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Abstract

We build a continuous-space theory of trade in which people in

a region agglomerate to exploit trading opportunities with another

region. The regions are separated by a river, which can be crossed

anywhere, but more cheaply at bridges. In the model, most trade

takes place via bridges, leading to a key prediction that population

density declines with distance to the bridge. We derive additional

predictions about the spatial distribution of population and test them

on current high-resolution population density data around twelve ma-

jor American rivers. The data is mostly consistent with our model.

In a historical event study of 19th-century bridges on these rivers, we

find that the neighborhood of bridges developed faster after the bridge

was built. Also, the two sides of the bridge converged in development,

highlighting the connecting role of the bridge. More generally, our

results suggest that economies of density arising from transport in-

frastructure can help explain why and where people agglomerate.
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1 Introduction

People agglomerate in cities to exploit spatial externalities and other economies

of density. What are the source of economies of density? Where do cities

emerge in space? Some locations can be clearly linked to natural advantages,

whereas others seem to be the outcome of historical accidents.

We build a continuous-space theory of trade to explain why and where

people agglomerate. There are two forces of agglomeration in our model.

First, people move close to trading opportunities to minimize transportation

costs. Second, they strive to exploit economies of density in transportation

technology. To understand the second motive, consider choosing a location

next to a river dividing two productive regions. If the river is easily naviga-

ble, boats may provide a suitable means of transport between the regions.

As economies of scale in boating are small, traders have no incentive to ag-

glomerate and can trade from small villages along the river. By contrast, if

the river is less navigable, one has to build a bridge to cross it. Bridges bring

about clear economies of density as locations close to the bridge will have

lower trade costs with the other side. Traders agglomerate near the bridge,

and a trading city emerges.

In our model, people choose their location on a homogeneous plane di-

vided by a single linear feature (a “river”). The two sides of the river differ

in comparative advantage, providing an incentive to trade across the river.

Trading, however, is costly. The cost increases in the distance travelled,

and crossing the river entails additional costs. The river can be crossed in

two ways: by boat at any point, and on existing bridges for a lower cost.

For a given set of bridges, we study the patterns of specialization and the

distribution of population (and economic activity) in space.

The model explains the emergence of cities through three steps. First,

bridges reduce trade costs, thereby increasing the attractiveness of riverside

locations. Second, because they only do so at given points on the river,

they introduce additional spatial variation in trade costs. This “warping of
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space” implies that bridge locations are even more important relative to other

riverside locations. Third, because of labor mobility and economies of ag-

glomeration, people move to low-trade-cost locations, making these locations

even more attractive to other traders.

Our work is motivated by the historical relevance of crossing points, of-

ten referenced in city names, such as Oxford and Cambridge. Although the

emergence of such crossing points is not exogenous, they may lead to fur-

ther and faster economic development and agglomeration. Writing about

the Upper Black Eddy–Milford bridge on the Delaware, built in 1842, Dale

(2003, p. 43) concludes that “[t]his new crossing brought additional busi-

ness to this part of the river valley. It gave farmers and small industrualists

in the area quick access to the Delaware Canal in Pennsylvania. And this

increased use brought additional funds in the form of dividends to the stock-

holders of the Upper Black Eddy-Milford Bridge. By 1844, business in the

now growing town of Milford included three stores, three taverns, twelve to

fiteen mechanics’ shops, a flour mill, and two new sawmills that made lum-

ber trade, here, an especially important business. The town also had many

non-commercial structures, including forty-five homes, two churches, and a

fine school. Upper Black Eddy on the Pennsylvania side of the river directly

opposite Milford was a favorite stop for timber raftsmen in the early days. By

the mid-nineteenth century the bridge brought even more business. Upper

Black Eddy was booming, too. It had forty houses, three hotels, and several

stores and shops.”

To evaluate the model more systematically, we test its predictions on

twelve major North American rivers: the Arkansas, the Colorado, the Columbia,

the Connecticut, the Delaware, the Hudson, the Mississippi, the Missouri, the

Ohio, the Red River, the Snake River and the Tennessee. In doing so, we

rely on high-resolution population density data, the precise path of rivers

and the locations of bridges.

First, we estimate how population density varies with distance to the
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river and distance to the nearest bridge. It declines with distance to all

twelve major rivers except for the Colorado and the Delaware. Except for

the Hudson, population density declines with distance to the nearest bridge.

Second, we check whether population is more clustered at the river. We

calculate the coefficient of variation of population density within 10 miles

of the river, and find that it is higher than between 20 and 30 miles from

the river. That is, there is more variation in population along the river than

inland, as predicted by the model.

Third, we measure the correlation of population densities between the

left and the right bank with and without taking bridges into account. For

all twelve rivers, the correlation between the two banks is strongly positive

(with an average of 0.47), suggesting that people agglomerate near the same

points on either side of the river. When looking at bridges only, however,

we find that correlations are substantially lower (average 0.39) between the

two sides of the bridge. This is consistent with the model, where population

density is a decreasing function of trade costs. Moving away from a bridge

along the river, trade costs increase both on the left and on the right bank

of the river, leading to a comovement in population density across the two

banks. Therefore, starting from a bridge, the longer the interval over which

we calculate the correlation coefficient, the larger value we find.

To study whether bridges lead to development or vice versa, we conduct

an event study, using historical data on 19th century bridges. To proxy for

the emergence of townships, we use data on post offices. We find that more

post offices appeared after the bridge was built, relative to similar non-bridge

locations. Bridges explain about a 10 percent growth in the number of post

offices in 30 years. We also find that the two sides of the bridge become more

similar after the bridge is built.

Our paper is related to two strands of the literature. First, it is re-

lated to an increasing number of papers which model space as ordered and

continuous – a much more realistic assumption than the ones used in classi-
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cal economic geography models. Rossi-Hansberg (2005), Desmet and Rossi-

Hansberg (2014), and Coşar and Fajgelbaum (2013) characterize the spatial

distribution of economic activity over a line segment in Ricardian models

with agglomeration externalities. Fabinger (2011) and Allen and Arkolakis

(2014), on the other hand, examine the implications of neoclassical models

with CES preferences on the geographic distribution of economic activity. All

of these papers come to the conclusion that lower-dimensional trade barriers

and trade infrastructure – ports in Coşar and Fajgelbaum (2013), borders

in Rossi-Hansberg (2005) and Fabinger (2011), and highways in Allen and

Arkolakis (2014) – might have a significant impact on how population, in-

come, and other relevant economic variables are distributed in space. In most

of the cases, trade infrastructure has an agglomeration-creating effect since

people want to exploit spatial proximity to trading opportunities, while trade

barriers repel agglomeration in these models.1 Our main contribution to this

literature is that, to the best of our knowledge, we are the first to study

the role of bridges, or other point-like transport infrastructure, in creating

agglomeration.

The second literature related to this paper studies the role of transport

infrastructure in development in more empirical settings. The most closely re-

lated paper is Tompsett (2013), who shows that bridge construction over the

Mississippi and the Ohio contributed substantially to the growth of counties

close to newly built bridges. Donaldson (2012) and Donaldson and Hornbeck

(2013) study the expansion of railroads in the 19th century, and come to the

conclusion that it was a crucial determinant of local development in India

and the U.S., respectively. Baum-Snow et al. (2012) and Duranton et al.

(2012), on the other hand, find that highways have been playing an impor-

tant role in city development in China and the U.S. The fact that these effects

are likely to be long-lasting is pointed out by Bleakley and Lin (2012), who

1Rossi-Hansberg (2005), however, points to a case in which more trade restrictions on
the border are responsible for creating agglomeration.
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find that pre-19th-century portage sites remain population centers, despite

the fact that their advantage in transportation have been obsolete for long.

Relative to this second strand of the literature, we identify a new mechanism

for agglomeration. In these papers, transport infrastructure is assumed to

reduce trade costs, but is not a source of agglomeration itself. In our model,

bridges not only make trade between two regions cheaper, but also serve as

focal points of agglomeration.

The structure of the paper is as follows. Section 2 describes the model

together with the set of predictions that the model provides, while Section

3 presents the data, the empirical strategy, and the cross-sectional results.

Section 4 discusses the historical event study conducted. Section 5 concludes.

2 A model of trading across a river

We model production and trade in continuous space. There are a continuum

of workers freely choosing location on a plane that is separated by a river.

They produce two goods, using land and their labor. The two sides of the

river differ in relative productivities, leading to Ricardian gains from trade

across the river. There are no gains from within-region trade. (Most of our

results survive if all agents specialize fully, such as in Allen and Arkolakis,

2014.) Transportation is costly, giving incentives to move close to trade

opportunities.

We study how the relative price of the two goods varies in space, and the

patterns of specialization and agglomeration. For a fixed set of bridges, we

derive a handful of predictions on the equilibrium distribution of population

around the river and bridges.
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2.1 Geography

We concentrate on a compact and connected subset S of the sphere that

represents the globe. A circle segment called the river divides S into two

parts: a region called Home (H), and a region called Foreign (F ) – see Figure

1.2 Locations (i.e., points in S) are indexed by the triplet (R, `, h), where

R ∈ {H,F} is the region to which the location belongs, ` is the distance

of the location from the river, and h is the distance of the location from

an arbitrarily chosen circle h = 0 that is perpendicular to the river. (In

other words, h represents the river mile.) For simplicity, we refer to ` as

“longitude,” and to h as “latitude.” Finally, there is a finite set of latitudes

h1, . . . , hB at which bridges span the river.

There are two goods, denoted by X and M . Shipment of goods is costly.

Land shipping of good i involves an iceberg cost of etid, where ti is a positive

constant, and d is total distance traveled. Crossing the river entails additional

costs. The river can be crossed in two ways: (1) by boat at any point, at an

iceberg cost of eτ
0
i , or (2) through bridge b ∈ {1, . . . , B}, at an iceberg cost

of eτ
b
i , where τ 0i , τ

b
i > 0, and the value of τ bi can potentially vary with b.

Finally, the spatial distribution of factor endowments is as follows. There

is a mass of N workers in S, each of them supplying one unit of labor inelas-

tically. Workers are freely mobile across space. Also, each location (R, `, h)

is endowed with a strictly positive amount of land λ (R, `, h). Land is owned

by local landlords.

2.2 Consumption

Workers have Cobb–Douglas preferences over goods X and M , spending

half of their income on each good. Therefore, the representative worker at

2A circle on the sphere is equivalent to a straight line on the plane: it is the shortest
path between any two points that lie on it. Also note that the river is assumed to have zero
width. However, this assumption is without loss of generality because the only relevant
geographical feature of the river in our model is the cost of crossing it, which is given
exogenously.
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Figure 1: Geography of the river

location (R, `, h) has indirect utility

u (R, `, h) =
w (R, `, h)

PX (R, `, h)
1
2 PM (R, `, h)

1
2

, (1)

where w (R, `, h) is the wage at (R, `, h), and PX (R, `, h) and PM (R, `, h)

are the local prices of the X- and M -goods, respectively. Workers move to

the location at which their indirect utility is largest.

Landlords have the same preferences as workers. Landlords are immobile,

and do not work. We assume that the number of landlords is small enough

that we can approximate total population by the number of workers at each

location.
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2.3 Production

Both goods are produced under a Cobb–Douglas technology and constant

returns, using labor and land. Using ni (R, `, h) units of labor per unit of

land, a firm operating in the i-sector at (R, `, h) can produce

qi (R, `, h) =
n (R, `, h)γ

aRi
ni (R, `, h)α

units of output per unit of land, where 0 < α < 1 and 0 ≤ γ ≤ 1 − α are

constants. Total factor productivity n(R,`,h)γ

aRi
depends on (1) population per

unit of land n (R, `, h) (agglomeration externalities), and (2) a region- and

sector-specific term aRi , which represents differences in comparative advan-

tage across regions. Note that the autarky price of the X-good relative to

the M -good is pRA =
aRX
aRM

at each location in region R.

Both sectors are characterized by perfect competition at each location.

Therefore, a firm which operates in the i-sector at (R, `, h) solves the problem

max
ni(R,`,h)

Pi (R, `, h)
n (R, `, h)γ

aRi
ni (R, `, h)α−w (R, `, h)ni (R, `, h)−r (R, `, h) ,

where r (C, `, h) is rent per unit unit of land.

The first-order condition to the firm’s maximization problem implies

ni (R, `, h) = α
1

1−αn (R, `, h)
γ

1−α
(
aRi
)− 1

1−α

[
Pi (R, `, h)

w (R, `, h)

] 1
1−α

. (2)

Hence, if a good is produced at location (R, `, h), then the mass of workers

in the good’s production is positively linked to the good’s local price relative

to the nominal wage.

2.4 Equilibrium

Now we define a competitive equilibrium in this economy.
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Definition 1. An equilibrium is a set of functions PX , PM , nX , nM , n, λX ,

λM , w and r, as well as a utility level u such that

(1) utility of workers is maximized and equalized across locations:

w (R, `, h)

PX (R, `, h)
1
2 PM (R, `, h)

1
2

= u

for all R ∈ {H,F}, `, and h,

(2) profits are maximized and driven down to zero:

Pi (R, `, h)
n (R, `, h)γ

aRi
ni (R, `, h)α − w (R, `, h)ni (R, `, h)− r (R, `, h) = 0

for all R ∈ {H,F}, `, and h,

(3) local land markets clear:

λX (R, `, h) + λM (R, `, h) = λ (R, `, h)

for all R ∈ {H,F}, `, and h, where λi (R, `, h) denotes local land usage by

sector i,

(4) local and global labor markets clear:

λX (R, `, h)nX (R, `, h) + λM (R, `, h)nM (R, `, h)

λ (R, `, h)
= n (R, `, h)∫

H

λ (H, `, h)n (H, `, h) d`dh+

∫
F

λ (F, `, h)n (F, `, h) d`dh = N

for all R ∈ {H,F}, `, and h,

(5) there is no arbitrage possibility within regions:

Pi (R, `, h) ≤ etid[(R,`,h),(R,`
′,h′)]Pi (R, `

′, h′)

for all (R, `, h) and (R, `′, h′), where d [(R, `, h) , (R, `′, h′)] denotes the dis-

tance between the two locations, and we have equality if (R, `′, h′) ships good
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i through (R, `, h),

(6) there is no arbitrage possibility over the river:

Pi (R, 0, h) ≤ eτ
0
i Pi (R

′, 0, h)

for all R, R′ and h, and we have equality if region R′ exports good i at h by

boat,

(7) there is no arbitrage possibility over bridges:

Pi (R, 0, hb) ≤ eτ
b
i Pi (R

′, 0, hb)

for all R, R′ and b ∈ {1, . . . , B}, and we have equality if region R′ exports

good i through bridge b,

(8) trade is balanced between each pair of locations.

Let us introduce the notation p (R, `, h) = PX(R,`,h)
PM (R,`,h)

, that is, p (R, `, h) is

the relative price of the X-good at location (R, `, h). What is the pattern of

specialization in equilibrium? By constant returns to scale, this only depends

on the relationship between the equilibrium relative price and the autarky

relative price. In particular,

• (R, `, h) is fully specialized in good X if p (R, `, h) > pRA, implying

n (R, `, h) = nX (R, `, h),

• (R, `, h) is fully specialized in good M if p (R, `, h) < pRA, implying

n (R, `, h) = nM (R, `, h),

• if (R, `, h) is incompletely specialized, then p (R, `, h) = pRA, and n (R, `, h) =

nX (R, `, h) = nM (R, `, h) by (2).

Also note that, due to trade costs, any location that is incompletely

specialized is necessarily in autarky: a consumer at such a place would never

find it optimal to buy any of the two goods from another location.
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We assume that Home has a comparative advantage in X. In other words,

no Home location specializes in good M , and no Foreign location specializes

in good X. Given the trade costs, a sufficient condition for this is

pHA < pFAe
−max{maxb(τbX+τbM),τ0X+τ0M}.

Also note that there can be no within-region trade in equilibrium: locations

that are in autarky do not trade at all, whereas locations specialized in the

region’s export good only trade with the other region.

We then have the following proposition that is a generalization of Propo-

sition 1 in Coşar and Fajgelbaum (2013).

Proposition 1. In any equilibrium, each region R is a union of two disjoint

sets TR and AR such that

(i) all locations in TR trade with the other country,

(ii) all locations in AR that are not on the boundary of TR are in autarky,

and

(iii) locations in AR that are on the boundary of TR are indifferent between

trade and autarky.

Moreover, for each region R and latitude h, there exists a longitude ̂̀(R, h)

such that (R, `, h) ∈ TR for all ` < ̂̀(R, h), and (R, `, h) ∈ AR for all

` > ̂̀(R, h).

Proof. See Appendix.

Figure 2 is a graphical illustration of Proposition 1. As one can see, trading

locations TR are closer to the river than locations in autharky AR for each

latitude.

Combining equations (1) and (2), and using the equalization of utility in

equilibrium, we can relate the equilibrium spatial distribution of population

to the equilibrium spatial distribution of relative prices:

n (H, `, h) = nX (H, `, h) = α
1

1−α−γ
(
uaHX

)− 1
1−α−γ p (H, `, h)

1
2(1−α−γ) (3)
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Figure 2: Spatial specialization

and

n (F, `, h) = nM (F, `, h) = α
1

1−α−γ
(
uaFM

)− 1
1−α−γ p (F, `, h)−

1
2(1−α−γ) . (4)

That is, within-region differences in population density are solely driven

by differences in the relative price. At Home, locations that have a high p

offer a high price of the export good and a low price of the import good.

Hence, many people decide to move to these locations. On the contrary, a

location with a high p is not attractive in the Foreign region; thus, such

locations are characterized by low population density in equilibrium.

Using equations (3) and (4), the model generates two predictions on the
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distribution of population, summarized in Propositions 2 and 3.3

Proposition 2 (Concentration at the river). Take a region R, and restrict at-

tention to a “rectangular” subset of locations
{

(R, `, h) : ` ≤ ` ≤ `, h ≤ h ≤ h
}
⊂

R. Then average population density of locations at distance ` from the river

is at least as high as average population density of locations at distance `′ > `

from the river.

Proposition 3 (Concentration at bridges). In any region R, take two loca-

tions (R, `, h) and (R, `′, h′) which trade over the same bridge. Then n (R, `, h) >

n (R, `′, h′) if and only if (R, `, h) is closer to the bridge than (R, `′, h′). As a

consequence, locations at bridges over which trade takes place coincide with

the local maxima of n (R, `, h) if boat trade is prohibitively costly.

Proposition 2 points to the fact that riverside locations are always more

attractive than locations far away from the river since they have lower trade

costs. In the absence of bridges, this is the only source of heterogeneity in

trade costs and, hence, in population density, across locations. As a conse-

quence, level curves of population density are parallel to the river without

bridges. The real-world analog of this would be a large number of small

villages doing boat trade along the river. Proposition 3, on the other hand,

shows that bridges introduce an additional source of heterogeneity in trade

costs, and hence in the concentration of population (“warping of space”). In

the extreme case of no boat trade, level curves of population density become

“circles” around bridges. The real-world analog of this would be a small

set of high-density population clusters located at bridges, which might call

cities.

Inspecting equations (3) and (4), one can immediately notice that the

above relationships between distance from the river, or bridges, and pop-

ulation density are stronger in the presence of agglomeration externalities

(γ > 0) than without such externalities (γ = 0). The higher the value of

3The Appendix contains the proofs of these propositions.
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γ, the faster population density falls with relative prices, thus with distance.

One can therefore conclude that agglomeration externalities bring about an

additional incentive to co-locate, which makes concentration at the river and

bridges even stronger.

2.5 Random variation in productivity

This section presents a generalization of the model in which productivity is

not necessarily evenly distributed within countries. We do this to account

for idiosyncratic variation in population density in equilibrium.

Let ai (R, `, h) be the unit cost of production in sector i ∈ {X,M} at lo-

cation (R, `, h). We assume that ai (R, `, h) are random variables, each with

marginal cdf GR
i (·), but not necessarily independent. That is, our specifi-

cation allows for both spatial and cross-industry correlation of productivity

draws. Finally, we assume that GH
M (·) and GF

X (·) are such that Home loca-

tions specialize in the X-good, and Foreign locations specialize in the M -good

with probability one.4

Under these assumptions, equations (3) and (4) can be written as

n (H, `, h) = nX (H, `, h) = α
1

1−α−γ u−
1

1−α−γ aX (H, `, h)−
1

1−α−γ p (H, `, h)
1

2(1−α−γ)

(3’)

and

n (F, `, h) = nM (F, `, h) = α
1

1−α−γ u−
1

1−α−γ aM (F, `, h)−
1

1−α−γ p (F, `, h)−
1

2(1−α−γ)

(4’)

Equations (3’) and (4’) imply that Propositions 2 and 3 still hold in

expectation, i.e., if one replaces “population density” at a given location,

n (R, `, h), by “expected population density” at the location, En (R, `, h).

Generalizing the distribution of productivity comes at the expense of

4The easiest way to satisfy this restriction is to assume that aM (H, `, h), or aX (F, `, h),
or both, are “very large” with probability one.
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more restrictions on geographical structure. First, we assume that the two

regions are mirror images of each other, that is, (1) (H, `, h) ∈ H if and

only if (F, `, h) ∈ F for all ` and h, and (2) the distribution of land is such

that λ (H, `, h) = λ (F, `, h) for all ` and h. Second, we assume that the

productivity of the good in which the region specializes (good X at Home,

and good M in Foreign) is drawn from the same distribution in the two

countries, that is, GH
X (·) = GF

M (·). Third, we assume that trade over every

bridge has the same iceberg cost: τ bi = τi, and boat trade is prohibitively

costly.

Under these assumptions, one can show that the distribution of relative

prices along the river takes the form

p (H, 0, h) = e2p−(tX+tM )δ(h)

p (F, 0, h) = e2p+τX+τM+(tX+tM )δ(h),

where p is a constant, and δ (h) denotes the distance of location (0, h) from

the closest bridge. Denote τ = τX+τM
2

and t = tX+tM
2

. Then (3’) and (4’)

yield, in logs,

log n (H, 0, h) =
1

1− α− γ
[logα− log u+ p− log aX (H, 0, h)− tδ (h)]

log n (F, 0, h) =
1

1− α− γ
[logα− log u− p− τ − log aM (F, 0, h)− tδ (h)]

Therefore,

Cov [log n (H, 0, h) , log n (F, 0, h)] =
1

(1− α− γ)2
[
CLR + t2Var [δ (h)]

]
where CLR = Cov [log aX (H, 0, h) , log aM (F, 0, h)] is the covariance between

productivity realizations of the two banks of the river. Now since

Var [log n (H, 0, h)] =
1

(1− α− γ)2
[
σ2 + t2Var (δ (h))

]
= Var [log n (F, 0, h)]
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where σ2 is the common variance of log aX (H, 0, h) and log aM (F, 0, h), we

obtain that the correlation between left- and right-bank log population den-

sity is

ρ =
CLR + t2Var [δ (h)]

σ2 + t2Var [δ (h)]
= 1− σ2 − CLR

σ2 + t2Var [δ (h)]
. (5)

This equation allows us to provide the following two predictions on the

distribution of population along the river.

Proposition 4 (Left- and right-bank density positively correlated). If left-

and right-bank log productivities are positively correlated or uncorrelated, then

the correlation between left- and right-bank log population density is positive.

Proof. If log productivities are positively correlated or uncorrelated, then

CLR ≥ 0. Then equation (5) immediately implies

ρ ≥ 1− σ2

σ2 + t2Var [δ (h)]
> 0.

Proposition 5 (Lower correlation at bridges). The correlation between left-

and right-bank population density is lower at (trading) bridges than in gen-

eral.

Proof. Calculating the correlation coefficient at trading bridges only, we find

ρbridges = 1− σ2 − CLR
σ2

=
CLR
σ2

because δ (h) ≡ 0, hence Var [δ (h)] = 0 in this case. ρbridges < ρ follows from

comparing this to equation (5).

The intuition for Proposition 5 is as follows. As we move away from a

bridge along the river, trade costs increase by as much on the left bank as

on the right bank of the river. This leads to a comovement in the terms of

trade (p in Home, and p−1 in Foreign) on the two banks, and hence to a
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comovement in Home and Foreign population density (which are increasing

power functions of the terms of trade). This comovement in densities acts

against the variation caused by fluctuations in productivity. Thus, starting

from a bridge, the longer the interval over which we calculate the correlation

coefficient, the larger value we find for ρ.

Note that the existence of bridges over which trade takes place is crucial

for this result: the above mentioned comovement in trade costs is absent

whenever people trade by boat, or are in autarky. Hence, the fact that this

prediction is verified in the data can be taken as a clear indication that

bridges matter for the spatial distribution of economic activity.

3 Rivers and population density

We test the model’s predictions on twelve major rivers of the continental U.S.:

the Arkansas, the Colorado, the Columbia, the Connecticut, the Delaware,

the Hudson, the Mississippi, the Missouri, the Ohio, the Red River, the Snake

River and the Tennessee.

3.1 Mapping model to data

In the model, each location on either side of the river is characterized by two

coordinates: its distance from the river (longitude) and its distance along

the river from a chosen rivermile (latitude). In reality, rivers are not straight

lines. To calculate these two relevant coordinates, we proceed as follows.

Let river ς : R→ R2 be a parametric curve mapping rivermiles into points

on the plane. ς(0) is the vector of geocoordinates of the river’s mouth, ς(1)

is the geocoordinate of the first rivermile, etc. For any point (x, y), we can
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determine the river-coordinates as follows:

`(x, y, ς) ≡ min
m

d[(x, y), ς(m)],

h(x, y, ς) ≡ arg min
m

d[(x, y), ς(m)],

where d : R4 → R+ measures the distance between a pair of points.

That is, distance is measured as distance to the nearest point of the river,

and h is measured as the rivermile of this neaerst point. For straight rivers,

these measures exactly correspond to the ones used in the model.

Note that the (x, y) → (`, h) mapping is not a bijection. While there

is only one nearest point with probability one, there may be multiple (x, y)

points on the plane for which m is the closest rivermile.

The use of this mapping is illustrated in Figure 3, which plots popu-

lation density on the left and right bank of the Delaware as a function of

rivermiles. The high-density areas of Philadelphia (mostly right bank) and

Trenton (mostly left bank) are clearly visible.

Figure 3: Bridges and population density on the two banks of the Delaware

19



3.2 Data

We merge three datasets to conduct the analysis: one on the location of

rivers, one on the location of bridges, and one on the current distribution of

population.

We take the geocoordinates of the twelve major rivers from the ESRI

Map of U.S. Major Waters, containing polygons of 29,167 water surfaces,

including rivers and lakes. After making the necessary topological corrections

(connecting segments of the river and intermittent lakes), we determine the

centerline, the left and the right bank of each river. For the Delaware, we

exclude Philadelphia and for the Hudson, we exclude New York City from

the analysis. Our results are stronger with these cities included.

The geocoordinates of bridges, including the year of building and de-

commissioning (if any), come from bridgehunter.com, cross-referenced with

Wikipedia, the National Bridge Inventory, and historical sources. For the

Hudson, we include the tunnels at Manhattan.

To measure current population density, we use Version 1 of the Global

Rural-Urban Mapping Project population density grid. This dataset provides

population count (and density) estimates for each 30 arc-second by 30 arc-

second grid cell of the U.S. (The area of these gridcells is around 0.25 km2.)

We use the values from year 1995.

3.3 Testing the five predictions

Table 1 shows how population density varies with distance to the twelve

major rivers. We measure population density within 10-mile bands along the

river. On ten out of the twelve rivers, population density between 20 and

30 miles from the river is strictly lower than within 10 miles from the river.

This is consistent with the model, where trading opportunities on the other

side of the river lead to a density gradient.

The exceptions are the Colorado and the Delaware, where population
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Table 1: Population density and distance to the river

density does not show a declining pattern. The Colorado river flows across

areas with large heterogeneity in natural endowments (such as mountains,

canyons, and deserts), which might lead to differences in population density

which are largely unrelated to the path of the river. In the case of the

Delaware, its 20 to 30-mile neighborhood is affected by the metropolitan

area of New York City.

The first column of Table 2 shows the correlation coefficient of log popu-

lation density along the river with distance to the nearest bridge. With the

exception of the Hudson, all rivers display very strong negative correlation.

In the model, as bridges are the focal points of agglomeration, population

density falls with distance, consistently with the facts.

Figures B1 through B6 (in the Appendix) plot the distribution of pop-

ulation density near and away from bridges. For each river, the red line

plots the kernel density of log population densities at gridcells that have a

21



Table 2: Higher concentration near bridges

Testing our predictions

Proposition (Concentration at bridges)

In any region R, take two locations (R, `, h) and (R, `0, h0) that trade over
the same bridge. Then, in equilibrium, n (R, `, h) > n (R, `0, h0) i§
(R, `, h) is closer to the bridge than (R, `0, h0).

Armenter, Koren & Nagy (. Philadelphia Fed Central European University Princeton University)Bridges November 6, 2013 12 / 16

bridge within 3 miles. (We calculated average population density between 0

and 10 miles from the river.) The blue line plots the kernel estimate of log

population densities for gridcells more than 3 miles from a bridge.

For all rivers except the Hudson, the distribution of population densities

near bridges is shifted to the right. That is, average population density

is higher within 3 miles of the bridge than outside this distance. This is

consistent with the correlations reported in Table 2.

We also see that there is a large variation in population densities both near

and away from bridges. In particular, some locations without a bridge are

as densely populated as some of those with one. This suggests that building

bridges involves nontrivial costs, and not every community can overcome

these costs, severely limiting their access to the other side of the river.

Table 2 also displays a measure of clustering at various distances to the

river. In particular, we calculate the coefficient of variation of population

density. This measure is high when population density varies a lot, between,

say, a large a city and sparse surroundings. It is low when many small cities

or towns are roughly evenly distributed in space. Note that the coefficient

of variation is unaffected by the overall mean population density, which we

have reported in Table 1.
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As we move farther away from the river, the coefficient of variation tends

to fall. This is in line with our theory, where the agglomerating force of

bridges can only be felt close to the river, and not farther from where multiple

bridges are equally easily accessible.

Table 3: Correlation between two banks of the river

Testing our predictions

Proposition (Positive correlation; lower correlation at bridges)

If the correlation between left- and right-bank log productivities is not too
low, then the correlation between left- and right-bank log population
densities is strictly positive.
The correlation is lower at (trading) bridges than in general.

Armenter, Koren & Nagy (. Philadelphia Fed Central European University Princeton University)Bridges November 6, 2013 13 / 16

Table 3 reports the correlation of population density between the left and

the right bank of the river. The model predicts that population is going

to cluster on both sides of the bridge, leading to positive correlation across

the two banks. On all twelve rivers, the correlation is highly positive, with

an average of 0.47. Part of this correlation is driven by the mere presence

of bridges. Bridges are surrounded by people on either side of the river,

whereas areas far from bridges tend to be more sparse. Table 3 also measures

this correlation at the bridges. More specifically, we ask how population on

the two sides of the bridge is correlated. As predicted by the model, these

correlations are positive, but smaller than the unconditional correlations,

with Snake River being the only exception.5

5The results are very similar if we use log population density when calculating correla-
tions.
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4 A historical event study

The cross-sectional patterns reported in the previous section are consistent

with the model. However, they do not address a key identification concern.

If local amenities are heterogeneous in space, than equilibrium population

density will also vary in space. There will be more habitable locations on

the river that are more populous. If bridges are subject to economies of scale

(that is, one cannot build a smaller bridge serving half the people for half

the cost), then it is these more populous places where bridges will be built.

To partially address this identification concern, we conduct an event study

using historical data on early bridges. We study the neighborhood of bridge

locations before and after the bridge was built. We say “partially address”

because our model is not dynamic and so does not speak directly to the

exercises reported below. We can, however, ask whether bridge regions are

already more populous before the bridge is built, or grow faster only after

the bridge.

We study the 19th century bridges on the twelve rivers. Table 4 lists the

rivers by the time of the first bridge, the total number of bridges by 1900,

and their length.

4.1 Post offices and population

To study the evolution of population before and after the bridge, we need

population data in high resolution both in space and time. The decennial

census is usually reported by counties, which, especially in 19th century, may

encompass large areas with several townships and several bridges.

To proxy for population, we have built and use a dataset on historical

post offices.6 Before the start of Rural Free Delivery in 1896, rural residents

could only pick up their mail at post offices. Therefore, a post office was a

crucial milestone in a township’s life.

6See Armenter, Koren, Menyhért, Nagy and Vujic (2014) for details.
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Table 4: Number and date of bridges

River Length+(miles)
Number+of+

bridges+by+1900 Earliest+bridge
Connecticut 282 28 1785
Hudson 290 4 1804
Delaware 330 19 1806
Tennessee 519 9 1837
Ohio 982 20 1849
Mississippi 1901 49 1855
Missouri 2279 32 1869
Snake 815 10 1870
Red 796 2 1872
Arkansas 761 11 1872
Colorado 1077 3 1886
Columbia 732 3 1887

We use the opening date of the post office as the birth date of a large

enough settlement. More specifically, in any given year, we can count the

number of post offices in a region to proxy for development.

Figure 4 reports the number of post offices over time. The number has

grown steadily throughout the 19th century.

To illustrate the correlation between population and post offices, Figure

5 plots the number of offices by county against their 1830 population. There

is a strong correlation between the two until a county population of about

50,000. That is, using post offices for rural counties seems like a valid proxy

for population. The relationship breaks down for large counties.

4.2 Event study

The units of observation are actual or potential bridge locations along each of

the twelve rivers. The outcome variable is the number of post offices within

10kms of the bridge location b at time t on river r. Because this number is

often zero, we estimate a Poisson model.
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Figure 4: Number of post offices over time

Figure 5: Population and the number of post offices across countries

Figure 6 shows how the outcome variable was constructed. It plots a

section of Delaware river in 1830, highlighting a 10km band on either side.
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The bridges are surrounded by 10km discs and the post offices are denoted

by dots. For each bridge, we count the post offices within the 10km disc. As

a control group, we also include locations with no bridge. We include every

10th kilometer of the river as a control group if there is no bridge on that

section.

Figure 6: Bridges and post offices around the Delaware in 1830

The expected number of post offices depends on the time since the bridge

was built. The key parameters of interest are βs, denoting the proportional

difference in the number of post offices relative to non-bridge locations.

We include river-decade dummies µrt because rivers became populated

at different times. We control for the rivermile associated with a location b,

because it may be correlated with local amenities. For example, the down-

stream segment of the river may be more navigable. Because rivers differ in

their hydrological features, we let the effect of rivermiles vary by river.

E(nrbt) = exp

[
µrt +

40∑
s=−40

βsI(t = Tb + s) + γrmb

]
. (6)
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Figure 7 plots the estimated βs coefficients together with their 95-percent

confidence interval. Bridge locations have, on average, 40 percent more post

offices than non-bridge locations even before the bridge is built. After an

initial jump, the number of post offices gradually increases. Three decades

after the bridge, these locations have 50 percent more post offices. That is,

while there is evidence for strong pre-selection of bridge sites, we also see a

marked additional development in the decades following bridge construction.7

Figure 7: Poisson estimates for post office count before and after the bridge

4.3 Convergence

To test whether the development is related to the bridge, we also study the

two sides of the river separately. In particular, we ask if the less populous

side catches up to the more populous side after the bridge is built. While

we did not prove this prediction in the model, we can argue that this is a

7The F-test rejects that 10–30 years after the bridge the number of post offices is the
same as 10–30 years before the bridge, with a p-value of 0.045.
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plausible prediction. Suppose a bridge is built connecting a small and a large

city. By the gravity equation, the increased trade opportunity will be more

important for the small city, so it will grow faster than the large one. The

size difference between the two sides will decrease.

We use a similar research design as above, but with a different outcome

variable. Let srbt denote the share of post offices within 10kms of location b

on river r on the “smaller” side. We classify the left side as smaller if the

total number of post offices on the left side of the river before the bridge is

built is smaller than on the right side of the river. By construction srbt ≤ 0.5.

We ask whether the share of the smaller side converges toward 50 percent,

by estimating

srbt = µrt +
40∑

s=−40

βsI(t = Tb + s) + erbt.

Again, βs are the treatment effects over time and we include river-decade

fixed effects.

Figure 8 plots the estimated βss from 30 years before the bridge to 30

years after, together with their 95 percent confidence intervals. At an average

bridge location, the smaller side holds about 15 percent of the post offices

before the bridge is built, with 85 percent on the other side. That is, the

typical bridge location is rather asymmetric.8 Shortly after the bridge is

built, the share of the smaller side increases dramatically to 22 percent.

While very far from complete convergence (which would be captured by a

50 percent share), the two sides become significantly more similar after the

bridge.9

8Non-bridge locations are even more asymmetric. They feature an 8–92 percent split.
9The F-test rejects that 10–30 years after the bridge the number of post offices is the

same as 10–30 years before the bridge, with a p-value of 0.002.
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Figure 8: Share of smaller side of the river around the bridge

5 Conclusion

We built a continuous-space theory of trade to explain why and where peo-

ple agglomerate. We tested the equilibrium predictions of our model on data

from twelve major American rivers, finding that spatial patterns of popula-

tion density are consistent with our model. Using historical data, we came

to the conclusion that, although bridge placement is clearly endogenous, lo-

cations at which bridges were built saw more development than no-bridge

locations in the years that followed bridge construction.

Our theory can relate to the question of whether and how trade causes

development. There are two puzzling facts about trade and development.

First, the macro correlations between trade and development (even those

using plausibly exogenous variation in trade, as Feyrer, 2009a and b) are

much larger than model-based meausures of gains from trade (Alvarez and

Lucas, 2007, Arkolakis, Costinot and Rodŕıguez-Clare, 2012). Second, land-

locked countries are much less developed than coastal countries, even though
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transportation costs make up only a small fraction of broader trade costs

(Anderson and van Wincoop, 2004).

Our theory has the potential to explain these facts because trade increases

the incentives to agglomerate, which leads to external effects. These external

effects represent a multiplier of trade on development (consistent with Fact

1). They are also stronger in coastal countries, where ports provide a natural

focal point of agglomeration (consistent with Fact 2).

In future work, we intend to estimate the agglomeration effect of bridges.

The crucial identification concern is that both the location of bridges and

population density are correlated with unobserved local amenities. We plan

to use variation in building costs (geographical and hydrological measures)

and transit traffic demand to instrument bridge location.
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Appendix

A Proofs

We first state the following lemma that we use in the proofs of Propositions

1 and 2.

Lemma 1. Take two locations (R, `, h) and (R, `′, h) such that `′ > `. Then

p (R, `′, h) ≤ p (R, `, h) if R = H, and p (R, `′, h) ≥ p (R, `, h) if R = F .

Proof of Lemma 1. We prove the lemma for R = H; the proof for R =

F involves the exact same steps. Notice first that p (H, `, h) ≥ pHA and

p (H, `′, h) ≥ pHA by the assumption that no Home location specializes in

good M . If p (H, `′, h) = pHA , then the result is immediate. So suppose

p (H, `′, h) > pHA . Then (H, `′, h) is fully specialized in X, and trades with

the Foreign region. As a consequence, there must exist a location at the river(
H, 0, ĥ

)
such that (H, `′, h) trades through it.

Equilibrium condition (5) then implies

PX

(
H, 0, ĥ

)
= etXd[(H,0,ĥ),(H,`

′,h)]PX (H, `′, h)
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and

PM

(
H, 0, ĥ

)
= e−tMd[(H,0,ĥ),(H,`

′,h)]PM (H, `′, h) .

Dividing these two equations yields

p
(
H, 0, ĥ

)
= e(tX+tM )d[(H,0,ĥ),(H,`′,h)]p (H, `′, h) . (7)

Similarly, by equilibrium condition (5),

PX

(
H, 0, ĥ

)
≤ etXd[(H,0,ĥ),(H,`,h)]PX (H, `, h)

and

PM

(
H, 0, ĥ

)
≤ e−tMd[(H,0,ĥ),(H,`,h)]PM (H, `, h) ,

irrespectively of whether
(
H, 0, ĥ

)
and (H, `, h) trade or not. Dividing the

last two inequalities, we get

p
(
H, 0, ĥ

)
≤ e(tX+tM )d[(H,0,ĥ),(H,`,h)]p (H, `, h)

≤ e(tX+tM )d[(H,0,ĥ),(H,`′,h)]p (H, `, h) ,

where the second inequality follows from `′ > `. Combining this with equation

(6) and cancelling e(tX+tM )d[(H,0,ĥ),(H,`′,h)] on both sides yields the result.

Now we are ready to prove Propositions 1 to 3.

Proof of Proposition 1. Define

TR =
{

(R, `, h) : p (R, `, h) 6= pRA
}
,

and

AR =
{

(R, `, h) : p (R, `, h) = pRA
}
.

R = TR∪AR and TR∩AR follow directly from the definitions. To see (i),

notice that p (R, `, h) 6= pRA necessarily implies that location (R, `, h) is fully
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specialized, hence it trades with the other region.

For (ii), suppose that a location (H, `, h) from the interior of AH is not

in autarky, thus it trades with the Foreign region. Then there must exist

another location (H, `′, h′) ∈ AH such that location (H, `, h) trades through

it. By equilibrium condition (5), this implies

p (H, `′, h′) = p (H, `, h) e(tX+tM )d[(H,`,h),(H,`′,h′)] > p (H, `, h) ,

which contradicts the fact that p (H, `′, h′) = p (H, `, h) = pHA . The argument

is similar for R = F .

For (iii), we first prove that p (R, ·, ·) is a continuous function. By equi-

librium condition (5), we have

p (R, `, h) ≤ p (R, `′, h′) e(tX+tM )d

and

p (R, `′, h′) ≤ p (R, `, h) e(tX+tM )d

for any (R, `, h) and (R, `′, h′), where d := d [(R, `, h) , (R, `′, h′)]. Combining

these two inequalities yields

e−(tX+tM )d ≤ p (R, `, h)

p (R, `′, h′)
≤ e(tX+tM )d.

Hence, in the limit as (R, `′, h′) → (R, `, h) (and thus d → 0), we obtain
p(R,`,h)
p(R,`′,h′)

→ 1, that is, p (R, `′, h′) → p (R, `, h). This proves that p (R, ·, ·) is

continuous.

Now pick a location (H, `, h) ∈ AH that is on the boundary of TH ; the

proof is similar for R = F . Clearly, location (H, `, h) weakly prefers autarky

over trade as p (H, `, h) = pHA . Assume that (H, `, h) strictly prefers au-

tarky over trade; this means p (H, `, h) > p (H, `′, h′) e−(tX+tM )d[(H,`,h),(H,`′,h′)]

for all trading locations (H, `′, h′) ∈ TH . However, by the compactness and

connectedness of R, there exists a sequence of locations
{

(H, `m, hm) ∈ TH
}
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converging to (H, `, h). By continuity of p (R, ·, ·), there must exist a large

enough m such that p (H, `m, hm) > p (H, `′, h′) e−(tX+tM )d[(H,`,h),(H,`′,h′)], im-

plying that (H, `m, hm) prefers autarky over trade. But this contradicts the

fact that (H, `m, hm) ∈ TH .

For the final part, let ̂̀(R, h) = sup`
{

(R, `, h) ∈ R : p (R, `, h) 6= pRA
}

if

there exists an ` such that p (R, `, h) 6= pHA , and ̂̀(R, h) = 0 otherwise. Then

Lemma 1 implies that p (H, `, h) > pHA if ` < ̂̀(H, h), hence (H, `, h) ∈ TH ;

and p (H, `, h) = pHA if ` > ̂̀(H, h), hence (H, `, h) ∈ AH . For Foreign,

` < ̂̀(F, h) implies p (F, `, h) < pFA, so (F, `, h) ∈ T F ; and ` > ̂̀(F, h)

implies p (F, `, h) = pFA, so (F, `, h) ∈ AF . This concludes the proof.

Proof of Proposition 2. Average population density at distance ` from the

river is ∫ h

h

n (R, `, h) dS (R, `, h) ,

and average population density at distance `′ is

∫ h

h

n (R, `′, h) dS (R, `′, h) .

Suppose R = H. Then, by Lemma 1, p (R, `, h) ≥ p (R, `′, h), which,

together with equation (3), implies n (R, `, h) ≥ n (R, `′, h) for all h ∈
[
h, h
]
.

As a consequence,

∫ h

h

n (R, `, h) dS (R, `, h) ≥
∫ h

h

n (R, `′, h) dS (R, `′, h) .

Now suppose R = F . Then Lemma 1 implies p (R, `, h) ≤ p (R, `′, h), so

by equation (4), n (R, `, h) ≥ n (R, `′, h) for all h ∈
[
h, h
]
. Hence,

∫ h

h

n (R, `, h) dS (R, `, h) ≥
∫ h

h

n (R, `′, h) dS (R, `′, h) .
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Proof of Proposition 3. If R = H, and (R, `, h) and (R, `′, h′) both trade over

bridge b, then we have

p (R, 0, hb) = p (R, `, h) e(tX+tM )d[(R,`,h),(R,0,hb)]

and

p (R, 0, hb) = p (T, `′, h′) e(tX+tM )d[(R,`′,h′),(R,0,hb)]

by equilibrium condition (5).

Then the fact that (R, `, h) is closer to the bridge than (R, `′, h′) is equiv-

alent to p (R, `, h) > p (R, `′, h′), which, by equation (3), is equivalent to

n (R, `, h) > n (R, `′, h′).

If R = F , equilibrium condition (5) yields p (R, `, h) < p (R, `′, h′) if and

only if (R, `, h) is closer to the bridge than (R, `′, h′), which is equivalent to

n (R, `, h) > n (R, `′, h′) by equation (4).

B Additional figures
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Figure B1: The distribution of population densities near and far of bridges:
Delaware

Figure B2: The distribution of population densities near and far of bridges:
Hudson
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Figure B3: The distribution of population densities near and far of bridges:
Mississippi

Figure B4: The distribution of population densities near and far of bridges:
Missouri
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Figure B5: The distribution of population densities near and far of bridges:
Ohio

Figure B6: The distribution of population densities near and far of bridges:
Tennessee
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