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Abstract

In light of the huge cross-country di¤erences in job losses during the re-
cent crisis, we study how labor market duality � meaning the coexistence of
"temporary" contracts with low �ring costs and "permanent" contracts with
high �ring costs � a¤ects labor market volatility. In a model of job creation
and destruction based on Mortensen and Pissarides (1994), we show that a
labor market with these two contract types is more volatile than an otherwise-
identical economy with a single contract type. Calibrating our model to Spain,
we �nd that unemployment �uctuates 21% more under duality than it would
in a uni�ed economy with the same average �ring cost, and 33% more than it
would in a uni�ed economy with the same average unemployment rate.
In our setup, employment grows gradually in booms, due to matching fric-

tions, whereas the onset of a recession causes a burst of �ring of "fragile"
low-productivity jobs. Unlike permanent jobs, some newly-created temporary
jobs are already near the �ring margin, which makes temporary jobs more
likely to be fragile and means they play a disproportionate role in employment
�uctuations. Unifying the labor market makes all jobs behave more like the
permanent component of the dual economy, and therefore decreases volatility.
Unfortunately, it also raises unemployment; to avoid this, uni�cation must be
accompanied by a decrease in the average level of �ring costs. Finally, we
con�rm that factors like unemployment bene�ts and wage rigidity also have a
large, interacting e¤ect on labor market volatility; in particular, higher unem-
ployment bene�ts increase the impact of duality on volatility.
Keywords: Firing costs, temporary jobs, unemployment volatility, match-

ing model, endogenous separation
JEL Codes: E32, J42, J63, J64, J65
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1 Introduction1

The (un)employment response to GDP �uctuations seems to vary signi�cantly across
countries and time periods. Looking at the recent experience during the crisis, the
change in unemployment for each percentage point fall in GDP ranges from 0.1 in
Germany to 2.2 in Spain.2 And in contrast with the US, in Europe the impact
of GDP �uctuations on unemployment seems to have increased in recent years. For
instance, Bertola (2009) shows that in the US, the unemployment rate rose by roughly
0.4 percentage points for each one percent slowdown in GDP growth throughout
the 1962-2007 period, whereas in France this ratio rose from 0.14 in 1962-82 to
0.4 in 1983-2007. Furthermore, during the current crisis, the responsiveness of the
unemployment rate to the GDP slowdown seems to have been even higher, both for
the US and for France.
There are many possible explanations for cross-country di¤erences in unemploy-

ment volatility. First, GDP �uctuations may be caused by di¤erent types of shocks,
in terms of sources (preferences, productivity, etc.) and sectoral composition (more
or less concentrated in labor-intensive activities), and the response of unemploy-
ment may di¤er accordingly. Secondly, unemployment �uctuations are conditioned
by institutions that constrain labor market �ows by creating �ring and hiring costs,
by wage determination procedures that lead to nominal or real wage rigidities, and
also by unemployment bene�ts and other social policies. In this regard, a major
recent institutional change in several European countries has been the liberalization
of "atypical" employment contracts (temporary contracts) which have become so
prevalent in several countries that the labor market has taken on a dual structure.
Also, in �ghting the most recent downturn, countries have di¤ered signi�cantly in
their employment policy approaches, with Germany emphasizing subsidies to short-
term work schemes while others have substantially expanded income support for job
losers and income earners.3

This paper focuses on the role of dual labor market institutions in explaining
the volatility of (un)employment. Speci�cally, we analyze the cyclical consequences

1We thank Laura Hospido and Aitor Lacuesta for providing us with data. We thank Manuel
Toledo and seminar participants at Banco de España, the ECB/CEPR conference on "European
Labour Market Adjustment", Università di Roma Tor Vergata and the ZEW conference on "Flex-
ibility in Heterogeneous Labor Markets" for helpful comments. The views expressed in this paper
are those of the authors and do not necessarily coincide with those of the Banco de España or the
Eurosystem.

2Babecký, van der Cruijsen-Knoben, and Fahr (2009).
3For a summary of the employment policies put in place by OECD countries to deal with the

recent economic downturn, see OECD (2009).
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of permitting hiring under two di¤erent types of employment contracts, temporary
and permanent. Temporary contracts have a limited duration, and when they expire
the �rm must decide whether to keep the worker under a permanent contract or
dismiss her at no cost. Permanent contracts are open-ended, but dismissals entail
strictly positive �ring costs. Under this dual structure, �rms face three relevant
decisions: i) hirings under each type of contract, ii) upgrading of temporary workers
into permanent positions, and iii) �rings of permanent and temporary workers. All
these decisions are strongly a¤ected by the gap in �ring costs between the two types
of contracts, and therefore this gap also has a large impact on the response of labor
market �ows to macroeconomic shocks.
To perform this analysis, we construct a version of the Mortensen-Pissarides

(1994) model of endogenous job creation and destruction extended to include: i)
two coexisting types of employment contracts, ii) contract-speci�c hiring and �ring
behavior, and iii) conversion of temporary employees into permanent ones. Hir-
ing, �ring, and conversion are driven both by economic and legal considerations.
First, matching frictions constrain job creation; once matches are formed, produc-
tivity shocks drive job creation and job destruction. To account for business cycle
�uctuations, we assume productivity shocks have an aggregate component; to en-
dogenize separation, we assume they have a match-speci�c component too. Second,
legal constraints on temporary employment are modeled by assuming that temporary
contracts expire at a given rate. When a worker�s temporary status expires, the �rm
must either give her permanent status, or �re her.
Within this framework, which assumes �exible wages, hiring and �ring decisions

depend on the productivity of the match. All new jobs (endogenously) start under
temporary contracts; for a match to start, its productivity must exceed a hiring
threshold. A temporary match separates whenever its productivity falls below this
same threshold. Additionally, in each period, a certain fraction of temporary con-
tracts expire. Of these matches, those with productivity above a conversion threshold
are upgraded to permanence, while those with productivity below that threshold are
dismissed. Finally, permanent workers are dismissed when the productivity of the
match falls below a �ring threshold. These three thresholds can be unambiguously
ordered: the conversion threshold lies above the hiring threshold which, in turn, lies
above the �ring threshold. Moreover, the thresholds vary with the state of the econ-
omy, and the distance between them depends on the level of �ring costs, with all
three thresholds collapsing into one if �ring costs are nil. This ordering helps us un-
derstand both the steady-state and cyclical e¤ects of duality. For instance, the fact
that the conversion threshold exceeds the �ring threshold has negative productivity
consequences, with lower productivity permanent matches kept in place while higher
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productivity temporary matches are destroyed.
To assess the impact of duality on employment volatility, we calibrate the model to

Spain� an extreme example of a dual contract environment� choosing parameters
to match the average stocks and �ows in the Spanish labor market. The model
captures the volatility of unemployment and of both job types quite successfully; in
particular, temporary employment is more volatile in relative terms (i.e., in terms of
its coe¢ cient of variation) than permanent employment. More strikingly, temporary
employment also explains a larger part of total employment �uctuations, in spite of
the fact that it represents a smaller stock. We then perform simulation exercises to
compare the employment volatility in the benchmark dual labor market with that
in an alternative policy environment featuring a single employment contract. We
consider a wide range of �ring costs for the single contract scenario, including (a)
setting the �ring cost of the single contract equal to the average �ring cost in the
dual benchmark economy and (b) adjusting the �ring cost of the single contract until
the steady state unemployment rate equals that in the dual benchmark. In all cases,
unemployment is less volatile in the single contract setting than it is in our dual
benchmark scenario. The intuition is the following. In booms, a certain fraction of
newly-created temporary jobs are "fragile", in the sense that their productivity lies
below the �ring threshold for recessions. Such fragile jobs are destroyed as soon as
the next recession arrives, producing large "spikes" of job destruction. This is not
the case for permanent jobs, which are never created at low productivity levels, due
to the anticipation of �ring costs. In the single contract scenario with �ring costs, all
jobs behave rather like the permanent component of the dual scenario, which reduces
the burst of �ring that occurs at the beginning of each recession.
Many papers have explored the macroeconomic implications of dual labor con-

tracting, but most have only addressed steady-state labor market behavior. Blan-
chard and Landier (2002) model temporary contracts as contracts of limited dura-
tion that can be terminated at little or no cost, which become subject to regular
�ring costs if converted to permanence. They show that introducing such contracts
may increase turnover, and thus raise unemployment instead of lowering it. Cahuc
and Postel-Vinay (2002) embed this conversion decision into a Mortensen-Pissarides
(1994) framework and assume that a constant fraction of new hires must take place
under permanent contracts due to legal restrictions. Dolado, Jansen, and Jimeno
(2007) is another variant of the Mortensen-Pissarides model that analyzes dual labor
markets, focusing instead on the fact that temporary contracts are targeted speci�-
cally to low-skilled workers.
There is much less work on the implications of duality for employment volatility;

to the best of our knowledge only Sala and Silva (2009) and Sala, Silva, and Toledo
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(2009) have modeled dual labor markets over the business cycle. They conclude that
a labor market with dual contracting is an intermediate case, more volatile than an
economy with permanent contracts only, but less volatile than one without �ring
costs. In a similar vein, Cahuc, Le Barbanchon, Bentolila, and Dolado (2009) use
this framework to compare employment adjustments in France and Spain during the
crisis, but they treat this as a comparison of steady states, instead of calculating the
model�s dynamics.
Sala et al. (2009) is the paper most closely related to our own, since it studies

cyclical dynamics in a model with a similar treatment of endogenous separation and
labor market duality. The small but crucial di¤erence in our work is our assumption
that both the aggregate and match-speci�c components of productivity are persis-
tent. Sala et al. (2009) instead assume the match-speci�c productivity component
has no persistence (in other words, it is an i.i.d. shock). This simpli�es calculations,
by eliminating the need to solve for the equilibrium distribution of productivities.
Unfortunately, assuming zero persistence in the quality of a given job relationship is
unrealistic, and greatly alters the incentives involved in promoting a worker to per-
manence. More importantly, business cycle dynamics are very di¤erent in a model
like ours, with persistent match-speci�c productivity, as Mortensen and Pissarides
(1994) showed: economic expansions lead to the accumulation of temporary workers
in "fragile" jobs which are destroyed en masse as soon as the state of the economy
worsens. The absence of "fragile" jobs implied by the i.i.d. productivity model of
Sala et al. (2009) explains why they failed to �nd any impact of duality per se on
employment volatility. The cost of allowing for job fragility in the present paper is
that our dynamic simulation must keep track of the distribution of productivity over
time; our computational method follows Costain and Jansen (2009).
The next section presents our model and describes its basic implications for hiring

and �ring. Section 3 discusses the model�s steady state, including the steady-state
e¤ects of labor market policy. In Section 4 we analyze dynamics, assuming aggregate
shocks follow a two-state Markov process (the N -state case is studied in Appendix
1). We perform simulation exercises to explore how employment volatility varies
across di¤erent policy scenariosin Section 5. The �nal section concludes.

2 The model

Here we de�ne a version of Mortensen and Pissarides�(1994) continuous-time model
of job creation and destruction in which we allow for two classes of contracts, tem-
porary and permanent.
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2.1 Productivity of matches

The productivity of a matched worker-�rm pair is assumed to be the sum of an
idiosyncratic component z and an aggregate component y. The distribution of idio-
syncratic productivity for new jobs is G0(z). As long as a given match continues,
shocks to its idiosyncratic productivity arrive with probability � per unit of time.
New values of productivity are then drawn from the distributionG(z). For simplicity,
we assume the two distributions are the same: G0 = G.4

Total match productivity is z + y, where y is an aggregate random variable with
mean y which takes N possible values y1 < y2 < ::: < yN . Shocks to aggregate
productivity arrive with probability � per unit of time. When an aggregate shock
occurs, the probability of the new state yj conditional on the current state yi isMyj jyi.
We can arrange these probabilities into a Markov matrix as follows:

M =

0@ My1jy1 My1jyN
:::

MyN jy1 MyN jyN

1A
Here column j describes the probabilities of the N possible successors of the current
state, so the columns ofM must sum to one. For concise notation we will sometimes
abbreviate �jji � �Myj jyi. Under this notation, we have

PN
k=1 �kji = �.

We also assume that the process for y exhibits �rst-order stochastic dominance,
in the following sense, so that a higher y now makes a higher y more likely in the
future too.

Assumption 1 M is a Markov matrix, with all elements strictly positive. M has
the property that for any two nonnegative vectors v and v0, if v � v0, then (I+M)v �
(I +M)v0, where I is the N-by-N identity matrix.

2.2 Matching process

The total labor force is normalized to one. In each unit of time, a mass � of new
workers is born, and fraction � of existing workers (employed or unemployed) retire
and exit the labor pool.
Firms may open any number of vacant jobs; keeping a job open costs c per

unit of time. The total number of vacant jobs is v. Unemployed workers produce

4It would be straightforward to allow for accumulation of match-speci�c experience by assuming
G dominates G0 in the sense of �rst-order stochastic dominance. See for example Mortensen and
Nagypal (Scand JE 2008).
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output b. We assume some jobs are more productive than unemployment; that is,
G(b� y) < 1. Only unemployed workers can search. Search per se is costless. Newly
matched worker-�rm pairs can separate costlessly, which implies that in equilibrium,
the value of unemployment is less than or equal to the value of being newly matched.
Therefore, in equilibrium, all unemployed workers search.
Searching workers u and vacant jobs v meet according to the matching function

m(u; v):

Assuming constant returns to scale, the instantanous meeting probability for vacan-
cies is given by

m(u; v)

v
= m

�
1

v=u
; 1

�
� q(�);

where � � v=u is labor market tightness. The meeting probability for unemployed
workers is p(�) = �q(�).
Both workers and �rms can decide to separate from their current matches, subject

to legal costs which will be discussed below. There is no recall of matches. That
is, if either agent chooses to separate, both agents become unmatched, and can only
become matched again with a new partner by means of the matching function.

2.3 Labor market policy

A �rm that creates a new job may choose to hire a worker under two types of
contract: a �xed-term contract we will call "temporary", or an open-ended contract
we will call "permanent". Temporary contracts can be freely destroyed at any time.
However, if a contract is initially of the temporary type, this contract status expires
with probability � per period. Upon expiry the �rm must decide whether to �re the
worker or promote him/her to a permanent contract.
When a �rm �res a worker who has a permanent contract, it must pay a �ring

cost F . We assume F represents a loss of income to the matched pair. In other
words, F is a "red-tape" cost, instead of an income transfer from the �rm to the
worker.

2.4 Match surplus and wage bargaining

The productivity processes y and z are the only shocks in our model. We conjecture
that agents� values are functions of productivity only, as in Mortensen-Pissarides
(1994). Therefore we write the values of unemployed workers and vacant jobs as
U(y) and V (y), respectively, in terms of aggregate productivity only. We de�ne
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�rms�values of temporary and permanent jobs as JT (z; y) and JP (z; y), and workers�
values of temporary and permanent jobs as W T (z; y) and W P (z; y). We postpone
statement of the associated Bellman equations to Sections 3 and 4.
Since pairs with temporary contracts can separate costlessly, the surplus of a

worker in a temporary job is W T (z; y) � U(y); the �rm�s surplus for this job is
JT (z; y)� V (y); and the total surplus of a temporary job is

ST (z; y) =W T (z; y)� U(y) + JT (z; y)� V (y): (1)

A worker can also separate costlessly from a permanent job, so the worker�s surplus
from this job is W P (z; y) � U(y). However, when a permanent job separates, the
�rm must pay the �ring cost F . Thus the outside option of a �rm with a permanent
job is �F , and its surplus relative to this outside option is JP (z; y) � V (y) + F .
Therefore the total surplus of a permanent job is

SP (z; y) =W P (z; y)� U(y) + JP (z; y)� V (y) + F: (2)

We assume that the wage is determined by Nash bargaining between a �rm and
its new hires, treating separation as the outside option. In addition, the wage is
updated whenever new information arrives that a¤ects the value of the match, so
the surplus sharing equations hold at all times. The worker�s bargaining share is �.
These assumptions imply that the surplus-sharing rule for temporary contracts is

JT (z; y)� V (y) = (1� �)ST (z; y); (3)

whereas the rule for permanent workers is given by

JP (z; y)� V (y) + F = (1� �)SP (z; y): (4)

Hence there are distinct wage functions for temporary and permanent jobs, wT (z; y)
and wP (z; y).

2.5 Job creation and job destruction

Firms open vacancies until their value V (y) is driven down to zero. The cost of a
vacancy is c per period, and the bene�t of a vacancy is the creation of a new match
with probability q(�(y)) per period. This new match may, in principle, be hired
in a temporary or permanent contract, so that the �rm obtains value JT (z; y) or
JP (z; y), or the �rm may decide not to hire the worker, obtaining value 0. Thus,
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using the sharing rule (3) for temporary contracts, the zero pro�t condition V (y) = 0
is equivalent to the following job creation equation:

c

q(�(y))
= (1� �)

Z 1

0

max
�
ST (z; y); SP (z; y); 0

	
dG(z): (5)

Separations are determined by three productivity thresholds above which matches
continue in a given state y, depending on the current contracting situation. The
�rst is the threshold for temporary matches, RT (y), such that any job eligible for a
temporary contract continues as long as z � RT (y). This threshold satis�es

JT (RT (y); y) = 0 ! ST (RT (y); y) =W T (RT (y); y)� U(y) = 0 (6)

Note therefore that hiring and continuation of temporary contracts is jointly optimal:
it occurs if and only if both parties bene�t.
Second, there is a threshold productivity relevant at the moment temporary status

expires, RC(y), such that any job which is no longer eligible for temporary status is
converted to permanence if z � RC(y). This threshold is determined by

JP (RC(y); y) = 0 ! SP (RC(y); y) =
F

1� � > 0 (7)

At RC(y), the �rm is indi¤erent between making the worker permanent and destroy-
ing the job at zero cost.
Note, therefore, that the promotion decision is not bilaterally e¢ cient. If a �rm

were to promote a worker with productivity z = RC(y)�", for some tiny ", the �rm�s
value would become in�nitesimally negative, but the worker�s value would remain
strictly positive, implying a net gain for the pair. This Pareto improvement would
be possible if matched pairs could sign binding wage contracts prior to promotion.
The optimal contract would commit promoted workers to a lower wage, implicitly
sharing expected �ring costs between workers and �rms. Here such commitment
is impossible: a �rm expects permanent workers to bargain up the wage, taking
advantage of the �rm�s less favorable threat point, and may therefore may choose
to �re a worker even when that worker would have strictly positive surplus after
promotion.
Finally, there is a threshold productivity RP (y) for �ring of permanent jobs, such

that jobs with permanent status continue as long as z � RP (y), determined by
JP (RP (y); y) + F = 0 ! SP (RP (y); y) =W P (RP (y); y)� U(y) = 0 (8)

Note that from the matched pair�s perspective, �ring of permanent contracts is jointly
e¢ cient; it occurs only if both parties bene�t. But this comment takes as given and
sunk the cost F , which is a policy parameter. So while separation is jointly e¢ cient
from the pair�s perspective conditional on policy, it is not socially e¢ cient.
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2.6 Equilibrium

In equations (5)-(8), we see that the job creation and destruction decisions imply
four equations, for each aggregate state y, to determine job tightness �(y) and the
reservation thresholds RT (y), RC(y), and RP (y). Moreover, all these conditions
depend on the surplus functions ST (z; y) and SP (z; y). Later we will see how to
calculate the surplus functions in terms of the reservation productivities, allowing us
to substitute the surplus functions out of (5)-(8).
Therefore, the system (5)-(8) consists of 4N equations that determine the 4N

unknowns �(y), RT (y), RC(y), and RP (y) for all aggregate states y. A solution of
this equation system is an equilibrium of our model.

2.7 Characterizing the reservation thresholds

Determining the order of all the reservation thresholds is nontrivial in general, but
we can deduce several key facts from �rst principles. To understand the ordering, it
helps to reason on the basis of the joint payo¤ to the pair, which is just a discounted
�ow of output z + y minus the worker�s cost of employment (later we will see that
this cost equals b+ �c�(y)

1�� ), ending with a lump sum payment of 0 (if the contract is
temporary) or F (if the contract is permanent).
First, compare the expected payo¤ to a matched pair in a temporary contract

with that to a matched pair in a permanent contract. Considering all possible future
realizations of the process for z + y, the expected �ow of income in these two pairs
is the same up to the moment of separation. The only di¤erence is that upon
separation, the pair in a permanent contract loses F . Therefore the expected payo¤
to the pair is lower in the case of a permanent contract, that is,W P (z; y)+JP (z; y) �
W T (z; y) + JT (z; y). Moreover, o¤ering the worker a permanent contract lowers the
�rm�s threat point from 0 to �F . Since o¤ering a permanent contract diminishes
the pair�s joint payo¤, and also lowers the �rm�s threat point, a �rm always prefers
to o¤er a temporary contract if legally permitted to do so. That is:

Proposition 2 If a �rm can choose between hiring a worker on a temporary con-
tract and hiring the same worker on a permanent contract, it chooses the temporary
contract.

Next, note that a higher current value of z raises the payo¤ to the match until a
new idiosyncratic shock arrives, or until the match separates. If a new idiosyncratic
shock arrives, its value is uncorrelated with the current z. And separation is less
likely to occur if the current z is higher (since separation occurs only when surplus
falls su¢ ciently low). Therefore,
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Lemma 3 The surplus functions for temporary and permanent matches are increas-
ing in z:

for all y, z1 � z2 implies ST (z1; y) � ST (z2; y) and SP (z1; y) � SP (z2; y)

Proof. See Appendix 1.2-1.3.
All three types of reservation thresholds are determined by equating surplus to

a constant: ST (RT (y); y) = 0, SP (RC(y); y) = F
1�� , and S

P (RP (y); y) = 0. In
particular, since RC(y) is associated with a higher level of surplus than RP (y), we
conclude that RP (y) � RC(y) for any y.
To determine where the temporary hiring threshold lies relative to the other two

thresholds, note that �rms are initially able to choose between hiring on a tempo-
rary and permanent basis, and we have argued they strictly prefer temporary hiring
(assuming z is su¢ ciently high; otherwise they prefer to let the worker go). Expiry
of a temporary contract simply shrinks the �rm�s choice set, eliminating its pre-
ferred choice, requiring it instead to hire on a permanent basis (or to let the worker
go). Thus expiry of a temporary contract makes a match strictly less valuable to
the �rm; and therefore a �rm is less willing to promote than it is to hire, that is,
RT (y) � RC(y).
Finally, consider the relation between RP (y) and RT (y). We already know a

matched pair has a lower expected payo¤ in a permanent contract than in a tem-
porary contract: W P (z; y) + JP (z; y) � W T (z; y) + JT (z; y). This occurs because
some permanent relationships continue, in order to avoid paying the cost F , even
whenW P (z; y)+JP (z; y) � U(y). But therefore separation occurs whenever the loss
exceeds F , implying W P (z; y) + JP (z; y) + F � U(y) as long as a match continues.
Thus, considering all future paths starting from a given state (z; y), the payo¤ to a
permanent contract is lowered along some realizations by an amount that never ex-
ceeds F , implying W P (z; y)+ JP (z; y)+F � W T (z; y)+JT (z; y). But therefore the
surplus of a permanent contract, which includes F , is higher than that of a temporary
contract evaluated in the same state: SP (z; y) � ST (z; y). Thus given Lemma 3, to-
gether with the de�nition of the hiring thresholds SP (RP (y); y) = ST (RT (y); y) = 0,
we must have RP (y) � RT (y).
For notational simplicity we will often abbreviate Ri(yj) � Rij for i 2 fT;C; Pg

and j 2 f1; 2; :::; Ng. We can summarize our �ndings up to now as follows:

Proposition 4 For each aggregate state yj, j 2 f1; 2; :::; Ng, the �ring threshold for
permanent contracts lies below the hiring/�ring threshold for temporary contracts,
which lies below the promotion threshold:

RPj � RTj � RCj :

11



Second, suppose Assumption 1 holds. Then a higher current value of y raises the
payo¤ to the match until a new aggregate shock arrives, or until the match separates;
moreover, it predicts a higher y when the next shock arrives, and makes separation
less likely. Therefore, it seems likely that that match surplus increases with the
aggregate shock y. However, there is an o¤setting e¤ect: a higher y should also
increase the value of unemployment. From here on, we will assume that this o¤setting
e¤ect is not strong enough to outweigh the direct e¤ect of higher productivity. This
assumption can be written as

Assumption 5 For each i = 1; 2; : : : N � 1, the relationship between productivity
and tightness satis�es

yi+1 � yi >
�c�(yi+1)

1� � � �c�(yi)
1� � :

On the right-hand side, the quantity �c�(y)=(1��) represents the value of search-
ing for a job (as we will show later). Therefore, Assumption 5 simply says that the
e¤ect of the cycle on the productivity of an employed worker is larger than the e¤ect
of the cycle on the value of searching for a job. In Appendix 1.4, we will show for
the special case of N = 2 and a small di¤erence between y1 and y2 that Assump-
tion 5 must hold in equilibrium (moreover, it also holds in our simulated examples).
Proving that it holds more generally is di¢ cult, so in general we just take it as an
assumption. Given this assumption, we can then characterize many other properties
of equilibrium. In particular,

Lemma 6 Suppose Assumptions 1 and 5 are satis�ed. Then the surplus functions
for temporary and permanent matches are increasing in y:

for all z, y1 � y2 implies ST (z; y1) � ST (z; y2) and SP (z; y1) � SP (z; y2)

Proof. See Appendix 1.4.
Notice again that all three types of reservation thresholds are determined by

equating surplus to a constant: ST (RT (y); y) = 0, SP (RC(y); y) = F
1�� , and S

P (RP (y); y) =
0. Geometrically, since we have shown that the surplus functions are increasing in
z, this means a higher y requires a lower reservation threshold Ri(y) for each type
of threshold i 2 fT;C; Pg. Therefore we have

Proposition 7 For each type of threshold Ri, i 2 fT;C; Pg, the threshold is a
decreasing function of y:

RiN � RiN�1 � ::: � Ri1:

12



2.8 Employment and productivity dynamics

OnceRP (y), RC(y), RT (y), and �(y) are known, we can simulate employment dynam-
ics. In state y, unemployed workers become employed at rate (1�G(RT (y)))p(�(y)).
Conditional on idiosyncratic productivity shocks or the expiry of temporary con-
tracts, continuation is determined by the reservation productivities. Also, whenever
the aggregate state decreases (y(t) = yi > y(t+ dt) = yj), there is a nonin�nitesimal
mass of �ring, as all temporary employees in the interval [RTi ; R

T
j ) and all permanent

employees in the interval [RPi ; R
P
j ) suddenly separate.

Note that the probability of promotion and/or separation of a match with state
(z; y) does not depend on the exact value of z; it only depends on where z lies relative
to the reservation thresholds. We state this formally as Proposition 8a:

Proposition 8 Consider an interval I = [Ra(yj); R
b(yk)) formed by two adjacent

reservation thresholds, that is, a; b 2 fT;C; Pg and j; k 2 f1; 2; :::; Ng, with no other
reservation threshold between these two.
(a.) Consider two temporary matches h and i with productivities zht and zit at
time t. If zht 2 I and zit 2 I, then matches h and i face the same probabilities of
separation and promotion and of drawing any new productivity shock z0.

Let the number of temporary matches in interval I at time t be nTt (I) > 0. Then,
in the limit as t ! 1, the probability distribution of productivity among temporary
matches has the following properties:
(b.) the density over z for temporary matches satisfying z 2 I at t is G0(z)=nTt (I);
(c.) the average productivity of temporary matches in I at t is

R Rb(yk)
Ra(yj)

z G
0(z)

nTt (I)
dz.

Formulas analogous to (a), (b), and (c) hold for permanent matches as well.

Parts (b) and (c) of the proposition show the simplest way to keep track of the
distribution of employment and productivity over time. The probabilities of any
given change in the state of a given match depend only on which pair of reservation
thresholds current match productivity lies between. Therefore to know how the pro-
ductivity distribution is evolving it su¢ ces to keep track of the mass of employment
on each interval de�ned by two adjacent reservation thresholds.
Of course, we could analyze the dynamics of the model from any arbitrary initial

productivity distribution; in this case there will initially be transition dynamics as
the productivity distribution gradually converges to its long run form. But in the
long run, the productivity distribution converges to a very simple form, as stated
in Prop. 8b: the distribution of z on the interval between two adjacent reservation
thresholds is just a truncated version of the ex ante productivity distribution G(z).
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The reason this proposition holds is that temporary matches entering any interval
of this form are initially drawn from distribution G; thereafter all transitions in em-
ployment status are conditional on z only insofar as they depend on which interval
z lies in. Thus, while the overall distribution of productivity among job matches
changes over time, due to the e¤ects of aggregate shocks, nonetheless the form of
the productivity distribution in the interval between any two adjacent reservation
thresholds is always just a truncation of G. Keeping track of the mass of employ-
ment on each interval of this type therefore su¢ ces to know the full productivity
distribution at all times.

3 Steady state

Before addressing the full dynamics or our model, we �rst study its steady state,
in which aggregate productivity takes a �xed value y, and only idiosyncratic pro-
ductivity z is hit by shocks. We indicate steady state quantities by eliminating the
argument y and adding the subscript ss.

3.1 Value functions

3.1.1 Jobs

We begin by deriving the Bellman equations that govern the value functions of work-
ers and �rms. Let 1(x) be an indicator function that equals one if x is true and zero
otherwise. A �rm�s value of a temporary job, JTss(z), must satisfy

(r+�)JTss(z) = z+y�wTss(z)+�
�
1(z � RCss)JPss(z)� JTss(z)

�
+�

�Z
RTss

JTss(x)dG(x)� JTss(z)
�

Note that the job value is discounted both by the pure time preference rate r and
by retirement rate � (which is simply treated as exit from the model). Besides
earning income net of wages z + y � wTss(z) in each period, the �rm also anticipates
that temporary contracts expire with probability � per period, in which case the job
becomes permanent if z � RCss; otherwise the job separates and has value Vss = 0.
Also, the �rm expects idiosyncratic shocks to arrive at rate �; if the new level of
productivity exceeds the threshold RTss the match continues; otherwise it separates,
yielding value Vss = 0.
The value of a permanent job, JPss(z), satis�es a similar Bellman equation:

(r + �)JPss(z) = z + y � wPss(z) + �
�Z

RPss

JPss(x)dG(x)�G(RPss)F � JPss(z)
�
:
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We see here that when an idiosyncratic shock arrives, if it lies below threshold RPss
it causes �ring and therefore the �rm must pay F .

Firms�match surplus
Given free entry, which implies Vss = 0, the �rm�s surplus from a temporary job

is just the value of that job, JTss(z). Simplifying our earlier equation,

(r + �+ � + �) JTss(z) = z + y � wTss(z) + �1(z � RCss)JPss(z) + �
Z
RTss

JTss(x)dG(x):

Since the outside option of a �rm with a permanent contract is the payment of
the �ring cost (i.e. the value �F ), the surplus associated with a permanent job is
JPss(z) + F . Rearranging our earlier Bellman equation, we obtain

(r + �+ �)
�
JPss(z) + F

�
= z + y � wPss(z) + (r + �)F + �

Z
RPss

(JPss(x) + F )dG(x):

3.1.2 Workers

A worker�s value of employment under a temporary contract W T
ss(z) satis�es

(r + �)W T
ss(z) = wTss(z) + �

�
1(z � RCss)W P

ss(z) + 1(z < R
C
ss)U �W T

ss(z)
�

+ �

�Z
RTss

W T
ss(x)dG(x) +G(R

T
ss)Uss �W T

ss(z)

�
where W P

ss(z) is the worker�s value of permanent employment:

(r + �)W P
ss(z) = wPss(z) + �

�Z
RPss

W P
ss(x)dG(x) +G(R

P
ss)Uss �W P

ss(z)

�
and Uss is a worker�s value of unemployment, which satis�es

(r + �)Uss = b+ p(�ss)

Z 1

RTss

�
W T
ss(z)� Uss

�
dG(z):

Workers�match surplus
Aworker�s surplus from a temporary job isW T

ss(z)�Uss. Rearranging the previous
equations, we obtain

(r + �+ � + �)
�
W T
ss(z)� Uss

�
= wTss(z)� b� p(�ss)

Z 1

RTss

�
W T
ss(x)� Uss

�
dG(x)

+�1(z � RCss)
�
W P
ss(z)� Uss

�
+ �

Z
RTss

�
W T
ss(x)� Uss

�
dG(x):
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Likewise, a worker�s surplus from a permanent job is W P
ss(z)� Uss, satisfying

(r + �+ �)
�
W P
ss(z)� Uss

�
= wPss(z)� b� p(�ss)

Z 1

RTss

�
W T
ss(x)� Uss

�
dG(x)

+�

Z
RPss

�
W P
ss(x)� Uss

�
dG(x):

3.2 Surplus functions

It now simpli�es the analysis to combine the Bellman equations to focus only on
total match surplus. We can also use the zero-pro�t condition (5) to substitute as
follows:

p(�ss)

Z 1

RTss

�
W T
ss(x)� Uss

�
dG(x) = �ssq(�ss)�

Z 1

RTss

STss(x)dG(x) = �c�ss=(1� �):

Summing the equations for �rms� and workers� surpluses, the Bellman equations
governing total match surplus for temporary and permanent jobs are

(r + �+ �+ �)STss(z) = z+y�b� �c�ss
1� �+�1(z � R

C
ss)
�
SPss(z)� F

�
+�

Z
RTss

STss(x)dG(x);

(9)

(r + �+ �)SPss(z) = z + y � b+ (r + �)F � �c�ss
1� � + �

Z
RPss

SPss(x)dG(x): (10)

A key point to notice here is that we can di¤erentiate through (9)-(10) with
respect to z at most points, except at RCss, where (9) shows a sudden change in slope.
We observe that SPss(z) is linear, and S

T
ss(z) is piecewise linear. The slopes are

dSTss(z)

dz
=

� 1
r+�+�+�

; z < RCss
1

r+�+�
; z � RCss

dSPss(z)

dz
=

1

r + �+ �

Besides a change in slope, (9) shows that the temporary match surplus is discontin-
uous at z = RCss. Note that J

P
ss(R

C
ss) = 0 implies SPss(R

C
ss) � F = �

1��F . Plugging

this into (9), the jump in STss(z) at z = RCss equals (r + �+ �+ �)
�1 ��

1��F . This
discontinuity represents the sudden decrease in the pair�s joint value as z falls below
RC(y), because of �rms�unwillingness to promote workers below this threshold.

16



Combining all this information, and setting SPss(R
P
ss) = STss(R

T
ss) = 0, we can

write the surplus functions explicitly conditional on the reservation productivities:

STss(z) =

(
z�RTss

r+�+�+�
; z < RCss

RCss�RTss+��F=(1��)
r+�+�+�

+ z�RCss
r+�+�

; z � RCss
(11)

SPss(z) =
z �RPss
r + �+ �

(12)

3.3 Steady state equilibrium

Equilibrium requires that the job creation and destruction equations (5)-(8) be sat-
is�ed when we plug in the Bellman equations (9)-(10) that de�ne the surplus. The
steady state job creation equation is simply

c

q(�ss)
= (1� �)

Z
RTss

STss(x)dG(x): (13)

Next, since RT (y) < RC(y) for any y, we have 1(z � RCss) = 0 at z = RTss. Therefore
the � term cancels out of the temporary job destruction condition (7), leaving

0 = RTss + y � b�
�c�ss
1� � + �

Z
RTss

STss(x)dG(x): (14)

The steady state job destruction condition for permanent workers is

0 = RPss + y � b+ (r + �)F �
�c�ss
1� � + �

Z
RPss

SPss(x)dG(x): (15)

Finally, at the promotion threshold we have

(r + �+ �)
F

1� � = R
C
ss + y � b+ (r + �)F �

�c�ss
1� � + �

Z
RPss

SPss(s)dG(x):

but it is simpler to subtract this equation from (15) and thus replace it by

RCss = RPss + (r + �+ �)
F

1� � (16)

These equations can be simpli�ed further by plugging the explicit surplus formulas
(11)-(12) into the integrals on the right-hand side, leaving just four unknowns: RTss,
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RCss, R
P
ss, and �ss. Thus steady state equilibrium can be calculated by solving the

system of four equations in four unknowns (13)-(16).5

3.4 Steady state employment

Given RPss, R
C
ss, R

T
ss, and �ss, we can also calculate employment. By Prop. 8a, it

su¢ ces to keep track of employment on intervals bounded by reservation productiv-
ities. Thus, de�ne I1 = [RCss;1) and I2 = [RTss; R

C
ss), and let n

T
t (I) be temporary

employment on interval I at time t. Using this notation, the transitional dynamics
in the absence of aggregate shocks are:

_ut = �+ �nTt (I2) + �G(R
T
ss)n

T
t + �G(R

P
ss)n

P
t � [�+ (1�G(RTss))p(�ss)]ut

_nTt (I1) = (1�G(RCss))
�
p(�ss)ut + �n

T
t

�
� (�+ � + �)nTt (I1)

_nTt (I2) = (G(RCss)�G(RTss))
�
p(�ss)ut + �n

T
t

�
� (�+ � + �)nTt (I2)

_nPt = �nTt (I1)�
�
�+ �G(RPss)

�
nPt

These equations are consistent with a constant labor force at all times, satisfying

ut = 1� nTt � nPt ;
nTt = nTt (I1) + n

T
t (I2):

In steady state, these equations imply6

nTss =
p(�ss)(1�G(RTss))
�+ � + �G(RTss)

uss

nPss =
�(1�G(RCss))

(�+ �G(RPss)) (1�G(RTss))
nTss

uss =
�+ � + �G(RTss)

�+ � + �G(RTss) + p(�ss)
h
1�G(RTss) +

�(1�G(RCss))
�+�G(RPss)

i
5It might seem easier to plug (11)-(12) directly into the creation and destruction equations (5)-

(8). However, by doing this, equations (6) and (8) both take the form 0 = 0, leaving us with only
two equations to determine the four unknowns RTss, R

C
ss, R

P
ss, and �ss. By plugging (11)-(12) into

(13)-(16) instead, we end up with four nontrivial equations to determine equilibrium.
6Note that in principle we may �nd RPss < 0, so that G(RPss) = 0. Thus the formula for nPss

shows that the stock of permanent employees can be in�nitely larger than the stock of temporary
employees unless there is a nonzero �ow of retirement (� > 0). Therefore considering � > 0 allows
us to explore a larger parameter space� in particular, it implies a well-de�ned steady state even
with large values of F which �rms never or almost never choose to pay.
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Description Parameter Value
Real interest rate r 0.0017
Rate of retirement and rebirth � 0.0021
Matching and bargaining
Vacancy posting cost c 0.3Ez
Unemployment elasticity of matching � 0.5
Coe¢ cient of matching function � 0.3985
Worker bargaining power � 0.5
Aggregate productivity
Unemployment productivity b 0.8Ez
Mean aggregate productivity Ey 0
Transition rate to recession from boom �1j2 0.05
Transition rate to boom from recession �2j1 0.1
Productivity decrement in recession y1 � Ey -0.04
Productivity increment in boom y2 � Ey 0.02
Idiosyncratic productivity
Arrival rate of idiosyncratic shocks � 0.0203
Standard deviation of log z �z 0.0785
Mean of log z �z 0
Policy
Firing cost for permanent jobs F 1.9366Ez
Temporary contract expiry rate � 0.0417

Table 1: Baseline parameterization

3.5 Calibration

Parameters are given in Table 1. We calibrate our model on a monthly frequency.
The real interest rate is set to 2% per annum, or r = 0:0017 per month. The
exogenous retirement rate, �, is set to 0.0021, which implies that a worker who does
not experience endogenous separations can expect to stay on the same job for 40
years. For most of our sample period, the Spanish labor legislation established that
a certain worker could not stay in the same �rm under a succession of temporary
contracts for more than two years. We thus set the expiry rate, �, to 1/24.
In the absence of direct evidence on the Spanish matching function, we draw

from estimates for other European countries and set the elasticity of the matching
function with respect to unemployment, ", to 0.5.7 Following standard practice, we

7See e.g. Petrongolo and Pissarides (2001).
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assume that the Hosios (1990) condition for e¢ cient job creation holds, which implies
setting the workers�bargaining power parameter, �, equal to ".
Parameters c and b are set relative to the steady-state equilibrium cross-sectional

average of worker productivity, Ez. We set the cost of posting a vacancy, c, to 0.30
of average worker productivity, which is roughly the midpoint of estimates suggested
in the literature.8 The income �ow in unemployment, b, is often set around 70% of
average worker productivity in US calibrations.9 Since unemployment protection is
more generous in Spain than in the US, we instead set b to 80% of average worker
productivity.10 Following standard practice, we set the mean of the underlying log
productivity distribution � = E(log(z)) to 0; this is simply a normalization to make
units easy to interpret.
No direct microeconomic evidence exists for the remaining four parameters, namely

the non-transfer component of �ring costs (F ), the scale parameter in the matching
function (�), and the parameters governing the arrival rate and the standard devia-
tion of idiosyncratic productivity shocks (� and �, respectively). We calibrate these
four parameters using macroeconomic data. In particular, we use quarterly data
from the Spanish Encuesta de Población Activa (EPA) to construct series for the
stocks of temporary and permanent employment as fractions of the active popula-
tion, as well as for the quarterly transition probabilities between unemployment and
temporary employment, and between permanent employment and unemployment.
Our sample period is 2001:Q1-2008:Q3.11 We then take sample averages of our four
series and �nd the values of F , �, � and � for which the steady state values nTss,
nPss, �ssq(�ss)[1�G(RTss)] and �G(RPss) are all exactly equal to the sample average of

8Shimer (2005) proposes a value of 0.213, whereas Hall and Milgrom (2008) use a value of 0.43,
in both cases as a fraction of average worker productivity.

9See e.g. Hall and Milgrom (2008), Costain and Reiter (2008), and Pissarides (2009). As in
those papers, we refer to the average productivity in equilibrium among employed workers, not the
mean of the ex ante distribution G.
10Unemployment protection in general includes not only statutory bene�ts, but also other social

mechanisms, such as extended family networks, which Bentolila and Ichino (2008) argue provide
higher protection in Mediterranean countries.
11The EPA divides the active population in four groups: non-salaried workers, temporary salaried

workers, permanent salaried workers, and unemployed workers. Since our model does not include
the �rst group, we assign them to the second and third groups using the same weights as those of
temporary and permanent workers in total salaried employment. This way, our empirical rates of
unemployment and temporary employment (the latter de�ned as the share of temporary workers
in total salaried employment) remain unchanged.
Also, as is well known, quarterly data on transition rates su¤er from aggregation bias (see e.g.

Shimer 2008), such that monthly rates are considerably higher than what results from dividing
quarterly rates by three. For this reason, in order to obtain estimates of monthly transition rates
we rescale the quarterly transition rates by 2/3, rather than simply by 1/3.

20



their corresponding empirical counterpart.12 This method delivers values of F = 3:1
times average monthly worker productivity (i.e. about one fourth of average annual
worker productivity), � = 0:315, � = 0:02 (which implies that idiosyncratic shocks
arrive approximately every four years on average) and � = 0:126.

3.6 Steady state behavior of dual labor markets

3.6.1 Surplus functions

Figure 1 illustrates the steady state surplus function under the baseline calibration.
The surplus for permanent workers is shown in blue; that of temporary workers is
in green. Permanent workers�surplus function lies above that of temporary workers;
even though permanent contracts have a lower expected payo¤, their surplus is higher
since it is calculated relative to a lower outside option for the �rm.
The reservation thresholds (recall the ordering RP < RT < RC) are highlighted

with red stars. Also, we see a discontinuity in the surplus for temporary workers
at RC , due to the pairwise ine¢ ciency of separation. For comparison, the lower
panel shows the cumulative distribution function of idiosyncratic shocks z. We see
that somewhat more than half of new matches result in a hire (G(RT ) = 0:465),
while promotion to permanence is more selective: promoted workers come from the
top 23% of the unconditional productivity distribution (G(RC) = 0:774), which
is roughly the top two �fths of the distribution of productivity among temporary
employees (1�G(R

C)
1�G(RT ) = 0:422).

3.6.2 Comparative statics

Figures 2 and 3 show how the steady state equilibrium is a¤ected by the two main
policy parameters, F and �, and also how these policies interact with the arrival rate
� of idiosyncratic shocks. Moving left to right, dots di¤er by 10%; the graphs show
the e¤ects of changing F and � by �30% around their baseline levels. Changes in �
range from �20% (blue) to +20% (magenta); red dots represent the baseline value
of �.
Several aspects of Figure 2 illustrate the �sclerotic�e¤ects of increased �ring costs,

which slow down labor market �ows, but have an ambiguous e¤ect overall on the
unemployment rate. In the second row, we see that RP decreases with F , whereas
RC increases� �rms are less willing to �re permanent workers when �ring costs are

12Notice that, given the latter four steady state values, the other two transition probabilities in
our model (temporary employment to unemployment and to permanent employment, respectively)
are pinned down by the steady state laws of motion in our model.
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Figure 1: Steady state: surplus functions and distribution function

high, but they are also less willing to promote them to permanence. Therefore the
overall �ow into and out of permanent jobs is much slower when F is large. Sclerosis
can also be seen in the e¤ect on q(�): higher �ring costs lower vacancy formation
and labor market tightness (and hence q(�) increases).
On the other hand, since higher �ring costs make �rms less willing to contract

permanent workers, they also become less selective about which temporary workers
they hire. Therefore RT decreases with F . This e¤ect is strong enough so that
unemployed workers�probability of reemployment, p(�)(1 � G(RT )), rises even as
workers�matching probability p(�) falls. Thus, the �ip side of greater "sclerosis" of
permanent jobs is greater "churning" of temporary jobs, as both the rate of creation
and destruction of temporary jobs increases with F:
The overall result, at the baseline calibration of �, is that changing F has little
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Figure 2: Comparative statics: �ring cost

e¤ect on unemployment. However, with lower � (blue dots), higher �ring costs raise
unemployment, as an increasing fraction of total employment is shifted into tempo-
rary contracts with little prospect of eventual promotion. At the opposite extreme,
with a higher �, the current value of idiosyncratic productivity is less important,
making �rms less selective about all contract types. In particular, with high � the
fraction of permanent workers �red after an idiosyncratic shock falls from 30% to
15% as F rises, so in this case unemployment decreases with F .
While �ring costs have an ambiguous e¤ect on unemployment, over this parameter

range they unambiguously reduce productivity, as the last panel of Figure 2 shows.
Intuitively, while �ring costs make �rms more selective about which matches to
promote, they also makes �rms less selective about the permanent workers they
retain, and prompts them to rely more on rapid hiring and �ring of relatively low-
productivity temporary workers. Thus while an increase in F implies that those

23



15 20 25 30 35
0.08

0.09

0.1

0.11

1/δ

U
ne

m
pl

oy
m

en
t

15 20 25 30 35
0.2

0.25

0.3

0.35

0.4

1/δ

Te
m

p 
em

pl
oy

m
en

t

15 20 25 30 35
0.5

0.55

0.6

0.65

0.7

1/δ

P
er

m
 e

m
pl

oy
m

en
t

15 20 25 30 35
0.4

0.45

0.5

0.55

0.6

1/δ

G
(R

T ss
)

15 20 25 30 35
0.76

0.77

0.78

0.79

0.8

1/δ

G
(R

C ss
)

15 20 25 30 35
0.2

0.25

0.3

0.35

0.4

1/δ

G
(R

P ss
)

15 20 25 30 35
0.36

0.37

0.38

0.39

1/δ

q(
θ ss

)

15 20 25 30 35

0.15

0.16

0.17

1/δ

Jo
b 

fin
di

ng
 ra

te

15 20 25 30 35
0.01

0.015

0.02

0.025

1/δ

P
ro

m
ot

io
n 

ra
te

15 20 25 30 35
0.025

0.03

0.035

0.04

0.045

1/δTe
m

p 
se

pa
ra

tio
n 

ra
te

15 20 25 30 35
7

8

9

10
x 10-3

1/δP
er

m
 s

ep
ar

at
io

n 
ra

te

15 20 25 30 35
1.08

1.1

1.12

1.14

1/δA
ve

ra
ge

 p
ro

du
ct

iv
ity

low λ
baseline λ
high λ

Figure 3: Comparative statics: temporary contract duration

workers who have just been promoted to permanence will have higher productivity,
it also implies that temporary workers and old permanent workers will have lower
productivity. For all the � values shown in Figure 2, the overall e¤ect is roughly a
1% fall in average worker productivity as we increase F by 60%.
Figure 3 shows the e¤ects of the duration 1=� of temporary contracts, interacted

as before with the arrival rate � of idiosyncratic shocks. An increase in 1=� makes
�rms moderately more selective at all the reservation thresholds, so productivity
rises. But in terms of employment, the main impact is the direct one: as tempo-
rary contracts expire more slowly, they are a sharply increasing fraction of the labor
force. The rate of separation of temporary workers falls, while the �ring rate of
permanent workers increases and the fraction of expired temporary contracts pro-
moted to permanence decreases. Thus, increasing 1=� causes �rms to rely more on
their temporary workforce instead of promotion to permanence. This shift in favor
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of shorter-lived employment increases the unemployment rate (as in Blanchard and
Landier, 2002), though the e¤ect is small except when � is high.

4 Dynamics

4.1 Value and surplus functions

Next, we study dynamic equilibrium in the presence of aggregate shocks. In the
steady state analysis of Section 3, the Bellman equations contained capital gains
terms associated with idiosyncratic shocks arriving at rate �. Now, they also contain
capital gains from aggregate shocks at rate �. The value functions for temporary
and permanent jobs satisfy

(r + �) JT (z; y) = z + y � wT (z; y) + �
�
1(z � RC(y))JP (z; y)� JT (z; y)

�
+�

�Z
RT (y)

JT (x; y)dG(x)� JT (z; y)
�
+ �

24 X
y0:RT (y0)�z

My0jyJ
T (z; y0)� JT (z; y)

35 ;

(r + �) JP (z; y) = z + y � wP (z; y) + �
�Z

RP (y)

JP (x; y)dG(x)�G(RP (y))F � JP (z; y)
�

+�

24 X
y0:RP (y0)�z

My0jyJ
P (z; y0)�

X
y0:RP (y0)>z

My0jyF � JP (z; y)

35 :
A worker�s value of employment under a temporary contract is determined by

(r + �)W T (z; y) = wT (z; y) + �
�
1(z � RC(y))W P (z; y) + 1(z < RC(y))U �W T (z; y)

�
+�

�Z
RT (y)

W T (x; y)dG(x) +G(RT (y))U(y)�W T (z; y)

�

+�

24 X
y0:RT (y0)�z

My0jyW
T (z; y0) +

X
y0:RT (y0)>z

My0jyU(y
0)�W T (z; y)

35
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where

(r + �)W P (z; y) = wP (z; y) + �

�Z
RP (y)

W P (x; y)dG(x) +G(RP (y))U(y)�W P (z; y)

�

+�

24 X
y0:RP (y0)�z

My0jyW
P (z; y0) +

X
y0:RP (y0)>z

My0jyU(y
0)�W P (z; y)

35
is the Bellman equation for the value employment under a permanent contract, and

(r + �)U(y) = b+p(�(y))

Z 1

RT (y)

�
W T (x; y)� U(y)

�
dG(x)+�

X
y0

My0jy(U(y
0)�U(y))

determines the value of unemployment.
By combining workers�and �rms�Bellman equations like we did for the steady

state model, we can now restate the Bellman equations in terms of total match
surplus only. In analogy with equation (9), at all z � RT (y) the total match surplus
for temporary jobs satis�es

(r + �+ �+ � + �)ST (z; y) = z + y � b� �c�(y)
1� � + �1(z � R

C(y))
�
SP (z; y)� F

�
+�

Z
RT (y)

ST (x; y)dG(x) + �
X

y0:RT (y0)�z

My0jyS
T (z; y0): (17)

Likewise, at all z � RP (y) the surplus for permanent jobs satis�es

(r + �+ �+ �)SP (z; y) = z + y � b+ (r + �)F � �c�(y)
1� �

+�

Z
RP (y)

SP (x; y)dG(x) + �
X

y0:RP (y0)�z

My0jyS
P (z; y0): (18)

4.2 Calculating the surplus functions: N = 2 with large F

As in the steady state case, Bellman equations (17)-(18) show that the surplus func-
tions are piecewise linear, allowing us to calculate them explicitly if the reservation
thresholds are given. Here, we calculate the surplus functions in the special case of
two aggregate states: recessions, with aggregate productivity y1, and booms, with
aggregate productivity y2. (The N -state case is similar, but requires more notation,
so it is left for Appendix 1.) The transition matrix simpli�es to

M =

�
My1jy1 My1jy2
My2jy1 My2jy2

�
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Given the abbreviation �jji � �Myj jyi, and letting �i indicate the state that is not
state i, we have �1j1 + �2j1 = �1j2 + �2j2 = �iji + ��iji = �.
With two states, there are six relevant productivity cuto¤s, three for recessions:

RP1 � RT1 � RC1 , and three for booms: R
P
2 � RT2 � RC2 . We also know that

Ri2 � Ri1 for i 2 fT;C; Pg. Furthermore, for the Spanish case that motivates us,
�ring costs are large. Therefore we will analyze an equilibrium in which F is large
enough compared to y2 � y1 so that RC1 and RC2 are both greater than RT1 and RT2 ,
which in turn are greater than RP1 and R

P
2 . This orders all the thresholds; it now

helps to de�ne the notation r7 � 0, r6 � RP2 , r5 � RP1 , r4 � RT2 , r3 � RT1 , r2 � RC2 ,
r1 � RC1 , and r0 � 1. We thus �nd seven relevant productivity intervals, of the form
Ij � [rj; rj�1); all matches separate in interval I7, whereas all continue in interval I1.
ForN = 2, Bellman equation (18) can be simpli�ed slightly by cancelling �ijiS

P (z; yi)
from both sides, leaving

�
r + �+ �+ ��iji

�
SP (z; yi) = z + yi � b+ (r + �)F �

�c�(yi)

1� � (19)

+�

Z
RPi

SP (x; yi)dG(x) + ��iji1(R
P
�i � z)SP (z; y�i)

As in Section 3.2, we can now inspect (19) to see how SP (z; y) varies with z. First,
note that (19) has no discontinuities. While the right-hand side seems to show a
discontinuity at z = RP�i, the discontinuity vanishes because S

P (RP�i; y�i) = 0 in
equilibrium. We therefore conclude that SP (z; y) is a continuous function.
Di¤erentiating (19) with respect to z, the slope of SP in recessions and booms

satis�es �
r + �+ �+ ��iji

�
�Pi = 1 + ��iji1(R

P
�i � z)�P�i

where we have used the shorthand �Pi � @SP

@z
(z; yi). Evidently, SP is piecewise linear.

Using the fact that RP2 < R
P
1 , the slopes in di¤erent intervals are:

RP2 < z < R
P
1 RP1 < z

�P1 n.a. (r + �+ �)�1

�P2
�
r + �+ �+ �1j2

��1
(r + �+ �)�1

Finally, using SP (RP1 ; y1) = S
P (RP2 ; y2) = 0, the surplus function for permanent jobs
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can be written explicitly in terms of the reservation productivities as

SP (z; y1) =
1

r + �+ �

�
z �RP1

�
(20a)

SP (z; y2) =

(
1

r+�+�+�1j2

�
z �RP2

�
; RP2 � z � RP1

SP (RP1 ; y2) +
1

r+�+�

�
z �RP1

�
; RP1 < z

(20b)

The procedure to calculate the surplus function for temporary workers is similar,
but has a few more steps. We have assumed F is su¢ ciently large compared to
y2 � y1 so that the two promotion thresholds RC2 and RC1 are both strictly greater
than all the other thresholds. Thus (17) implies that ST (z; y1) and ST (z; y2) are both
discontinuous both at RC2 and at R

C
1 . We write these jumps as

�(RCj ; yi) � lim
dz!0

�
ST (RCj + dz; y)� ST (RCj � dz; y)

�
This limit is well-de�ned because SP (z; yi)� F = �

1��F at z = R
C
i , and because all

the T -thresholds are below all the C-thresholds. Simplifying as before by cancelling
�ijiS

T (z; yi) from both sides of (17), we obtain the following formula for the jumps
at RCi :�

r + �+ �+ � + ��iji
�
�(RCj ; yi) = �1(R

C
j = R

C
i )

�

1� �F + ��iji�(R
C
j ; y�i)

These are four equations to determine the jumps �(RC1 ; y1), �(R
C
1 ; y2), �(R

C
2 ; y1),

and �(RC2 ; y2). The solution is:

at z = RC2 at z = RC1
�(z; y1) �2j1"F

�
r + �+ �+ � + �1j2

�
"F

�(z; y2)
�
r + �+ �+ � + �2j1

�
"F �1j2"F

where " = (r + �+ �+ �)�1(r + �+ �+ � + �1j2 + �2j1)
�1 ��

1�� :

We now turn to the slopes of ST (z; y). Using (17), and de�ning �Ti � @ST

@z
(z; yi),

we have�
r + �+ �+ � + ��iji

�
�Ti = 1 + �1(z � RCi )�Pi + ��iji1(RT�i � z)�T�i

We see that the slopes change at the points RT2 < RT1 < RC2 < RC1 . Solving each
of this pair of equations (for i = 1; 2) equations on each relevant interval, we can
summarize the slopes as follows:

RT2 < z < R
T
1 RT1 < z < R

C
2 RC2 < z < R

C
1 RC1 < z

�T1 n.a. (r + �+ �+ �)�1 !1
r+�+�+�

+ 1�!1
r+�+�

(r + �+ �)�1

�T2
�
r + �+ �+ � + �1j2

��1
(r + �+ �+ �)�1 !2

r+�+�+�
+ 1�!2

r+�+�
(r + �+ �)�1
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Here we have de�ned the weights !1 �
r+�+�+�+�1j2

r+�+�+�+�1j2+�2j1
and !2 �

�1j2
r+�+�+�+�1j2+�2j1

.

Note that the slope of ST increases with z (since !2 < !1, we �nd that �T1 < �
T
2 on

interval I2).
We can now write down an explicit formula for the surplus function for temporary

jobs. Since ST is discontinuous at some points, it helps to de�ne the notation

ST� (z; y) � lim
x"z
ST (x; y)

that is, the limit of the surplus function as we approach the point z from below.
This notation will help us see where the surplus functions are discontinuous, and
how large the jumps are. Taking as given the reservation productivities, the surplus
from a temporary job is given by

ST (z; y1) =

8><>:
1

r+�+�+�

�
z �RT1

�
; RT1 � z < RC2

ST� (R
C
2 ; y1) + �2j1"F +

�
!1

r+�+�+�
+ 1�!1

r+�+�

� �
z �RC2

�
; RC2 � z < RC1

ST� (R
C
1 ; y1) +

�
r + �+ �+ � + �1j2

�
"F + 1

r+�+�

�
z �RC1

�
; z � RC1 ;

(21)

ST (z; y2) =

8>>>><>>>>:
1

r+�+�+�+�1j2

�
z �RT2

�
; RT2 � z < RT1

ST (RT1 ; y2) +
1

r+�+�+�

�
z �RT1

�
; RT1 � z < RC2

ST� (R
C
2 ; y2) +

�
r + �+ �+ � + �2j1

�
"F +

�
!2

r+�+�+�
+ 1�!2

r+�+�

� �
z �RC2

�
; RC2 � z < RC1

ST� (R
C
1 ; y2) + �1j2"F +

1
r+�+�

�
z �RC1

�
; z � RC1 :

(22)
Figure 4 shows the dynamic surplus functions (20a)-(20b) and (21)-(22), in equi-

librium under our benchmark parameterization. Like the steady state surplus func-
tions, they are piecewise linear with discountinuities in ST at thresholds RC2 and
RC1 . Now, though, we see four functions, since we are plotting both for recessions
and booms; from top to bottom the functions are SP (z; y2), SP (z; y1), ST (z; y2), and
SP (z; y1). The top two and the bottom two each lie close together, because the dif-
ference in surplus between recessions and booms is much smaller than the di¤erence
in surplus between temporary and permanent employment status.
Red stars indicate the six reservation thresholds (from left to right) RP2 , R

P
1 , R

T
2 ,

RT1 , R
C
2 , and R

C
1 . One e¤ect of passing from boom to recession is the immediate

�ring of all permanent workers with productivity in the interval I6 = [RP2 ; R
P
1 ), and

all temporary workers with productivity in the interval I4 = [RT2 ; R
T
1 ); then when the

economy returns to its expansive phase, new stocks of these "fragile" jobs gradually
build up. The size of the wave of �ring that occurs at the beginning of a recession
depends on the buildup of employment in these intervals of fragility, which in turn
depends on the duration of the preceding boom.
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Figure 4: Dynamic surplus functions

4.3 Dynamic equilibrium

The job creation and destruction conditions of the dynamic model are similar to the
steady state equations (13)-(16), except that now the equations must hold for each
aggregate state yi, for i 2 f1; 2; :::; Ng. The job creation condition is

c

q(�(yi))
= (1� �)

Z
RTi

ST (x; yi)dG(x) (23)

We now rewrite the job destruction conditions using the Bellman equations. The job
destruction condition (6) for temporary jobs becomes

0 = RTi + yi � b�
�c�(yi)

1� � + �

Z
RTi

ST (x; yi)dG(x) + �
X
j:yj�yi

Myj jyiS
T (RTi ; yj): (24)
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For permanent jobs, the job destruction condition (8) is

0 = RPi +yi�b+(r + �)F�
�c�(yi)

1� � +�
Z
RPi

SP (x; yi)dG(x)+�
X
j:yj�yi

Myj jyiS
P (RPi ; yj):

(25)
Finally, the promotion threshold in state yi can be determined by:

(r+�+�+�)
F

1� � = R
C
i +yi�b+(r + �)F�

�c�(yi)

1� � +�
Z
RPi

SP (x; yi)dG(x)+�
X
j:yj�yi

Myj jyiS
P (RPi ; yj):

(26)
Given hypothetical values of RP (y), RC(y), and RT (y), we can now use our

surplus formulas to evaluate the right-hand side of (23)-(26) for each y. For N = 2,
this just means plugging in formulas (20a)-(20b) and (21)-(22). When N > 2, we
instead use the slope and jump formulas (36), (34), and (39), stated in Appendix 1,
to numerically evaluate the surplus functions and integrals appearing in (23)-(26).
The result is a system of 4N equations to determine the 4N unknowns RP (y), RC(y),
RT (y), and �(y), which together describe a dynamic equilibrium.

4.4 Employment and productivity dynamics

Once RP (y), RC(y), RT (y), and �(y) are known we can simulate employment over
time by keeping track of temporary and permanent jobs on the productivity intervals
Ij = [rj; rj�1), j 2 f1; 2; :::; 3Ng in which employment may occur. First, let nTj (t)
be the stock of temporary matches with productivity z in interval Ij = [rj; rj�1).
Second, de�ne total temporary employment as nT (t) =

P3N
j=0 n

T
j (t). Next, let n

P
j (t)

and nP (t) =
P3N

j=0 n
P
j (t) be the corresponding stocks of permanent jobs. Finally,

de�ne unemployment as u(t) = 1� nT (t)� nP (t).
Over a short time interval dt, in which aggregate productivity is y(t), employment

of each type evolves according to

dnTj (t) =

�
�nTj (t) if RT (y(t+ dt)) � rj�1�

p(�(y(t)))u(t) + �nT (t)
�
[G(rj�1)�G(rj)] dt� (�+ � + �)nTj (t)dt otherwise

(27)

dnPj (t) =

�
�nPj (t) if RP (y(t+ dt)) � rj�1�

� [G(rj�1)�G(rj)]nP (t) + �nTj (t)
	
dt� (�+ �)nPj (t)dt otherwise

(28)
Equation (27) shows that the change in temporary employment in interval Ij, which
we write as dnTj (t) = n

T
j (t+dt)�nTj (t), can take two possible forms. If the aggregate
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state at t + dt is bad enough so that RT (y(t + dt)) � rj�1, then all temporary jobs
in interval Ij (if any) will separate, and therefore dnTj (t) = �nTj (t). Otherwise,
employment accumulates gradually in interval Ij, so the �ow dnTj (t) is proportional
to the time interval dt. Temporary employment �ows into Ij due to new hires, and
also due to idiosyncratic shocks to existing temporary jobs; conditional on either of
these events, the probability of falling into interval Ij is G(rj�1) � G(rj). We also
see out�ows of temporary employment from interval Ij due to retirement (at rate �),
contract expiry (at rate �), and idiosyncratic shocks (at rate �).
The intuition of (28) is similar. Any permanent jobs existing in interval Ij are �red

immediately when the permanent �ring threshold rises above rj�1. Otherwise, jobs
�ow into the employment stock nPj (t) either due idiosyncratic shocks to permanent
jobs or due to expiry of temporary contracts in interval Ij; and they �ow out of nPj (t)
due to retirement or as idiosyncratic shocks arrive.

4.5 Solving for the wage

We can also solve for equilibrium wages by combining the bargaining rules with the
relevant Bellman equations. For temporary workers,

wT (z; y) = � [z + y + c�(y)� �F ] + (1� �) b;

if z � RC(y), and
wT (z; y) = � [z + y + c�(y)] + (1� �) b;

otherwise. Notice that the wage of temporary workers decreases by ��F at the
threshold RC(y), because a worker with z � RC(y) expects his/her job to last longer,
and therefore obtains more surplus through expected future payments instead of
payments now. For permanent jobs, the wage equation is

wP (z; y) = � [z + y + c�(y) + (r + �)F ] + (1� �) b:

Notice that, conditional on the same level of productivity, the wage of permanent and
temporary workers di¤er by the amount �

�
(r + �) + �1(z � RC(y))

�
F . Therefore,

�ring costs introduce a wedge between the wages of both types.

5 Dynamic results: N = 2 with large F

In this section, we study the business cycle dynamics of our model under the baseline
parameterization, with two possible aggregate states. We begin by reporting some
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Variable Model Model: conditional SS
SS Mean Recession Boom

Stocks
nT 28.95% 29.01% 29.40% 28.23%
nP 60.96% 59.45% 58.18% 63.03%
u 10.09% 11.54% 12.42% 8.73%
Probabilities
prob(T jU) 15.25% 15.55% 12.80% 16.96%
prob(P jT ) 1.76% 1.70% 1.76% 1.71%
prob(U jT ) 3.35% 3.36% 3.44% 3.33%
prob(U jP ) 0.63% 0.60% 0.68% 0.56%
Flows
JC 1.54% 1.44% 1.59% 1.48%
JD 1.54% 1.44% 1.59% 1.48%

Table 2: Average behavior of benchmark model. Monthly frequency, quantities
expressed as % of labor force

�rst moments in Table 2. Since the calibration is chosen for consistency with the av-
erage stocks of temporary and permanent workers in Spanish data (nT = 0:2895 and
nP = 0:6095), these are reproduced precisely by the steady state of the model. How-
ever, given the model�s extreme nonlinearity, its steady state di¤ers from the mean
of its dynamics in the presence of aggregate shocks. In particular, unemployment
is almost one and a half percentage points higher in the mean of the economy with
aggregate productivity shocks than it is in the steady state. This happens because
recessions initially cause unemployment to dramatically overshoot the "conditional
steady state" towards which it converges while the recessionary state lasts. The last
two columns of Table 2 show conditional steady states: we see that in the limit of
an arbitrarily long recession, the unemployment rate exceeds 12%, whereas in the
limit of an arbitrarily long boom, it is less than 9%. The mean unemployment rate
over time is closer to the conditional steady state for recessions than it is to that for
booms, since the time average includes the initial spikes occurring in recessions.
Thus, looking only at the conditional steady states implied by long recessions and

booms is insu¢ cient to characterize employment volatility in this economy. Instead,
Table 3 reports second moments under several parameterizations. For clarity, we
report volatilities both in levels (as a percentage of the labor force), and in logs.
Overall, the model does quite a good job of reproducing observed Spanish labor
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Data Model
Benchmark 20% lower F 20% lower � 10% lower b

Stocks
nTss = 28:95% 28.95% 27.98% 34.49% 24.74%
nPss = 60:95% 60.96% 62.02% 55.30% 68.96%
uss = 10:10% 10.09% 10.00% 10.21% 6.30%
sd(nT ) = 1:13% 0.74% 0.73% 0.82% 0.44%
sd(nP ) = 0:58% 0.65% 0.69% 0.59% 0.51%
sd(u) = 0:90% 1.08% 1.10% 1.11% 0.64%
Flows
JCss = JDss 4.62% 4.49% 4.65% 3.87%
sd(JC) 0.23% 0.23% 0.24% 0.19%
sd(JD) 0.60% 0.60% 0.62% 0.43%

Table 3: E¤ects of liberalizing labor market. Quarterly frequency, detrended HP-
1600, quantities expressed as % of labor force.

market �uctuations, which are calculated from quarterly EPA data, 2001:1-2008:3.13

The coe¢ cient of variation of unemployment in the model, 1.08/10.09=0.107, slightly
exceeds the coe¢ cient of variation in the data, 0.092. Moreover, the relative volatil-
ity of the two labor market stocks in the model also �ts the data quite well. In
Table 2, looking just at conditional steady states, permanent contracts seemed more
volatile than temporary contracts (and moreover, at the conditional steady state,
temporary employment is countercyclical). But in Table 3, we see that temporary
employment is more volatile than permanent employment, both in the model and
in the data. In relative terms, temporary jobs are more than twice as volatile as
permanent jobs. Moreover, temporary jobs account for a larger share of employment
�uctuations than permanent jobs in absolute terms too, even though on average
temporary employment is less than one third of the total.
The alternative parameterizations consider several reforms that would make the

labor market more �exible. In the "lower F" parameterization, we decrease the �ring
cost by 20%. In the "lower �" parameterization, we decrease � by 20% (that is, we
increase the duration of eligibility for a temporary contract by 20%). These two
policy changes have rather small e¤ects. However, we already know that F and �
have ambiguous e¤ects on steady state employment (Bentolila and Bertola, 1990;

13Both the data and the simulations from the model are HP-�ltered with parameter 1600. Un-
fortunately our use of data classi�ed by temporary/permanent status restricts us to a rather short
sample.
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Figure 5: Impulse responses: recession to boom

Blanchard and Landier, 2002), so perhaps their relatively small e¤ect on volatility
should be unsurprising.
Finally, we also consider the e¤ect of decreasing unemployment protection by 10%

(i.e. by eight percentage points from 80% to 72% of average worker productivity).
Costain and Reiter (2008) have argued that increasing the bene�t level makes the
match surplus smaller and more volatile, implying larger �uctuations in employment
and unemployment. Here we see that this reform has a much more powerful e¤ect
than changes in F or �; it causes a large decrease in steady state unemployment (from
10.1% to 6.3%), as well as a large decrease in labor market volatility. Note that the
decrease in volatility caused by a lower b is especially pronounced in temporary jobs.
Next, to better understand the e¤ects of dual labor market policy on employment

volatility, Figures 5 and 6 show the impulse responses of various labor market stocks

35



0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

6

7

quarters

%
 o

f l
ab

or
 fo

rc
e

0 2 4 6 8 10 12 14 16 18 20
-5

-4

-3

-2

-1

0

1

quarters

%
 o

f l
ab

or
 fo

rc
e

0 2 4 6 8 10 12 14 16 18 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

quarters

%
 o

f l
ab

or
 fo

rc
e

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

quarters

%
 o

f l
ab

or
 fo

rc
e

unemployment
vacancies

permanent jobs
temporary jobs

job creation
promotions

destruction of temporary jobs
destruction of permanent jobs

Figure 6: Impulse responses: boom to recession

and �ows to an increase and a decrease in aggregate productivity (all variables are
graphed as a percentage of the total labor force). We note that the nonlinearity of the
model makes these responses extremely asymmetric. At the transition from recession
to boom, there is a hump-shaped response of temporary jobs, as new workers are
hired, passing initially through temporary status and then eventually building up
a higher stock of permanent matches. At the same time, job destruction of each
type of worker brie�y decreases by 0.2 percent of the workforce. In contrast, at the
transition from boom to recession, there is a sudden burst of �ring, with more than
3% of the workforce �red in each contract type (a total of almost 7% of the workforce
is �red at this time). Both stocks of workers fall, with the stock of temps recovering
quickly while the stock of permanent workers gradually decreases towards a new,
lower conditional steady state.
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The responses also depend on the starting point; the impulse responses shown
here are calculated starting from the conditional steady state. In other words, Figure
5 is the e¤ect of an increase in y after an extremely long recession, and Figure 6 is
the e¤ect of a decrease in y after an extremely long boom. Note that after an ex-
tremely long boom, a recession causes roughly equal levels of �ring of temporary and
permanent jobs. This seems to suggest that �uctuations in permanent jobs should
be almost as important as �uctuations in temporary jobs to explain employment
volatility overall.
However, such a conclusion would be mistaken, because the size of the burst in

�ring of temporary and permanent jobs at the beginning of a recession depends on
the length of the preceding boom. The stock of permanent jobs builds up more slowly
in a boom than the stock of temps, because workers must pass through temporary
status before reaching permanent status, and because the productivity threshold for
hiring is lower than the threshold for promotion. Therefore, mostly temporary jobs
are �red after a short boom, whereas after a long boom a substantial number of
permanent jobs separate too.
The di¤ering ratios of temporary and permanent �ring after expansions of dif-

ferent lengths can be seen quite clearly in Figure 7, which shows an example of
the model�s simulated dynamics over time. Note that since promotion and �ring of
permanent jobs are very slow processes, a boom must be very long to get anywhere
near its "conditional steady state". Instead, given cycles of realistic length, relatively
few "fragile" permanent jobs are accumulated in booms. Thus, after the �rst few
booms shown in Figure 7, the red spike representing temporary �ring is much larger
than the blue spike representing �ring of permanent jobs. Only in the exceptionally
long boom seen in the second half of the simulated sample do we observe a spike of
permanent �ring comparable to the spike in temporary �ring.

5.1 Understanding the volatility of temporary employment

Overall, then, as we already saw in Table 3, Figure 7 shows that temporary jobs play
a much larger role for employment �uctuations than permanent jobs do. This is true
both in relative terms and in absolute terms, in spite of the fact that the average
stock of temps is roughly half that of permanent jobs. Several factors explain the
high volatility of temporary jobs.

(A) Transitional role of temporary contracts. Given the institu-
tional structure assumed here, matches pass through temporary sta-
tus before achieving permanence. Therefore the rise in hiring associ-
ated with a boom leads initially to a rise in temporary employment.
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Figure 7: Example: dynamic simulation

As the stock of unemployed available for hiring decreases, temporary
employment begins to fall back again. Thus the stock of temporary
employment �overshoots�at the beginning of a boom.

This e¤ect, caused by increased hiring in expansions, is important but still small
compared with the e¤ects of increased �ring in recessions, which predominantly a¤ect
temps. To calculate the buildup of the "fragile" jobs� those vulnerable to �ring as
soon as the next recession arrives� we can evaluate equations (27) and (28) at the
interval I4 = [RT2 ; R

T
1 ) of fragile temporary jobs, and at the interval I6 = [R

P
2 ; R

P
1 )

of fragile permanent jobs, respectively. In a boom, we have

dnT4 (t)

dt
=
�
p(�(y2))u(t) + �n

T (t)
� �
G(RT1 )�G(RT2 )

�
� (�+ � + �)nT4 (t) (29)
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dnP6 (t)

dt
= �

�
G(RP1 )�G(RP2 )

�
nP (t)� (�+ �)nP6 (t) (30)

The rate of accumulation in these intervals depends on the mass in each interval,
namely G(RT1 )�G(RT2 ) or G(RP1 )�G(RP2 ), which implies the following two e¤ects.

(B) Widths of the intervals [RT2 ; R
T
1 ) and [R

P
2 ; R

P
1 ). A close look

at Figure 4 shows that RT1 � RT2 > RP1 � RP2 . Therefore, productiv-
ity draws would fall more frequently in the interval [RT2 ; R

T
1 ) than in

[RP2 ; R
P
1 ) even if the distribution G(z) were uniform across the two

intervals. Note that the width of the interval of fragility is related
to discounting: a given increase in productivity dz is worth less in a
temporary match than in a permanent match, insofar as a temporary
match has a shorter expected duration. We conjecture that this dis-
counting e¤ect makes �rms move along the temporary �ring margin
more elastically than they do along the permanent �ring margin.

(C) Central position of RT . For any y, RT (y) lies between the other
two thresholds. In our example with a log normal distribution, this
leads to a higher density G0(z) near the RT thresholds than near the
others. Therefore, productivity draws would fall more frequently in
the interval [RT2 ; R

T
1 ) than in [R

P
2 ; R

P
1 ) even if the latter were just as

wide as the former.

While e¤ects (B) and (C) are both present in our simulations, Figures 1 and
4 indicate that they are not very signi�cant quantitatively. But there is also an
important qualitative di¤erence in the way �fragile� jobs accumulate in temporary
contracts compared with permanent contracts. Equation (29) shows that some tem-
porary jobs are hired into interval I4 directly from unemployment. In contrast, notice
that there is no � term in equation (30). This is the most important di¤erence in the
dynamics of the two contract types: permanent jobs in the fragility interval I6 are
formed only through idiosyncratic shocks; new permanent jobs created due to expiry
of temporary contracts instead fall into intervals I1 or I0, where jobs are not fragile.

(D) Hiring of fragile temporary workers. When created, perma-
nent matches are all highly productive: they all have productivity
exceeding RC(y). Therefore (assuming su¢ ciently large F , as in our
simulations) no newly-created permanent matches are fragile. Per-
manent matches only become fragile when large idiosyncratic shocks
move them into the interval [RP2 ; R

P
1 ). In contrast, R

T (y) acts both as
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Figure 8: Accumulation of fragile jobs

the hiring threshold and as the �ring threshold for temporary work-
ers. Therefore, in booms, some temporary workers are hired directly
into a situation of fragility� all those with z 2 [RT2 ; RT1 ). In addition,
temporary matches may become fragile due to idiosyncratic shocks,
as permanent matches do.

Figure 8 shows how quickly fragile jobs accumulate during expansions. The hor-
izontal axis represents the time since the start of the boom; the red line shows the
stock of temporary jobs in interval [RT2 ; R

T
1 ), and the blue line shows the stock of

permanent jobs in [RP2 ; R
P
1 ). Thus, the vertical height of the curve shows the stock

of jobs that would be �red if a recession were to begin, as a function of the duration
of the preceding boom. For example, the diagram shows that if a recession begins
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after a boom lasting eight quarters, the stock of jobs destroyed is approximately 4%
of the labor force, and three-quarters of this job destruction a¤ects temporary jobs.

5.2 Eliminating duality

Next, we study what would happen if we replaced the dual contracting structure
assumed in our benchmark model with a single type of contract. We maintain all
the parameters of our benchmark speci�cation, except for the policy parameters that
drive duality. Thus, we now assume all jobs have exactly the same level of �ring costs,
which we call F �.
As for the timing of decisions, we assume that a matched pair observe their

idiosyncratic productivity z as soon as they meet. At this time, they must decide
whether or not to form an employment relationship; if they do not, they can continue
searching for other partners without paying the �ring cost F �. However, as soon as
they begin working, they are legally considered employer and employee, and separa-
tion thereafter entails the cost F �. The �rm�s surplus is therefore de�ned relative to
the outside option �F �, and thus total surplus includes F �:

S(z; y) =W (z; y)� U(y) + J(z; y)� V (y) + F �

where free entry, as before, implies V (y) = 0.14

Under these timing assumptions, there are two relevant reservation thresholds in
any aggregate state y. There is a threshold RN(y) above which a pair will form a
relationship upon meeting, which is determined by

J(RN(y); y) = 0 ! S(RN(y); y) =
F �

1� � > 0 (31)

There is also a threshold RD(y) for destruction of any existing match, which is simply
determined by the absence of any joint surplus from continuation:

S(RD(y); y) = J(RD(y); y) + F � = W (RD(y); y)� U(y) = 0 (32)

The surplus function S(z; y) is monotonically increasing for the same reasons we
saw in the baseline model, and therefore we conclude that RD(y) < RN(y) in each
aggregate state y.
Table 4 shows the e¤ect of unifying the labor market under several possible levels

of the �ring cost F �. First, we consider the case F � = F , setting the �ring cost in

14The value function notation in this section is the same as in our benchmark model except that,
in the absence of duality, we can suppress the subscripts that indicate the two types of labor.
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Variable Single contract
Dual Same F Same Same Same

benchmark as perm average F total F employment

Firing cost
2.0642 (perm)
0 (temp)

2.0642 1.3996 1.1170 0.3645

Costs paid/GDP 0.82% 0.91% 0.90% 0.81% 0.34%
Stocks
uss 10.09% 12.03% 12.22% 11.94% 10.10%
sd(u) 1.08% 0.82% 0.89% 0.89% 0.81%
Flows
JCss = JDss 4.62% 1.78% 2.34% 2.60% 3.28%
sd(JC) 0.23% 0.09% 0.11% 0.12% 0.14%
sd(JD) 0.60% 0.25% 0.32% 0.34% 0.37%

Table 4: E¤ects of unifying labor market. Quarterly frequency, detrended HP-1600,
quantities expressed as % of labor force.

the uni�ed labor market equal to the cost F of �ring a permanent job under duality.
Unsurprisingly, the labor market becomes less volatile, with the standard deviation
of unemployment falling from 1.08% of the labor force under the dual structure,
to 0.82%. Simultaneously, the unemployment rate rises by two percentage points to
12%. However, this experiment does not really inform us about the e¤ects of duality;
we are comparing a dual market to a uni�ed market that also has more �ring costs
overall.
To evaluate the e¤ects of duality per se, we need to hold �ring costs �xed. The

simplest way to do this is to compare the dual market to a uni�ed market with the
same average level of �ring costs. In other words, since almost one third (32.20%,
to be precise) of all employees in the dual market have zero �ring costs, the average
�ring cost in the dual market is (1-0.3220)*2.0642=1.3996. Therefore, the next
column of Table 4 considers F � = 1:3996. Again, unifying the labor market makes it
less volatile; this policy change reduces the standard deviation of the unemployment
rate from 1.08% to 0.89% of the labor force, which is a 21% decrease in variability.
Alternatively, we could set F � so that the steady �ow of �ring costs paid (as a fraction
of GDP) in the single contract model, which is �G(RD)nF �=nEz, equals the same
quantity in the dual model, which is �G(RP )nPF=nEz. By a numerical search, we
�nd that this results in F � = 1:1170. This results in a similar drop in the standard
deviation of unemployment.
Thus, unifying the labor market while holding �ring costs �xed on average implies
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a substantial drop in volatility. Unfortunately, eliminating duality by itself does not
seem to improve the labor market outcome, because it also implies a large rise in the
unemployment rate, to 12.22% when F � = 1:3996, and to 11.94% when F � = 1:1170.
In fact, this is unsurprising. These two experiments have imposed the same average
�ring costs as in the dual market (in two slightly di¤erent ways). But by imposing
these costs on all contracts, �rms expect to pay them earlier, on average, than they
would do in the dual economy. Therefore, e¤ectively, we are making �ring more
expensive in discounted terms.
Therefore, another alternative is to choose the level of �ring costs that lowers

the steady state unemployment rate of the single contract model back down to the
level associated with the steady state of the dual labor market. This requires a
very substantial decrease in �ring costs, to F = 0:3645, lowering the steady state
�ow of �ring costs paid by almost 60%. This also implies a large decrease in the
standard deviation of unemployment, from 1.08% to 0.81%, representing a decrease
in variability of 33%. Figure 9 shows a simulated example of the �uctuations of the
uni�ed labor market (with F = 0:3645). For comparability, it is simulated under
exactly the same shock sequence as the dual example in Fig. 7.

5.3 Understanding the volatility of a uni�ed labor market

We have seen that imposing a single contract type substantially decreases labor mar-
ket volatility over a wide range of possible �ring costs in the uni�ed contract. To
understand this result, it helps to recall the fourth factor (D) mentioned in Section
5.1, where we compared the �uctuations of temporary and permanent employment.
We observed that in the dual market, some temporary workers are hired directly
into a situation of fragility, lying below the �ring margin RT1 , so that they expect to
separate as soon as a recession arrives. Such immediate fragility does not occur in
permanent contracts. New permanent contracts are always hired above the promo-
tion threshold. Given our assumption that F is relatively large, all possible values of
the promotion threshold RC(y) are greater than all possible values of the permanent
�ring threshold RP (y0) for all possible y and y0. Therefore newly formed permanent
contracts never lie in the fragility interval [RP2 ; R

P
1 ).

In all the examples of uni�ed labor markets considered in Table 4, the �ring cost
F � is su¢ ciently large so that both the destruction thresholds are below both the
creation thresholds:

RD2 < R
D
1 < R

N
2 < R

N
1

Therefore, newly formed matches in the single-contract environment never lie in the
fragility interval [RD2 ; R

D
1 ). Instead, in the uni�ed labor market, fragile jobs are
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Figure 9: Dynamics: single contract, �xing employment

created only through negative idiosyncratic shocks� matches which were initially
productive enough for hiring under the single contract (which makes them immedi-
ately subject to �ring costs) can only become fragile if something about the speci�c
situation of the worker or the �rm changes su¢ ciently to push the match down
towards the �ring margin.
In other words, fragile jobs accumulate in the uni�ed labor market by exactly the

same mechanism as in the permanent component of the dual labor market. Given
that the technological parameters governing the uni�ed market are exactly the same
as those in our dual market simulation, fragile job accumulation in the uni�ed labor
market is quantitatively similar to accumulation of fragile permanent jobs in the
dual market, as can be seen from the green curve in Fig. 8. Therefore, there is
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Figure 10: Single contract: unemployment volatility as function of �ring cost, b =
0:8Ez

substantially less volatility of job destruction in the uni�ed labor market than there is
in the dual labor market, where destruction of temporary jobs is the most important
source of cyclical employment �uctuations.
How general is this result? Figure 10 graphs the volatility of the uni�ed labor

market as a function of the �ring costs associated with the single contract. We
observe that the uni�ed market is substantially less volatile than the dual benchmark
model, except at the very lowest level of F . It is inevitable that this contrast in
volatilities should disappear at some su¢ ciently low level of F , because when �ring
costs are exactly zero the dual and uni�ed labor markets are equivalent. As we see
in Figure 11, there is very little change in the volatility of the uni�ed market until
F is almost zero, at which point the uni�ed market�s behavior suddenly changes.

45



This rather dramatic change in the behavior of the single-contract market is
caused by a change in in the order of the thresholds. For large F , we know that
the highest destruction threshold, RD1 , lies below the lowest creation threshold, R

N
2 ,

so newly hired jobs are never fragile. But as F approaches zero, the destruction
thresholds converge towards the creation thresholds. Therefore, for su¢ ciently small
but positive F , the order of the thresholds changes to

RD2 < R
N
2 < R

D
1 < R

N
1

With this ordering, matches with productivity in the central interval [RN2 ; R
D
1 ) are

hired in booms but �red when recessions arrive. In other words, [RN2 ; R
D
1 ) is an

interval in which newly-created jobs are fragile. With this ordering of reservation
thresholds, fragile jobs accumulate much more rapidly, just as they do for temporary
jobs in the dual labor market.
We further explore the e¤ects of duality in Fig. 11, which is the same as Fig. 10,

except that it is calculated at a 10% lower level of unemployment bene�ts. Quali-
tatively, the results are similar to those in Fig. 10, but the overall level of volatility
is much lower; under a dual labor market, the standard deviation of unemployment
is 0.64% of the labor force when b = 0:72Ez, as opposed to 1.08% when b = 0:8Ez.
As before, unifying the labor market lowers labor market volatility (from 0.64%
to 0.58%, roughly an 11% decrease), except at extremely low levels of the �ring
cost. Interestingly, the decrease in volatility caused by unifying the labor market is
smaller, both in absolute and proportional terms, when b is lower. In other words,
the volatility caused by a dual labor market may be further exacerbated by a high
unemployment bene�t.
Summarizing, at an extremely low level of F , employment �uctuations in the

uni�ed labor market behave like those of the temporary component of the dual labor
market. However, for a much wider range of values of F , employment �uctuations in
the uni�ed labor market behave like those of the permanent component of the dual
labor market. The parameterization that best �ts Spanish data clearly lies in the
latter range, which means that the duality of Spain�s labor market contributes to its
remarkable volatility.

6 Conclusions

In this paper, we have studied the e¤ect of labor market duality on labor market
volatility in the context of the Mortensen-Pissarides (1994) model of job creation
and destruction. Assuming autocorrelated match-speci�c productivity, our model
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Figure 11: Single contract: unemployment volatility as function of �ring cost, b =
0:72Ez

implies that a mass of �fragile� jobs builds up in booms, which are subsequently
destroyed when the economy enters a recession. These spikes of destruction of fragile
jobs� especially fragile temporary jobs� account for much of the cyclical variation
of unemployment. After calibrating our model to the Spanish labor market, we �nd
that fragile temporary jobs build up faster in booms than fragile permanent jobs do,
and therefore more temporary than permanent jobs are destroyed at the onset of
recessions, even though on average the stock of temporary jobs is only half that of
permanent jobs.
We then compare the labor market volatility under a dual contract regime to the

volatility obtained when there is only a single contract type, so that all jobs have
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the same �ring cost. In order to isolate the e¤ects of duality per se, as opposed to
the e¤ect of changing the level of �ring costs, we focus on a uni�ed market with a
�ring cost equal to the average �ring cost in the dual economy (meaning the average
across all workers in the economy, including temps). Unifying the labor market in
this way causes the standard deviation of unemployment to drop by 21%. Moreover,
the uni�ed economy �uctuates similarly under many alternative levels of �ring costs.
We �nd that the market with a single contract type has a volatility between 21%
and 33% lower than that of the dual market, depending on whether the �ring cost
in the single contract equals the �ring cost of the permanent workers in the dual
market, or the average �ring cost in the dual market, or equalizes the total �ow of
�ring costs as a fraction of GDP, or equalizes the unemployment rate of the uni�ed
economy to that in the dual benchmark.
The intuition behind this result is quite straightforward. With �ring costs, newly

formed jobs must have relatively high productivity (to compensate the �rm for pos-
sible future �ring payments), and therefore lie far above the �ring margin. In jobs
without �ring costs, �rms are instead willing to hire workers with productivity ar-
bitrarily close to the �ring margin. That is, in the absence of �ring costs, some job
matches are already in a �fragile�situation at the time of hiring, and are thus vul-
nerable to separation whenever the aggregate state of the economy declines. In the
presence of �ring costs, jobs do not become fragile until a match-speci�c shock causes
a substantial change in productivity. This is why fragile temporary jobs accumulate
much more rapidly in expansions in our dual market model than fragile permanent
jobs do, resulting in a big spike of �ring of temporary jobs when a recession hits. In
a uni�ed market (except in the case of near-zero �ring costs), all jobs act like the
permanent component of the dual market; newly-hired jobs are never fragile, so the
stock of fragile jobs builds up slowly in booms and less �ring occurs in recessions.
Most previous studies of matching models with a dual contract structure did not

address the issue of volatility, because they looked only at steady states. The most
closely related previous study (Sala, Silva, and Toledo 2009) did not point out that
a dual market should have a greater volatility than a uni�ed market with the same
average �ring costs. The reason their results di¤er from ours is that they assumed
iid match productivity. Their assumption implies that any two jobs of the same
contract type have exactly the same probability of separation in the next period�
in other words, their model has no fragile jobs. By studying the more realistic but
more di¢ cult case of autocorrelated match productivity, we �nd that fragile jobs are
the key to understanding cyclical volatility.
Our novel �ndings help explain the exceptional degree of employment volatility

observed in the starkly dual Spanish labor contracting environment. Thus, elimi-
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nating duality while holding the average �ring cost unchanged would decrease the
volatility of the Spanish labor market. However, by itself this change would not
necessarily be bene�cial, because we calculate that it increases the long-run average
unemployment rate by two percentage points. To eliminate duality without raising
the level of unemployment, a substantial cut in the level of �ring costs would also be
required. We calculate that eliminating duality, accompanied by this reduction in
�ring costs, would also raise GDP net of �ring costs by 5%, compared to the e¤ect
of eliminating duality alone.
In addition to duality, our results also point to the overall level of social protection�

proxied in our model by the income b available to the unemployed� as a contributing
factor to the volatility of the Spanish economy. In our simulations, increasing b raises
both the mean rate of unemployment and its volatility, though we should note that
some of the e¤ects we attribute to bmay actually represent the e¤ects of wage rigidity,
a factor omitted from our model. The e¤ects of social protection are large: volatility
falls more in response to a 4 percentage point decline in b than it does in response
to the elimination of labor market duality, and this stabilization is accompanied by
a decrease in mean unemployment of 2.25 percentage points.
Obviously, this does not imply that lowering social protection would increase so-

cial welfare. A high level of b means that workers su¤er less from unemployment;
this is part of the reason it leads to higher and more volatile unemployment in equi-
librium. A welfare analysis which would weigh the bene�ts of this protection against
its cost in terms of unemployment is beyond the scope of this paper. But the high
level of social protection does help us understand the remarkable lack of political
pressure for reform in the face of unemployment rates rarely experienced by other
developed economies. Unfortunately, the increased expenditure and decreased em-
ployment, productivity, and taxes implied by this protection represent a substantial
threat to the public �nances in the not-too-distant future.
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1 Appendix: Analyzing the surplus functions

Here we generalize the analysis of the surplus functions from Section 4 to allow for
N possible aggregate states yi. Following Costain and Jansen (2009), we describe
a numerical method to calculate the slope on each interval and the jumps between
intervals when the number and ordering of intervals is arbitrary.

1.1 Partitioning the productivity space

The Bellman equations (17)-(18) that de�ne the surplus functions are continuous
and di¤erentiable at most but not all points. There are sudden changes in the
form of equation (17) at points z = RCi and z = RTi , and in equation (18) at
the points RPi , for i 2 f1; 2; :::; Ng. Therefore, as in Prop. 8, it is convenient to
analyze the surplus equations separately on each interval de�ned by two consecutive
reservation thresholds. There are N thresholds of each type, so the whole support of
the productivity distribution can be broken into 3N+1 relevant intervals bounded by
reservation thresholds or by the lowest and highest possible values of z. Numbering
backwards, we can list all the thresholds as

r3N � r3N�1 � r3N�2 � ::: � r2 � r1

where for each j 2 f1; 2; :::; 3Ng, rj = Rak, with a 2 fT;C; Pg and k 2 f1; 2; :::; Ng.
Then the typical interval takes the form

Ij = [rj; rj�1)
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where rj and rj�1 are both reservation productivities.
If we then de�ne r3N+1 = 0 and r0 =1, then the full set of relevant intervals is

I3N+1 = [r3N+1; r3N) = [0; R
P
N)

:::

Ij = [rj; rj�1)

:::

I = [r1; r0] = [R
C
1 ;1)

Note that we have not ruled out the possibility that two or more reservation produc-
tivities might coincide, rj = rj�1; in this case interval Ij, by de�nition, is empty.
Without loss of generality, we de�ne surplus to zero in the intervals where jobs

separate. That is, ST (z; y) = 0 for z < RT (y), and SP (z; y) = 0 for z < RP (y). We
now investigate what we can learn from the Bellman equations (17) and (18) in the
intervals where jobs continue.

1.2 Surplus slopes

On each of the intervals Ij = [rj; rj�1), the surplus functions are continuously di¤er-
entiable. Di¤erentiating both sides of (18), we obtain

(r + �+ �+ �)
@SP

@z
(z; y) = 1 + �

X
y0:RP (y0)�z

My0jy
@SP

@z
(z; y0) (33)

Notice that this equation does not depend on z except insofar as it varies from one
interval to another. Therefore, for concise notation, we write the slope of the surplus
function for permanent jobs in state yi in interval Ij as �Pij � @

@z
SP (z; yi); z 2 Ij, so

(33) can be rewritten as

�Pij = (r + �+ �+ �)�1

241 + � X
k:RPk �rj

Mykjyi�
P
ik

35 (34)

The terms that appear on the right-hand side of this equation involve all the slopes
@SP

@z
(z; yk) associated with states yk which continue in interval Ij� that is, all the k

satisfying RP (yk) � rj. But these are exactly the same slopes that are determined by
(34)� we use (34) to calculate �Pij for each i satisfying R

P (yi) � rj. Therefore (34)
gives us the right number of equations and unknowns to determine all the nonzero
slopes �Pij associated with interval Ij.
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Similarly, di¤erentiating both sides of (17), we obtain

(r + �+ �+ � + �)
@ST

@z
(z; y) = 1+�1(z � RC(y))@S

P

@z
(z; y)+�

X
y0:RT (y0)�z

My0jy
@ST

@z
(z; y0)

(35)
De�ning �Tij � @

@z
ST (z; yi); z 2 Ij, we can rewrite this as

�Tij = (r + �+ �+ � + �)�1

241 + �1(rj � RCi )�Pij + � X
k:RTk�rj

Mykjyi�
T
kj

35 (36)

Equation (36), gives us the right number of equations and unknowns to determine
all the nonzero slopes �Tij associated with interval Ij, just as (34) did for the slopes
�Pij. In fact, these equation systems tightly bound the slopes of the surplus functions:

Lemma 9 For z > RP (y), the surplus function for permanent contracts SP (z; y) is
strictly increasing in z. At any z that is not a permanent �ring threshold (z 6= RP (yj)
for j 2 f1; 2; :::; Ng), the z-derivative of SP (z; y) is well-de�ned, satisfying

1

r + �+ �+ �
� @

@z
SP (z; y) � 1

r + �+ �
: (37)

For z > RT (y), the surplus function for temporary contracts ST (z; y) is strictly
increasing in z. At any z that is not a reservation threshold (z 6= Ri(yj) for i 2
fT;C; Pg and j 2 f1; 2; :::; Ng), the z-derivative of ST (z; y) is well-de�ned, satisfying

1

r + �+ � + �+ �
� @

@z
ST (z; y) � 1

r + �+ � + �

�
1 +

�

r + �+ �

�
: (38)

Proof. Systems (34) is a linear equation system, involving equal numbers of
equations and unknowns. More precisely, it can be viewed as a �xed point prob-
lem involving one equation for each of the slopes �Pij associated with states yi sat-
isfying RP (yi) � rj. Note that the Markov property of matrix M implies thatP

k:RP (yk)�rjMykjyi � 1. Given this fact, it is easy to verify that the mapping de�ned
by (33) satis�es Blackwell�s monotonicity and discounting conditions, with discount
factor �

r+�+�+�
. Therefore the mapping is a contraction, and has a unique �xed point.

Let cj be a vector of ones with length equal to the number of states yi satisfying
RP (yi) � rj. If we apply mapping (33) to the vector vj � (r+�+�)�1cj, the resulting
vector is less than or equal to vj. Likewise, if we apply (33) to vj � (r+�+�+�)�1cj,
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the resulting vector is greater than or equal to vj. Therefore the �xed point of (33)
lies between vj and vj. We therefore conclude that for any z > R

P (y) which is not
a reservation threshold, the slope of SP is exists and satis�es (37).
The same argument can be used to bound the slopes �Tij determined by (36),

taking as given the slopes �Pij.
QED.

1.3 Surplus jumps

While the surplus functions are continuously di¤erentiable inside the intervals Ij,
new terms come into play on the right-hand sides of (17) and (18) as we pass from
one interval to the next, which means the surplus functions may be discountinuous
at the reservation productivities. To be precise, if we de�ne

�(z; y) � lim
dz!0

�
ST (z + dz; y)� ST (z � dz; y)

�
;

then �(z; y) is zero at all points that are not reservation thresholds.
The Bellman equation for the surplus of permanent jobs, (18), shows new terms

that enter at the thresholds RP (y). However, because of the equilibrium condition
SP (RP (y); y) = 0 (and the fact that we de�ne SP (z; y) = 0 for z < RP (y)), these new
terms do not generate discontinuities at RP (y). Therefore, the surplus of permanent
jobs, SP , is a continuous function of z.
Likewise, the Bellman equation for the surplus of temporary jobs, (17), looks

like it might be discontinuous at the thresholds RT (y), but actually there is no
discontinuity at these points because of the equilibrium condition ST (RT (y); y) = 0.
On the other hand, discontinuities do arise in ST at the points z = RC(y0) for

y0 � y. To show this, we can use Bellman equation (17) to calculate the jump at any
z. Since SP (z; y) is itself a continuous function, we have

(r + �+ �+ � + �)�(z; y)� �
X

y0:RT (y0)�z

My0jy�(z; y
0) =

= � lim
dz!0

�
1(z + dz � RC(y))

�
SP (z + dz; y)� F

�
� 1(z � dz � RC(y))

�
SP (z � dz; y)� F

�	
= � lim

dz!0

�
1(z + dz � RC(y))� 1(z � dz � RC(y))

	 �
SP (z; y)� F

�
= �

�
1(z = RC(y))

	 �
SP (z; y)� F

�
= �

�
1(z = RC(y))

	 �

1� �F
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To calculate all the jumps at point RCi , we can therefore calculate

�(RCi ; yj) = (r + �+ �+ � + �)�1

24 ��

1� �F + �
X

yk:R
T
k�RCi

Mykjyj�(R
C
i ; yk)

35 (39)

which is a system of equations only involving the jumps at z = RCi . It is a system
of equations involving the unknown jumps �(RCi ; yk) in the surplus functions of all
states k such that RTk � RCi . There is one equation for each of these unknowns, so
there is a unique solution.
Moreover, like the equations (34) and (36) that determined the slopes, (39) can be

regarded as a �xed point operator which satis�es the contraction property. Therefore
we can bound the jumps as follows.

Lemma 10 For each y, the surplus function for permanent contracts SP (z; y) is a
continuous function, which equals 0 at z � RP (y). For each y, the surplus function
for temporary contracts ST (z; y) equals 0 at z � RT (y). For z > RT (y) it is strictly
increasing in z. Furthermore, at any z that is not a promotion threshold (z 6= RC(yj)
for j 2 f1; 2; :::; Ng), ST (z; y) is a continuous function. At the promotion thresholds,
it jumps up by a nonnegative amount �(RC(yj); yi), given by (39), bounded by

1

r + �+ � + �+ �

�
��F

1� �

�
� �(RC(yj); yi) �

1

r + �+ � + �

�
��F

1� �

�
: (40)

We omit the proof of Lemma 10, because it is essentially the same as that of
Lemma 9.

1.4 Monotonicity with respect to y

Lemma 11 Holding �xed the aggregate equilibrium �(y), for a given worker-�rm pair
there exist surplus functions ST and SP , and reservation thresholds RT , RC, and RP ,
that are Pareto optimal from the point of view of the pair. Moreover, if productivity
satis�es Assumption 1 and the aggregate equilibrium satis�es Assumption 5, then
ST (z; y) and SP (z; y) are both increasing in y.

Proof. This is just a restatement of Prop. 1 and Corollary 2 in Costain and
Jansen (2009).
They analyze the partial equilibrium decision of a matched pair� that is, the

choice of wages and reservation thresholds from the point of view of the pair, hold-
ing �xed tightness as a function of y in the rest of the economy. They write the
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pair�s surplus as a �xed point that takes as given the reservation thresholds, and
the reservation thresholds as a �xed point that takes as given the surplus. Following
Rustichini (1998), they use the monotonicity properties of the �xed point operators
to show that there exists an unambiguously lowest �xed point of the reservation
thresholds, corresponding to an unambiguously highest �xed point of the surplus
functions. The same method used in their paper is applicable here. In other words,
taking as given the behavior of the rest of the economy, there exists a reservation
strategy that causes the pair to continue in the largest possible set of states (x; y),
and thereby maximizes the surplus of the pair in all states (x; y), and is therefore
preferred by both the worker and the �rm.
Furthermore, assuming a �rst-order stochastic dominance property for y as in

Assumption 1, they show that if tightness satis�es Assumption 5, then surplus is
increasing in y.
QED.

Lemma 12 Let N = 2. Then Assumption 5 is satis�ed if dy � y2�y1 is su¢ ciently
small.

Proof. Here we assume dy � y2� y1 is small enough so that we can characterize
the how equilibrium changes when y changes by means of a linear approximation in
dy. We de�ne the following notation: d� = �2� �1 = �(y2)� �(y1), dRT = RT2 �RT1 ,
dRC = RC2 � RC1 , dRP = RP2 � RP1 , dST (z) = ST (z; y2) � ST (z; y1), dSP (z) =
SP (z; y2)�SP (z; y1). We will perform linear approximations around the mean value
of y, which we call Ey.
We are assuming a non-negligible �ring cost F , but arbitrarily small variation

dy. We have proved earlier that for each i, RPi � RTi � RCi . The di¤erences dR
T ,

dRT , and dRT must be of order dy, which is arbitrarily small, so we conclude that
both RP1 and R

P
2 are less than R

T
1 and R

T
2 , which are both less than R

C
1 and R

C
2 .

However, we do not yet know the order of each pair of reservation productivities, so
sometimes we will use the notation RTmax = max

�
RT2 ; R

T
1

	
, RTmin = min

�
RT2 ; R

T
1

	
,

and analogous notation for RC and RP .
It is easy to prove15 that SP (z; y2) and SP (z; y1) are parallel above RPmax, with

slope (r + � + �)�1. Likewise, ST (z; y2) and ST (z; y1) are parallel in the interval
(RTmax; R

C
min), with slope (r + � + � + �)

�1, and they are again parallel above RCmax,
with slope (r + �+ �)�1.

15Di¤erentiate the Bellman equation for SP , then guess that the slopes of SP (z; y2) and SP (z; y1)
are equal. The guess is immediately veri�ed, and we can solve for the slope.
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The zero-pro�t condition implies the following identity:

�c�(y)

1� � = �p(�(y))

1Z
RT (y)

ST (z; y)dG(z) = �p(�(y))

1Z
RTmax

ST (z; y)dG(z) +O(dy2)

Note that the integral

RTmaxZ
RTmin

ST (z; y)dG(z) represents the area of a triangle with base

and height both of order O(dy), so the integral itself is of order O(dy2) and can be
ignored. Linearizing and simplifying, we obtain

�c

1� �d� =
�p

�

Z
RT

dST (z)dG(z) +O(dy2) (41)

Here p represents p(�(y)) evaluated at Ey, and � is the elasticity of the matching
function with respect to unemployment. For concise notation, we have suppressed the
upper index of integration, and we have written the lower index without specifying
exactly which RT is meant, because up to a linear approximation integrating from
RTmin or R

T
max or R

T (�(Ey)) is equivalent.
Above RPmax, S

P (z; y2) and SP (z; y1) are parallel, so their di¤erence is a constant
which we will simply call dSP . To calculate dSP , we evaluate the Bellman equation
(18) at (RP2 ; y2) and at (R

P
1 ; y1), where S

P is zero:

0 = RP2 +y2�b+(r+�)F�
�c�2
1� �+�

Z
RP2

SP (z; y2)dG(z)+�1j21(R
P
2 � RP1 )SP (RP2 ; y1)+O(dy2)

0 = RP1 +y1�b+(r+�)F�
�c�1
1� �+�

Z
RP1

SP (z; y1)dG(z)+�2j11(R
P
1 � RP2 )SP (RP1 ; y2)+O(dy2)

Subtracting these two equations, and moving dR to the left-hand side of the equation,
we obtain

�dR = dy� �c

1� �d�+�(1�G(R
P ))dSP+�1j21(dR � 0)SP (RP2 ; y1)��2j11(dR � 0)SP (RP1 ; y2)+O(dy2)

(42)
Now, consider the surplus equation 18 on the interval (RPmin; R

P
max). If R

P
1 > RP2 ,

that is, dR < 0, which is the case we intuitively expect, then SP (z; y2) is increasing
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from zero on (RPmin; R
P
max), with slope (r + � + � + �1j2)

�1. The geometry of this
case requires dSP = �(r + � + � + �1j2)�1dR > 0. If we instead consider the
counterintuitive case dR > 0, then SP (z; y1) is increasing from zero on (RPmin; R

P
max),

with slope (r+ �+ �+ �2j1)
�1. In this case, dSP = �(r+ �+ �+ �2j1)�1dR < 0. In

both cases, if we eliminate dR from (42) and simplify, we obtain

(r + �+ �G(RP ) + �)dSP = dy � �c

1� �d� +O(dy
2) (43)

In order to complete our calculations, we will need to integrate
R
RT
dST (z)dG(z),

which requires us to know how dST varies with z. More precisely, since we know
some intervals where the ST functions are parallel, we can break the integral into
smaller pieces as follows:

(G(RCmin)�G(RTmax))dST (RTmax)+(G(RCmax)�G(RCmin))
�
dST (RCmin) +O(dy)

�
+(1�G(RCmax))dST (RCmax)+O(dy2)

(44)
We can evaluate dST at the most important points by following the same method

we used to derive (43). First, consider dST (RTmax), which is the distance between
ST (z; y2) and ST (z; y1) on the interval (RTmax; R

C
min) where they are parallel. We

can calculate dST (RTmax) by evaluating the Bellman equation (17) at (R
T
2 ; y2) and at

(RT1 ; y1), where S
T is zero, then subtracting and simplifying as before. The result is

(r + �+ �+ � + �)dST (RTmax) = dy �
�c

1� �d� + �
Z
RT

dST (z)dG(z) +O(dy2) (45)

Note that the �rst two terms are just (r + �+ �G(RP ) + �)dSP .
Next, consider dST (RCmax), which is the distance between S

T (z; y2) and ST (z; y1)
on the interval (RCmax;1) where they are again parallel. We can calculate dST (RCmax)
by evaluating the Bellman equation (17) at (RCmax; y2) and at (R

C
max; y1), then sub-

tracting and simplifying. The result is

(r+�+�+�+�1j2+�2j1)dS
T (RCmax) = dy�

�c

1� �d�+�
Z
RT

dST (z)dG(z)+�dSP+O(dy2)

(46)
Again, the �rst two terms are just (r + �+ �G(RP ) + �)dSP .
Finally, we can calculate dST (RCmin) by evaluating the Bellman equation (17)

at (RCmin; y2) and at (R
C
min; y1), then subtracting and simplifying. To simplify, we

use the optimal promotion equation SP (RCi ; yi) = F=(1 � �). This implies that
sign(dRC) = �sign(dSP ) = sign(dRP ). We obtain

(r + �+ �+ � + �1j2 + �2j1)dS
T (RCmin) = sign(dS

P ) � ��F
1� � +O(dy) (47)
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Notice that since (G(RCmax)�G(RCmin)) is of order O(dy), the zero-order approxima-
tion of dST on (RCmin; R

C
max) given in (47) su¢ ces in order to calculate the second

term in (44) with an error of order O(dy2).
We can now use (45)-(47) to evaluate dST in the three terms of (44). We obtain

an equation of the formZ
RT
dST (z)dG(z) = C1dS

P + C2sign(dS
P ) + C3

Z
RT
dST (z)dG(z) (48)

where C1 > 0, C2 > 0, and 0 < C3 < 1. Therefore sign
�R
RT
dST (z)dG(z)

�
=

sign(dSP ).
Now �nally consider what we have learned about the sign of dSP and the other

di¤erentials. From (43) we have sign(dSP ) = sign
�
dy � �c

1��d�
�
. Thus, suppose for

a moment that Assumption 5 is not satis�ed. In this case, we have 0 < dy < �c
1��d�,

and therefore dSP < 0. From (48), we then have
R
RT
dST (z)dG(z) < 0. But by (41),

we have sign(d�) = sign
�R
RT
dST (z)dG(z)

�
. This is a contradiction.

Equilibrium therefore requires that Assumption 5 be satis�ed: �c
1��d� < dy.

In this case, we �nd sign(dSP ) = sign
�R
RT
dST (z)dG(z)

�
= sign(d�) > 0, and

sign(dRP ) = sign(dRC) = sign(dRT ) < 0, as we intuitively expect.
QED.
Proof of Lemmas 3 and 6. Together, Lemmas 9 and 10 imply that the

surplus functions are increasing in z. Lemma 11 implies that the surplus functions
are increasing in y, as long as Assumption 5 is satis�ed. Lemma 12 shows su¢ cient
conditions under which Assumption 5 is satis�ed.
QED.
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