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Abstract. In this article, we review Granger causality tests that are robust
to the presence of instabilities in a vector autoregressive framework. We also
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1 Introduction

Vector autoregressive (VAR) models have played an important role in macroeconomic
analysis since Sims (1980). A VAR is a multiequation, multivariable linear model where
each variable is in turn explained by its own lagged values as well as current and past
values of the remaining variables. Compared with a univariate autoregression, VARs
provide both a systematic way to capture the rich dynamics in multiple time series and
a coherent, credible approach to forecasting.

Granger (1969) causality is a useful tool for characterizing the dependence among
time series in reduced-form VARs, and Granger causality test statistics are widely used
to examine whether lagged values of one variable help to predict another variable—see
Stock and Watson (2001).

However, VAR analyses in macroeconomic data face important practical challenges:
economic time-series data are prone to instabilities (see Stock and Watson [1996, 1999,
2003, 2006]; Rossi [2013]; Clark and McCracken [2006]), and VAR estimates may also be
prone to instabilities (see Boivin and Giannoni [2006], Kozicki and Tinsley [2001], and
Cogley and Sargent [2001, 2005]).

Thus, given the widespread use of VARs and the evidence of instabilities, it is po-
tentially important to allow for changes over time when doing VAR-based statistical
inference. As demonstrated in Rossi (2005), because the traditional Granger causality
test assumes stationarity, it is not reliable in the presence of instabilities and may lead
to incorrect inference.
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In this article, we present the gcrobustvar command, which illustrates how to test
Granger causality in a way that is robust to the presence of instabilities. The test is
based on methodologies developed by Rossi (2005) and includes the robust versions
of the mean and exponential Wald tests (Andrews and Ploberger 1994), the Nyblom
(1989) test, and the Quandt (1960) and Andrews (1993) quasilikelihood-ratio tests. In
the presence of instabilities, the Granger causality robust tests are more powerful than
the traditional Granger causality test. The tests can also be used to find the point in
time in which Granger causality either appears or breaks down in the data. In addition,
the test is valid for reduced-form VAR models and VAR-based direct multistep (VAR-
LP) forecasting models. The former assume homoskedastic idiosyncratic shocks, while
the latter are estimated via local projections (LP) (see Jorda [2005]) and hence assume
heteroskedastic and serially correlated idiosyncratic shocks.

We first introduce the tests and then present the commands that implement them.
Then, we illustrate the empirical implementation of the robust Granger causality tests
using a three-variable (inflation, unemployment, and interest rate) VAR model with four
lags as in Stock and Watson (2001), as well as a direct multistep VAR-LP forecasting
model. Finally, we compare the results with those based on a traditional Granger
causality test.

The remainder of this article is organized as follows. Section 2 describes the the-
oretical framework and the Granger causality robust tests. Section 3 introduces the
gcrobustvar command, which implements the Granger causality robust tests in Stata.
Section 4 applies the Granger causality robust tests in the three-variable VAR and com-
pares the results with the traditional Granger causality test. Section 5 applies the
Granger causality robust tests in the direct multistep VAR-LP forecasting model.

2 VAR-based Granger causality test in the presence of
instabilities
2.1 Motivation

In the presence of instabilities, as shown in Rossi (2005), traditional Granger causality
tests may have no power. Consider one of the equations in a two-variable VAR with

one lag and fixed prediction horizon h, for example: yi1n = BiTi—1 + pPYe—1 + Etth,

t =2,3,...,T. For simplicity, we assume that z;_1,&¢1p i N(0,1) and x¢—1, Yt—1,

€¢yn are independent of each other. Suppose the parameter ; changes through time as
follows:

Be=2/3(t<T/3)-1/3(t>T/3) (1)
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In this example, a traditional Granger causality test would be a ¢ test applied on the full-
sample ordinary least-squares (OLS) parameter estimator 3°%S, which, asymptotically,
can be calculated as (because the regressors are independent)

R T -1 7
t=2 t=2
T -1 T/3 T
=<T—1zxfl) IS e S (1)
t=2 t=2

t=T/3+1
, ) ., (2)
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Equation (2) implies that we do not reject the null hypothesis even if z;_; does
Granger-cause 45, in reality. This failure to reject results from the violation of the
stationarity assumption underlying traditional Granger causality tests because the pre-
dictive ability is unstable across time. Thus, traditional Granger causality tests can be
inconsistent if there are instabilities in the parameters. Without losing generality, this
conclusion can be generalized to instabilities other than (1) by varying the time and
the magnitude of the break. Note that this conclusion is empirically relevant because
evidence shows that parameter estimates change substantially in sign and magnitude
across time; see, for example, Welch and Goyal (2008) and Rossi (2005).

Considering the possibility of parameter instabilities, Rossi (2005) proposes tests
to evaluate the predictive ability in the situation where the parameter might be time
varying by testing jointly the significance of the predictors and their stability over time.
More generally, let 8; change at some unknown point in time, 7: 8, = 81 x 1 (t < 7) +
Bo x 1(t > 7).1 Let Bi- and Ba, denote the OLS estimators before and after the break.?

1. Rossi (2005) considered various forms of instabilities, a more general case of testing possibly non-
linear restrictions in models fit with generalized method of moments, and tests on subsets of
parameters.

2. That is, asymptotically, because the regressors are independent:

~ 1 < A
By ~ ( z) (zm_lyt+h>
T =1 T =1
R 1 T -t 1 T
Bar & T Z a:f_l T_ - Z Tt—1Yt+h

t=1+1
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With respect to the null hypothesis of no Granger causality at any point in time, that is,
Hy: B: = B =0, the robust test builds on two components: (7/T)81 + {1 — (7/T)}B2-
and 317 - BQT. A test on whether the first component (the full-sample estimate of
the parameter)® is zero detects situations in which the parameter (3; is constant and
different from zero. A test on whether the second component (the difference between
the parameters estimated in the two subsamples) is zero detects situations in which
the parameter changes, which detects situations in which the regressor Granger-causes
the dependent variable in such a way that the parameter changes but the average
estimate equals zero, as in (1). Rossi (2005) proposes several test statistics, including
QLR%, MeanW., and ExpW7.? The corresponding critical values of the asymptotic
distributions under the null are tabulated in Rossi’s (2005) table B1.

Note that a test for structural breaks would not necessarily be the correct approach
either. In fact, while in the previous example the researcher would identify a break, a
structural break test is not sufficient or necessary for the existence of Granger causality.
In fact, imagine that a variable has predictive content for another variable and the
predictive ability is constant over time; that is, 5, = 5. A structural break test is not
necessary or sufficient to detect predictive ability. The approach taken in this article is
to jointly test B; = 8 = 0, which also avoids issues of multiple testing that one would
incur when separately testing instability and Granger causality.

Note also that the way the possible presence of instabilities is modeled here is via a
one-time break; such an approach has been proven to be more powerful than cumulative
sum (CUSUM) tests—see Andrews, Lee, and Ploberger (1996), who derived the optimal
tests (the exponential averages of the Wald test statistics) for one or more change
points at unknown times in a multiple linear regression model. They compare the
power of the optimal exponential tests with that of other tests in the literature such as
the likelihood-ratio or supF test; the CUSUM test in Brown, Durbin, and Evans (1975);
and the midpoint F' test considering a one-time break in parameter. They find that
the optimal tests perform quite well in finite samples compared with the other tests
considered while the CUSUM test performs poorly.

3. The first component is the full-sample estimate of the parameter, which, asymptotically, is equiv-
alent to the following:

T = T\ & 1 d 2 B 1 -
fﬂh+ (1* f) Bor = (T ;xt—l> <T ;ItlytJrh)

4. Please refer to Rossi (2005) for detailed expressions of these statistics.
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2.2 Framework

We consider two types of VAR specifications. The first is a reduced-form VAR with
time-varying parameters,

A L)y =w
Ay(L) =1—- AL — Az,tL2 — = A LP (3)
u, % (0,%)
where y¢ = [y1,¢,Y2,t,---,Ynt] is an (n x 1) vector and Aj4,j = 1,...,p, are (n x n)

time-varying coefficient matrices.

The second is a direct multistep VAR-LP forecasting model with time-varying pa-
rameters. By iterating (3), y:tn can be projected onto the linear space generated by

(Yi—1,¥Yt—25---,¥t—p)', specifically,
Yirh = Prayi—1+ Posyr—o+ -+ Ppryi—p + €4n (4)

where ®;,,7 = 1,...,p are functions of A;;,7 =1,...,p in (3) and €;4 is a moving
average of the errors u from time ¢t to ¢t + h in (3) and therefore uncorrelated with the
regressors but serially correlated itself.> Note that h = 0 is a special case where (4)
degenerates to (3). Thus, we focus on (4) from now on.

Let 8, be an appropriate subset of vec(®1,, P2y, ..., ®p ). The null hypothesis of
the Granger causality robust test is

Hy:0,=0 Vt=12...T (5)

The statistics to test Hp in (5), following Rossi (2005), are ExpW™ (the exponential
Wald test), MeanW™ (the mean Wald test), Nyblom™ (the Nyblom test), and QLR* (the
Quandt likelihood-ratio [QLR] test).

The optimal ExpW™ and the optimal MeanW™ tests are based on the exponential
test statistics proposed in Andrews and Ploberger (1994). The optimal MeanW™* is
designed for alternatives that are close to the null hypothesis, while the optimal ExpW*
is designed for testing against more distant alternatives. The optimal Nyblom™ is based
on the Nyblom (1989) test, which is the locally most powerful invariant test for the
constancy of the parameter process against the alternative that the parameters follow
a random walk process. The optimal QLR* is based on Andrews’s (1993) Sup-LR test
(or the QLR test), which considers the supremum of the statistics over all possible break
dates of the Chow statistic designed for a fixed break date.

5. See Jorda (2005) for more details on LP.
6. See Rossi (2005) for more details on constructing the statistics.
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2.3 A special case: The traditional Granger causality test

The traditional Granger causality test is a special case where the parameters in (4) are
time invariant; that is, for j = 1,...,p, we replace ®;; with ®;,¢ =1,...,T. Thus, (4)
becomes

Yieh = P1yi—1 + Poyi o+ + Ppyi—p + €14 (6)

To consider a more concrete example, Stock and Watson (2001) study a three-
variable VAR with four lags (p = 4) and h = 0. The variables included are inflation (),
unemployment (u;), and interest rate (R;). Their reduced-form VAR is

™

us’ Tt—1 Tt—2 Tt—3 Tt—4 €t
U | =Py | w1 | +Po |wr—2 | +P3 |w—3 | + Py |Uur—a | + | €
R R4 Ri_» Ri_3 R4 el

; ) R

o7 97" b
;= o™ v T, j=1,....4

g%ﬂr %&u ﬁ,R

¢ 9

Thus, in Stock and Watson (2001), the reduced-form VAR involves three equations:
current unemployment as a function of past values of unemployment, inflation, and the
interest rate; current inflation as a function of past values of inflation, unemployment,
and the interest rate; and current interest rate as a function of past values of inflation,
unemployment, and the interest rate. Stock and Watson (2001) consider traditional
Granger causality tests in each equation where the null hypothesis is Hg: 8 = 0, where
0 is the appropriate subset of vec(®q,®o,...,P,). For example, unemployment does
not Granger-cause inflation if

(b‘iﬂu — (b‘g)u — (bg;u — ¢Z;u =0

If unemployment does not Granger-cause inflation, then lagged values of unemploy-
ment are not useful for predicting inflation.

3 The gcrobustvar command

3.1 Syntax

The gcrobustvar command implements the VAR-based Granger causality robust test.
The general syntax of the gcrobustvar command is

gcrobustvar depvarlist, pos(#, #) [nocons horizon(#) lags(numlist)

trimming (level) ]

depvarlist is a list of dependent variables, that is, all the variables in y; in the
notation in (6).
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3.2 Options

pos(#, #) is anumeric list (that is, numlist in Stata) including two integers indicating
the positions of the targeted dependent variable and restricted regressor, respectively.
For example, if we are testing whether the second variable, y» +, Granger-causes the
first variable, y1 ., in the presence of instabilities, then we assign the numeric list
as pos(1,2), where the integer 1 refers to the position of the targeted dependent
variable in the VAR (that is, y1+ in this example) and the integer 2 refers to the
position of the targeted restricted regressor in the VAR (that is, yo ; in this example).
pos () is required.

nocons suppresses the constant term. The default regression includes the constant term.

horizon(#) specifies the targeted horizon, that is, h in the notation in (4). The default
refers to a reduced-form VAR assuming homoskedastic idiosyncratic shocks. When
horizon(h) (h > 0) is specified, the command assumes heteroskedastic and serially
correlated idiosyncratic shocks and chooses the truncation lag used in the estima-
tion of the long run variance. The truncation lag is automatically determined us-
ing Newey and West (1994) optimal lag-selection algorithm. Note that horizon(0)
refers to a reduced-form VAR assuming heteroskedastic and serially correlated id-
iosyncratic shocks, and horizon(h) (h > 0) refers to the (h 4 1)-step-ahead fore-
casting model; see (4). For example, in a one-year-ahead VAR-LP forecasting model
with quarterly data, horizon(3) should be specified.

lags (numlist) specifies the lags included in the VAR. The default is lags(1 2). This
option takes a numlist and not simply an integer for the maximum lag. For example,
lags(2) would include only the second lag in the model, whereas lags(1 2) would
include both the first and second lags in the model. The shorthand to indicate the
range follows numlist in Stata.

trimming (level) is the trimming parameter. As is standard in the structural break
literature, the possible break dates are usually trimmed to exclude the beginning
and end of the sample period. If we specify trimming(u), the range where we
search for instabilities is set to be [uT, (1 — u)T], where T is the number of total
periods. The default is trimming(0.15), which is recommended in the structural
break literature and commonly used in practice.
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3.3 Stored results

gcrobustvar stores the following in r():

Macros
r(cmd) gcrobustvar
r(cmdline) command as type
Matrices
r(result_stat) 4-by-1 matrix containing four statistics: ExpW*, MeanW*
Nyblom™*, and SupLR*
r(result_pv) 4-by-1 matrix containing four p-values, corresponding,
respectively, to ExpW*, MeanW*, Nyblom™*, and SupLR*
r(result_wald) a column vector containing Wald statistics across time, the

supremum of which is the optimal QLR test statistic (QLR™*)

3.4 Empirical example of practical implementation in Stata

In what follows, we illustrate how to use the gcrobustvar command to implement
the robust Granger causality test in Stata. The data (GCdata.xlsx, provided with
the article files) include quarterly U.S. data on the rate of price inflation (m;), the
unemployment rate (u:), and the interest rate (R;, specifically, the federal funds rate)
from 1959:1-2000:IV. These are the same variables used in Stock and Watson (2001).
Inflation is computed as m; = 400 X In(P;/P;_1), where P; is the chain-weighted gross
domestic product price index. Quarterly data on u; and R, are quarterly averages of
their monthly values.

Consider the inflation equation in (3):

T = ¢F 4+ 7T (L)m + 7" (L)ug + D7 (L)Ry + €T
where @, (L) = ¢y, L + ¢35, L* + ¢35, L* + ¢, L*

Suppose we are interested in testing whether unemployment (u) Granger-causes
inflation (7), and we want the test to be robust to instabilities over time. That is, we
want to test whether the coefficients of lagged values of unemployment (u) are zero
across time:

Ho: ¢7{'=0 Vj=1,234 Vt=12...T

Implementing the Granger causality tests in the presence of instabilities

The following scripts implement the Granger causality robust test. We first import the
data, claim the data to be time series, and import the p-value tables needed for the
tests:

. * import data

. import excel gcdata.xlsx, sheet(SW2001) firstrow clear
(4 vars, 168 obs)

. * time-series settings

. generate year = int(pdate)

. generate quarter = (pdate - int(pdate))*4 + 1
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. generate tq = yq(year, quarter)
. format tq %tq

. tsset tq
time variable: tq, 195991 to 2000q4
delta: 1 quarter

. * import p-value table
. mata:

mata (type end to exit)
: mata clear

: mata matuse pvtable,replace
(loading pvapOopt[34,21], pvapiopt[34,21], pvnybopt[34,21], pvqlropt[34,21])

: st_matrix("r(pvapOopt)",pvapOopt)
: st_matrix("r(pvapiopt)",pvapiopt)
: st_matrix("r(pvnybopt)",pvnybopt)
: st_matrix("r(pvqlropt)",pvglropt)

: end

. matrix pvapOopt = r(pvapOopt)
. matrix pvapiopt = r(pvapiopt)
. matrix pvanybopt = r(pvnybopt)
. matrix pvqlropt = r(pvqglropt)

Then, we run the Granger causality robust test using the gcrobustvar command.
When we run the gcrobustvar command, important information (variables, lags, etc.)
will be displayed:

. % run gcrobustvar test for a VAR

. gcrobustvar pi u R, pos(1,2) lags(1/4)
Running the Granger Causality Robust Test...
Setting:

Variables in VAR: pi u R

Lags in VAR:1 2 3 4

h is 0 (reduced-form VAR).

Trimming parameter is .15

Constant is included.

Assuming homoskedasticity in idiosyncratic shocks.

The results are displayed in the following script. The gcrobustvar command pro-
vides the four optimal test statistics (ExpW™, MeanW”*, Nyblom™, QLR*) and their
corresponding p-values:

Results of Granger Causality Robust Test: Lags of u Granger cause pi
ExpW#*,MeanW#*,Nyblom*,QLR* -- and their p-values below

ExpW MeanW Nyblom SupLR
statistics(pi:u) 9.1974593 17.047538 4.689049 23.187923
p-value(pi:u) .07383772 .05866136 .07939046 .07069996

Here is how we get all the inputs of the gcrobustvar command. depvarlist lists
the variables included in the VAR, that is, m, u, and R in this order. Because we are
testing whether lags of the second variable, u;, Granger-cause the first variable, 7y, in the
presence of instabilities, we assign the positions pos(1,2). As for the options, we include
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the constant term and include four lags, that is, lags(1/4), as in Stock and Watson
(2001). In addition, we assume homoskedasticity and choose the standard trimming
parameter 0.15.

Here is how to interpret the results. Let’s take the ExpW™ statistics as an example.
The value of ExpW™ is 9.20, and the p-value is 0.07. Thus, the test rejects the null
hypothesis that unemployment (u) does not Granger-cause inflation (7) for all ¢ at the
10% significance level.

4 Comparison with the traditional Granger causality test

In this section, we compare the robust Granger causality tests with the traditional
Granger causality test in the three-variable VAR model in Stock and Watson (2001). The
VAR includes a constant term and four lags and assumes homoskedastic idiosyncratic
shocks.

Table 1 reports the p-values of the traditional Granger causality Wald statistics.
The results show that m Granger-causes R, u Granger-causes both = and R, and R
Granger-causes u at the 5% significance level.

Table 1. Traditional reduced-form VAR-based
Granger causality tests

Dependent variable

Restricted regressors s U R
s 0.00 0.25  0.00
U 0.01 0.00 0.00
R 0.22 0.00 0.00

NOTE: This table reports p-values of the Wald
statistics of the traditional Granger causality test.
h = 0 (that is, the reduced-form VAR model),
lags = (1,2,3,4), assuming homoskedastic idiosyn-
cratic shocks.

Table 2 reports the p-values of the robust Granger causality test statistics (for
ExpW”*, MeanW”*, Nyblom*, and QLR*, respectively). We are testing whether the
restricted regressor Granger-causes the dependent variable in the presence of instabili-
ties. For example, if we consider the dependent variable 7 and the restricted regressor
R, we are testing whether R Granger-causes 7 in a way robust to instabilities across
time, that is, whether the coefficients of lags of R are constant and equal to zero over
time. The p-value of the ExpW™ statistics in panel A in table 2 is 0.01, so the test does
reject the null at the 5% significance level. Hence, R does Granger-cause 7.
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Table 2. Robust Granger causality tests in the
reduced-form VAR
Panel A—ExpW*

Dependent variable

Restricted regressors 7r u R
T 0.00 0.20 0.00
u 0.07 0.00 0.00
R 0.01 0.00 0.00

Panel B—MeanW*

Dependent variable

Restricted regressors 7r u R
T 0.00 044 0.00
u 0.06 0.00 0.00
R 0.20 0.01 0.00

Panel C—Nyblom*

Dependent variable

Restricted regressors m u R
i 0.00 0.22 0.00
u 0.08 0.00 0.00
R 0.03 0.02 0.00

Panel D—QLR*

Dependent variable

Restricted regressors s U R
™ 0.00 0.08 0.00
U 0.07 0.00 0.00
R 0.00 0.00 0.00

NOTE: This table reports p-values of the statistics of

the Granger causality robust test. h = 0 (that is,
the reduced-form VAR model), lags = (1,2, 3,4), the
trimming parameter p = 0.15, assuming homoskedas-
tic idiosyncratic shocks.

893

Comparing tables 1 and 2, we find the empirical conclusions differ if a researcher
uses the Granger causality robust test instead of the traditional Granger causality test.
In fact, R does not Granger-cause 7 at the 5% significance level in the traditional
Granger causality test, but R does Granger-cause 7 at the 5% significance level in the
Granger causality robust test according to the ExpW™, Nyblom®, and SupLR* test
statistics. Hence, there is empirical evidence that lagged values of R can predict 7, but
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the predictive ability shows up only sporadically over time, which is the reason why the
traditional Granger causality test does not detect it.

gcrobustvar also returns a graph showing the whole sequence of the Wald statistics
across time, which gives more information on when the Granger causality occurs. In
fact, the optimal QLR* is the supremum of the sequence of Wald statistics testing
whether the parameters are zero at each point in time against the alternative that the
parameters change at a given break date at time tq. Figure 1 plots the sequence of the
Wald statistics over the possible break dates, reported on the = axis. Consider as an
example the test of whether unemployment (u) Granger-causes inflation (7); figure 1
documents the whole sequence of the Wald statistics testing whether unemployment
(u) Granger-causes inflation (7). The sequence of the Wald statistic (depicted by a
continuous line in figure 1) is above the 10% critical value line (depicted by the dashed
lines) around 1970q1 and 1980ql. The figure is saved as gcrobustvar pi_u.

4

1965q1  1970q1  1975q1  1980q1  1985q1  1990q1  1995qT
tq

5% Critical value oo 10% Critical value
Wald statistics

Figure 1. Wald statistics testing whether unemployment (u) Granger-causes inflation
() against the alternative of a break in Granger causality at time tq (reported on the
Z axis)

5 Robust Granger causality tests in LP

Section 4 considers the reduced-form VAR assuming homoskedastic idiosyncratic shocks.
In this section, we extend the VAR analysis to Jorda’s (2005) LP by implementing the
direct multistep VAR-LP forecasting model in (6) and assuming heteroskedastic and
serially correlated idiosyncratic errors. Allowing for heteroskedasticity and serial corre-
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lation is important when the researcher extends the VAR analysis to LP, where the error
terms in (6) can be both heteroskedastic and serially correlated.

We consider the one-year-ahead VAR-LP forecasting model with a constant term and
four lags. The setting is similar to section 4 except that we specify h = 3 and relax the
homoskedasticity assumption.

The following is the command to implement the robust Granger causality test to
investigate whether the coefficients on Ry_1, Ri_o, Ri_3, Ri_4 are zero across time in the
one-year-ahead VAR-LP forecasting model in the equation where the dependent variable
is mey3. To test other coefficients, we implement the command similarly, except for
adjusting the input of pos(#, #).

. gcrobustvar pi u R, pos(1,3) lags(1/4) horizon(3)
Running the Granger Causality Robust Test...

Setting:

Variables in VAR: pi u R

Lags in VAR:1 2 3 4

h is 3 (4-step-ahead VAR-LP forecasting model).

Trimming parameter is .15

Constant is included.

Assuming heteroskedasticity and serial correlation in idiosyncratic shocks.

(output omitted )

Table 3 reports the p-values of the robust Granger causality test statistics (the
ExpW”*, MeanW*, Nyblom™ and QLR* statistics, respectively). The results show that
lags of inflation (7) can significantly forecast the one-year-ahead unemployment (u)
and interest rate (R), lags of unemployment can significantly forecast the one-year-
ahead inflation and interest rate, and lags of interest rate can significantly forecast the
one-year-ahead inflation and unemployment.
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Table 3. Robust Granger causality tests in the
direct multistep VAR-LP forecasting model

Panel A—ExpW*

Dependent variable

Restricted regressors 7r u R
T 0.00 0.00 0.00
u 0.00 0.00 0.00
R 0.00 0.00 0.00

Panel B—MeanW*

Dependent variable

Restricted regressors 7r u R
T 0.00 0.00 0.00
u 0.00 0.00 0.00
R 0.00 0.00 0.00

Panel C—Nyblom*

Dependent variable

Restricted regressors m u R
i 0.00 0.00 0.00
u 0.00 0.00 0.00
R 0.00 0.00 0.00

Panel D—QLR*

Dependent variable

Restricted regressors s U R
™ 0.00 0.00 0.00
U 0.00 0.00 0.00
R 0.00 0.00 0.00

NOTE: This table reports p-values of the statistics
of the Granger causality robust test. h = 3 (that
is, the one-year-ahead VAR-LP forecasting model),
lags = (1,2,3,4), the trimming parameter p = 0.15,
assuming heteroskedastic and serially correlated id-
iosyncratic shocks.
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7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 19-4
. net install st0581 (to install program files, if available)
. net get st0581 (to install ancillary files, if available)
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