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One-Period Eaton-Gersovitz Model
In the last lecture...

I Presented some empirical facts
I Scope for shocks other than output

I Default payoffs

I Beliefs

I Discussed the competitive equilibrium of the one-period bond
model

I Proved a welfare theorem:
I The competitive equilibrium solves a planning problem

I Fixed point of a contraction operator
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Overview
In this lecture...

I Review one-period bond planning problem

I Present stripped down model to discuss debt dynamics

I Link to “exogenous” default models a la Cole and Kehoe

I Discuss long-maturity bonds
I Multiplicity

I Inefficiency
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The EG Planning Problem

B(s, v) = max
c,v(s′),b′

y(s)− c + R−1b′
∑
s′∈S

π(s ′|s)1{v(s′)≥VD(s′)}

subject to:

v ≤ u(c) + β
∑
s′∈S

π(s ′|s) max〈v(s ′),VD(s ′)〉

b′ ≤ B(s ′, v(s ′)) for s ′ ∈ S such that v(s ′) ≥ VD(s ′)
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The EG Planning Problem
Frictions

I Two (related) frictions:
1. Incomplete Markets

I Cannot insure fluctuations in y(s)
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The EG Planning Problem
Frictions

I Two (related) frictions:
1. Incomplete Markets

I Cannot insure fluctuations in y(s)

2. Deadweight Costs of Default
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The EG Planning Problem
Costs of Default

B(s, v) = max
c,v(s′),b′

y(s)− c + R−1b′
∑
s′∈S

π(s ′|s)1{v(s′)≥VD(s′)}

subject to:

v ≤ u(c) + β
∑
s′∈S

π(s ′|s) max〈v(s ′),VD(s ′)〉

b′ ≤ B(s ′, v(s ′)) for s ′ ∈ S such that v(s ′) ≥ VD(s ′)
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Implications of Inefficiency

I Inability to insure y(s) generates precautionary savings
I Well understood with or without default

I Focus on second friction:
I Set y(s) = y for all s

I Only risk: V D(s)

I V D iid over time
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The EG Planning Problem
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I s does not appear on RHS
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The EG Planning Problem

B(v) = max
c,v(s′),b′

y − c + R−1b′
∑
s′∈S

π(s ′)1{v(s′)≥VD(s′)}

subject to:

v ≤ u(c) + β
∑
s′∈S

π(s ′) max〈v(s ′),VD(s ′)〉

b′ ≤ B(v(s ′)) for s ′ ∈ S such that v(s ′) ≥ VD(s ′)

I Optimal to set B(v(s ′)) = B(v(s ′′)) = B(v ′)
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Dynamics

I Two cases:

1. V D(s) ∈ [V D ,V
D

] and V D ∼ F (vD)

2. V D(s) ∈
{
V D ,V

D
}

and Pr(V D = V
D

) = λ

I Assume B(V
D

) ≥ 0⇔ V
D ≤ V (0)

I Assume βR = 1: Only dynamics due to default costs
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Dynamics
Continuous Distribution

B(v) = max
c,v ′

y − c + R−1B(v ′)F (v ′)

subject to:

v ≤ u(c) + βF (v ′)v ′ + β

∫ V
D

v ′
vDdF (vD)

I First-Order Conditions:

1

u′(c)
= µ = −B ′(v)

B ′(v ′) +
f (v ′)

F (v ′)
B(v ′) + µ = 0
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Dynamics
Continuous Distribution

I Inverse Euler Equation

1

u′(c ′)
=

1

u′(c)
+

f (v ′)

F (v ′)
B(v ′)

I Default probability places “wedge” in inter-temporal decision

I Backloading:

I c ′ > c as long as v ∈ [V D ,V
D

)

I v → V
D

I Save to point where default is ruled out
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v

b

v0

b0

V
D

B(V
D

)

Move up continuously

Speed determined by f (v ′)
May default along the way
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Dynamics
Continuous Distribution

I Same implication as complete markets case with output
shocks

I Not driven by desire for insurance

I Seems like a local intuition, but holds more generally
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Dynamics
Two Shock Case

I VD takes two values VD ∈ {VD ,V
D}

I Poisson probability of high-payoff state λ

I Split state space into three “zones”:

1. Safe Zone: v ≥ V
D

2. Crisis Zone: v ∈ [V D ,V
D

)

I Ignore Default Zone
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B(v)

vV
D

Crisis Zone Safe Zone

17 / 61



Two Shock Case
Continuous Time Limit

I Useful to let the time period become small:

β = R−1 = e−ρ∆t

I Let T denote first realization of V
D

Pr(T > t + ∆t|T > t) = e−λ∆t
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Safe Zone
Hamilton-Jacobi-Bellman Equation

I Safe Zone Bellman Equation

ρB(v) = max
c

y − c + B ′(v) (ρv − u(c))︸ ︷︷ ︸
v̇

I First-Order Condition:

− 1− B ′(v)u′(c) = 0

⇒

− B ′(v) =
1

u′(c)
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Safe Zone
Conjectured Solution

I In Safe Zone there is no risk of default

I Lenders and government both discount at rate ρ

I Conjectured solution: v = u(C(v))
ρ

C (v) = u−1 (ρv)

I Payoff to lenders:

B(v) =
y − C (v)

ρ

I Note: B ′(v) = −C ′(v)
ρ = −1

u′(C(v))
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B(v)

vV
D

Crisis Zone Safe Zone
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Crisis Zone
Hamilton-Jacobi-Bellman Equation

I Crisis Zone: Probability of default λ

(ρ+ λ)B(v) = max
c

y − c + B ′(v)v̇

I With

ρv = u(c) + v̇ + λ
(
V

D − v
)
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Crisis Zone
Hamilton-Jacobi-Bellman Equation

I Crisis Zone: Probability of default λ

(ρ+ λ)B(v) = max
c

y − c + B ′(v)v̇

I With

ρv = u(c) + v̇ + λ
(
V

D − v
)

or

(ρ+ λ)v = u(c) + v̇ + λV
D

I Note: As if both discount at (ρ+ λ)
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Crisis Zone
Conjectured Solution

I Discount at actuarially fair prices

I Conjecture constant c :

v =
u
(
C̃ (v)

)
ρ+ λ

+
λ

ρ+ λ
V

D

I Payoff to lender:

B(v) =
y − C̃ (v)

ρ+ λ

I Note: B ′(v) = −C̃ ′(v)
ρ+λ = −1

u′(C̃(v))
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B(v)

vV
D

Crisis Zone Safe Zone
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B(v)

vV
D

Crisis Zone Safe Zone

λ
ρ+λB

(
V

D
)
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Inefficiency
Role for Backloading

I Discontinuity cannot be part of the solution

I Inefficiency:

I To the left of V
D

, small decrease in c (increase in v̇) generates
discrete gain to lender with second order costs

I Optimal to backload in neighborhood below V
D
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B(v)

vV
D

Crisis Zone Safe Zone
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B(v)

vV
Dv∗

Crisis Zone Safe Zone
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Two Shock Case
Role for Backloading

I In neighborhood of v < V
D

:
I Set c = c̄

I c̄ solves Bellman equation to the left of V
D

:

(ρ+ λ)B(V
D

) = y − c̄ − 1

u′(c̄)

[
(ρ+ λ)v − u(c̄)− λVD

]

I Threshold for saving:

v∗ =
u(c̄)

ρ+ λ
+

λ

ρ+ λ
V

D
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C (v)

vV
Dv∗

Crisis Zone Safe Zone
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Dynamics
Two Shock Case

I Planner’s solution:
I If v ≥ V

D
: keep consumption and v constant

I If v ∈ (v∗,V
D

) back load until v = V
D

I If v ≤ v∗: keep consumption and v constant and default will
eventually happen
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Dynamics
Two Shock Case

I Key is that Planner delays consumption until reach Safe Zone

I Efficient from perspective of lender: Saves λB(V
D

)/(ρ+ λ)

I How is this decentralized in a competitive equilibrium?
I Remember that default occurs when payoff V D is high

I In Crisis Zone, V
D

is greater than value of repayment

I Why not just rollover bonds until high payoff and then default?
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Decentralization

r̃(b)

ρ

ρ+ λ

bb̄
Safe Zone Crisis Zone
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Dynamics
Decentralization

I In Crisis Zone:
I To left of b̄ ≡ B(V

D
), pays ρ+ λ to roll over bonds

I By saving to b̄, pays only ρ

I Saves λ
ρ+λ b̄ = λ

ρ+λB(V
D

)

I Completely internalizes efficiency cost via prices

I Important that government rolls over entire stock of debt
each period

I Otherwise, only internalizes fraction that is rolled over
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Exogenous Default
Role of V D

I Consider arbitrary Crisis Zone: v < v̄

I Consider arbitrary default payoff VD ≤ v̄

I Safe Zone remains the same

I Consumption level in Crisis Zone solves:

(ρ+ λ)B(v) = y − c̄ − 1

u′(c̄)

[
ρv − u(c̄) + λ(v̄ − VD)

]

I Note: dc̄
dVD = u′′(c̄)

u′(c̄)2 v̇ > 0 as v̇ < 0.

I A decrease in VD implies faster convergence in “saving”
region
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C (v)

vvv∗0v∗1

VD
1 < VD

0

Crisis Zone Safe Zone

36 / 61



Default
A Tale of Two Dragons

I Conventional Wisdom: Save to avoid costly default state
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Default
A Tale of Two Dragons

I How the model works: Save even if default is a windfall
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Two Dragons
Why does it matter?

I Many papers argue government’s save to avoid (exogenous)
costly default

I Example: Cole-Kehoe’s “run” model

I Endogenous default environment:
I Efficiency implies sovereign should save

I Role of maturity?
I Cole-Kehoe: Maturity restores efficiency

I Eaton-Gersovitz?

I Quantitative implications
I Quantitative models take default costs as free parameter

I Nonlinear costs a la Arellano reduce the incentive to save
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Longer Maturity
Next Steps

I One-period bond model:
I Constrained efficient

I Equilibrium is unique

I Longer maturities:
I Observed in practice

I Improve quantitative fit of EG model

I How does longer maturity change lessons from one-period
bond environment?
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Longer Maturity
Environment

I Continue with simplified environment
I No output shocks: y(s) = y

I Two default states: V D ∈ {V D ,V
D}

I iid transition: Pr(V D = V
D

) = λ

I Safe Zone and Crisis Zone

I Continuous time limit
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Longer Maturity
Environment

I Random maturity (perpetual youth) bonds
I Probability of maturity δ

I iid across bonds and time

I δ →∞: Short-term debt

I δ → 0: Perpetuitities

I Normalize coupon to r

I Assume ρ > r : Incentive to borrow
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Longer Maturity
Environment

I Solve for equilibrium using “primal” approach:
I Equilibrium is no longer solution to planning problem

I Let b denote face value of bonds

I Let q(b) denote price per bond given face value b

I Let V (b) denote value of repayment given b
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Longer Maturity
Government’s Problem

I Faced with price schedule q:

ρV (b) = max
c

{
u(c) + V ′(b)ḃ + λ

(
max〈V (b),V

D〉 − V (b)
)}

I Subject to:

c = y − (r + δ)b + q(b)
(
ḃ + δb

)

I Lenders’ Break-Even Condition:

rq(b) = r + (1− q(b))δ + q′(b)ḃ − λq(b)1{V (b)<V
D}
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Constructing Equilibria

1. δ →∞ (Uniqueness)

2. δ = 0 (Uniqueness)

3. Intermediate case: δ ∈ (0,∞) (Multiplicity)
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Short-term Bonds: δ =∞

V (b) C (b)

b bb bb∗ b∗b b

Safe Zone Safe ZoneCrisis Zone Crisis Zone
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Perpetuities: δ = 0

V C q

r+δ
r+δ+λ

b b bb b bb b b
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Short vs. Long

I Short-term bonds are “efficient” as government faces correct
incentives to reduce default risk

I At boundary of b, government recognizes a small reduction in
c lowers rollover costs

I Prices correctly align incentives

I Like a variable cost

I Perpetuities provide no incentives to economize on default
costs

I When issued, price reflects future default probabilities

I Never rolled over, so no incentive to reduce debt once issued

I Like a sunk cost
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Intermediate Maturity

I Short-maturity type of equilibrium:
I Need to roll over bonds in the future makes reducing debt

worthwhile

I b a stationary point

I “Perpetuity” type of equlibrium:
I Borrow to the limit

I b a stationary point
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Constructing Equilibria with δ ∈ (0,∞)

A

V (b)

V
D

VD
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Constructing Equilibria with δ ∈ (0,∞)
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A

good equilibrium
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Constructing Equilibria with δ ∈ (0,∞)

q(b)

1

r+δ
r+δ+λ

bb1b2 bb∗
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Constructing Equilibria with δ ∈ (0,∞)

A B

C (b)

bb1b2 bb∗
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Incentives behind Multiplicity

I Multiplicity due to creditor beliefs about future fiscal policy
I Prices reflect creditor beliefs

I Value functions reflect shape of price schedule

I Role of maturity:
I With one-period debt, future fiscal policy irrelevant

I With perpetuities, cannot support an interior stationary point
(no need to roll over debt at stationary points)

I With endowment shocks same forces at work, but greater
incentive to save due to precaution
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Policy Implications

I How can an outside institution rule out bad equilibrium?

I Traditional policy: Price floor
I Kills feedback from budget sets (Calvo)

I Kills failed auctions (Cole-Kehoe)

I No resources on equilibrium path

I In our version of EG model, price floor selects bad equilibrium
I Kills incentive to save

I “Flattens” price schedule

I Sovereign borrows to limit

I Requires third-party resources on equilibrium path
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Other Policies

I Debt Forgiveness:
I As long as sovereign relatively impatient, will resume borrowing

I Does not rule out eventual default
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Debt Forgiveness
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Other Policies

I Debt Forgiveness:
I As long as sovereign relatively impatient, will resume borrowing

I Does not rule out eventual default

I Debt ceilings
I Can be effective with no additional resources

I Provides “reward” of risk-free rate at low debt levels

I “Good” equilibrium, saving/non-dilution is supported by prices
and market-based punishments

I How to enforce non-market limits on debt?

I Costs to delay:
I If b too high, unique equilibrium

I Point emphasized by Lorenzoni-Werning in their framework
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Some Remaining Questions

I What selection mechanism is at work in large, quantitative
models typically used?

I How to interpret episodes like Draghi’s speech?

I Were debt limits crucial to its success?
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Conclusion and Next Steps

I Deadweight cost of default provides incentive to save

I Even if default is a relatively positive outcome for government

I Long-term debt does not provide same incentive
I Costs of default “sunk” into original prices

I Leads to multiple equilibria in canonical EG model

I How do these considerations affect optimal maturity choice?

I Rolling over debt provides correct incentives:
I What about rollover “risk”?
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