CREI Lectures in Macroeconomics: The Economics of Sovereign Debt and Default Part II

Mark Aguiar Manuel Amador

November 2-4, 2016

One-Period Eaton-Gersovitz Model

In the last lecture...

- Presented some empirical facts
 - Scope for shocks other than output
 - Default payoffs
 - Beliefs
- Discussed the competitive equilibrium of the one-period bond model
- Proved a welfare theorem:
 - ► The competitive equilibrium solves a planning problem
 - ► Fixed point of a contraction operator

Overview

In this lecture...

- Review one-period bond planning problem
- Present stripped down model to discuss debt dynamics
- ► Link to "exogenous" default models a la Cole and Kehoe

Overview

In this lecture...

- ► Review one-period bond planning problem
- Present stripped down model to discuss debt dynamics
- ► Link to "exogenous" default models a la Cole and Kehoe
- Discuss long-maturity bonds
 - Multiplicity
 - Inefficiency

$$B(s, v) = \max_{c,v(s'),b'} y(s) - c + R^{-1}b' \sum_{s' \in S} \pi(s'|s) \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to:
$$v \le u(c) + \beta \sum_{s' \in S} \pi(s'|s) \max\langle v(s'), V^D(s') \rangle$$

$$b' \le B(s', v(s')) \text{ for } s' \in S \text{ such that } v(s') \ge V^D(s')$$

Frictions

- ► Two (related) frictions:
 - 1. Incomplete Markets
 - Cannot insure fluctuations in y(s)

Incomplete Markets

$$B(s, v) = \max_{c, v(s'), b'} y(s) - c + R^{-1}b' \sum_{s' \in S} \pi(s'|s) \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to:
$$v \le u(c) + \beta \sum_{s' \in S} \pi(s'|s) \max\langle v(s'), V^D(s') \rangle$$

$$b' \le B(s', v(s')) \text{ for } s' \in S \text{ such that } v(s') \ge V^D(s')$$

Frictions

- ► Two (related) frictions:
 - 1. Incomplete Markets
 - Cannot insure fluctuations in y(s)
 - 2. Deadweight Costs of Default

Costs of Default

$$B(s, v) = \max_{c, v(s'), b'} y(s) - c + R^{-1}b' \sum_{s' \in S} \pi(s'|s) \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to: $v \leq u(c) + \beta \sum_{s' \in S} \pi(s'|s) \max \langle v(s'), V^D(s') \rangle$ $b' \leq B(s', v(s'))$ for $s' \in S$ such that $v(s') \geq V^D(s')$

Implications of Inefficiency

- Inability to insure y(s) generates precautionary savings
 - Well understood with or without default

Implications of Inefficiency

- Inability to insure y(s) generates precautionary savings
 - Well understood with or without default
- ► Focus on second friction:
 - Set y(s) = y for all s
 - Only risk: $V^D(s)$
 - V^D iid over time

$$B(s, v) = \max_{c, v(s'), b'} y - c + R^{-1}b' \sum_{s' \in S} \pi(s'|s) \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to:

$$egin{aligned} &v \leq u(c) + eta \sum_{s' \in S} \pi(s'|s) \max \langle v(s'), V^D(s')
angle \ &b' \leq B(s', v(s')) ext{ for } s' \in S ext{ such that } v(s') \geq V^D(s') \end{aligned}$$

► *iid* shocks

$$B(s, v) = \max_{c, v(s'), b'} y - c + R^{-1}b' \sum_{s' \in S} \pi(s') \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to:

$$egin{aligned} &v \leq u(m{c}) + eta \sum_{s' \in S} \pi(s') \max \langle v(s'), V^D(s')
angle \ &b' \leq B(s', v(s')) ext{ for } s' \in S ext{ such that } v(s') \geq V^D(s') \end{aligned}$$

► *iid* shocks

$$B(s, v) = \max_{c, v(s'), b'} y - c + R^{-1}b' \sum_{s' \in S} \pi(s') \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to:

$$egin{aligned} &v \leq u(m{c}) + eta \sum_{s' \in S} \pi(s') \max \langle v(s'), V^D(s')
angle \ &b' \leq B(s', v(s')) ext{ for } s' \in S ext{ such that } v(s') \geq V^D(s') \end{aligned}$$

► *s* does not appear on RHS

$$B(v) = \max_{c,v(s'),b'} y - c + R^{-1}b' \sum_{s' \in S} \pi(s') \mathbb{1}_{\{v(s') \ge V^D(s')\}}$$

subject to:

$$egin{aligned} &v \leq u(c) + eta \sum_{s' \in S} \pi(s') \max \langle v(s'), V^D(s')
angle \ &b' \leq B(v(s')) ext{ for } s' \in S ext{ such that } v(s') \geq V^D(s') \end{aligned}$$

• Optimal to set B(v(s')) = B(v(s'')) = B(v')

$$B(v) = \max_{c,v',b'} y - c + R^{-1}b' \sum_{s' \in S} \pi(s') \mathbb{1}_{\{v' \ge V^D(s')\}}$$

subject to:

$$egin{aligned} &v \leq u(c) + eta \sum_{s' \in S} \pi(s') \max \langle v', V^D(s')
angle \ &b' = B(v') ext{ for } s' \in S ext{ such that } v' \geq V^D(s') \end{aligned}$$

• Optimal to set B(v(s')) = B(v(s'')) = B(v')

$$B(v) = \max_{c,v',b'} y - c + R^{-1}b' \sum_{s' \in S} \pi(s') \mathbb{1}_{\{v' \ge V^D(s')\}}$$

subject to:
$$v \le u(c) + \beta \sum_{s' \in S} \pi(s') \max\langle v', V^D(s') \rangle$$

$$b' = B(v')$$

► Can use final constraint to substitute out b' with B(v') in objective

$$B(v) = \max_{c,v'} y - c + R^{-1}B(v') \sum_{s' \in S} \pi(s') \mathbb{1}_{\{v' \ge V^D(s')\}}$$

subject to:
$$v \le u(c) + \beta \sum_{s' \in S} \pi(s') \max\langle v', V^D(s') \rangle$$

► Can use final constraint to substitute out b' with B(v') in objective

► Two cases: 1. $V^D(s) \in [\underline{V}^D, \overline{V}^D]$ and $V^D \sim F(v^D)$ 2. $V^D(s) \in \{\underline{V}^D, \overline{V}^D\}$ and $\Pr(V^D = \overline{V}^D) = \lambda$

► Two cases:
1.
$$V^D(s) \in [\underline{V}^D, \overline{V}^D]$$
 and $V^D \sim F(v^D)$
2. $V^D(s) \in \{\underline{V}^D, \overline{V}^D\}$ and $\Pr(V^D = \overline{V}^D) = \lambda$
► Assume $B(\overline{V}^D) \ge 0 \Leftrightarrow \overline{V}^D \le V(0)$

• Assume $\beta R = 1$: Only dynamics due to default costs

Continuous Distribution

$$B(v) = \max_{c,v'} y - c + R^{-1}B(v')F(v')$$

subject to:
$$v \le u(c) + \beta F(v')v' + \beta \int_{v'}^{\overline{V}^D} v^D dF(v^D)$$

Continuous Distribution

$$B(v) = \max_{c,v'} y - c + R^{-1}B(v')F(v')$$

subject to:
$$v \le u(c) + \beta F(v')v' + \beta \int_{v'}^{\overline{V}^D} v^D dF(v^D)$$

► First-Order Conditions:

$$\frac{1}{u'(c)} = \mu = -B'(v)$$
$$B'(v') + \frac{f(v')}{F(v')}B(v') + \mu = 0$$

Continuous Distribution

► Inverse Euler Equation

$$\frac{1}{u'(c')} = \frac{1}{u'(c)} + \frac{f(v')}{F(v')}B(v')$$

► Default probability places "wedge" in inter-temporal decision

Continuous Distribution

Inverse Euler Equation

$$\frac{1}{u'(c')} = \frac{1}{u'(c)} + \frac{f(v')}{F(v')}B(v')$$

- ► Default probability places "wedge" in inter-temporal decision
- Backloading:
 - c' > c as long as $v \in [\underline{V}^D, \overline{V}^D)$

•
$$v \to \overline{V}^D$$

Save to point where default is ruled out

Continuous Distribution

- Same implication as complete markets case with output shocks
- Not driven by desire for insurance

Continuous Distribution

- Same implication as complete markets case with output shocks
- Not driven by desire for insurance
- ► Seems like a local intuition, but holds more generally

Dynamics Two Shock Case

- V^D takes two values $V^D \in \{\underline{V}^D, \overline{V}^D\}$
- \blacktriangleright Poisson probability of high-payoff state λ

Dynamics Two Shock Case

- V^D takes two values $V^D \in \{\underline{V}^D, \overline{V}^D\}$
- Poisson probability of high-payoff state λ
- ► Split state space into three "zones":
 - 1. Safe Zone: $v \ge \overline{V}^D$
 - 2. Crisis Zone: $v \in [\underline{V}^D, \overline{V}^D)$
 - 3. Default Zone: $v < \underline{V}^D$

Dynamics Two Shock Case

- V^D takes two values $V^D \in \{\underline{V}^D, \overline{V}^D\}$
- Poisson probability of high-payoff state λ
- ► Split state space into three "zones":
 - 1. Safe Zone: $v \ge \overline{V}^D$
 - 2. Crisis Zone: $v \in [\underline{V}^D, \overline{V}^D)$
 - **3.** Default Zone: $v < \underline{V}^D$
- ► Ignore Default Zone

Two Shock Case

Continuous Time Limit

• Useful to let the time period become small:

$$\beta = R^{-1} = e^{-\rho\Delta t}$$

• Let T denote first realization of \overline{V}^D

$$\Pr(T > t + \Delta t | T > t) = e^{-\lambda \Delta t}$$

Hamilton-Jacobi-Bellman Equation

► Safe Zone Bellman Equation

$$\rho B(v) = \max_{c} y - c + B'(v) \underbrace{(\rho v - u(c))}_{v}$$

Hamilton-Jacobi-Bellman Equation

► Safe Zone Bellman Equation

$$\rho B(v) = \max_{c} y - c + B'(v) \left(\rho v - u(c)\right)$$

► First-Order Condition:

$$-1 - B'(v)u'(c) = 0$$

 \Rightarrow
 $-B'(v) = \frac{1}{u'(c)}$

Conjectured Solution

- ► In Safe Zone there is no risk of default
- \blacktriangleright Lenders and government both discount at rate ρ
- Conjectured solution: $v = \frac{u(C(v))}{\rho}$

 $C(v) = u^{-1}(\rho v)$

Conjectured Solution

- ► In Safe Zone there is no risk of default
- \blacktriangleright Lenders and government both discount at rate ρ
- Conjectured solution: $v = \frac{u(C(v))}{\rho}$

$$C(v) = u^{-1}(\rho v)$$

Payoff to lenders:

$$\mathsf{B}(v) = \frac{y - \mathsf{C}(v)}{\rho}$$
Safe Zone

Conjectured Solution

- ► In Safe Zone there is no risk of default
- \blacktriangleright Lenders and government both discount at rate ρ
- Conjectured solution: $v = \frac{u(C(v))}{\rho}$

$$C(v) = u^{-1}(\rho v)$$

Payoff to lenders:

$$\mathsf{B}(v) = \frac{y - \mathsf{C}(v)}{\rho}$$

• Note:
$$B'(v) = -\frac{C'(v)}{\rho} = \frac{-1}{u'(C(v))}$$

Hamilton-Jacobi-Bellman Equation

 \blacktriangleright Crisis Zone: Probability of default λ

$$(\rho + \lambda)B(v) = \max_{c} y - c + B'(v)\dot{v}$$

► With

$$\rho \mathbf{v} = u(\mathbf{c}) + \dot{\mathbf{v}} + \lambda \left(\overline{\mathbf{V}}^{D} - \mathbf{v} \right)$$

Hamilton-Jacobi-Bellman Equation

• Crisis Zone: Probability of default λ

$$(\rho + \lambda)B(v) = \max_{c} y - c + B'(v)\dot{v}$$

► With

$$egin{aligned} &
ho \mathbf{v} = u(\mathbf{c}) + \dot{\mathbf{v}} + \lambda \left(\overline{\mathbf{V}}^D - \mathbf{v}
ight) \ & ext{or} \ &(
ho + \lambda) \mathbf{v} = u(\mathbf{c}) + \dot{\mathbf{v}} + \lambda \overline{\mathbf{V}}^D \end{aligned}$$

• Note: As if both discount at $(\rho + \lambda)$

Conjectured Solution

- Discount at actuarially fair prices
- Conjecture constant *c*:

$$v = \frac{u\left(\tilde{C}(v)\right)}{\rho + \lambda} + \frac{\lambda}{\rho + \lambda}\overline{V}^{D}$$

Conjectured Solution

- Discount at actuarially fair prices
- ► Conjecture constant *c*:

$$v = \frac{u\left(\tilde{C}(v)\right)}{\rho + \lambda} + \frac{\lambda}{\rho + \lambda}\overline{V}^{D}$$

► Payoff to lender:

$$B(v) = \frac{y - \tilde{C}(v)}{\rho + \lambda}$$

Conjectured Solution

- Discount at actuarially fair prices
- ► Conjecture constant *c*:

$$v = \frac{u\left(\tilde{C}(v)\right)}{\rho + \lambda} + \frac{\lambda}{\rho + \lambda}\overline{V}^{D}$$

► Payoff to lender:

$$B(v) = \frac{y - \tilde{C}(v)}{\rho + \lambda}$$

• Note:
$$B'(v) = \frac{-\tilde{C}'(v)}{\rho+\lambda} = \frac{-1}{u'(\tilde{C}(v))}$$

Inefficiency

Role for Backloading

- Discontinuity cannot be part of the solution
- Inefficiency:
 - ► To the left of V^D, small decrease in c (increase in v) generates discrete gain to lender with second order costs
 - Optimal to backload in neighborhood below \overline{V}^D

Two Shock Case

Role for Backloading

- In neighborhood of $v < \overline{V}^D$:
 - Set $c = \overline{c}$
 - \overline{c} solves Bellman equation to the left of \overline{V}^D :

$$(
ho+\lambda)B(\overline{V}^D)=y-ar{c}-rac{1}{u'(ar{c})}\left[(
ho+\lambda)v-u(ar{c})-\lambda\overline{V}^D
ight]$$

Two Shock Case

Role for Backloading

- In neighborhood of $v < \overline{V}^D$:
 - Set $c = \overline{c}$
 - \overline{c} solves Bellman equation to the left of \overline{V}^D :

$$(
ho+\lambda)B(\overline{V}^D)=y-ar{c}-rac{1}{u'(ar{c})}\left[(
ho+\lambda)v-u(ar{c})-\lambda\overline{V}^D
ight]$$

► Threshold for saving:

$$\mathbf{v}^* = rac{u(ar{c})}{
ho+\lambda} + rac{\lambda}{
ho+\lambda} \overline{V}^D$$

- Planner's solution:
 - If $v \geq \overline{V}^D$: keep consumption and v constant

$$\blacktriangleright \ \, \mathsf{lf} \ \, \mathsf{v} \in (\mathsf{v}^*, \overline{V}^D) \ \mathsf{back} \ \mathsf{load} \ \mathsf{until} \ \, \mathsf{v} = \overline{V}^D$$

 If v ≤ v*: keep consumption and v constant and default will eventually happen

- ► Key is that Planner delays consumption until reach Safe Zone
- Efficient from perspective of lender: Saves $\lambda B(\overline{V}^D)/(\rho + \lambda)$

- ► Key is that Planner delays consumption until reach Safe Zone
- Efficient from perspective of lender: Saves $\lambda B(\overline{V}^D)/(\rho + \lambda)$
- ► How is this decentralized in a competitive equilibrium?

- ► Key is that Planner delays consumption until reach Safe Zone
- Efficient from perspective of lender: Saves $\lambda B(\overline{V}^D)/(\rho + \lambda)$
- ► How is this decentralized in a competitive equilibrium?
 - Remember that default occurs when payoff V^D is high
 - In Crisis Zone, \overline{V}^D is greater than value of repayment
 - Why not just rollover bonds until high payoff and then default?

Decentralization

Dynamics

Decentralization

- In Crisis Zone:
 - ► To left of $\overline{b} \equiv B(\overline{V}^D)$, pays $\rho + \lambda$ to roll over bonds
 - By saving to \bar{b} , pays only ρ

• Saves
$$\frac{\lambda}{\rho+\lambda}\overline{b} = \frac{\lambda}{\rho+\lambda}B(\overline{V}^D)$$

Completely internalizes efficiency cost via prices

Dynamics

Decentralization

- ► In Crisis Zone:
 - To left of $\overline{b} \equiv B(\overline{V}^D)$, pays $\rho + \lambda$ to roll over bonds
 - By saving to \bar{b} , pays only ρ

• Saves
$$\frac{\lambda}{\rho+\lambda}\overline{b} = \frac{\lambda}{\rho+\lambda}B(\overline{V}^D)$$

- Completely internalizes efficiency cost via prices
- Important that government rolls over entire stock of debt each period
 - ► Otherwise, only internalizes fraction that is rolled over

- Consider arbitrary Crisis Zone: $v < \bar{v}$
- Consider arbitrary default payoff $V^D \leq \bar{v}$

- Consider arbitrary Crisis Zone: $v < \bar{v}$
- Consider arbitrary default payoff $V^D \leq \bar{v}$
- ► Safe Zone remains the same

- Consider arbitrary Crisis Zone: $v < \bar{v}$
- Consider arbitrary default payoff $V^D \leq \bar{v}$
- ► Safe Zone remains the same
- Consumption level in Crisis Zone solves:

$$(\rho + \lambda)B(\overline{v}) = y - \overline{c} - \frac{1}{u'(\overline{c})} \left[\rho v - u(\overline{c}) + \lambda(\overline{v} - V^D) \right]$$

- Consider arbitrary Crisis Zone: $v < \bar{v}$
- Consider arbitrary default payoff $V^D \leq \bar{v}$
- ► Safe Zone remains the same
- Consumption level in Crisis Zone solves:

$$(\rho + \lambda)B(\overline{v}) = y - \overline{c} - \frac{1}{u'(\overline{c})} \left[\rho v - u(\overline{c}) + \lambda(\overline{v} - V^D) \right]$$

• Note:
$$\frac{d\bar{c}}{dV^D} = \frac{u''(\bar{c})}{u'(\bar{c})^2}\dot{v} > 0$$
 as $\dot{v} < 0$.

Role of V^D

- Consider arbitrary Crisis Zone: $v < \bar{v}$
- Consider arbitrary default payoff $V^D \leq \bar{v}$
- ► Safe Zone remains the same
- Consumption level in Crisis Zone solves:

$$(\rho + \lambda)B(\overline{v}) = y - \overline{c} - \frac{1}{u'(\overline{c})} \left[\rho v - u(\overline{c}) + \lambda(\overline{v} - V^D) \right]$$

• Note:
$$\frac{d\bar{c}}{dV^D} = \frac{u''(\bar{c})}{u'(\bar{c})^2}\dot{v} > 0$$
 as $\dot{v} < 0$.

► A decrease in V^D implies faster convergence in "saving" region

Default A Tale of Two Dragons

► Conventional Wisdom: Save to avoid costly default state

Default

A Tale of Two Dragons

► How the model works: Save even if default is a windfall

- Many papers argue government's save to avoid (exogenous) costly default
 - ► Example: Cole-Kehoe's "run" model

- Many papers argue government's save to avoid (exogenous) costly default
 - ► Example: Cole-Kehoe's "run" model
- Endogenous default environment:
 - Efficiency implies sovereign should save

- Many papers argue government's save to avoid (exogenous) costly default
 - ► Example: Cole-Kehoe's "run" model
- Endogenous default environment:
 - Efficiency implies sovereign should save
- Role of maturity?
 - ► Cole-Kehoe: Maturity restores efficiency
 - ► Eaton-Gersovitz?

- Many papers argue government's save to avoid (exogenous) costly default
 - ► Example: Cole-Kehoe's "run" model
- Endogenous default environment:
 - Efficiency implies sovereign should save
- Role of maturity?
 - ► Cole-Kehoe: Maturity restores efficiency
 - Eaton-Gersovitz?
- Quantitative implications
 - ► Quantitative models take default costs as free parameter
 - ► Nonlinear costs a la Arellano reduce the incentive to save

Longer Maturity

Next Steps

- One-period bond model:
 - Constrained efficient
 - ► Equilibrium is unique

Longer Maturity

Next Steps

- One-period bond model:
 - Constrained efficient
 - ► Equilibrium is unique
- Longer maturities:
 - Observed in practice
 - Improve quantitative fit of EG model
Next Steps

- One-period bond model:
 - Constrained efficient
 - ► Equilibrium is unique
- Longer maturities:
 - Observed in practice
 - Improve quantitative fit of EG model
- How does longer maturity change lessons from one-period bond environment?

Environment

- Continue with simplified environment
 - No output shocks: y(s) = y
 - Two default states: $V^D \in \{\underline{V}^D, \overline{V}^D\}$

• *iid* transition:
$$\Pr(V^D = \overline{V}^D) = \lambda$$

- ► Safe Zone and Crisis Zone
- ► Continuous time limit

Environment

- ► Random maturity (perpetual youth) bonds
 - Probability of maturity δ
 - iid across bonds and time
 - $\delta \to \infty$: Short-term debt
 - $\delta \rightarrow 0$: Perpetuitities
- ► Normalize coupon to *r*
- Assume $\rho > r$: Incentive to borrow

Environment

- ► Solve for equilibrium using "primal" approach:
 - ► Equilibrium is no longer solution to planning problem
- Let b denote face value of bonds
- Let q(b) denote price per bond given face value b
- Let V(b) denote value of repayment given b

Government's Problem

► Faced with price schedule *q*:

$$\rho V(b) = \max_{c} \left\{ u(c) + V'(b)\dot{b} + \lambda \left(\max \langle V(b), \overline{V}^{D} \rangle - V(b) \right) \right\}$$

► Subject to:

$$c = y - (r + \delta)b + q(b)\left(\dot{b} + \delta b\right)$$

Government's Problem

► Faced with price schedule *q*:

$$\rho V(b) = \max_{c} \left\{ u(c) + V'(b)\dot{b} + \lambda \left(\max \langle V(b), \overline{V}^{D} \rangle - V(b) \right) \right\}$$

► Subject to:

$$c = y - (r + \delta)b + q(b)\left(\dot{b} + \delta b\right)$$

Lenders' Break-Even Condition:

$$rq(b)=r+(1-q(b))\delta+q'(b)\dot{b}-\lambda q(b)\mathbb{1}_{\left\{V(b)<\overline{V}^D
ight\}}$$

Constructing Equilibria

- 1. $\delta \rightarrow \infty$ (Uniqueness)
- 2. $\delta = 0$ (Uniqueness)
- 3. Intermediate case: $\delta \in (0,\infty)$ (Multiplicity)

Short-term Bonds: $\delta = \infty$

Perpetuities: $\delta = 0$

Short vs. Long

- Short-term bonds are "efficient" as government faces correct incentives to reduce default risk
 - At boundary of <u>b</u>, government recognizes a small reduction in c lowers rollover costs
 - Prices correctly align incentives
 - ► Like a variable cost

Short vs. Long

- Short-term bonds are "efficient" as government faces correct incentives to reduce default risk
 - At boundary of <u>b</u>, government recognizes a small reduction in c lowers rollover costs
 - Prices correctly align incentives
 - ► Like a variable cost
- Perpetuities provide no incentives to economize on default costs
 - ▶ When issued, price reflects future default probabilities
 - ► Never rolled over, so no incentive to reduce debt once issued
 - ► Like a sunk cost

Intermediate Maturity

- Short-maturity type of equilibrium:
 - Need to roll over bonds in the future makes reducing debt worthwhile
 - \underline{b} a stationary point

Intermediate Maturity

- Short-maturity type of equilibrium:
 - Need to roll over bonds in the future makes reducing debt worthwhile
 - \underline{b} a stationary point
- "Perpetuity" type of equilibrium:
 - Borrow to the limit
 - \overline{b} a stationary point

Incentives behind Multiplicity

- Multiplicity due to creditor beliefs about future fiscal policy
 - Prices reflect creditor beliefs
 - ► Value functions reflect shape of price schedule
- ► Role of maturity:
 - ► With one-period debt, future fiscal policy irrelevant
 - With perpetuities, cannot support an interior stationary point (no need to roll over debt at stationary points)
- With endowment shocks same forces at work, but greater incentive to save due to precaution

Policy Implications

- ► How can an outside institution rule out bad equilibrium?
- ► Traditional policy: Price floor
 - Kills feedback from budget sets (Calvo)
 - Kills failed auctions (Cole-Kehoe)
 - No resources on equilibrium path

Policy Implications

- ► How can an outside institution rule out bad equilibrium?
- ► Traditional policy: Price floor
 - Kills feedback from budget sets (Calvo)
 - Kills failed auctions (Cole-Kehoe)
 - ► No resources on equilibrium path
- ► In our version of EG model, price floor *selects* bad equilibrium
 - Kills incentive to save
 - "Flattens" price schedule
 - Sovereign borrows to limit
 - ► Requires third-party resources on equilibrium path

Other Policies

- ► Debt Forgiveness:
 - ► As long as sovereign relatively impatient, will resume borrowing
 - Does not rule out eventual default

Debt Forgiveness

Other Policies

- Debt Forgiveness:
 - ► As long as sovereign relatively impatient, will resume borrowing
 - Does not rule out eventual default
- Debt ceilings
 - ► Can be effective with no additional resources
 - ▶ Provides "reward" of risk-free rate at low debt levels
 - "Good" equilibrium, saving/non-dilution is supported by prices and market-based punishments
 - How to enforce non-market limits on debt?

Other Policies

- Debt Forgiveness:
 - ► As long as sovereign relatively impatient, will resume borrowing
 - Does not rule out eventual default
- Debt ceilings
 - ► Can be effective with no additional resources
 - ▶ Provides "reward" of risk-free rate at low debt levels
 - "Good" equilibrium, saving/non-dilution is supported by prices and market-based punishments
 - How to enforce non-market limits on debt?
- Costs to delay:
 - ► If *b* too high, unique equilibrium
 - ► Point emphasized by Lorenzoni-Werning in their framework

Some Remaining Questions

What selection mechanism is at work in large, quantitative models typically used?

Some Remaining Questions

- What selection mechanism is at work in large, quantitative models typically used?
- ► How to interpret episodes like Draghi's speech?
 - Were debt limits crucial to its success?

- Deadweight cost of default provides incentive to save
- ► Even if default is a relatively positive outcome for government

- Deadweight cost of default provides incentive to save
- ► Even if default is a relatively positive outcome for government
- Long-term debt does not provide same incentive
 - Costs of default "sunk" into original prices
 - ► Leads to multiple equilibria in canonical EG model

- Deadweight cost of default provides incentive to save
- ► Even if default is a relatively positive outcome for government
- Long-term debt does not provide same incentive
 - Costs of default "sunk" into original prices
 - ► Leads to multiple equilibria in canonical EG model
- How do these considerations affect optimal maturity choice?

- Deadweight cost of default provides incentive to save
- ► Even if default is a relatively positive outcome for government
- Long-term debt does not provide same incentive
 - Costs of default "sunk" into original prices
 - ► Leads to multiple equilibria in canonical EG model
- How do these considerations affect optimal maturity choice?
- Rolling over debt provides correct incentives:
 - ► What about rollover "risk"?