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1 Introduction

Economically grounded models of asset pricing feature a role for information and risk as a de-
vice for explaining heterogeneity in asset values, including dividend price ratios and returns.
Much of the applied time series research in the past has questioned the empirical relevance
of risk identified from economic aggregates such as consumption. Recently, however, this has
changed. Several investigations have documented at least a qualitative role for uncertainty
about consumption and other macroeconomic aggregates in explaining heterogeneity in asset
values. Much of the supporting evidence relies on statistical models of low frequency or long
run growth rate uncertainty in consumption and financial cash flows.

Our paper aims to explore the resulting empirical challenges. How sensitive are risk-
measures to details in the specification of the time series evolution? How accurately can we
measure these components? When should we expect these components to play a fundamental
role in valuation? To address these questions we are compelled to address formally the role
of specification, measurement and pricing theory in quantifying risk.

We find it most valuable to address these issues in the context of a well specified, albeit
highly stylized, model. Following Epstein and Zin (1989b), Weil (1990), Tallarini (1998),
Bansal and Yaron (2004), and many others we use a recursive utility framework of Kreps
and Porteus (1978). For these preferences, the intertemporal composition of risk matters
to the decision maker. Risk cannot simply be reduced or averaged out. Instead the timing
of when information is revealed about intertemporal consumption lotteries matters in the
implied preference ordering. As emphasized by Epstein and Zin (1989b), these preferences
also offer a convenient and appealing way to break the preference link between risk aversion
and intertemporal substitution. As featured by Bansal and Yaron (2004) long run risk
components can amplify the risk premia in security market prices. Using these preferences
to model investors in equilibrium pricing models, requires measuring how consumption risk
unfolds over time.

While we focus on a recursive utility specification, the intertemporal timing of risk matters
in other models as well, including models that feature habit persistence (e.g. Constantinides
(1990), Heaton (1995), and Sundaresan (1989)) and models of staggered decision-making
(e.g. see Lynch (1996) and Gabaix and Laibson (2002).)

In this paper we study the intertemporal composition risk using (log) linear vector au-
toregressive (VAR) models of consumption and cash flows. These models are designed to
accommodate transient dynamics in a flexible way. They are convenient time series models
that allow us to explore the statistical accuracy of the risk measurements along with the
sensitivity of these measurements to changes in the model specification. By using an ex-
plicit model of investor preferences, we are able to evaluate the economic importance of the
statistical and model specification uncertainty confronted by an econometrician. The focus
on long-run risk stretches these methods beyond their ability to capture transient dynamics.
Risk measurements can depend on the the extent to which the growth properties of alterna-
tive time series such as consumption and financial cash flows are explicitly linked. Growth
restrictions can alter the implied riskiness over long time horizons in ways that are economi-



cally important. As a consequence, the flexibility of vector autoregressive methods does not
necessarily extend to the measuring long run risk. This paper provides an examination of
the sensitivity to estimation and model uncertainty confronted in econometrics.

For our sensitivity analysis of VAR’s to have economic meaning, we are led to suggest
and apply two other methods in our analysis. The first method is an expansion of the
equilibrium prices in the intertermporal substitution parameter. We use this expansion to
study the pricing implications of Kreps and Porteus (1978) preferences over intertemporal
consumption lotteries. This expansion applies and extends an approach suggested by Kogan
and Uppal (2001). It is related to but distinct from the log-linear approximations commonly
used in the asset pricing literature.

The second method characterizes formally long run cash flow risk by exploiting a math-
ematical formulation of pricing developed in Hansen and Scheinkman (2003). This method
is model based and computes a long run dominant pricing component for cash flows that
grow stochastically. This pricing component dominates as the initial cash flow payments
are stripped from the security, leaving only the tail payoffs to be valued. It isolates value
movements due to cash-flow riskiness far into the future and it allows us to ascertain what
model ingredients have important influences on the valuation of riskiness.

In section 2 we study a familiar model of asset prices to show why the intertempo-
ral composition of risk might matter to an investor. This model illustrates why long run
consumption risk might matter. We also develop a general approximation to the model’s
solution. In section 3 we identify several important aggregate shocks that affect long run
consumption. The implications of the these shocks for wealth and risk prices is also exam-
ined. Section 4 develops a notion of risk based on the low frequency properties of cash flows
and consumption. Starting with the assumption of cointegration between cash flows and
consumption we construct a decomposition of security prices that displays the contribution
of long-run risk to returns and prices. In section 5 we provide statistical evidence for the
long-run relationship between consumption and the dividends of portfolios of stocks. Section
6 includes portfolio prices in the analysis and section 7 concludes.

2 Asset Pricing

Models of asset pricing link investor preferences and opportunities to deduce equilibrium
relations for returns and prices. These models explain return heterogeneity by the exis-
tence of risk premia. Investors require larger expected returns as compensation for holding
riskier portfolios. Alternative asset pricing models imply alternative risk-return tradeoffs.
Equivalently [e.g, see Hansen and Richard (1987)] they imply an explicit model of stochastic
discount factors, the market determined variables S, , used by investors to value one-period
and hence multiple period assets.

There remains considerable controversy within the asset pricing literature about the
feasibility of constructing an economically meaningful model of stochastic discount factors
and hence risk premia. Nevertheless in this section we find it useful to consider one such
model that, by design, leads to tractable restrictions on economic time series. This model is



rich enough to help us examine return heterogeneity as it relates to risk and to understand
better the intertemporal values of equity.

2.1 Preferences

We follow Epstein and Zin (1989b) Weil (1990) by depicting preferences recursively. As we
show below, this model of preferences provides a simple justification for examining a long-
run relationship between consumption and returns. In addition it provides a convenient
separation between risk aversion and the elasticity of intertemporal substitution [see Epstein
and Zin (1989b)]. This separation allows us to examine the effects of changing risk exposure
with modest consequences for the risk-free rate. Many of the measurement challenges that
emerge in this economic model carry over to others as well, including any model that features
the intertemporal composition of risk, including models in which investor preferences display
intertemporal complementarity or “habit persistence.”
In our specification of these preferences, we use a CES recursion:

Vi = [(1= ) (C)"™" + BRy(Vear) 7] 77 (1)

The random variable V;; is the continuation value of a consumption plan from time ¢ + 1
forward. The recursion incorporates the current period consumption C; and makes a risk
adjustment R;(V;41) to the date ¢t + 1 continuation value. We use a CES specification for
this risk adjustment as well:

Ru(Visa) = [E (Vi)™ 15] ™

where F; is the current period information set. The outcome of the recursion is to assign a
continuation value V; at date t.

The parameter 1 is a measure of the intertemporal substitution implied by the prefer-
ences. A measure of risk aversion depends on the details of the gamble being considered.
As featured by Kreps and Porteus (1978), preferences like these relax the restriction that
intertemporal compound lotteries can be reduced by simply integrating out the uncertainty
conditioned on current information. Instead the intertemporal composition of risk mat-
ters. As we will see, this will be reflected explicitly in the equilibrium asset prices that we
characterize. On the other hand, the aversion to simple wealth gambles is given by 6.

Under a Cobb-Douglas specification (p = 1), recursion (1) becomes:
V= (C)" I Ru(Viin)”.

In what follows, the p = 1 will receive special attention because of its analytical tractability.
To include stochastic growth in consumption we study an alternative recursion that scales
continuation values by consumption:

Vi _
C,

(1—6)+5Rt<
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Since consumption and continuation values are positive, we find it convenient to work with
logarithms instead. Let v; denote the logarithm of the continuation value relative to the
logarithm of consumption, and let ¢; denote the logarithm of consumption. We rewrite
recursion (1) as

1

vy = log ((1 —8) + Bexp[(1 = p) Qe(ver1 + cry1 — c)]) (2)

where 9, is the so-called risk-sensitive recursion:

Qi(vr41) = log E (exp [(1 = O)vepa] | F2) -

1-0
(See Hansen and Sargent (1995) and Tallarini (1998) the relations they show to the risk
sensitive control literature.) The risk sensitive recursion is convenient for our subsequent
characterizations.

2.2 Shadow Valuation

Consider the shadow valuation of a given consumption process. The utility recursion gives
rise to a corresponding valuation recursion and implies stochastic discount factors used to
represent this valuation. In light of the intertemporal budget constraint, the valuation of
consumption in equilibrium coincides with wealth.

The first utility recursion (1) is homogeneous of degree one in consumption and the future
continuation utility. Use Euler’s Theorem to write:

Vi = (MCy)Cy + E[(MVig1)Viga|F (3)
where

MCy = (1—-p8)(Vi) (Cy)*
MV = BV [Re(Virr))" ™ (Vi) ™*

The right-hand side of (3) measures the shadow value of consumption today and the contin-
uation value of utility tomorrow.

Let consumption be numeraire, and suppose for the moment that we value claims to the
future continuation value V;; as a substitute for future consumption processes. Divide both
sides of (3) by MC} and use marginal rates of substitution to compute shadow values. The

shadow value of a claim to a continuation value is priced using Aﬁ/}; L as a stochastic discount
factor. A claim to next period’s consumption is valued using
- -6
g MV, MCyyy 3 (Ct+1> g ( Vit )p (4)
t+1,t — = A~ ~ - v\
MC Ci Ri(Vis1)

as a stochastic discount factor. There are two contribution (typically highly correlated) con-
tributions to the stochastic discount factor in formula (4). One is the direct consumption
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growth contribution familiar from the Lucas (1978) and Breeden (1979) model of asset pric-
ing. The other is the continuation value relative to its risk adjustment. The contribution is
forward-looking and is present provided that p and 6 differ.

Given the homogeneity in the recursion used to depict preferences, equilibrium wealth

is given by W, = —A-. Substituting for the marginal utility of consumption, the wealth-

MCy*
We 1 (V)T
¢ 1-8\¢)

consumption ratio is:
log Wy —log Gy = —log(1 = ) + (1 = p)u

Taking logarithms, we find that

When p = 1 we obtain the well known result that the wealth consumption ratio is constant.

A challenge in using this model empirically is to measure the continuation value, V1,
which is linked to future consumption via the recursion (1). One approach is to use the
relationship between wealth and the continuation value, W; = V;/MC}, to construct a rep-
resentation of the stochastic discount factor based on consumption growth and the return
to a claim on future wealth. In general this return is unobservable. An aggregate stock
market return is sometimes used to proxy for this return as in Epstein and Zin (1989a), for
example; or other components can be included such as human capital with assigned mar-
ket or shadow values. In addition to requiring the use of a market measure of wealth, this
approach precludes the special case in which p = 1. Since the consumption wealth ratio is
constant when p = 1, we cannot infer the continuation value from wealth and consumption.
Moreover, when p is close to one any volatility in the stochastic discount factor attributed
to wealth should also be reflected in consumption volatility. This implication is typically
ignored even when consumption and wealth are used simultaneously.

In this investigation, like that of Restoy and Weil (1998), we maintain the direct link
between the continuation value V; stochastic process governing future consumption. In the
case of logarithmic intertemporal preferences the link between future consumption and the
continuation value easily can be calculated as we demonstrate in the next section. It is
well understood that p = 1 leads to substantial simplification in the equilibrium prices and
returns (e.g. see Schroder and Skiadas (1999).)

Approximate characterization of equilibrium pricing for recursive utility have been pro-
duced by Campbell (1994) and Restoy and Weil (1998). In what follows we use a distinct
but related approach. While Campbell (1994) and Restoy and Weil (1998) use log-linear
approximation of budget constraints, we follow Kogan and Uppal (2001) by approximating
around an explicit equilibrium computed when p = 1. Our approximation is in the pa-
rameter p.! Campbell and Viceira (2002) (chapter 5) show the close connection between

IStrictly speaking, p = 1 is ruled out in the parameterization considered by Restoy and Weil (1998)
including the return-based Euler equation exploited in their calculations. The economy we study is different
from that Kogan and Uppal (2001), but they suggest that extensions in the directions that interest us would
be fruitful.



approximation around the utility parameter p = 1 and approximation around a constant
consumption-wealth ratio for portfolio problems. Chacko and Viceira (2003) apply these
approximation methods to portfolio problems with incomplete markets.

Our application in what follows is to the study of a simple model of equilibrium price de-
termination. We find some useful and intriguing contrasts between approximation methods.
There are interesting differences in the implied risk prices and the implied consumption-
wealth ratios. Before turning to these, we consider the special case in which p = 1.

2.3 The special case in which p =1

As in many papers in asset pricing, we use a p = 1 specification as a convenient benchmark.
Campbell (1996) argues for less intertemporal substitution and Bansal and Yaron (2004)
assume more. We will explore such deviations subsequently. The p = 1 is convenient for
our purposes because when consumption has a log linear time series evolution, we can solve
the for the continuation value. This feature gives us the flexibility to include important low
frequency time series components in the model solution.

The p = 1 limit in recursion (2) for continuation values:

vy = BQu(Veg1 + g1 — ). (5)

The stochastic discount factor in this special case is:

C Vi)
Sty =0 (Cttl) (Vis) ] )
+

Ri(Vigr)—?
Notice that the term associated with the risk-adjustment satisfies

(Vigr)' ™

Bl
Rt(VtH)l_e

-

and can thus be thought of as distorting the probability distribution. As is familiar for
logarithmic preferences, consumption and wealth are proportional.?

Recursion (5) was used by Tallarini (1998) in his study of risk sensitive business cycles.
An important limiting case occurs when 6 = 1. In this case preferences are logarithmic and
separable over time and states of the world with discount factor f3.

To make our formula for the marginal rate of substitution operational, we need a for-
mula for Vi, computed using the equilibrium consumption process. Suppose that the first-
difference of the logarithm of equilibrium consumption has a moving-average representation:

e — -1 = Y(L)wy + e

2The constancy of the consumption-wealth when p = 1 prevents our use of this model to interpret directly
the findings of Lettau and Ludvigson (2001b) and Lettau and Ludvigson (2001a).



where {w,} is a vector, 7id standard normal process and

z) =) 7
=0

where v; is a row vector and
o0

>yl < o

=0
This linear times series representation is adopted to help us interpret some of the time series
evidence that we will discuss subsequently. Log-linear approximations are often used in
macroeconomic modelling, although in what follows we will take the log-linear specification
as being correct.

Guess a solution:
vy = v(L)wy + py.

Rewrite recursion (5) as:

g
1—6

Vs =

log E' (exp [(1 = 0)(ve1 + ¢ — )] | F2) -

Thus v must solve:
zv(z) = Blv(z) — v(0) +(2) — (0)],
which in particular implies that

v(0) +7(0) = ~v(8).

Solving for v and p,:

_ 5 =1(B)
0 = IR
[y = %[uﬁ%v(ﬂ)-v(ﬁ)b

The formula v(z) is the solution to the forecasting problem:

v(L)wy =Y B E (e — crrjr — pel )

j=1

familiar from the rational expectations literature on the permanent income model of con-
sumption. The risk parameter 8 enters only the constant term of continuation value process.
The term ~(3), which enters the formulas for v and p, is the discounted impulse response of
consumption growth rate to a shock.



The logarithm of the stochastic discount factor can now be depicted as:

(1—0)*v(8) -~v(B)
2

Sip1e = 10g Spp1 = —0 — Y(L)wipr — pre + (1 = 0)y(B)wigr —

where = exp(—¢). The term v(8)w;;; is the solution to
(1=8) > F [E(cesslFisr) = ElcrlFo)].
=0

It is a geometric average of current and future consumption responses to a shock at a fixed
date (say date t 4 1). The discount factor dictates the importance of future responses in this
weighted average. As the subjective discount factor 3 tends to unity, v() converges to (1)
which is cumulative growth rate response or equivalently the limiting consumption response
in the infinite future.

The stochastic discount factor includes both the familiar contribution from contempo-
raneous consumption plus a forward-looking term that discounts the impulse responses for
consumption growth. The innovation to the logarithm s,;,; of the stochastic discount factor
is:

(=70 + (1 = O)v(B)]wiss,

which shows how a shock at date ¢ + 1 alters the stochastic discount factor. This term
determines the magnitude of the risk premium. For instance, the price of payoff ¢(w;4q) is
given by:

Blexpl(sis) o)l F] = B lexp(si)|F] = [ezp[iigéii(fé’f%i'ﬂ

= Elexp(se+1)]F] E [P(wirr)|F] -

The first term is pure discount term and the second the is the expectation of ¢(w;1) under
the so-called risk neutral probability distribution. The first term is:

(1—6)*v(8) - v(B)

log E [exp(s41)|F] = —0 — v (L)w; — 5

where .
(L) = Z%’HLj-
§=0
The innovation to the logarithm sy, of the stochastic discount factor:

[0 + (1 = 0)y(B)]wi

is the mean of the normally distributed shock w;,; under the risk-neutral distribution. The
covariance matrix remains an identity matrix. The adjustment —~, is familiar from the
paper Hansen and Singleton (1983) and the term (1 — 0)y(/) is the adjustment for the
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intertemporal composition of consumption risk implied by the Kreps and Porteus (1978)
specification of recursive utility. Large values of the risk parameter # enhance the importance
of this component. This latter effect is featured in the analysis of Bansal and Yaron (2004).3

Example 2.1. Suppose that consumption evolves according to:
Ciy1 — €t = e + Ue - Ty + YoWigr
where z; evolves according to first-order vector autoregression:
Ty = Gy + Hwg .

The matriz G has strictly stable eigenvalues (eigenvalues with absolute values that are strictly
less than one), and {w;y1 : t = 0,1,...} is iid normal with mean zero and covariance matrix
I. Then for j > 0,

Vi = Ué(Gj_l)Ha

and
vy =Uy, -2 + Hy
where
U, =B —G'B3)"'U.,
. B8 (1-9)
Mv_m Mc+ 9 7(&)7(6) )
and

v(B) = + BULI — GB) " H.

The logarithm of the stochastic discount factor is:

(1—0)*v(B) -v(B)
2

Sty1p = =0 — pte — Ue - @y — yowgr + (1 = 0)y(B)wisr —

This model presents a measurement challenge for an econometrician. More than just the
one-period response of consumption to underlying economic shocks matters. In addition the
discounted response of consumption in underlying economic shocks is what is required to
quantify the risk that matters to investors. For discount factors close to unity, this challenge
is known to be more acute.

While this model has a simple and usable characterization of how temporal dependence
in consumption growth alters risk premia, it has the counterfactual implication of risk premia
that are time invariant. Other authors, including Campbell and Cochrane (1999) argue that

3 Anderson, Hansen, and Sargent (2003) suggest a different interpretation for the parameter . Instead of
risk, this parameter may reflect model misspecification that investors confront by not knowing the precise
riskiness that they must confront in the marketplace. As argued by Anderson, Hansen, and Sargent (2003),
under this alternative interpretation, |(1 — 8)~v(5)| is measure of model misspecification that investors have
trouble disentangling because this misspecification is disguised by the underlying shocks that impinge on
investment opportunities.
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risk premia vary over the business cycle. Time varying risk premia could be added to the
model by allowing for stochastic variation in volatility as in Bansal and Yaron (2004). We
see no reason why this complexity, however, simplifies the measurement or approximation
problem.

Because of the logarithmic nature of preferences, wealth in this economy is proportional
to consumption
=1-3
As noted by Gibbons and Ferson (1985), we may use the return on the wealth portfolio as
a proxy for the consumption growth rate. In particular, the return on a claim to wealth is:

Wi

wo Wit - Cir1
t+1 —  BCy T .
—1_5 BC;

Thus
T = Ciy1 — ¢ — log B

This leads Campbell and Vuolteenaho (2003) and Campbell, Polk, and Vuolteenaho (2003)
to use a market wealth return as a proxy for consumption growth. With this proxy, these
papers take g to be the familiar (conditional) CAPM risk adjustment and (1 — 6)y(5) as
an additional adjustment where v is now measured using a market return.* In this paper
we instead follow Hansen and Singleton (1983), Restoy and Weil (1998), Bansal and Yaron
(2004) and others by focus on consumption dynamics. This justifies our interest in computing
continuation values for equilibrium consumption plans.

2.4 Intertemporal substitution (p # 1)

While p = 1 is a convenient benchmark, we are also interested in departures from this
specification. To assess these departures, we consider an expansion for the continuation
value around the point p = 1. Our aim is to compute a derivative Dv} to use in a first-order
approximation:

v, = vy + (p—1)Dv}

where v} is the continuation value for the case in which p = 1. In appendix 7, we derive the
following recursion for the derivative:

1— ) (v})? =
Dv; = _(1 =B + BE(Dv 1| F)
20
where E is the distorted expectation operator associated with the density

()"
E [(vz&kl)l_e |~7:t]

4Campbell and Vuolteenaho (2003) refer to this second term as the bad 3 term.
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For the log-normal model of consumption, this distorted expectation appends a mean to the
shock vector w;;1. The distorted distribution of w;,; remains normal, but instead of mean
zero, it has a risk adjusted mean of (1 — 6)v(3). The derivative Dv} is negative because it
is the (distorted) expectation of the sum of negative random variables.

When p is different from, the wealth-consumption ratio is not constant. A first-order
expansion of the continuation value implies a second-order expansion of the consumption-
wealth ratio. This can be seen directly from (2.2):

logW; —logCy = —log(1— )+ (1—p)[v; + (p— 1)Dv}]
= —log(1—p)—(p— v, — (p—1)°Du,.

The term v} is very similar (but not identical to) the term typically used when taking log-
linear approximations.® Recall that this term is the expected discounted value of consump-
tion growth with an additive term constant term that adjusts for variability. In the first-order
approximation of the wealth-consumption ratio, v} shows how the wealth-consumption ra-
tio is altered with the intertemporal substitution parameter p. When consumption growth
rates are predictable, growth rate forecasts alter the consumption-wealth ratio. Forecasts
that a geometric average of future consumption will be higher than average imply a higher
wealth-consumption ratio when p exceeds one and a lower one p is less than unity. In con-
trast, the risk parameter 6 alters the constant term in v}. This implication of intertemporal
substitution is familiar from previous literature (e.g. see Campbell (1996) and Restoy and
Weil (1998)). By construction, the second-order term adjusts the wealth consumption ratio
in a manner that is symmetric about p = 1. When p deviates from one, this second-order
correction is positive.
The corresponding expansion for the logarithm of the stochastic discount factor is:

o 1
i1, R S+ (P — 1) Dspyyy

where® .
Dstyr=vha = 5ol +(1-0) Doty — B (Dol |7) |

Recall that in Example 2.1, ¢; 1 —c¢; has conditional mean: pu.+U.x; and a shock contribu-
tion: yow;y 1. Using the parameterization, the logarithm of the continuation value/consumption
ratio is:

1
Vi = Uy g1 + e

5In log-linear approximation the discount rate in this approximation is linked to the mean of the wealth
consumption ratio. In the p expansion, the subjective rate of discount is used instead.

SThere are two ways we could use this formula to approximate one period pricing. We use
exp [si11,+ (p—1)Ds},, 4], as an approximate discount factor, but instead we could have used

eXp(3%+1,t) (14 (p— 1)D5%+1,t] .

The second approximation is not necessarily positive, but it produces the first-order expansion of the one-
period pricing operator.
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= U,/Hwi 1 + U/Gzy + .

In the appendix we show that

1
1 /
th+1 = —§$t+1 Td$t+1 + Ud . xt-{-l + Uqg

where formulas for the matrices T, and Uy are given in the appendix.

We can use this expansion to produce approximations to equilibrium prices. We com-
pute implied risk neutral prices as a way to characterize risk premia. The risk neutral
distribution alters the standard normal distribution for w;,;. In the example economy the
first-order approximation of the stochastic discount factor implies that the risk neutral dis-
tribution remains normal but with an enhanced covariance matrix and an alternative mean.
In a continuous-time approximation, only the mean adjustment is present. The first-order
expansion of the altered mean is:

=%+ (1 =0)7(8) + (p = D[H'Uy + (1 = 0)(Uyg — H'Y 4Gy)]. (6)

The term (p—1)(1 —0)(Uy— H'Y 4Gx;) is new relative to the more typical log-linear approx-
imation. It is time varying when p and 6 are distinct from unity. This is so even though the
consumption process in the example economy is homoskedastic.

3 Shocks and Vector Autoregressions

We use vector autoregressive (VAR) models to both identify interesting aggregate shocks
and to estimate y(L). As we discuss below we also use these methods to identify important
long-run risks. We consider a specification that is rich enough to allow experimentation with
different long-run assumptions and different variables that may be important in identifying
the long run consequences of macroeconomic shocks.

3.1 Identifying Aggregate Shocks

In our initial model we let consumption be the first element of y; and corporate earnings be
the second element:

This vector is presumed evolve as a VAR of order ¢. In the results reported subsequently,
¢ = 5. The least restrictive specification we consider is:

Aoy + A1yer + Asyp—o + . + Ay + By = wy (7)

The vector By two-dimensional, and similarly the square matrices A;,j = 1,2, ..., are two
by two. The shock vector w; has mean zero and covariance matrix I. We normalize Ay to
be lower triangular with positive entries on the diagonals. Form:

A(z) = Ag + Ajz 4 Ap2? + ... + A2
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We are interested in a specification in which A(z) is nonsingular for |z| < 1. Given this
model, the discounted response of consumption to shocks is given by:

v(B) = (1=BuAB)~ (8)

where u; is a column vector with a one in the first position and a zero in the second entry.

For our measure of aggregate consumption we use aggregate consumption of nondurables
and services taken from the National Income and Product Accounts. This measure is quar-
terly from 1947 Q1 to 2002 Q4, is in real terms and is seasonally adjusted. Our inclusion of
corporate earnings in the VAR is motivated by the work of Lettau and Ludvigson (2001b)
and Santos and Veronesi (2001). This variable is meant to capture aggregate exposure to
stock market cash flows. We measure corporate earnings from NIPA and convert this series
to real terms using the implicit price deflator for nondurables and services.

We consider two specifications of the evolution of y;. In one case the model is estimated
without additional restrictions, and in the other we restrict the matrix A(1) to have rank
one:

Ay =all —1].

where the column vector « is freely estimated. This parameterization imposes two restric-
tions on the A(1) matrix. We refer to the first specification as the without cointegration
model and second as the with cointegration model.

The second system imposes a unit root in consumption and earnings, but restricts these
series to grow together. In this system both series respond in the same way to shocks in
the long run. Specifically, the limiting response of consumption and earnings to a shock
at date 0 is the same. Since the cointegration relation we consider is prespecfied, the with
cointegration model can be estimated as a vector autoregression in the first-difference of the
log consumption and the difference between the log earnings and log consumption.

Our use of a second time series is to identify additional sources of long run risk beyond just
a single “consumption innovation.” Whereas Bansal and Yaron (2004) consider multivariate
specifications of consumption risk, they seek to infer this risk from a single aggregate time
series on consumption or aggregate dividends. With flexible dynamics, such a model is not
well identified from time series evidence. On the other hand, while our shock identification
allows for flexible dynamics, it requires that we specify a priori the important sources of
macroeconomic risk.

In our analysis, we will not be concerned with the usual shock identification familiar from
the literature on structural VAR’s (vector autoregressions). This literature is concerned with
the assignment of structural labels to the underlying shocks and imposes a priori restrictions
to make this assignment. While we have restricted C' to be lower triangular, we view this as a
normalization. This leads to the identification of two shocks, but other shock configurations
are constructed by taking linear combinations of the two shocks we identify. Sometimes we
will form the linear combination that captures fully the long-run contribution to consumption
and earnings variability. What interests us is the intertemporal composition of consumption
risk and not the precise labels attached to individual shocks.
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We report impulse responses for estimates of the VAR with and without the cointegra-
tion restriction in figure 1. When cointegration is imposed, corporate earnings relative to
consumption identifies an important long-run response to both shocks. The long run impact
of the first “consumption shock” is twice that of the impact on impulse. While on impact,
the second “earnings shock” is normalized to no impact on consumption, its long run impact
is sizeable. As demonstrated in the recursive utility model, the geometrically weighted av-
erage response of consumption to the underlying shocks is a key ingredient in the stochastic
discount factor. As the subjective discount rate converges to zero, this average coincides
with the limiting consumption response.

Notice from the impulse responses in figure 1, that when the cointegration restriction is
not imposed, the estimated long run consumption responses are substantially smaller. The
imposition of the cointegration restriction is critical to locating an important low frequency
component in consumption. Moreover, in the absence of this restriction, the overall feedback
from earnings shocks to consumption is substantially weakened. The earnings shocks have
little impact on consumption for the no cointegration specification.

Using the cointegration specification, we explore the statistical accuracy of the estimated
responses. Following suggestions of Sims and Zha (1999) and Zha (1999) we impose Box-
Tiao priors on the coefficients of each equation and simulate histograms for the parameter
estimates. This provides approximation for a Bayesian posterior with a relatively diffuse
(and improper) prior distribution. These “priors” are chosen for convenience, but they give
us a convenient way to depict the sampling uncertainty associated with the estimates.

In the model of Hansen and Singleton (1983), it is the immediate innovation in con-
sumption in consumption that matters for pricing one-period securities. Figure 2 gives a
histogram for the standard deviation of this estimate. In other words it gives the histogram
for the estimate of the (1,1) entry of Aj.

For comparison we also report the histogram for a long-run response. Both shocks have
long run consequences. Similar to Blanchard and Quah (1989), we construct a temporary
shock as a linear combination of the two original shocks that has no long run consequences.
Similarly, we define a permanent shock to the be orthogonal linear combination of shocks.
Mechanically we build an orthonormal matrix C' such that

lim (1 — ) (u1) A(B)Cuz = 0

where w5 is vector with a zero in the first position and a one in the second position. The
permanent shock is the first entry of Cw; and the transitory shock is the second entry of
this transformed shock vector. Figure 2 also gives a histogram for the long run consumption
response to a long run shock. The permanent shock is normalized to have unit standard
deviation, so that we can compare magnitudes across the long-run and short run responses.

As might be expected, the short run response is much more accurate than the long run
response. Notice that the horizontal scales of histogram differ by a factor of ten. In particu-
lar, while the long run response is centered at higher value and it also has a substantial right
tail. Consistent with impulse response functions, the median long-run response is about
double that of the short-term response, but in addition nontrivial probabilities are given to
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Figure 1: Impulse responses of consumption and earnings. The impulse responses without
imposing cointegration were constructed from a bivariate VAR with entries ¢;, ;. These
responses are given by the dashed lines — — —. Solid lines — are used to depict the
impulse responses estimated from a cointegrated system. The impulse response functions
are computed from a VAR with ¢; — ¢;_1 and ¢; — e; as time series components.
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substantially larger responses.” Thus from the standpoint of sampling accuracy, the long
run response could be even more than double that of the immediate consumption response.
Because discounted future consumption enters the pricing model this low-frequency compo-
nent of consumption is potentially important. For example, Bansal and Yaron (2004) argue
that this component of consumption is important for understanding the equity premium.

The cointegrated specification with a known cointegrating coefficient imposes a restriction
on the VAR. To explore the statistical plausibility of this restriction, we free up the cointe-
gration relation by allowing consumption and earnings to have different long run responses.
We introduce a freely estimated cointegrating coefficient A\, and explore the cointegrating
restriction A(1) = aF” where F' = [\ 1]. We concentrate the likelihood function by
doing a repeated maximization for each choice of parameter A\. The concentrated likelihood
function is reported in figure 3. We complement this calculation with a simulation of the
posterior distribution for the cointegrating coefficient imposing a Box-Tiao prior for each
VAR conditioned on the cointegrating coefficient. The resulting histogram is depicted in
figure 4. For sake of computation, we used a uniform prior over the interval [—2,2] for the
cointegrating coefficient. Both figures suggest that the “balanced growth” coefficient of unity
is plausible.

To explore more generally the cointegrating restriction, figure 5 compares the implied
spectral densities for growth rates when the cointegration restriction is imposed (with A = 1)
and when it is not. Under the cointegration restriction, there is an important low frequency
component to the consumption growth rate. The spectral densities in figure 5, however, are
very close except at a narrow frequency range, suggesting that these two models are hard to
distinguish on statistical grounds.®

3.2 Implications for Wealth and Risk Prices

The inclusion of corporate earnings in the cointegrated VAR for consumption appears to
identify an important long-run shock to consumption. There are issues with the statistical
reliability of the estimation of this effect, however. A potential avenue for improving the
inference can be found in the model of section 2. Here we consider the effects of the alternative
specifications for the dynamics of consumption as well as the importance of the expansion
of section 2.4.

First consider figure 6 which gives the fitted values for the equilibrium prices of the two
stocks as given by (6). This is based on the parameter estimates of the model of consumption
and corporate earnings with cointegration. For this example the utility function parameters

"The accuracy comparison could be anticipated in part from the literature on estimating linear time series
models using a finite autoregressive approximation to an infinite order model. The on impact response is
estimated at the parametric rate, but the long run response is estimated at a considerably slower rate that
depends on how the approximating lag length increases with sample size. Our histograms do not confront
the specification uncertainty associated with approximating an infinite order autoregression.

8The model with cointegration imposes two restrictions on the matrix A(1). Twice the likelihood ratio for
the two models is 5.9. As a consequence, the Bayesian information or Schwarz criterion selects the restricted
model, although it is hard to defend the formal use of this particular decision criterion.

17



Histogram for the Immediate Consumption Response
35 T T T T

251 b

15 h

0.5 b

0 0.002 0.004 0.006 0.008 0.01

Histogram for Long Run Consumption Response
14 T T T T

0 0.02 0.04 0.06 0.08 0.1

Figure 2: Approximate posterior distributions for responses. The top panel gives the ap-
proximate posterior for the immediate response to consumption and the bottom panel the
approximate posterior for the long-run response of consumption to the permanent shock.
The histograms have sixty bins with an average bin height of unity. They were constructed
using using Box-Tiao priors for each equation. Vertical axes are constructed so that on
average the histogram height is unity.
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Concentrated Likelihood:
Consumption—Earnings Cointegration
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Figure 3: This figure reports twice the concentrated conditional log-likelihood function con-
structed from a bivariate VAR with entries ¢;, ¢;. The horizontal axis is the value of the
cointegrating coefficient as it scales ¢;. The log-likelihood is depicted relative to an unre-
stricted log-level VAR. The maximum likelihood estimate is obtained by minimizing the
objective.
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Figure 4: Approximate posterior probabilities for the cointegrating coefficient.  Box-Tiao
priors are imposed on the regression coefficients and innovation variances conditioned on the
cointegrating coefficient. Posterior probabilities are computed by simulating from a Markov
chain constructed from the conditional likelihood function.
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were set at: 8 = 0.98/4, 0 = 20 and p = 1/1.5. The value of p is consistent with the
assumptions of Bansal and Yaron (2004) and others and implies in intertemporal elasticity
of substitution of 1.5.

Notice the dynamics of consumption along with our approximation imply substantial
variation in risk prices even though there the is no variation in the conditional volatility of
consumption. Our expansion of the model around the case of p = 1 explicitly allows for this
possibility.

The assumed dynamics of consumption are quite important, however. To see this, con-
sider figure 7 which gives the corresponding plot for the without cointegration case. In this
case the prices are essentially constant. There is some variability but when plotted on the
same scale as figure 6 these prices appear to be constant. These contrasting results under
the two specifications of the dynamics of consumption emphasize the potential importance
of long-run risk.

To further investigate the importance of the specification of consumption dynamics the
fitted values of the log wealth-consumption ratio for each model of consumption are plotted
in figure 8. Notice that without cointegration there is substantially less variation in the
wealth-consumption ratio. The second order terms in the expansion developed in section 2.4
are very important in producing the variation that is seen in figure 8. Without these terms
both plots in figure 8 show much less variation.

Although the estimated dynamics of consumption with cointegrated earnings produce
some variation in the consumption wealth ratio this variation is much too small if we were
to directly link stock market returns to the claim on consumption. The variation in W, /C;
is much smaller than the observed variation in the price dividend ratio from stock markets.
For this reason it is important to allow for a distinction between consumption and the cash
flows to holders of equity. In the next section we investigate the potential implications of
this distinction.

4 Long Run Cash Flow Risk

We have seen some evidence for an important long run component in consumption when
combined with the preference specification of section 2.1. We now investigate how long run
risk is encoded in asset prices where the long run dynamics of cash flows are not linked one
for one with consumption. Specifically, we consider when riskiness about long run cash flow
growth can have an important contribution to current value.

To think about this issue first consider a stationary Markov specification for {z;}, a
process used to depict the underlying valuation. The logarithm of consumption evolves
according to:

¢t — o1 = pe(Ti1) + 0c(Tim1) - wy.

This model nests the specifications we have considered so far as special cases.
Cash flows or dividends to risky securities are allowed to be “levered” claims on consump-
tion in the long run. Following Bansal, Dittmar, and Lundblad (2002), Lettau, Ludvigson,
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Figure 6: Fitted prices of the two shocks using the model with cointegration. The solid line

—— gives the price of the consumption shock (the first shock) and the dashed line — — — gives
the prices of the earnings shock (the second shock)
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Figure 7: Fitted prices of the two shocks using the model without cointegration. The solid
line — gives the price of the consumption shock (the first shock) and the dashed line — — —
gives the prices of the earnings shock (the second shock)
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Figure 8: Fitted log wealth-consumption ratio. The solid line — gives the values for the
model with cointegration and the dashed line — — — gives the values for the model without
cointegration.
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and Wachter (2004), and others, as an example we study the valuation of cash flows that
are cointegrated with consumption:

dt = )\Ct + Ct + ¢($t) (9)

where d; is the logarithm of the cash flow. Since the Markov process is stationary, growth
is governed by the parameter pair (A,(). For the time being we allow for nonlinearities
in the time series model, although in our computations we will revert to the log-linear
specification used previously. Also we will examine empirically other examples of the long-
run characteristics of cash flows.

To study the effects of our long-run specification of risk, we use eigenvalue methods. Prior
to developing these methods, consider a square matrix M raised to a power j. For simplicity
suppose the matrix has distinct eigenvalues, and write the eigenvalue decomposition as:

M =TAT!
where A is a diagonal matrix of eigenvalues. Then
M =TNT

Suppose that the largest eigenvalue in absolute value is positive, and call this eigenvalue
d. Then the sequence, {§ /A : j = 1,2,...} converges to a matrix of zeros except in one
position where there is a one. Thus

§IMI =T (5 AT

converges to a constant matrix as j gets arbitrarily large. The eigenvalue 0 determines
the asymptotic growth factor of the matrix sequence M7 and logd is the corresponding
asymptotic growth rate.

We use this same approach, but applied to operators. Markov valuation and conditional
expectation operators over multiple time intervals can be depicted as iterates of their single-
period counterparts. Logarithms of dominant eigenvalues give us a characterization of long-
run growth in values and expectations. In what follows, we construct the operators of interest
and apply them to characterize long-run behavior.

4.1 Operator Valuation
One counterpart to the matrix M, is a one-period valuation operator given by:
Prp(z) = E (exp [se11.6 + A (i1 — )] (g2 = 2) .

Formally, we view this operator as a mapping from L? into L? where L? is the space of (Borel
measurable) functions ¢ for which

E(z4)? < o0.
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This operator takes a payoff at date t + 1 of the form:

€xXp ()\Ct+1) ¢<5Ut+1)

and maps it into a price today scaled by exp(A¢;). Since payoffs and prices are scaled, the
valuation operator depends on the choice of A\ used in the scaling. Consistent with formula
(9), consumption provides the only source of growth in this specification.

Multi-period prices can be inferred from this one-period pricing operator through itera-
tion. The value of a date t + j cash flow:

exp [((t + J) + Acrrj] ¥(z145) (10)
is: ‘
exp [C(t +7) + Act] (Pr) ¢ ().
The notation (P,)’ denotes the application of the one-period valuation operator j times.
If we take this cash flow to be a dividend process, the date t price-dividend ratio is:
P 32 exp(C)) [(Pay ()]

E - V() ' (11)

The term .
exp(¢J) [(Pa) ¢ ()]

Y(x4)

is the contribution of the date t + j derivative to the price-dividend ratio, and the price-
dividend ratio adds over these objects. Computing these individual terms gives a value
decomposition of the price-dividend ratio by time horizon.

Since we allow for the growth rates in the cash flows to vary over time, we shall also
have need to define operators that we use to measure these rates and the limiting growth
behavior. Let

(12)

Gap(x) = E(exp [A (ce1 — )| ¥(Tes1) |2 = @) .

By iterating on this growth operator, we can study expected cash flow growth over multi-
period horizons. In particular, the expected value of the cash flow (10):

exp [C(t +7) + Act] (Gn) ().

4.2 Limiting Behavior

For positive cash flows we can characterize the limiting or tail contribution by studying the

limit: _ A
1 1 J 1 J
i Liog [SRCD PV _ 1 log [(P) )
i=% ] Y(x) j—o0 J
which will depend on A but often not depend on . This calculation gives us an asymptotic
decay rate that depends on both cash flow growth through its dependence on A and ¢ and on
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the economic value associated with that growth. It measures how long-run prospects about
dividends contribute to the value.
Analogously, the asymptotic cash-flow growth is measured as:

lim llog exp(¢7) (G2 ¥ ()] _ ¢+ lim log [(gx?j%b(ift)]
j—o0 Y(wy) =00 J

As in the case of matrices, the asymptotic decay rate is determined by the dominate
eigenvalue of the valuation operator Py. An eigenvalue solves the equation:

Pahy = exp(—va)ia

where 9 is an eigenfunction and exp(—v) is an eigenvalue. Then the invariance property of
an eigenfunction implies that

(Pa) ¥ = exp(—jva)ibn
for any j. The dominant eigenvalue (when it exists) is associated with a strictly positive
eigenfunction. Moreover,

o 1og [(Pa V()

: = —Ux
j—00 J
provided that ¢ is strictly positive. This limiting rate is invariant to the specific choice of
positive 1 used in defining the cash flow. It does of course depend on .
Similarly, we compute the limiting growth rate of the cash flow by solving the eigenfunc-
tion problem:

G = exp(e,\)%\.

Then ,
o 1[G ()]

J—oo J
for strictly positive 1. This limit is of interest because cash flow growth is a contributor to
manner in which future payoffs contribute to current value.
We aim to approximate returns to a security with dividends payments only far off into
the future. We construct these objects by supposing we have a security with a dividend:

Dyyj = exp [(t 4 J)C + Acrrs] ¥a(4y).

This security has a constant price/dividend ratio. Using the eigenvalue property and formula
(11)

P ep(C—w)

Dy 1—exp((—uvy)

The corresponding return is:




Thus a feature of payoffs constructed from the dominant eigenfunction is that the expected
returns can be inferred directly from the expected dividend growth. While gross returns
are proportional to dividend growth factors, the proportionality factor depends in part on
riskiness of the security.

Let R‘Z +; denote the return compounded over j time periods. Expected return growth
can be inferred directly from expected dividend growth. In particular,

. log E(Rf+j |z¢)
lim y

j—00

=(+ex—C+uvy=e+u.

So far we have shown how to compute the expected value of a long-horizon tail return
implied by an asset pricing model. What matters is the value of A\. Not surprisingly, the
deterministic component of the cash flow growth vanishes in our return calculation. To
produce a risk-return tradeoff, we must compare this return with a risk-free counterpart.
Given our interest in long-horizon risk, the natural benchmark is obtained by setting A = 0.
The dominant eigenvalue of G is one and is associated with a constant eigenfunction. Thus
& = 0. When A = 0 the only mechanism for cash-flow growth is a positive value of {, which
has no impact on returns. Thus the long-horizon counterpart to an expected (logarithm of
a) risk-free return is 1y, and thus risk-premium associated with A:

€\ + vy — .

The A = 0 return turns out to be the maximal growth return of Bansal and Lehmann
(1997). This follows from the work of Alvarez and Jermann (2001) and Hansen and Scheinkman
(2003). Alvarez and Jermann (2001) study the holding period returns to long-horizon dis-
count bonds and show that in the limit these holding period returns approximate the maximal
growth return of Bansal and Lehmann (1997). Hansen and Scheinkman (2003) show that
this limiting return is the return on the dominant eigenfunction for the (A = 0) pricing
operator. As a consequence it is approximately the long-horizon return on any security with
a terminal payoff of the form v (zy;) not just a discount bond.

We compute long-run average excess rates of return €, + v, — 1 implied by the asset
pricing model in example 2.1. In appendix B we discuss how these calculations are done.
We used the two alternative specifications of the evolution of consumption of section 3.1.
For purposes of illustration, we set 3 = 0.98'/4, but we consider values for 6 of 5, 10 and 20.
We also examine how the parameter \ affects the returns.

The results are reported in figure 9. The upper panel of the figure provides results for the
model of consumption and corporate earnings with cointegration and the lower panel for the
case without cointegration. Notice that in each case the long-run return rises with A and that
the slope of the curve increases with the risk aversion parameter 6. If substantial variation
in A is allowed the model, can predict large differences in long-run returns especially for the
case of the model with cointegration between consumption and corporate earnings. In this
model there are significant long run shocks to consumption and if the cash flows being priced
leverage this effect then expected returns are substantially affected.
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Figure 9: Model implications for long-run return. The plots give curves of the form ex+vy—uvy
as a function of \. The curves are computed using 3 = 0.98* and p = 1.
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The model predicts substantial differences in long run returns across difference measured
cash flows if there are corresponding differences in the exposure of cash flows to long run
shocks to consumption. We now turn to measurement of this long run risk.

5 Portfolio Dividends

In this section we report estimates of long run dividend growth and the risk associated with
the growth. We use the five portfolios constructed based on a measure of book equity to
market equity, and characterize the time series properties of the dividend series as it covaries
with consumption and earnings.

5.1 Book to Market Portfolios

We follow Fama and French (1993) and construct portfolios of returns by sorting stocks
according to their book-to-market values. We use a coarser sort into 5 portfolios to make
our analysis tractable. Summary statistics for the basic portfolios are reported in table 1.
Notice that the portfolios are ordered by average book to market values where portfolio 1
has the lowest book-to-market value and portfolio 5 has the highest. Average returns also
follow this sort. Portfolio 1 has the lowest average return and portfolio 5 has the highest
return. It is well known that the differences in average returns are not well explained by
exposure to contemporaneous covariance with consumption. This is reflected in the last row
of 1 which reports the correlation between consumption growth and each return. Notice that
there is little variation in this measure of risk.

In this section we are particularly interested in the behavior of dividends from the con-
structed portfolios. The constructed dividend processes accommodate the changes in the
classification of the primitive assets and depend on the relative prices of the new and old
asset in the book-to-market portfolios. The construction of portfolio dividends is detailed
in Hansen, Heaton, and Li (2004) and follows the work of Bansal, Dittmar, and Lundblad
(2002), Menzly, Santos, and Veronesi (2004).

Even with this relative price adjustment, the sorting used in constructing the portfolios
can induce permanent differences in dividend growth. Indeed the dividends from financial
portfolios do not appear to grow one-to-one with consumption. This has been documented
in a variety of different places and is evident in figure 10, where we report the logarithms
of portfolio dividends relative to aggregate consumption.? The first three portfolios appear
to grow slower than consumption, and even market dividends display this same pattern.
Portfolios four and five show more pronounced growth than consumption. These features of
the time series lead us to explore some alternative specifications of dividend growth.

9In an attempt to construct consumption-dividend ratios that are stationary, Menzly, Santos, and Veronesi
(2004) divide consumption by population but not dividends. While population is not a simple time trend,
its time series trajectory is much smoother than either consumption or dividends.
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Table 1: Properties of Portfolios Sorted by Book-to-Market

Portfolio
1 2 3 4 5 Market
Avg. Return (%) 6.48 688 890  9.32 11.02 7.23
Std. Return (%) 18.8 16.4 14.8 15.8 17.8 16.5
Avg. B/M 0.32 0.62 0.84 1.12 2.00 0.79
Sharpe Ratio 0.18 0.20 0.28 0.28 0.30 0.21
Correlation with Consumption 0.20 0.18 0.20 0.20 0.21 0.20

Portfolios formed by sorting stocks into 5 portfolios using NYSE breakpoints from Fama
and French (1993). Portfolios are ordered from lowest to highest average book-to-market
value. Data are quarterly from 1947 Q1 to 2002 Q4 for returns and annual from 1947 to
2001 for B/M ratios. Returns are converted to real units using the implicit price deflator for
nondurable and services consumption. Average returns are converted to annual units using
the natural logarithm of quarterly gross returns multiplied by 4. The standard deviation of
returns is also put in annual units by multiplying the standard deviation of quarterly log
gross returns by 2. This assumes that returns are independently distributed over time. “Avg.
B/M” for each portfolio is the average portfolio book-to-market over the period computed
from COMPUSTAT. The Sharpe Ratio is based on quarterly observations. Correlation with
consumption is measured as the contemporaneous correlation between log returns and log
consumption growth.
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Figure 10: Portfolio Dividends Relative to Consumption
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5.2 Adding Dividends to the VAR’s

Consider a VAR with three variables: consumption, corporate earnings and dividends (all in
logarithms). Consumption and corporate earnings are modelled as before in a cointegrated
system. We use the cointegrated system because it “identifies” a long run consumption
risk component that is distinct from the one-step-ahead forecast error of consumption. In
addition to the consumption and earnings we include in sequence the dividend series from
each of the five book-to-market portfolios and from the market. Thus the same two shocks as
were identified previously remain shocks in this system because consumption and corporate
earnings remain an autonomous system. An additional shock is required to account for the
remaining variation in dividends beyond what is explained by consumption and corporate
earnings.

We consider three different specifications of growth to assess sensitivity to model specifi-
cation. These three specifications differ in how the dividend evolution equation is specified.
We append a dividend equation

Al 4+ Alypr + Alypa + oo+ Abypo + B+ Bit = w) (13)

to equation system (7). In this equation the vector of inputs is

y ‘
t

and the shock w; is scalar with mean zero and unit variance. This shock is uncorrelated
with the shock w; that enters (7). The third entry of Af is normalized to be positive. We
refer to (13) as the dividend equation, and the shock w; as the dividend shock. As in our
previous estimation, we set ¢ = 5.

The first specification adds the restriction that the trend coefficient B} equal zero. We
use specification (7) in which consumption and earnings are restricted to grow together
(cointegration is imposed). Given our interest in measuring long run risk, we measure the
permanent response of dividends to the permanent shock. In the long run, both consumption
and corporate earnings respond to this shock in the same manner, but the dividend response
is left unconstrained. We let \* denote the ratio of the long run dividend response to the
long run consumption response. We measure this for each of the five portfolios. In this case

we allow the matrix: A1)
1) 0

to have rank two where ,
A1) =) A
=0

The cointegrating vector (1,1, A*) is in the null space of this rank two matrix.
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The second specification includes a time trend by freely estimating Bj. We refer to this
as the time trend specification. The third specification again restricts B} to be zero, but it
introduces an additional growth component in the dividend evolution by restricting:

for some scalar a*. The matrix (14) is now restricted to be of rank one. This allows for an
additional stochastic growth component in dividends. We identify a counterpart to A* as the
long run response of dividends to permanent consumption/earnings shock. We refer to this
as the dividend growth rate specification.

We estimate \* for each of the five portfolios and each of the dividend growth specifica-
tions. The results are given table 2. This table includes quantiles obtained via simulation
using the Box-Tiao priors for each of the three equations. For each of the three growth rate
specifications, the median estimates of A\* are larger for the larger book to market portfo-
lios. While this qualitative pattern is roughly preserved across growth specifications, the
estimates of \* are very sensitive to which model of growth is presumed. The larger es-
timates are obtained for the dividend growth rate specification and smallest for the time
trend specificaiton. Even conditioning on a growth configuration, the sampling variability
for \* is substantial, particularly for the time trend specification and the dividend growth
rate specification.

In the case of the time trend specification, the potentially potent cointegration restriction
is offset of the challenge of estimating simultaneously a trend rate of growth in conjunction
with \*. In the dividend growth rate specification, even though consumption and earnings
are restricted to respond in the long run to a permanent shock in identical ways, it re-
mains a challenge to measurement to infer the dividend response to this same shock. Both
specification uncertainty and sampling uncertainty make the measurement of \* particularly
challenging. The role of specification uncertainty is illustrated in the impulse response figure
11. This figure features the responses of portfolio one and five to a permanent shock. For
each portfolio, the measured responses obtained for each of the three growth configurations
are quite close up to about three to four years and then they diverge. Both portfolios initially
respond positively to this shock with peak responses occurring in about seven time periods.
The response of portfolio one is much larger in this initial phase. The tail responses differ
substantially depending on the growth configuration that is imposed in estimation. The
estimated response of portfolio one is eventually negative when time trends are included or
an additional stochastic growth factor is included.

To better understand the importance of time trends, figure 12 plots both the level of
dividends and the fitted values implied by the “aggregate” innovations to consumption and
corporate earnings alone. The presence of a deterministic trends in a log levels specification
allows the VAR model to fit the low frequency movements of dividends for portfolios 1 and
2 much better. This low frequency effect is reflected in figure 13 which presents the spectral
densities of dividend growth implied by the VAR model with time trends. The dashed lines
give the spectral densities implied by all of the shocks and the solid lines give the spectral
densities implied by the aggregate innovations alone. For comparison figure 14 presents the
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Table 2: Long Run Responses

No Time Trends

Quantile
Portfolio .05 .25 D 75 .95
1 -1.35 0.08 0.35 0.53 0.83
2 0.18 0.47 0.66 0.98 2.46
3 0.54 0.69 0.78 0.88 1.09
4 0.55 0.65 0.70 0.77 0.89
5 0.65 1.21 1.44 1.71 3.00
market 0.36 0.44 0.49 0.53 0.61
Time Trend Included
Quantile
Portfolio .05 .25 D .75 .95
1 -6.24 -4.26 -3.42 -2.72 -1.77
2 -16.47 -7.28 -4.70 -3.15 -1.52
3 -0.64 1.21 2.09 2.84 3.87
4 1.10 1.70 2.07 2.44 3.05
5 -1.66 1.66 3.87 7.32 21.18
market -1.60 -0.43 0.10 0.53 1.12
Dividend Growth Rate
Quantile
Portfolio .05 .25 D .75 .95
1 -4.84 -2.61 -1.35 -0.20 1.60
2 -2.13 -0.68 0.18 1.03 2.43
3 0.34 1.82 2.97 4.32 7.05
4 1.82 3.05 3.97 5.01 6.94
5 1.42 3.64 5.18 6.87 9.93
market -0.20 0.84 1.49 2.20 3.49
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Impulse Response of Portfolio 1 to a Permanent Shock
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Impulse Response of Portfolio 5 to a Permanent Shock
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Figure 11: Impulse response functions for two portfolios. The --- curve is generated from the
level specification for dividends; the — is generated from the level specification with time
trends included; and the --- curve is generated from the first difference specification.
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analogous figure for the case where the models are restricted to have no time trend. When
time trends are included, the aggregate shocks do a much better job of matching the low
frequency dynamics of dividend growth for portfolios 1, 2 and 4. In the presence of a time
trend, the cointegrating relationship between consumption and dividends better captures the
low frequency movements in dividends beyond 16 years.
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Figure 12: Portfolio dividends relative to fitted values based on aggregate innovations alone.
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Up until now, we have taken the linear cointegration model with time trends literally. Is it
realistic to think of these as deterministic time trends in studying the economic components
of long-run risk? We suspect not. While there may be important components to the cash
flows for portfolios 1 and 2 that are very persistent, it seems unlikely that these are literally
deterministic time trends known to investors. Within the statistical model, the time trends
for these portfolios in part offset the negative growth induced by the cointegration. We
suspect that the substantially negative estimates of \* probably are not likely to be the true
limiting measures of how dividends respond to consumption and earnings shocks. While the
long-run risk associated with portfolios 1 and 2 looks very different from that of portfolio
five, a literal interpretation of the resulting co-integrating relation is hard to defend.

There is a potential pitfall in using maximum likelihood methods conditioned on initial
data points as we have here. Sims (1991) and Sims (1996) warn against the use of such
methods because the resulting estimates might imply that

the first part of the sample behavior of the data is dominated by a large
“transient”. That is, the estimates imply that the initial data points are very far
from the deterministic trend line or steady state, in the sense that the estimated
model implies that future deviations as great as the initial deviation will be
extremely rare.

This seems to be particularly true for the models we fit to portfolios 1 and 2. In figure 15
we report the time series trajectory implied by the initial conditions alone with time trends
included. These trajectories are depicted by the dot-dashed lines and are generated using
the conditional maximum likelihood estimates. The initial conditions appear to be far from
the trend lines for portfolios 1 and 2, and as a consequence have a nontrivial trajectory. By
conditioning, the maximum likelihood estimates allow for this feature of the model fit. Do
we really believe that investors have confidence at the beginning of the sample in such a
trajectory? We suspect not.

We investigate what happens when we include initial information into the likelihood
function when we approximate posteriors. By assumption, linear combinations of the time
series are asymptotically stationary. We now restrict these components to be drawn from the
stationary distribution. This gives us additional information to build into the the likelihood
function. Table 3 updates the quantiles for portfolios one, two and five. Some of the extreme
quantiles are altered and brought closer to zero, but the approximate median of the posteriors
are similar with and without this additional information.!’ In particular the first quantile
for portfolio 2 in increased from -16.47 to -5.29 and the 5 quantile for portfolio 5 is reduced
from 21.18 to 9.57.

In summary, while there is some intriguing heterogeneity in the long run cash flow re-
sponses, the measured long run responses are typically not well estimated and sensitive to
the growth configuration of the time series.

10Sims (1991) suggests incorporating additional prior information to prevent over-fitting of initial condi-
tions when trends are included.
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Figure 13: Implied spectral density for dividend growth from VAR’s with consumption and
aggregate earnings and a time trend in dividends. Densities are normalized by the standard
deviation of dividend growth implied by the model. The solid lines give the spectral densities
implied by the aggregate shocks to consumption and corporate earnings alone. The dashed
lines give the implied spectral densities from the complete model. The x-axes give the number
of years that correspond to each frequency.
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Figure 14: Implied spectral density for dividend growth from VAR’s with consumption and
aggregate earnings and no time trend in dividends. Densities are normalized by the standard
deviation of dividend growth implied by the model. The solid lines give the spectral densities
implied by the aggregate shocks to consumption and corporate earnings alone. The dashed
lines give the implied spectral densities from the complete model. The x-axes give the number

of years that correspond to each frequency.
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Figure 15: Portfolio Dividends and Fitted Values. Solid Lines — display the data. Dashed
lines — — — are the fitted values based on consumption shocks alone. Dot-dashed lines — - —-
are fitted values with all shocks set to zero .
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Table 3: Long Run Responses with Time Trends

Conditional Likelihood

Quantile
Portfolio .05 .25 D .75 .95
1 -6.24 -4.26 -3.42 -2.72 -1.77
-16.47 -7.28 -4.70 -3.15 -1.52
5 -1.66 1.66 3.87 7.32 21.18

Unconditional Likelihood

Quantile
Portfolio .05 .25 D .75 .95
1 -5.49 -3.97 -3.23 -2.59 -1.70
-8.64 -5.59 -4.05 -2.86 -1.46
5 -0.90 1.67 3.36 5.42 9.57

The quantiles from unconditional likelihood were computed by using an accept /reject Markov
chain monte carlo simulation based on the likelihood ratio from the initial data. The number
of accepted simulations was 12% for portfolio 1, was 11% for portfolio 2, and 9% for portfolio

d.
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6 Portfolio Returns

Many asset pricing papers focusing on the pricing of one-period returns. The aim of this
literature is to test alternative models of one-period stochastic discount factors. As we have
seen long-run consumption risk contributes to the stochastic discount factor under recursive
utility. Under log utility this additional factor is the discounted consumption response,
¥(B)wiyq for a discount factor 5. In this section we explore the extent to which adding
in discounting improves our ability to explain the risk premiums in the book-to-market
portfolios.

As precursor to measuring return risk, we add price-dividend ratios to the VAR of con-
sumption, earnings and dividends growth. Let

_ Y
Yt L?t 1

where p; is the market value of a portfolio.
Aol + i1 + Asfie—o + .. + Ao + By = 0y

where w0, is a multivariate standard normal. The matrix 2?20 zzlj is restricted to have reduced
rank to accommodate two cointegrating vectors. Consistent with our earlier specification,
¢ — e; is presumed to be stationary implying that [1 -1 0 O] is a cointegrating vector.
We also presume that the dividend-price ratio is stationary implying that [O 01 —1} is
a second cointegrating vector.!! We include market values in the VAR for two reasons. The
first is that we can approximate return risk and the second is that we can use dividend-
price ratios as forecasters of future consumption. Second, we can deduce the implied return
riskiness from the implied riskiness of dividends and capital gains. On the other hand, we
are not using the full implications of the model to restrict the market values. The only
restrictions imposed on the VAR are the reduced rank restrictions. We do not limit the
feedback between series. As with dividends, we examine each portfolio separately to avoid
dramatic parameter proliferation.

To derive an implication for returns, we follow Campbell and Shiller (1988) and use the
approximation:

Ter1 = (depr — di) + X + 0(Pr1 — diya) — (pe — di) (15)
where p is constructed from the average logarithm of the dividend price ratio:
1

o= 1—|—exp(d—p)'

Campbell and Shiller (1988) show this approximation is reasonably accurate in practice.'?
We use this formula to measure the one-period return response to the shock kw;,; to the
shock vector w;, .

1YWe impose this restriction by estimating a VAR with ¢ — 1 lags of ¢, —c;—1 and d; —d;_1 and £ of e, — ¢,
and p; — d;.

12 Alternatively, we may look separately at the price appreciation and dividend growth components to
returns.
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Table 4: Return Risk

6 =.98
Quantile
Portfolio .05 .25 D 75 .95
1 -3.89 -1.40 0.41 2.24 4.73
2 -1.71 0.46 1.93 3.34 5.24
3 -1.55 0.61 1.96 3.18 4.82
4 -0.51 1.30 2.55 3.8 5.61
5 -0.58 1.14 2.40 3.71 5.59
6 =.99
Quantile
Portfolio .05 .25 D 75 .95
1 -4.74 -2.53 -0.68 1.41 4.49
2 -2.78 -0.77 0.81 2.52 4.97
3 -2.63 -0.58 0.96 2.50 4.58
4 -1.23 0.40 1.77 3.37 5.41
5 -1.08 0.27 1.46 2.92 5.15
p=1
Quantile
Portfolio .05 .25 D 75 .95
1 -5.16 -3.09 -1.64 0.18 4.23
2 -3.25 -1.53 -0.44 1.17 4.37
3 -3.12 -1.32 -0.27 1.27 4.09
4 -1.51 -0.31 0.64 2.55 5.05
5 -1.24 -0.22 0.39 1.84 4.60
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Table 5: Return Risk Differences

Quantile
16} .05 .25 5 75 .95
.98 -1.03 0.30 1.20 2.13 3.56
. 99 -0.70 0.54 1.33 2.18 3.60
1.00 -0.33 0.49 1.19 2.03 3.49

Table 6: The quantiles are for the differences in the regression coefficients of portfolio return
five and portfolio return one onto long run consumption. These quantile were computed
using Box-Tiao priors for a six variate VAR.

Recall that the recursive utility model features the contribution of v(3)w:1 to the
stochastic discount factor for subjective discount rate #. This term is magnified increas-
ing risk aversion through the choice of §. The VAR implies a measure v(/3)w;,1. We use this
in conjunction with the return risk to measure the regression coefficient:

K- (6)
v(B) - v(B)

for each of the five portfolios. We report the resulting measurements and measurement
quantiles implied by Box-Tiao priors in table 4.

The medians (.5 quantiles) reported in this table confirm the qualitative findings of
Parker and Julliard (2004) using a rather different approach to measurement. The high
book-to-market portfolios do tend to me more highly correlated with the long run measure
of consumption risk consistent with the measured excess returns. For subjective discount
factors near one, the low book-to-market portfolios have one-period returns that are nega-
tively correlated with long run consumption risk. The measurements are not very accurate
as reflected by the quantiles, however; and they are sensitive to the choice of discount factor
(. Obtaining statistically reliable and meaningful measurement of return risk based on long-
run consumption may prove to be an elusive measurement challenge unless more structure
is imposed on the economic model.

Fitting VAR’s to each portfolio misses some cross correlation patterns. The estimated
“regression” coefficients are likely to be correlated because of correlations in the underlying
time series of dividends and dividend price ratios. To study accuracy of differences in the
risk measures, we fit a six variable VAR by including simultaneously dividend growth and
price-dividend ratios of for portfolios one and five along with consumption and earnings. The
results are reported in table 5. The medians are positive for the three values of 3 as are the
twenty-five percent quntiles. On the other hand, the .05 quantile is consistently negative.
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7 Conclusion

Long run or growth rate variation in consumption or cash flows can have important conse-
quences in asset valuation. Some recent time series evidence supports so called consumption-
based models by appealing to long-run consumption risk.

Using statistical methods to measure directly long-run cash flow variation is a challenging
endeavor, however. Statistical methods typically rely on extrapolating the time series model
to infer how cash flows respond in the long-run to shocks. This extrapolation depends
on details of the growth configuration of the model, and in many cases these details are
defended primarily on statistical grounds. Moreover, the simple linear models we consider
are likely to be misspecified. There is pervasive statistical evidence for growth rate changes
or breaks in trend lines, but this statistical evidence is difficult to use directly in models of
decision-making under uncertainty without some rather specific ancillary assumptions.

There are two complementary responses to this conundrum. One is to resort to the use of
highly structured, but easily interpretable, models of long-run growth variation. The other
is to exploit the fact that asset values encode information about long-run growth. To break
this code requires a reliable economic model of the long-run risk-return relation. We suggest
model-based methods for economic characterizations of this relation. These methods give us
clues as to what types of models feature or amplify the role of long-run risk. Unfortunately,
as yet there is not an empirically well grounded, and economically relevant model of asset
pricing to use in deducing investors beliefs about the long-run from values of long-lived assets.
Much progress has been made in our understanding of models, but less in understanding the
precise nature of long-run growth rate risk in the underlying economy.
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A Expansion
We compute the first-order expansion:
U 1
v = v + (p—1)Duy,

where v} is the continuation value for the case in which p = 1. We base this calculation on
the approximate recursion:

)Qt(vt+1 + Ci11 — Ct)2

v & B | Qp(ves1 + e — ) + (1 —p)(1 — B2 5

Then
vf = BV + Cra1 — 1),

which is the p = 1 exact recursion and

Qi(vl | + i1 — )2 .
Wi T 8y g, |

Du; = —BL-4)

1= 32) ()2 _
e (16)
where E is the distorted expectation operator associated with the density
1-6
(Vi)

1-0 ’
E [(vz&kl) |7 t]
Consider example 2.1. Then

(Utl)2 - (xt)/Uv(Uv)/xt + 2MvUv * Xy + (/ﬁv)Q‘

Write: ]
thl = —§$t/TdIt + Ud - Ty + Hd-
. From (16),
T, = (1 _ﬁﬁ2>Uv(Uv)’ + BG'Y 4G
_ (1 — ﬁQ) - . / / /
Ui = 3 Uy — B(1 — 0)G'YyH~(B) + BG'Uy (17)
1—3 1—6)?
pa = =5 = P gyt o

+6(1—0)Uy - [Hy(B)] — gtrace(H'TdH) + Buq
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The first equation in (17) is a Sylvester equation and is easily solved. Given Yy, the solution

for Uy is: ,
s = (- sy |2 2

and given T, and Uy the solution for p is:

G/TdH’y(ﬁ)/ s

S OSB (11,)2 — B0 () HIT yHA(BY + B(1 — 0)Uq - [HA(B)] — Strace(H'C 4H)
1-p

Finally, consider the first-order expansion of the logarithm of the stochastic discount
factor:

fa =

.1 1
St1,t N Spp1p (p— 1)Dst+1,t'

Recall that the log discount factor is given by:

Si4140 = —0—p (cte1 — )+ (p—0) [vir1 + i1 — Qe(vir1 + cey1)]
= —0—plerr —c) +(p—0) V1 + copr — ¢t — Qu(Vi1 + crp1 — )]

Differentiating with respect to p gives:

Dsiy, = — (e —a) + [0t + e — e — Qu(vfyy + cia — )]
+(1-6) [Doly, = E (Dol | 7))

= ohy— ot (1= 0) [Dul, — E (Dol )R]

B
Note that
1 1 1 1
Ve — (’Ut_l,_l + Cr1 — Ct) = Uy 41 — EUD x| 1 - B Ho
and
- 1
Dvyyy — E (Dvy|F) = —§(Hwt+1)/Tdet+1 — (Hwi) [YaGry — Uy
1
+5(1 - 0)*y(B)H'Y4H(B) + (1 — 0)v(8)H'[T 4G, — Uy
1
+§trace(H’TdH)

Recall that a precision matrix is the inverse of a corresponding covariance matrix. The
precision matrix for w;; is given by:

I+ (p—V)H' Y H

provided that this matrix is positive definite. Since the matrix T, is positive semidefinite, it
suffices to check if the matrix I — H'Y4H is positive semidefinite because p is restricted to
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be positive. Under the risk-neutral distribution for prices, precision increases in p at least
locally around unity.
The mean under the risk neutral measure for w; is

I + (p—V)HY.H]™
[=7(0) = (0 = D)v(B) + (p = VH'Uy — (p — 1)(0 — 1) (H'Ug — H'TqGay)] -

This mean can be interpreted as the negative of a risk premia. A component of this mean
is the undiscounted (by the risk free rate) price an investor is willing to pay for contingent
claim to the corresponding component of the shock w;,;. This mean is state dependent
when both p and 6 are different from unity. Typically, this price will be negative because the
investor is risk averse. Risk premium for nonlinear claims to w;;; can be also be computed
using both the mean adjustment, the precision adjustment and the corresponding normal
adjustment.

B Calculating Eigenvalues for Example 2.1

Consider the first-order autoregressive specification in example 2.1 except that we exclude
the state that remains one over time from x;. Let Z; be same as x; except that it does not
include a state that remains one over time, then it still follows a first-order Markov process
model ) )

Tp1 = A%y + Bwyyg.

where we restrict A to have eigenvalues with absolute values that are strictly less than one.
We now presume that
Cty1 — Cp = Ucfl?t + e
Write:
1

Sep1e T A(Cy1 — ) = —E(ftﬂ)/zl@tﬂ — &1 Ty — 5(5575)/52@ —& -1 — &

We seek an eigenfunction that is log-quadratic:
1 /
log(z) = —5% Qr —w-x.

When p = 1, the matrices Z; and =, are all zero and the eigenfunction will be log-linear
(Q=0). A
Let 2 = Q 4 =;. Then (2 satisfies the Riccati equation:

~ ~

= 45+ A0A - AQB(I+ BOB) 1 BOA = O

which is easily solved. When p = 1, the matrices =; and =, are all zero, Q) = 0 and the
eigenfunction will be log-linear (2 = 0).
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Consider next the equation for w. Let w = & + w and

A ~

A*=A—B(I+ BQB)"'BQA.

Then
(A*)’cb +&+E&E =0

implying that
G == (A)) &+ &)

Finally the equation for eigenvalue is given by

. N 1 o
v = =56 B + BQB) ™ B + & + 5 log det (1 + B’QB)

For this example it is also straightforward to compute the decomposition of the price-dividend
ratio (12) provided that the dividend process is can be expressed as:

di — Aey — (t = =2 Py — Pg - T4 — [hg-

This entails iterating on the Riccati equation for matrices in the quadratic forms, along with
the coefficients of the linear and constant terms.
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