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Abstract

This paper studies the asset pricing implications of Bayesian learning about the

parameters, states, and models determining aggregate consumption dynamics. Our ap-

proach is empirical and focuses on the quantitative implications of learning in real-time

using post World War II consumption data. We characterize this learning process and

provide empirical evidence that revisions in beliefs stemming from parameter and model

uncertainty are signi�cantly related to realized aggregate equity returns. Further,

we show that beliefs regarding the conditional moments of consumption growth are

strongly time-varying and exhibit business cycle and/or long-run �uctuations. Much

of the long-run behavior is unanticipated ex ante. We embed these subjective beliefs in

a general equilibrium model and �nd that about half of the post World-War II observed

equity market risk premium and much of the observed return predictability are due to

unexpected revisions in beliefs about parameters and models governing consumption

dynamics.
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1 Introduction

This paper studies the asset pricing implications of learning about aggregate consumption

dynamics. We are motivated by practical di¢ culties generated from the use of complicated

consumption-based asset pricing models with many di¢ cult-to-estimate parameters and la-

tent states. For example, parameters or states controlling long-run consumption growth are

at once extremely important for asset pricing and particularly di¢ cult to estimate. Thus,

we are interested in studying an economic agent who is burdened with some of the same

econometric problems faced by researchers, a problem suggested by Hansen (2007).1

A large existing literature studies asset pricing implications of statistical learning �the

process of updating beliefs about uncertain parameters, state variables, or even model speci�-

cations. Pastor and Veronesi (2009) provide a recent survey. In theory, learning can generate

a wide range of implications relating to stock valuation, levels and variation in expected re-

turns and volatility, and time series predictability, with many of the results focussed on the

implications of learning about dividend dynamics.

Our analysis di¤ers from existing work along two key dimensions. First, we focus on

the empirical implications of simultaneously learning about parameters, state variables, and

even model speci�cations. Most existing work focuses on learning a single parameter or

state variable. Learning about multiple unknowns is more di¢ cult as additional unknowns

often confounds inference. Second, we focus on the speci�c implications of real-time learning

about consumption dynamics from macroeconomic data during the U.S. post World War II

experience. Thus, we are not expressly interested in general asset pricing implications of

learning in repeated sampling settings, but rather the speci�c implications generated by the

historical macroeconomic shocks realized in the United States over the last 65 years.

In studying the implications of learning about consumption dynamics, we focus on the

following types of questions. Could an agent who updates his beliefs rationally detect non-

i.i.d. consumption growth dynamics in real time? How rapidly does the agent learn about

parameters and models? Are the revisions in beliefs about consumption moments correlated

with asset returns, as a learning story would require? Is there evidence that learning e¤ects

can help us understand standard asset pricing puzzles, such as the high equity premium,

1Hansen (2007) states: �In actual decision making, we may be required to learn about moving targets, to
make parametric inferences, to compare model performance, or to gauge the importance of long-run compo-
nents of uncertainty. As the statistical problem that agents confront in our model is made complex, rational
expectations�presumed con�dence in their knowledge of the probability speci�cation becomes more tenuous.
This leads me to ask: (a) how can we burden the investors with some of the speci�cation problems that
challenge the econometrician, and (b) when would doing so have important quantitative implications" (p.2).
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return volatility, and degree of return predictability?

One of the key implications of learning is that the agent�s beliefs are nonstationary. For

example, the agent may gradually learn that one model �ts the data better than an alter-

native model or that a parameter value is higher or lower than previously thought, both of

which generate nonstationarity in beliefs. The easiest way to see this is to note that the

posterior mean of a parameter, E [�jyt], where yt is data up to time t, is trivially a martin-
gale. Thus revisions in beliefs represent permanent, nonstationary shocks, which can have

important asset pricing implications. Nonstationary dynamics can generate a quantitatively

important wedge between ex post outcomes and ex ante beliefs, providing an alternative

explanation for standard asset pricing quantities such as the observed equity premium or

excess return predictability.2

We consider three standard Markov switching models of consumption growth: unre-

stricted two- and three-state models and a restricted two-state model that generates i.i.d.

consumption growth. The states capture business cycle �uctuations and can be labeled as

expansion and recession in two-state models, with an additional �disaster� state in three-

state models.3 Our key assumption is that the agent views the parameters, states, and even

models as unknowns, using Bayes rule to update beliefs using consumption data, as well as

additional macroeconomic data such as GDP growth in extensions.

To focus on di¤erent aspects of learning, we consider three sets of initial parameter beliefs.

The �rst, the �historical prior,�trains the prior using Shiller�s consumption data from 1889

until 1946, a common approach to generate �non-informative�priors.4 The second, the �look-

ahead prior,�sets prior parameter means to full-sample maximum likelihood point estimates

using post World War II data. We embed substantial uncertainty around these estimates to

study the e¤ect of parameter uncertainty. This is often called an �empirical Bayes�approach.

The third, the �xed parameter case, is a rational expectations benchmark in which parameter

values are �xed at the end-of-sample estimates, thus there is no parameter uncertainty. There

is state uncertainty, which allows us to separate the e¤ects of parameter and state uncertainty.

2See also Cogley and Sargent (2008), Timmermann (1993), Lewellen and Shanken (2002).
3Markov switching models for consumption or dividends are a benchmark speci�cation in the literature,

see, e.g., Mehra and Prescott (1985), Rietz (1988), Cecchetti, Lam, and Mark (1990, 1993), Whitelaw (2000),
Cagetti, Hansen, Sargent, and Williams (2002), Barro (2006), Barro and Ursua (2008), Chen (2008), Bhamra,
Kuehn, and Strebulaev (2008), Barro, Nakamura, Steinsson and Ursua (2009), Backus, Chernov, and Martin
(2009), and Gabaix (2009). Rietz (1988) and, more recently, Barro (2006, 2009) argue that consumption
disaster risk can help explain some of the standard macro-�nance asset pricing puzzles.

4We do account for measurement error, which likely increased reported macroeconomic volatility during
the pre-war period, as argued in Romer (1989).
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Our �rst results characterize the process of statistical learning about parameters, states,

models, and future consumption dynamics (e.g., moments). Markov switching models are

popular, and real-time estimation provides an alternative econometric view of the models

compared to the usual full-sample or retrospective analysis. In particular, we compute model

probabilities and perform �model monitoring�in real time as new data arrives. We �nd that

the posterior probability of the i.i.d. model falls dramatically over time, provided the prior

weight is less than one. Thus our agent is able to learn in real-time that consumption growth

is not i.i.d., but has persistent components.5 The agent believes that expected consumption

growth is low in recessions and high in expansions, with the opposite pattern for consumption

growth volatility. The two-state model quickly emerges as the most likely, but the three-state

model with a disaster state has 5� 10% probability at the end of the sample. At the onset

of the �nancial crisis in 2008, the probability of the disaster model increases.6

There is signi�cant learning about the expansion state parameters, slower learning about

the recession state, and almost no learning about the disaster state, as it is rarely, if ever, vis-

ited. Thus, there is an observed di¤erential in the speed of learning. Standard large sample

theory implies that all parameters converge at the same rate, but the realized convergence

rate depends on the actual observed sample path. There is also strong evidence for non-

stationary time-variation in the conditional means and variances of consumption growth, as

well as measures of non-normality such as skewness and kurtosis. For both the historical and

the look-ahead priors, the agent�s perception of the long-run mean (volatility) of consump-

tion growth generally increases (decreases) over the sample. The perceived persistence of

recessions (expansions) decreases (increases).7 As the agent�s beliefs about these parameters

and moments change, asset prices and risk premia will also change.

The �rst formal test of the importance of learning regresses contemporaneous excess stock

market returns on revisions in beliefs about expected consumption growth. For learning

to matter, unexpected revisions in beliefs about expected consumption growth should be

re�ected in the unexpected aggregate equity returns.8 We �nd strong statistical evidence

5This result is robust to persistence induced by time-aggregation of the consumption data (see Working
(1960)).

6The posterior probability of the three-state model would change dramatically, if visited. For example, if
a -3% quarterly consumption growth shock were realized at the end of the sample, the posterior probability
of the three-state model would increase to almost 50%.

7All of the results described in the current and previous paragraphs are robust to learning from additional
GDP growth data.

8The sign of the e¤ect would in a model depend on the elasticity of intertemporal substitution, and also on
the other moments that change at the same time (volatility, skewness, kurtosis, etc.). In the model section,
we show that this positive relation is consistent with a model with an elasticity of intertemporal substitution
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that this relationship is positive, and the results are similar for both the historical and the

look-ahead prior. To disentangle parameter from state learning, we include revisions in

beliefs generated by the �xed parameter prior as a control. Revisions in beliefs obtained

using the historical and look-ahead priors remain statistically signi�cant, but revisions in

beliefs generated by models with known parameters are statistically insigni�cant.

These results imply that learning about parameters and models is a statistically signi�-

cant determinant of asset returns in our sample, con�rming our main hypothesis. This result

is strengthened if the agent learns from both consumption and GDP growth. It is important

to note that our agent only learns in real-time and from macroeconomic fundamentals, as no

asset price data (such as the dividend-price ratio) is used when forming beliefs. Since the revi-

sions in beliefs obtained from the models with �xed parameters are statistically insigni�cant,

the evidence questions the standard full-information, rational expectations implementation

of the standard consumption-based model, at least for the models of consumption dynamics

that we consider.9

As mentioned earlier, parameter and model learning generate nonstationary dynamics

and permanent shocks that could have important implications. To investigate these implica-

tions, we consider a formal asset pricing exercise assuming Epstein-Zin preferences. Because

the speci�c time-path of beliefs is important, the usual calibration and simulation approach

used in the literature is not applicable, and we consider the following alternative pricing

procedure. At time t, given beliefs over parameters, models, and states, our agent prices a

levered claim to a future consumption stream, computing quantities such as ex-ante expected

returns and dividend-price ratios.10 Then, at time t+1, our agent updates beliefs using new

macro realizations at time t + 1, recomputes prices, expected returns and dividend-price

ratios. From this time series of prices, we can compute realized equity returns, volatilities,

etc. Thus, we feed historically realized macroeconomic data into the model and analyze the

asset pricing implications for various models and prior speci�cations. This process is re-

quired when the time path matters and was previously used in, for example, Campbell and

Cochrane (1999), where habit is a function of past consumption growth. We use standard

preference parameters taken from Bansal and Yaron (2004).

greater than 1.
9Parameter and model learning, on the one hand, and state learning on the other hand are distinct in

our setting because the former generates a non-stationary path of beliefs, while the latter, after an initial
burn-in period, is stationary.
10We do price a levered consumption claim and introduce idiosyncratic noise to break the perfect rela-

tionship between consumption and dividend growth. The dividends are calibrated to match the volatility of
dividend growth and the correlation between dividend and consumption growth.
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Solving the full pricing problem with priced parameter uncertainty is computationally

prohibitive, as the dimensionality of the problem is too large.11 To price assets in a tractable

way, while still incorporating learning, we follow Piazzesi and Schneider (2010) and Cogley

and Sargent (2009) and use a version of Kreps�(1994) anticipated utility. This implies that

our agent prices claims at each point in time using current posterior means for the parameters

and model probabilities, assuming those values will persist into the inde�nite future. We do

account for state uncertainty when pricing.

This pricing experiment provides additional evidence, along multiple dimensions, for the

importance of learning. Focussing on the three-state model, we �rst note that the model with

parameters �xed at the full-sample values has a di¢ cult time with standard asset pricing

moments: the realized equity premium and Sharpe ratio are less than half the values observed

in the data. The volatility of the price-dividend ratio is eighty percent less than the observed

value. Parameter learning uniformly improves all of these statistics, bringing them close to

observed values. The results are, after a burn-in period, similar for the look-ahead and the

historical prior as the agent quickly unlearns the mean parameter beliefs of the look-ahead

prior early in the sample. It is important to note that this is not a calibration exercise �we

did not choose the structural parameters to generate these returns.

The increase in the realized equity premium and return volatility is due to unexpected

revisions in beliefs resulting from the parameter and model learning. In particular, the

average annualized ex ante quarterly risk premium is similar across the models at about

1:7%, but the models with uncertain parameters generate a higher realized equity premium of

about 3:8% to 4:2%, close to the 4:7% observed over the sample. This documents a dramatic

impact of the speci�c time path of beliefs about parameters and models for standard asset

pricing statistics, at least relative to the �xed parameter, rational expectations benchmark.

This also implies, looking forward, that the perceived equity premium is much smaller than

the realized equity premium over the post WW2 period. These points are consistent with

the results in Cogley and Sargent (2008).12

11As an example, for the 3-state model there are twelve parameters, each with two hyperparameters
characterizing the posteriors. This implies that we would have to have to solve numerically for prices on a
very high dimensional grid, which is infeasible. There are additional di¢ cult technical issues associated with
priced parameter uncertainty, as noted by Geweke (2001) and Weitzman (2007).
12Cogley and Sargent (2008) assume negatively biased beliefs about the consumption dynamics to highlight

the same mechanism and also consider the role of robustness. In their model, the subjective probability of
recessions is higher than the �objective�estimate from the data. The results we present here are consistent
with their conclusions, but our models are estimated from fundamentals in real-time, which allows for an out-
of-sample examination of the time-series of revisions in beliefs. Further, we allow for learning over di¤erent
models of the data generating process, as well as all the parameters of each model.

5



In terms of predictability, the returns generated by learning over time closely match the

data. For the historical and look-ahead priors and for forecasting excess market returns

with the lagged log dividend-price ratio, the generated regression coe¢ cients and R2�s are

increasing with the forecasting horizon and similar to those found in the data. The �xed

parameters case, however, does not deliver signi�cant ex post predictability, although the ex

ante risk premium is in fact time-varying in these models as well because the risk premium

time-variation assuming �xed parameters is too small relative to the volatility of realized

returns to result in signi�cant t-statistics. The intuition for why in-sample predictability oc-

curs when agents are uncertain about parameters and models is the same as in Timmermann

(1993) and Lewellen and Shanken (2002) �unexpected updates in growth and discount rates

impact the dividend-price ratio and returns in opposite directions leading to the observed

positive in-sample relation. Thus, in-sample predictability can be expected with parameter

and model learning. The quantitatively large degree of in-sample relative to out-of-sample

predictability we �nd is consistent with the literature.13

In conclusion, our results strongly support the importance of parameter and model learn-

ing for understanding three distinct asset pricing regularities. First, parameter and model

learning leads to a time path of belief revisions that are correlated with realized equity re-

turns, controlling for realized consumption growth. Second, the time series of beliefs help

explain the time-series of the price level of the market (the time-series of the price-dividend

ratio) in a general equilibrium model. Third, beliefs display strong nonstationarity over

time, driving a wedge between ex-ante beliefs and ex-post realizations that is absent in ra-

tional expectations models. This helps explain common asset pricing puzzles such as excess

return volatility, the high sample equity premium, and the high degree of in-sample return

predictability, relative to a �xed parameter alternative. All of these results are generated

by real-time learning from consumption (and GDP growth), using standard preference pa-

rameters without directly calibrating to asset returns. In this sense the results are entirely

�out-of-sample.�

13For example, Fama and French (1988) document a high degree of in-sample predictability of excess
(long-horizon) stock market returns using the price-dividend ratio as the predictive variable. On the other
hand, Goyal and Welch (2008) and Ang and Bekaert (2007) document poor out-of-sample performance of
these regressions in the data, and the historical and look-ahead prior learning models presented here are
consistent with this evidence.
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2 The Environment

2.1 Model

We follow a large literature and assume that an exogenous Markov or regime switching

process drives the dynamics of aggregate, real, per capita consumption growth. Log con-

sumption growth, �ct, evolves via:

�ct = �st + �st"t; (1)

where "t are i.i.d. standard normal shocks, st 2 f1; :::; Ng is a discretely-valued Markov state
variable, and

�
�st ; �

2
st

�
are the Markov state-dependent mean and variance of consumption

growth. The Markov chain evolves via a N �N transition matrix � with elements �ij such

that Prob[st = jjst�1 = i] = �ij; with the restriction that
PN

j=1 �ij = 1. The �xed parameters

of the N -state model contain the means and variances in each state,
n
�n; �

2

n

oN
n=1

as well as

the elements of the transition matrix. The transition matrix controls the persistence of the

Markov state.

Markov switching models are �exible and tractable and have been widely used since

Mehra and Prescott (1985) and Rietz (1988). By varying the number, persistence, and

distribution of the states, the model can generate a wide range of economically interesting

and statistically �exible distributions. Although the "t�s are i.i.d. normal and the distribution

of consumption growth, conditional on the Markov state and parameter values, is normally

distributed, the distribution of future consumption growth is neither i.i.d. nor normal due

to the time-varying moments generated by the shifting Markov state variable. This time-

variation induces very �exible marginal and predictive distributions for consumption growth.

These models are also tractable, as it is possible to compute likelihood functions and �ltering

distributions, given parameters.

We consider two and three state models and also consider a restricted version of the two

state model generating i.i.d consumption growth by imposing the restriction �11 = �21 and

�22 = �12 = 1� �11. Under this assumption, consumption growth is an i.i.d. mixture of two
normal distributions, essentially a discrete-time version of Merton�s (1976) mixture model.

The general two and three-state models have 6 and 12 parameters, respectively. The i.i.d.

two state model has 5 parameters (�1; �2; �1; �2 and �11).

It is common in these models to provide business cycle labels to the states. In a two-state

model, we interpret the two states as �recession�and �expansion,�while the three state model
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additionally allows for a �disaster�state.14 Although rare event models have been used for

understanding equity valuation since Rietz (1988), there has been a recent resurgence in

research using these models (see, e.g., Barro (2006, 2009), Barro and Ursua (2008), Barro,

Nakamura, Steinsson and Ursua (2009), Backus, Chernov, and Martin (2009), and Gabaix

(2009)).

2.2 Information and learning

To operationalize the model, additional assumptions are required regarding the economic

agent�s information set. Since we want to model a learning environment akin to that faced by

the econometrician, we allow agents to be uncertain about the Markov state, the parameters,

and the total number of Markov states. These are called state, parameter, and model

uncertainty, respectively. In this paper, we assume agents are Bayesian, which means they

update initial beliefs via Bayes�rule as data arrives.

The Bayesian learning problem is as follows. We consider k = 1; :::; K models, fMkgKk=1,
and in model Mk, the state variables and parameters are denoted as st and �, respec-

tively.15 The distribution p (�; st;Mkjyt) summarizes the uncertainty after observing data
yt = (y1; :::yt). To understand the components of the learning problem, we can decompose

the posterior as:

p
�
�; st;Mkjyt

�
= p

�
�; stjMk; y

t
�
p
�
Mkjyt

�
: (2)

p (�; stjMk; y
t) solves the parameter and state �estimation�problem conditional on a model

and p (Mkjyt) provides model probabilities. It is important to note that this is a non-trivial,
high-dimensional learning problem, as posterior beliefs depend in a complicated manner on

past data and can vary substantially over time. The dimensionality of the posterior can be

high, in our case more than 10 dimensions.

One of our primary goals is to characterize and understand the asset pricing implications

of the transient process of learning about the parameters, states, and models.16 Learning

14We do not consider, for instance, 1- or 4-state models as the Likelihood ratios of these relative to the 2-
or 3-state model show that the 2- and 3-state models better describe the data. As we will show, however,
there is some time-variation in whether a 2- or 3-state model matches the data better, which is one of the
reasons we entertain both of these as alternative models.
15This is a notational abuse. In general, the state and dimension of the parameter vector should depend on

the model, thus we should superscript the parameters and states by �k�, �k and skt . For notational simplicity,
we drop the model dependence and denote the parameters and states as � and st, respectively.
16These type of problems received quite a bit of theoretical attention early in the rational expectations

paradigm - see for example Bray and Savin (1986) for a discussion of model speci�cation and convergence
to rational expectations equilibria by learning from observed outcomes.
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generates a form of nonstationarity, since parameter estimates and model probabilities are

changing through the sample. When pricing assets, this can lead to large di¤erences between

ex ante beliefs and ex post outcomes, as shown in Cogley and Sargent (2008). Given this

nonstationarity, we are concerned with understanding the implications of learning based on

the speci�c experience of the U.S. post-war economy.17

To operationalize the learning problem, we need to specify the prior distribution, the data

the agent uses to update beliefs, and develop an econometric method for sampling from the

posterior distribution. In terms of data, we in a benchmark case assume that agents learn

only from observing past and current consumption growth, a common assumption in the

learning literature (see, e.g., Cogley and Sargent (2008) and Hansen and Sargent (2009)).

The primary data used is the �standard� dataset consisting of real, per capita quarterly

consumption growth observations obtained from the Bureau of Economic Analysis (the Na-

tional Income and Product Account tables) from 1947:Q1 until 2009:Q1. We develop and

implement extensions that allow updating using additional variables such as GDP growth.

2.3 Initial beliefs

The learning process begins with initial beliefs or the prior distribution. In terms of func-

tional forms, we assume proper, conjugate prior distributions (Rai¤a and Schlaifer (1956)).

One alternative would be �at or �uninformative�priors, but this is not possible, however, in

Markov switching models, as this creates identi�cation issues (the label switching problem)

and causes problems with algorithms for sampling from the posterior.18 Conjugate priors

imply that the functional form of beliefs is the same before and after sampling, are analyt-

ically tractable for econometric implementation, and are �exible enough to express a wide

range initial beliefs.

For the mean and variance parameters in each state, (�i; �
2
i ), the conjugate prior is

p(�ij�2i )p(�2i ) � NIG(ai; Ai; bi; Bi), where NIG is the normal/inverse gamma distribution.
17This is di¤erent from the standard practice of looking at population or average small-sample uncondi-

tional asset price and consumption growth moments from a model calibrated to the U.S. postwar data �we
are looking at a single outcome corresponding to the U.S. post-war economy.
18The label switching problem refers to the fact that the likelihood function is invariant to a relabeling

of the components. For example, in a two-state model, it is possible to swap the de�nitions of the �rst and
second states and the associated parameters without changing the value of the likelihood. The solution is to
impose parameter constraints in optimization for MLE or to use informative prior distributions for Bayesian
approaches. These constraints/information often take the form of an ordering of the means or variances of
the parameters. For example in a two state model, it is common to impose that �1 < �2 and/or �1 < �2 to
breaks the symmetry of the likelihood function.
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The transition probabilities are assumed to follow a Beta distribution in two-state speci�ca-

tion and its generalization, the Dirichlet distribution, in models with three states. Calibration

of the hyperparameters completes the speci�cation.

We endow our agent with economically interesting initial beliefs to study how learning

proceeds from various starting points. We consider three prior distributions and use an

�objective�approach to calibrate the prior parameters. The �rst, the �historical prior,�uses a

training sample to calibrate the prior distribution. Training samples are the most common

way of generating non-subjective prior distributions (see, e.g., O�Hagan (1994)). In this case,

an initial dataset is used to provide information on the location and scale of the parameters.

In our application, we use the annual consumption data from Shiller from 1889 until 1946.

Given the prior generated from the training sample, learning proceeds on the second dataset

�in our case, the post World War II sample.19

The second is called the �look-ahead prior.� This prior sets the prior mean for each

parameter equal to full-sample maximum likelihood estimates using the post World War

II sample, similar to the procedure employed in an �Empirical Bayes�approach. The prior

variances are chosen to be relatively �at around these full-sample estimates, in order to

allow for meaningful learning about the parameters as new data arrives, without running

into label-switching identi�cation problems. This approach violates the central idea of the

Bayesian approach, as the prior contains information from the sample, but it is useful for

analyzing the evolution of parameter uncertainty through the post World War II sample.

The main di¤erences between the historical and the look-ahead priors are that the historical

priors have on average higher consumption growth volatility, shorter expansions, and longer

recessions. For the three-state model, the disaster state is also more severe in the historical

prior, re�ecting the Great Depression.

The third is called the ��xed parameter�prior. This is a point-mass prior located at the

end-of-sample estimates. In this case, the agent only learns about the latent Markov state.

This prior mimics the typical rational expectations approach and allows us to separately

identify the role of state and parameter learning, since the other priors have both state and

parameter learning.

The details of the priors, the speci�c prior parameters chosen, as well as a description of

the econometric technique we apply to solve this high-dimensional learning problem (particle

19Romer (1989) presents evidence that a substantial fraction of the volatility of macro variables such as
consumption growth pre-WW2 is due to measurement error. To alleviate this concern, we set the prior mean
over the variance parameters to a quarter of the value estimated over the training sample. See the Appendix
for further details.
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�ltering) are given in the Appendix.

3 Statistical results: time-series of subjective beliefs

We have two main sets of results. The �rst is purely statistical and does not require any

economic assumptions regarding utility or asset pricing. These results are discussed in this

section and focus on the time series of the agent�s beliefs, and how revisions to these beliefs are

related to asset prices. We discuss state, parameter, and model learning and their implication

for the time series of conditional consumption moments, as perceived by the Bayesian agent.

After summarizing these statistical results, we empirically investigate how revisions in the

agent�s beliefs are related to stock market returns. We also consider the case of learning from

GDP data, in addition to consumption data. The second set of results requires additional

preference and pricing assumptions and is discussed in the following section.

3.1 State and parameter learning

Conditional on a model speci�cation, our agent learns about the Markov state and the

parameters determining consumption dynamics, with revisions in beliefs generated by a

combination of data, model speci�cation, and initial beliefs. To start, consider the agent�s

beliefs about the current state of the economy, st, where state 1 is an �expansion�state, state

2 the �contraction�state and, if a three-state model, state 3 the �Disaster�state. Estimates

are given by

E
�
stjMk; y

t
�
=

Z
stp
�
�; stjMk; y

t
�
d�dst.

Note that these are marginal mean state beliefs, as parameter uncertainty is integrated out.

Although st is discrete, the mean estimates need not be integer valued. Figure 1 displays

the posterior state beliefs over time, for each model and for di¤erent priors.

There are a number of notable features of these beliefs. NBER recessions (shaded yellow)

and expansions are clearly identi�ed in the models. The only exceptions to this are the

recessions in the late 1960s and 2001, which were not associated with substantial consumption

declines. Comparing the panels, one area in which the models generate strong di¤erences is

persistence of the states. The i.i.d. model identi�es recessions as a one-o¤ negative shock,

but since shocks are i.i.d., the agent does not forecast that the recession state will persist with

high likelihood. In contrast, the two- and three-state models clearly show the persistence
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of the recession states. Disaster states are rare �after the initial transient post war period,

there are only really two observations that place even modest probability on the disaster

state �the recession in 1981 and the �nancial crisis at the end of 2008. This implies that

disaster states are nearly �Peso�events in the post WW2 sample.

The agent�s beliefs are quite volatile early in the sample in all of the models. This is not

surprising. Since initial parameter beliefs are highly uncertain, the agent has a very di¢ cult

time determining the current state of the economy as parameter uncertainty contributes to

state uncertainty. As the agent learns, parameter uncertainty decreases and state identi�-

cation is easier. It is important to note that even with full knowledge of the parameters,

the agent will never be able to perfectly identify the state.20 The results also show that the

priors do not have a large impact on the mean state beliefs, at least for the unrestricted

two- and three-state models, as the posterior beliefs are roughly similar for the historical

and look-ahead priors.

Next, consider beliefs over parameters. Due to the large number of parameters and

in the interests of parsimony, we focus on a few of the more economically interesting and

important parameters. For the two-state models, the top panels of Figure 2 display posterior

means of the beliefs over �1 and �2, consumption growth volatility in the good and bad

states, respectively. Notice that for the Historical prior the conditional volatilities slowly

decrease, after a short (about 5 year) burn-in period, essentially throughout the sample.

This is a combination of the Great Moderation (realized consumption volatility did decrease

over the post-war sample) and the initial beliefs, which based on the historical experience

expected higher consumption growth volatility. Interestingly, for the look-ahead prior, which

is centered at the end of sample posterior values, the agents quickly unlearns the low full

sample consumption growth volatility, and after about 5-year burn-in, the volatility is close

to that observed for the historical prior. This occur because volatility was higher in the

�rst portion of the sample. The subsequent decline in the volatility in the good state is

quantitatively large (about a 30% drop).

The lower panels in Figure 2 display the transition probabilities, �11 and �22. After

the burn-in period, the �rst is essentially increasing over the sample, while the latter is

decreasing. That is, 50 years of, on average, long expansions and high consumption growth

leads to revisions in beliefs that are manifested in higher probabilities of staying in the good

20The posterior variance of the state, var [stjMk; y
t], does decline over time due to decreasing parameter

uncertainty. This will be discussed further when we use GDP growth as an additional observation to help
identify the state.

12



Figure 1 - Evolution of Mean State Beliefs
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Figure 1: The plots show the means of agents�beliefs about the state of the economy at each point
in time. "1" is an expansion good state, "2" is a recession state, and "3" is a disaster state. The
models have either 2 or 3 states as indicated on each plot, and the time t state beliefs are formed
using the history of consumption only up until and including time t. The "i.i.d. Model" is a model
with i.i.d. consumption growth but that allows for jumps ("2" is a jump state). The sample is from
1947:Q2 until 2009:Q1.
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state and lower probabilities of staying in recession state. The probability of staying in a

recession, conditional on being in a recession, goes down from about 0.85 to 0.75. Clearly,

such positive shocks to the agents�perception of the data generating process will lead to

higher ex post equity returns than compared to ex ante expectations.

Figure 3 displays estimates of the mean parameters, E [�ijMk; y
t] for i = 1; 2; 3 as well

as a two-posterior standard deviation band for the 3-state model using the historical prior.

Learning is most apparent in the good state and least apparent in the disaster state. This

is intuitive, since the economy spends most of its time in the good state and little, if any,

time in the disaster state. This provides empirical evidence supporting the argument that

a high level of parameter uncertainty is a likely feature of a model with a rarely observed

state and is an important feature for disaster risk models (see also Chen, Joslin, and Tran,

2010). There is additional interesting time-variation in beliefs about the parameters, but

this time-variation is best summarized via the total impact across all parameters, which is

measured via predictive moments and discussed in the next section.

3.2 Beliefs about models and consumption dynamics

The results of the previous section indicate that beliefs about the parameters vary through

the sample, even for the look-ahead prior, but it is not clear from this what the overall net

e¤ect on quantities of interest such as the conditional volatility of consumption growth is. For

example, if the probability of the bad state, which has higher consumption growth volatility,

decreases, this could be o¤set by an increase in the consumption volatility in the good

state. To provide asset-pricing relevant measures, we report the agent�s beliefs regarding

the �rst four moments of conditional consumption growth and model probabilities. All of

these quantities are marginal, integrating out parameter, state, and/or model uncertainty.

For example, the predictive mean for a given model,Mk, is

E
�
�ct+1jMk; y

t
�
=

Z
�ct+1p

�
�ct+1j�; st;Mk; y

t
�
p
�
�; stjMk; y

t
�
d�dst,

which accounts for parameter and state uncertainty. In describing these moments, we gener-

ally abstract from the �rst ten years and treat it is a �burn-in�period, in order to allow the

prior some time to adjust to the data, as there is some transient volatility over these �rst

few years.
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Figure 2 - Evolution of Mean Parameter Beliefs
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Figure 2: The two top plots in this �gure show the mean beliefs of the volatility parameters within
each state for the 2-state model, based on historical consumption data only. The two lower plots
show the mean beliefs of the probabilities of remaining in the current state. The sample is from
1947:Q2 until 2009:Q1.
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Figure 3 - Evolution of Mean Parameter Beliefs
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Figure 3: This �gure shows the average and 2 standard deviation bounds of agents�time t beliefs
about the mean parameters in the 3-state model, where only consumption data is used. The sample
is from 1947:Q2 until 2009:Q1.
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Figure 4 - Quarterly Expected Consumption Growth
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Figure 4: The top panel shows the quarterly conditional expected consumption growth, computed
using the Historical Prior, from the three benchmark models: the "i.i.d. model", and hidden 2-
and 3-state switching regime models. The "i.i.d. Model" is a model with i.i.d. consumption
growth but that allows for jumps. The middle plot shows the evolution of the probability of each
model being the true model, where the prior at the beginning of the sample gives each model an
equal probability. The lower plot shows the expected quarterly conditional consumption growth as
perceived by an agent that also takes into account the model uncertainty (as given in the middle
plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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Figure 5 - Quarterly Expected Consumption Growth
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Figure 5: The top panel shows the quarterly conditional expected consumption growth, computed
using the Look-ahead Prior, from the three benchmark models: the "i.i.d. model", and hidden
2- and 3-state switching regime models. The "i.i.d. Model" is a model with i.i.d. consumption
growth but that allows for jumps. The middle plot shows the evolution of the probability of each
model being the true model, where the prior at the beginning of the sample gives each model an
equal probability. The lower plot shows the expected quarterly conditional consumption growth as
perceived by an agent that also takes into account the model uncertainty (as given in the middle
plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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The top panels in Figures 4 and 5 (for historical and look-ahead priors, respectively)

display the conditional expected quarterly consumption growth for each model. Clearly, the

two and three-state models generate relatively modest di¤erences �both pick up business

cycle �uctuations in expected consumption growth. Persistent recessions are missing from

the i.i.d. model, as expected. All three models exhibit a modest low frequency increase in

expected consumption growth over the �rst half of the sample, due to parameter learning.

Recessions are associated, in all models, with lower expected consumption growth. The three-

state models, which include a disaster state, do not feature a signi�cantly lower expected

consumption growth in recessions than the two-state models, as the realized recessions simply

have not been severe enough to be clearly classi�ed as disasters based on our priors.

The middle panels display marginal model probabilities, p (Mkjyt). For simplicity, the
prior probability of each model was set to 1/3. Note �rst that the posterior probability of

the i.i.d. model decreases relatively quickly towards zero. Thus, i.i.d. consumption growth

is rejected by a Bayesian agent that updates by observing past realized consumption growth.

Although not reported for brevity, this conclusion is robust even if the prior probability of

the i.i.d. model is set to 0.95 - in this case it takes somewhat longer (a little over half the

sample), but the probability still drops very close to zero for the i.i.d. case.21 The 3-state

model also sees a reduction in its likelihood and ends at a 5-10% probability level at the

end of the sample. As mentioned in the introduction, a single large negative consumption

shock would quickly change these probabilities. Thus, there are large changes in the model

uncertainty across the sample.

The fact that agent can learn that consumption growth is not i.i.d. is important. Many

asset pricing models specify i.i.d. consumption growth with the implicit assumption that it

is not possible or di¢ cult to detect non-i.i.d. dynamics in consumption. Our results show

that agents, using only consumption growth data, can detect non-i.i.d. dynamics, and can

do so in real time, which is an even stronger result. The agent does not need to wait until the

end of the sample. The results holds for various prior speci�cations. Although not pursued

here, it would be interesting to see if Bayesian agents could detect in real-time non i.i.d.

behavior in other models, such as Bansal and Yaron (2004).

The lower panels of Figures 4 and 5 show model averaged expected quarterly consumption

growth. In the �rst third of the sample, the presence of the i.i.d. model smooths business

21Also, reported in the Appendix, this conclusion is robust to time-averaging of the consumption data:
taking out an autocorrelation of 0.25 from the consumption growth data, which would be due to time-
averaging of i.i.d. data (see Working (1960)), does not qualitatively change these results - if anything it
makes the rejection of the i.i.d. model occur sooner.
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cycle �uctuations in expected conumption growth. Thereafter, only the 2- and 3-state models

are relevant and there is not a strong e¤ect on the expected consumption growth series, as

the conditional expected growth in each model is similar.

Turning to the conditional volatility of quarterly consumption growth, Figures 6 and 7

display a long-term downward trend in consumption growth volatility, with marked increases

during recessions. The secular decline is largely driven by downward revisions in estimates of

the volatility parameters as realized consumption growth was less volatile in the second half

of this century. This is particularly strong for the historical prior, as the conditional volatility

of consumption growth decreases from about 1% per quarter to about 0.5%. Interestingly,

the look-ahead prior has a similar trend, after a short burn-in period, though the size of

the e¤ect is about half as large. This is the Great Moderation - the fact that consumption

volatility has decreased also over the post-war sample. In the models considered here, the

agent learning in real-time perceives this decrease to happen gradually, in contrast to studies

that �nd ex post evidence of structural breaks or regime shifts at certain dates (e.g., Lettau,

Ludvigson, and Wachter, 2008).

Every recession is associated with higher consumption growth volatility, although the

size of the increase varies. The largest increase, on a percentage basis, occurs with the

�nancial crisis of 2008. The increase is largest in the three-state model, as the mean state

belief at this time approaches the third state, which has a very high volatility. There is little

updating about the volatility of the disaster state through the sample, since there have been

no prolonged visits to this state. Thus, this re�ects the fear that prevailed in the fall of 2008

that the economy was potentially headed into a depression not seen since the 1930s. This

econometric result squares nicely with anecdotes from the crisis.

The middle plots of Figures 6 and 7 show the model probabilities through the sample.

Model probabilities could be driven by unexpected volatility, but this does not appear to be a

primary determinant. The lower plot shows that conditional consumption growth volatility

is not particularly a¤ected by model uncertainty, since both the two and the three-state

models have similar volatility patterns, and since the i.i.d. model is essentially phased out

in the �rst third of the sample.

Figures 8 and 9 show the time-variation in expected consumption skewness and kurto-

sis, respectively, for the historical prior, again including the model probabilities and model

averaged estimates. The results are similar for the look-ahead prior (after a burn-in period)

and are not shown. The time-variation in the conditional skewness is dominated by business
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Figure 6 - Quarterly Consumption Growth Standard Deviation
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Figure 6: The top panel shows the quarterly conditional standard deviation of consumption growth,
computed using the Historical Prior, from the three benchmark models: the "i.i.d. model", and
hidden 2- and 3-state switching regime models. The "i.i.d. Model" is a model with i.i.d. consump-
tion growth but that allows for jumps. The middle plot shows the evolution of the probability
of each model being the true model, where the prior at the beginning of the sample gives each
model an equal probability. The lower plot shows the quarterly conditional standard deviation of
consumption growth, as perceived by an agent that also takes into account the model uncertainty
(as given in the middle plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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Figure 7 - Quarterly Consumption Growth Standard Deviation
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Figure 7: The top panel shows the quarterly conditional standard deviation of consumption growth,
computed using the Look-ahead Prior, from the three benchmark models: the "i.i.d. model", and
hidden 2- and 3-state switching regime models. The "i.i.d. Model" is a model with i.i.d. consump-
tion growth but that allows for jumps. The middle plot shows the evolution of the probability
of each model being the true model, where the prior at the beginning of the sample gives each
model an equal probability. The lower plot shows the quarterly conditional standard deviation of
consumption growth, as perceived by an agent that also takes into account the model uncertainty
(as given in the middle plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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Figure 8 - Quarterly Consumption Growth Skewness
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Figure 8: The top panel shows the quarterly conditional skewness of consumption growth, computed
using the Historical Prior, from the three benchmark models: the "i.i.d. model", and hidden 2-
and 3-state switching regime models. The "i.i.d. Model" is a model with i.i.d. consumption growth
but that allows for jumps. The middle plot shows the evolution of the probability of each model
being the true model, where the prior at the beginning of the sample gives each model an equal
probability. The lower plot shows the quarterly conditional skewness of consumption growth, as
perceived by an agent that also takes into account the model uncertainty (as given in the middle
plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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cycle variation for the two and three-state models, and there is not a clear low frequency

trend. When the economy is in a recession, consumption growth is naturally less negatively

skewed for two reasons: (1) there is a high probability that the economy jumps to a higher

(i.e. better) state and (2) expected consumption volatility is high, which tends to decrease

skewness.

Conditional kurtosis is lower in bad states as these states are the least persistent and

volatility is highest. Large, rare, outcomes are more likely when the economy is in the good

state. This has potentially interesting option pricing implications (see, e.g., Backus, Chernov,

and Martin (2009)), as the skewness and kurtosis will be related to volatility smiles. It is

worth noting that parameter uncertainty gives an extra kick to conditional skewness and

kurtosis measures relative to the case of �xed parameters, where the skewness and kurtosis

both move little over time (the �xed parameter case is not reported here for brevity). Unlike

the �rst two moments, there are now relatively large di¤erences between the two and three-

state models. The three-state model has signi�cantly more negative conditional skewness

and higher conditional kurtosis than the three-state model, both due to the presence of the

disaster-state. Interestingly, the di¤erences are greater in expansions than in recessions.

Because of di¤erences between the two and three-state models, the model averaged mea-

sures of skewness and kurtosis are more interesting. In particular, the three-state model,

with its disaster state, has very high negative skewness and very high excess kurtosis, so even

though the probability of this model being the right model goes quite low, it still impacts

consumption moments after model uncertainty is integrated out. Thus, among the models

considered here, model uncertainty and its dynamic behavior is likely to have the strongest

implications for assets such as out-of-the-money options that are more sensitive to the tail

behavior of consumption growth.

3.3 Does learning matter for asset prices?

The previous results indicate that the agent�s beliefs � about parameters, moments, and

models �vary substantially over time and across the business cycle. If learning is an im-

portant determinant of asset prices, changes in beliefs should be a signi�cant determinant of

asset returns. This is a fundamental test of the importance of learning about the consump-

tion dynamics. For example, if agents learn that expected consumption growth is higher

than previously thought, this revision in beliefs will be re�ected in the aggregate wealth-

consumption ratio (if the elasticity of intertemporal substitution is di¤erent from one). In
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Figure 9 - Quarterly Consumption Growth Kurtosis
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Figure 9: The top panel shows the quarterly conditional excess kurtosis of consumption growth,
computed using the Historical Prior, from the three benchmark models: the "i.i.d. model", and
hidden 2- and 3-state switching regime models. The "i.i.d. Model" is a model with i.i.d. consump-
tion growth but that allows for jumps. The middle plot shows the evolution of the probability of
each model being the true model, where the prior at the beginning of the sample gives each model
an equal probability. The lower plot shows the quarterly conditional excess kurtosis of consumption
growth, as perceived by an agent that also takes into account the model uncertainty (as given in
the middle plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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particular, if the substitution e¤ect dominates, the wealth-consumption ratio will increase

when agents revise their beliefs about the expected consumption growth rate upwards (see,

e.g., Bansal and Yaron (2004)). As another example, if agents learn that aggregate risk

(consumption growth volatility) is lower than previously thought, this will generally lead to

a change in asset prices as both the risk premium and the risk-free rate are a¤ected. In the

Bansal and Yaron (2004) model, an increase in the aggregate volatility leads to a decrease

in the stock market�s price-dividend ratio.

To test this, we regress excess quarterly stock market returns (obtained from Kenneth

French�s website) on changes in beliefs about expected consumption growth and expected

consumption growth variance. We use the beginning of period timing for the consump-

tion data here and elsewhere in the paper.22 The regressors are the shocks, Et (�ct+1) �
Et�1 (�ct+1) and �t (�ct+1) � �t�1 (�ct+1). Notice that the only thing that is changing is

the conditioning information set as we go from time t� 1 to time t; the regressors are revi-
sions in beliefs. We calculate these conditional moments for each prior integrating out state,

model and parameter uncertainty. The �rst 10 years of the sample are used as a burn-in

period to alleviate any prior misspeci�cation (there is some excess volatility in state and

parameter beliefs in these �rst years), and these observations are therefore not included in

the regressions.

Separate regressions are run for the historical and look-ahead priors, and we control for

contemporaneous consumption growth and lagged consumption growth (the direct cash �ow

e¤ect). By controlling for realized consumption growth, we ensure that the results are driven

by model-based revisions in beliefs, and not just the fact that realized consumption growth

(a direct cash �ow e¤ect) was, for example, unexpectedly high. To separate out the e¤ects

of parameter from state learning, we use revisions in expected consumption growth beliefs

computed from the three-state model with �xed parameters (set to their full-sample values)

as an additional control.23

Speci�cations 1 and 2 in Panel A (historical prior) and Panel B (look-ahead prior) in

Table 1 show that increases in expected conditional consumption growth are positively and

strongly signi�cantly associated with excess contemporaneous stock returns for both priors.

22Due to time-averaging (see Working, 1960), Campbell (1999) notes that one can use either beginning of
period or end of period consumption in a given quarter as the consumption for that quarter. The beginning
of period timing yields stronger results than using the end of period convention (although the signs are
the same in the regressions). In principle, the results should be the same, so this is consistent with some
information being impounded in stocks before the consumption data is revealed to the Bureau of Economic
Analysis.
23Using the �xed parameter 2-state model as the control instead does not change the results.
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Table 1 - Updates in Beliefs versus Realized Stock Returns

Table 1: The table shows the results from regressions of innovations in agents�expectations of fu-
ture consumption growth (Et+1[�ct+2]�Et[�ct+2]) and conditional consumption growth variance
(�2t+1[�ct+2]� �2t [�ct+2]) versus contemporaneous excess stock market returns. In calculating the
expectations, the parameter and model uncertainty is integrated out. The controls are lagged and
contemporaneous realized log consumption growth, as well as the innovation in expected consump-
tion growth derived from the 3-state model with �xed parameters (i.e., no model or parameter
uncertainty). Panel A shows the results for the Historical priors, while Panel B shows the results
for the Look-ahead priors. Heteroskedasticity and autocorrelation adjusted (Newey-West; 3 lags)
standard errors are used. � denotes signi�cance at the 10% level, �� denotes signi�cance at the 5%
level, and ��� denotes signi�cance at the 1% level. The sample is from 1947:Q2 until 2009:Q1. In
the below regressions, we have removed the �rst 40 observations (10 years), as a burn-in period to
alleviate misspeci�cation of the priors.

Dependent variable: rm;t+1 � rf;t+1 (excess market returns)
Panel A: Historical prior 1 2 3 4 5 6

Et+1 [�ct+2]� Et [�ct+2] 40:43��� 26:00�� 42:41��

(9:36) (11:44) (18:97)

�2t+1 [�ct+2]� �2t [�ct+2] �36:34��� �13:83
(10:90) (10:14)

Controls:

�ct+1 2:02 3:76���

(1:51) (1:37)

�ct 2:31� 2:05

(1:41) (1:43)

[Et+1 [�ct+2]� Et [�ct+2]]
3-state model
F ixed param eters 24:98��� �1:76

(9:36) (12:82)

R2adj 8:8% 10:9% 5:9% 8:4% 5:0% 9:7%

Panel B: Look-ahead prior 1 2 3 4 5 6

Et+1 [�ct+2]� Et [�ct+2] 52:44��� 29:05�� 39:63��

(11:71) (13:62) (18:42)

�2t+1 [�ct+2]� �2t [�ct+2] �46:10��� �23:26�
(12:53) (13:43)

Controls:

�ct+1 2:77� 3:51��

(1:56) (1:42)

�ct 2:25� 2:16

(1:38) (1:39)

[Et+1 [�ct+2]� Et [�ct+2]]
3-state model
F ixed param eters 24:98��� 8:77

(9:36) (10:62)

R2adj 7:3% 10:5% 5:9% 7:2% 5:3% 10:2%
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This result holds controlling for contemporaneous and lagged consumption growth (the direct

cash �ow e¤ect), and so we can equivalently say that revisions in beliefs are signi�cantly

related to shocks to the price-dividend ratio. This is a very strong result, pointing to the

importance of a learning-based explanation for realized stock returns. These results could

be driven by parameter or state learning.

Speci�cation 3 shows that the updates in expected consumption growth derived from the

model with �xed parameters (that is, a case with state learning only) are also signi�cantly

related to realized stock returns. The R2, however, is lower than for the case of the full

learning model, and when we include the revisions in beliefs about expected consumption

growth from both the full learning model and the �xed parameters benchmark model in

the regression (speci�cation 4), the updates in expected consumption growth that arise

in a model with �xed parameters are insigni�cant, while the belief revisions from the full

learning model remain signi�cant. That is, updates in expectations when learning about

about parameters, states, and models are more closely related to realized stock market

returns than the corresponding updates in expectations based on a single model with known

parameters but hidden states estimated on the full sample. This result is mostly driven by

parameter learning � the previous section showed that the expected consumption growth

estimates are quite similar for di¤erent model speci�cations. In other words, parameter

learning is important for understanding the time-series of the market valuation ratio in the

post-WW2 U.S. data. To our knowledge, this is the �rst direct comparison of learning about

models and parameters versus the traditional implementation of the rational expectation

explanations in terms of explaining the time-series of realized stock returns using the actual

sequence of realized macro shocks.

For the variance (regression speci�cations 5 and 6 in Table 1) we get the opposite result,

as one would expect (at least with a high elasticity of intertemporal substitution, as we will

use later in the paper): unexpected increases in conditional consumption growth variance are

associated with negative contemporaneous stock returns. This result is not signi�cant at the

5% level when including contemporaneous and lagged consumption growth in the regressions

(speci�cation 6). This does not mean there is no e¤ect; we just cannot distinguish it from

the direct cash �ow e¤ect when learning from consumption data alone.

To summarize, we �nd strong evidence that the updates in beliefs elicited from our

model/prior combinations are associated with actual updates in agent beliefs at the time,

as proxied by stock market returns. Again, it is important to recall that no asset price data

was used to generate these belief revisions.
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3.4 Learning from additional macro variables

Agents have access to more than just aggregate consumption growth data when forming

beliefs. Here we provide one approach for incorporating this additional information and

apply this methodology to learning from quarterly GDP growth, in addition to consumption.

Suppose xt represents the common growth factor in the economy and evolves via:

xt = �st + �st"t; (3)

where "t
i:i:d:� N (0; 1), and st is the state of the economy, which follows the same Markov

chains speci�ed earlier. Consumption growth�c and J additional variables Yt = [y1t ; y
2
t ; :::; y

J
t ]
0

are assumed to follow:

�ct = xt + �c"
c
t ; (4)

yjt = �j + �jxt + �j"
j
t ; for j = 1; 2; :::; J (5)

where "ct
i:i:d:� N (0; 1), and "jt

i:i:d:� N (0; 1) for any j. Note that the coe¢ cients in equation
(5) are not state dependent, which implies that the additional variables will primarily aid in

state identi�cation. The speci�cation allows for the additional observation variables to be

stronger or weaker signals of the underlying state of the economy than consumption growth.

For the case of GDP growth, this captures the idea that investments is more cyclical than

consumption, which makes GDP growth a better business cycle indicator. The linearity of

the relationship is an assumption that is needed for conjugate priors.

The similar conjugate priors for the parameters are applied. For each state st = i,

p(�ij�2i )p(�2i ) � NIG(ai; Ai; bi; Bi), where NIG is the normal/inverse gamma distribution.
�c is assumed to follow an inverse gamma distribution IG(bc; Bc), and for each j = 1; 2; :::; J ,

p([�j; �j]
0j�2j)p(�2j) � NIG(aj; Aj; bj; Bj), where p([�j; �j]

0j�2j) is a bivariate normal distri-
bution N (aj; Aj�2j), aj is a 2 � 1 vector and Aj is a 2 � 2 matrix. Particle �ltering is
straightforward to implement in this speci�cation by modifying the algorithm described in

the Appendix.

To analyze the implications of additional information, we consider learning using real,

per capita U.S. GDP growth as an additional source of information. This exercise generates

a battery of results: time series of parameter beliefs, conditional moments, and model prob-

abilities. We report only a few interesting statistics in the interests of parsimony. Figure 10
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shows that the state beliefs do not change dramatically, although GDP growth is typically

thought of as more informative about business cycle �uctuations than consumption growth.

To characterize how the additional data aids in state identi�cation, we compute posterior

standard deviations for the states, std [stjMk; y
t], again integrating out parameter uncer-

tainty. Figure 11, shows that indeed the uncertainty about the state is much lower (about

half) than what was the case when using consumption growth as the only source of infor-

mation. Thus, adding GDP growth to the agent�s information set increases the precision of

the state identi�cation.24

The increased certainty about the state improves parameter identi�cation also, which is

con�rmed in Figure 12. Here the uncertainty about the good and bad states mean consump-

tion growth rates is lower, after a 10-year burn-in, than in the case using consumption as

the only source of information. Adding GDP growth also results in a greater di¤erence in

expected consumption growth across the states. Figure 13 and 14 shows that the di¤erence

in the expected consumption growth rate in recessions versus expansions is about 0.6% per

quarter, versus about 0.4% in the case of consumption information only (see Figure 4 and 5).

The dynamic behavior of the conditional standard deviation of consumption growth is not

signi�cantly changed (not reported for brevity). The model speci�cation results are similar,

as the data again favors the two-state model, leaving the three-state model with a very low

probability at the end of the sample. It is noteworthy, however, that the probability of the

three-state (disaster) model increases at the onset of the �nancial crisis in 2008.

Table 2 shows the regressions of contemporaneous stock returns and updates in agent

beliefs about conditional expected consumption growth and consumption growth variance,

as calculated from this extended model. The results are similar, but in fact overall stronger

than the results using only consumption growth. Updates in agent expectations about these

moments are signi�cantly related to stock returns, also after controlling for contemporaneous

and lagged consumption growth and updates in expected consumption growth derived from a

model with �xed parameters. Again, this evidence indicates that learning about parameters

and models is an important feature of the data.

24It is technically feasible to impose cointegration between consumption and GDP by including the log
consumption to GDP ratio on the right hand side of Equation (5). We thank Lars Hansen for pointing this
out.
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Figure 10 - Mean State Beliefs (GDP)
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Figure 10: The �gures show the means of agents�beliefs about the state of the economy at each
point in time. "1" is an expansion good state, "2" is a recession state, and "3" is a disaster state.
The models have either 2 or 3 states as indicated on each plot, and the time t state beliefs are
formed using the history of both consumption and GDP up until and including time t. The sample
is from 1947:Q2 until 2009:Q1.
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Figure 11 - Uncertainty about state (GDP)
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Figure 11: The graph shows the standard deviation of the posterior belief about the states for the
case of Look-ahead priors when the consumption dynamics are estimated using consumption data
only versus the consumption and GDP data. The sample is from 1947:Q2 until 2009:Q1.
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Figure 12 - Parameter uncertainty (GDP)
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Figure 12: The graph shows the standard deviation of the posterior belief about some of the
parameters for the case of historical priors when the consumption dynamics are estimated using
consumption data only versus the consumption and GDP data. The sample is from 1947:Q2 until
2009:Q1.
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Figure 13 - Conditional expected consumption growth (GDP)
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Figure 13: The top panel shows the quarterly conditional expected consumption growth, computed
using the Historical Prior, from the three benchmark models: the i.i.d. model, and hidden 2- and
3-state switching regime models. The middle plot shows the evolution of the probability of each
model being the true model, where the prior at the beginning of the sample gives each model an
equal probability. The lower plot shows the expected quarterly conditional consumption growth as
perceived by an agent that also takes into account the model uncertainty (as given in the middle
plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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Figure 14 - Conditional expected consumption growth (GDP)
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Figure 14: The top panel shows the quarterly conditional expected consumption growth, computed
using the look-ahead prior, from the three benchmark models: the i.i.d 2-state model, and the gen-
eral 2- and 3-state switching regime models. The middle plot shows the evolution of the probability
of each model being the true model, where the prior at the beginning of the sample gives each
model an equal probability. The lower plot shows the expected quarterly conditional consumption
growth as perceived by an agent that also takes into account the model uncertainty (as given in
the middle plot). The data in all cases go from 1947:Q2 - 2009:Q1.
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Table 2 - Updates in Beliefs versus Realized Stock Returns (GDP)

Table 2: The table shows the results from regressions of innovations in agents�expectations of fu-
ture consumption growth (Et+1[�ct+2]�Et[�ct+2]) and conditional consumption growth variance
(�2t+1[�ct+2]� �2t [�ct+2]) versus contemporaneous excess stock market returns. In calculating the
expectations, the parameter and model uncertainty is integrated out. The controls are lagged and
contemporaneous realized log consumption growth, as well as the innovation in expected consump-
tion growth derived from the 3-state model with �xed parameters (i.e., no model or parameter
uncertainty). Both consumption and GDP data is used to estimate the models, as described in
the main text. Panel A shows the results for the Historical priors, while Panel B shows the results
for the Look-ahead priors. Heteroskedasticity and autocorrelation adjusted (Newey-West; 3 lags)
standard errors are used. � denotes signi�cance at the 10% level, �� denotes signi�cance at the 5%
level, and ��� denotes signi�cance at the 1% level. The sample is from 1947:Q2 until 2009:Q1. In
the below regressions, we have removed the �rst 40 observations (10 years), as a burn-in period to
alleviate misspeci�cation of the priors.

Dependent variable: rm;t+1 � rf;t+1 (excess market returns)
Panel A: Historical Prior 1 2 3 4 5

Et+1 [�ct+2]� Et [�ct+2] 40:68��� 40:52��� 39:77��

(6:62) (8:99) (19:13)

�2t+1 [�ct+2]� �2t [�ct+2] �56:94��� �46:25���
(10:79) (22:37)

Controls:

�ct+1 �0:70 1:02

(1:56) (1:52)

�ct 1:93 2:36�

(1:33) (1:41)

[Et+1 [�ct+2]� Et [�ct+2]]3-state modelFixed parameters 0:60

(10:47)

R2adj 15:4% 15:6% 15:0% 11:9% 13:3%

Panel B: Look-ahead Prior 1 2 3 4 5

Et+1 [�ct+2]� Et [�ct+2] 33:48��� 30:84��� 28:41��

(5:56) (7:24) (14:03)

�2t+1 [�ct+2]� �2t [�ct+2] �67:93��� �48:59��
(13:76) (17:94)

Controls:

�ct+1 0:01 1:88

(1:40) (1:69)

�ct 2:11� 2:50�

(1:33) (1:41)

[Et+1 [�ct+2]� Et [�ct+2]]3-state modelFixed parameters 3:89

(9:20)

R2adj 14:5% 15:0% 14:1% 9:3% 11:9%
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4 Asset pricing implications

In this section, we embed the beliefs of our learning agent in a general equilibrium asset

pricing model. There are considerable computational and technical issues that need to be

dealt with when considering such an exercise. First, the state space is prohibitively large.

The 3-state model, as an example, have 12 parameters governing the exogenous consump-

tion process, and the beliefs over each parameter are governed by 2 hyper-parameters. Thus,

there are 24 state variables, in addition to beliefs over the state of the economy and the cor-

responding parameter and state beliefs for the i.i.d. and the general 2-state models. Second,

as pointed out by Geweke (2001) and Weitzmann (2007), some parameter distributions must

be truncated in order for utility to be �nite. This introduces additional nuisance parameters.

Given the computational impediments, we follow Sargent and Cogley (2008) and Piazzesi

and Schneider (2010) and apply the principle of "anticipated utility" to the pricing exercise

(originally suggested by Kreps (1998)). Under this assumption, the agents maximize utility

at each point in time assuming that the parameters and model probabilities are equal to

the agents�current mean beliefs and will remain constant forever. Of course, at time t + 1

the mean parameter beliefs will in general be di¤erent due to learning. While parameter

and model uncertainty are not priced risk factors in this framework, they are nonetheless

important for the time-series of asset prices as updates in mean parameter and model beliefs

lead to changes in prices. We do integrate out state uncertainty in the pricing exercise, so

state uncertainty is a priced risk factor (as in, e.g., Lettau, Ludvigson, and Wachter (2008)).

The anticipated utility approach reduces the number of state variables to three (the belief

about the state in the general 2-state model, and the 2-dimensional belief about the state in

the 3-state model).25

The purpose of the pricing exercise is to examine what features of the post-WW2 U.S.

aggregate consumption and asset price data a realistic, general learning problem can help

explain. Since we do not integrate out the parameter and model uncertainty in the pricing

exercise, we focus on two aspects of the model that are likely to be robust to the introduction

of priced parameter and model uncertainty.

1. Ex-ante versus ex post

With learning ex ante expectations need not in general equal average ex post outcomes,

which is the assumption in the typical rational expectations implementation. In the
25It would be computationally feasible to account for model uncertainty or to focus on parameter uncer-

tainty over one of the parameters, but we leave such considerations for future research.
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following, we argue that substantial components of the observed equity premium, excess

return volatility, the degree of in-sample excess return predictability, and the time-

series of the aggregate price-dividend ratio can be explained by the (nonstationary)

time-path of mean parameter beliefs.

2. Permanent versus transitory shocks

The shocks to mean parameter beliefs are permanent shocks to investor information

sets. This has implications for, for instance, the volatility of long-run bond yields,

and is di¤erent from a model with transitory shocks to state variables (such as our

state beliefs, the long-run risk variable in Bansal and Yaron (2004), or the surplus

consumption ratio in Campbell and Cochrane (1999)).

4.1 The model

The model is solved at the quarterly frequency, and the representative agent is assumed to

have Epstein and Zin (1989) preferences, which are de�ned recursively as:

Ut =

�
(1� �)C

1�1= 
t + �

�
Et
�
U1�t+1

�� 1�1= 
1�

� 1
1�1= 

; (6)

where Ct is the consumption,  6= 1 is the intertemporal elasticity of substitution (IES) in
consumption, and  6= 1 is the coe¢ cient of relative risk aversion. These preferences imply
the stochastic discount factor:

Mt+1 = �

�
Ct+1
Ct

�� �
�
PCt+1 + 1

PCt

� 1= �
1�1= 

; (7)

where PCt is the wealth-consumption ratio �that is, the price-dividend ratio for the claim

to the stream of future aggregate consumption. The �rst component of the pricing kernel is

that which obtains under standard power utility, while the second component is present if

the agent has a preference for the timing of the resolution of uncertainty (i.e., if  6= 1= ). As
mentioned earlier, we consider an anticipated utility approach to the pricing problem in terms

of parameter and model uncertainty, while state uncertainty is priced.26 This corresponds to

26The model is solved numerically through value function iteration at each time t in the sample, conditional
on the mean parameter beliefs at time t, which gives the time t asset prices. The state variables when solving
this model are the beliefs about the hidden states of the economy for each model under consideration. For
a detailed description of the model solution algorithm, please refer to the Appendix.
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a world where investors understand and account for business cycle �uctuations, but where

they simply use their best guess for the parameters governing these dynamics.

Our goal in this section is to, for reasonable preference parameters, understand how

learning a¤ects pricing relative to the benchmark case of �xed parameters. Given that

the consumption dynamics are not ex post calibrated (in particular in the historical prior

case) but estimated in real-time, we also do not calibrate preference parameters to match

any particular moment(s). Instead, we simply use the preference parameters of Bansal and

Yaron (2004). Thus,  = 10,  = 1:5, and � = 0:998^3.

Following both Bansal and Yaron (2004) and Lettau, Ludvigson, and Wachter (2008), we

price a levered claim to the consumption stream with a leverage factor � of 4:5. The annual

consumption volatility over the post-war sample is only 1:34%, and so the systematic annual

dividend volatility is therefore about 6%. Quarterly log dividend growth is de�ned as:

�dt = ��ct + "d;t; (8)

where "d;t
i:i:d:� N

�
�1
2
�2d; �

2
d

�
is the idiosyncratic component of dividend growth. �d is chosen

to match the observed annual 11:5% volatility of dividend growth reported in Bansal and

Yaron (2004). With these choices of � and �d we also in fact closely match the sample

correlation they report between annual consumption and dividend growth (0:55).27

4.1.1 Unconditional Moments

Table 3 reports realized asset pricing moments in the data, and also those generated by our

learning models over the same sample period. The �rst 10 years are removed as a burn-in

period to reduce concerns with regards to prior misspeci�cation. We consider cases with and

without parameter learning.

The models with parameter uncertainty match the observed equity premium reasonably

Cogley and Sargent (2009) argue that anticipated utility approach is a close approximation to the true
Bayesian approach, although their analysis is with respect to time-separable preferences. Piazzesi and
Schneider (2010) is an example of a recent application of an anticipated utility pricing framework with
Epstein-Zin preferences.
27The dividend dynamics imply that consumption and dividends are not cointegrated, which is a com-

mon assumption (e.g., Campbell and Cochrane (1999), and Bansal and Yaron (2004)). One could impose
cointegration between consumption and dividends, but at the cost of an additional state variable. Further,
it is possible to also learn about � and �2d. However, quarterly dividends are highly seasonal, which would
severely complicate such an analysis. Further, data on stock repurchases is mainly annual. We leave a
rigorous treatment of these issues to future research.
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Table 3 - Asset Price Moments

Table 3: The table reports the asset pricing implications of the models with an anticipated utility
version of the Epstein-Zin preferences under di¤erent priors, as well as the �xed parameters cases.
For all the models,  = 10, � = 0:994,  = 1:5, � = 4:5. The volatility of the idiosyncratic
component of dividend growth (�d;t) is calibrated to match the historical standard deviation of
dividend growth, as reported in Bansal and Yaron (2004). The statistics are annualized. The
expectation operator with a T subscript, ET , denotes the sample average, while the volatility
operator, �T denotes the sample standard deviation. �Cons. only�denotes the model results in the
case where only consumption growth is used to update beliefs, while �Cons. + GDP�denotes the
model results in the case where both consumption and GDP growth are used to update beliefs.
The full sample period is from 1947:Q2 until 2009:Q1. However, we have removed the �rst 40
observations (10 years), as a burn-in period to alleviate misspeci�cation of the priors. Similar
results are obtained with no burn-in or with 80 quarter burn-in.

Data Historical prior Look-ahead prior Fixed parameters
1957:Q2- Cons. Cons. + Cons. Cons. + 2-state 3-state

Moments 2009:Q1 only GDP only GDP model model

The real risk-free rate:

ET (r
f
t ) 1:6% 3:8% 3:7% 3:7% 3:7% 3:7% 3:7%

�T (r
f
t ) 1:6% 0:8% 0:9% 0:6% 0:8% 0:7% 0:8%

The dividend claim: dt = �ct + "d;t

ex post:
ET (rt � rft ) 4:7% 3:8% 4:2% 3:4% 4:0% 1:5% 1:8%

�T (rt � rft ) 17:1% 15:6% 15:7% 15:5% 15:4% 12:2% 12:4%
Sharpe ratio 0:27 0:24 0:27 0:22 0:26 0:12 0:14
�T (pdt) 0:38 0:26 0:28 0:26 0:29 0:06 0:07

CorrT (pd
Model
t ; pdDatat ) n=a 0:37 0:53 0:31 0:52 0:24 0:25

ex ante:
ET [Et(rt+1 � rft+1)] n=a 1:5% 1:7% 1:4% 1:6% 1:5% 1:8%

well: 4:7% in the data versus 3:8% and 3:4% for the consumption only historical and look-

ahead priors, respectively. The models where GDP is used as an additional signal, which

as reported earlier have a more severe recession state, have average sample excess equity

returns of 4:2% and 4:0% for the historical and the look-ahead priors, respectively. This

compares favorably to the benchmark �xed parameters two and three-state models which

sample equity premiums are 1:5% and 1:8%, respectively. Thus, allowing for parameter

uncertainty more than doubles the sample risk premiums, despite the fact that parameter

and model uncertainty are not priced risk factors in the anticipated utility pricing framework.

The high sample equity premium arises because of the speci�c time path of beliefs, which
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we discuss next.

The table also reports the average ex ante equity risk premium (ET
�
E
�
Rexcess
m;t+1 jIt

��
,

where It denotes the information set (beliefs) of agents at time t and ET [�] denotes the
sample average). The cases with parameter and model learning have about the same ex

ante risk premium. This implies that more than half of the excess returns achieved in these

models occur due to ex post positive surprises in updates of beliefs. This is one of the

primary implications of learning for this sample. Interestingly, after the burn-in period,

this e¤ect is also strong in the look-ahead prior. With parameter and model uncertainty,

agents beliefs quickly deviate from their full sample estimates, highlighting the di¢ culty of

learning in real-time, similar to the problem faced by an econometrician. In particular, the

sequence of shocks realized over the post-war sample generate a times series of beliefs that

have a systematic time series pattern: the initial low mean and high volatility of consumption

growth causes an upward revision in the mean growth rates and a negative revision in the

volatility parameters, as described in Section 3. Fama and French (2002) reach a similar

conclusion in terms of the ex post versus the ex ante risk premium when looking at the time-

series of the aggregate price-earnings and price-dividend ratios. Sargent and Cogley (2008)

assume negatively biased beliefs in their model to highlight the same mechanism. The

results we present here are consistent with their conclusions, but our models are estimated

from fundamentals alone.

The equity return volatility is, in all the cases permitting parameter and model uncer-

tainty, close to the 17:1% annual return volatility in the data (from 15:4% to 15:7%). In

contrast, the equity return volatility in the models with �xed parameters is about 12%, which

is almost all cash �ow volatility as the annual dividend growth volatility is 11:5%. Thus,

the sample variation in discount and growth rates arising from updates in agents�beliefs

cause excess return volatility (Shiller, 1980). This is re�ected in the sample volatility of the

log price-dividend ratio, which is 0:38 in the data. In the cases with parameter and model

uncertainty the volatility of the log price-dividend ratio lies between 0:26 and 0:29.28 While

this is only about three quarters of its volatility in the data, it is 4 to 5 times the volatility

of the log price-dividend ratio in the benchmark �xed parameters models (here the volatility

of the log price-dividend ratio is 0:06 for the two-state model and 0:07 for the three-state

model).

28The price-dividend ratio in each model is calculated as the corresponding in the data by summing the
last four quarters of payouts to get annual payout. The price-dividend ratio from the data includes share
repurchases in its de�nition of total dividends.
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The sample correlation between the log price-dividend ratios from the model versus the

data, is 0:53 and 0:52 for the models using both GDP and consumption to estimate beliefs

and 0:31 and 0:37 for the models using consumption only to estimate beliefs. The models

with �xed parameters have lower correlations, 0:24 for the two-state model and 0:25 for the

three-state model. As an alternative measure of the �t between the time-series of the sample

price-level in the data versus those in the models considered here, the highest covariance

between the price-dividend ratio in the data and the models with parameter and model

uncertainty is 0:0573, whereas the highest covariance between the price-dividend ratio in

the data and the models with �xed parameters is 0:0067 �a di¤erence close to an order of

magnitude. Thus, with parameter and model learning the model tracks the aggregate stock

market price level (normalized by dividends) much more closely than either of the models

we consider with �xed parameters. The price-level, a �rst order moment, is arguably even

more important than matching the second order moments that usually are the focus in asset

pricing.

As a formal test of the learning model�s match of the aggregate stock price level (the log

D/P ratio) relative to the �xed parameter benchmark model, we run the following regression:

dpdatat = �+ �1dp
ParModUnc
t + �2dp

FP3
t + "t; (9)

where dpdatat refers to the historical quarterly log dividend price ratio of the market portfolio,

dpParModUnc
t refers to the log dividend price ratio from the model with parameter and model

uncertainty, and dpFP3t refers to the log dividend price ratio from the �xed parameters, 3-

state model. The �rst four columns of Table 4 shows that the regression coe¢ cient on the

model with parameter and model uncertainty (�1) is signi�cant at the 1% level for both the

historical and look-ahead priors, as well as whether learning is from realized consumption

growth only or also including realized GDP growth. The R2 ranges from 12% to 26% and is

the lowest for the look-ahead prior with learning from consumption only, and the highest for

the historical prior with learning from both consumption and GDP growth. As before, the

results are shown after a 10-year burn-in period, from 1957 to 2009. The coe¢ cient on the

dividend yield from the �xed parameters model is insigni�cant in all of these cases. The �fth

column of Table 4 shows the regression with only the dividend yield from the �xed parameters

model. It is signi�cant in this case, but the R2 is only 6%. Finally, the last column of the

table shows the regression with both the dividend yield from the �xed parameter model and

the dividend yield from the historical prior with learning from both GDP and consumption
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growth, but where the dividend yield from the model with parameter and model learning has

been orthogonalized with respect to the dividend yield from the �xed parameter model. The

coe¢ cient on the orthogonalized dividend yield (�1) is still signi�cant at the 1% level which

implies that including the dividend yield from the model with parameter and model learning

leads to a statistically signi�cant (at the 1% level) increase in the R2, relative to the �xed

parameters benchmark case. The increase in �t from the full learning models stems from a

better match of the business cycle �uctuations in the dividend yield, as well as low-frequency

�uctuations. In particular, with parameter learning the dividend yield displays a downward

trend over the sample, similar to that found in the data as documented by, for instance,

Fama and French (2002).

In sum, including parameter and model uncertainty leads to not only better �t of the

unconditional asset pricing moments, but a signi�cantly better �t of the realized aggregate

stock price level in the post-WW2 era.

Table 4 - Dividend Yield Regression

Table 4: The table reports the results of regressions where the log aggregate stock market dividend
price ratio is the independent variable and contemporaneous log dividend price ratios from the
model with parameter and model uncertainty (dpParModUnc), and the benchmark 3-state model
with �xed parameters (dpFP3). The standard errors are corrected for heteroskedasticity and given
in parantheses under the coe¢ cient estimates. Each column corresponds to a di¤erent prior and
learning information set (Consumption only, or both consumption and GDP), The �nal column
shows a regression where the log dividend price ratio from the model with parameter and model
uncertainty has been orthogonalized with respect to the log dividend price ratio from the model
with �xed parameters. � denotes signi�cance at the 10% level, �� denotes signi�cance at the 5%
level, and ��� denotes signi�cance at the 1% level. The full sample period is from 1947:Q2 until
2009:Q1. However, we have removed the �rst 40 observations (10 years), as a burn-in period to
alleviate misspeci�cation of the priors. Similar results are obtained with no burn-in or with 80
quarter burn-in.

Historical Prior Look-ahead Prior Fixed parameters Historical Prior
Cons. Cons. Cons. Cons. 3-state model Cons. + GDP

V ariables only + GDP Only + GDP only (orthogonal)

constant 0:82 0:19 1:25 0:16 1:86 1:86
(1:82) (1:72) (1:91) (1:71) (2:06) (1:86)

pdParModUnc 0:47��� 0:79��� 0:37��� 0:61��� 0:79���

(0:13) (0:14) (0:12) (0:11) (0:14)
pdFP3 0:73 0:28 0:92� 0:40 1:45��� 1:45���

(0:46) (0:43) (0:49) (0:43) (0:56) (0:51)

R2 15:0% 25:8% 11:7% 20:0% 6:2% 25:8%
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Permanent shocks and the volatility of long-run yields. With parameter and

model uncertainty, the updates in mean beliefs constitute permanent shocks to expectations

about consumption growth rates, consumption growth volatility, and higher order moments.

This is a distinguishing feature of models with learning about constant quantities relative

to learning about or observing a stationary underlying process (such as our state of the

Markov chain, long-run risk in Bansal and Yaron (2004), or the surplus consumption ratio

in Campbell and Cochrane (1999)). Shocks to a transitory state variable eventually die out,

and so (very) long-run expectations are constant. Shocks to, for instance, the mean belief

about the unconditional growth rate of consumption are, on the other hand, permanent.

This has implications for all asset prices, but can be most clearly seen when considering

the volatility of long-run default-free real yields, which can be readily calculated from our

model. Table 5 shows the volatility of annualized yields for default-free real, zero-coupon

bonds at di¤erent maturities. The data column gives the volatility of yields on U.S. TIPS,

calculated from monthly data for the longest available sample, 2003 to 2011, from the Federal

Reserve Board, along with the standard error of the volatility estimates. In the remaining

columns, the corresponding model-implied yield volatilities, calculated from each of the

models considered in this paper over the post-WW2 sample, are given.

First, the yield volatilities for the models with parameter and model uncertainty are

substantially higher than the yield volatilities from the models with �xed parameters. The

2-year yields are twice as volatile, while the 10-year yields are an order of magnitude more

volatile. This is a direct consequence of the permanent shocks to expectations resulting

from parameter learning, whereas the models with �xed parameters have constant long-run

consumption growth mean and volatility. Notably, the long maturity yields in the data have

about the same yield volatility as in the models with parameter uncertainty, and so this

is another dimension along which learning about parameters and models can help explain

historical asset pricing behavior.

4.1.2 Return Predictability

Lastly, we consider excess market return forecasting regression using the dividend yield as

the predictive variable. These regressions have a long history in asset pricing and remain

a feature of the data that asset pricing models typically aim to explain (e.g., Campbell

and Cochrane (1999), Bansal and Yaron (2004)). However, the strength of the empirical

evidence is under debate (see, e.g., Stambaugh (1999), Ang and Bekaert (2007), Boudoukh,
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Table 5 - Real risk-free yield volatilities

Table 5: The table reports the sample standard deviation of annualized real risk-free yields at
di¤erent maturities as computed from each of the models considered in the paper over the post-
WW2 sample (1957 �2009). The data column reports the standard deviation of annualized yields
from the available data on TIPS from the Federal Reserve, which is monthly from January 2003 to
February 2011.

TIPS Data Consumption Consumption;GDP Fixed Parameters
(2003 �2011) (s:e:) Historical Lookahead Historical Lookahead 2-state 3-state

5-yr yield 0:75% 0:35% 0:30% 0:44% 0:39% 0:17% 0:19%
(0:18%)

10-yr yield 0:45% 0:31% 0:27% 0:42% 0:36% 0:09% 0:10%
(0:11%)

20-yr yield 0:30% 0:30% 0:26% 0:42% 0:35% 0:05% 0:06%
(0:06%)

30-yr yield n=a 0:30% 0:25% 0:42% 0:35% 0:03% 0:03%

Richardson and Whitelaw (2008), and Goyal and Welch (2008) for critical analyses). Here

we run standard forecasting regressions overlapping at the quarterly frequency using the

sample of market returns and dividend yields as implied by each of the models. Note that,

as before, we are not looking at population moments or average small-sample moments, but

the single sample generated by feeding the models the actual sample of realized consumption

growth.

Table 6 shows the forecasting regressions over di¤erent return forecasting horizons from

the data. We use both the market dividend yield and the approximation to the consumption-

wealth ratio, cay, of Lettau and Ludvigson (2001) to show the amount of predictability

implied by these regressions in the data. We then run the same regressions using model

implied returns and dividend yields. The benchmark models with �xed parameters (bottom

right in the table) show no evidence of return predictability at the 5% signi�cance level

and the R2�s are very small. These models do, in fact, feature time-variation in the equity

risk premium, but the standard deviation of the risk premiums are only about 0:5% per

year and so the signal-to-noise ratio in these regressions is too small to result in signi�cant

predictability in a sample of the length we consider here. The models with parameter

uncertainty, however, display signi�cant in-sample return predictability and the regression

coe¢ cients and the R2�s are large and increasing in the forecasting horizon similar to those

in the data. The ex ante predictability in these models is in fact similar to that in the

�xed parameters cases, but since the parameters are updated at each point in time, there
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is signi�cant ex post predictability. For instance, an increase in the mean parameters of

consumption growth leads to high returns and lower dividend yield. Thus, a high dividend

yield in sample forecasts high excess returns in sample. This is the same e¤ect of learning

as that pointed out in Timmermann (1993) and Lewellen and Shanken (2002). The models

here show that the signi�cant regression coe¢ cients in the classical forecasting regressions

show up in the sample only in the model where there is parameter learning which generates

a signi�cant di¤erence between ex ante expected returns and ex post realizations. Thus, the

model predicts that the amount of predictability is much smaller out-of-sample, consistent

with the empirical evidence in Goyal and Welch (2008) and Ang and Bekaert (2007).

5 Conclusion

Typical implementations of rational expectations, consumption-based exchange economy

models assume the agents know �either by endowment or via learning �the data generating

process for aggregate consumption growth. This paper studies the statistical problem and

asset pricing implications of learning about parameters, state variables, and models in a

standard model of consumption growth. Our approach focuses not on the general implica-

tions (e.g., population properties) of learning, but on the speci�c implications generated by

learning about U.S. consumption dynamics using the post World War II period.

We show that the agents�beliefs about the consumption growth dynamics are strongly

time-varying, nonstationary, and di¤erent from the benchmark models where parameters are

�xed and known. This generates a number of important implications. First, via learning,

our agent is able to detect non-i.i.d. or persistent components of consumption dynamics in

real time. This has important asset pricing implications with standard preferences such as

Epstein-Zin. Second, the agent�s beliefs are highly non-stationary, as beliefs about para-

meters or moments can trend up or down during the sample. This leads to, for example,

a di¤erence between ex post and ex ante risk premiums, return volatility, and return pre-

dictability. Third, revisions in beliefs about the conditional mean of consumption growth are

positively and signi�cantly related to realized stock returns, as one would expect if agents

in reality learn about these aspects of the economy. Updates in the objective expectations

(obtained using full sample parameter estimates and treating these as known to the agent),

on the other hand, are not signi�cantly related to stock returns when used as a control in

these regressions. We view this as strong evidence that model and parameter learning are
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Table 6 - Return Forecasting Regressions

Table 6: This table presents quarterly excess market return forecasting regressions over various
forecasting horizons (q quarters; 1 to 16). The top right shows the results when using market
data and a measure of the log aggregate dividend yield; the cay-variable of Lettau and Ludvigsson
(2001) and the CRSP aggregate log dividend yield (ln Dt

Pt
where dividends are measured as the

sum of the last four quarters�dividends. The rest of the table shows the results using the returns
and dividend yield generated within the models based on the Historical priors, the Look-ahead
priors, and the �xed parameter case. "Cons. only" denotes the model results in the case where
only consumption growth is used to update beliefs, while "Cons. and GDP" denotes the model
results in the case where both consumption and GDP growth are used to update beliefs. Newey-
West autocorrelation and heteroskedasticity adjusted standard errors are given in parentheses (the
number of lags is equal to the number of overlapping observations). � denotes signi�cance at the
10% level, �� denotes signi�cance at the 5% level, and ��� denotes signi�cance at the 1% level.
The full sample period is from 1947:Q2 until 2009:Q1. However, we have removed the �rst 40
observations (10 years), as a burn-in period to alleviate misspeci�cation of the priors.

rt;t+q � rf;t;t+q = �q + �q;dp ln (Dt=Pt) + "t;t+q

Data Historical prior

ln (Dt=Pt) := cayt ln (Dt=Pt) := ln
�3j=0D

Mkt:
t�j

PMkt:
t

Cons. only Cons. and GDP

q �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj

1 1:19��� 4:67% 0:03� 1:6% 0:04 1:4% 0:03 1:3%
(0:31) (0:02) (0:03) (0:02)

4 4:29��� 15:65% 0:11�� 6:6% 0:18�� 8:3% 0:14�� 6:8%
(1:18) (0:05) (0:07) (0:06)

8 7:60��� 28:1% 0:17� 8:5% 0:38��� 19:2% 0:28��� 13:7%
(1:72) (0:10) (0:09) (0:08)

16 12:31��� 41:6% 0:22�� 9:5% 0:61��� 28:4% 0:44��� 17:9%
(1:82) (0:11) (0:15) (0:13)

Look-ahead prior Fixed parameters
Cons. only Cons. and GDP 2-state model 3-state model

q �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj �dp (s:e:) R2adj

1 0:03 1:3% 0:03 0:9% �0:01 0:0% 0:004 0:0%
(0:02) (0:03) (0:062) (0:062)

4 0:18�� 7:7% 0:15�� 5:4% 0:19 1:0% 0:20 1:2%
(0:07) (0:07) (0:17) (0:16)

8 0:38��� 18:3% 0:29�� 10:8% 0:37� 2:3% 0:41� 2:7%
(0:12) (0:09) (0:24) (0:23)

16 0:64��� 28:9% 0:42�� 13:0% 0:26 0:7% 0:28 0:8%
(0:17) (0:17) (0:31) (0:30)
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important for understanding the joint dynamics of aggregate consumption and asset returns.

In terms of asset pricing implications, we �nd that up to half of the equity premium

in the post-WW2 sample is a consequence of positive revisions in agents�beliefs about the

aggregate consumption dynamics. Further, most of the in sample signi�cant evidence of

excess market return predictability is a result of ex post over�tting. This is not to say that

the ex ante price of risk and risk-premium are not time-varying �we estimate that they

are also in our setting - the conditional Sharpe ratio and risk premium of aggregate equity

returns are counter-cyclical in all the models. For the models with �xed parameters, however,

the variation in the conditional risk premium is too small relative to the volatility of realized

equity returns to result in signi�cant return predictability in the sample at hand. Finally,

the covariance between the price-dividend ratios in the models that feature parameter and

model learning and the market price-dividend ratio in the data are an order of magnitude

higher than the covariance between the market price-dividend ratio and the price-dividend

ratios obtained from the benchmark models with �xed parameters. The improvement in

the �t of the time series of the price-dividend ratio is due to both higher volatility of the

price dividend ratio in the models with parameter learning and higher correlation with the

price-dividend ratio in the data. In sum, the evidence presented in this paper indicates that

parameter and model learning help us understand many of the quantitative puzzles posed by

the joint dynamics of aggregate consumption growth and asset prices and returns observed

in the U.S. post-WW2 sample.
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6 Appendix

6.1 Existing literature and alternative approaches for parameter,

state, and model uncertainty.

Our paper is related to a large literature studying the asset pricing implications of para-

meter or state learning. Most of this literature focuses on learning about a single unknown

parameter or state variable (assuming the other parameters and/or states are known) that

determines dividend dynamics and power utility. For example, Timmerman (1993) considers

the e¤ect of uncertainty on the average level of dividend growth, assuming other parame-

ters are known, and shows in simple discounted cash-�ow setting that parameter learning

generates excess volatility and patterns consistent with the predictability evidence (see also

Timmerman 1996). Lewellen and Shanken (2002) study the impact of learning about mean

cash-�ow parameters with exponential utility with a particular focus on return predictability.

Veronesi (2000) considers the case of learning about mean-dividend growth rates in a

model with underlying dividend dynamics with power utility and focuses on the role of

signal precision or information quality. Pastor and Veronesi (2003, 2006) study uncertainty

about a �xed dividend-growth rate or pro�tability levels with an exogenously speci�ed pricing

kernel, in part motivated in order to derive cross-sectional implications. Weitzman (2007)

and Bakshi and Skoulakis (2009) consider uncertainty over volatility.

Cogley and Sargent (2008) consider a two-state Markov-switching model, parameter un-

certainty over one of the transition probabilities, tilt beliefs to generate robustness via pes-

simistic beliefs, and use power utility. After calibrating the priors to the 1930s experience,

they simulate data from a true model calibrated to the post War experience to show how

priced parameter uncertainty and concerns for robustness impact asset prices, in terms of

the �nite sample distribution over various moments.

A number of papers consider state uncertainty, where the state evolves discretely via a

Markov switching model or smoothing via a Gaussian process. Moore and Shaller (1996) con-

sider consumption/dividend based Markov switching models with state learning and power

utility. Brennen and Xia (2001) consider the problem of learning about dividend growth

which is not a �xed parameter but a mean-reverting stochastic process, with power utility.
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Veronesi (2004) studies the implications of learning about a peso state in a Markov switching

model with power utility. David and Veronesi (2010) consider a Markov switching model

with learning about states.

In the case of Epstein-Zin utility, Brandt, Zeng, and Zhang (2004) consider alternative

rules for learning about an unknown Markov state, assuming all parameters and the model

is known. Lettau, Ludvigson, and Wachter (2008) consider information structures where

the economic agents observe the parameters but learn about states in Markov switching

consumption based asset pricing model. Chen and Pakos (2008) consider learning about the

mean of consumption growth which is a Markov switching process. Ai (2010) studies learning

in a production-based long-run risks model with Kalman learning about a persistent latent

state variable. Bansal and Shaliastovich (2008) and Shaliastovich (2010) consider learning

about the persistent component in a Bansal and Yaron (2004) style model with sub-optimal

Kalman learning.

Additionally, some papers consider combinations of parameter or model uncertainty and

robustness, see, e.g., Hansen and Sargent (2000,2009) and Hansen (2008).

6.2 Econometrics

This section brie�y reviews the mechanics of sequential Bayesian learning and introduces

the econometric methods needed to solve the high-dimensional learning problem. For ease of

exposition, we abstract here from the problem of model uncertainty and drop the dependence

on the model speci�cation. Model uncertainty can be dealt with easily in a fashion analogous

to the problem considered here.

The agent begins with initial beliefs over the parameters and states, p (�; st) = p (stj�) p (�),
and then updates via Bayes�rule. If at time t the agent holds beliefs p (�; stjyt), then updat-
ing occurs in a two step process by �rst computing the predictive distribution, p (�; st+1jyt),
and then updating via the likelihood function, p (yt+1jst+1; �):

p
�
�; st+1jyt+1

�
/ p (yt+1j�; st+1) p

�
�; st+1jyt

�
.

The predictive distribution is

p
�
�; st+1jyt

�
=

Z
p (st+1jst; �) p

�
�; stjyt

�
dst;

which shows the recursive nature of Bayesian updating, as p (�; st+1jyt+1) is functionally
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dependent on p (�; stjyt).
The main di¢ culty is characterizing p (�; stjyt) for each t, which is needed for sequential

learning. Unfortunately, even though st is discretely valued, there is no analytical form

for p (�; stjyt), as it is high-dimensional and the dependence on the data is complicated
and nonlinear. We use Monte Carlo methods called particle �lters to generate approximate

samples from p (�; stjyt). Johannes and Polson (2008) developed the general approach we
use, and it was extended and applied to Markov switching models by Carvalho, Johannes,

Lopes, and Polson (2010a, 2010b) and Carvalho, Lopes and Polson (2009). Details of the

algorithms are given in those papers.

The �rst step of the approach, data augmentation, introduces a conditional su¢ cient

statistics, Tt, for the parameters. Su¢ cient statistics imply that the full posterior distribution

of the parameters conditional on entire history of latent states and data takes a known

functional form conditional on a vector of su¢ cient statistics: p (�jst; yt) = p (�jTt), where
p (�jTt) is a known distribution. The conditional su¢ cient statistics are given by Tt+1 =
T (Tt; st+1; yt+1), where the function T (�) is analytically known, which implies the su¢ cient
statistics can be recursively updated. For Markov switching models, the su¢ cient statistics

contain random variables such as the number of times and duration of each state visit, the

mean and variance of yt in those visits, etc. This step requires conjugate priors.

The key is that it is easier to sample from p (�; Tt; stjyt) than p (�; stjyt), where

p
�
�; Tt; stjyt

�
= p (�jTt) p

�
Tt; stjyt

�
: (10)

By the de�nition of su¢ cient statistics and the use of conjugate priors, p (�jTt) is a known
distribution (e.g., normal). This transforms the problem of sequential learning of parame-

ters and states into one of sequential learning of states and su¢ cient statistics, and then

standard updating by drawing from p (�jTt). The dimensionality of the target distribution,
p (�; Tt; stjyt), is �xed as the sample size increases.
An N� particle approximation, pN(�; Tt; stjyt), approximates p (�; Tt; stjyt) via �particles�n

(�; Tt; st)
(i)
oN
i=1

so that:

pN(�; Tt; stjyt) =
1

N

NX
i=1

�(�;Tt;st)(i) ;

where � is a Dirac mass. A particle �ltering algorithmmerely consists of a recursive algorithm
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for generating new particles, (�; Tt+1; st+1)
(i), given existing particles and a new observation,

yt+1. The approach developed in Johannes and Polson (2008) and Carvalho, Johannes,

Lopes, and Polson (2009a, 2009b) generates a direct or exact sample from pN(�; Tt; stjyt),
without resorting to importance sampling or other approximate methods. The algorithm is

straightforward to code and runs extremely quickly so that it is possible to run for large

values N , which is required to keep the Monte Carlo error low. These draws can be used to

estimate parameters and states variables.

In addition to sequential parameter estimation, particle �lters can also be used for

Bayesian model comparison. Bayesian model comparison and hypothesis testing utilizes

the Bayes factor, essentially a likelihood ratio between competing speci�cations. Formally,

given a number of competing model speci�cations, generically labeled as modelMk andMj,

the Bayesian approach computes the probability of model k as:

p
�
Mkjyt

�
=

p(ytjMk)p (Mk)PN
j=1 p(y

tjMj)p (Mj)
,

where p (Mk) is the prior probability of model k;

p(yt+1jMk) = p(yt+1jyt;Mk)p
�
yt�1jMk

�
,

and

p(yt+1jyt;Mi) =

Z
p (yt+1j�; st;Mi) p

�
�; stjyt;Mi

�
d (�; st)

is the marginal likelihood of observation yt+1, given data up to time t in model k. Marginal

likelihoods are not known analytically and are di¢ cult to compute even using MCMC meth-

ods. Since our algorithm provides approximate samples from p (st; �jyt), it is straightforward
to estimate marginal likelihoods via

pN(yt+1jyt;Mk) =
1

N

NX
i=1

p
�
yt+1j (�; st)(i) ;Mk

�
:

For all of our empirical results, we ran particle �ltering algorithms with N = 10K

particles. We performed extensive simulations to insure that this number of particles insured

a low and negligible Monte Carlo error.
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6.3 Priors

Table 7 shows the prior parameters for the three di¤erent models we consider. The historical

and look-ahead priors are di¤erent along some important dimensions. In particular, pre-

WW2 consumption data is a lot more volatile than the post-war data (annual standard

deviation of 4:8% in the pre-WW2 data versus 1:36% in post-WW2 data). This has been,

in part, attributed to inferior pre-war data that is more noisy and sample that contains a

more cyclical component of the economy (Romer, 1989). What is true, nevertheless, is that

recessions were more frequent and lasted longer in the pre-WW2 data, and that the Great

Depression was a worse recession than ever experienced afterwards, current crisis included.

This is re�ected in the disaster state in the 3-state models, in particular for the historical

prior, akin to the disaster risk considered in Barro (2008).

For the historical prior, we have estimated, respectively, the 2- and 3-state models starting

with very �at priors on the annual Shiller data. The posterior obtained at the end of the

pre-war sample is transformed into a prior for the quarterly post-WW2 sample by dividing

the average expected means and standard deviations within each regime by 4, and the

average transition probability matrix, �, is taken to the power of 1=4. This is of necessity

somewhat ad hoc - �rst, a 2-state model on annual data does not imply a 2-state model on

quarterly data; second, one would usually divide standard deviations by 2 to go from annual

to quarterly. However, a large fraction of the pre-WW2 excess volatility is likely due to

noisy data, which is not what we intend to capture with our prior. What is more, applying

priors where the mean belief of the standard deviation of consumption growth within each

regime is counter-factually high, leads to a state identi�cation issue: the di¤erence in the

average beliefs of the mean within each state is too small relative to the volatilities and so

the procedure cannot identify the separate states.

The look-ahead priors have mean values equal to the posterior from the corresponding

historical priors in 2009:Q1. These are very close to what would be the maximum likelihood

estimates obtained from estimating the 2- and 3-state models using the post-WW2 quarterly

sample. The look-ahead priors have lower consumption growth volatility and higher persis-

tence of the good state relative to the historical priors. Thus, the look-ahead prior re�ects

an expectation in 1947:Q1 of the world having higher growth and lower volatility than in

the period before WW2. In terms of the tightness of the priors, the expansion state (always

state 1), which has occurred the most, has the tightest priors, the recession state (state 2)

has �atter priors as this state is visited less often, while the disaster state (state 3), for the
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3-state models, has the �attest priors. This state is the one agents has the least information

about, as it is a rare event.

APPENDIX: Table 7 - Priors

Table 7: The table shows the historical and look-ahead priors for the di¤erent models considered
in the paper. The parameters within a state (mean and variance) have Normal/Inverse Gamma
distributed priors, while the transition probabilities have Beta distributed priors. Note that �̂ij �
�ij
1��ij .

Historical priors
Priors for i.i.d. model Priors for 2-state model Priors for 3-state model

Par. Mean St.Dev Par. Mean St.Dev Par. Mean St.Dev

� 0:9% 0:5% �1 1:0% 0:25% �1 1:0% 0:25%

�J �2:0% 0:5% �2 �0:5% 0:5% �2 �0:4% 0:5%

�3 �2:0% 1:5%

�2 (0:7%)2 (0:7%)2 �21 (0:5%)2 (0:5%)2 �21 (0:5%)2 (0:5%)2

�2J (1:0%)2 (1:0%)2 �22 (1:0%)2 (1:0%)2 �22 (1:0%)2 (1:0%)2

�23 (1:5%)2 (1:5%)2

� 0:05 0:05 �11 0:95 0:034 �11 0:95 0:034

�̂12 0:80 0:16

�̂21 0:80 0:16

�22 0:80 0:16 �22 0:75 0:19

�̂31 0:33 0:24

�33 0:40 0:20

Look-ahead priors
Priors for i.i.d. model Priors for 2-state model Priors for 3-state model

Par. Mean St.Dev Par. Mean St.Dev Par. Mean St.Dev

� 0:63% 0:22% �1 0:68% 0:18% �1 0:68% 0:18%

�J �1:2% 0:25% �2 0:2% 0:5% �2 0:3% 0:5%

�3 �1:14% 0:5%

�2 (0:45%)2 (0:45%)2 �21 (0:36%)2 (0:36%)2 �21 (0:35%)2 (0:35%)2

�2J (0:55%)2 (0:55%)2 �22 (0:7%)2 (0:7%)2 �22 (0:7%)2 (0:7%)2

�23 (0:7%)2 (0:7%)2

� 0:05 0:05 �11 0:95 0:034 �11 0:95 0:034

�̂12 0:83 0:14

�̂21 0:67 0:24

�22 0:80 0:16 �22 0:75 0:19

�̂31 0:50 0:29

�33 0:33 0:24
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For the extended model with both consumption and GDP growth, the priors are set to

match the consumption-only model as much as possible to minimize the priors�e¤ect on

the comparison of the models. Since the means of the hidden state variable are equal to

the means of the consumption growth in each state, the priors of these means are the same

as in the consumption-only model. We also match the prior means of the total variance

of consumption growth with similar �atness. However, since the speci�cation allows for

idiosyncratic noise in consumption growth (�c"ct), we set both the mean of the variance of

the hidden state variable in each state and the mean of the variance of the noise component to

half of the prior mean of the total variance of consumption growth, with similar �atness. This

way, the total prior mean variance of consumption growth, is the same as in the consumption

only case. The priors for the transition probabilities are the same as in the consumption

only case. For � and � in the GDP growth equation, the prior mean is -0:2 for � and 1:2 for

�, and prior standard deviation is 0:45 for both. Finally, the prior mean of the idiosyncratic

component of the variance of GDP growth is set by matching the variance of the GDP growth

in the post-war data.

6.4 Time-Averaging of Consumption Data and Model Probabili-

ties

The aggregate consumption data is time-averaged, which has implications for the volatility

and autocorrelation structure of measured consumption growth. In particular, Working

(1960) shows that time-averaging of i.i.d. data leads to lower variance (the variance is

decreased by a factor of 1.5) and an autocorrelation of 0.25. Time-averaging can therefore

arti�cially lead us to conclude that consumption growth follows a non-i.i.d. process (e.g.,

as we would get in the 2-state model with persistent states). Further, Hall (1978) argues

theoretically and empirically that consumption growth is close to i.i.d. To ensure the rejection

of the i.i.d. model we document in the paper is not an artifact of the time-averaging, we

here assume the null hypothesis that consumption growth is in fact i.i.d., and remove the

autocorrelation induced by time-averaging by creating the following residuals:

�c;t = �ct � 0:25 ��ct�1: (11)

We then redo the �ltration exercise (parameters and models) and assign a prior probability

of the i.i.d. model of 0:95. Figure 15 shows that also in this case, even with the strong model
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Figure 15 - Model Probabilities and Time-Averaging of Consumption Data
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Figure 15: Model probabilities when assuming consumption growth is truly i.i.d. and removing the
e¤ect of time-averaging, as calculated by Working (1960).

prior imposed, the i.i.d. model is rejected by the Bayesian agent about half-way through the

sample.

6.5 Model solution and pricing

Here we give the details for how the prices of the consumption and aggregate equity claim

in Section 4 are computed. At each point in time t, we price the equity claim given a set

of model parameters, which are set equal to the mean beliefs at the time. The i.i.d. 2-state

model, and the general 2- and 3-state models have parameters:

�(1) = f�1; �2; �1; �2; �11g
�(2) = f�1; �2; �1; �2; �11; �22g ;
�(3) = f�1; �2; �3; �1; �2; �3; �11; �12; �22; �23; �13; �33g ;
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respectively. In addition, there is the probability that the i.i.d 2-state model is the correct

model, the probability that the general 2-state model is the correct model versus the residual

probability of the 3-state model being the correct model. We also set these probabilities as

constants when the agent prices the equity claim. Denote these probabilities p1, p2, and

p3 = 1 � p1 � p2. Thus, there is a total of 25 parameters that all are estimated using the

particle �lter and realized consumption (and GDP) data in real time. These mean parameter

estimates will change at each time t, but we do not give the parameters time-subscripts to

highlight that they are assumed to be constant following the anticipated utility framework in

the pricing problem at each time t. In addition, there are the preference parameters ;  ; �,

which are set to the values used in Bansal and Yaron (2004), and the leverage factor � and

the idiosyncratic dividend growth volatility �d. These parameters remain constant over the

sample. When solving for the price-dividend ratio, we can and do ignore the idiosyncratic

component of dividend growth.

First, we have to solve for the wealth-consumption ratio, PC. At each time t, the wealth-

consumption ratio is solved using the recursion:

PC
�
s
(2)
t ; ~s

(3)
t

�
= �E

�
e(1�)�ct+1

�
1 + PC

�
s
(2)
t+1; ~s

(3)
t+1

���
jIt
�1=�

; (12)

where the wealth-consumption ratio at time t is a function of the state-variables s(2)t and

~s
(3)
t , and where It is the agent�s information set which includes the mean parameter values

used as constant parameters, as well as the mean state beliefs. The state-variable s(2)t is the

belief that the economy is in state 1 in the 2-state model. Remember that the states are still

hidden, even though all the parameters are set to constants, so this belief will have a support

of (0; 1). Similarly, ~s(3)t is the 2� 1 vector of state belief probabilities from the 3-state model
�the probability of being in state 1 and the probability of being in state 2.

In the model solution, the agent updates beliefs about s(2) and ~s(3) only by observing

realized consumption growth �he does not know which model is the true model, or which

state is the current state, so this uncertainty must be integrated out in the model solution.

Below is a conceptual algorithm for the model solution.29

1. Given a set of parameters, start with an initial guess of the function PC
�
s(2); ~s(3)

�
on

29In actually solving the model, we employ numerical integration and not Monte Carlo simulation to �nd
the wealth-consumption ratio. We compute the price-dividend ratio by summing over zero-coupon dividend
claims. While we implement the model solution in this way for faster and more accurate model solution,
this additional level of detail is not necessary for conceptually understanding how prices are computed.
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a grid for the 3 state variables, which all have support (0; 1).

2. For each value of s(2); ~s(3) on the grid, do points 3. �8. below:

3. Draw amodel (the i.i.d. 2-state mode, or the general 2-state or 3-state model) according

to the model probabilities p1, p2, and p3.

4. Draw the current state of this model (state 1, state 2 (or state 3)), using the state

belief for the current values in the grid for s(2)t or ~s(3)t . Note: this step is irrelevant for

the i.i.d. 2-state model.

5. Given the model and the state, draw a random standard normal shock "t+1, and com-

pute consumption growth as

�ct+1 = �M;j + �M;j"t+1; (13)

where the subscript M refers to the model and the subscript j refers to the state in

the same model. The parameters are assumed known and constant as discussed above.

6. Given observed log consumption growth (�ct+1) (the agent does not observe the shock

"), update the agent�s belief using Bayes�rule. When �nding s(2)t+1; condition on the

2-state model being the correct model, and when �nding ~s(3)t+1; condition on the 3-state

model being the correct model. See, e.g., Hamilton (1994) for how to update beliefs in

switching regime models such as the ones considered here. Note that one has to update

the belief for both models (s(2) and ~s(3)), even though in the simulation of consumption

growth we conditioned on one of the models, as the agent does not know the model.

7. Given s(2)t+1 and ~s
(3)
t+1 and the initial guess for PC, we have all we need to evaluate the

expression inside the expectation of Equation (12).

8. Repeat 3: � 7: many times and take the average of the di¤erent values calculated for
the expression inside the expectation of Equation (12). Use this average as an estimate

of the expectation in Equation (12). Store the resulting value for PC
�
s(2); ~s(3)

�
found

for the current place in the grid for s(2) and ~s(3).

9. Once 3. �8. has been implemented for all values of s(2) and ~s(3) on the grid, update

the function PC
�
s(2); ~s(3)

�
.
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10. Iterate on 2. �9. until a suitable convergence criterion for the PC function has been

achieved.

Points 1. �10. gives the wealth consumption ratio at time t. The pricing functional

PC
�
s
(2)
t ; ~s

(3)
t

�
must be computed in this way for each t, as the parameters will change at

each time t. This is the anticipated utility component of the pricing. Denote the price-

consumption ratio as a function of time t parameters as PCt
�
s
(2)
t ; ~s

(3)
t

�
.

The price-dividend ratio can be found similarly, by iterating on the below expression in

the same manner as above for each time t in the sample with its corresponding time t set of

parameter values:

PDt

�
s
(2)
t ; ~s

(3)
t

�
= E

24��e(��)�ct+1(PCt
�
s
(2)
t+1; ~s

(3)
t+1

�
+ 1

PCt

�
s
(2)
t ; ~s

(3)
t

� )��1
�
1 + PDt

�
s
(2)
t+1; ~s

(3)
t+1

��
jIt

35 :
(14)

Finally, the returns to the equity claim are calculated as follows. For the return from

time t to time t+ 1:

1. Set s(2)t and ~s(3)t equal to the mean state beliefs at time t (after parameter uncertainty

is integrated out).

2. This gives the price dividend ratio at time t as Pt
Dt
= PDt

�
s
(2)
t ; ~s

(3)
t

�
.

3. Set s(2)t+1 and ~s
(3)
t+1 equal to the mean state beliefs at time t+ 1 (after parameter uncer-

tainty is integrated out).

4. This gives the price dividend ratio at time t+ 1 as Pt+1
Dt+1

= PDt+1

�
s
(2)
t+1; ~s

(3)
t+1

�
.

5. Next, using realized (in the data) consumption growth, obtain dividend growth as:

Dt+1

Dt

=

�
Ct+1
Ct

��
e�

1
2
�d+�d"t+1 ; (15)

where "t+1 is a draw from a standard normal distribution independent of everything

else. These simulated shocks are constrained to have mean zero and variance one over

the sample, such that ET
h
e�

1
2
�2d:t+1+�d"t+1

i
= 1 (in practice, extremely close to 1).

This is done to ensure that the level of the in-sample average equity return and equity

return volatility are not a¤ected by the (by chance) high or low draw of the idiosyncratic
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component of dividends, or (by chance) high or low volatility of idiosyncratic dividend

growth.

6. Given this, the return is calculated as:

Rt;t+1 =
Dt+1

Dt

�
Pt
Dt

��1�
1 +

Pt+1
Dt+1

�
. (16)
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