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Abstract

If currency crises are triggered when the currency overvaluation hits a threshold, the expected

magnitude of a devaluation, conditional on its occurrence, is substantially different from the un-

conditional expected currency overvaluation. That is not true if currency crises are triggered by

sunspots. Therefore, implications for the behaviour of the probability and the expected magnitude

of a devaluation depend on what triggers currency crises. Those two variables are not observable

but can be estimated using data on exchange rate options. This paper identifies the probability and

expected magnitude of a devaluation of Brazilian Real in the period leading up to the end of the

Brazilian pegged exchange rate regime and contrasts the estimates to the predictions from a simple

model of currency crises under different assumptions about the trigger. The empirical findings favour

thresholds and learning over sunspots.
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1 Introduction

What triggers currency crises? This is an old question, tackled by a somewhat large

literature comprising several models that may be divided into two main camps. In one

class of models, there are multiple equilibria and so-called sunspot events that move the

economy to a new equilibrium and trigger currency crises.1 In the other camp, a crisis is

triggered when an economy goes beyond a certain threshold.2

Ideally, evaluation of these different theories would be guided by empirical evidence,

but that branch of the literature has not clearly favoured either camp. This is, at least

in part, due to two key obstacles for empirical work on currency crises. The first is that
∗This paper is partly based on Chapter 2 of my PhD dissertation at Yale University. I am very grateful to Stephen Morris,

my advisor, and Francesco Caselli for their insights. I also thank my colleagues at LSE and several seminar participants for

their comments, BM&F for the data and Nathan Foley-Fisher for able research assistance financed by STICERD.
†London School of Economics, Department of Economics. Email: b.guimaraes@lse.ac.uk
1Some important contributions in this camp are Obstfeld (1986), Obstfeld (1996) and Jeanne (1997). For a survey, see

Rangvid (2001).
2The so called first generation models, like Krugman (1979) and Flood and Garber (1984), and the global game models,

as Morris and Shin (1998), are in this camp.
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currency crises are rare events, so data explicitly relating to them are relatively scarce.

The second obstacle is that we don’t really understand the exchange rate.3

The paucity of data on currency crises is an obstacle that may be overcome using finan-

cial price data, which are abundant and reflect expectations about currency devaluations.

Thus analysing agents’ expectations through movements in financial prices is a good way

to understand crises and that is the strategy pursued in this paper.

The second problem is harder to overcome. The inability of models to explain ade-

quately the behaviour of the exchange rate implies that it is difficult to get reasonable

estimates for the rate which would prevail if the government were to abandon the exchange

rate peg at a given moment – I will call it the shadow exchange rate.4 That is the key

latent variable in currency crises because it is the major determinant of the profits/losses

agents will make if they decide to attack the currency and because the deviation of the

shadow from the pegged exchange rate is the most important factor determining the cost

to the government of maintaining the peg. The absence of a good model for the shadow

exchange rate makes it quite difficult to empirically assess the nexus between the shadow

rate and currency crises, and hence to test the theories about currency crisis triggers.

This paper presents an alternative procedure for determining the currency crises trig-

gers, where evaluation is based on the behaviour of the probability and expected mag-

nitude of a devaluation. A key insight is that when crises are triggered by currency

overvaluation crossing a threshold, the expected magnitude of a devaluation, conditional

on its occurrence, is equal to the threshold value, which may differ substantially from the

unconditional expected currency overvaluation. On the other hand, if crises are triggered

by sunspots, uncorrelated with the economic variables that determine the exchange rate

in a floating regime, then the expected magnitude of a devaluation conditional on its

occurrence is similar to the unconditional expected currency overvaluation.

The procedure followed in this paper is first to use options data to identify the behav-

iour of the probability and expected magnitude of a devaluation (conditional on occur-

rence) and subsequently compare it to the predictions of a simple model of currency crises

under different assumptions about the trigger. The Brazilian case is particularly suitable

for study because there are relatively good data on exchange rate options between the

Brazilian Real and the US Dollar.5

In the model that best matches the data, the peg will be abandoned when the cur-
3Obstfeld and Rogoff (2000) define the exchange rate disconnect puzzle as “the exceedingly weak relationship (except

perhaps in the long run) between the exchange rate and virtually any macroeconomic aggregates”.
4This definition is different from that of Flood and Garber (1984), where the shadow exchange rate is the floating rate

that would prevail if agents were to purchase all the government’s reserves at a given moment.
5European exchange rate options were regularly traded at São Paulo Futures Exchange (BM&F).
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rency overvaluation hits a certain threshold, but agents don’t know what the threshold

is. Besides explaining the determinants of the probability and expected magnitude of

a devaluation, the model presents an intuitive rationale for why moderate movements

in the shadow exchange rate sometimes generate large increases in the probability of a

devaluation and sometimes don’t.

The probability and expected magnitude of a devaluation cannot be observed but may

be identified using a statistical approach based on a no-arbitrage condition and option

data. Options provide information about the probability density of the exchange rate at

different points, so it is possible to disentangle the “thickness of the tail of the distribution”

(probability of a devaluation) and the “distance from the tail to the center” (the expected

magnitude of a devaluation).

To give a simple intuition for identification, suppose the price of an asset tomorrow will

be 1 with probability 1−p and 3 with probability p. In a risk-neutral world, a call option

with strike price 1 costs 2p, a call option with strike price 2 costs p. If the probability of

a devaluation (p) increases, both options get more expensive but the ratio of their prices

remains equal to 2. If the magnitude of the devaluation increases from 3 to 4, the option

with strike price 1 will cost 3p, a call option with strike price 2 will cost 2p – the ratio

changes.

The empirical results unveil completely different patterns for the probability and ex-

pected magnitude of a devaluation (conditional on its occurrence). The probability was

volatile and mostly driven by contagion from external crises, as the Asian and Russian

crises triggered by far the greatest increases in the probability that the peg would be

abandoned. In contrast, the expected magnitude was stable and entirely unaffected by

the Russian episode. A good theoretical model should predict these patterns for the

probability and expected magnitude of a devaluation.

In addition, these data suggest that the Asian and Russian crises negatively impacted

the Brazilian shadow exchange rate. They explicitly show that the crises coincided with

both the greatest increases in the risk of a devaluation in Brazil and the largest depreci-

ations of other Latin American currencies, like the Mexican Peso. Since the crises were

fairly exogenous to the Latin American economies, it is natural to assume that if the

Brazilian currency were allowed to float, it would also have depreciated. A good model

should be consistent with such increases in the shadow exchange rate on those dates.

Financial data has previously been used to obtain estimates of the risk of a devalua-

tion. In the literature, the usual procedure is to regress the estimates on macroeconomic

fundamentals, which typically fails to find clear connections between those fundamentals
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and currency crises.6 Such failure has sometimes been taken as support for models with

multiple equilibria, but may simply reflect the fact that macroeconomic variables are poor

explanatory variables for the exchange rate.7

The second stage of the paper compares the results of the empirical analysis to the

predictions of the alternative models of currency crises. This necessitates a study of the

behaviour of the probability and magnitude under each alternative set of assumptions.

The simple framework developed in this paper permits the study of these alternatives in

a single model, where both the prevailing exchange rate and the shadow rate follow sto-

chastic processes. Implications for the behaviour of probability and expected magnitude

of a devaluation crucially depend on what triggers currency crises.

The implications of the sunspot model are at odds with the empirical findings. If

currency crises are triggered by sunspots, the probability of a devaluation depends little

on the currency overvaluation, as it is mostly affected by sunspots, exogenous random

variables. Therefore, the expected magnitude of a devaluation conditional on its occur-

rence is similar to the unconditional expected currency overvaluation. Thus the expected

magnitude follows closely the current overvaluation. So, were sunspots the triggers of cur-

rency crises, the shocks to the Brazilian shadow exchange rate should have had important

effects on the expected magnitude of a devaluation.

The predictions of the model when a devaluation is triggered by currency overvaluation

crossing a constant and known threshold are consistent with some, but not all, empirical

findings. If the currency devaluation is triggered when the currency overvaluation hits a

constant and known threshold, the magnitude of a devaluation equals that threshold. The

expected magnitude of a devaluation conditional on its occurrence is therefore different

from the unconditional expected currency overvaluation. Movements in the shadow ex-

change rate only affect the probability of a devaluation as they move the economy closer

to or farther from the threshold. This model is consistent with the different impacts of the

shadow rate in probability and magnitude. However, it also yields excessively high values

for the probability and implies no movement in the expected magnitude of a devaluation.

If instead the devaluation is triggered by currency overvaluation crossing an unknown
6Rose and Svensson (1994) state that “it is difficult to find economically meaningful relationships between realignment

expectations and macroeconomic variables”. Campa and Chang (1998) and Campa, Chang and Refalo (2002) report that

“macroeconomic variables are largely unable to explain intertemporal movements in realignment risk”. See also Campa and

Chang (1996) and Malz (1996) for studies of the credibility of the ERM using data on options.
7A few contributions to the study of currency crises have attempted to connect theoretical models and empirical work.

Blanco and Garber (1986) generate predictions on expectations about the recurrent devaluation of the Mexican Peso using

a variation on the monetary model of Flood and Garber (1984). In one of the few explicit tests for sunspots, Jeanne (1997)

performs a likelihood ratio test for the existence of multiple equilibria in the French Franc crisis. He finds some inexplicable

shifts between different equilibria.
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threshold, and agents are learning about it, then all the predictions are consistent with

the empirical findings. The results are identical to the case of a known threshold, with two

additions. First, the expected magnitude of a devaluation increases when the currency

overvaluation goes above its previous maximum, as it indicates to the agents that the

threshold is higher than they previously thought. Second, the probability of a devaluation

does not get too high because of uncertainty about the threshold.

In the model, a shock to the exchange rate which puts it near to a point where the

peg might be abandoned leads to a high probability of devaluation, implying markets are

nervous. But if the peg is maintained, markets learn that the threshold for abandoning

the peg is higher than the level just reached, thus leading to a relatively lower probability

of devaluation at any given lower position. Markets become relatively more tranquil at

such point, but the expected magnitude of a devaluation increases.

Last, the model provides a way to back out the shadow exchange rate from the option

data. The environment of the model is sufficiently simple that an option can be priced and

used to estimate the path of the currency overvaluation. The implied path is consistent

with large but not massive increases in the shadow rate following the crises in Asia and

Russia.

A brief comparison between the results of this analysis and the theoretical literature

on currency crises is deferred to the concluding section. Before that, Section 2 contains

the empirical identification of the probability and expected magnitude of a devaluation.

Section 3 shows the implications for those variables from different models, and Section

4 presents estimates of the shadow exchange rate using the model with an unknown

threshold.

2 The probability and magnitude of a devaluation

The Brazilian crawling peg was instituted in March 1995 as part of a plan intended to

counter the persistent inflation experienced by the economy. Under the peg, the exchange

rate could float inside a mini-band that was less than 1% wide. The mini-band was read-

justed by about 0.6% each month, distributed over 5 to 7 smaller changes. The objective

was to stabilise and sustain the exchange rate, but the sustainability was questionable

given the large current account deficits that suggested the Brazilian Real was overvalued.

As Figure 1 shows, interest rates increased by 20 and 15 percentage points due to

the Asian (end of 1997) and Russian crises (from August 1998) respectively. This is a

testament to the impact these events had on the credibility of the peg – which was finally
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Figure 1: Interest Rates

abandoned in January 1999. The remainder of this section identifies the probability and

expected magnitude of a devaluation of the Real from January 1997 to January 1999.

2.1 Empirical identification

The exchange rate risk in a pegged regime depends on the probability that the peg will be

abandoned and on the expected size of a consequent currency devaluation. The forward

premium is roughly the product of these two variables and may be estimated through

some relatively simple calculations. However, observing the forward premium alone does

not permit individual identification of the probability of a devaluation and its expected

magnitude: a forward premium of 3% a year may refer to an expected devaluation of 30%

with probability 10% a year, or an expected devaluation of 5% with probability 60% a

year, and so on.

Options are a richer source of data because they provide information about the prob-

ability density of the exchange rate at different points, which allows identification of the

probability and expected magnitude of a devaluation. Extracting information on the risks

of discrete price jumps from data on options is not a novelty. It was the approach taken by

Bates (1991) to estimate Merton’s (1976) model when testing whether the stock market
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crash of 1987 had been expected.

However, it is unusual for the empirical literature to identify the probabilities and

expected magnitudes of jumps. That is because, in general, the risk of discrete jumps

co-exist with the regular disturbances. Subtle changes in options prices correspond to

significant changes in the probability distribution of the future value of the asset, so it is

difficult to obtain accurate estimates for both the probability and magnitude of a jump.8

Identification in the case of the Brazilian pegged regime is relatively easier because the

volatility of the exchange rate before the crisis was very small, so most of the information

contained in option prices relates to the risk of a change in regime. Indeed, the vast

majority of options in the sample was worth zero at maturity, which means they were all

about the risk of a large devaluation.

Campa et al (2002) estimated the credibility of the Brazilian exchange regime using

a non-parametric method. Provided the data were very accurate, their method would

obtain the risk neutral densities without any further assumptions. However, in Brazil

the lack of liquidity in the market for options leads to substantial noise in the option

prices and a purely non-parametric approach cannot be applied. If their methodology

were used to construct daily risk-neutral densities, 58% of the days in the sample of this

paper would generate probability density functions with some negative values. A better

alternative when faced with such noisy data is to use an adequate model to help identify

the probability and expected magnitude of a devaluation.

2.2 The asset pricing model

In this paper, a simple asset pricing model is used to estimate the probability and expected

magnitude of a devaluation. The model replicates the main features of the Brazilian

crawling peg in a simple way.

Denote by S the exchange rate and s its logarithm. Initially, the exchange rate follows

a standard Brownian motion with low volatility:9

ds = µ1dt+ σ1dX

In January 1999, the Brazilian exchange rate was allowed to float, and a discrete

devaluation took place. Accordingly, in this simple model, the pegged regime may be
8For example, Bates (1991) estimates the probability and expected size of a jump in the US stock market before the

crash of 1987 and finds significant risk of a negative adjustment in parts of his sample. The estimators of the probability

and expected magnitude of the jump are very inaccurate but negatively correlated, so estimators of the product of them

(roughly the price of the risk of a jump) are more precise.
9 Such a formulation does not correspond to a mini-band regime, but it serves as a good approximation for the short run

path of the Brazilian exchange rate under a maintained peg.
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abandoned at any time. It is convenient to translate the probability of a regime switch

into a hazard rate, and the simplest way to do it is to assume that the above process can

be interrupted by a Poisson event with hazard rate λ that leads to a discrete jump in the

exchange rate and to a new diffusion process, is assumed to last forever.

The simplest way to model the magnitude of the jump is to assume it is a constant

(k):
Safter

Sbefore
= (1 + k)

The floating regime is described by a Brownian motion with drift and much higher

volatility:

ds = µ2dt+ σ2dX

It is easy to extend the model to incorporate a log-normal jump, and the formula for

the price of an option is similar. However, as the standard deviation of the jump plays a

role similar to σ2, it is not possible to get significant estimates for both with the available

data for options on Brazilian Real.

The formulae and estimations in this paper consider risk-neutral agents.10 A call option

gives its owner the right to purchase one unit of foreign currency at strike price X. As

explained in Appendix A.1, the price of a European call with maturity at time T is:

Cmod = e−λTBS
¡
Se(−q−λk)T , T ;X, r, σ21

¢
+ (1)Z T

0

λe−λtBS

µ
Se−qT−λkt(1 + k), T ;X, r,

(σ21t+ σ22(T − t))

T

¶
dt

where r is the domestic interest rate, q is the interest rate denominated in foreign

currency, X is the strike price, S is the spot exchange rate and BS(S, T ;X, r, σ2) denotes

the Black and Scholes price of a call option. The first term of Equation 1 represents the

value of the option if the peg is not abandoned at time T . The integrand of the second

term is the option price given a devaluation at time t (multiplied by its probability density

function).
10The formula would also be valid for risk averse agents if the risk of a jump were diversifiable and uncorrelated with the

market as in Merton (1976). In this case, it would be possible to get an instantaneous zero-beta portfolio and the price

of an option would not depend on any individual preferences. In particular, options would have the same value as in a

risk-neutral world.

If the risk of a change in the exchange regime is systematic and cannot be diversified, there is no way to get a riskless portfolio

and a price independent of agents’ risk aversion. Then, using additional assumptions about individuals’ preferences and the

correlation between their wealth and the underlying assets, it is possible to get richer theoretical models as in Bates (1991,

1996). However, the empirical results would depend on those assumptions. If agents are risk-neutral, observable financial

prices are sufficient for the estimations.
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The parameter λ reflects the “thickness of the tail of the distribution” and k corre-

sponds to the “distance between the tail and the center of the distribution”. Intuitively,

the estimated changes in the expected magnitude of a devaluation are due to changes in

the ratio between the jump component of the prices of options with different strike prices.

The estimated changes in probability reflect changes in the jump component of the prices

of options without changes in their ratios.

To help illustrate identification, consider the following example. For some standard

parameter values,11 options with different λ’s and k’s, and strike prices equal to 1020 and

1100 are priced as shown in Table 1.

Table 1: Example for identification

λ k C(X=1020) C(X=1100) ratio

0.10 0.10 0.90 0.28 3.19

0.20 0.10 1.79 0.56 3.21

0.10 0.20 1.86 1.10 1.70

If λ = 0.1 and k = 0.1, an option with strike 1020 is worth 3.2 options with strike 1100.

If k = 0.1 and λ = 0.2, both options get roughly twice as expensive because the probability

of the option having a positive value at maturity double while the probability density of

the asset conditional on the occurrence of a jump has not changed. Therefore, the ratio

between the option prices remains almost unchanged. On the other hand, if λ = 0.1 and

k = 0.2, the higher magnitude of a devaluation translates into a higher expected value of

S−X conditional on a S > X. Crucially, this increase is more pronounced in the case of

the option with higher strike price (higher X) and the option-price ratio falls to 1.7. That

is the key for identifying the probability and the expected size of a currency devaluation.

2.3 Data and estimation

The observed price of a call option (Cobs) is assumed to be equal to the model price (Cmod)

plus an error term:

Cobs = Cmod(S, r, q, T ;X, k, λ, σ1, σ2) + � (2)

where � is a mean-zero error term, independent of the observable variables. The para-

meters of Equation 2 were estimated by non-linear least squares.
11S = 1000, T = 0.1 year, r = 0.2/year, q = 0.1/year, σ1 = 0.01/year and σ2 = 0.25/year.
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To estimate the parameters of Equation 2, the following data are required: domestic

interest rates denominated in domestic and foreign currency; spot exchange rate; and op-

tion prices. Interest rate and exchange rate data are available from very liquid markets.12

Unfortunately, the option market is much less liquid and, since there is no reliable record

of the time each option was traded, the price of the last trade for every option must be

used.13 The available data refer to trades realised at potentially different times. Espe-

cially in periods when the markets were nervous, this may introduce large measurement

error in the dependent variable, as discussed in Appendix B.14

The options are European calls, the underlying asset is the US Dollar and the contracts

are to be paid in Brazilian Real. 75% of the options in the sample were traded less than

45 days before maturity, so the obtained estimates are measures of expectations about

the peg in the short run. Options traded too close to maturity (less than 10 days)

were discarded, as they contain little information about implicit distributions and their

prices are not much greater than the bid-ask spread. In addition, transactions in at least

four strike classes with the same maturity were required for each day. Finally, some

questionable observations of a few far out-of-the-money option classes were excluded. In

the end, there were 3,587 observations in the sample corresponding to 474 days and 25

months. Appendix B provides more details on the data.

λ and k are constants in the model but in the estimations they are allowed to vary over

time. This is a potential source of inconsistency, however some Monte Carlo experiments

presented in Appendix A.2 show that, for at least some diffusion processes of λ, such a

procedure yields reasonable estimates. This is hardly surprising, as prices of European

calls do not depend on the particular paths of the hazard rate and magnitude of jump

but on the probability distribution of the exchange rate at the maturity date. Indeed,

the estimation of different λ’s and k’s is the standard procedure in the literature (see, for

example, Bates (1991, 1996) and Jondeau and Rockinger (2000)). In the empirical work,

λ and k are either estimated for each of the 695 sets of options of a certain maturity

traded in a given day or constrained to be constant during each of the 25 months.
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Figure 2: Daily Estimates

2.4 Results

Figure 2 shows the results when λ and k are allowed to vary across dates and maturity

dates, assuming σ1 = 0.75% per year and σ2 = 25.5% per year.15 Among the 695 {λ, k}
estimated, 442 pairs have a t-statistic higher than 2 for both estimates. Figure 2 shows

just the results for those 442 ‘significant’ days. The estimates of λ higher than 0.17 are

plotted as if they were equal to 0.17 (five cases yield significant estimates of λ between

0.25 and 0.40).16 The vertical lines mark the periods in which the ‘devaluation premium’

is high.

The top left graph shows the devaluation premium, λk. Unsurprisingly, it resembles

Figure 1: the two major shocks in the series follow the Asian and the Russian crises.17

The options allow us to disentangle and determine the relative importance of the two
12All the data are from contracts traded at São Paulo Futures Exchange (BM&F).
13 In theory, options were traded at the exchange. In practice, options were traded over the counter and then registered

at BM&F.
14 It is possible to interpret the error term in Equation 2 as measurement error in the dependent variable.
1525.5% is the standard deviation of the observed daily changes in the exchange rate from 1/19/99 to 12/31/99
16Nothing substantial changes in the Figures if the lower bound for t-statistics and the censorship limit is altered.
17Actually, the interest rate rise is greater than the increase in the devaluation premium due to the additional increase

in the risk of default.
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key components of the forward premium. A dramatic increase in the probability of a

devaluation follows both crises, and is the predominant cause of the rise in the devaluation

premium. The expected magnitude appears lower in 1997 than in 1998, but shows no sign

of being affected by the foreign crises.

Figure 3 presents the estimates when λ and k are constrained to be constant within

each month, whilst maintaining the assumption that σ1 = 0.75% per year and σ2 = 25.5%

per year. It should be noted that, if there are substantial variations in the probability

and expected magnitude during a month, it is not clear how mixing different option dates

will impact the estimates. Nonetheless, it is a useful exercise to help understand the daily

estimates.

Figure 3: Monthly estimates

Figures 2 and 3 portray expectations about the Brazilian pegged regime from January

1997 to January 1999. At the end of October 1997, the Asian crisis strongly affected the

credibility of the Real. The probability of a devaluation reached its peak in November

1997 but had returned to previous levels by February 1998. It remained low until August,

when Russia defaulted on its debt, upon which it sharply rose and remained around 5%

per month until January 1999, when the peg was removed. The parameter k increased at

some point in 1997 and remained roughly stable around 15% after the Asian crisis until
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the end of the pegged regime. In 1998, virtually all changes in the devaluation premium

were due to movements in the probability of a devaluation; the Russian crisis appears to

have had no effect on the expected magnitude.

Both the Asian and Russian crises strongly affected the probability of a devaluation

but had little or no effect on its expected magnitude. More generally, fluctuations in the

devaluation premium are largely explained by movements in λ alone. The correlation

between λ and λk is 92%, while the correlation between k and λk is only 37%.

Table 2 shows the value of estimates and standard errors in the monthly exercise. The

lowest pseudo-t-statistic is 2.96 and the average pseudo-t-statistic is 7.6.

Interestingly, as shown in Figure 2, the greatest jumps in the Mexican exchange rate

coincided with the largest movements in the probability of a devaluation in Brazil. Like

Brazil, Mexico had large current account deficits by that time and few direct links with

Russia, Korea or Hong Kong, but its currency was floating. It is reasonable to expect

that the Brazilian “shadow exchange rate” and the Mexican floating rate would respond

to the Asian and Russian crises in similar ways: had the Brazilian currency been floating,

it would have depreciated.18

The monthly probability of a devaluation was almost always below 10% and remained

around 5% from September 1998 until January 1999. Even as the regime break ap-

proached, the estimates of λ did not increase sharply.19 Indeed, Brazilian interest rates

were decreasing (from 2.93% per month in October 1998 to 2.38% per month in Decem-

ber 1998), the government entered into an arrangement with the IMF towards the end of

1998, and some macroeconomic reports were pointing to an increase in the credibility of

the currency by December 1998.20

The results also show that agents underestimated the size of the jump: while the

expected depreciation is never greater than 20%, the observed devaluation was as high

as 60%. Some comments on the discrepancy between the expected and the observed

devaluation are in Appendix C.
18Actually, the crises of 1997-8 negatively affected all the main Latin American synchronically floating currencies. The

Chilean Peso, despite the good economic performance of Chile, was adversely hit by the Asian crisis. The Colombian Peso

lost 10% of its value in the month following the Russian default (its average monthly devaluation over the period was 2%).
19There are estimates for λ until 01/08/99, 3 business days before the jump. Options get slightly more expensive 1 or 2

days before the devaluation.
20For example, the December 1998 economic analysis bulletin of IPEA (the Brazilian institute for research in applied

economics) states that ‘(...) the pressure on the exchange rate got milder, and now a speculative attack is less likely to

occur’, IPEA (1998, in Portuguese), page 6.
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Table 2: Monthly estimates of k and λ

k λ (year−1)

Jan-1997 0.0491 (0.0042) 0.2929 (0.0166)

Feb-1997 0.0646 (0.0136) 0.1307 (0.0196)

Mar-1997 0.0442 (0.0060) 0.1378 (0.0099)

Apr-1997 0.0471 (0.0092) 0.2060 (0.0245)

May-1997 0.0389 (0.0055) 0.2702 (0.0229)

Jun-1997 0.0715 (0.0112) 0.0914 (0.0119)

Jul-1997 0.0735 (0.0132) 0.0876 (0.0135)

Ago-1997 0.0904 (0.0239) 0.1212 (0.0324)

Sep-1997 0.1135 (0.0122) 0.1812 (0.0233)

Oct-1997 0.1350 (0.0401) 0.0987 (0.0334)

Nov-1997 0.1076 (0.0131) 0.8690 (0.1252)

Dec-1997 0.1299 (0.0154) 0.4054 (0.0586)

Jan-1998 0.1216 (0.0121) 0.5472 (0.0667)

Feb-1998 0.1606 (0.0205) 0.1247 (0.0193)

Mar-1998 0.1154 (0.0112) 0.1411 (0.0148)

Apr-1998 0.1707 (0.0138) 0.0961 (0.0090)

May-1998 0.1464 (0.0254) 0.1589 (0.0316)

Jun-1998 0.1723 (0.0164) 0.1436 (0.0153)

Jul-1998 0.1913 (0.0280) 0.0612 (0.0097)

Ago-1998 0.1481 (0.0330) 0.1252 (0.0303)

Sep-1998 0.1411 (0.0217) 0.5461 (0.0935)

Oct-1998 0.1877 (0.0216) 0.4509 (0.0600)

Nov-1998 0.1845 (0.0274) 0.3251 (0.0554)

Dec-1998 0.1051 (0.0157) 0.7966 (0.1362)

Jan-1999 0.1319 (0.0149) 0.5431 (0.0733)
Standard deviations in parentheses.
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3 Theoretical models

In order to analyse the behaviour of the probability and expected magnitude of a devalu-

ation, this section presents a simple model of currency crises and analyses its implications

under different assumptions for the currency crises trigger.

In Section 2, the probability and expected magnitude of a devaluation are exogenous

variables to be estimated. Here, they will be obtained endogenously. The primitives of

the model are the path of the exchange rate and the currency overvaluation, as well as

the mechanism that triggers currency crises. This imposes restrictions on the behaviour

of the probability and expected magnitude of a devaluation, which may be inconsistent

with the results presented in Section 2.

The exchange rate process before the peg is abandoned is identical to that of the

previous section:

ds = µ1dt+ σ1dX1

Currency overvaluation in logs is denoted by θ and follows a similar stochastic process:21

dθ = µθdt+ σθdXθ

All variables and parameters are observed by the agents.

Denoting by φ the shadow exchange rate, i.e. the exchange rate if the government

decided to abandon the peg:

φ = s+ θ

Thus, when the pegged regime is abandoned, the de facto magnitude of the devaluation

will equal to θ – the exchange rate jump from s to φ. However, the expected magnitude

of a devaluation conditional on its occurrence will depend on what triggers the currency

crisis.

3.1 Sunspot model

The defining feature of currency crises models with multiple equilibria is that the oc-

currence of a devaluation does not depend strongly on economic fundamentals. The

mechanism is the following: if everyone expects the peg to be kept and refrains from

attacking the currency, the government is able to keep the peg, but if all agents expect
21Assuming some kind of slow mean reversion would not qualitatively change the results.
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it to be abandoned and decide to attack, the government is forced to let the currency

devalue. So expectations are self-fulfilling. The fate of the peg depends on what agents

do, which in turn depends on sunspot variables, disconnected from the economy.

In Obstfeld (1996), in the multiple-equilibrium region, there is no link between the

probability of a devaluation and economic fundamentals. In Jeanne (1997), fundamental

variables do have an impact on the probability of a devaluation, but they are very small:

a switch from the “good” to the “bad” equilibrium – which is assumed to be discon-

nected from economic variables – has substantially higher impact on the likelihood of a

devaluation than any change in fundamentals, unless it takes the economy away from the

multiple-equilibrium region.

That defining characteristic of a sunspot model can be translated to this framework in

the following way: if θ > 0, a currency devaluation occurs with an exogenous probability

p, that may be time varying, and might obey any kind of stochastic process.

According to this model, by assumption, the probability of a devaluation should not

depend on θ, as p depends mostly on sunspots, uncorrelated with θ.

As the probability of a devaluation is disconnected from θ, the expected magnitude of

a devaluation conditional on its occurrence at time t is equal to the expected value of θ,

conditional on θ > 0. That is because conditioning on a currency devaluation yields no

extra information about θ, so:

E(magnt) = E(θt|θ > 0)

If θ is significantly larger than 0, then E(θt|θ > 0) is approximately equal to E(θt).

The expected magnitude of a devaluation is very close to the unconditional expected value

of θ at time t, which is solely determined by the parameters of the stochastic process and

the current θ.

In this model, a negative shock to the shadow exchange rate should have no impor-

tant impact on the probability of a devaluation but should strongly affect its expected

magnitude.
∂Emagn

∂θ
> 0

This prediction is at odds with the behaviour of the expected magnitude of a devalua-

tion following the Asian and Russian crises. While the overvaluation of Brazilian currency

is expected to have increased during those episodes, the expected magnitude hasn’t been

affected at all by the Russian default and hasn’t changed much with the Asian crisis.

This model takes the sunspot idea to the extreme, by assuming that the probability of

a devaluation does not depend at all on θ. But even if movements in θ have some impact
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on the probability of a devaluation, as long as the impact is not so strong, the expected

magnitude should be significantly affected.

Some mean reversion in the path of θ changes the expected value but doesn’t change

the conclusion: shocks to θ should strongly affect the expected magnitude of a devaluation,

conditional on its occurrence in 1 or 2 months.

3.2 Threshold model

Some models in the literature predict that the peg will be abandoned whenever some

fundamental variable hits a threshold. In this framework, that would mean that the

government will abandon the peg whenever the currency overvaluation hits a threshold,

θ∗. For this subsection, it is assumed that the threshold is deterministic and known to all

agents in the economy. This leads immediately to:

E(magn) = θ∗

which is independent of θ.

The important difference here is that the expected magnitude of a devaluation condi-

tional on its occurrence is substantially different from the unconditional expectation of

θ. The devaluation occurs when θ crosses θ∗ and conditioning the expected value of θ on

that information makes the whole difference.

As θ moves up, closer to θ∗, the probability that θ will hit the threshold in the next

few weeks increases, which is why we get:

∂prob

∂θ
> 0 ,

∂Emagn

∂θ
= 0

This model thus predicts that the increases in the Brazilian currency overvaluation

following the Asian and Russian crises should affect the probability of a devaluation but

not its expected magnitude.

Those implications match the movements of probability and expected magnitude in

1998 and do a reasonably good job in 1997: the Asian crisis produced strong impacts on

the probability of a devaluation and had only weak effects on its magnitude.

The possibility of discrete jumps in the shadow exchange rate would weaken this result:

the expected magnitude of a devaluation would then be somewhat affected by the possi-

bility of jumps. But if the frequency of the jumps is small, the effect would not be very

large. Thus the probability of a devaluation should be strongly affected by such jumps.

However, the model leaves unexplained the increases in the expected magnitude of a

devaluation in 1997.
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Moreover, quantitatively, the model does not do well. Given the characteristics of the

Brownian motion,

lim
θ→θ∗

prob = 1

that is, the probability of a devaluation gets arbitrarily large as θ approaches the

threshold. This is much more than the 5% or 10% a month observed in the data.

3.3 Threshold model with uncertainty

The problems with the threshold model vanish if the threshold is uncertain, that is, if

the government will abandon the peg when currency overvaluation crosses a threshold,

θ∗, unknown to the agents.

Denote the maximum value that θ has achieved up to time t by θmin. We know that

θ∗ > θmin, otherwise the peg would have been abandoned before. Agents have common

uncertainty about θ∗, g(θ∗|θmin).
The probability of a devaluation before time τ is then:

prob =

Z ∞

θmin
g(θ∗|θmin).preach(θ∗).dθ∗

where preach(θ∗) is the probability that θ∗ will be reached before time τ . As long as

θ < θmin, it can also be written as:

prob =

Z ∞

θmin
g(θ∗|θmin).preach(θmin).preach(θ∗|θmin).dθ∗

= preach(θmin).

Z ∞

θmin
g(θ∗|θmin).preach(θ∗|θmin).dθ∗

where preach(θmin) is the probability that θmin will be reached before time τ and

preach(θ∗|θmin) is the probability that θ∗ will be reached before τ conditional on θmin

being reached before τ . The second equality arises because preach(θmin) is independent

of θ∗.

Provided θ keeps below θmin:

∂prob

∂θ

¯̄̄̄
θ<θmin

=
∂preach(θmin)

∂θ

Z ∞

θmin
g(θ∗|θmin).preach(θ∗|θmin).dθ∗ > 0

As long as θ < θmin, increases in θ drive the economy closer to the region where the

devaluation is possible, increasing the probability of a devaluation.

The expected magnitude of a devaluation conditional on its occurrence up to time τ
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is:

E(magnt) =

R∞
θmin

θ∗.g(θ∗|θmin).preach(θ∗).dθ∗R∞
θmin

g(θ∗|θmin).preach(θ∗).dθ∗

=

R∞
θmin

θ∗.g(θ∗|θmin).preach(θmin).preach(θ∗|θmin).dθ∗R∞
θmin

g(θ∗|θmin).preach(θmin).preach(θ∗|θmin).dθ∗

=

R∞
θmin

θ∗.g(θ∗|θmin).preach(θ∗|θmin).dθ∗R∞
θmin

g(θ∗|θmin).preach(θ∗|θmin).dθ∗

which is independent of θ.

Provided θ remains below θmin, movements in θ do not affect the expected magnitude

of a devaluation:
∂Emagn

∂θ

¯̄̄̄
θ<θmin

= 0

The intuition is that while θ < θmin, increases in θ provide no extra information about

θ∗, causing therefore no impact on the expected magnitude of a devaluation. As in the case

with a known threshold, the unconditional expected currency overvaluation is different

from the expected magnitude of a devaluation conditional on its occurrence.

On the other hand, when θ is at θmin, upward movements in θ increase θmin and the

expected magnitude of a devaluation conditional on its occurrence is thus affected by

movements in θ. It can be shown (and it is intuitive) that the expected magnitude of a

devaluation is increasing in θmin. When θ = θmin, the probability of a devaluation is at

its highest since the last time θ reached θmin and the expected magnitude increases with

any shock to θ.

In the model, agents do not have any information about θ∗ besides θmin and its distri-

bution, so they just update their beliefs about θ∗ when θ reaches θmin. One could think

that, in reality, agents could access other sources of information about θ∗. However, it is

actually difficult for the government to communicate its commitment to the peg because

the incentive to assert the peg will only be abandoned in dramatic circunstances (abnor-

mally high values of θ) is always present, as the devaluation premium depends negatively

on the expected value of θ∗, which can be interpreted as a higher perceived commitment to

the peg. A higher θmin leads to a lower forward premium because it lowers the probability

of a devaluation and increases its expected magnitude, but the effect on the probability

dominates.

Given the uncertainty about θ, the probability of a devaluation does not need to get as

high as in the case with a known threshold. The next section examines the quantitative

implications of the model.
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4 Empirical estimation of the model

The model with the uncertain threshold is simple enough that it is possible to price an

option in that environment. So, using the data on option prices, we can back out the path

of θ. This exercises serves for two purposes: (i) to check whether the simple model can

generate values for the probability and expected magnitude of the devaluation consistent

with the data, under reasonable assumptions on parameters; and (ii) to examine the path

of the shadow exchange rate implied by the model and the option data.

Some simplifying assumption ought to be made in order to facilitate the estimation

process. I assume that dX1 and dXθ are independent, so:

dφ = (µθ + µ1)dt+
q
σ2θ + σ21dXφ

and the distribution of θ∗, g(θ∗|θmin), is exponential

g(θ∗|θmin) = δe−δ(θ
∗−θmin)

Given the exponential distribution, the probability of a devaluation depends only on

θ − θmin. When θ = θmin, the probability is at its maximum, independent of θmin.

Denote by θt and θmint the values of θ and θmin at date t.

In a risk-neutral world, the price of the option with strike price X and maturity at

date τ is equal to:

c =

Z ∞

θmin
δe−δ(θ

∗−θmin)c2(θ
∗)dθ∗

where c2(θ∗) is the price of a call option conditional on a given value of θ∗.

c2(θ
∗) is given by:

c2(θ
∗) =

Z τ

t

c1(θ
∗, T )h(θ∗, T )dT+

µ
1−

Z τ

t

h(θ∗, T )dT

¶
BS

¡
S−qτ−prob.E(magn), τ ;X, r, σ21

¢
where c1(θ∗, T ) is the price of a call option conditional on θ∗ being reached at time T ,

h(θ∗, T ) is the probability density that θ∗ will be reached at time T , BS is the Black-

Scholes price of an option, prob and E(magn) are the probability and expected magnitude

of a devaluation, given by the formulae presented at the last section.

Last, c1(θ∗, T ) is worth:

c1(θ
∗, T ) = e−r(τ−t)

Z ∞

X

¡
eθτ −X

¢
f(θτ |θT = θ∗)dθτ

where f(θτ |θT = θ∗) is the probability density of θτ conditional on θT = θ∗.
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The densities f and h depend on the diffusion process of θ. Thus, the option price

can be calculated as a function of θt, θ
min
t , the other parameters (µ1, σ

2
1, µθ, σ

2
θ, δ) and

observables (S,X, r, q, τ).

The parameters (µ1, σ
2
1, µθ, σ

2
θ, δ) are calibrated. The values of µ1 and σ1 are taken

from the crawling mini-band regime, in the period of January-1997 to January-1999. I

set µθ = 0 and σθ = 10%/year. δ = 6, which implies that the probability of a devaluation

if θ ∈ [θmin, 1.1× θmin] is 45% and the probability of a devaluation if θ ∈ [θmin, 1.2× θmin]

is 70%.

I estimate a value of θt for every day and θmin0 . Then, θmint = max
©
θmint−1, θt

ª
. The

values of θt are estimated sequentially, for the sake of simplicity. The results are shown

in Figure 4.

Figure 4: Path of θ, probability and expected magnitude

The top graph shows θt and the expected magnitude of a devaluation conditional on

its occurrence in a month. The latter is equal to θmin plus a constant, that depends on

δ, the parameters of the stochastic processes, and the time span. The value of θt at the

end of 1998 is close to the peak reached at the end of 1997. The bottom graph shows the

probability.

The path of the probability of a devaluation is very similar to that obtained in Section
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2. The model thus generates sensible orders of magnitude for the probability of a devalu-

ation. Also consistent with the results obtained in Section 2, the expected magnitude of

a devaluation conditional on its occurrence increases following the Asian crises and stays

constant from then on.

The results tell the following story: in 1997, fluctuations in θ have small or moderate

impacts on the probability of a devaluation until the end of October 1997, when a large

shock to the currency overvaluation occurs: θ increases by around 10%. Then, the current

value of θt has surpassed θmint−1 and reached the region where an immediate devaluation

is possible. The probability of a change in regime is very high, agents are uncertain

whether the government will let the currency float or not. However, despite the very high

interest rates resulting from the high risk of a devaluation, the government keeps the peg.

Agents learn, θmin increases, so the expected θ∗ and hence the expected magnitude of a

devaluation is higher than before the crisis.22

By the end of February 1998, the probability of a devaluation is back to low levels. The

currency overvaluation, θ, has decreased a bit, and although much higher than before the

crisis, it is far enough from θmin to yield a low probability of a devaluation in the short

run.

The currency overvaluation still decreases more in 1998 until the first signs of trouble

from Russia come. Then, it takes only a 5% increase in the shadow exchange rate to drive

θ very close to θmin and trigger a massive increase in the probability of a devaluation.

The expected magnitude of a devaluation does not change – as θ does not go beyond

θmin this time – but any sharp movement in θ may throw it beyond θmin and, perhaps,

trigger a devaluation.

5 Concluding Remarks

The Asian crisis in 1997 and the Russian crisis in 1998 have shaken financial markets

across the world. This paper shows that their negative impact on the Brazilian economy

was reflected in the probability of a devaluation, not in the expected magnitude. It offers

the following explanation: by driving the shadow exchange rate to a region where agents

were unsure about whether the peg would be kept, those shocks increased the odds of a

devaluation. The defence of the Real by the Brazilian government following the Asian

crisis convinced the agents that the threshold for abandoning the peg was higher, which

increased the expected magnitude of a devaluation, conditional on its occurrence, but
22Similar learning effects after a “fire test” are present in other papers (e.g., Chari and Kehoe, 2003).
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allowed for a decrease in the probability when things got slightly better. The subsequent

negative shock in the second half of 1998 drove the exchange rate close to the threshold

again, and once more the probability of a devaluation soared. According to the threshold

model with uncertainty, a shift of the Brazilian shadow exchange rate of 10% with the

Asian crises and 5% with the Russian crises can explain the massive increases in the

probability of a devaluation.

It is important to connect the models in this paper with those presented in the litera-

ture.

The first generation models of currency crises (Krugman, (1979), Flood and Garber

(1984)) predicted that a currency attack would occur when fundamentals crossed a funda-

mental threshold. Some recent dynamic models of currency crises based on that framework

also yield fundamental thresholds for a currency devaluation (Guimaraes (2006), Broner

(2007)), although others lead to different implications (e.g., Pastine (2002)).

Obstfeld and Rogoff (1995) defend the idea that the costs and benefits for the govern-

ment to keep the peg are the key determinants for the fate of the exchange rate regime,

as countries usually have enough reserves to sustain a currency peg. If the government is

always able to keep the peg when it wants, but may decide to leave it if the overvaluation

is ‘high enough’, there is a threshold – θ∗ in this paper. If agents don’t know how high

is ‘high enough’, then this can be written as the model in this paper.

Obstfeld (1986, 1996), among many others, developed a multiple-equilibria explanation

for the puzzling behaviour of markets with respect to currency crises. Assuming that the

costs and benefits for the government to maintain the peg depend on what agents do,

Obstfeld (1986, 1996) get a coordination game between the agents and, with complete

information, multiple equilibria. In the particular case of Brazil, the multiple equilibria

story does not seem to be playing a rule.

Morris and Shin (1998, 1999) added incomplete information to the coordination game

and obtained a unique equilibrium in which a currency crisis occurs if economic fun-

damentals go beyond a threshold. Adding uncertainty about the government costs and

benefits to Morris and Shin (1999) would lead to a model with an uncertain threshold,

with implications similar to the model in this paper.

It has been argued that currency pegs seem to alternate between nervous periods

(when they are subject to attacks) and tranquil periods (when they are not). Some recent

theoretical papers propose explanations for such puzzling market behaviour exploiting

the subtleties of the information flow (Angeletos et al (2007), Chamley (2003), Chari and

Kehoe (2003)). In the simple model presented in this paper, moderate shifts in the shadow
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exchange rate may have small or very large impacts on the risk of a devaluation, depending

on the distance between the shadow exchange rate (θ∗) and the point at which the peg

may be abandoned (θmin). That is a simpler explanation for the distinct market reactions

to changes in economic fundamentals. The models based on information processing yield

interesting insights, but their complexity by far exceeds what can be tested today.
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A The asset pricing model

A.1 Formula for the price of a call

This section provides an intuitive explanation of equation 1, that is:

Cmod = e−λTBS
¡
Se(−q−λk)T , T ;X, r, σ21

¢
+Z T

0

λe−λtBS

µ
Se−qT−λkt(1 + k), T ;X, r,

(σ21t+ σ22(T − t))

T

¶
dt

where BS (S, T ;X, r, σ2) denotes the Black-Scholes price of a European call option if

the underlying asset follows a Brownian motion with a drift
¡
dS
S
= µ.dt+ σ.dX

¢
, r is

the interest rate, X is the strike price, S is the spot exchange rate and T is the time to

maturity.

The price of an exchange rate option with the above characteristics is:

BS
¡
S.e−qT , T ;X, r, σ2

¢
(3)

where q is the interest rate denominated in foreign currency.

The first term of equation 1 is the value of the option if there is no devaluation until

time T . This happens with probability e−λT . Conditional on that, the value of a call

option is given by:

BS
¡
Se(−q−λk)T , T ;X, r, σ21

¢
which is equation 3 with the spot exchange rate S multiplied by e−λkT . This term

accounts for the devaluation premium – the instantaneous expected return on domestic

currency equals its return conditional on no devaluation minus λk.
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The probability density of a devaluation at time t is λe−λt. Conditional on that, the

value of a call option is:

BS

µ
Se−qT−λkt(1 + k), T ;X, r,

(σ21t+ σ22(T − t))

T

¶
The exchange rate in this case is distributed as if it followed a regular Brownian motion

starting from Se−qT−λkt(1 + k) and with volatility (
σ21t+σ

2
2(T−t))
T

. The spot exchange rate

needs to be corrected by the jump (multiplied by (1+k)) and by the devaluation premium

up to time t (multiplied by e−λkt). The volatility is just a weighted average of the variances

in the 2 regimes.

The second term of equation 1 integrates the products of prices and probability den-

sities.

A.2 Theoretical option price if λ varies

Although the model assumes a fixed hazard rate λ, our estimations do not impose such

constraint. So, how different would theoretical option prices be if λ was allowed to vary?

The answer may depend on the underlying process for λ. Monte Carlo simulations

were used to approximate option prices for a particular case, when the hazard rate λ

behaves according to the following equation:

d log(λ) = σλ.dX

The table below shows the prices of options with 0.2 year to maturity for different σλ’s

but same expected λ after 0.1 year 23.

E(λ|t = 0.10) σλ = 0 σλ = 0.5

0.15 3.499 (0.008) 3.487 (0.010)

0.20 4.602 (0.009) 4.600 (0.008)

0.25 5.651 (0.009) 5.664 (0.009)

The lack of sensitivity to σλ is not due to little volatility. If σλ = 0.5 and λ(t = 0) =

0.1975, E(λ|t = 0.10) = 0.20 but the 95% confidence interval for λ(t = 0.20) is wide:

[0.127, 0.306] – λ varies significantly in the 0.2-year period.

The results show that, at least for this particular case, changes in the standard devia-

tion of the diffusion process for λ have no impact on option prices. This example seems
23Some simplifications were made to reduce computations cost of this exercise, so all prices are probably slightly overes-

timated. The parameters used were: σ1 = .01, σ2 = .10; k = .20, S = 1000,X = 1100, τ = .20, r = .22, q = .11.
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to confirm our intuition that the estimates of λ obtained in this work should be close to

what agents perceived as an average hazard rate.

B The Data

Table 3 shows the data for the last week in October-1997 and the first week in November-

1997. All information refers to contracts with maturity on the last day of November. The

data contains 695 rows like the 10 presented in table 3.

Table 3: A subset of the data

X

Day 1113 1115 1120 1150 1170 1200 F S τ DI

10/27 2.25 2.20 1.40 1.50 1.30 1115.8 1102.7 32 97958

10/28 3.50 3.50 1.40 2.00 2.10 1116.9 1106.4 31 97841

10/29 3.00 4.50 2.00 2.20 1118.2 1102.4 30 97746

10/30 12.00 11.00 12.50 5.00 5.00 5.00 1125.8 1106.3 29 97473

10/31 11.00 7.00 11.00 4.00 4.50 3.30 1124.9 1103.1 28 97056

11/03 7.00 8.00 5.51 4.50 3.00 1121.6 1103.0 25 97123

11/04 5.50 5.50 6.40 3.51 3.49 2.00 1116.9 1104.1 24 97338

11/05 4.30 3.50 3.25 2.60 1.75 2.00 1118.1 1104.1 23 97402

11/06 8.00 7.00 6.00 4.30 2.70 3.00 1118.4 1106.9 22 97541

11/07 13.70 10.50 11.00 7.50 8.00 8.00 1123.5 1108.2 21 97392

The first column shows the trading day. Columns 2 to 7 show the prices of options with

strike price shown in the first line of the table: for example, on 10/27, options that give its

holder the right to buy US$1000 for BR$1115 were traded at price BR$2.25. F denotes

the future exchange rate: on 10/27, US$1000 on the last day of November were priced

at BR$1115.80. S is the spot exchange rate: on 10/27, US$1000 cost BR$1102.70. τ in

this table is just the number of days until maturity and DI is an interest rate derivative

contract: on 10/27, BR$100,000 on the first day of December were worth BR$97,958. The

information on future contracts of interest rate and exchange rate allows us to calculate

interest rates denominated in domestic and foreign currency.

The peg was not abandoned in November-1997, so on the maturity date of those

options, the exchange rate was BR$1109 for US$1000 and all options shown at Table 3

were worth 0.

Option prices present huge daily variations, which suggests that large intra-day fluctu-

ations may also occur. As the data refers to options traded in potentially different times,
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this may bring severe measurement error to the dependent variable of equation 2. In an

extreme example, on 10/31/97, the price of a call with strike 1115 (Reais/US$1000) and

maturity 12/01/97 is 7.00 and a call with strike 1120 and same maturity costs 11.00. The

sum of the absolute measurement error is therefore greater than 4.00! There are plenty

of examples like this, less dramatic though.

The price of a call option must be (weakly) convex as function of the strike price,

otherwise there are arbitrage opportunities (see Campa et al (2002)). Violation of such

properties are evidence of noise in the data on options, probably due to trades being

realised at different times, and generate probability density functions with negative values

if the methodology of Campa et al (2002)) is applied. In our sample, convexity is violated

in 58% of the 695 ‘days’ in our sample, and two thirds of those 695 days consist of only

4 or 5 points.

C Expected and observed jump size

On 02/01/99, the first maturity day of options after the devaluation, the exchange rate

was at 1.983 R$/US$, 63.7% higher than 3 weeks before. According to our estimates,

agents were expecting a substantially smaller jump.24 Actually, this belief is confirmed by

the exchange rate path right after the devaluation. Table 4 shows the spot exchange rates

in January-99 – Future rates display the same pattern. On January 13th, the end of the

pegged regime was announced and the Central Bank tried to impose a new upper bound

of fluctuation, at R$1.32/US$.25 Two days later, the new-born band was abandoned and

the exchange rate started to float. On the 15th, even though Brazilian Real had lost this

first battle, the US Dollar was still just 21% more expensive than before the jump. The

spot rate would go up gradually and increase every single day until the end of the month.

The behaviour of the exchange rate in the very short run after the devaluation is

interesting: there seems to be a clear and very strong upward trend for the price of the

US Dollar, suggesting either that bad news for Brazilian economy was arriving every single

day or that the market took a couple of weeks to update its more optimistic prior. A look

at the newspapers of January-1999 favours the latter explanation.26

24Malz (1996) estimates the expected devaluation of the Sterling Pound in 1992, conditional on its occurrence, and finds

that the expected jump was much smaller than the observed depreciation of 12.5%, which suggests that the market was

also surprised by the extent of the Sterling devaluation.
25That would mean a devaluation of around 9%.
26For example, the magazine Epoca published on 01/18/99, when the devaluation was already above 20%, brought Finance

Minister Pedro Malan arguing that Brazilian currency overvaluation was slightly lower than 10% – he cited studies from

institutions such as Morgan, Lloyds, IMF and Goldman Sachs that confirmed his opinion. He dismissed the estimations of

an overvaluation of “20%, 25%, 30% and even 40%” as based on some “simplistic calculations”. On that day, 40% sounded

29



Table 4: Spot exchange rate in January-99

Day Exchange Rate Jump

1/11/99 1.211

1/12/99 1.211

1/13/99 1.319 8.9%

1/14/99 1.319 8.9%

1/15/99 1.466 21.0%

1/18/99 1.538 27.0%

1/19/99 1.558 28.6%

1/20/99 1.574 29.9%

1/21/99 1.660 37.0%

1/22/99 1.705 40.7%

1/25/99 1.761 45.3%

1/26/99 1.877 54.9%

1/27/99 1.889 55.9%

1/28/99 1.921 58.5%

1/29/99 1.983 63.7%

like a bad joke. Reality proved to be different.
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