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We study the possibility of random changes in the allocation of resources among
regions/sectors in the presence of local productive externalities, in an environment
without intrinsic uncertainty. We show that “positive” externalities over some range
of activity are a necessary condition for existence of such sunspot equilibria. For the
two-state sunspot case, we derive sufficient conditions for existence of sunspot equi-
libria, in terms of the properties of adjustment costs, private technologies, and
externalities. Journal of Economic Literature Classification Numbers: E32, R13.
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1. INTRODUCTION

The presence of productive externalities has been pointed to by a num-
ber of authors as a potential source of multiple equilibria. Recent examples
of models characterized by both productive externalities and multiple equi-
libria include [2, 3,5, 8,9, 11, 12], among others.

The present paper investigates the potential role of a certain type of
productive externalities—which we refer to as “local externalities™—as a
source of sunspot fluctuations, i.e., random changes in the allocation of
resources in the absence of shocks to preferences, technology, or
endowments.

The possibility of sunspot equilibria generated by such productive
externalities was analyzed by [11] in the context of an otherwise standard
one-sector neoclassical growth model. Furthermore, as argued in [7],
other growth models with productive externalities that have been shown

* 1 am grateful to Paolo Siconolfi for helpful discussions and Joon-Ho Hahm for research
assistance. I am solely responsible for any remaining errors.

! Papers illustrating the possibility of sunspot equilibria in environments where the first
welfare theorem is violated include examples with restricted participation [4], an infinite
number of agents [ 1], monopolistic competition [ 6], and borrowing constraints [137], among
others.
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to be characterized by indeterminacy of perfect foresight paths in a
neighborhood of a steady state (e.g., [2, 3]) could also be shown to exhibit
stationary sunspot equilibria that remain arbitrarily close to that steady
state.

The model we develop has two basic features, shared by other examples
found in the literature [8, 97]. First, producers allocate resources across two
activities, with the private technology associated with each activity being a
function of the aggregate level of resources allocated to it. Underlying that
assumption is the notion of technological or knowledge spillovers (positive
externalities) or congestion effects (negative externalities) that are restricted
to a certain “activity”-—and thus have a “local” nature—- and which can be
naturally interpreted as either intra-industry or intra-region spillovers. The
second main feature of the model is the presence of adjustment costs, or
more precisely, private costs of reallocating resources across activities, i.e.,
across regions or industries. Under similar assumptions, the papers listed
above show how the possiblity of multiple perfect foresight equilibrium
paths arises, but, to the extent of our knowledge, no analysis of the
potential for sunspot equilibria in that environment can be found in the
literature.

The model, presented in Section 2, is deliberately stylized in order to
isolate the role of externalities. Given our assumptions, the latter is the
only source of potential inefficiency of equilibrium allocations. In par-
ticular, we assume a finite number of agents, and complete markets
(including sunspot-contingent markets). Because of the presence of exter-
nalities, competitive equilibria may be suboptimal, thus making room for
sunspot-contingent allocations [4].

In Section 3, we show that the presence of “positive” externalities over
some activity range are a necessary condition for existence of finite-state
sunspot equilibria. For the two-state sunspot case, an open set of sunspot
equilibria is shown to exist if, in addition to the necessary condition above,
the marginal adjustment cost schedule is sufficiently “flat.” We finish that
section by briefly discussing some welfare implications of sunspots in our
model.

2. THE MoODEL

There i1s a finite number of identical agents, who act as consumer-
producers.” Each agent derives utility from the consumption of a single
perishable good in two periods, indexed by fr=1,2. We denote his con-
sumption vector by c(w)=[¢,, ¢,(@)], where we 2, and @Q is a (finite) set

2 Instead, we could have assumed the existence of both consumers and firms, with the
former selling labor services to the latter in both spot- and state-contingent markets. Our
assumption simplifies the notation without affecting any of the results.
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of possible realizations of a sunspot variable in the second period. The
representative agent maximizes

EU(c)= Z n(w) U(c(w)), (1)

w € 52

where U is C? strictly increasing, strictly concave, and satisfies
lim, o U(-)= 4+, for t=1,2, where U(-)=0U(-)/dc,.

Each agent has an endowment of the consumption good represented by
a vector w= [w, w,]> 0. In addition, he has an endowment of a produc-
tion input (e.g., labor), which we normalize to be equal to one in both
periods. The input endowment is allocated to two productive activities
indexed by i=1, 2, subject to the constraint

n,+n,<1, n,; =20, i=1,2, 2)

ny(w)+np(w)<l, ny(w)=20, i=1,2, all wef,

where n,; denotes the quantify of the input allocated to activity i in
period .

Each activity yields an output of the consumption good in period 2,
according to the production function

yilw)=0(Ny(w)) Flny(w)),  i=12 al wel, (3)

where y; is the output of activity i. F(-) is a C* function defined on the unit
interval, and satisfying F’' >0, F”" <0, and lim,_, F'(z)=00. 6(-) is a
technology index whose realization is a function of N,;, the aggregate input
level allocated to activity i, Without loss of generality we assume N,, is nor-
malized by the number of agents, and let 6(-) be accordingly defined on the
unit interval. We further assume #(:) is C', and 0<#(z)< o for all
ze [0, 1]. At this stage we do not impose any restrictions on the sign of its
derivative.

The probability distribution of N, (i=1,2) is taken as given by each
individual agent, who perceives his choice of »,; as having a negligible effect
on the aggregate value of that variable. Given the dependence of individual
production possibilities on aggregate outcomes, individual decisions have
external effects which may be the source of inefficient equilibrium alloca-
tions. Under our specification, that externality has a Jocal nature, in the
sense that spillovers take place only within each activity, ie., within a
certain economic region or sector, depending on the interpretation.

A final feature of our model concerns adjustment costs. Even though
output is not obtained until the second period, production activities are
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assumed to begin in period 1, for agents have to allocate their input
endowment to the two activities in that initial period. Any adjustments in
that initial allocation that take place in period two are assumed to be
costly, with the size of the adjustment cost being a function Q(-) with
argument d(w)=n,(w)—n,,. We assume Q(-) is a C?, strictly convex
function defined on [ —1, 1] with a minimum at zero (ie., 8"(-)>0, and
Q’(0)=0. It is convenient to introduce a net output function, defined as
yw)=y(w)+ y(0) — Q(dw)).

Each agent thus maximizes (1), subject to (2) and the budget constraint

Cp— W+ Z plo)ew)—w, — p(w)]<0, (4)

we

where p(w)=0 is the price of the consumption good for delivery in
period 2 and state w. Note that the price for consumption goods delivered
(with certainty) in period 1 has been normalized to unity.

3. CoMPETITIVE EQUILIBRIA WITH LOCAL EXTERNALITIES

3.a.Competitive Equilibria

Our assumptions on U(-), F(-), Q(-), and 6(-) guarantee the existence
of an interior solution to the problem above, with (2) and (4} holding with
equality. In order to simplify the notation we define n,=n,, and N, =N,
t=1, 2. The first order conditions characterizing that solution are

Zﬂ m(w) Uy(c(w)) = 4, (5)
h n(w) Ux(c(w)) =p(w)  all wel, (6)
EQ plw) @'(dw))=0, (7)

G(n(w))=Q'dlw)) all wel, (8)

where A is the shadow value associated with constraint (4) and
G(ny{(w))=0(N,(w)) F'(ny(w))—0(1 —~ Ny(w)) F'(1—n,(w)). Equations
(5) and (6) are standard conditions equating the marginal rate of substitu-
tion to relative prices. Equation (7) guarantees that the expected loss of
utility resulting from adjustments costs is minimized. Equation (8) equates
the private marginal gain of shifting input towards activity 1 (in period 2)
to the marginal cost of doing so.

Next we to turn to a characterization of competitive equilibria. Given
p(w) and N,(w) (for all we ), the solution to the representative agent’s

642/64/1-17
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problem can be easily shown to be unique,® and so it must be the same
across agents (given our assumption of identical preferences, technology,
and endowents). We can thus restrict ourselves to symmetric com-
petitive equilibria, i.e., allocations for which conditions (5)—(8) are satisfied
for each consumer, markets clear, and individual and aggregate variables
(the latter normalized by the number of agents) take identical values.
Letting capital letters denote (per capita) aggregate variables, a com-
petitive equilibrium allocation is formally characterized by the following
conditions:

¢, =w, %)
Ciw)=Y(w)+ W, all we (10)

Y(w) = 0(Ny(w)) F(Ny(w)) + (1 — Ny(w)) F(1 — Ny(w))

—Q(Ny(w)—N)) all we (11)
2. () Uy(C(w)) G(Ny(w))=0 (12)
we R

G(Ny)(0))=Q'(N)(w)—N,) all wef (13)

0N <1, 0<Ny(w)<l, O<r(w)<],

all we®; Y n(w)=1L (14)

we 2

3.b. Perfect Foresight Equilibria

Consider first the set of competitive perfect foresight equilibria (pfe.),
1., solutions to (9)-(14) such that C,(w)= C,, Ny(w)=N,, Y(w)=Y, all
w € Q. Under our assumptions on U(-) and @(-), (12) and (13) imply that
in any pfe, N;=N,=N, and G(N)=0. In words, the input allocation
among activities is constant over time, no adjustment costs are incurred,
and private marginal products are equalized across sectors.* Given N, (9)
and (10) can then be used to determine C.

Notice that the number of p.fe. equals the number of solutions to the
equation G(z)=6(z) F'(z)—0(1 —z) F'(1 —z) =0, in the unit interval. One
such solution is given by z=1/2. The next proposition derives some simple
conditions on the “externality function” #(-) under which multiple p.f.e. will
exist.

3 This is a consequence of the monotonicity of both the marginal rate of substitution and
the (private) marginal product of labor.
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ProrosiTiON 1 (Necessary and Sufficient Conditions for Multiple
pfe.). Let the above assumptions on F(.) and 0(-) hold. Then

0(z)/0(1 —z) < F'(1 —z)/F'(z)  for some ze(0,1/2) (15)

is a necessary and sufficient condition for the existence of multiple p fe.
Proof. See the Appendix

Let n(z)=26'(z)/6(z) and o(z)= —zF"(z)/F'(z), all ze (0, 1), denote the
elasticity of the technology parameter and the private marginal product,
respectively, with respect to the input level. Under our assumptions
6(-)>0, all ze (0, 1). However, n(z) can be either positive or negative,
depending on whether positive or negative externalities are effective
at a level of activity z. Now we can state the following corollary to
Proposition 1.

CoRrROLLARY. (i} multiple p.fe. exist only if n(z) >0 for some ze (0, 1);
(1) mudtiple p.fee. exist if n(1/2) 2 6(1/2).

Proof. See the Appendix.

Thus, we see that the presence of positive local externalities (> 0) for
some range of activity levels is a necessary condition for the existence of
p.fe. other than N=1/2. Whenever such positive externalities are “strong
enough” relative to diminishing private marginal product at N=1/2 the
existence of multiple p.fe. is guaranteed. In addition, and as a trivial conse-
quence of the symmetry between activities, one can easily show that the
total number of p.fe. will always be odd.

Notice also that adjustment costs do not enter G(-) and thus play no
role in determing the set of p.fe.. The reason for that “irrelevance” is that
on any such equilibria no reallocation of inputs takes place in the second
period and thus no adjustment costs are ever incurred.

3.c. Sunspot Equilibria

Next we consider the possibility of k-state sunspot equilibria, i.e., alloca-
tions (and associated sunspot distributions) satisfying (9)-(14) and such
that N,(w;) # N,(w)), all v, w,€ 2, w;# w;, where Q= {w;, w,, .., ©, }.
Each sunspot equilibrium is characterized by beliefs of the following sort
about the behavior of the economy in period 2: with probability n(w,),
sunspot event “w,.” will take place, and the aggregate level of input
allocated to activity one in period two will be given by N,(w,); this is true
for all w; e £2. Given those beliefs and the prices prevailing in both spot-and
sunspot-contingent markets, each agent chooses the allocation of inputs
among activities, as well as the consumption plan, that maximizes his
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expected utility. In particular, in the first period all agents end up choosing
the same level of employment N, in activity | (1 — N, in activity 2), and
consume their own endowment w,. In period 2, they observe the sunspot
realization and the associated value for N,, and reallocate their input
endowment optimally, given their initial allocation N, and the adjustment
cost schedule they face. Their (identical} input reallocation decision then
turns out to be consistent with their initial beliefs on the effects of the
sunspot realization on the aggregate allocation among activities.

Clearly, such an equilibrium is fully defined by a vector [N, N,(w,), ...,
No(w,), i{w,), .., m{w, _,)] satisfying (12)-(14), for, once that vector is
known, one can easily determine the equilibrium quantities C(w), and
Y{w), all weQ, using conditions (9) and (11). Finally, one can compute
the equilibrium-contingent prices p(w) by combining (5) and (6) to yield
p(©) = (@) Us(e(@))/ T, « g 7(@) U, (c(w)), for all we Q.

As in many other models found in the literature, the conditions under
which sunspot equilibria exist in our model are related to those under
which we have multiple p.fe. In our model, the existence of multiple p.fe.
is a necessary (though not sufficient) condition for existence of sunspot
equilibria. This result is formalized in the following proposition and
corollary.

PROPOSITION 2 [Necessary Condition for Existence of Sunspot Equi-
libria]. Let the above assumptions on F(-), 0(-), and Q(-) hold. Then (15)
is a necessary condition for the existence of finite-state sunspot equilibria.

Proof. See the Appendix
The following corollary follows trivially from Propositions 1 and 2.

COROLLARY. The existence of multiple p.fe. is a necessary condition for
finite-state sunspot equilibria to exist.

4 2
1

6(2)

FiG. 1. The case of multiple perfect foresight equilibria but no sunspot equilibria.
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The converse of the previous corollary is not true: multiplicity of p.fe. is
not sufficient to guarantee the existence of sunspot equilibria. This is
illustrated in Fig. I, representing an economy for which G(z) vanishes at
three different z values, but does not intersect Q'(z — N,) more than once,
forany O N, <1

A complete characterization of the conditions for existence of sunspot
equilibria, expressed in terms of the properties of utility, production, and
adjustment cost functions is not attempted here. Instead, we focus on the
class of two-state sunspot equilibria, for which we derive a sufficient condi-
tion for existence.

LEMMA. Let the above assumptions on F(-), 0(-), and Q(-) hold. Let
Q= {a, B} be the set of relevant sunspot events, with associated probabilities
nla)=nand n(fy=1—n,0<n< 1 Let L(z)=60(z) F'(z), ze [0, 1], denote
the private marginal product of the input in a symmetric equilibrium. Then
there exists a two-state sunspot equilibrium, characterized by N, = 1/2, if the
Jollowing condition holds:

0 <Q"(0) <4L(1/2)(n(1/2) — 0(1/2)). (16)

Proof. See the Appendix.

Given the existence of a sunspot equilibrium, and because of the sym-
metry of the model, there is a trivial dimension of multiplicity: if
[Ny, Ny(a), N,(B), =] defines a sunspot equilibrium, so does [l —- N,
1 —N,(x), 1—N,(f), n]. However, and as the next proposition makes
precise, the set of sunspot equilibria is much larger.

PROPOSITION 3.  Assume that the conditions of the Lemma hold, including
condition (16). Then there exists an open set of two-state sunspot equilibria.

Proof. See the Appendix

Note that the assumption x(1/2) —a(1/2)> 0, though sufficient for mul-
tiple p.fe., is not enough to guarantee the existence of sunspot equilibria.
A sufficient condition for the latter involves the adjustment cost function;
specifically, (16) shows that a two-state sunspot equilibrium will exist as
long as n(1/2) —o(1/2) and/or L(1/2) are large enough relative to the
“slope” of the marginal adjustment cost schedule evaluated at zero, i.e., at
a point where no adjustment takes place. In other words, our sufficient
condition will be satisfied if adjustment costs do not increase much with the
size of the adjustment, or if, in the symmetric equilibrium, the (shadow)
wage rate is high, and positive externalities are strong relative to the rate
of decrease in private marginal products.
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Given the presence of externalities, competitive equilibria in our model
will generally be suboptimal, even in the perfect foresight case. The
presence of sunspots adds, however, two sources of inefficiency which are
absent from p.fe. First, the sunspot realization in period 2 leads to a costly
reallocation of resources across activities. Second, the uncertainty regarding
period 2 consumption (which depends on the sunspot realization) tends to
reduce the consumer’s expected utility. Yet, we cannot rule out the
possibility that the allocation associated with a given sunspot equilibrium
dominates a given p.fe. allocation from a welfare viewpoint (as long as the
latter is suboptimal). This would be the case if sunspots led to greater levels
of {gross) output in period 2 (relative to a given p.fe.), which more than
offset the negative effects of adjustment costs and uncertainty. If, on the
other hand, p.fe. dominated sunspot equilibria, it would be straightforward
for a policymaker to increase the representative agent’s utility by setting up
a simple tax scheme that raised the “slope” of the marginal cost schedule
sufficiently to effectively rule out sunspot equilibria (as in Fig. 1).

APPENDIX

Proof of Proposition 1. Our assumptions on F(-) and 6(-) guarantee
that G(z) is continuous on (0, 1), with G(0)>0, G(1) <0, and G(1/2)=0.
If G(z) is to vanish for some ze (0, 1/2) (and thus, by symmetry of G(-),
for 1 —z as well) it must be the case that G(z) <0 for some z€(0, 1/2).
Conversely, if G(z) <0 for some z e (0, 1/2) there exists some z’ € (0, z) such
that G(z') =0. However, given 6(-) >0 and F’(-)> 0, G(z) <0 is equivalent
to the condition in the proposition.

Proof of the Corollary to Proposition 1. Given our assumption of strict
concavity of F(-), we have F'(1 —2z)/F'(z)< 1 for all ze (0, 1/2). Thus, the
inequality in proposition 1 requires that 6#(z)<8(1—z) for some
ze (0, 1/2), and (i) follows from the definition of #(-). Given continuity of
G(-), a sufficient condition for G(z) <0 to hold for some ze (0, 1/2) (and,
hence, for multiple p.fe.) is given by G'(1/2) = 0; (ii) then follows from the
definition of #(-), ¢(-), and G(-).

Proof of Proposition 2. Suppose not, ie., suppose [N,, Ni(@,), ..,
Ny(w,)] defines a k-state sunspot equilibrium, while G(z)>0 for all
ze (0, 1/2). Assume first that N, <1/2. Given the strict monotonicity of
Q’'(-) and the fact that Q’(0) =0, it must be the case that Q'(z— N,) = G(z)
holds only for z < 1/2, so that G(N,(w)) > 0 all w e Q, given (13). However,
if that is the case, (12) fails to hold, and [N,, N,(w,), ..., Ny(w,)] cannot
define a sunspot equilibrium. A symmetric argument can be applied to the
case of N, > 1/2.
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Proof of the Lemma. Note that, for a given N, value, we just need to
show the existence of 0 < N,(a) <1, 0< N,(B)< 1, and 0 < < 1, such that
G(N,y(a)) = Q'(Ny(ax) — N\), G(NAB))=Q'(N(B)—N,), and nU,(C(a))
G(Ny(a))+ (1 — 1) U,(C(B)) G(NA(B))=0.

Here we show that such a two-state sunspot equilibrium exists for
N, =1/2. Recall that, under our assumptions on F(-), G(-) is continuously
differentiable, with lim,_,G(z)>0 and lim,_, G(z)<0. Futhermore,
Q'(z —1/2) is strictly increasing in z and continuous, with Q’(0)=0.
Suppose that G'(1/2)>Q”(0) holds. Then it must be the case that
Q'(z—1/2) intersects G(z) for some 0<z<1/2 and for some 1/2<z<1.
Let 0< N¥(x)<1/2 and 1/2<N¥(f)<1 respectively denote those inter-
section points (i.e., solutions of (12)). Under our assumptions it is clear
that G(N#(a))<0 and G(N¥(B))>0. Letting C*(a) and C*(f) be the
corresponding consumption vectors defined by (9)-(10), it follows that
n* = U(C*(B)) GINI(B))/LU(C*(B)) GINF(B)) — Up(C*()) G(NF(x))]
satisfles O <n* <1, and guarantees that (13) holds. Thus, there exist
[NF(2), N¥(B), n*] satisfying (12)-(14). But it is straightforward to show,
using the definition of G(-), that G'(1/2)=4L(1/2) ((1/2)—0(1/2}), and
so the condition in the proposition guarantees the existence of a sunspot
equilibrium with N, =1/2,

Proof of Proposition 3. The existence of an open set S < R* containing
x*=T01/2, N¥(u), N¥(B), n*], and such that every x=[N,, N,(a),
No(B), n] e S satisfies (12)-(13) (thus defining a sunspot equilibrium)
follows from a straightforward application of the implicit function theorem.
To see this, define a vector-valued function H: R* — R*, with components
Hi(x)=G(Ny(2))— Q' (Na(a) — Ny),  Ha(x)=G(No(B)) — Q(N(B)— Ny),
and H,(x)=nU,(C(a)) G(N,(a})+ (1 — 1) U5(C(B)) G(N,(f)), and where
C(w) is defined in terms of x by (9)-(10). A sunspot equilibrium is
thus defined by a vector x satisfying H(x)=0, as well as (14). Let
DH(x)=[D,H(x), D, H(x)] denote the derivative of H(-) at x, with
D,H(x) and D, H(x) denoting the derivatives of H(-) with respect to
n=[N,, Ny(x), N;(f)] and =, respectively. One can easily show that
D, H(x*) is (generically) nonsingular. Hence, we can use the implicit func-
tion theorem [10, p.224] to show the existence of open sets S < R* and
PcR, with x*e€S, and n*e P, and a mapping v: P— R’ such that
H(v(n), ) =0, with (v(n), n) e S, for all =e P, and with derivative given by
v'(n)= —D,H(x*)"' D_H(x*). Let B be an open ball around x* and such
that condition (14) is satisfied for any xe B (i.e., B must be contained by
the nonnegative unit 4-cell). It follows that $~ B is a nonempty open set
containing allocations that satisfy (12)-(14), thus defining an open set of
sunspot equilibria.
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