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Summary. The standard neoclassical growth model is modified by introducing
a market structure characterized by monopolistic competition and variable demand
elasticities. In equilibrium, the price elasticity of the demand schedule facing
a typical firm is a function of the aggregate savings rate. The latter feature results
from an assumed wedge between the elasticity of substitution across goods in
productive activities and that in consumption. In contrast with most examples in the
literature our model does not require increasing returns (internal or external) in
order to generate multiple equilibria.

1 Introduction

The neoclassical model, as developed by Cass (1965) and K oopmans (1965), remains
the cornerstone of modern growth theory. Much of its success is, undoubtedly, tied
to the sharpness of its predictions: given an initial capital stock the competitive
equilibrium is unique, it corresponds to the optimal dynamic allocation, and is
characterized by a monotonic convergence to a unique steady state'. Given identical
preferences and technologies, two economies that start out with different per capita
output levels should converge over time in terms of that variable.

Much of the research in growth theory since Cass-Koopmans has explored the
implications of relaxing some of the assumptions underlying their model. Thus,
researchers have analyzed models with more than one sector,> nondecreasing
returns to capital,® overlapping generations of finite-lived agents,* and models with

* Thanks are due to Jess Benhabib, Duncan Foley, Oded Galor and participants 1n seminars at the
Econometric Society Summer Meetings (Boston, 1993), NBER 1993 Summer Institute, CORE, UAB, and
European University Institute for helpful comments.

! Or a unique “balanced growth path,” in the presence of exogenous technical progress.

% See Boldrin and Woodford (1990), Section 3, for a recent survey.

3 See, e.g., Romer (1986), Rebelo (1991), and Jones and Manuelli (1990).

4 See, e.g., Galor and Ryder (1989) and Galor (1992).
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252 J. Gali

nonseparable preferences,® as well as models that combine several of the above
features.

In the present paper I examine the equilibrium consequences of a variation on
the Cass-Koopmans framework which consists of introducing a market structure
characterized by monopolistic competition and variable demand elasticities. The
potential role of variable demand elasticities in affecting the dynamics of capital
accumulation can be illustrated by looking at the expression for the equilibrium
interest rate R with results from profit maximization by a set of (symmetric)
monopolistic competitors:

R=<1—é> 1) -5 (1.1)

where k is the (suitably normalized) aggregate capital stock, f’(k) is the marginal
product of capital, ¢ is the price elasticity of the demand schedule facing a typical
firm, and & is the rate of depreciation. (1.1) implies that, for any given k, the interest
rate is increasing in the demand elasticity. The intuition behind that result is
straightforward: when considering whether to employ or not an additional unit of
capital, each firm recognizes that it will have to lower the price of its good if the
market is to absorb the resulting marginal product. The implied lower return
reduces the rental price the firm is willing to pay for the additional capital and, thus,
the return accruing to capital owners (i.., the interest rate). The lower the price
elasticity, the greater the price reduction required and, ceteris paribus, the lower the
interest rate. Since savings decisions — and, thus, the rate at which capital is
accumulated — are influenced by current and anticipated future returns, it follows
that changes in demand conditions will affect the dynamics of capital accumulation
and growth.

The structure of the model presented below is such that, under certain assump-
tions, a positive relation between the demand elasticity and the aggregate savings
rate arises in equilibrium. In that case, expectations of high current and future
aggregate savings tend to increase private returns to investment, offsetting the
negative impact of the associated declining marginal product of capital. As shown
below, if the “complementarity” between aggregate and private savings decisions is
sufficiently strong multiple steady states and multiple perfect foresight equilibrium
paths may exist.®

In the model, the crucial dependence of the demand elasticity on aggregate
savings arises, in equilibrium, from the postulated presence of a wedge between (a)
the elasticity of substitution across inputs in production, and (b) the elasticity of
substitution across goods in consumption. The typical firm sells its good to both
consumers and producers and, by assumption, it is unable to price discriminate
between those customer types. As a result, the effective price elasticity of its demand
schedule depends on the composition of its demand. In a symmetric equilibrium the

5 See, e.g., Heal and Ryder (1973).
6 In Gali (1994a) I used a similar framework (augmented with leisure choice) to show the possibility of
sunspot fluctuations in a neighborhood of a single steady state.
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latter is a function of the aggregate savings rate. Whenever (a) is greater than (b) the
positive relation necessary for multiple equilibria discussed above obtains.

A word is due about the related literature. Several recent papers have also
introduced elements of imperfect competition in the context of growth models. In
many of those models market power provides a simple device to sustain nonconvex
technologies in equilibrium, without playing a direct role as a source of any of the
interesting features of the resulting equilibrium dynamics (which are driven by the
nonconvexities).” In models with horizontal innovation, the interaction between
market power, dynamic increasing returns, and the nature of technology generates
pecuniary externalities that often lead to multiple equilibria.® Also, in the work of
some authors, the prospects of temporary monopoly rents plays a key role in
eliciting research effort or implementation of innovations by a firm; the fact that the
size of those rents depends, in turn, on the research or implementation activities of
other firms often leads to nontrivial equilibrium dynamics.® All the previous models,
however, rely on some form of increasing returns, and/or are characterized by
constant markups. Furthermore, many of those models differ from the standard
neoclassical growth model in several other dimensions (e.g., absence of capital
accumulation). In contrast, the model below is constructed so that the presence of
nontrivial, variable markups is the only departure from the Cass-Koopmans
framework and, thus, the only possible source of its differential equilibrium
dynamics.'? In fact, the Cass-K oopmans equilibrium corresponds to a limiting case
of the model below.

The paper is organized as follows. Section 2 lays out the basic model and
notation. Section 3 derives the conditions characterizing an equilibrium. Section
4 analyzes the conditions for multiplicity stationary equilibria and their (local)
stability properties. Section 5 analyzes the model’s equilibrium dynamics. Section
6 briefly touches on some of its empirical and policy implications.

2 The model

2.1 Consumers

An infinite lived representative consumer seeks to maximize

1 o
<1 —V> § c(t)* “7exp(—pt)dt

0

7 In fact the need for market power is sometimes avoided by assuming that increasing returns are
external to the firm; see Benhabib and Farmer (1992) for a discussion of the equivalence between both
structures and Boldrin and Rustichini (1994) for a careful analysis of the conditions for uniqueness of
cquilibria 1n models with external increasing returns.

8 See, e.g., Ciccone and Matsuyama (1992) and Young (1993). We use the term “dynamic increasing
returns” to refer to technologies characterized by a start-up cost (e.g., the price of a patent or an entry
cost), with subsequent production carried out under constant returns.

° See, e.g., Judd (1985), Shleifer (1986), and Aghion and Howitt (1992).

19 Some other recent examples of growth models in which the market power is the fundamental source of
muluple equilibria include Zilibott1 (1994), Gali (1995), and Gali and Zilibotti (1995). The previous
models are characterized by markup variations resulting from entry and exit in imperfectly competitive
industries
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subject to the dynamic budget constraint and terminal conditions

a(t) = w(t) — e(t) + | (d,(6) + 4,(0)s,(0)dj 21)
[
lim a(T)>0; s,0)=1,all je[0,1] (2.2)
T—w

where c(t)=(fic(t)""**dj)""~" is a CES composite consumption index with
elasticity of substitution g > 1. ¢(t) is the consumption flow of good j, which can be
purchased at a unit price p,(t), for je[0,1]. e(t) = fop (t)e,(t)dj denotes the flow of
expenditure on consumption goods. Notice that we assume the existence of a con-
tinuum of differentiated goods, represented by the unit interval. Each good is
produced by a different firm. s,(t) denotes the number of shares in firm j held at time
t by the consumer. A share in firm j trades at price q;(t) and generates a dividend flow
d;(?) at time t. Financial wealth is thus given by a(t) = [3q,(t)s,(t)dj. w(t) denotes the
wage flow accruing to the consumer, in exchange for the (inelastic) supply of one unit
of labor services.'?

The problem above can be solved in two stages. In a first stage the consumer
decides how to allocate a given expenditure flow e among the different goods. This
yields the system of demand equations (Dixit and Stiglitz (1977)):

pi)\ "7 e(®)

- (%5) (5 @3
for all je[0,1], where P(t)=(f§p(¢)* ~°)"/! ~°. Furthermore, plugging (2.3) in the
definition of e(t) we obtain c(t) = %((%.

The second stage of the consumer problem consists of choosing the path of
1 o\ :
expenditures that maximizes <1——y>j8° <%> exp(— pt)dt subject to (2.1) and

(2.2). Appendix 1 derives the optimality conditions for this problem using the
maximum principle. As shown in the appendix, those conditions can be combined to
yield the familiar stock pricing equation

gty 7 d;(t+5)
PO (j) U'(S)<_—P(t n S)>ds (2.4

et +s)
c(t)
rate of substitution between time ¢ and time ¢ + s consumption.

-7
for all je[0,1], where v,(s) E( > exp(— ps) corresponds to the marginal

11 In Gali (1994b) I allowed for a constant growth rate in the quantity of labor services supplied (in terms
of efficiency units). As in the neoclassical model that assumption introduces a source of exogenous long
term growth though, after a suitable transformation of its variables, the associated equilibrium dynamics
are (essentially) unchanged. In order to save space and notation we have chosen to 1gnore growth
here.
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2.2 Firms

There is a continuum of monopolistically competitive firms indexed by je[0,1]. At
each point in time a typical firm (say, firm j) uses the services of capital k;(r) and
labor I(t) to produce a quantity y,(t) of a differentiated good with a production
function

yilt) = F(k;(t), 1) (2.5)

where F is assumed to be homogenous of degree one, twice differentiable, strictly
concave, and strictly increasing in both arguments. We also assume the Inada
conditionslim, ,, f'(x) = +coandlim__, _ f'(x)=0, where f(x) = F(x, 1) represents
the production function in intensive form.

Let iy, denote the flow of purchases by firm j of the good produced by firm h. It is
assumed that firm j’s (gross) investment, denoted by i, is given at each point time by
a CES function of such quantities.* Formally, i (1) = ({3i,,(c)" '"dh)""~!, where
n > 1 denotes the elasticity of substitution between different goods from the view-
point of the firm which uses them as inputs. The firm’s capital stock thus evolves
according to the differential equation

k(1) = i(t) — 8k (1)

Thus we see that each firm sells the goods it produces to two customer types: (a)
consumers, who derive utility from its consumption, and (b) other firms, which use it
to increase their capital stock. We assume that firms cannot price discriminate
between those two markets, thus ruling out obvious arbitrage opportunities.

At each point in time, and conditional on its level of investment expenditures
z,(t) = f},ph(t)ijh(t)dh, it is optimal for firm j to maximize its gross investment i(1).
That yields a set of investment demand functions

c o (PO 20
’M”_<nuJ <HUJ (2.6)

forall je[0, 17, where IT(t) = ({3 p,(¢)' ~"dh)*/*~". Furthermore, plugging (2.6) in the
.. . At
definition of z;(t) we obtain i,(f) = <IZ§((t))>
The total demand for the good produced by a typical firm will be the sum of the
demands coming from the two markets: consumers and firms:

_ (20 7 el) pAO " z(t)
7 (P(t) ro) T\ o) \nw 27
where z(1) = [§z,(t)dh.

In general the elasticity of substitution in consumption ¢ may be different from

that in production 7, since both activities are of different nature. As a result, the
effective price elasticity of the demand for good j (denoted by & ;) will vary with the

!2 This specification was first mntroduced by Kiyotaki (1988). None of the results would be affected if
mstead we introduced a perfectly competitive capital goods sector, producing a single capital good with
the CES production function with elasticity parameter
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composition of that demand according to

&)=L, =400+ (1 —4[(0)o

. 1 P~(t)>_"< z(t) ) . .
where 4.(0)= J represents the weight of the investment
i <yj(r)><n(r) aw) P &

component (i.e., other firms purchases) in the demand for good j.
Given (2.4), maximization of wealth of its shareholds requires that each firm
solves the following infinite horizon optimization problem (as of time 0, and letting

v(t) = vy(1)):

max o(f u(t)(ii(ti)dl

subject to
dj(t) = p(t)y;{t) — w(t)l{(t) — z,(t) (2.8)
k(1) = < #(?)) — 5k,(1) (2.9)
2(1)20; k()=0 (2.10)

together with (2.5), (2.7), and the initial condition k;(0) = k(0). The solution to that
optimal control problem faced by the firm can be characterized using the maximum

principle. Let yx) = (g’? -, defined for xe[0, 1. The optimal path of irm J's
variables must satisfy:

HOFAR) o

P f(t)i 1((;‘11(%)) L) _ pyson) + Py = — (%)P(I)B(I) (2.12)

() g% @.13)

where 0(z) is the multiplier associated with (2.9), and (2.13) holds as a strict inequality
only if z(t)=0."* Notice that the presence of u in (2.11) and (2.12) adjusts the
marginal product of both capital and labor, reflecting the fact that the firm’s
recognition (and optimal use) of its market power. Both the demand for labor and
capital (and, as a result, equilibrium wages and interest rates) are affected by this
deviation from price-taking behavior. As shown below that effect has a potentially

13 The necessity of (2.11)-(2.13) follows from proposition 7 in Arrow and Kurz (1970). Theorem 3 in
Araujo and Schemnkman (1983) can be invoked to guarantee that, together with the transversality
condition limltTﬁmk,(T)v(T)()(T) =0, are Jointly necessary and sufficient for a maximum.
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important impact on consumer’s savings and the dynamics of capital accumula-
tion.*

3 Equilibrium
Given the symmetry embedded in the model, all firms will set the same price and
produce the same quantity. Accordingly, p;(t) = P(t) = I1(t), c(t) = c(t), iy(t)=
i(t)=i(t), k(t) = k(r), [(t) = l(t), y (t) = y(¢), for all h, je[0, 1], and all t. Equilibrium
in the goods and labor markets implies

c(t) +i(t) = f(k(r)) (3.1
all £.'> The share of firms’ purchases in the demand for each good, 1 , will also be the

s J!
same across firms, and will correspond to the aggregate savings rate:

c(t)
f k(1))
Using (2.12), (3.1), (3.2), and the definition of v, we can characterize the equilib-

rium of the economy as a dynamical system in (k, ¢). Given any initial capital stock
ko, any trajectory satisfying

Mt)=1-— (3.2)

c=<5> A R S (3.3)
v C
(1-7i)
k=fk)y—ok—c (3.4)
¢>0,k>0, fky—c =0 (3.5)
k(0) =k, (3.6)
lim o(T) 7k(T)exp(—pT) =0 (3.7)

constitutes an (interior) equilibrium of our model economy.'® (hereafter the depend-
ency of each variable on time is no longer made explicit, unless necessary, in order to
ease the notation).

Given an equilibrium trajectory for k and c it is easy to determine the equilibrium
values for the remaining variables, including investment (i = f(k) — ¢), output

(y = f(k)), the savings rate (i 1— f(k)> the real wage <I—M; = %ﬂ@) real
c(t)

d -7
dividends <F =c— %), and the price level <P(t) = (Tm) exp(—pt)).

!4 In contrast, and given the assumption of an inelastic labor supply, employment will not be affected by
the existence of market power in the goods market.

!5 Notice that labor market equilibrium 1mplies i(t) = 1, all ¢.

'S When z(t)>0 1s binding, the equilibrum dynamics are trivially given by ¢(f) =f(k(r)) and
k(t)y= — ok(2).
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If we set u = 1, equations (3.3)—(3.7) characterize the optimal growth path of the
neoclassical growth model or, equivalently, the associated equilibrium path under
perfect competition. The Cass-Koopmans model thus emerges as a particular case of
the model above. On the other hand, as long as both ¢ and # are finite and firms
recognize (and exercise) their market power, u will be greater than one and the
economy’s equilibrium allocation will differ from the perfectly competitive (and
efficient) one. As it turns out, whether the equilibrium dynamics under imperfect
competition are qualitatively similar or not to those characterizing the perfectly
competitive economy depends on several features of technology and preferences.
The remainder of the paper is devoted to the analysis and characterization of those
dynamics.

4 Analysis of stationary equilibria

Let k denote the maximum sustainable capital stock, defined by f(k)— ok = 0.
Henceforth we confine ourselves to equilibria in the interval [0, k7. Define

R(k)zﬂ—a (@.1)

(7w)
M)

which corresponds to the equilibrium interest rate when savings exactly compensate

. D ok . o .
capital depreciation, i.e., A = m Given (3.3)—(3.4), any (interior) stationary level of
the captial stock, denoted by k*, must satisfy

R(k*)=p (4.2)

The assumed properties of f and u guarantee that R is continuously differenti-
able on (0, k), satisfying

1in_1R(x)=f’(E)<1 —%)——5<p 4.3)
x—k
lim R(x) = + o0 4.4)
x—=0

The above properties guarantee the existence of at least one solution to (4.2),i.e.,
the existence of a stationary equilibrium.'” Under what conditions will multiple
stationary equilibria, i.e., multiple solutions to (4.2) exist? Given the properties of R,
anecessary and sufficient condition for multiple stationary equilibria is the existence
of at least one solution k* of (4.2) such that R'(k*) > 0. Figure 1 illustrates the
previous statement, whose straightforward proof we omit.

Given the concavity of f, it is clear that u' <0 is a necessary (though not
sufficient) condition for multiple stationary equilibria. That condition is satisfied if
and only if #> o, ie., whenever the elasticity of substitution among goods in

17 1t can be easily checked that, as long as o and # are finite any solution to (4.2) lies below the “modified
golden rule” capital stock, 1e., the stationary capital stock associated with the efficient allocation.
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production is greater than in consumption. In that case R will be increasing over
some range of k as long as (a) the marginal product of capital does not diminish too
rapidly, (b) the average product of capital decreases sufficiently fast, and (c) # is
sufficiently greater than ¢. Under those conditions the possibility of multiple
stationary equilibria emerges.

5 Equilibrium dynamics

The analysis of equilibrium paths can be conducted using the phase diagram
associated with the system of differential equations (3.3)—(3.4). As in the neoclassical
growth model the k = 0 locus takes the form of a hump-shaped curve on the (k, ¢)
plane, given by the function ¢ = f(k) — ok, defined on [0,k]. The generic shape of
that locus can be found in Figures 2 and 3. Trajectories above (below) the k = 0 locus
are associated with decreasing (increasing) levels of capital. Notice that the previous
locus always lies below the curve ¢ = f(k) (also shown in the figures), and which
represents an upper bound for the level of consumption.
. C . . [k .

The ¢ =0 locus is implicitly given by the equation i —c/f ) o+ p (in
addition to the k axis). Whenever ¢ = that locus consists of a vertical line at k*
(which is unique in that case). For ¢ # 5 we can use (3.3) and the definition of 1 and
¢ to obtain the following expression for the ¢ = 0 locus:

, f/(k)<1—%>—(5+ﬂ)
c(k)lb_o=f(k)<,7_(,> 1) —@+p)

Given (3.3) consumption is increasing on any trajectory to the left of the ¢ =0,
decreasing along trajectories to its right.!®

Stationary equilibria correspond to intersections of the ¢ = 0 and k = 0 loci on
the (k, ¢) plane. Thus, in the case of a unique stationary equilibrium those loci
interesect only once, regardless of the sign of ¢ —#. As a result, the equilibrium
dynamics in that case are qualitatively identical to those of the neoclassical growth
model: given k, there is a unique trajectory satisfying all the equilibrium conditions,
that trajectory belongs to the stable manifold of the (unique) stationary equilibrium
(which is a saddle’®), and approaches the latter monotonically.

On the other hand, if multiple stationary equilibria exist (represented by multiple
intersections of the ¢ = 0 and k = 0loci, as in Figures 2 and 3), the resulting dynamics
will be substantially affected. That is the case we focus on in the remainder of the
paper. Before we attempt a characterization of the global dynamics, we start by
examining the behavior of equilibrium trajectories about each stationary equilib-
rium.

'8 When ¢ = f(k), it follows from (3 4) that consumption will be decreasing (along with the capital stock).
9 See discussion 1n the next subsection.
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5.1 Local stability properties

The stability properties of the nonlinear planar system (3.3)—(3.4) in a neighborhood
of a given stationary equilibrium are established by examining the eigenvalues of the
linearized dynamical system around it. That linearized system takes the form

Her o eee—!

7

where u, 10, f, ', f”,and ¢ = k* = are all evaluated at a given stationary equilibrium

f

(k*, c*). Letting {; and {, denote the corresponding eigenvalues, it can be shown that

GG = R’(k*)<%> (5.1)

G l= kY 6+ (i)@)(c—’:)e (5.2)
v/ \uJ\k

Thus, we see that the sign of {,{, depends on the slope of R(k*) at the
corresponding stationary equilibrium. If R'(k*) < O (like k¥ and k} in Figure 1) the
eigenvalues of the linearized system must be real and have opposite signs, implying
that the associated stationary equilibrium is a saddle. Under our assumptions that
will be a property of any stationary equilibrium that is (globally) unique, as well as of
every “odd” stationary equilibrium in the presence of multiplicity.

On the other hand, “even” stationary equilibria (like k¥ in Figure 1) satisfy
R'(k*) > 0, in which case (5.1) implies that the real part of the linearized system’s
eigenvalues must have the same sign. The stationary equilibrium will be a source
(ie., locally unstable) whenever {, + {, > 0, or a sink (i.e., locally stable) whenever
&+ 4 <0

R(k)
[%
ki Kin ki k
Figure 1
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In order to illustrate the range of possible local dynamics around an “even”
stationary equilibrium it is useful to examine how the eigenvalues of the linearized
system change in response to variations in parameter y. Such exercise is simplified by
the fact that (k*, ¢*) is invariant to y.%° Define Q(y) = {, + {,, and the discriminant of

1 .
the characteristic equation A(y) = ({; + {,)* — 4(,{, = 2(y)* — <;> 4 R'(k*)c*, with

all the terms evaluated at an “even” stationary equilibrium. Let 9* >0 be the
(unique)solution to 2(y*) = 0. Clearly, A(y*) < Oin that case. Furthermore, it is easy
to check the existence of a pair (y,, y,) satisfying 0 <y, <y* <y, < + o0, and such
that A(y,)=4(y,) =0, A(y)>0 for all ye(0,y,)u(y,, + ), and A(y) <0 for all
v€[y:1, 7] Itfollows that, as y increases over its admissible range (0, + o), the (even)
stationary equilibrium becomes, consecutively, a stable node (all ye(0,y,]), a stable
focus (all ye(y,,7*)), a center (y = y*), an unstable focus (all ye(y*,y,)) and, finally,
an unstable node (all ye[y,, + o))

5.2 Global equilibrium dynamics

The stability properties discussed in the previous subsection are local, and thus
pertain to the behavior of trajectories in a neighborhood of each stationary
equilibrium. The interest of that analysis is somewhat limited for it leaves a number
of important questions unanswered. Which of the stationary equilibria will an
economy eventually approach (if any), given its initial capital stock? Does the initial
capital stock determine the subsequent equilibrium trajectory (as in the neoclassical
model)? Could multiple equilibrium paths coexist for a given initial capital stock?
Answering those questions (and others) requires a characterization of the global
dynamics. Given the local stability properties of stationary equilibria, such a charac-
terization requires, in turn, knowledge of the “shape” on the (k, ¢) plane of the stable
manifolds associated with odd —and, thus, saddle stable-stationary equilibria.
Given the nonlinear nature of the system (3.3)(3.4) a complete characterization of
those manifolds in the presence of multiple stationary equilibria is a daunting task,
one beyond the scope of this paper, even if we restrict ourselves to the case of three
stationary equilibria. What 1 do instead is to present and discuss two types of
qualitative global equilibrium dynamics that emerge in the presence of three
stationary equilibria and which are illustrative of the qualitative implications of
such multiplicity for off- steady state equilibrium paths.?!

Figure 2 displays the equilibrium dynamics for an economy with an unstable
middle stationary equilibrium. As discussed above that property is associated with
arelatively high y (low intertemporal substitution). Two of the trajectories departing
from (k},c¥) coincide with two branches of the stable manifolds of (k¥,c}) and
(k¥, cF), denoted respectively by Wi and W;. The solid lines with arrows depict

2® That invariance does no longer hold when exogenous techmical progress 1s introduced 1n the model.
Yet, the results presented here carry over to that case as long as the underlying growth rate is small. See
Gali (1994b) for a discussion.

2! An alternative route is taken in Gali (1994b), which discusses in detail the dynamics of a specific
calibration of the model, obtained using numerical methods.
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o
) W @ "
o k=0
c=0
Kook ko ko Ky k Kk
Figure 2

trajectories that satisfy all the equilibrium conditions. As the figure makes clear, the
equilibrium set depends on the size of the initial capital stock relative to the
benchmarks k| and k,. The latter are defined by the projections onto the k axis of the
leftmost point of W3 and the rightmost point of Wi, respectively. If k(0)e(0, k, ) the
equilibrium is unique, and converges monotonically to the low stationary equilib-
rium (k*, c¥). If k(0)e(k,, k) the equilibrium is also unique but it converges now to
(k¥,cF) instead. Most interestingly, if k(0)e [k, k, ] there exist multiple trajectories
that satisfy all the equilibrium conditions. Some of those paths lead to (k¥, ¢ff)
whereas others converge to (k¥, ¢f).2? Thus, whether the economy converges to the
high or the low stationary equilibrium depends on the selected path. That selection
must be consistent with agents’ (self-fulfilling) expectations as of t = 0 on the future
path of the economy. In contrast with the neoclassical model, knowledge of the
initial capital stock and the set of equilibrium conditions is no longer sufficient to pin
down the equilibrium outcome.

The range of initial capital stock levels for which multiple equilibria exist
depends on the extent of the overlap of the stable manifolds, which in turn depends
in a complicated way on parameter values. In particular, the numerical simulations
in Gali (1994b) suggest that the size of the multiplicity region [k, k, ] tends to shrink
as the value of 7 increases (i.e., as we reduce the intertemporal substitution), and it
eventually vanishes. When that occurs the equilibrium dynamics become determi-
nate and have a threshold nature: if k(0)<k* the (unique) equilibrium path
converges to (k¥, cf); if k(0) > k* the (also unique) equilibrium path converges to
(k¥, c¥). In other words, the stationary equilibrium to which an economy converges
(and the trajectory followed) is completely determined by the initial capital stock.

Figure 3 displays the phase portrait of an economy with a stable middle
stationary equilibrium, a feature associated with a relatively low y value (i.e., high

22 Tnthe absence of limit cycles (see below), any trajectory which does not converge to any of the (interior)
stationary equilibria and can be shown to violate either the transversality condition or the consumer’s
Euler equation. Accordingly, they can be ruled out as equilibnia.
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Figure 3

intertemporal substitution). For any given initial capital stock k(0)e(0, k) there are
three types of trajectories consistent with a perfect foresight equilibrium. In the first
type, the consumption level chosen as of t=0 is the highest consistent with
equilibrium (given k(0)) and the one that puts the economy exactly on Wi, implying
subsequent convergence to the low stationary equilibrium. In the second type,
agents choose the lowest possible consumption level compatible with equilibrium
(given k(0)), i.e., the one on Wj; in that case the economy converges to the high
stationary equilibrium. In addition to the previous trajectories, there exists a con-
tinuum of trajectories lying between W3 and W3, represented by the shaded area.
Each of those trajectories satisfies all the equilibrium conditions, eventually con-
verging to the (stable) stationary equilibrium (k¥, c*).

The kind of global equilibrium dynamics displayed in Figures 2 and 3 do not
exhaust all the possibilities for the case with three stationary equilibria. In particu-
lar,a Hopf bifurcation occurs as y crosses the imaginary axis at y = y*, leading to one
or more limit cycles about (k%, c¥).?* Furthermore, the configuration of W3 and
W, may be different in some cases from the ones depicted in Figures 2 and 3, though
they will generally involve multiple equilibrium paths for some range of initial
capital stock levels.

6 Discussion

What is the economic mechanism underlying the potential multiplicity of equilib-
rium paths in the model above? Recall that a demand elasticity that is increasing in
the aggregate savings rate is a necessary condition for that multiplicity. Since, ceteris
paribus, the private return to investment is increasing in the demand elasticity, the
previous relationship leads to a complementarity between individual and aggregate
decisions that lies at the root of the multiple equilibria, as in many other macro-

23 See Gali (1994b) for a detailed discussion in the context of a numerical example. In the simulations
reported there himit cycles emerge only for an extremely small range of 7 values.
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economic settings. The dynamic, perfect foresight nature of the model above
introduces a further constraint on the set of trajectories that qualify as equilibria:
given k(0) the choice of an initial savings rate A(0) must lead to a future path of
income and interest rates which induces, when perfectly foreseen, initial savings by
individual consumers (and corresponding investment by firms) that precisely gener-
ate the aggregate savings rate A(0).

What kind of policy intervention could prevent the “coordination failure”
associated with the low output equilibrium? Consider subsidizing firms’ investment
at a rate 1(t) = u(A(t)) — 1 > 0 (i.e., the subsidy rate is contingent on the aggregate
savings rate A(z)). With that subsidy scheme in place, the after-tax return on
1+ (1)
()
marginal product of capital f'(k). As a result, the u term drops from equilibrium
condition (3.3), and the efficient (Cass-Koopmans) allocation is restored as an
equilibrium.

The possibility of multiple stationary equilibria in the growth model analyzed
above has some interesting empirical implications.?* First, the possible existence of
different equilibrium trajectories leading to different steady states can in principle
account for the evidence of no convergence in per capita income (e.g., Barro (1991)
without having to rely on heterogenous preferences and technologies. Furthermore,
and in contrast with the recent endogenous growth models, the possibility of no
convergence between two economies obtains even if their initial conditions are
identical, thus offering a potential explanation for so called “economic miracles”
(Lucas (1993)). The model also implies the existence of “convergence clubs”, ie.
economies with (possibly substantial) differences in initial conditions which event-
ually converge to the same stationary equilibrium (and thus the same income levels),
in a way consistent with observations by Baumol et al. (1989). Finally, the model
predicts that returns are asymptotically equalized across economies even in the
absence of capital mobility. Such equalization of returns may coexist with large (and
permanent) differences in capital and income levels. Thus, the model allows us to
reconcile the absence of large (real) interest rate differentials across countries (and,
the seeming failure of capital to flow from rich to poor countries) with the existence
of potentially large (and persistent) income gaps.

investment along a symmetric equilibrium, given by f'(k), is equated to the

Appendix
Solution to the consumer problem

The Hamiltonian associated with the second stage of the consumer problem is:

11—y 1
Ho=(1-y"" <%((%> + B(t)<W(t) —e(t) + (f)(d,(t) + fL(t))S,(t)dj>

1
+ ¢(t)ﬁ(t)<a(t) - Iq,(t)sj(t)dj>
0

24 Gee Benhabib and Gali (1995) for a general discussion of the empirics of growth models with multiple
equilibria.

L,opyrlglif © 20071 Al nglits Reserved



Multiple equilibria 265

Necessary conditions for a solution of that problem are given by:

OH(t) o .
Ge) ) T =BOPO) (Al)
oH(1) B _
a0 0 d(t)q;(t) = d,(t) + 4,(t) (A2)
8H(1) - )
= a0 = 0~ pBO) = B0 = B1)p — $()) (A3)

forall je[0, 1]. The previous conditions are sufficient if, in addition, the transversal-
ity condition limy_, , B(T)a(T)exp(— pT) holds. 2.4 in the main text is obtained by
integrating (A2) and (A3) forward and combining the result with (A1).

References

1

17.

18.

19

Aghion, P., Howitt, P: A model of growth through creative destruction. Econometrica 60, 323-351
(1992)

. Araujo, A, Scheinkman, ] A.: Maximum principle and transversality condition for concave infinite

horizon economic models. J. Econ. Theory 30, 1-16 (1983)

- Arrow, K. J, Kurz, M.: Public investment, the rate of return, and optimal fiscal policy Baltimore:

Johns Hopkins Press, 1970

. Barro, R. J.: Economic growth in a cross-section of countries. Quarterly J. Econ. 106, 407-443 (1991)
. Baumol, W.J., Blackman, S. A. B, Wolff, E N.: Productivity and American leadership. The long view

Cambrnidge: MIT Press, 1989

- Benhabib, J, Farmer, R.: Indeterminacy and growth. J. Econ. Theory 63, 19-41 (1994)
. Benhabib, J., Gali, J.: On growth and indeterminacy. Some theory and evidence C. V. Starr Center for

Applied Economics, Research Report #95-08. Forthcoming i Carnegie-Rochester Conference
Series on Public Policy, 1995

. Boldrin, M., Rustichini, A.: Indeterminacy of equilibria in models with infinitely-lived agents and

external effects Econometrica 62, 323-342 (1994)

. Boldrin, M., Woodford, M Equilibrium models displaying endogeneous fluctuations and chaos.

Journal of Monetary Economics 25, 189222 (1990)
Cass, D.: Optimum growth in an aggregative model of cpapital accumulation Rev. Econ. Stud. 32,
233-240 (1965)

. Ciccone, A., Matsuyama, K.* Start-up costs and pecuniary externalities as barriers to economic

development Hoover Institution, unpublished manuscript, 1992

- Gali, J. Monopolistic competition, business cycles, and the composition of aggregate demand.

J. Econ Theory 63, 73-96 (1994a)

- Gali, J.: Multiple equilibria in a growth model with monopolistic competition. Columbia Umversity,

unpublished manuscript, (1994b)
Gali, J., Zilibotti, F.. Endogenous growth and poverty traps in a Cournotian model. Annales
d’Economie et de Statistique 37-38, 197-214 (1995)

- Gali, J.: Product diversity, endogenous markups, and development traps. Journal of Monetary

Economics, forthcoming

Galor, O, Ryder, H. E: Existence, uniqueness, and stability of equilibrium m an overlapping
generations model with productive capital. J Econ. Theory 49, 360-375 (1989)

Galor, O.: A two-sector overlapping generations model' A global characterization of the dynamical
system. Econometrica 60, 1351-1386 (1992)

Jones, L. E, Manuelly, R : A convex model of equilibrium growth: Theory and policy implications.
Journal of Political Economy 98, 10081038 (1990)

Judd, K.: On the performance of patents. Econometrica 53, 567-585 (1985)

Copyright © 2001 All Rights Reserved



266 J. Gali

20. Kiyotaki, N.: Multiple expectational equilibria under monopolistic competition. Quart. J. Econ. 103,
695-741 (1988)

21. Koopmans, TC.: On the concept of optimal growth. In: The econometric approach to development
planning. Chicago: Randy McNally, 1965

22. Lucas, R. E.: Making a miracle. Econometrica 61, 251-272 (1993)

23. Matsuyama, K.: Increasing returns, industrialization, and indeterminacy of equilibrium. Quart. J.
Econ 106, 617-650 (1991)

24. Rebelo, S.: Long run policy analysis and long run growth. J. Pohtical Econ. 99, 500-521 (1991)

25 Romer, P. M.: Increasing returns and long-run growth. J. Political Econ. 94, 1002-1037 (1986)

26. Romer, P. M.. Endogenous technological change. J. Political Econ. 98, $71-5102 (1990)

27. Ryder, H. E, Heal, G. M.: Optimal growth with intertemporally dependent preferences. Rev. Econ.
Stud. 40, 1-31 (1973)

28. Young, A.: Substitution and complementanty in endogenous mnovation. Quart. I. Econ. 108,
775-809 (1993)

29. Zilibotti, F.: Endogenous growth and intermediation m an Archipielago economy. Economic
Journal 104, 462-474 (1994)

Copyngnt © 2001 All Rights Reserved



