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Abstract

In this paper, we review methodologies to �x the size distortions of tests for forecast evalu-

ation when the forecasts display instabilities by implementing forecast evaluation tests that are

robust to instabilities. We discuss tests for relative as well as absolute forecast evaluation, and

describe two Stata procedures that implement the tests.
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1 Introduction

It is often of interest to test models�forecasting ability. In particular, researchers are often interested

in determining which of two competing forecasting models predicts the best; such tests are known

as �tests of relative forecast comparisons�. Examples of such tests include: Diebold and Mariano

(1995), West (1996) and Clark and McCracken (2001), among others. Another typical but very

di¤erent type of forecasting ability test involves evaluating whether forecasts ful�ll some minimal

requirements, such as being unbiased or producing forecast errors that are unpredictable using

any information available at the time the forecast is made; such tests are typically referred to as

�tests of absolute forecasting performance�. Examples of such tests include, among others: Mincer

and Zarnowitz (1969) and West and McCracken (1998). While both tests of relative and absolute

forecast performance are tests of forecasting ability, they di¤er substantially in their theoretical

properties as well as their purpose: in fact, the former are used to compare forecasting models, the

latter are used to evaluate one speci�c forecasting model.

When applying tests of forecasting ability to macroeconomic time series data, researchers face

an important practical problem. It is well-known that economic time series data are prone to

instabilities. A recent example is the Great Recession of 2007-2009, when several macroeconomic

relationships changed drastically. For example, interest rates lost their ability to predict output

growth during that time, while credit spreads became useful predictors (Ng and Wright, 2013). Sim-

ilarly, Rossi (2013b) �nds severe instabilities in exchange rate forecasting models. More generally,

Stock and Watson (1996) investigated the presence of instabilities in several di¤erent forecasting

models in a large dataset of key macroeconomic variables (76 representative U.S. monthly postwar

macroeconomic series) using formal testing procedures. The tests for structural breaks that they

used include the Quandt (1960) and Andrews (1993) QLR test, the Mean and Exponential Wald

test statistics by Andrews and Ploberger (1994), the Ploberger and Kramer (1992) maximal OLS

CUSUM statistic, and Nyblom�s (1989) test. Their analysis uncovered substantial and widespread

instabilities in many economic time series. Thus, when testing models�forecasting ability, it is po-

tentially important to allow their forecasting ability to change over time. In fact, traditional tests

of forecast evaluation are not reliable in the presence of instabilities, which may lead to incorrect

inference. The problem arises because traditional tests assume stationarity, an assumption that is

violated in the presence of instabilities.

The contribution of this paper is to propose and discuss Stata commands that illustrate how to

test forecast unbiasedness/rationality and how to test competing models�forecasting performance

in a way that is robust to the presence of instabilities. The tests are based on the methodologies

developed by Giacomini and Rossi (2010) and Rossi and Sekhposyan (2016), and discussed thor-

oughly by Rossi (2013a). The Stata commands we present implement both Rossi and Sekhposyan�s
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(2016) Fluctuation Rationality test as well as Giacomini and Rossi�s (2010) Fluctuation test. The

tests are separately presented, as they address very di¤erent concerns. For instance, the Rossi

and Sekhposyan�s (2016) Fluctuation Rationality test allows researchers to evaluate whether the

forecasts ful�ll some minimal requirements (such as being unbiased and being highly correlated

with the ex-post realized value) in environments characterized by instabilities; hence, such tests are

�tests of absolute forecasting performance robust to instabilities�. Giacomini and Rossi�s (2010)

Fluctuation test instead allows researchers to detect which model forecasts the best in unstable

environments, and hence it is a �test of relative forecasting performance robust to instabilities�. In

the presence of instabilities, the latter tests are more powerful than traditional tests and provide

a visual illustration of when predictive ability appears or breaks down in the data. For each test,

�rst we introduce the test, then present the Stata commands that implement it, and �nally discuss

a simple empirical exercise to illustrate the output of the tests and how to interpret the results.

The codes are freely available in Stata in the zipped �le FOREC_INSTAB from the Stata SSC

archive.2

In Section 2, we establish the notation and de�nitions. Section 3 discusses Rossi and Sekh-

posyan�s (2016) Fluctuation rationality test and Section 4 discusses Giacomini and Rossi�s (2010)

Fluctuation test; sub-sections explain the syntax of the Stata commands and demonstrate their

usage.

2 Notation and De�nitions

We �rst introduce the notation and discuss the assumptions about the data, the models and the

estimation procedures. We are interested in evaluating h-step ahead forecasts for the variable yt;

which we assume to be a scalar for simplicity. The evaluation can be relative (i.e. comparing the

relative forecasting performance of competing models) or absolute (i.e. evaluating the forecasting

performance of a model in isolation).

We assume that the researcher has a sequence of P h-step-ahead out-of-sample forecasts for

two models, denoted respectively by y(1)t;h and y
(2)
t;h , made at time t, where t = 1; :::; P .

3 Finally, let

the forecast error associated with the h-step-ahead forecast made at time t by the �rst model be

denoted by vt;h.4

2The codes are also available at the website: barbararossi.eu
3The models�parameters are estimated either using a �xed or a rolling scheme, where the size of the sample used

to estimate the parameters is �xed. This rules out recursive estimation schemes.
4For example, in a simple linear regression model with h-period lagged (k � 1) vector of regressors xt, where

Etyt+h = x
0
t
, the forecast at time t is: yt;h = x

0
tb
t;R and the forecast error is: vt;h = yt+h�x0tb
t;R, where b
t;R is the

estimated vector of coe¢ cients.
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3 Tests of Relative Forecast Comparisons Robust to Instabilities

3.1 Giacomini and Rossi�s (2010) Fluctuation Test

The Fluctuation test compares the relative forecasting performance of competing models over time,

where the performance is judged based on a loss function chosen by the forecaster. For a general loss

function L (:) ; the researcher has available a sequence of P out-of-sample forecast loss di¤erences,

f�Lt;hgPt=1 ;where �Lt;h � L
(1)
t;h � L

(2)
t;h , which depend on the realizations of the variable, yt+h. For

example, for the traditional quadratic loss associated with Mean Squared Forecast Error (MSFE)

measures, L(1)t;h = v2t+h and �Lt;h is the di¤erence between the squared forecast errors of the two

competing models.5 As the square loss function is the most widely used loss function in practice,

this is the one we implement in the Stata procedure described below.

Giacomini and Rossi (2010) de�ne the local relative loss for the two models as the sequence of

out-of-sample loss di¤erences computed over rolling windows of size m:

m�1
tX

j=t�m+1
�Lj;h; t = m;m+ 1; :::; P: (1)

They are interested in testing the null hypothesis of equal predictive ability at each point in time:

H0 : E [�Lt;h] = 0 for all t;

and the alternative can be either E [�Lt;h] 6= 0 (two-sided alternative) or E [�Lt;h] > 0 (one-sided
alternative). Their Fluctuation test statistic is the largest value over the sequence of the relative

forecast error losses de�ned in eq. (1):

maxt FOOSt;m ; (2)

where

FOOSt;m = b��1m�1=2
tX

j=t�m+1
�Lj;h; t = m;m+ 1; :::; P; (3)

where b�2 is a heteroskedasticity and autocorrelation consistent (HAC) estimator of the long run
variance of the loss di¤erences (Newey and West, 1987). The null hypothesis is rejected against the

two-sided alternative E
h
�Lt;h

�b
t;R; b�t;R�i 6= 0 when maxt ��FOOSt;m

�� > k�;�, where the critical value
k�;� depends on the choice of �; which is the size of the rolling window relative to the number of

out-of-sample loss di¤erences P , formally m = [�P ]. Note also that FOOSt;m is simply a traditional

test of equal predictive ability computed over a sequence of rolling out-of-sample windows of size

m:

5 In fact, P�1
PP

t=1�Lt;h is exactly the MSFE.
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3.2 The giacross Command

The giacross command is the Stata equivalent to the Matlab command written by Giacomini and

Rossi (2010). The general syntax of the command giacross is:

giacross data forecast1 forecast2 ; window(size) alpha(level) [nw(bandwidth) side(#)]:

data contains the realizations of the target variable (the realized values against which each forecast

is compared), that is yt+h as per the notation in Section 3.1, t = 1; 2; :::; P , where P is the

number of forecasts available.

forecast1 and forecast2 each contain the forecasts from the competing models that are tested,

that is y(1)t;h and y
(2)
t;h . Note that the inputs of the function are simply the forecasts: there is

no need to input the models�parameter estimates in the procedure. In fact, as explained in

Giacomini and Rossi (2010), the test can also be implemented if the researcher does not know

the models that generated the forecasts (as, for example, in the case of survey forecasts).

size corresponds to the size of the window in the implementation of the test, that is m.

level equals the signi�cance level of the test, either 0.05 for a 5% level or 0.10 for 10%.

bandwidth is an option allowing the user to choose the truncation lag used in the estimation of

the variance b�2. If no bandwidth is speci�ed, the truncation lag is automatically determined
using the Schwert (1987) criterion.

The side option takes the value 1 or 2 and speci�es if the null is compared to a one- or two-sided

alternative, respectively. If the alternative is one-sided, the alternative hypothesis is that the

�rst model forecasts worse than the second model. If the alternative is two-sided, models�

forecasts are signi�cantly di¤erent from each other under the alternative.

The giacross command returns the following items:

r(tstat_sup) The maximum absolute value of the (rolling) test statistic over the sample, i.e. the

value of eq. (2).

r(cv) The critical value of the test.

r(level) The signi�cance level of the test speci�ed by the user.

r(cmd) The name of the command used, namely �giacross.�

r(cmdline) The whole command line input by the user

5



r(testtype) Whether the test is one- or two-sided.

r(RollStat) The whole history of the rolling test statistic. A variable FlucTest is also created

in the dataset if needed.

Finally, the giacross command automatically produces a graph plotting the test statistic

against time with the critical value(s) implied by the level speci�ed. We show such a graph in the

example in the next section.

3.3 Example of Practical Implementation in Stata

The following sample code runs a sample application of the Giacomini-Rossi test using the giacross

command.

set more off

insheet using rosssekh_test_data1new.csv, clear

generate year = int(pdate)

generate quarter = (pdate - int(pdate))*4 + 1

generate tq = yq(year, quarter)

format tq %tq

tsset tq

* lag length set to 3, default 2-sided test

giacross realiz forc spf, window(60) alpha(0.05) nw(3)

dis "The value of the test statistic is " r(tstat_sup)

dis "The critical value is " r(cv) " at significance level " r(level)

The dataset in test_data1new.csv includes quarterly realizations of in�ation for the US starting

in 1968Q4 until 2008Q4, as well as the Greenbook (labeled "forc") and the Survey of Professional

Forecast (SPF) nowcasts (labeled "spf) for the same variable. The �rst few lines of the code inputs

the data and construct the time series of dates.

� The code returns the following output (with a graph showing the history of the rolling test
statistic): the value of the test statistic (maxt

��FOOSt;m

��) is 3.1647 and is larger than the critical
value at the 5% signi�cance level, equal to 2.89. Therefore, we reject the null hypothesis

that the models�forecasting performance is the same in favor of the alternative that the �rst

model forecasts signi�cantly better.
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� Figure 1 provides a visual interpretation. The �gure plots the sequence of FOOSt;m over time

(depicted by a continuous line), and shows that it is clearly outside the critical value lines

(�2:89, depicted by the dashed lines). The strongest evidence against the null appears to be
around the beginning of 2000s: this is when the empirical evidence in favor of the �rst model

is the strongest.

Figure 1. Giacomini and Rossi�s Test
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Time

Critical values G­R test stat.

Giacomini and Rossi's (2010) Fluctuation test

Giacomini ­ Rossi Fluctuation Test

Notes to the �gure. The �gure depicts FOOSt;m from eq. (3)

as a function of time (t) for the �rst example in Section 3.

We also include an example of the one-sided version of the test using the following sample code:

* automatic lag length selection based on Schwert criterion, one-sided test

giacross realiz forc spf, window(60) alpha(0.05) side(1)

dis "The value of the test statistic is " r(tstat_sup)

dis "The critical value is " r(cv) " at significance level " r(level)

� The code returns the following output: the value of the test statistic is 0.8267, and the critical
value is 2.624 at signi�cance level 0.05. The test does not reject the null hypothesis that the

two models forecast performance is the same against the alternative that the �rst model

forecasts worse than the second model.

� The output also includes a plot of the models� relative forecasting performance over time,
depicted in Figure 2.
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Figure 2. Giacomini and Rossi�s Test
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Giacomini ­ Rossi Fluctuation Test

Notes to the �gure. The �gure depicts FOOSt;m from eq. (3)

as a function of time (t) for the second example in Section 3.

3.4 A Comparison With Traditional Tests

A common test used to compare models�forecasting performance is the Diebold and Mariano (1995)

and West (1996) test. The Diebold and Mariano (1995) and West (1996) test statistic is:

DMWP = b��1P�1=2 PX
t=1

�Lj;h;

where b�2 is a HAC estimator of the long run variance of the loss di¤erences. The test is designed to
test the (unconditional) null hypothesis H0 : E [�Lt;h] = 0 and, under the null, has an asymptotic

standard normal distribution.

The DMWP test can be obtained in Stata using the following command:

* Diebold Mariano comparison of forecast accuracy

dmariano realiz forc spf, max(3)

� The command returns the following output: the p-value is 0.2177 so the test does not reject
the null of equal forecast accuracy of the two forecasts at the 0.05 signi�cance level.

� Importantly, note that the empirical conclusions are very di¤erent from those that a researcher
would obtain by using the Fluctuation test. In fact, the DMWP test ignores the time

variation in the relative forecasting performance over time, visible in Figure 1: instead, it
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averages across all the out-of-sample observations, thus losing power to detect di¤erences in

the models�forecasting performance.

4 Tests of Absolute Forecasting Performance Robust to Instabil-

ities

4.1 Rossi and Sekhposyan�s (2016) Fluctuation Rationality Test

Tests for forecast rationality evaluate whether forecasts satisfy some �minimal�requirements, such

as being an unbiased predictor or being uncorrelated with any additional information available at

the time the forecast was made. Thus, traditional tests of forecast rationality (such as Mincer and

Zarnowitz, 1969, and West and McCracken, 1998) verify that forecast errors have zero mean or that

they are uncorrelated with any other variable known at the time the forecast was made. However,

they assume stationarity and are thus invalid in the presence of instabilities.

In order to make the tests robust to instabilities, Rossi and Sekhposyan (2016) propose to

estimate the following forecast rationality regressions in rolling windows (of size m):

vj;h = g
0
j � � + �j;h; j = t�m+ 1; :::; t (4)

where the forecast errors denoted by vj;h refer to an h-step ahead out-of-sample forecast made at

time j using data available up to that point in time and may depend on parameter estimates; gj

is an (`� 1) vector function of period j data (which can also possibly be a function of the models�
parameter estimates), � is an (`� 1) parameter vector, and �j;h is the residual in the regression.
The regression in eq. (4) is thus estimated in rolling windows of size m: at time t, the researcher

uses data from t�m+ 1 to t to obtain the parameter estimate, b�t; by repeating the procedure at
times t = m;m+ 1; :::; P , the researcher obtains a sequence of parameter estimates over time.

Rossi and Sekhposyan�s (2016) main interest is testing forecast rationality in the presence

of instabilities. In fact, in the presence of instabilities, tests that focus on the average out-of-

sample performance of a model may be misleading, as they may average out instabilities. Thus, the

hypothesis to be tested is:

H0 : �t = �0 vs. HA : �t 6= �0; 8 t; (5)

where �0 = 0 and �t is the time-varying parameter value.

The framework in equation (4) is quite general; here we focus on tests of forecast unbiasedness

(gt = 1); tests of forecast e¢ ciency (gt is the forecast itself); and tests of forecast rationality (gt

includes both the forecast and 1).6 We refer to all these tests under the maintained assumption

6 In general, gt may also contain any other variable known at time t which was not included in the forecasting

model); the framework in equation (4) also potentially includes tests of forecast encompassing (gt is the forecast of

the encompassed model) and serial uncorrelation tests (gt is the lagged forecast error).
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that �0 = 0 as �tests for forecast rationality.� The zero restriction on the parameter under the

null hypothesis ensures that the forecast errors are truly unpredictable given the information set

available at the time the forecast is made.

Rossi and Sekhposyan (2016) propose the following �Fluctuation Rationality�test:

max
t
Wt;m; (6)

where

Wt;m = mb�0t bV �1�
b�t; for t = m;m+ 1; :::; P , (7)

is the Wald test in regressions computed at time t over rolling windows of size m and based on the

parameter estimate b�t; which is sequentially estimated in regression (4) and bV� is a HAC estimator
of the asymptotic variance of the parameter estimates in the same rolling windows.

Here we focus on the version of the Rossi and Sekhposyan (2016) test where either parameter

estimation error is irrelevant, or the forecasts are model free, or the models�parameters are rollingly

re-estimated in a �nite window of data, although their test is valid in more general situations as

well (see Rossi and Sekhposyan, 2016).

The null hypothesis is rejected if maxtWt;m > ��;`, where ��;` is the critical value at the 100�%

signi�cance level with the number of restrictions equal to `.

4.2 The rosssekh Command

The rosssekh command is the Stata equivalent to the Matlab command written by Rossi and

Sekhposyan (2016). The general syntax of the command rosssekh is:

rosssekh data forecast ; window(size) alpha(level) [nw(bandwidth)]:

data contains the realizations of the target variable (the realized values against which each forecast

is compared), that is yt+h in the notation of Section 3.1, t = 1; 2; :::; P , where P is the number

of forecasts available.

forecast is gt in our notation.

size corresponds to the size of the window in the implementation of the test, that is, m.

level equals the signi�cance level of the test, either 0.05 for a 5% level or 0.10 for 10%.

bandwidth is an option allowing the user to choose the truncation lag used in the HAC variance

estimation. If no bandwidth is speci�ed, the truncation lag is automatically determined using

the Schwert (1987) criterion.

The rosssekh command returns the following items:
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r(tstat_sup) contains the maximum value attained by the (rolling) test statistic over the sample,

eq. (6).

r(cv) is the matrix of critical values of the test at the level speci�ed by the user.

r(level) is the level of the test speci�ed by the user.

r(cmd) is the name of the command used, namely �rosssekh.�

r(cmdline) is the whole input command line.

r(RollStat) is the whole time series of the rolling test statistic. A variable RossSekhTest is also

created in the dataset.

r(CV) is the critical values of the test.

4.3 Example of Practical Implementation in Stata

The following sample code runs a sample application of the Rossi-Sekhposyan test using the

rosssekh command. We focus on evaluating forecast rationality of Greenbook forecasts (labeled

"forc").

set more off

* change path according to the location of the file test_data1new.csv

insheet using rosssekh_test_data1_new.csv, clear

generate year = int(pdate)

generate quarter = (pdate - int(pdate))*4 + 1

generate tq = yq(year, quarter)

format tq %tq

tsset tq

* window size is 60 observations long, significance level is 0.05, lag length set to 3

rosssekh realiz forc, window(60) alpha(0.05) nw(3)

dis "The value of the test statistic is " r(tstat_sup)

dis "The critical value is " r(cv) " at significance level " r(level)

� The code returns the following output (with a graph showing the history of the rolling test
statistic): the test statistic (maxtWt;m) reaches a maximum of 38.90 for a critical value of

10.9084. The test does reject the null hypothesis of forecast rationality.
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� Figure 3 provides a visual interpretation. The �gure plots the sequence of Wt;m over time

(depicted by a continuous line), and shows that it is clearly outside the critical value line

(depicted by the dashed line). The strongest evidence against the forecast rationality appears

to be around the beginning of 1995.

A similar result can be obtained by using an automatic lag length selection using the following

sample code:

* automatic lag length selection, integer part of window^0.25

rosssekh realiz forc, window(60) alpha(0.05) nw(0)

dis "The value of the test statistic is " r(tstat_sup)

dis "The critical value is " r(cv) " at significance level " r(level)

� The code returns the following output: the test statistic reaches a maximum of 27.14 for a

critical value of 10.9084. The test does reject the null hypothesis of forecast rationality. In

this case, the plot is qualitatively similar to that in Figure 3, therefore we do not report it to

save space.

Figure 3. Rossi and Sekhposyan�s Test
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Notes to the �gure. The �gure plots Rossi and

Sekhposyan�s sequence of test statistics (Wt;m) over time.
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4.4 A Comparison With Traditional Tests

A commonly used test to evaluate the forecasting performance of a model is the Mincer and

Zarnowitz (1969) test. The Mincer and Zarnowitz (1969) test statisticMZP is a simple F -test in
the regression: vj;h = g0j � � + �t; j = 1; :::; P :

MZP = P b�0P bV �1�
b�P ;

where bV� is a HAC estimator of the asymptotic variance of the parameter estimates.
The test is designed to test the (unconditional) null hypothesis that H0 : � = 0 and, under the

null, has an asymptotic chi-square distribution. Again, notice that it, unlike maxtWt;m, it is not

robust to instabilities.

TheMZP test can be obtained in Stata from a simple F -test using the following command:7

* Mincer Zarnowitz regression for systematic forecast bias

generate fcsterror=realiz-forc

newey fcsterror forc, lag(3)

� The command returns the following output: theMZP test statistic is 0.60 and its p-value is
0.4386, so the test does not reject the null at the 0.05 signi�cance level.

� Again, in this case as well, the empirical conclusions are very di¤erent from those that a

researcher would obtain by using the Fluctuation Rationality test. In fact, the MZP test
ignores the time variation in the relative forecasting performance over time, visible in Figure 2:

by averaging across all the out-of-sample observations, it misses the lack of forecast rationality

that appears sporadically in time.
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