Trade and Macroeconomics

Lectures 4: Trade and Labor Market Outcomes

Gino Gancia

CREI and BGSE

July 10, 2014

Gino Gancia (CREI and BGSE)

Trade and Wages

- a long-standing debate:
 - how do trade and offshoring affect wages and jobs of different workers?
 - can trade increase wage inequality and/or lower wages for some workers?
 - can trade increase unemployment?
- observations:
 - within-country wage inequality has increased in several countries in the past decades
 - wages of unskilled workers have stagnated
- some measures of within-country wage inequality:
 - returns to college education
 - skill premium = wage of white-collar workers wage of blue collar workers
 - residual wage inequality (after controlling for observable characteristics)

Some Cross-Country Evidence: Demand and Supply

	Level in 2005			% Change 1980-2005		
	(1)	(2)	(3)	(4)	(5)	(6)
Country	College	College	Openness	College	College	Openness
	Premium	Completed		Premium	Completed	
Australia	1,72	20,6	40,8	19	20	91
Austria	1,38	10,7	104,1	-1	410	94
Canada	1,55	31,9	72,3	15	182	82
China	1,50	3,2	65,1	20	433	294
Denmark	1,47	11,4	93,2	1	27	98
Finland	1,53	15,0	79,4	-7	124	91
Italy	1,34	6,7	51,9	3	148	86
Japan	1,49	21,5	27,4	4	142	84
Mexico	1,80	12,5	55,1	30	221	262
Netherlands	1,58	16,8	131,3	-9	143	108
Spain	1,68	15,7	56,9	27	241	201
United Kingdom	1,61	11,9	56,5	5	98	77
United States	1,90	31,0	26,5	44	71	116
Average	1,58	16,1	66,2	12	174	129

Table 1: College Premium, Education and Openness

Notes: Data on the college premium are from EU-KLEMS, Krueger et al. (2010) and Ge and Yang (2012). The change in the college premium for China refers to the period 1992-2007. Educational attainment and openness are from Barro-Lee and the Penn World Tables 7.1.

- both the college premium and skill supply have increased
 - demand must have increased

イロン イロン イヨン イヨン

Main Explanations for Rising Demand for Skill

- main explanations:
 - Skill Biased Technical Change (SBTC)
 - globalization
- why globalization?
- timing:
 - the last globalization boom started in the late 1970s
- case studies:
 - ▶ Goldberg and Pavcnik (2007) → trade liberalization in 1980s-90s → rising skill premia in Mexico, Colombia, Argentina, Brazil, Chile, India
- cross-country evidence:
 - correlation between measures of wage inequality and a country openness (*import+export GDP*) is often positive

Trade and Labor Market Outcomes

• focus on two main questions

- effect of trade and offshoring on wages (inequality)
- Interaction between trade and unemployment
- roadmap:
 - build a basic framework for studying the skill premium
 - e use it to study the effects of:
 - * technology
 - \star trade
 - ★ offshoring
 - extensions:
 - ★ residual inequality
 - unemployment

(日) (同) (三) (三)

A Basic 2x2 GE Framework

• preferences (CES):

•
$$U = Y = \left[(Y_l)^{\frac{e-1}{e}} + (Y_h)^{\frac{e-1}{e}} \right]^{\frac{e}{e-1}}$$
, $\epsilon > 0$

- $Y_h = \text{high-skill intensive good}$, price P_h
- $Y_l =$ low-skill intensive good, price P_l
- relative demand:
 - from profit maximization

$$\max_{Y_h, Y_l} \{ Y - P_h Y_h - P_l Y_l \}$$
FOCs : $Y^{1/\epsilon} Y_h^{-1/\epsilon} = P_h \rightarrow \frac{Y_h}{Y_l} = \left(\frac{P_h}{P_l}\right)^{-\epsilon}$

• demand is a negative function of prices with elasticity: $-\frac{\partial \ln Y_h}{\partial \ln P_h} = \epsilon$ • production (specific factors):

$$Y_h = A_h H$$
 and $Y_l = A_l L$

- H = supply of skilled workers, productivity A_h , wage w_h
- L = supply of unskilled workers, productivity A_I , wage w_I

The Skill Premium

- perfect competition
 - price = marginal cost: $P_h = \frac{w_h}{A_h}$; $P_l = \frac{w_l}{A_l}$
- skill premium:

$$\frac{w_h}{w_l} = \frac{P_h}{P_l} \frac{A_h}{A_l} = \left(\frac{A_h}{A_l}\right)^{\frac{\epsilon-1}{\epsilon}} \left(\frac{L}{H}\right)^{\frac{1}{\epsilon}}$$

• recall
$$\frac{P_h}{P_l} = \left(\frac{Y_h}{Y_l}\right)^{-1/\epsilon} = \left(\frac{A_h H}{A_l L}\right)^{-1/\epsilon}$$

- determinants of the skill premium
 - technology:
 - * if $\epsilon > 1$ (gross-substitutability), skill-biased technical change (higher $\frac{A_h}{A_l}$) increases $\frac{w_h}{w_l}$
 - endowments:
 - \star an increase in the relative supply of one factor reduces its relative reward, stronger effect when ϵ is low

Trade and the Skill Premium

- effect of trade:
 - similar to a change in endowments
- integrating two identical countries:
 - equal to doubling H and $L \rightarrow$ no change in $\frac{W_h}{W_l}$
- N-S trade integration
 - between a skill-abundant North and a skill-scarce South*:

$$\begin{array}{ll} \displaystyle \frac{H}{L} & > & \displaystyle \frac{H^* + H}{L^* + L} > \displaystyle \frac{H^*}{L^*} \\ \displaystyle \frac{w_h}{w_l} & < & \displaystyle \left(\displaystyle \frac{w_h}{w_l} \right)^{trade} < \displaystyle \frac{w_h^*}{w_l^*} \end{array}$$

- trade raises the reward of the relatively abundant factor
- problems:
 - volume of N-S trade too low (particularly in the 80s and 90s)
 - wage inequality increased also in many less-developed countries

Epifani & Gancia (2008)

• by adding IRS, models of new trade theory can explain:

- why trade between identical countries may increase wage inequality
- why trade may lead to a pervasive increase in skill premia
- same framework as before, but:
 - skilled workers produce differentiated goods subject to IRS
 - unskilled workers produce homogenous goods
- effect of trade: create bigger markets
 - \blacktriangleright differentiated goods are subject to IRS \rightarrow benefit more from bigger markets
 - skill is more valuable in large global markets

Skill-Intensive Sector

• Y_h is a CES baskets of differentiated varieties:

$$Y_{h} = \left[\int_{0}^{n} y_{i}^{\alpha} di\right]^{1/\alpha}, \quad \alpha \in (0, 1)$$

- n = number of varieties (endogenous)
- $\sigma = 1/(1-\alpha) > 1 =$ elasticity of substitution between varieties
- demand for any variety y_i
 - solve:

$$\max_{y_i} P_h Y_h - \int_0^n p_i y_i di$$

to get:

$$y_i = \left(\frac{p_i}{P_h}\right)^{-\sigma} Y_h$$

- demand with price elasticity $\sigma = 1/\left(1-lpha
ight)$

Firms - Monopolistic Competition

• one firm = one variety, total cost function:

$$TC = (f + \beta y_i) w_h$$

- $f = \text{fixed cost}, \beta = \text{variable cost}, all costs in units of labor$
- price = markup over MC:

$$p = \frac{\beta w}{\alpha}$$

- simplification: $\beta = \alpha \rightarrow p = w$
- free entry $(\pi = 0)$:

$$(p-cw_h)y_i = w_hF \rightarrow y = \frac{f}{1-\beta}$$

- pins down firm scale
- simplification: $f = 1 \beta$ to get y = 1

Varieties and Productivity

• labor marker clearing (demand = supply):

$$(f + \beta y)n = H \rightarrow n = H$$

with a fixed y, a higher H increases the number of firms only
production of Y_h:

$$Y_h = \left[\int_0^n y_i^{\alpha} di\right]^{1/\alpha} = n^{1/\alpha} = H^{1/\alpha}$$

• Y_h increases with *n* (love of variety) and thus with *H* :

$$\frac{\partial \ln Y_h}{\partial \ln H} = \frac{1}{\alpha} > 1$$

- Increasing Returns to Scale
- production of Y_I : $Y_I = L$
 - homogeneous good under perfect competition $(A_I = 1)$

Trade and the Skill Premium

- new effect of trade:
 - ▶ a bigger market can sustain a larger number of firms/varieties
 - new gains from variety (IRS) \rightarrow a productivity effect!
- effect on the skill premium:
 - ▶ all revenue goes to workers (zero profit), thus $\frac{w_h H}{w_l L} = \frac{P_h Y_h}{P_l Y_l}$

• using
$$\frac{P_h}{P_l} = \left(\frac{Y_h}{Y_l}\right)^{-1/\epsilon}$$
, $Y_h = H^{1/\alpha}$ and $Y_l = L$:

$$\frac{w_h}{w_l} = L^{1/\epsilon} H^{\frac{\epsilon - 1 - \alpha \epsilon}{\alpha \epsilon}}$$

- if $\epsilon > 1$, integrating two identical countries raises $\frac{w_h}{w_l}$
 - why? because trade increases "productivity" in the skill-intensive sector!
- if $\epsilon > \sigma = 1/(1-\alpha)$, the scale effect is so strong that trade *always* increases the skill-premium
 - ▶ an increase in *H* creates its own demand (new products)

Offshoring and Wages

- introduce offshoring as in:
 - Grossman & Rossi-Hansberg (2006, 2008)
 - Acemoglu, Gancia & Zilibotti (2013)
- focus on offshoring of L-jobs (more relevant case)
 - production of Y_l requires intermediates that can be separated geographically
 - benefit of offshoring: move production to low-wage countries (South)
 - ▶ but only a fraction $\kappa < \bar{\kappa} = \frac{L^*}{L+L^*}$ of intermediates can be offshored
- new result:
 - offshoring of unskilled jobs can, in some cases, benefit domestic unskilled workers!

Introducing L-Offshoring

• preferences:

$$Y = \left[(Y_l)^{\frac{\epsilon-1}{\epsilon}} + (Y_h)^{\frac{\epsilon-1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}}$$

where:

$$Y_{l} = \left[\int_{0}^{1} y_{i}^{\alpha} di\right]^{1/\alpha} = \left[\left(1-\kappa\right)^{1-\alpha} L^{\alpha} + \kappa^{1-\alpha} \left(L^{*}\right)^{\alpha}\right]^{1/\alpha}$$

- $y_i^* = \frac{L^*}{\kappa}$, $i \in [0, \kappa]$ are offshored to the South
- ▶ $y_i = \frac{l}{1-\kappa}$, $i \in (\kappa, 1]$ are produced in North
- no offshoring in the H sector: $Y_h = H$
- perfect competition:
 - ▶ wages = MPL

$$w_{h} = \frac{\partial Y}{\partial H} = Y^{1/\epsilon} Y_{h}^{-1/\epsilon}$$
$$w_{l} = \frac{\partial Y}{\partial L} = Y^{1/\epsilon} Y_{l}^{-1/\epsilon} Y_{l}^{1-\alpha} (1-\kappa)^{1-\alpha} L^{\alpha-1}$$

L-Offshoring and the Skill Premium

$$\frac{w_h}{w_l} = \frac{L^{1-\alpha}}{Y_h^{1/\epsilon}} \cdot \frac{(1-\kappa)^{\alpha-1}}{Y_l^{1-1/\epsilon-\alpha}}$$

• effects of κ :

- **(**) direct effect: less demand for L in North \rightarrow higher skill premium
- **2** efficiency effect: higher $Y_I \rightarrow (?)$
- ullet if tasks are sufficiently complementary ($\alpha < 1-1/\varepsilon)$

•
$$\frac{W_h}{W_l}$$
 is a U function of κ

• why? recall
$$\frac{\partial Y_l(\kappa \simeq 0)}{\partial \kappa} \to \infty$$
, and $\frac{\partial Y_l(\kappa \simeq \bar{\kappa})}{\partial \kappa} \to 0$

intuition:

- ▶ with enough complementarity, cost saving on $[0, \kappa]$ increases the demand for workers on $(\kappa, 1]$ too → lower skill premium
- but this effect disappears as $w_l^* \rightarrow w_l$
- Grossman & Rossi-Hansberg (2006, 2008)
 - ▶ ICT increases foreign productivity \rightarrow lowers $\frac{w_h}{w_i}$ if $\alpha < 1 1/\epsilon$

・ロト ・回ト ・ヨト ・ヨト

L-Offshoring and the Skill Premium

• $\epsilon = 1.6$, solid: $\sigma = 5$, dashed: $\sigma = 1.25$, $\sigma = 1/(1-\alpha)$

・ロト ・回ト ・ヨト

Feenstra & Hanson (1997, 1999)

- the removal of barriers to Foreign Direct Investment has triggered offshoring from US to Mexico
- this relocation of economic activity can increase wage inequality in both countries
- why?
 - because offshored activity are low-skill intensive relative to US production
 - but they are skill-intensive relative to Mexican production
- thus, the skill-intensity of production (and thus the demand for skill) increases both in US and Mexico

Trade and Wages with Heterogeneous Firms and Workers

- Helpman, Itskhoki & Redding (2010)
 - Melitz (2003) + labor market frictions \rightarrow wage dispersion, unemployment
- key ingredients:
 - monopolistic competition with heterogeneous firms
 - fixed cost of exporting
 - labor market frictions
 - \star random search and matching (\rightarrow rent sharing between firms and workers)
 - * unobservable worker ability heterogeneity
 - ★ costly screening by firms
- main results:
 - trade benefits disproportionately more productive firms
 - more productive firms pay higher wages
 - trade increases wage inequality and may increase unemployment

Market Structure

• monopolistic competition as in Melitz (2003)

- fixed entry cost, f_e
- productivity draw $\theta \sim \text{Pareto}(z)$
- fixed production cost, f_d
- fixed export cost, f_x
- revenue per firm:

$$r(\theta) = r_d(\theta) + r_x(\theta) = (A + I_x A^*) y(\theta)^{\beta}$$

- ▶ $r_d(\theta)$, $r_x(\theta)$ = revenue from home and foreign market
- A and A^* capture home and foreign demand conditions
- $I_x = 1$ if firm exports, 0 otherwise
- downward sloping demand curve

Technology

• output of firm with θ productivity, *h* employees of average ability \bar{a} :

 $y = \theta h^{\gamma} \bar{a},$

- ▶ $\gamma \in (0,1) \rightarrow \mathsf{DRS}$ (e.g., span of control model)
- ability a unobservable and Pareto: $G_{a}\left(a
 ight)=1-\left(1/a
 ight)^{k}$
- firm pays bn to match randomly with $n \ge h$ workers
- firm pays $\frac{ca_c^2}{\delta}$ to screen out workers with $a < a_c$

$$\bar{a} = rac{k}{k-1} a_c$$
 and $h = n \left(rac{1}{a_c}
ight)^k$

• assume $k < 1/\gamma$ (screening will be profitable)

Firm's Problem

- wage bargaining as in Stole & Zwiebel (1996):
 - firm's share of revenues = $1/(1 + \beta \gamma)$

• firm solves

$$\pi\left(\theta\right) = \max_{n, a_{c}, I_{x}} \left\{ \frac{r\left(\theta\right)}{1 + \beta\gamma} - bn - \frac{c\left(a_{c}\right)^{\delta}}{\delta} - f_{d} - I_{x}f_{x} \right\}$$

• where
$$r(\theta) = (A + I_x A^*) \left(\frac{k}{k-1} \theta n^{\gamma} a_c^{1-\gamma k}\right)^{\beta}$$

FOC for
$$n$$
 : $\frac{\beta\gamma}{1+\beta\gamma}r(\theta) = bn(\theta)$
FOC for a_c : $\frac{\beta(1-\gamma k)}{1+\beta\gamma}r(\theta) = c(a_c(\theta))^{\delta}$

- more productive firms:
 - ★ sample more workers, $n'(\theta) > 0$
 - \star screen at a higher ability threshold, $a_{c}^{\prime}\left(heta
 ight) >0$
- $\theta < \theta_d$ exit and $\theta > \theta_x$ export

Profits, Cutoffs and Wages

- profits:
 - using the FOCs:

$$\pi\left(\theta\right) = \Gamma\left[r_{d}\left(\theta\right) + I_{x}r_{x}\left(\theta\right)\right] - f_{d} - I_{x}f_{x}$$

*
$$\Gamma = \frac{1 - \beta \gamma - \beta (1 - \gamma k) / \delta}{1 + \beta \gamma}$$

productivity cutoffs

$$\begin{array}{ll} \theta_d & : & \Gamma r_d \left(\theta_d \right) = f_d \\ \theta_x & : & \Gamma r_x \left(\theta_x \right) = f_x \end{array}$$

- profit increases smoothly in θ , revenue jumps for exporters to cover f_x
- wages:
 - from FOC + $h = na_c^{-k}$:

$$w\left(\theta\right)h\left(\theta\right) = rac{\beta\gamma}{1+\beta\gamma}r\left(\theta\right) = bn\left(\theta\right)
ightarrow w\left(\theta\right) = b\left[a_{c}\left(\theta\right)
ight]^{k}$$

more productive firms pay higher wages + exporter wage premium

Wage Profiles

• open economy versus autarky:

3

・ロト ・ 日 ・ ・ ヨ ト

Openness and Wage Inequality

Trade and Unemployment

- tightness x depends on labor supply decisions
 - \blacktriangleright indifference between seeking a job (with unemployment risk) and a safe outside option ω :

$$\omega = \frac{N}{L}\frac{wh}{n} = \frac{N}{L}b$$

- L = total job seekers
- N = total sampled workers
- employment rate:

$$\frac{H}{L} = \frac{H}{N}\frac{N}{L} = \frac{H}{N}\frac{\omega}{b}$$

- H = total hired workers
- given (ω, b) , $\frac{H}{L}$ is higher in a trade equilibrium than in autarky
 - * why? trade reallocate workers towards more productive firms
 - * but more productive firms are more selective $(h/n = a_c^{-k})$
- trade may increase unemployment

Further Readings

- some supportive evidence:
 - \blacktriangleright Helpman-Itskhoki-Muendler-Redding (2014) \rightarrow structural estimation using Brazilian data
 - \blacktriangleright Amiti & Davis (2011) \rightarrow similar results with fair wages, supportive evidence from Indonesia
- Helpman & Itskhoki (2010):
 - differences in labor market institutions may be a source of Comparative Advantage
 - trade may affect unemployment by changing the sectorial composition of the economy (specialization)
 - labor market reforms may affect foreign countries through trade linkages
- Trade, Sorting and Inequality:
 - Ohnshorge & Trefler (2007), Costinot & Vogel (2010), Monte (2011), Sampson (2012)
- Offshoring, Sorting and Inequality:
 - Antras, Garicano & Rossi-Hansberg (2006), Kremer & Maskin (2006)

Trade and Unemployment

• countries differ in labor market institutions:

- how does trade interact with (different) labor market institutions?
- Davis (1998)
 - before the 70s, unemployment in Europe was $\sim 2-3\%$, now it's much higher
 - European labor markets are rigid
 - claim: globalization + rigidity \rightarrow higher European unemployment
- trade model with two factors (H and L) and two countries:
 - US: flexible wages
 - Europe: binding minimum wage for unskilled workers
 - result: Europe-US trade can increase European unemployment

Wages and Unemployment

• flexible wages

• recall:
$$\frac{w_h}{w_l} = \left(\frac{A_h}{A_l}\right)^{\frac{e-1}{e}} \left(\frac{L}{H}\right)^{\frac{1}{e}}$$

• normalize $w_h = 1$ and $(A_h/A_l)^{\frac{e-1}{e}} = a$

$$w_l^* = a^{-1} \left(H/L \right)^{1/\epsilon}$$

 w_l^* wage consistent with market clearing

rigid wages

• binding minimum wage, $\bar{w}_l > w_l^*$

$$\bar{w}_l = a^{-1} \left(H/L^e \right)^{1/\epsilon}$$

where $L^e = L - U$ is employed unskilled workers • unemployment:

$$U = L - H \left(a \bar{w}_l \right)^{-\epsilon}$$

• at $\bar{w}_l > w_l^*$ firms are not willing to employ all L

Trade and European Unemployment

- assume Europe (rigid) and US (flexible) have the same L and H
 - free-trade unemployment:

$$U_E = 2\left[L - rac{H}{\left(aar{w}_I
ight)^{\epsilon}}
ight], \qquad U_{US} = 0$$

- trade with the US doubles unemployment in Europe
- why?
 - ▶ wages are flexible in US: if $U_{US} > 0 \rightarrow$ firms can hire more workers and offer them $w_l < \bar{w}_l$
 - but European firms cannot compete with firms paying $w_l < \bar{w}_l$
 - European firms will fire workers until $w_l = \bar{w}_l$ and all U is in Europe
- other global events can raise European unemployment:
 - immigration of L to the US
 - ► SBTC (a ↑)

What Did We Learn?

• trade (even between similar countries) may lead to higher wage inequality

- trade/offshoring can have effects similar to (biased) changes in productivity
 - trade may increase relatively more the productivity of skilled workers
 - offshoring of labor-intensive tasks may increase the efficiency of unskilled sectors
 - may be difficult to distinguish empirically between trade and biased technical change
- rich interaction between trade and labor market institutions:
 - trade can make labor market rigidity more costly (through price effects)
 - or less costly (through specialization)