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Abstract

Does the pattern of social connections between individuals matter for macroeconomic out-
comes? If so, how does this effect operate and how big is it? Using network analysis tools, we
explore how different social structures affect technology diffusion and thereby a country’s rate
of technological progress. The network model also explains why societies with a high prevalence
of contagious disease might evolve toward growth-inhibiting social institutions and how small
initial differences can produce large divergence in incomes. Empirical work uses differences in
the prevalence of diseases spread by human contact and the prevalence of other diseases as an
instrument to identify an effect of social structure on technology diffusion.

How does the pattern of social connections between individuals affect a country’s income?

Macroeconomists typically overlook findings of sociologists and anthropologists because social char-

acteristics are difficult to observe, to describe formally and to quantify.1 This paper uses tools from

network analysis to explore how different social structures might affect a country’s rate of tech-

nological progress. The network model also explains why societies might adopt growth-inhibiting

structures and allows us to quantify the potential size of these effects. Motivated by the model, we

use differences in the prevalence of diseases spread by human contact and the prevalence of other

diseases as an instrument to identify an effect of social structure on technology diffusion.

There is a long history of measuring the speed of information or technology diffusion within

various kinds of networks (Jackson (2008), Granovetter (2005)). Given these findings, a simple
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1There is a small economics literature and a much more extensive sociology literature on the effects of social
institutions on income. See e.g. Greif (1994) for economics and Granovetter (2005) for a review of the sociology
literature.
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way to explain the effect of social structure on GDP is to show that some types of social networks

disseminate new technologies more efficiently than others and append a production economy where

the average technology level is related to output and income. There are two problems with this

explanation. First, social contacts are presumably endogenous. If so, why would a social structure

that inhibits growth evolve and persist? Second, this explanation is difficult to quantify or test.

How might we determine if its effects are trivial or not? While researchers have mapped social

networks in schools or on-line communities (Jackson, 2008), mapping the exact social network

structure for an entire economy is not feasible.

Our theory for why some societies have growth-inhibiting social structures revolves around the

idea that communicable diseases and technologies spread in similar ways - through human contact.

We explore an evolutionary model, where some people favor local “collectivist” social networks and

others do not. People who form collectives are friends with each others’ friends. The collective

has fewer links with the rest of the community. This limited connectivity reduces the risk of an

infection entering the collective, allowing the participants to live longer. But it also restricts the

group’s exposure to new technologies. An individualist social network with fewer mutual friend-

ships speeds the arrival of new technologies, which increases one’s expected economic success and

favors reproductive success. In countries where communicable diseases are inherently more preva-

lent, the high risk of infection for individualists makes the individualist trait die out. A collectivist

social structure that inhibits the spread of disease and technology will emerge. In countries where

communicable diseases are less prevalent, the collectivist types will be less economically and repro-

ductively successful. Greater reproductive success of individualists causes the network to become

fully individualist.

The idea that disease prevalence and social structure are related can help to isolate and quan-

tify the effect of social structure on technology diffusion. Isolating this effect is a challenging task

because technology diffusion and social structure both affect each other: Technology diffusion is

a key determinant of income, which may well affect a country’s social structure. To circumvent

this problem, we instrument for social structure using disease prevalence data. By itself, disease

prevalence would be a poor instrument because it is not likely to be exogenous: higher income

levels would likely translate into better health and lower disease levels. Therefore, our instru-

ment uses differences in the prevalence of two types of disease. The first type is diseases that

are spread directly from person-to-person. These diseases might plausibly affect social structure

because changing one’s relationships with others can prevent transmission. The second type of dis-

eases are those transmitted only through animals. Since direct human contact does not affect one’s

probability of infection, the prevalence of such diseases should not affect social structure. Thus, a

main contribution of the paper is to use the difference in prevalence of communicable disease and
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animal-transmitted disease as an instrument to measure the effect of social structure on income.

Our model explains why communicable disease might be correlated with social structure, how

social structure can influence a country’s technology diffusion and average productivity, and why

less productive social structures might persist. We isolate one particular aspect of social structure,

its degree of individualism versus collectivism, while holding all other aspects of the network fixed.

Of course, many of these other aspects of networks may also differ across countries. We isolate

collectivism because it is an important determinant of diffusion speed and we have cross-country

data measuring it. But measuring other aspects of social networks and understanding their effects

on economic growth would be useful topics for further research.

Section 1 begins by considering two exogenous networks, a collectivist and an individualist one.

It describes the effect of collectives on disease and technology diffusion. Then, it considers networks

that evolve and explores the reverse effects: how technology and disease affect the survival of

individualist and collectivist types in the network. Numerical simulations in section 2 illustrate how

these forces interact. It shows that higher disease prevalence creates the conditions for collectivist

networks to emerge. Collectivist networks slow technology diffusion, which over time, can explain

large income differences between collectivist and individualist societies.

Section 3 describes the historical pathogen prevalence data we collected from atlases of infectious

disease, the measures of a society’s individualism from Hofstede (2001), and the technology diffusion

measure from Comin and Mestieri (2012). Section 4 uses this data to test the model’s predictions

for the relationship between disease prevalence and social structure. This establishes that disease

prevalence is a powerful instrument for social structure. The section then goes on to estimate the

effect of social structure on technology diffusion, using the difference in communicable and non-

communicable diseases as an instrument. A main finding is that a 1-standard-deviation increase in

individualism increases productivity by an amount equal to 23% of US productivity.

Related literature The paper contributes to four growing literatures. A closely related lit-

erature is one that considers the effects of social structure on economic outcomes. Most of this

literature considers particular firms, industries or innovations and how they were affected by the

social structure in place (e.g., see Granovetter (2005) or Rauch and Casella (2001)). In contrast,

this paper takes a more macro approach and studies the types of social networks that are adopted

throughout a country’s economy and how those affect technology diffusion economy-wide. Ashraf

and Galor (2012) and Spolaore and Wacziarg (2009) also take a macro perspective but measure

social distance with genetic distance. Our network theory and findings complement this work by

offering an endogenous mechanism to explain the origins of social distance and why it might be

related to the diffusion of new ideas.

3



Thus in its scope, the paper is more related to a second literature, that on technology diffusion.

Recent work by Lucas and Moll (2011) and Perla and Tonetti (2011) uses a search model framework

where every agent who searches is equally likely to encounter any other agent and acquire their

technology. Greenwood, Seshadri, and Yorukoglu (2005) models innovations that are known to all

but are adopted when the user’s income becomes sufficiently high. What sets this paper apart is

its assumption that agents only encounter those in their network. Our insights about why societies

adopt networks that do not facilitate the exchange of ideas and our links to empirical measures of

social structure arise because of this focus on the network topology.

The third literature, on culture and its effects on national income is similarly macro in scope.

Gorodnichenko and Roland (2011) focus on the psychological or preference aspects of collectivism.

They use collectivism to proxy for individuals’ innovation preferences and consider the effects of

these preferences on income. In contrast, we view collectivism as a measure of human relation-

ships and assess the effect of those relationships on income. Similarly, most work on culture and

macroeconomics regards culture as an aspect of preferences.2 Greif (1994) argues that preferences

and social structure are intertwined because culture is an important determinant of a society’s

social structure. While this may be true, we examine a different determinant of social structure

that is easily measurable for an entire country, pathogen prevalence. Our evolutionary-sociological

approach lends itself better to quantifying the aggregate effects of social structure on economic

outcomes.

Finally, our empirical methodology draws much of its inspiration from work on the role of po-

litical institutions by Acemoglu, Johnson, and Robinson (2002) and Acemoglu and Johnson (2005)

and the role of social infrastructure by Hall and Jones (1999). But instead of examining institutions

or infrastructure, which are not about the pattern of social connections between individuals, we

study an equally important but distinct type of social organization, the social network structure.

1 A Network Diffusion Model

Our model serves three purposes. First, it is meant to fix ideas. The concept of social structure is

a fungible one. We want to pick a particular aspect of social structure, the degree of collectivism

in a social network, to anchor our analysis on. In doing this, we do not exclude the possibility that

other aspects of social or cultural institutions are important for technology diffusion and income.

But we do want to be explicit about what we intend to measure.

2See e.g., Tabellini (2010) and Algan and Cahuc (2007) who examine the relationship between cultural characteris-
tics and economic outcomes, and Bisin and Verdier (2001) and Fernández, Fogli, and Olivetti (2004) who examine the
transmission of culture. Durlauf and Brock (2006) review work on social influence in macroeconomics, but bemoan
the lack of work that incorporates social network interactions.
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Second, the model motivates our choice of disease as an instrument for social structure. Specifi-

cally, it explains why disease that is spread from human-to-human might influence a society’s social

network in a persistent way. The disease-based instrumental variable we use is a valid instrument,

regardless of the veracity of this theory. The model simply offers one possible explanation for why

disease and social structure might have the robust relationship we see in the data.

The third role of the model is that it helps us answer the following question: The richest

countries have income and productivity levels that are 100 times higher than the poorest countries.

Can differences in social structure plausibly explain such large income disparities? To answer this

kind of question requires a model. Section 2 takes up this quantitative exercise.

A key feature of our model linking social structure to technological progress is that technologies

spread by human contact. This is not obvious since one might think new ideas could be just as

easily spread by print or electronic media. However, at least since Foster and Rosenzweig (1995),

a significant subbranch of the growth literature has focused on the role of personal contact in

technology diffusion; see Conley and Udry (2010) or Young (2009) for a review. In his 1969 AEA

presidential address, Kenneth Arrow remarked,

“While mass media play a major role in alerting individuals to the possibility of an

innovation, it seems to be personal contact that is most relevant in leading to its adop-

tion. Thus, the diffusion of an innovation becomes a process formally akin to the spread

of an infectious disease.”

With this description of the process of technological diffusion in mind, we propose the following

model.

1.1 Economic Environment

Time, denoted by t = {1, . . . , T}, is discrete and finite. At any given time t, there are n agents,

indexed by their location jϵ{1, 2, . . . , n} on a circle. Each agent produces output with a technology

Aj(t):

yj(t) = Aj(t).

Social networks Each person i is socially connected to γ other people. If two people have a

social network connection, we call them “friends.” Let ηjk = 1 if person j and person k are friends

and = 0 otherwise. To capture the idea that a person cannot infect themselves in the following

period, we set all diagonal elements (ηjj) to zero. Let the network of all connections be denoted N .

Spread of technology Technological progress occurs when someone improves on an existing

technology. To make this improvement, they need to know about the existing technology. Thus, if
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a person is producing with technology Aj(t), they will invent the next technology with a Poisson

probability λ each period. If they invent the new technology, ln(Aj(t+1)) = ln(Aj(t))+δ. In other

words, a new invention results in a (δ · 100)% increase in productivity.

People can also learn from others in their network. If person j is friends with person k and

Ak(t) > Aj(t), then with probability ϕ, j can produce with k’s technology in the following period:

Aj(t+ 1) = Ak(t).

Spread of disease Each infected person transmits the disease to each of their friends with

probability π. The transmission to each friend is an independent event. Thus, if m friends are

diseased at time t− 1, the probability of being healthy at time t is (1− π)m. If no friends have a

disease at time t− 1, then the probability of contracting the disease at time t is zero.

An agent who catches a disease at time t loses the ability to produce for that period (Aj(t) = 0).

Let ψj(t) = 1 if the person in location j is sick in period t and = 0 otherwise. An agent who is

sick in period t dies at the end of period t. At the start of period t + 1, they are replaced by a

new person in the same location j. That new agent inherits the same social network connections as

the parent node. When we discuss network evolution, we will relax this assumption. At the start

of period t, the new agent begins with zero productivity and learns the technology of each of his

friends with probability ϕ, just like older agents do.

1.2 Two Illustrative Networks

The previous subsection described the economic environment for a given network. Before we add

a process of network evolution, it is useful to compare the properties of two fixed networks. The

evolutionary process will guide the economy to one of these two networks. They are the unique

steady states of the stochastic network process. So, understanding how disease and technologies

propagate in these two networks is very informative about the long-run behavior of our economy.

The two steady-state networks are extremes along a particular dimension, their degree of col-

lectivism. This is an aspect of a social structure that has been extensively studied by sociologists.

The collectivist network is one with many collectives, mutual friendships or instances of interde-

pendence that are the hallmark of collectivist societies. To measure this interdependence, we can

ask: If i is friends with j and with k, how often are j and k also friends? We refer to a structure

where i, j and k are all connected to each other as a collective. Therefore, a measure of the extent

of shared friendships, and thus the degree of collectivism, is the number of such collectives.

To count the number of collectives, we look at all the instances in a given network where one

node i is connected to two other nodes j, k. Count that as a triple if j and k are connected. This

collectives measure is related to a common measure of network clustering: Divide the number of
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collectives by the number of possible collectives in the network to get the overall clustering measure

(Jackson 2008).

To make our examples concrete, we will fix the number of connections γ to be 4. We explore

the possibility of varying the number of connections later.

Network 1 In the collectivist social network, each individual j is friends with the 4 closest people.

In other words, ηjk = 1 for k = {j − 2, j − 1, j + 1, j + 2} and ηjk = 0 for all other k.

Network 1 is extreme in its degree of collectivism. The next result shows that there are as many

collectives as there are members of the network (n).

Result 1 In the collectivist network there are n unique collectives.

The proof of this and all subsequent results are in appendix A.

At the other end of the spectrum, we examine a second network that is identical in every respect,

except that it has the lowest possible degree of collectivism. We call that the individualistic network.

Network 2 In the individualistic social network, each person is friends with the person next to

them and the person m positions away from them, on either side. In other words, for any integer

m ∈ {3, . . . , n/2 − 3}, the network matrix has entries ηjk = 1 for k = {j −m, j − 1, j + 1, j +m}
and ηjk = 0 for all other k.

Result 2 In the individualistic network, there are zero collectives.

These two network structures are particularly informative because of their starkly different

numbers of collectives. This stark difference facilitates matching social institution data with one or

the other type of network. As we will see, networks with numbers of collectives between 0 and n,

are also possible along the transition path. But knowledge of the properties of these two extreme

cases provides intuition about the properties of such intermediate cases as well.

Other dimensions along which networks could differ. There is a very large set of possible

networks for an economy, too large to analyze completely. Therefore, we restrict attention to one

dimension. We choose the prevalence of collectives because it represents the essence of collectivism,

which is the sociological feature we have data on. But other dimensions of networks might also

be closely related to collectivism. In particular, one might represent individualist societies as

having more social linkages or capture the idea of market interactions with a time-varying, random

network. We have investigated both of these aspects of networks and found that both more linkages

and random networks facilitate the spread of technology and germs. Thus, we could instead base our
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analysis on one of these other features and we would still come to the same conclusions: Having

an individualist network exposes one to a greater risk of disease and a more productive set of

technologies. In fact, preliminary analysis suggests that the quantitative effects of adding more

linkages or random networks are even greater than for reducing the number of collectives.

1.3 Theoretical Results: Speed of Diffusion in Each Network

Disease spreads slowly in the collectivist network. The reason is that each contiguous group of

friends is connected to at most 4 non-group members. Those are the two people adjacent to the

group, on either side. Since there are few links with outsiders, the probability that a disease within

the group is passed to someone outside the group is small. Likewise, ideas disseminate slowly.

Something invented in one location takes a long time to travel to a far-away location. In the

meantime, someone else may have re-invented the same technology level, rather than building on

existing knowledge and advancing technology to the next level. Such redundant innovations slow

the rate of technological progress and lower average consumption. The following results formalize

these ideas.

Diffusion speed in each network The speed at which germs and ideas disseminate can be

measured by the number of social connections in the shortest path between any two people. Con-

sider an agent in position 1 and the agent farthest away from him on the circle, agent n/2 + 1. If

each person has 2 friends on either side of them, then agent 1 will be friends with agent 3, who

will be friends with agent 5, and this person will be friends with agent 7, etc., until we reach n/2.

Thus, if the network size n is 6, n/2+ 1 is the farthest node. It could be reached in 2 steps: Agent

1 and agent 3 are directly connected and 3 is connected to 4. If n/2+1 is 6 (n = 10), node 6 could

be reached in 3 steps: from 1 to 3, 3 to 5 and 5 to 6. In general, the number of steps in this chain

will be (n− 1)/4, if that is an integer, or otherwise the next highest integer. The distance to this

farthest person in the network is called the network diameter.

Diameter is one measure of diffusion speed because it tells us how many periods a new idea

takes to travel to every last person in the network. If each person communicates the idea to each of

their friends each period, then in n/γ periods, the farthest person in the network will have learned

the idea, along with every other agent. Since disease is spread only probabilistically, from friend to

friend, the diameter gives us the smallest number of periods in which every person is infected, with

positive probability.3 Appendix A computes the diameter (as well as the average path length) of

our two networks. The diameter of network 1 (collectivist), with n nodes is (n− 1)/4, if that is an

3Our network is symmetric. So, the length of the path to the farthest node is the same, no matter which node
one starts at. But in general, the diameter is the maximum path length, over all starting nodes.
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integer, or otherwise the next highest integer. Suppose, for example, that network 2 (individualist),

has at least 4 nodes (n > 4) and m = 4 so that each node i is connected to i− 4, i− 1, i+ 1, and

i+ 4. The diameter of this individualist network is round(n/8) + 1. For large n, the diameter for

the collectivist network is close to n/4, while the diameter of the individualist network is close to

n/8. Therefore, as long as the network is sufficiently large, which for a country, it undoubtedly is,

the individualist network will have a smaller diameter.

Figure 1 illustrates the smaller diameter and faster diffusion process in individualist networks,

in the simple case where the probability of transmission is 1 and m = 9.4 In both cases, a new

technology arrives at one node in period 0. The “infected” person transmits that technology to

all the individuals she is connected to. In period 1, 4 new people use the new technology, in both

networks. But by period 2, there are 9 people using the technology in the collectivist network

and 14 using it in the individualist network. In each case, an adopter of the technology transmits

the technology to 4 others each period. But in the collectivist network, many of those 4 people

already have the technology. The technology transmission is redundant. After 5 iterations, the new

technology reaches every node in the individualist network. Thus, the diameter of the individualist

network is 5. In contrast, it takes 9 iterations to reach all the nodes in the collectivist network.

(The diameter is 9.) In sum, these properties tell us that, on average, ideas and diseases will diffuse

more slowly through a collectivist network than an individualist one.

Diffusion speed and the technological frontier The diameter and average path length in

a network are important determinants of the speed at which germs and ideas diffuse. In the

individualistic network, because the path length between individuals is shorter, diseases and ideas

disseminate more quickly. The next result uses the calculations above to characterize the mean

and maximum infection times and the mean and maximum discovery time for a new technological

innovation. Let Ψj(t) be the next period in which the person living in location j at time t gets sick

and dies. In other words, Ψj(t) = min{s : s ≥ t, ψj(s) = 1}. Thus, ψj(0) is number of periods that

the person living in location j at time 0 will live. Analogously, let αj(0) be the number of periods

it takes for a new idea, introduced in period 0, to reach person j.

Result 3 Consider two networks, an individualistic network (N2) and a collectivist network (N1).

They have equal size n > 8, where n/8 is an integer, and an equal number of connections per node

γ = 4. If π = 1 and
∑

j ψj(0) = 1, then the average lifetime Ej [Ψj(0)] and the maximum lifetime

maxj [Ψj(0)] are longer in the collectivist network (1) than in the individualist network (2).

4A larger m makes the network connections easier to identify visually. But it also accentuates the difference in
diffusion speed.
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Figure 1: Slower diffusion in the collectivist network (left) than the individualist network (right).

0 3

1 4

2 5

If a technology is introduced at the top of the network at time 0 and is transmitted with probability one, the light-
colored nodes denote the nodes that would adopt the technology in periods 1-5. The individualist network has m = 9.
The diameter of the individualist network is 5 because it takes 5 iterations to reach the farthest node in the network.
It would take another 4 iterations to reach all the nodes in the collectivist network. Therefore the diameter of the
collectivist network is 9.

If ϕ = 1, then the average discovery time Ej [αj(0)] and the maximum discovery time maxj [αj(0)]

are slower in the collectivist network (1) than in the individualist network (2).

With a collectivist network, technology invented in one location was transmitted only 2 people

further each period. In the individualist network, ideas advance 4 places at a time. But faster

diffusion is not the same as faster technological innovation. The reason that diffusion accelerates

technology growth is that when idea diffusion is faster, redundant innovations are less frequent.

Thus, more of the innovations end up advancing the technological frontier. The following result

clarifies the mechanism by which the individualist network achieves a higher rate of growth.

Result 4 Suppose that at t, a collectivist network (N1) and an individualist network (N2) have the

10



same Aj(t) ∀j. Then the probability that the next new idea arrival will increase the technological

frontier is larger in N2 than N1.

Together, these results explain why ideas and germs spread more quickly in the individualistic

network than in the collectivist network, why diffusion might imply a higher level of technology

adoption or GDP, and what evolutionary advantages each type of network might offer its adopters.

Could Collectivism Facilitate Technology Diffusion? Perhaps Arrow was not correct and

technology diffusion is not a process “formally akin to the spread of infectious disease.” Instead, a

technology is adopted only when a person comes in contact with multiple other people who have also

adopted it. It is theoretically possible that having many mutual friendships makes it more likely

that groups of people adopt a technology together. But the adoption complementarity needs to be

very strong to overcome the fact that with collectivism, people are less likely to have any exposure

to the new technology. Furthermore, such a theory does not help to explain the empirical findings,

which will show that collectivism is associated with slower technology diffusion. Ultimately, this

model is simply a framework for helping us think about what we find in the data. While other

formulations that lead to opposite conclusions are possible, they don’t help us to understand the

facts at hand.

1.4 Network Evolution Model

So far, we have simply described diffusion properties of two networks. This leaves open the question

of why some societies have one type of network or the other. One approach would be to work with

a network choice model. But equilibria in such models often do not exist and when they do, they

are typically not unique. Instead, we consider an evolutionary model where the network changes

as agents die and new ones are born in their place. This evolutionary model also helps to explain

why growth-inhibiting social structures might persist long after most diseases have died out.

Preferences, production, endowments and the diffusion processes for technology and disease are

the same as in the fixed-network model. In addition, at each date t, each person j can be one

of two types: They are either a collectivist τj(t) = co or an individualist τj(t) = in. All agents

are linked to the two people adjacent to them. In addition, they are linked to at least one other

person. Which other people depends on their type and the type of their neighbors. Individualists

form links with those adjacent to them and someone four spaces to their right. For example, if the

person is in location j, they are linked to j − 1, j +1 and j +4. Collectivists form links with those

adjacent to them and someone two spaces to their right. For example, if the person is in location

j, they are linked to j − 1, j + 1 and j + 2. In addition, a person of either type might be linked
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to nodes j − 2 and/or j − 4, depending on whether the agents in those locations are individualist

or collectivist. In other words, a person’s own type governs their links to the right (with indices

higher than yours, except near n); others’ types govern links to the left.

A person’s type is fixed throughout their lifetime. The network structure only changes when

someone dies. There are two reasons an individual can die. First, they can acquire the disease.

Someone who acquires the disease at time t has zero output in period t. At the end of period t,

they die. Second, agents can die stochastically, for non-disease related reasons (accident, old age,

etc.). With probability ξ, each person has an accident and dies at the end of each period. This

probability is independent across time and individuals. When someone at node j dies in period t,

then at the start of period t + 1, a new person inhabits that node. The reason we introduce this

second cause of death is to allow the network to evolve, even after the disease has died out.

A newborn person inherits the best technology from the set of people that the parent was

socially connected to. He also inherits the type of the person with that best technology. In other

words, if the person at node j is socially connected to nodes {k : ηjk(t) = 1} and dies at time t,

the new person at node j at time t+1 will start with technology max{k:ηjk(t)=1}Akt. Let k
∗ be the

argument that maximizes this expression ( i.e. the friend with the highest time-t technology), then

the time-(t+ 1) type of the person is the same as the time-t type of person k∗: τj(t+ 1) = τk∗(t).

The idea behind this process is that evolutionary models often have the feature that more

“successful” types are passed on more frequently. At the same time, we want to retain the network-

based idea that one’s traits are shaped by one’s community. Therefore, in the model, the process

by which one inherits the collectivist or individualist trait is shaped by one’s community, the social

network, and by the relative success (relative income) of the people in that network.

1.5 Theoretical Results: Network Evolution

The question we want this model to answer is: Why do some societies end up with a collectivist

network even though it inhibits growth? What features might influence the long-run network

equilibrium? These results describe the long-run properties of networks and disease. Understanding

the stochastic process that governs disease and network type provides intuition for the numerical

results in the next section, which will show that a higher initial prevalence of disease makes it more

likely that a society will end up with a collectivist network, like that in network 1.

The first set of results show that eventually, the economy always converges to either the fully

collectivist network (1) or the fully individualist one (2).

Result 5 With probability 1, the network becomes homogeneous: ∃T s.t. τj(t) = τk(t) ∀k and

∀t > T .
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In other words, after some date T , everyone will have the same type forever after. They might all

be individualist or all be collectivist. But everyone will be the same. The reason for this is that

since traits are inherited from neighbors, when a trait dies out, it never returns. The state where

all individuals have the same trait is an absorbing state. Since there are a finite number of states,

and whenever there exists a j, k such that τj(t) ̸= τk(t), every state can be reached with positive

probability in a finite number of steps, then with probability one, at some finite time, an absorbing

state is reached and the economy stays there forever after.

Similarly, having zero infected people is an absorbing state. Since that state is always reachable

from any other state, with positive probability, it is the unique steady state.

Result 6 With probability 1, the disease dies out: ∃T s.t. ψj(t) = 0 ∀j and ∀t > T .

What these results tell us is that which network type will prevail is largely dependent on which

dies out first, the individualist trait, or the disease. When there is a positive probability of infection,

people with individualist networks have shorter lifetimes, on average. If disease is very prevalent,

it kills all the individualists and the society is left with a collectivist network forever after. If

disease is not very prevalent, its transmission rate is low, or by good luck, it just dies out quickly,

individualists will survive. Since they are more economically successful, they are more likely to

pass on their individualist trait. So, the economy is more likely to converge to an individualist

network. This is not a certain outcome because of exogenous random death. It is always possible

that all individualists die, even if the disease itself is no longer present. The main take away is that

networks can persist long after the conditions to which they were adapted have changed.

2 Numerical Results

We use a calibrated model simulation to accomplish three objectives. First, we use the simulations

to illustrate and clarify the model’s mechanics. Second, we check whether differences in networks

can potentially explain the magnitude of the large differences in incomes across countries. Third, we

establish that societies with higher initial disease prevalence are more likely to become collectivist.

The model is not rich enough to produce predicted growth rates or disease rates that are accurate.

Rather, the objective here is simply to confirm the direction of the model’s predictions and gauge

whether the predicted effects are trivial or not.

2.1 Parameter Choice

To evaluate magnitudes, we need to choose some realistic parameter values for our model. The

key parameters are the probabilities of disease and technology transmission, the initial pathogen
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Table 1: Parameters and their empirical counterparts

Parameter Value Target
Initial disease Prob(ψj(0) = 1) 0.5% TB death rate
prevalence in China
Disease transmission π 32% Disease disappears in
probability 150 years (indiv country avg)
Innovation δ 30% 2.6% growth rate in
productivity increase individualist country
Technology transfer ϕ 50% Half-diffusion in
probability 20 years (Comin et. al. ’06)

Technology arrival λ 0.25% 1 arrival every
rate 2 years (Comin et. al. ’06)

Exogenous death ξ 1/70 average
rate lifespan

prevalence rate and the rate of arrival of new technologies. These parameters are summarized in

Table 1.

For the initial pathogen prevalence rate, we use the annual tuberculosis death rate in China, a

country where the disease was endemic. Tuberculosis is the most common cause of death in our

sample. Note that this is a mortality rate, not an infection rate. Since individuals who get sick

in the model die, this is the relevant comparison. Also, it is a conservative calibration because it

uses only one disease and it would be easier to get large effects out of a higher disease prevalence

rate. One would like to choose the probability of disease transmission to target a steady state rate

of infection. But, as we’ve shown, the only steady state infection rate is zero. Thus, we set the

transmission rate so that, on average, the disease disappears in 150 years. This average masks

large heterogeneity. In many economies, the disease will disappear after 2 periods. In others, it

will persist for hundreds of years. Thus, the economy starts with a given fraction of the population

being sick and each sick person represents an independent 32% risk (π) of passing the disease on

to everyone that person is friends with.

Everyone starts with a technology level of 1. But each period, there is a chance that any given

person may discover a new technology that raises their productivity. The rate of arrival of new

technologies is calibrated so that a new technology arrives in the economy every 2 years, on average.

This corresponds to the average rate of adoption of technologies in the (Comin, Hobijn, and Rovito,

2006) data set. The magnitude of the increase in productivity from adopting a new technology is

calibrated so that the individualistic network economy (more likely to be the developed economy

in the data) grows at a rate of 2.2% per year. The probability of transmitting a new technology

to each friend (λ) is chosen to explain the fact that for the average technology, the time between

invention and when half the population has adopted the technology is approximately 20 years
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(Comin, Hobijn, and Rovito, 2006).

Finally, in the evolutionary model, there is a probability of exogenous death. We choose this

probability to match an average lifespan in a low-disease economy of approximately 70 years.

The economy consists of 200 people, each with 4 friends. We average the results from 200

independent runs.

2.2 An Illustrative Numerical Example

To illustrate the mechanics of technology and disease diffusion, we first describe a small-scale

illustrative example. Here, we hand-pick some of the parameter values (in particular, the rate of

technology arrival) to make it easier to visualize diffusion taking place. Figure 2 illustrates the

diffusion of technology and disease. Each box represents a person/date combination. Time is on

the horizontal axis. People are lined up on the vertical axis according to their location. In the

first period (first column of boxes on the left), everyone starts with the same technology level. But

there are a few agents who have a disease (the darkest boxes).
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Figure 2: How disease and technology spread through networks. The darkest boxes indicate individuals
who acquired the disease in period t and therefore have zero time-t productivity. Warmer colors indicate higher levels
of technology.

By the second period, new ideas start to arrive. In the second column of boxes, there are a

couple of lighter-colored boxes that indicate that these agents have reached the next technology

level. In the collectivist network (left figure), some agents who are 1-2 places away from agents that

were sick in period 1 are now sick. In the individualistic network (right figure), some agents who

are 1 or 4 places away from agents that were sick in period 1 are now sick. In period 3, the new

ideas that arrived in period 2 start to diffuse to nearby locations. In the collectivist network, some

individuals are still using the initial technology level in period 8. In the individualistic network, all

the healthy agents have adopted the second technology level after period 5.
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After 30 periods, the most technologically advanced agents in the collectivist network only

realize 7 steps in the quality ladder. In the individualistic network, some agents operate at 9 steps.

If each innovation represents a 5% productivity increase, being two steps further represents a 10%

higher degree of productivity.

This example is meant to illustrate how an individualistic network spreads ideas more efficiently,

and how it also spreads germs more efficiently. Of course, this is just an example. It is a comparison

of the maximum level of technology from a small number of agents. To get a sense of the aggregate

effect, the following simulation uses the calibrated parameters and averages the results over many

agents and many simulations.

2.3 How Much Effect Might Networks Have on Output?

A potential concern about using this model to explain income differences across countries is the

worry that its predicted effect is trivial, compared to the vast differences in incomes across coun-

tries. What our calibration exercise shows is that changing a society’s social network structure has

a small effect on the annual diffusion rate. But over time, small effects cumulate. The result is large

differences in productivity levels in the long run. Thus, changes in networks produce differences in

technology diffusion rates which could explain a significant part of the disparity in countries’ in-

comes. While idea transmission facilitates reaching higher levels of productivity, disease prevalence

diminishes productivity. To see the net effect of these two forces, we simulate the model many

times and examine the average outcomes.
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Figure 3: Average disease prevalence and productivity

Figure 3 plots the average disease prevalence and the average technology level for the whole

population over 250 years. The fraction of the population infected with disease is significantly

higher in the individualistic network society. In fact, the collectivist networks inhibit the spread of

disease so much that it quickly becomes extinct in most simulation runs.

However, having an individualistic network results in technology that grows at 2.6% per year.
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This is true by construction because it was one of the calibration targets. But the economy with

the collectivist network grows at only 2.0% per year. While the difference in growth rates is small,

in time, it produces large level differences. After 250 years, the average level of technology is 476%

higher in the individualistic network than in the collectivist network. This simple example makes

the point that a difference in network structure can create a small friction in technology diffusion.

When cumulated over a longer time horizons, this small friction has the potential to explain larger

differences in countries’ incomes.

Of course, this also tells us that social structure is not likely to explain the nearly 100-fold

difference between incomes in the poorest and richest countries. We know that corruption, war

and distorted incentives explain the worst growth disasters. At the same time, 476% of national

income is a large difference between seemingly similar countries. It is an extreme result in the sense

that we compared a purely individualist network to a purely collectivist one. Most societies will lie

somewhere in between. But it gives us an idea of the potential size of the effect. The actual effect

is an empirical matter that we take up in the following sections.

2.4 Network Evolution

What we ultimately want to know from the evolutionary model is: Are high-disease societies more

likely to evolve toward collectivist networks? One might wonder whether societies that start out

as high-disease and adopt collectivist social structures might end up with lower disease rates in the

long-run. That turns out not to be the case.

We would like to calculate the probability of arriving at each steady state (where all agents

have the same type) analytically and see how that probability changes in response to changes in

disease prevalence. However, to characterize the probability of a single stochastic process crossing

one boundary before another is a difficult problem. Here, there are two interacting stochastic

processes, one for disease and one for network types. Both have absorbing states. That added

complexity makes characterizing the crossing probabilities an intractable problem.

What we can do is examine the probability of each network steady-state in the context of our

numerical example. We use the same parameters as before. (See Table 1.) We set the initial

fraction of individualists to 10% and simulate the economy for 250 periods 200 times. To see how

the initial disease prevalence rate affects the network steady state, we consider two initial disease

prevalence conditions: One is 5% (the calibration target of the original model) and the other is

twice that level. Thus, there is a low disease economy, with 5% of agents infected, and a high

disease economy that starts with 10% of agents infected.

Figure 4 shows the fraction of economies that have converged to a zero-disease steady-state

or a purely collectivist steady-state by each date. This can also be interpreted as the probability
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.Figure 4: Simulation of the evolutionary model. The economy on the right differs only because it began with
a (2×) higher rate of disease prevalence. High initial disease makes the probability of converging to a zero-individualist
(purely collectivist) state more likely.

that a given economy will converge to that steady state by that date. In the low-disease economy,

much of the time, the disease dies out within a few periods. Only in a few runs does the disease

persist and infect a large fraction of the population. In the high-disease economy, the disease rarely

dies out within 250 periods. Conversely, individualists flourish in the low-disease economy. In the

high-disease economy, after 100 periods, there is a 25% chance that all individualists have died and

that economy will forever remain collectivist.

Thus, the prediction of the model is clear: Low-disease societies are more likely to be individ-

ualist and high-disease societies are more likely to be collectivist. The secondary effect whereby

collectivism reduces disease is always dominated by the primary effect that disease disproportion-

ately kills individualists. To see why, consider the contrary: If high-disease societies were more

individualist, the disease would systematically kill the individualist types and transform the soci-

ety to a collectivist one. It is simply not a stable outcome.

3 Data

Our theory is about the relationship between pathogen prevalence, social structure, and technology

diffusion. We have assembled a data set that contains all 3 variables for 62 countries. This section

describes how these three variables are measured. Additional details, maps and summary statistics

are in the appendix.

3.1 Measuring Pathogen Prevalence

We measure the presence of deadly pathogens in two ways. The first approach recognizes that

disease conditions may take a long time to affect social networks and therefore it is desirable to use

historical data. At the same time, because our identification strategy relies on differences in disease

prevalence, our data must be available for many different diseases, across many countries. One can
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go back to the colonial period (as in Acemoglu, Johnson, and Robinson (2001)), but the different

kinds of diseases that we need to implement our identification strategy are not present in that data.

A variety of diseases is present in disease atlases from the 1930’s. Using these atlases, we compiled

a data set of historical prevalence of 9 different pathogens in 75 geopolitical regions.5 This data

does appear to capture some long-run features of the epidemiological environment because they

are remarkably consistent with the colonial data (see Appendix). Our second approach recognizes

that, if we want to uses differences in diseases as an instrument, it is useful to have a large number

of each type of disease. Therefore, we also use more recent data with the prevalence of 34 diseases

in 78 geopolitical regions.

Historical pathogen data. To assess the historical prevalence of disease, we study 9 pathogens:

leishmanias, leprosy, trypanosomes, malaria, schistosomes, filariae, dengue, typhus and tuberculo-

sis. We choose these diseases because we have good worldwide data on their incidence, and they

are serious, potentially life-threatening diseases that people would go to great length to avoid. The

data come primarily from Murray and Schaller (2010). They are based on old atlases of infectious

diseases and information originally collected by the U.S. military in the 1930’s. They used a 4-point

coding scheme: 0 = completely absent or never reported, 1 = rarely reported, 2 = sporadically or

moderately reported, 3 = present at severe levels or epidemic levels at least once. The countries

with the highest pathogen prevalence are Brazil, India, China, Nigeria and Ghana. Countries with

the lowest prevalence include Canada, Switzerland, Luxembourg, Hungary and Sweden. Figure 7

shows the historical world-wide distribution of pathogens according to the overall index. This is

the data we use for most of our analysis, including our IV estimations.

Contemporary data For comparison, we used the same method to create an alternative mea-

sure of pathogen prevalence based explicitly on contemporary information. The data come from

GIDEON (Global Infectious Diseases and Epidemiology Network) and use a 3-point coding scheme

to report the 2011 prevalence of 34 of the most common infectious diseases. For many of these

diseases, the scheme is coded directly by GIDEON; in these cases, a value of “1” means “not

endemic” (cases do not originate in this country), a value of “2” means “sporadic” (< 1 case per

million people, per year), and a value of “3” means “endemic” (an ongoing presence). The complete

list of diseases we use, along with characteristics of each disease, is reported in table 8.

5The data on pathogen prevalence from the 1930’s line up quite well the data on mortality rates from the colonial
period (see Figure 8 in the appendix) for the subset of countries we have in common, showing that our data captures
the same long run differences in the epidemiological environment.
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Disease reservoirs To identify the effect of disease on social structure, we will use the difference

in the prevalence of various types of diseases. Epidemiologists often classify infectious diseases by

reservoir.6 The reservoir is any person, animal, plant, soil or substance in which an infectious agent

normally lives and multiplies. The reservoir serves as a source from which other individuals can be

infected. The infectious agent depends on the reservoir for survival. It is from the reservoir that

the disease is transmitted to humans. Animals often serve as reservoirs for diseases. There are also

nonliving reservoirs, such as soil, which is a reservoir for fungi and tetanus. Figure 8 summarizes

the properties and classification of all the pathogens that we collected data on.

Human-specific Many diseases have only human reservoirs, even though they historically may

have arisen in other species, such as measles which originated in cattle. Such diseases may

be spread with the help of an animal (called a vector), such as a mosquito that injects one

person’s blood in another person. But it is in the human, not in the mosquito, where the

disease flourishes. Human-specific diseases in our data set include Diptheria, Filaria, Measles

and Smallpox.

Zoonotic Other diseases, although they infect and kill humans, develop, mature, and reproduce

entirely in non-human hosts. These are zoonotic diseases. Humans are a dead-end host for

infectious agents in this group. Our zoonotic diseases include anthrax, rabies, schistosomiasis

(SCH), tetanus, and typhus (TY P ).

Multi-host Some infectious agents can use both human and non-human hosts to complete their

lifecycle. We call these “multi-host” pathogens. Our multi-host diseases include leishma-

niasis (LEI), leprosy (LEP ), trypanosomes (TRY ), malaria (MAL), dengue (DEN) and

tuberculosis (TB).

Since multi-host and human-specific pathogens can reside in humans, they have the potential

to affect the relative benefits of a social network. Zoonotic pathogens are not carried by people,

only by other animals. Their prevalence is less likely to affect the benefits of any particular social

structure. Therefore, for the purposes of our analysis, we will group human-specific and multi-host

diseases together. For example, using the 1930’s data, we define Gh ≡ FIL+LEI+LEP +TRY +

MAL+DEN +TB. We compare the effects of these human- and multi-reservoir diseases to those

of zoonotic diseases. In the historical data, the two zoonotic diseases are Gz ≡ SCH+TY P . With

contemporaneous data, we construct similar sums. The variable Gh is the sum of 22 human and

multi-host diseases and Gz is the sum of 12 diseases.

6See e.g., Smith, Sax, Gaines, Guernier, and Gugan (2007) or Thornhill, Fincher, Murray, and Schaller (2010).
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Using the disease prevalence data from each era separately, we construct the following two

differences to use as instrumental variables:

diff germ ≡ Gh −Gz (1)

diff germ std ≡ Gh

std(Gh)
− Gz

std(Gz)
(2)

3.2 Measuring Collectivism

In our model, collectivism is defined as a social pattern of closely linked or interdependent individ-

uals. What distinguishes collectives from sets of people with random ties to each other is that in

collectives, it is common that two friends have a third friend in common. This is the sense in which

they are interdependent.

The ideal data to measure collectivism would be each country’s complete social network. We

would look for a high prevalence of social collectives. There are a handful of studies that map out

partial social networks, but only for small geographic areas, across eight countries. (See Fischer

and Shavit (1995) for a review.) Therefore, we use data from Hofstede (2001) that is available

for 72 countries. In 1970, he surveyed IBM employees worldwide to find national differences in

cultural values. Hofstede performed a factor analysis of the survey responses, and found two

factors that together can explain 46% of the variance in survey responses. He labels one factor

“Collectivism vs Individualism”, and uses it to construct an index of individualism that ranges

from between 0 (strongly collectivist) to 100 (strongly individualist). Hofstede describes collectivist

and individualist societies as follows: “on the individualist side we find societies in which the ties

between individuals are loose... On the collectivist side, we find societies in which people from birth

onwards are integrated into strong, cohesive in-groups, often extended families...” This description

reflects two views of a collectivist society: one where ties are strong, and one where ties are shared.

In a widely cited paper, Granovetter (1973) provides the bridge between shared ties and strong

ones; he argues, “the stronger the tie between A and B, the larger the proportion of individuals

[that either of them knows] to whom they will both be tied.” Granovetter goes on to give three

theoretical reasons to believe this is true: (1) Time. If A and B have strong ties, they will spend a

lot of time together. If A and C also have strong ties, they will also spend a lot of time together. If

these events are independent or positively correlated, this necessarily implies B and C will spend a

lot of time together, giving them a chance to form a strong tie. (2) The tendency of an individual

to interact with others like himself. If A and B have strong ties, chances are good that they

are similar; the same holds for A and C. Transitivity implies B and C will be similar, and will

therefore get along. (3) The theory of cognitive balance. If A is good friends with B and C, then
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B will want to develop a good relationship with C, in order to maintain his relationship with A.

Thus, Granovetter’s theory explains why Hofstede’s survey questions, many of which are about the

strength of social ties, are informative about the prevalence of collectives, as defined in the model.

Other questions in Hofstede’s survey assess the strength of cooperation, social influence and

individuals’ weight on social objectives. One example of such a question is “ How important is it

to you to work with people who cooperate well with each other?” Coleman (1988) explains why

cooperative behavior is also linked to the presence of network collectives. He shows that effective

norms depend on the presence of collectives because people enforce norms through collective pun-

ishments of deviators. If j observes i deviating from a social norm, then j can directly contact

other friends of i to enact some joint retribution for the misdeed. When collective punishments are

implementable, cooperation and conforming behavior is easier to sustain than if punishments must

be implemented in an uncoordinated way.

A third category of questions in Hofstede’s survey are about mobility, specifically one’s willing-

ness to move or change jobs. The essence of strong social ties is that the people involved are averse

to breaking those ties. Thus an unwillingness to change one’s social environment is indicative of

strong social network ties. In the survey, the individualism index loads positively on one’s willing-

ness to move, which is consistent with the interpretations of individualism as a society with fewer

collective and thus weak ties.

Thus, while Hofstede’s survey asks questions that are not directly about the pattern of social

relationships, there is a body of sociological theory and evidence that supports the connection

between the behaviors that Hofstede asks about and the pattern of network collectives as described

in our model. This connection is bolstered by the findings of the studies that do explicitly map out

social networks among a subset of the population in local areas. Table 6 in the Appendix shows

that highly individualist countries have lower network interdependence than more collectivist ones.

Finally, other variants of the model that capture other aspects of collectivism, such as strong ties or

fixed versus random networks, deliver the same effects. Networks with many weak ties, with random

link formation, or with mobility, all have that ability to disseminate information or diseases more

efficiently than their collectivist network counterparts (see Jackson (2008)). Appendix B contains

more details about these alternative models and about the survey questions and other correlated

social survey measures that shed light on the interpretation of Hofstede’s index.

Figure 5 summarizes the findings of Hofstede’s survey in a color-coded map. The most individu-

alist countries (with an index between 80 to 91) are the Netherlands, Canada, Hungary, the United

Kingdom, Australia and the United States. The most collectivist countries (with an index between

6 and 14) are Guatemala, Ecuador, Panama, Venezuela, Colombia, Pakistan, and Indonesia.
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Figure 5: Map of Hofstede’s individualism index.

3.3 Measuring the Rate of Technology Diffusion

We use a technology diffusion measure that is derived from the cross-country historical adoption of

technology data set developed by Comin, Hobijn, and Rovito (2006). The data covers the diffusion

of about 115 technologies in over 150 countries during the last 200 years. At a country level, there

are two margins of technology adoption: the “extensive” margin (whether or not a technology is

adopted at all) and the “intensive” margin (how quickly a technology diffuses, given that it is

adopted.) A country can be behind in a technology even though it is adopting it quickly, if the

technology was introduced to the country late.

Since our model speaks only to the diffusion rate of a technology, i.e. its intensive margin of

adoption, we need to filter the extensive margin from the data. We do this with the results from

Comin and Mestieri (2012), where attention is restricted to 15 technologies. Technical details are

in that paper, but the idea is the following: For a given country, plotting the normalized level of a

given technology (e.g. log telephone usage minus log country income) over time yields an increasing

curve. For a given technology, these curves look similar across countries, except for horizontal and

vertical shifts. The horizontal shifts correspond to the extensive margin of technology adoption; if

country A adopts telephones in exactly the same way as country B, only twenty years later, its curve

will be identical to that of B except shifted twenty years to the right. However, if country A adopts

telephones less vigorously but at the same time, its curve will be below that of B’s. This diffusion

rate of technology is what we are interested in, so it is what we focus on. Specifically, Comin and

Mestieri (2012) estimate the slope of a non-linear diffusion curve. A higher slope parameter mij
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indicates a faster diffusion rate of technology j in country i.

Our ideal measure of the technological level of a country would be its average diffusion rate from

all 15 technologies. A complication is that the data set is unbalanced; if data for a country is only

available for slowly-spreading technologies, it might artificially appear technologically backward.

To control for this problem, we estimatemij = αj+eij , where αj is a technology-specific fixed effect.

Our measure of technology diffusion for a given country is the average residual diffusioni =
∑

j eij .

4 Empirical Results: How Much Do Networks Affect Technology?

Our objective is to better understand how social structure affects technology diffusion and economic

development. The difficulty is that economic development also can potentially change the social

structure. The challenge is to isolate each of these two effects. To do this, we consider the following

structural model:

A = β1 + β2S + ϵ (3)

where A is the speed of technology diffusion, S is social structure (individualism), as measured by

the Hofstede index, the β’s are unknown coefficients and ϵ is a mean-zero residual orthogonal to S.

Social structure is

S = γ1 + γ2A+ γ3Gh + γ4Gz + η, (4)

where the γ’s are unknown coefficients, Gh and Gz are human and zoonotic disease prevalences,

and η is a mean-zero residual orthogonal to A, Gh and Gz. The coefficient of interest is β2, which

measures the effect of social structure S on technology diffusion A.

This model recognizes the endogeneity problem inherent in estimating the relationship between

A and S. It incorporates our main hypothesis, that social structure S matters for technology A,

but it also reflects the idea that perhaps technology (and income) can cause social structure to

change as well. Because A depends on S and S depends on A, an OLS estimate would be biased.

Our theory suggests that an instrument with power to predict social structure S is disease

prevalence Gh+Gz. But, this is not likely to be a valid instrument both because technology affects

disease (vaccines are a technology, for example) and because poor health reduces productivity and

diminishes one’s capacity for invention. We capture the correlation between disease prevalence and

technology, from both directions of causality, in the following relationship, which says that, after

controlling for social structure, there is a residual correlation between technology and disease:

ϵ = δ1 + δ2(Gh +Gz) + ξ. (5)

If E[ϵ(Gh +Gz)] ̸= 0, in other words, if δ2 ̸= 0, then disease prevalence is an invalid instrument.
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To resolve this problem, we use the difference in human disease prevalence and zoonotic disease

prevalence (Gh − Gz) as our instrument. When var(Gh) = var(Gz), the difference (Gh − Gz) is

orthogonal to the sum (Gh +Gz). Therefore, in our final exercise, we scale Gz to give it the same

variance as Gh to ensure that the orthogonality holds. Thus, our identifying assumption is

E[ξ(Gh −Gz)] = 0.

Since in Equation 5 we restrict the coefficients on Gh and Gz to be the same, we assume

that human disease prevalence and zoonotic disease prevalence have the same effect on technology.

Hence the total effect on technology is determined by the sum Gh +Gz. This is orthogonal to the

composition of the effect between the two types of disease, Gh −Gz, which has no direct effect on

A. But as long as γ3 ̸= γ4 in (4), then human and zoonotic diseases have different effects on social

structure S. Therefore, since the diseases have different effects on social structure S and similar

effects on the speed of technology diffusion A, the instrument (Gh − Gz) can be a powerful and

valid instrument.

Finally, note that we do not need to know all the determinants of social structure. Rather, any

subset of the determining variables can serve as valid instruments for S. Similarly, we do not need

to observe S exactly. A proxy variable with random measurement noise is sufficient for an unbiased

instrumental variables estimate of the coefficient β2.

4.1 First-Stage Regressions: Disease and Social Institutions

We begin by investigating the relationship between our instruments and our measure of social

structure. There are two key findings: First, the instruments are powerful predictors of social

structure. Second, disease (Gh + Gz) is negatively correlated with individualism. Although this

effect is not identified, the correlation is consistent with one key prediction of the evolutionary

network model.

To illustrate the robustness of these results, we explore a handful of instrumental variable

specifications. Most of the specifications have multiple instruments because that allows us to

evaluate the validity of our instruments by testing the orthogonality of each instrument with the

residual in equation (3). Following Hall and Jones (1999), we use two language-based variables

as additional instruments to test the validity of our own disease-based instruments. The variable

pronoun is a dummy variable that is equal to 1 if it is conventional to omit first- and second-person

pronouns in a country’s dominant spoken language (Kashima and Kashima, 1998). For example,

English and German typically do not omit pronouns, while Spanish does. In addition, we use a
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variable for the fraction of the population speaking English as a first language.7 Including English

specifically contributes additional explanatory power. Because these variables are language-based,

they are a product of the country’s distant past and possibly its colonial heritage. As Hall and

Jones (1999) argue, they are unlikely to be affected by current income or technology.

We begin by exploring the data on individualism and disease prevalence. Figure 6 illustrates

the clear, negative relationship between our measure of social structure, the Hofstede index, and

the sum of the prevalence of all nine pathogens in our historical disease data set. The negative

Figure 6: Hofstede’s individualism index plotted against total pathogen prevalence. Total pathogen

prevalence is human+ zoonotic. This is a sum of the prevalence of all nine diseases described in section 3.
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relationship is consistent with our theory, in which greater disease prevalence favors the emergence

of a collectivist social structure. Even though collectivism itself inhibits the spread of disease, the

net effect in the model is that high pathogen prevalence is correlated with collectivism (see figure

4). Since collectivist societies are ones with a low Hofstede index, the model and data both generate

a negative relationship between pathogens and individualism.

Table 2 quantifies this relationship. Column 1 shows that pathogen prevalence and individualism

are negatively related in a statistically significant way. The explanatory power of pathogens is large;

the R2 of the regression is over 50%. The economic magnitudes are also large. A one-unit increase

in our historical pathogen measure corresponds to one disease being endemic instead of sporadic.

Having one more socially transmittable human disease consistently prevalent corresponds to an

individualism index that is 3.46 points lower (14% of a standard deviation).

In addition, both our language variables and the difference in disease prevalence are highly-

significant predictors of social structure (table 2, column 3). Disease difference is a powerful in-

strument because the average correlation of individualism with each disease carried by humans is

7The English variable is available from the Penn World Tables, Mark 5.6.
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Table 2: First-stage regressions of pathogen prevalence variables on individualism index

Dependent variable Hofstede’s individualism index (S)
(1) (2) (3) (4) (5) (6) (7) (8)

Historical Contemporary
Total pathogens −2.73 −2.72

(0.31) (0.32)
Human - zoonotic -3.46 -2.15 -3.77 -2.38
pathogens (diff germ) (0.44) (0.45) (0.57) (0.48)
Human - zoonotic -5.26 -7.12
pathogens (diff germ std) (2.04) (2.90)
English 25.33 28.48 23.05 24.90

(7.50) (8.58) (7.42) (8.43)
Pronoun -19.17 -28.33 -23.14 -30.02

(4.83) (4.70) (4.35) (4.57)
Constant 77.10 67.53 69.71 59.86 77.90 127.0 220.5 69.46
R2 0.52 0.47 0.71 0.64 0.51 0.38 0.72 0.64
Observations 72 72 62 62 71 72 62 62

The table reports OLS estimates of the γ coefficients in S = γ1 + γ2A+ γ3Gh + γ4Gz + η. The variables diff germ

and diff germ std are defined in equations (1) and (2). Columns (1)-(4) use historical disease prevalence data from

the 1930s. Columns (5) -(8) use a more extensive set of diseases, measured in 2005. The other instruments are

pronoun drop and whether is English spoken (see appendix B). Standard errors are in parentheses. All coefficients

are significant at the 5% level.

much larger in magnitude than the average correlation with each of the zoonotic diseases (-0.53 vs.

-0.29). The fact that the correlations are negative tells us again that higher disease prevalence is

associated with more collectivist societies.

These results are important for the next stage, identifying an effect of institutions on technology

diffusion. But they are also interesting on their own because they are consistent with one reason why

countries may have adopted different social institutions. Perhaps social structures have evolved,

in part, as a defense against the spread of directly-communicable diseases. But further statistical

work needs to be done to say conclusively that disease prevalence is part of the reason why some

societies have adopted social structures that inhibit technological diffusion and growth.

4.2 Concerns about instrument exogeneity

Our identifying assumption is that while technology diffusion and GDP may affect disease preva-

lence, even 40 years prior, it affects many diseases similarly. Thus, the difference in the prevalence

of two types of disease is exogenous with respect to GDP. The difference we consider is the dif-

ference between diseases that reside in humans (human-specific plus multi-host) and diseases that

reside exclusively in non-human animals (zoonotic diseases).
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Unequal variance One concern with this instrument might be that the difference between dis-

ease prevalence rates might not be orthogonal to the sum. For example, if zoonotic disease had

(hypothetically) been eradicated in every country in our sample, then diff germ= Gh − Gz = Gh.

Since the prevalence of disease is likely to be correlated with income and technology diffusion, this

situation would render diff germ an invalid instrument. For two variables x and y, (x+y) is uncor-

related with (x− y) when x and y have equal variances. Our human and zoonotic disease variables

do not have exactly the same variance. To ameliorate this concern, we also use diff germ std as an

instrument in table 2 and find that it produces estimates of the importance of social structure that

are even larger than the initial estimates.

Uneven effects of technology. Our empirical strategy is based on the assumptions that Gh

and Gz have the same relationship with A but different relationships with S. One may think this

relationship does not necessarily hold. For example, perhaps clean water initiatives are one of the

first public health measures adopted when income rises. If this were the case, then there would be

a negative correlation between zoonotic illness and technology diffusion, and therefore a positive

correlation between (human - zoonotic) diseases x and shocks to technology diffusion ϵ. If E[ϵx] > 0,

how would this bias the results? A positive shock to income (high ϵ) would increase the difference

in disease (x), which would decrease individualism S (since we estimate γ3 < 0). This would induce

negative correlation between A and S, which would lower the estimated coefficient β2 in equation 3.

So β2 would be downward biased. Thus, if the instrument is invalid because economic development

primarily reduces water-borne illnesses, then the true size of social structure’s effect on technology

diffusion is even larger than what we estimate.

Social structure affects disease. The other hypothetical cause for concern might be that faster

technology diffusion and the accompanying higher income cause the social structure to change. In

particular, a richer, more modern society is more likely to be market-based and individualist. The

change in social social structure could affect the difference in disease prevalence by facilitating the

transmission of diseases spread from human-to-human. Notice that this logic does not imply that

differences in disease x are correlated with the estimation error ϵ in (3). This story suggests that

social structure S depends on A, something already represented in our specification (equation 4),

and it suggests that there should be an additional equation representing the idea that the instrument

x depends on social structure: x = ψ1 + ψ2S + ν. In this structure, as long as e[ϵν] = 0, x is still

a valid instrument for S. In other words, as long as technology diffusion affects the difference

in disease through social structure, rather than directly, this form of reverse causality does not

invalidate the use of disease differences as instruments. It only implies that γ3 is perhaps not an
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Figure 7: Technology and individualism. Comin and Mestieri (2012)’s technology diffusion measure (vertical
axis) plotted against Hofstede’s individualism index (horizonal axis).
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unbiased estimator of the effect of disease on social institutions. Our estimates suggest that more

disease is associated with less individualism. If individualism spreads disease, then this estimate is

downwards-biased. In other words, the true effect of disease on social institutions would be larger

than the one we estimate.

4.3 Main Results: Social Institutions and Technology Diffusion

Our main result is to quantify the effect of social structure on technology diffusion. Figure 7

illustrates the relationship between social structure and the speed of technology diffusion in a

scatter plot. It reveals that more individualist societies tend to also be societies where technologies

diffuse quickly. In interpreting this correlation, reverse causality is obviously a concern. Faster

technology diffusion raises incomes, which might well change the social structure. Likewise, the

economic development that results from technology diffusion could produce a wave of urbanization,

which influences social structure. Therefore, we use the differences in pathogen prevalence as an

instrument for social structure.

The first two columns of table 3 show that the degree of individualism in a country’s social

structure has a large effect on a country’s rate of technology diffusion. A 1-standard deviation in

the Hofstede index is 28.5. When we use diff germ std as an instrument, a 1-standard deviation

increase in individualism results in 28.5 ·1.31 = 37.3% increase in the speed of technology diffusion.

The mean of the diffusion variable is near zero so this is not easily interpretable relative to its mean.

But its standard deviation is 63.4%. Thus, a degree of individualism that is 1 standard deviation

above the average is associated with technology diffusion that is 59% of a standard deviation higher

than average. Across specifications, the estimates of the effect of social structure are remarkably

stable. Individualism consistently explains 27-28% of the variation in technology diffusion rates.
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Table 3: Social Structure and Technology Diffusion (main result)

Dependent variable: Technology Diffusion Rate
Disease Instrument: diff germ diff germ std diff germ diff germ std none

Historical Contemporary (OLS)
Individualism 1.63 1.31 1.62 1.31 1.40

(0.33) (0.34) (0.33 ) (0.34) (0.28)
Over-ID p-val 0.12 0.77 0.11 0.74

Accept Accept Accept Accept
R2 0.27 0.28 0.27 0.28 0.27
N 62 62 62 62 72

The first row reports 100 ∗ β2 coefficient from an IV estimation of A = β1 + β2S + ϵ. Technology diffusion rate (A)

comes from the Comin and Mestieri (2012) measure of the intensive technology adoption in a country. Individualism

S is the Hofstede index. The variables diff germ, diff germ std are defined in equations (1) and (2). Each estimation,

except OLS, also uses pronoun and english as instruments, as defined in table 1. The over-ID test is a Sargan test

statistic. The null hypothesis is that the instruments are uncorrelated with ϵ. Accept means that null hypothesis

cannot be rejected at the 5% or even the 10% confidence level. All coefficients are significant at the 5% level.

The Sargan test statistics (in the row labeled over-ID) are chi-square statistics for the test of

the null hypothesis that the instruments are uncorrelated with the regression residual ϵ. For every

IV specification, we cannot reject this null hypothesis at the 5% or even the 10% level. However, we

could reject the null hypothesis at a 15% confidence level in the estimation in columns (1) or (3).

This suggests that the diff germ variable is unlikely to be a valid instrument. Note that when we

use the standardized diff germ std variable as an instrument, the p-value rises to 77%, suggesting

that the instrument is likely to be uncorrelated with the regression residual. We also computed

Basmann statistics. They were quite close in value to the Sargan statistics in every instance.

Controlling for other possible explanatory variables. A natural question is whether so-

cial structure is simply a proxy for some other economic variable. To assess this, we choose a

variety of other variables thought to explain technology adoption or income and control for their

effects too. In doing so, we recognize that these control variables may themselves be endogenous.

Inferring causality from these results would therefore be problematic. However, we continue to

use diff germ std, pronoun and english as instruments and add the following variables, one-by-one,

to the first- and second-stage estimations:8 Controlling for life expectancy at birth, which could

capture a direct effect of pathogens on technology diffusion, or social infrastructure, which could

promote technology diffusion and discourage disease, reduces the size of the coefficient on individ-

ualism by a factor of roughly 1/2. The other control variables we try are: (1) ethnic-linguistic

8Our procedure and our choice of variables here largely follow Hall and Jones (1999). The variable “social
infrastructure” is constructed by Hall and Jones to measure the quality of institutions.
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fractionalization (the probability that two randomly matched people belong to different ethnic or

linguistic groups), which could affect both social structure and the diffusion rate of technology, (2)

latitude, which is likely to be correlated with the epidemiological environment, (3) disease-adjusted

life expectancy, to capture the direct effect of health on technology, (4) a country’s degree of cap-

italism or socialism, which could be highly correlated with social structure and which probably

affects incentives for technology adoption, and (5) population density, which affects disease, social

structure and technology diffusion. These all leave the estimate of the effect of individualism largely

unchanged. Appendix B reports the complete set of results for each of these estimations. In sum,

there is a statistical relationship between social structure and technology diffusion that is above

and beyond that which comes from other commonly-used determinants of income.

Effect of social structure on productivity and income. To interpret these results econom-

ically, it is helpful to re-estimate the effect of social structure with dependent variables that are

more familiar to macroeconomists: the Solow residual and output per worker, again instrumenting

individualism with the language variables and differences in diseases. The coefficients in Table 4

tell us that a 1-standard-deviation increase in the Hofstede index corresponds to a 23 unit increase

in productivity. Since the Solow residual is measured as a fraction of its value for the US, this

increase is 23% of the US value of productivity. For output per worker, the effects are even larger.

A 1-standard deviation increase in individualism increases output per worker by 48 or 50, which

represents an increase of 48-50% of US output per worker, depending on the set of instruments.

Table 4: Social Structure, Productivity and Income

Dependent variable: Solow Residual Output per capita
Disease Difference Instrument: Historical Contemperanous Historical Contemperanous
Other Instruments: pronoun, english pronoun, english pronoun, english pronoun, english
Individualism 0.99 0.78 2.10 1.84

(0.40) (0.40) (0.45) (0.45)
R2 0.20 0.18 0.42 0.41
N 58 58 59 59

The first row reports 100 ∗ β2 coefficient from an IV estimation of a = β1 + β2S + ϵ, where a is the Solow residual or

output (GDP) per capita. Solow residual and output per capita come from the Penn World Tables mark 5.6. The

disease instruments are standardized differences, as in (2). Other variables are described in table 3. All estimates are

significant at 5% level.

To get a more concrete idea of what these numbers imply, consider the case of individualistic

Finland (I = 63) and collectivist Ghana (I = 20). The difference in their Hofstede individualism

index is 63−20 = 43, while the difference in their technology diffusion rates A is 1.2.. From Table 3,
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the difference in the Hofstede index between the two countries explains 43∗ .0131 = .56 - just under

half - of the total difference in A. Similarly, the difference in output per capita between Finland

and Ghana is 2.6. From Table 4 the difference in I explains 43 ∗ 0.021 = .90 of this difference,

which is over one-third of the per capita output gap.

4.4 Could Social Structure Really Change in Response to Disease?

The idea that people might choose their social circles based on disease avoidance might sound far-

fetched. But researchers in animal behavior have long known that other species choose their mates

with health considerations in mind (Hamilton and Zuk, 1982). Furthermore, primate research has

shown that the animals most similar to human beings behave similarly to the agents in our model.

Their mating strategies, group sizes, social avoidance and barriers between groups are all influenced

by the presence of socially transmissible pathogens (Loehle, 1995).

One might also question whether historical societies knew enough about contagion to make in-

formed choices about social networks. Yet, historical documents reveal a reasonable understanding

of epidemiology. For example, in the sixteenth century, when smallpox reached the Americas and

became a global phenomenon, people understood that the skin lesions and scabs that accompany

smallpox could transmit the disease. They knew that survivors of smallpox and other infections

were immune to re-infection. The practice of inoculation, whereby people were intentionally ex-

posed to disease was practiced hundreds of years ago in China, Africa and India. Similarly, the

plague was recognized to be contagious. Therefore, control measures focused primarily on quar-

antine and disposal of dead bodies. Even two thousand years ago, in biblical times, leprosy was

understood to be contagious. Lepers, or suspected lepers, were forced to carry a bell to warn

others that they were coming. Thus, the idea that one should avoid contact with others who carry

particular contagious diseases is not just a modern idea.

5 Conclusions

Measuring the effect of social network structure on the economic development of countries is a

challenging task. Social structure is difficult to measure and susceptible to problems with reverse

causality. We use a theory of social network evolution to identify properties of social networks

that can be matched with data and to select promising instrumental variables that can predict

network structure. The theory predicts that societies with higher disease prevalence are more

likely to become collectivist: their social networks will have dense connections within a group, but

few connections to non-group members. Such networks inhibit disease transmission, but they also

inhibit idea transmission. This model guides us to choose sociological measures of individualism
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and collectivism to measure the prevalence of collectives in social networks. It also suggests that

disease prevalence might be a useful instrument for a social network because it is one important

concern that societies incorporate when they choose their network.

Quantifying the model reveals that small initial differences in the epidemiological environment

can give rise to large differences in network structure that persist. Over time, these persistent

network differences can generate substantial divergence in technology diffusion and output. We find

evidence of this social network effect in the data. Exploiting the differential mode of transmission

of germs, we are able to identify the significant effect of social structure on technology diffusion

and income. More broadly, the paper’s contribution is to offer a theory of the origins of social

institutions, propose one way these institutions might interact with the macroeconomy, and show

how to quantify and test this relationship.
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A Proofs of Propositions

Proof of result 1 In a collectivist network, where γ = 4, there are n unique collectives.
Claim 1: Any three adjacent nodes are a collective.

Proof: Consider nodes j, j+1 and j+2. Since every node is connected to its adjacent nodes, j+1 is connected to j
and j + 2. And since every node is also connected to nodes 2 places away, j is connected to j + 2. Since all 3 nodes
are connected to each other, this is a collective.

Claim 2: Any sets of 3 nodes that are not 3 adjacent nodes are not a collective.
Proof: Consider a set of 3 nodes. If the nodes are not adjacent, then two of the nodes must be more than 2 places
away from each other. Since in a collectivist network with γ = 4, nodes are only connected with other nodes that are
2 or fewer places away, these nodes must not be connected. Therefore, this is not a collective.

Thus, there are n unique sets of 3 adjacent nodes (for each j there is one set of 3 nodes centered around j:
{j − 1, j, j + 1}). Since every set of 3 adjacent nodes is a collective and there are no other collectives, there are n
collectives in the network. 2

Proof of result 2 In an individualistic network, where each person i is connected to i − ψ, i − 1, i + 1, and
i+ ψ, where ψ > 2, there are zero collectives.

Proof: Consider each node connected to an arbitrary i, and whether it is connected to another node, which is
itself connected to i. In addition to being connected to i, node i−ψ is connected to i− 2ψ, i−ψ− 1, and i−ψ+ 1.
None of these is connected to i. Node i− 1 is also connected to i− 2, i− ψ − 1 and i+ ψ − 1. But none of these is
connected to i. Node i + 1 is also connected to i + 2, i − ψ + 1 and i + ψ + 1. But none of these is connected to i.
Finally, node i−ψ is also connected to i+ψ−1, i+ψ+1 and i+2ψ. But none of these is connected to i. Therefore,
there are no collectives among any connections of any arbitrary node i. 2

Diameter of network 1. Proof: Without loss of generality, consider the agent in the last position, the agent
with location n on the circle.Case 1: n even. If n is even, then the farthest node from n is n/2. If each person is
connected to the γ closest people, where γ is even, then they are connected to γ/2 people on either side. Therefore,
the shortest path will be the one that advances γ/2 places around the circle, at each step in the path, until it is within
γ/2 nodes of its end point. For example, agent n reach γ/2 in one step, γ in two steps and n/2 in (n/2)/(γ/2) = n/γ
steps, if n/γ is an integer. If dividing n by γ leaves a remainder m, then one step in the path to reach n/2 must
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be only m < n/2 nodes away. Thus, when n is even, the shortest path to the furthest node n/2 is ceil(n/γ), where
ceil(x) = x if x is an integer, and is otherwise, the next largest integer.

Case 2: n odd. If n is odd, then (n − 1)/2 and (n + 1)/2 are equally far from node n. Each is (n − 1)/2 nodes
away. Following the same logic as before, the shortest path will be the one that advances γ/2 places around the
circle, and reaches the furthest node in ceil((n− 1)/2)/(γ/2) = ceil((n− 1)/γ) steps.

Lastly, note that when n is even, ceil(n/γ) = ceil((n − 1)/γ). Note that, since γ > 1 and both γ and n are
integers, ceil(n/γ) and ceil((n − 1)/γ) will only differ if (n − 1)/γ is an integer, so that adding 1/γ to it will make
ceil(n/γ) the next largest integer. But if γ is even and (n− 1)/γ is an integer, then n− 1 must be even, which makes
n odd. Thus, ceil(n/γ) = ceil((n− 1)/γ).2

Average path length in network 1. Proof: Without loss of generality, consider the distance from the
last node, n. n can be connected to nodes 1 though γ/2 and n− 1 through n− γ/2 in 1 step. More generally, it can
be connected to nodes (s− 1)γ/2 + 1 through sγ/2 and n− (s− 1)γ/2− 1 through n− sγ/2, in s steps. For each s,
there are γ nodes for which the shortest path length to n is s steps. We know from result 1 that when γ is even and
n/γ is an integer, the longest path length (the diameter) is n/γ. Thus, the average length of the path from n to any

other node is 1/n
∑n/γ

s=1 γs. Using the summation formula, this is (γ/n)(n/γ)(n/γ + 1)/2 = 1/2 + n/(2γ). 2

Diameter of network 2. The diameter of an individualistic network, with n > 4 nodes where each node i is
connected to i− 4, i− 1, i+ 1, and i+ 4, is round(n/8) + 1.

Proof: Without loss of generality, consider distances from the agent located at node n. n can reach nodes 1, 4,
n − 1 and n − 4 in one step. It can reach nodes 2, 3, 5, 8 and n − 2, n − 3, n − 5 and n − 8 in two steps. In any
number of steps s > 1, agent n can reach nodes 4(s− 2) + 2, 4(s− 1)− 1, 4(s− 1) + 1, 4s (moving clockwise around
the circle) as well as n− 4(s− 2)− 2, n− 4(s− 1) + 1, n− 4(s− 1)− 1, n− 4s (moving counter-clockwise).

Let the operator floor(x) be the largest integer y such that y ≤ x. Define ñ ≡ 4 ∗ floor(n/8). Then r̃ ≡ n− 2 ∗ ñ
is the remainder when n is divided by 8. There are eight cases to consider, one for each possible value of r̃.

Case 1: r̃ = 0. If the total number of nodes in the network n is a multiple of 8, then it takes (1/4) ∗ n/2 steps
to connect node n with node n/2, the geographically farthest node in the network. But it takes one more step to
reach n/2− 1, n/2 + 1. The nodes n/2− 2 and n/2 + 2 can be reached in 2 steps from n/2− 4 and n/2 + 4, each of
which is one step closer to n than n/2 is. Thus, every node can be reached in n/8 + 1 steps, making the diameter of
the network n/8 + 1.

Case 2: r̃ = 1. In this case, ñ and ñ+ 1 are equally far away from n in the network. Each requires ñ/4 steps.
But it takes one more step to reach ñ− 1, ñ− 2, ñ+ 2 or ñ+ 3. Since ñ = 4floor(n/8), ñ/4 = floor(n/8), and thus
the diameter is one step more than that, which is floor(n/8) + 1.

Case 3: r̃ = 2. In this case, ñ and ñ+ 2 are equally far away from n in the network. Each requires ñ/4 steps.
But it takes one more step to reach ñ− 1, ñ− 2, ñ+ 1, ñ+ 3 or ñ+ 4. Thus, the diameter is again floor(n/8) + 1.

Case 4: r̃ = 3. In this case, ñ and ñ + 3 are equally far away from n in the network. Each requires ñ/4 steps
to reach. It is still the case that it takes one more step to reach ñ− 1, ñ− 2 and ñ+ 1. ñ+ 2 can be reached in one
additional step from ñ + 3, as can ñ + 4. And ñ + 5 can be reached in 2 additional steps from ñ + 4, which is one
step closer to n than ñ+ 3. Thus, every node can still be reached in floor(n/8) + 1 steps.

Case 5: r̃ = 4. In this case, ñ and ñ+4 are equally far away from n in the network. Each requires ñ/4 steps to
reach. But now, getting to ñ+ 2 requires 2 additional steps. Thus, the diameter of this network is floor(n/8) + 2.

Case 6: r̃ = 5. In this case, ñ and ñ + 5 are equally far away from n in the network. Each requires ñ/4
steps to reach. Getting to either ñ + 2 or ñ + 3 requires 2 additional steps. Thus, the diameter of this network is
floor(n/8) + 2.

Case 7: r̃ = 6. In this case, ñ and ñ + 6 are equally far away from n in the network. Each requires ñ/4 steps
to reach. In one additional step, one can connect from ñ to ñ+ 1 or ñ+ 4 or from ñ+ 6 to ñ+ 2 or ñ+ 5. It takes
two additional steps from ñ to connect to ñ+ 3. Thus, the diameter of this network is floor(n/8) + 2.

Case 8: r̃ = 7. In this case, ñ and ñ + 7 are equally far away from n in the network. Each requires ñ/4 steps
to reach. In one additional step, one can connect from ñ to ñ + 1 or ñ + 4 or from ñ + 7 to ñ + 3 or ñ + 6. It
takes two additional steps from either ñ or ñ+ 7 to connect to ñ+ 2 or ñ+ 5. Thus, the diameter of this network is
floor(n/8) + 2.

The one condition that encapsulates all 8 of these cases is diameter=round(n/8) + 1. To see this, recall that
r̃ is the remainder when n is divided by 8. When this remainder is zero, then (n/8) + 1 =round(n/8) + 1. When
this remainder is less than 4, then floor(n/8) + 1 =round(n/8) + 1. When this remainder is 4 or more (4-7), then
round(n/8) =floor(n/8) + 1, and therefore floor(n/8) + 2 =round(n/8) + 1. Thus, in each case of the 8 cases, the
diameter of the network is equal to round(n/8) + 1.2
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Average path length of network 2. In the example individualistic network, when n/8 is an integer, the
average path length is 7/8+n/16. This is less than the average path length in a collectivist network with γ = 4, when
the network is large (n > 6).

Proof: Without loss of generality, consider distances of each node from node n. n can reach 4 different nodes:
1, 4, n − 1 and n − 4 in one step. It can reach 8 different nodes 2, 3, 5, 8 and n − 2, n − 3, n − 5 and n − 8 in two
steps. More generally, for a number of steps s ≥ 2, agent n can reach 8 new nodes with each step. These nodes are:
4(s−2)+2, 4(s−1)−1, 4(s−1)+1, 4s (moving clockwise around the circle) as well as n−4(s−2)−2, n−4(s−1)+
1, n − 4(s − 1) − 1, n − 4s (moving counter-clockwise). This rule holds until the number of steps s reaches n/8, the
number of steps to travel approximately half way around the circle. At that point, the number of additional nodes
that can be reached in an additional step depends on the size of the network. There are 8 cases to consider.

Recall that ñ ≡ 4 ∗ floor(n/8) and that r̃ ≡ n− 2 ∗ ñ is the remainder when n is divided by 8. There are eight
cases to consider, one for each possible value of r̃.

If the total number of nodes in the network n is a multiple of 8, then it takes n/8 steps to connect node n with node
n/2. Using the algorithm above, it also takes n/8 steps to connect with nodes n/2−6, n/2−5, n/2−3, n/2+6, n/2+5
and n/2+3. But this is 7 total nodes instead of 8 total nodes because when the total number of steps being considered
is n/8 (s = n/8) nodes 4s and n− 4s are both equal to node n/2.

It takes one more step to reach n/2− 1, n/2 + 1. The nodes n/2− 2 and n/2 + 2 can be reached in 2 steps from
n/2 − 4 and n/2 + 4, each of which is one step closer to n than n/2 is. Thus, 4 additional nodes can be reached in
n/8 + 1 steps.

Counting up, there is 1 node (n) reachable in zero steps, 4 nodes reachable in 1 step, 8 nodes reachable in s
steps for s ϵ{2, 3, . . . , n/8 − 1}, 7 nodes reachable in n/8 steps and 4 nodes reachable in n/8 + 1 steps. That makes

the average path length 1/n times the sum of all the path lengths to the n nodes: 1/n[4 + 8
∑n/8−1

s=2 s + 7 ∗ n/8 +

4 ∗ (n/8 + 1)]. Applying the summation formula, 8
∑n/8−1

s=2 s = 8(n/8)(n/8− 1)/2− 8, where the −8 corrects for the
fact that the sum begins at s = 2, rather than at s = 1. Substituting in this formula and collecting terms, this is
1/n[4 + 8(n/8)(n/8− 1)/2− 8 + 11n/8 + 4] = 1/8n[n(n− 8)/2 + 11n] = 7/8 + n/16. 2

Proof of result 3 For a large network (n > 8) where n/8 is an integer, the individualistic network has a smaller
diameter and a shorter average path length than a collectivist network with equal size n and equal degree γ = 4.

Suppose ψk(0) = 1 for some k and ψj(0) = 0 ∀ j ̸= k. For a person living in location j, the sick person lives sjk
steps away. Since the probability of contagion is equal to 1, person j will be sick in sjk periods and then die, i.e.
Ψj(0) = sjk. Averaging over all locations j, we have that the average lifetime is equal to the average path length from k
to all other nodes: Ej [Ψj(0)] = Ej [sjk]. For the maximum lifetime we have that maxj [Ψj(0)] = maxj [sjk] = diam(N);
this is, the person whose location is furthest from k (diameter) will live the longest. Since n > 8 and n/8 is an integer,
both the average path length and the diameter are longer for N1.

Analogously, suppose that a new idea is introduced by person k in period 0. Since the idea is transmitted with
probability 1, the number of periods it takes to reach person j is given by αj(0) = sjk. Thus the average discovery
time is equal to the average path length from k to other nodes, Ej [αj(0)] = Ej [sjk], and the maximum discovery
time maxj [αj(0)] = maxj [sjk] = diam(N). Thus the discovery process is slower in (N1).

Proof of Result 4 A new technology shock advances the technological frontier if it arrives to an agent that
has a technology level that is as high as any other agent in the network. Suppose that at t, the technology of each
agent is the same in both types of networks and agent j (and only him9) is at the technological frontier. In the
next period, with probability 1 − (1 − p)4, agent j transmits his technology to at least one of his connections and
the expected number of people that have the latest technology in t + 1 is 1 + 4p. That probability is the same in
both networks. Each agent has an identical probability λ of inventing a new technology. Thus, the probability that
a technology shock hits an agent who has the highest technology level at t+1 and advances the frontier is (1+ 4p)λ,
in either network.

Now consider time t+ 2. In expectation, 1 + 12p people have the latest technology in N2 but only 1 + 8p in N1.
Thus the probability of moving the frontier is λ(1 + 12p) in N2. That probability is larger than the same probability
in N1, which is given by λ(1+8p). Continue in this fashion until every agent in the network has acquired such level of
technology. At that point, all agents have the same level of technology and the probability of advancing the frontier
is again equal in both networks. In every period, we find that the probability of advancing the technological frontier
is weakly higher in N2 than in N1, with strict inequality in at least one period. Therefore, we conclude that the
probability of a technology shock moving the frontier in N2 is than the probability of moving the frontier in N1.

9The reasoning is analogous if more than one agent receives the original shock at the same time.

38



Proof of Result 5 Observe that the state where all agents have the same type is absorbing. We will show that
such state can be reached from any state with positive probability and therefore the process will be absorbed with
probability 1 (by Lemma 1).

Lemma 1 In an finite Markov chain that is absorbing (it has at least one absorbing state and from every state it
is possible to go to an absorbing state), the probability that the process will be absorbed is 1. For proof see Grinstead
and Snell (1997).

Suppose agent j is the only one whose type is different to the rest of the network. The number of j-types increases
in the next period if: (i) agent j survives, (ii) all the nodes directly connected to agent j die (first tier nodes) and
(iii) all the nodes connected to the nodes connected directly to agent j also die (second tier nodes). To see this,
index the first tier connections with i and let k∗(i) = argmax{k:ηik(t)=1}Ak(t). By assumption, if i dies at t, we have
τi(t+ 1) = τk∗(i)(t). Then if the three situations described happen, we have that k∗(i) = argmax{k:ηik(t)=1}Ak(t) =
argmax{Aj(t), 0} = j ∀i. Therefore ∀i we have τi(t+ 1) = τ(k∗(i)) = τj(t).

Now we compute a lower bound for the probability of (i)-(iii) happening at any time. First, assume τj(t) = co.
Recall that j’s own type governs the links to the right and others’ types govern links to the left, so in this case the
first tier connections for which ηjk = 1 are k = {j−4, j−1, j+1, j+2}. The second tier connections (nodes connected
to j’s connections that are not directly connected to j) are the following: {j − 8, j − 5, j − 3, j − 2, j +3, j +5, j +6}.
Therefore, with probability of at least (1− ξ)ξ11 node j survives and all his first and second tier connections have an
accident and die, reaching the absorbing state.10. Second, if we assume that τj(t) = in, then his direct connections
are ηjk = 1 for k = {j − 2, j − 1, j + 1, j + 4} and the second tier connections are {j − 3, j + 2, j + 3, j + 5, j + 6}.
Therefore, with probability of at least (1− ξ)ξ9 node j survives and all his first and second tier connections have an
accident and die reaching the absorbing state.

In summary, we have shown that if there is one agent left with different type to the rest, with positive probability
we can reach the absorbing state. If there are two or more agents whose type is different than the rest of the network,
we can apply an analogous reasoning to reach the absorbing state in some finite number of steps. Since we can reach
an absorbing state from any state with positive probability, the result follows from Lemma 1.

Proof of Result 6 Observe that the state with zero infected people is an absorbing state. At any given time t,
for any number of sick people m ∈ {1, ..., n}, with probability (1− π)m > 0 the disease is not spread and it dies out,
reaching the absorbing state. Since we can reach the absorbing state from any other state with positive probability,
and the number of states is finite, by Lemma 1 the probability that the process will be absorbed is 1.

B Data Appendix

Summary statistics for each of the variables we use are described in table 5.

B.1 Disease Data

Historical disease data. The historical pathogen prevalence data is from Murray and Schaller (2010), who
built on existing data sets and employed old epidemiological atlases to rate the prevalence of nine infectious diseases in
each of 230 geopolitical regions world. The nine diseases coded were leishmanias, schistosomes, trypanosomes, leprosy,
malaria, typhus, filariae, dengue, and tuberculosis. For all except tuberculosis, the prevalence estimate was based
primarily on epidemiological maps provided in Rodenwaldt and Jusatz (1961) and Simmons, Whayne, Anderson, and
Horack (1945). Much of their data was, in turn, collected by the Medical Intelligence Division of the United States
Army. In the rare cases in which two epidemiological sources provided contradictory information, priority was placed
on data provided by the older source. In cases in which the relevant maps were unavailable (this was especially
true for leprosy) or insufficiently detailed (this was especially true for many of the Pacific island nations), prevalence
ratings were informed also by verbal summaries found in Simmons, Whayne, Anderson, and Horack (1945). The
prevalence of tuberculosis was based on a map contained in the National Geographic Society’s (2005) Atlas of the
World, which provides incidence information in each region for every 100,000 people. Prevalence of tuberculosis was
coded according to a 3-point scheme: 1 = 3−49, 2 = 50−99, 3 = 100 or more. For 160 political regions, they were able
to estimate the prevalence of all nine diseases. The majority of these regions are nations (e.g.,Albania, Zimbabwe);

10Clearly the probability of this event is higher because of the infection process.
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Table 5: Summary statistics

Variable Obsv Mean Std Dev Min Max
Technology Diffusion 72 -0.014 0.63 -2.39 1.00
Solow Residual 64 8.19 0.647 0.628 9.02
GDP per capita 65 9.29 0.90 7.02 10.48
Individualism 75 42.27 22.98 6 91
Pronoun 65 0.68 0.47 0 1
English 70 0 .077 0.24 0 0 .974
human (1930) 75 10.25 5.33 1 19
zoonotic (1930) 75 2.87 1.49 0 6
diff germ (1930) 75 7.38 4.76 -1 16
diff germ std (1930) 75 0.0011 0.995 -2.04 2.63
human (2011) 78 43.35 5.62 36 55
zoonotic (2011) 78 20.85 3.17 16 28
diff germ (2011) 78 22.50 3.74 15 31
diff germ std (2011) 78 1.14 0.670 -0.357 2.90
Life Exp 73 62.44 9.69 35.95 74.65
Soc Infra 67 0.549 0.262 0.113 1
EFL 60 36.92 29.76 0 93
daly2004 74 19,162 12,513 8,013 66,278
pathcontemp 73 32.33 6.50 23 47

others are territories or protectorates (e.g., Falkland Islands, New Caledonia) or culturally distinct regions within a
nation (e.g., Hawaii, Hong Kong). Figure 9 uses a color-coded map to summarize the historical data.

One testament to the accuracy of this data is its high correlation with the historical disease data reported by
Acemoglu, Johnson, and Robinson (2001). Figure 8 plots our total pathogen prevalence in the 1930’s against the
AJR data from the colonial period.

Figure 8: Relationship between colonial settler mortality and 1930’s pathogen prevalence.
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Contemporaneous disease data. To assess the accuracy of our historical disease prevalence series, we
compare them to contemporaneous data that is presumably better-measured. Data were obtained from the Global
Infectious Diseases and Epidemiology Online Network (GIDEON, http://www.gideononline.com) in 2011-12 and
report primarily 2011 prevalence rates. The sources for data included in GIDEON currently include health min-
istry publications (electronic and print) and peer review journal publications. A partial listing is available at
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http://www.gideononline.com/resources.htm. The quality and frequency of data input vary by source. A total of
34 specific pathogenic diseases are coded, each on a 1-3 prevalence scale. There are some diseases that GIDEON
classifies on a 6-point scale, according to the per-capita reported infection rate. The cutoff rates for each level vary
by disease; for example, a “4” for rabies means an infection rate between .01 and .02 per 100,000 people, while the
same range delimits a “3” for tetanus. We convert from the 1-6 scale to a 1-3 scale as follows: a 1 remains a 1, a 2
or a 3 is coded as a 2, and any number above 3 is coded as a 3. The total pathogen prevalence variable is the sum
of the values for each disease within each country.

Our two pathogen prevalence indices appear to be accurate because they are highly correlated (0.77). They
are also highly correlated with a similar index created by Gangestad & Buss (1993) to assess pathogen prevalence
within a smaller sample of 29 regions. Correlations are 0.89 with our index from 1930’s data and 0.83 with our index
of 2011 data. This high correlation explains why the results with contemporaneous data are nearly identical. For
example, the coefficient on the historical nine-pathogen index in table 2 is -2.73, while the analogous coefficient on
the contemporaneous index is -2.72.

B.2 Measuring Individualism

Hofstede (2001) defines individualism in the following way:

Individualism (IDV) on the one side versus its opposite, collectivism, that is the degree to which
individuals are integrated into groups. On the individualist side we find societies in which the ties
between individuals are loose: everyone is expected to look after him/herself and his/her immediate
family. On the collectivist side, we find societies in which people from birth onwards are integrated
into strong, cohesive in-groups, often extended families (with uncles, aunts and grandparents) which
continue protecting them in exchange for unquestioning loyalty.

The Hofstede individualism index values are based on the results of a factor analysis of work goals across countries.
The index was constructed from data collected during an employee attitude survey program conducted by a large
multinational organization (IBM) within its subsidiaries in 72 countries. The survey took place in two waves, in 1969
and 1972 and included questions about demographics, satisfaction and work goals. The answers to the 14 questions
about ”work goals” form the basis for the construction of the individualism index. The individual answers were
aggregated at the country level after matching respondents by occupation, age and gender. The countries mean
scores for the 14 ”work goals” were then analyzed using factor analysis that resulted in the identification of two
factors of equal strength that together explained 46% of the variance. The individualism factor is mapped onto a
scale from 1 to 100 to create the individualism index (hereafter IDV) for each country. The highest IDV values are
for the United States (91), Australia (90), and Great Britain (89); the lowest are for Guatemala (6), Ecuador (8)
and Panama (11). Subsequent studies involving commercial airline pilots and students (23 countries), civil service
managers (14 counties) and consumers (15 countries) have validated Hofstede’s results.

IBM survey text (a subset). The original Hofstede survey is too lengthy to include in its entirety. Below, we
list a subset of the questions asked. We categorize questions according to which aspect of collectivism they measure,
as described in section 3.2. That grouping is not in the original survey. The survey instructions read as follows:

We are asking you to indicate how important each of these is to you. Possible answers: of utmost importance
to me (1), very important (2), of moderate importance (3), of little importance (4), of very little or no importance.
How important is to you to:

Category 1: Questions about the importance of personal freedom and individual benefits from the organization

1. Have considerable freedom to adopt your own approach to the job (I)

2. Have a job which leaves you sufficient time for your personal or family life (I)

3. Have challenging work to do (I)

In contrast, the last example question emphasizes the opposite, how the organization benefits from the
individual’s skills:

4. Fully use your skills and abilities on the job (C)

Category 2: Value of cooperation

1. Work with people who cooperate well with each other (C)
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2. Have training opportunities (C)

Category 3: Willingness to change job or location

1. Live in an area desirable to you and your family (I)

We have followed the question with (I) when high importance (a low numerical score) indicates more individual-
ism. When the higher importance indicates less individualism (more collectivist) we denote that with (C). We report
these particular questions because all have factor loadings of 0.35 or more in absolute value.

Cross-Country Network Analysis There is a small literature that analyzes and compares social network
structures across countries. It is summarized and extended by Fischer and Shavit (1995). Surveys typically ask
respondents to name people with whom they confided, were friends, asked for help, ect. The survey takers would
then interview the named friends to find out their networks and interview the friends they named as well. By repeating
this process many times, the researchers could map out fairly complete social networks in specific geographic locations.
For our purposes, the key finding from these studies is that the frequency of network collectives varies greatly across
countries. These studies do not typically report the number of collectives. They report a related measure, network
density. Density is the fraction of possible links between individuals that are present. Importantly, a network that
is fully dense also has the maximum possible number of collectives. Because this research design involves lengthy
interviews of many respondents, it has been done only on a handful of countries. But it is useful to see how the
prevalence of network collectives correlates with Hofstede’s individualism index.

Table 6: Measures of network interdependence and individualism

Region Country Network Individualism
interdependence (for country)

Haifa Israel 0.57 54
N. California U.S. 0.44 91
all U.S. 0.40 91
E.York, Toronto Canada 0.33 80
London U.K. 0.34 89
Taijin China 0.58 20
West Africa 0.45-0.77 20

The theory predicts a negative relationship between network interdependence (closely related to collectivism) and
the individualism index. Interdependence is measured as the fraction of all possible links in a social network that
are present. It is also referred to as “network density.” West Africa here includes Ghana, Nigeria and Sierra Leone.

Correlation of individualism with other measures of culture. To better understand what
Hofstede’s individualism index (IDV) measures, we examine related cultural measures that are highly correlated with
the index.

Family structure. In a collectivistic society, people grow up with members of an extended family and sometimes
also neighbors, housemates, other villagers, lords and servants. Collectivists have strong ties and frequent contact
with family members. In individualistic societies, people grow up in nuclear families. Their family ties are weaker.
Extended family live elsewhere and visit infrequently.

Group identity. In collectivist societies, people learn to think about themselves as part of collective, with a
group identity. That identity is determined by birth. Similarly, friendships come from existing group ties. Members
of the collective are distinct from non-members. In the individualistic society, people learn to think about themselves
as an individual, not a member of a group. There is no distinction between group members and and non-members.
Gudykunst, Gao, Schmidt, Nishida, Bond, Leung, and and (1992) surveyed 200 students in each of 4 countries:
Australia and US (high IDV) and Hong Kong and Japan (lower IDV). Half of the respondents were asked to imagine
a group member; the others were asked to imagine a non-member. They were then asked to report if they would: talk
about themselves with the person, ask about the other, expect shared attitudes and networks, and have confidence
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in the other. The differences between how respondents viewed group members and non-members correlated exactly
(negatively) with their country’s IDV scores.

Other ways of modeling individualism and collectivism in networks. Weak vs. strong
ties Granovetter (1973) introduced the idea of strong ties and weak ties in networks. Strong ties are close friends,
while weak ties are acquaintances. Granovetter argues that more novel information comes from weak ties than from
strong ties. The reasoning is very similar to that in our model. Because people who are very closely socially related
have similar information sets, they are more likely to convey redundant information and are less likely to have novel
information. Weak ties are more likely to be connected to people that we do not know and therefore are possible
conduits for new information. Granovetter argues that people with few weak ties are at an informational disadvantage
because they have difficulty accessing information in other parts of the social network. Thus, a society comprised of
agents with mostly strong ties and few weak ties will not transmit information (or disease) as easily. Thus another
way to formulate our model that would lead to the same conclusions would be to characterize collectivist societies as
ones with strong ties and individualist societies as one with weak ties.

Random vs. fixed networks Another characteristic of individualist economies is that more commerce is
mediated by a market, rather than being based on personal relationships. One could think of a market as being like
a random search model. Buyers encounter suppliers with various prices and decide to do business or not. A random
search model looks almost identical to a random network, where agents are connected to others in the network with
some probability. In contrast, the collectivist economy is one where transactions take place only between people who
are connected and those connections do not change over time. This captures the essence of market vs. relational
transactions. For most network structures, the random network will achieve faster diffusion of technology and diseases
than the fixed network (see Jackson (2008)). Thus, modeling individualist and collectivist societies as fixed or random
networks would also not change the basic message of the paper.

B.3 Other Control Variables

An inevitable question arises: “What if you also control for X?” We would like to know if individualism is highly
correlated with and thus proxying for some other economic phenomenon. The problem with answering this question
is that what we would like to control for is likely an endogenous variable. We could treat it as such and instrument
for it. But in most cases, our instruments are not strong predictors. Or, we could just, suspend disbelief, assume that
these are exogenous variables, abandon any pretense of saying anything about causality, and just see what statistical
relationship they have with the other variables in the estimation. We take the second approach. Each row of table 7
reports the coefficients of a second stage regression of technology diffusion on the Hofstede individualism index, one
other control variable, and a constant. Since we have assumed that the control variable is exogenous, we use it as
an instrument in the first stage, in addition to a constant and our standard instruments: pronoun, english and the
standardized difference in pathogens variable, diff germ std.

The control variables are social infrastructure, a measure of the efficient functioning of political and social institu-
tions, constructed by Hall and Jones (1999); ethno-linguistic fractionalization, a measure of the probability that two
randomly-chosen people in the country will belong to different ethnic or linguistic groups, constructed by Taylor and
Hudson (1972); latitude, which is the absolute value of the country’s latitude, divided by 90; disability-adjusted life
expectancy, which is the expected length of time an individual lives free of disability, is measured by the World Health
Organization in 2004 (http://www.who.int/healthinfo/global burden disease/estimates country/en/index.html); capi-
talist, which is the “economic organization” variable constructed by Freedom House, scores more capitalist countries
higher and more socialist countries lower; and population density is the 1970 population per square mile, as reported
by the World Bank.
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Table 7: Controlling for other economic variables

Dependent variable Technology Diffusion
(1) (2) (3) (4) (5) (6) (7)

Individualism (S) 0.59 0.69 1.23∗ 1.35∗ 1.02∗ 1.24∗ 1.46∗

(0.34) (0.39) (0.30) (0.36) (0.27) (0.36) (0.31)
Life expectancy 4.29∗
at birth (LEB) (0.78)
Social 112.2∗
Infrastructure (SocI) (30.17)
Ethno-linguistic −1.08∗

fractionalization (EFL) (0.21)
Latitude 0.21

(0.26)
Disease-adj −0.0030∗

life expectancy (DALY) (0.0006)
Capitalist 5.89
(EcOrg) (4.44)
Population 0.040∗

Density (0.010)
Constant -300.7 -98.51 -15.40 -67.68 7.05 -76.77 -72.64
R2 0.58 0.47 0.52 0.33 0.63 0.34 0.43
Observations 62 60 55 61 61 61 62

2SLS estimates of 100 ∗ γ coefficients in Diffusion = γ1 + γ2S + γ3x+ η, where the x variables are listed in the first

column of the table. The first stage regression is S = h1 + h2x +h3diff germ std1930 +h4pronoun+ h5english+ e.

Standard errors in parentheses. ∗ denotes significance at 5% level.
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Figure 9: A world map of historical pathogen prevalence.
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