.
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