Voting and Elections Political Economics: Week 1

Giacomo A. M. Ponzetto

CREI – UPF – Barcelona GSE

8th and 11th January 2010

3

∃ → (∃ →

< 4 ₽ × <

A Policy Problem

- A set \mathcal{V} of individuals i = 1, ..., I.
- Individual *i* has utility function

$$U\left(c^{i},q,p;\alpha^{i}\right)$$

- αⁱ denotes his exogenous idiosyncratic characteristics;
- c^{i} is his private choice subject to constraints $H(c^{i}, q, p; \alpha^{i}) \geq 0$;
- q is the policy choice from a feasible set Q;
- p = P(c, q) describes the general equilibrium that results from the policy choice q and the individual choices c of all agents.

Individual Policy Preferences

In a well-behaved model, for each policy choice q ∈ Q there is a unique equilibrium with actions c (q) and market outcomes p (q) = P (c (q), q) such that for each agent i ∈ V

$$c^{i}\left(q|\alpha\right) = \arg\max_{\gamma} U\left(\gamma, q, p\left(q\right); \alpha^{i}\right) \text{ s.t. } H\left(\gamma, q, p\left(q\right); \alpha^{i}\right) \geq 0.$$

- With price-taking atomistic agents, the individual choice c^i does not affect p. Having strategic market interactions makes no difference as long as there is a unique equilibrium.
- The equilibrium yields each agent's indirect utility function

$$W\left(q;\alpha^{i}
ight)\equiv U\left(c^{i}\left(q
ight),q,p\left(q
ight);\alpha^{i}
ight).$$

• The *preferred policy* or bliss point of each agent is

$$q\left(lpha^{i}
ight) =rg\max_{q}W\left(q;lpha^{i}
ight) .$$

Preference Aggregation in General

- Let Q be a set with at least three alternatives and R the set of all complete and transitive (i.e., "rational") preference relations on Q.
- Each agent *i* has a rational preference relation $\succeq_i \in \mathcal{R}$.
- A social welfare functional is a function F : R^I → R that assigns a rational social preference relation ≿= F (≿₁, ..., ≿_I) ∈ R to any profile of rational individual preference relations (≿₁, ..., ≿_I) ∈ R^I.
- A social welfare functional F is *Paretian* if for any pair of alternatives $\{q, q'\} \subset Q$ and any preference profile $(\succeq_1, ..., \succeq_l) \in \mathcal{R}^l$

if
$$q \succeq_i q'$$
 for all *i*, then $q \succeq q'$.

A social welfare functional F satisfies independence of irrelevant alternatives if for any pair of alternatives {q, q'} ⊂ Q and any preference profiles (≿1,..., ≿1) ∈ R¹ and (≿1,..., ≿1) ∈ R¹

$$\text{if } \succeq_i |_{\{q,q'\}} = \succeq'_i |_{\{q,q'\}} \text{ for all } i, \text{ then } \succeq |_{\{q,q'\}} = \succeq' |_{\{q,q'\}}.$$

- 3

イロン 不聞と 不同と 不同と

Arrow's Impossibility Theorem

Theorem

Every social welfare functional $F : \mathcal{R}^{I} \to \mathcal{R}$ that is Paretian and satisfies independence of irrelevant alternatives is dictatorial: there is an agent h such that, for any pair of alternatives $\{q, q'\} \subset Q$ and any preference profile $(\succeq_{1}, ..., \succeq_{I}) \in \mathcal{R}^{I}$, if $q \succ_{h} q'$ then $q \succ q'$.

- One of the conditions of the theorem is $F : \mathcal{R}^{I} \to \mathcal{R}$. Hence:
 - unrestricted domain: defined for all preference profiles;
 - transitivity: the social preference relation is itself rational.
- What can we do? Restrict preferences or specify institutions.
- Preference relations are *ordinal*. There is much more scope for aggregation of individual preferences into a social welfare function if we use cardinal utilities and admit their interpersonal comparison.

イロト 不得 トイヨト イヨト 二日

Majority Rule and the Condorcet Criterion

- **1** Direct democracy. The citizens themselves make the policy choices.
- Open agenda. Citizens vote over pairs of policies, such that the winning policy in one round is posed against a new alternative in the next round and the set of alternatives is the entire feasible set Q.
- Sincere voting. Citizen i votes for the alternative that maximizes his indirect utility W (q; αⁱ).

Definition

A Condorcet winner is a policy q^* that beats any other feasible policy in a pairwise vote.

Corollary

If a Condorcet winner q^* exists, it is the unique equilibrium under majority rule (i.e., under the three assumptions above).

< 🗇 🕨

The Condorcet Paradox

- A Condorcet winner need not exist.
- Three agents $i \in \{1, 2, 3\}$ and three choices $\{q_A, q_B, q_C\}$. Preferences

 $q_A \succ_1 q_B \succ_1 q_C,$ $q_B \succ_2 q_C \succ_2 q_A,$ $q_C \succ_3 q_A \succ_3 q_B.$

 \Rightarrow Majority-rule cycle:

$$q_A \succ q_B, q_B \succ q_C, q_C \succ q_A.$$

• Arrow's impossibility theorem for *transitive* social preference relations.

Strategic Voting

- With sincere voting agents reveal their preferences. Why should they?
- Let Q be a set with at least three alternatives and \mathcal{P} the set of all rational preference relations \succ_i on Q having the property that no two alternatives are indifferent.
- A social choice rule is a function F : P^I → Q that assigns a policy q^{*} = F (≻₁, ..., ≻_I) ∈ Q to any profile of individual preference relations (≻₁, ..., ≻_I) ∈ P^I.
- A social choice rule is *manipulable* if there exists a profile $(\succ_1, ..., \succ_l) \in \mathcal{P}^l$ and an agent *i* such that

$$F\left(\succ_{1},...,\succ_{i}',...,\succ_{I}\right)\succ_{i}F\left(\succ_{1},...,\succ_{i},...,\succ_{I}\right).$$

If a social choice rule is not manipulable, it is *strategy-proof*.

• A social choice rule is *onto* if for each $q \in Q$ there is a $(\succ_1, ..., \succ_l) \in \mathcal{P}^l$ such that $F(\succ_1, ..., \succ_l) = q$.

イロト 不得 トイヨト イヨト 二日

The Gibbard–Satterthwaite Theorem

Theorem

Every social choice rule $F: \mathcal{P}^{I} \to Q$ that is onto and strategy-proof is dictatorial: there is an agent h such that $F(\succ_1, ..., \succ_l) \succ_h q$ for any $q \neq F(\succ_1, ..., \succ_l)$ and for any preference profile $(\succeq_1, ..., \succeq_l) \in \mathcal{P}^l$.

- The same result as Arrow's impossibility theorem.
- A social choice rule must be onto to be Pareto efficient, i.e., to pick a policy when all agents unanimously prefer it to all alternatives.
- With an unrestricted domain for preferences, sincere voting is typically inconsistent with strategic rationality.

- 3

Single-Peaked Preferences

 A binary relation ≥ on the set Q is a *linear order* if it is *reflexive*, transitive, and total.

Definition

The rational preference relation \succeq_i is *single-peaked* with respect to the linear order \geq on Q if there is a bliss point q^i such that

$$q^i \geq q > q' \Rightarrow q \succ_i q'$$
 and $q' > q \geq q^i \Rightarrow q \succ_i q'$

ullet Concretely, consider $Q\subset {\mathbb R}$ with the natural order \geq and

$$W\left(q; \alpha^{i}
ight) > W\left(q'; \alpha^{i}
ight) ext{ if } q\left(\alpha^{i}
ight) \geq q > q' ext{ or } q' > q \geq q\left(\alpha^{i}
ight)$$

• The indirect utility function is strictly quasiconcave with a unique maximum $q(\alpha^i)$.

- 3

The Median-Voter Theorem

Theorem

Suppose that I is odd and that the preferences of every agent are single-peaked with respect to the same linear order on Q. Then a Condorcet winner always exists and coincides with the median-ranked bliss point q^m . It is the unique equilibrium under majority rule.

- A simple separation argument.
- Since I is odd, the median bliss point q^m is uniquely defined.
- In a pairwise comparison of q^m and any $q' > q^m$, all agents *i* with bliss point $q^i \ge q^m > q'$ prefer q^m . By the assumption of sincere voting, a majority votes for q^m .
- Identically for any $q'' < q^m$.

- 3

Strategy-Proofness

 Let ≥ be a linear order on Q, and P_≥ ⊂ P the set of all strict rational preference relations on Q that are single-peaked with respect to ≥.

Theorem

If I is odd there exists a social choice rule $F : \mathcal{P}^{I}_{\geq} \to Q$ that is onto and strategy-proof and always selects the median-ranked bliss point q^{m} .

- Each agent reports a bliss point r^i and the median r^m is selected.
- Truthful reporting $r^i = q^i$ is a weakly dominant strategy.
- For any profile of reports r^{-i} by all agents other than *i*:
 - if q^i is median in (q^i, r^{-i}) , *i* reaches his bliss point;
 - 3 if the median in (q^i, r^{-i}) is $r^m > q^i$, an untruthful report could make it increase but not decrease; symmetrically for $r^m < q^i$.

 \Rightarrow Thus *i* can never gain by an untruthful report $r^i \neq q^i$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

The Single-Crossing Condition

Definition

A preference profile $(\succeq_1, ..., \succeq_l)$ satisfies the single-crossing condition with respect to the linear order \geq on Q if

for
$$q > q'$$
 and $j > i$, $q \succeq_i q' \Rightarrow q \succeq_j q'$.

- Single-peakedness is a property of an individual preference relation. Single-crossing is a property of an entire preference profile.
- A linear order of voters as well as policies is required.
- Concretely, consider $Q \subset \mathbb{R}$ and $\alpha^i \in \mathbb{R}$ with the natural order \geq : if q > q' and $\alpha'_i > \alpha_i$, then

$$W\left(q;\alpha_{i}\right) \geq W\left(q';\alpha_{i}\right) \Rightarrow W\left(q;\alpha_{i}'\right) \geq W\left(q';\alpha_{i}'\right).$$

イロト イポト イヨト イヨト 二日

The Median Voter

The Median Voter Theorem (Second Version)

Theorem

Suppose that I is odd and that the agents' preference profile satisfies the single-crossing condition with respect to the linear order \geq on Q. Then a Condorcet winner always exists and coincides with the bliss point of the median agent. It is the unique equilibrium under majority rule.

- Proof by the same separation argument as before.
- The single-crossing property implies an ordering of bliss points $\alpha_i' > \alpha_i \Rightarrow q(\alpha_i') > q(\alpha_i)$
- Strategy-proof mechanism: each agent reports a type $\hat{\alpha}_i$ and the enacted policy is the bliss point of the median report $q(\hat{\alpha}_m)$.

Intermediate Preferences

Definition

Agents in the set \mathcal{V} have *intermediate preferences* on Q if their indirect utility function can be written as

$$W\left(q;lpha _{i}
ight) =J\left(q
ight) +K\left(lpha _{i}
ight) H\left(q
ight)$$
 ,

where $K(\alpha_i)$ is monotonic and H, J, and K are common to all agents.

Theorem

Suppose that I is odd and that agents have intermediate preferences on QThen a Condorcet winner always exists and coincides with the bliss point of the median agent. It is the unique equilibrium under majority rule.

- Strong restriction, but simple and occasionally convenient.
- Project on the multidimensional policy space Q the natural ordering of the one-dimensional agent type α_i.

Downsian Electoral Competition

Timeline:

- Two candidates A and B simultaneously and non-cooperatively choose electoral platforms q_A and q_B .
- **(2)** An election is held in which *all citizens vote* for either candidate.
- So The winner implements his electoral platform (*binding commitment*).

Voters' strategy:

- If $q_A \neq q_B$, sincere voting is a weakly dominant strategy.
- If $q_A = q_B$, assume that citizens vote randomly for either candidate.

- 3

Politicians' Objectives

- Office-seeking politicians: exogenous "ego rent" from winning.
- Maximize the probability of winning p_A or $p_B = 1 p_A$.
- Tie breaking assumption $q_A = q_B \Rightarrow p_A = p_B = \frac{1}{2}$.
- The result is robust to the assumption that politicians have goals beyond winning, so long as they are conditional on winning: e.g., implementing a certain policy.

Downsian Convergence

Theorem

Suppose that two politicians contest an election by announcing a binding policy proposal, and a set of voters \mathcal{V} vote for either party following a weakly dominant strategy, and voting randomly when the two proposals are identical. Suppose that If the voters' preference profile on Q is such that a Condorcet winner q^m exists, there is a unique equilibrium in which both parties propose q^m .

- The median-voter theorem with two-party competition.
- Competition on an ordered line à la Hotelling (1929).
- Not robust to an increase in the number of parties.

イロト 不得下 イヨト イヨト

Redistributive Taxation

• Agents have preferences over consumption c_i and leisure x_i:

$$U(c_i, x_i) = c_i + V(x_i)$$
,

where $V(x_i)$ is a well-behaved increasing and concave function.

- Policy instrument: a linear tax τ on earnings that is rebated via uniform lump-sum transfers f.
- Budget constraint: $c_i \leq (1-\tau) l_i + f$.
- Time-allocation constraint: $x_i + l_i \leq 1 + \alpha_i$.
- Individual productivity α_i and labour supply

$$\begin{split} I(\tau; \alpha_i) &= \arg \max_{l_i} \left\{ (1 - \tau) \, l_i + f + V \, (1 + \alpha_i - l_i) \right\} \\ &= 1 + \alpha_i - V'^{-1} \, (1 - \tau) \, . \end{split}$$

General Equilibrium

- Unit measure of individuals.
- α_i has a known distribution with mean α and median α_m .
- Aggregate labour supply

$$L(\tau) = 1 + \alpha - V'^{-1}(1 - \tau)$$

such that

$$I(\tau;\alpha_i)=L(\tau)+\alpha_i-\alpha.$$

• Government budget constraint: $f \leq \tau L(\tau)$.

Policy Preferences

Indirect utility

$$W(\tau; \alpha_i) = (1 - \tau) I(\tau; \alpha_i) + f + V (1 + \alpha_i - I(\tau; \alpha_i))$$

= $(1 - \tau) (\alpha_i - \alpha) + L(\tau) + V (1 + \alpha - L(\tau)).$

- The single-crossing condition is satisfied.
- Individual preferences

$$\frac{\partial}{\partial \tau} W(\tau; \alpha_i) = -I(\tau; \alpha_i) + \frac{\partial f}{\partial \tau} = \underbrace{\alpha - \alpha_i}_{\text{redistribution}} + \underbrace{\tau L'(\tau)}_{\text{inefficiency}}.$$

Ideal policy

$$au\left(lpha_{i}
ight)$$
 such that $au_{i}\left|L'\left(au_{i}
ight)
ight|=lpha-lpha_{i}$

< 一型

Income Redistribution by the Median Voter

- A voter with average productivity $(\alpha_i = \alpha)$ wants no redistribution.
- \Rightarrow By definition, this is the utilitarian welfare optimum.
- \Rightarrow With quasilinearity, au=0 is also clearly efficiency-maximizing.
 - Voters with less than average productivity (income) desire progressive redistribution.
 - \blacktriangleright Voters with more than average income desire regressive redistribution: a production subsidy $\tau < 0$ financed by a poll tax.
 - The median voter prefers au_m such that $au_m \left| L'(au_m) \right| = lpha lpha_m$.
 - Redistribution increases as the gap between average and median income increases. Not any measure of income inequality.
 - Empirical support for this simple model is not very strong.

Empirical Evidence on the Downsian Model

- Gerber and Lewis (2004) focus on elections in Los Angeles County, which contains 55 (state and federal) majoritarian electoral districts.
- Voter preferences are measured from a database of 2.8m individual ballots for the 1992 election. These votes include 13 statewide ballot propositions (direct democracy) as well as candidate races.
- Ideology of the elected representative is measured from legislative voting records.
- Representatives' ideology is correlated with the median constituent's, *but* ...
- "Legislators from heterogeneous districts often take policy positions that diverge substantially from the median voter in their district."

- 3

Beyond Condorcet Winners

- The Downsian model fails without a Condorcet winner, and is typically not applicable to multidimensional policy choices.
- The platform-choice game lacks a pure-strategy equilibrium.
- Discontinuous payoff functions and best responses are the problem.
- Introduce smoothness by making candidates uncertain about voter support.
- An *intensive margin*: a voter is the more likely to support a candidate (instead of the competitor, or instead of abstaining), the more he likes his platform.
- Exploit the cardinal dimension of preferences.

3

Political Preferences

- Each candidate $P \in \{A, B\}$ is characterized by the binding platforms q^P but also by exogenous non-policy characteristics.
- Voters i's utility if candidate P wins the election is

$$W\left(q^{P}, P; \alpha_{i}\right) = W\left(q^{P}; \alpha_{i}\right) + \xi_{i}^{P},$$

where ξ_i^P is a stochastic ideological bias.

- Let $\xi_i^B \xi_i^A = \sigma_i + \delta$.
- σ_i is an idiosyncratic shock that makes *i*'s vote imperfectly predictable
- δ is a common shock that makes the election imperfectly predictable even with a continuum of voters.

Probabilistic Voting

- Unit measure of voters.
- A fraction λ_j belongs to group j with:
 - **1** homogeneous policy preferences α_i ;
 - **2** i.i.d. ideology σ_i with distribution $\Phi_j(\sigma_i)$.
- Given δ , the fraction of group j that votes for A is

$$\Phi_j\left(W\left(q^A;\alpha_j\right)-W\left(q^B;\alpha_j\right)-\delta\right).$$

• Aggregate popularity δ is independently drawn from an absolutely continuous distribution $F(\delta)$.

The Tractable Specification

Assumption

The idiosyncratic ideology parameters are uniformly distributed:

$$\sigma_i \sim U\left[-\frac{1}{2\phi_j}, \frac{1}{2\phi_j}\right]$$
 for all voters i in group j .

• Given δ , candidate A' share of the vote is

$$\pi_{A}\left(\delta\right) = \frac{1}{2} + \sum_{j=1}^{J} \lambda_{j} \phi_{j} \left[W\left(q^{A}; \alpha_{j}\right) - W\left(q^{B}; \alpha_{j}\right) \right] - \sum_{j=1}^{J} \lambda_{j} \phi_{j} \delta.$$

- Assume ϕ_j and $F(\delta)$ such that in each group there are voters supporting both candidates.
- Within these bounds, a group-specific mean bias is irrelevant.

Weighted Utilitarian Welfare Function

• The probability that candidate A wins the election is

$$\Pr\left(\pi_{A}\left(\delta\right) > \frac{1}{2}\right) = F\left(\frac{\sum_{j=1}^{J} \lambda_{j} \phi_{j} \left[W\left(q^{A}; \alpha_{j}\right) - W\left(q^{B}; \alpha_{j}\right)\right]}{\sum_{j=1}^{J} \lambda_{j} \phi_{j}}\right)$$

• Office-seeking candidates choose

$$q^{*} = rg\max_{q} \sum_{j=1}^{J} \lambda_{j} \phi_{j} W\left(q; lpha_{j}
ight).$$

• Policy proposals cater to swing voters: higher ϕ_j means that more group members are swayed by a policy change.

Another Specification

- Assumption: Candidates maximize their expected vote share.
- Candidate A's expected vote share is

$$\mathbb{E}\left[\pi_{A}\left(\delta\right)\right] = \sum_{j=1}^{J} \lambda_{j} \mathbb{E}\left[\Phi_{j}\left(W\left(q^{A};\alpha_{j}\right) - W\left(q^{B};\alpha_{j}\right) - \delta\right)\right].$$

 If a symmetric pure-strategy Nash equilibrium of the policy-proposal game exists, it satisfies

$$\sum_{j=1}^{J} \lambda_{j} \mathbb{E}\left[\phi_{j}\left(-\delta\right)\right] \nabla W\left(q^{*}; \alpha_{j}\right) = 0.$$

• In particular if voters' preferences are uncorrelated ($\delta \equiv 0$):

$$q^{*} = rg\max_{q} \sum_{j=1}^{J} \lambda_{j} \phi_{j}\left(0
ight) W\left(q; \alpha_{j}
ight).$$

• But a symmetric pure-strategy Nash equilibrium does not typically exist with distributions other than the uniform.

Giacomo Ponzetto (CREI)

Political Economics

8 - 11 January 2010 29 / 43

Local Public Goods

 Individuals in group j have unit income and preferences over consumption c_j and a group-specific public good g_j:

$$U\left(c_{j},g_{j}
ight) =c_{i}+H\left(g_{j}
ight)$$
 ,

where $H(g_i)$ is a well-behaved increasing and concave function.

- Policy instrument: provision of public goods g financed by a uniform tax τ.
- Government budget constraint: $\sum_{j=1}^{J} \lambda_j g_j \leq \tau$.
- Indirect utility

$$W_{j}\left(\mathbf{g}
ight)=1-\sum_{i=1}^{J}\lambda_{i}g_{i}+H\left(g_{j}
ight)$$

イロト イポト イヨト イヨト 二日

Preference Aggregation

Utilitarian welfare maximization:

$$\mathbf{g}^{*} = rg\max_{\mathbf{g}} \sum_{j=1}^{J} \lambda_{j} W_{j}\left(\mathbf{g}
ight) \Rightarrow H'\left(g_{j}^{*}
ight) = 1 ext{ for all } j.$$

Individual preferences

$$\frac{\partial W_j}{\partial g_j} = \underbrace{H'(g_j) - 1}_{\text{efficiency}} + \underbrace{1 - \lambda_j}_{\text{redistribution}},$$
$$\frac{\partial W_j}{\partial g_i} = \underbrace{-\lambda_j}_{\text{redistribution}} \text{ for all } i \neq j.$$

and

3

< □ > < ---->

Public-Goods Provision with Probabilistic Voting

• Political support:

$$\mathbf{\hat{g}} = \max_{\mathbf{g}} \sum_{j=1}^{J} \lambda_{j} \phi_{j} W_{j} \left(\mathbf{g} \right) \Rightarrow H' \left(\hat{g}_{j} \right) = \frac{\bar{\phi}}{\phi_{j}} \text{ for all } j,$$

where $\bar{\phi} = \sum_{j=1}^J \lambda_j \phi_j$ is the average density across groups.

- If all groups are identically motivated by ideology ($\phi_j = \bar{\phi}$ for all j) electoral competition with probabilistic voting implements the utilitarian social optimum.
- There is no clear bias to the size of government. Some groups get more, some less than g^{*}_i.
- "Director's Law" *if* the middle class is the less ideological group.

Group Size and Political Influence

- Persson and Tabellini (2000) highlight that λ_j has no direct effect.
- However, λ_j has an indirect effect through its impact on the mean $\bar{\phi}$.
- Consider a change in λ_j that does not affect the relative sizes of the other groups.
- Then the average density across groups $i \neq j$ is a constant $\bar{\phi}_{-j}$.
- In equilibrium, \hat{g}_j depends on λ_j , ϕ_j and $\bar{\phi}_{-j}$ according to

$$egin{aligned} \mathcal{H}'\left(\hat{g}_{j}
ight)-1&=\left(1-\lambda_{j}
ight)\left(rac{ar{\phi}_{-j}}{\phi_{j}}-1
ight). \end{aligned}$$

- Smaller groups have larger policy distortions:
 - a favoured group benefits from being smaller;
 - a neglected group benefits from being larger.

イロト イポト イヨト イヨト 二日

Empirical Evidence on the Power of Swing Voters

- Strömberg (2008) studies the allocation of campaign visits across states in a U.S. presidential campaign.
- A sophisticated model of the Electoral College system using probabilistic voting.
- Structural estimation of the underlying parameters based on past vote shares of the parties in each state.
- Actual campaign visits line up quite well with theoretical predictions.
 - This seems to be true for the 2008 election as well.
- However, Strömberg (2008) does not consider policy outcomes.
- Larcinese, Snyder and Testa (2008, wp) do, and find no evidence that federal funds are disproportionately allocated to states with more swing voters or more evenly matched partisan groups.

- 3

Why Do People Vote?

- We routinely assume that all citizens vote. The assumption is strikingly counterfactual, particularly in the U.S.
- Turnout was 62.7% in the 2008 federal election, and only 39.8% for the "off-year" 2006 congressional election, which did not feature a presidential race.
- In Spain, turnout was 73.85% in the 2008 national election, and only 44.9% in the 2009 election for the European Parliament.
- Turnout also varies widely across demographic and socioeconomic groups within a country. It displays huge diversity across countries and some variation over time, notably with a downward trend in Western democracies over the past sixty years.
- Why do so many people not exercise their right to vote?
- Why do so many people bother to vote?

- 31

The Paradox of the Rational Voter

- The fundamental rational-choice explanation is that people vote to influence the outcome of the election.
- Going to the polls require time and a modicum of effort, so it has a cost κ_i.
- A "rational voter" should vote if and only if his participation is sufficiently likely to affect the outcome:

$$\mathbb{E}\left[W_{i}\left(q\right)|i\right]-\mathbb{E}\left[W_{i}\left(q\right)|\neg i\right]\geq\kappa_{i}.$$

- The left-hand side is positive if the parties would implement different policies.
- The magnitude of the left-hand side equals the probability that *i*'s single vote decides the election.
- The probability is vanishingly small with millions of ballots cast.

Pivotal-Voter Models

- Consider an election with two alternatives q_A and q_B .
- n_A voters have welfare $W_A(q)$ such that $W_A(q_A) W_A(q_B) = 1$.
- n_B have welfare $W_B\left(q
 ight)$ such that $W_B\left(q_B
 ight) W_B\left(q_A
 ight) = 1.$
- The policy is determined by the toss of a fair coin if the election ends in a tie.
- Voter *i* is pivotal and gains $\frac{1}{2}$ from voting in two cases:
- When the number of ballots cast by other voters for either party is identical.
- When the number of ballots cast for the opposing party is exactly one more than that of ballots cast by other voters for *i*'s own party.

Mixed-Strategy Equilibria

- Suppose that all voters have an identical cost $\kappa > 0$ of casting a ballot.
- There cannot be an equilibrium in which all voters abstain so long as $\kappa < \frac{1}{2}$.
- Equilibria in pure strategies typically fail to exist.
- Mixed-strategy equilibria always exist, and are not unique.
- Symmetric equilibria in which all voters in the same group vote with equal probability.
- Asymmetric equilibria in which some voters randomize and other play either pure strategy.

- 3

Symmetric Equilibrium

- Every A supporter votes with probability p_A and every B supporter votes with probability p_B .
- In equilibrium p_A and p_B are such that all citizens are indifferent:

$$\Pr(B(n_B, p_B) - B(n_A - 1, p_A) = 0) + \Pr(B(n_B, p_B) - B(n_A - 1, p_A) = 1) = 2\kappa$$

$$\Pr(B(n_A, p_A) - B(n_B - 1, p_B) = 0) + \Pr(B(n_A, p_A) - B(n_B - 1, p_B) = 1) = 2\kappa,$$

where B(n, p) denotes a binomial distribution, and independence of the two binomials is implicit.

- Palfrey and Rosenthal (1983) show that as $n = n_A + n_B$ grows large, p_A and p_B tend to zero, and so does expected turnout.
- If $n_A = n_B$ there is also an exceptional equilibrium with $p_A = p_B \approx 1$, but the standard equilibrium with $p_A = p_B \approx 0$ continues to exist.

An Asymmetric Equilibrium

- Let $n_A > n_B$.
- All members of the majority play a pure strategy, and exactly n_B go to the polls.
- Each member of the minority votes with independent probability p
- Minority members are indifferent if $p^{n_B-1} = 2\kappa$.
- Majority voters do not wish to abstain if $p^{n_B} + n_B (1-p) p^{n_B-1} \ge 2\kappa$.
- Majority abstainers do not wish to vote if $p^{n_B} \leq 2\kappa$.
- \Rightarrow The equilibrium exists for $p = (2\kappa)^{\frac{1}{n_B-1}}$.
 - Expected turnout can be arbitrarily close to one, for $n_A \approx n_B$:

$$\frac{n_B}{n_A + n_B} \left[1 + (2\kappa)^{\frac{1}{n_B - 1}} \right] \to \frac{2n_B}{n_A + n_B} \text{ as } n_B \to \infty.$$

Bayesian Nash Equilibrium

- Let the cost of voting κ_i be i.i.d. with an absolutely continuous distribution F (κ_i) on [κ, κ
].
- There is a symmetric equilibrium in which each A supporter votes if and only if κ_i < κ^{*}_A and each B supporter if and only κ_i ≤ κ^{*}_B.
- In equilibrium κ_A^* and κ_B^* are such that all citizens are indifferent:

$$Pr(B(n_B, F(\kappa_B^*)) - B(n_A - 1, F(\kappa_A^*)) = 0) + Pr(B(n_B, F(\kappa_B^*)) - B(n_A - 1, F(\kappa_A^*)) = 1) = 2\kappa_A^*$$

$$\Pr(B(n_{A}, F(\kappa_{A}^{*})) - B(n_{B} - 1, F(\kappa_{B}^{*})) = 0) + \Pr(B(n_{A}, F(\kappa_{A}^{*})) - B(n_{B} - 1, F(\kappa_{B}^{*})) = 1) = 2\kappa_{B}^{*}.$$

- Palfrey and Rosenthal (1985) show that if $[0, 1] \subset [\underline{\kappa}, \overline{\kappa}]$ then κ_A^* and κ_B^* tend to zero as the electorate grows large.
- ⇒ If someone certainly votes and someone certainly abstains, people only vote for non-strategic reasons, i.e., when $\kappa_i < 0$.

Giacomo Ponzetto (CREI)

Benefits of Voting

- The standard *calculus of voting* allows not only for a cost of going to the polls but also from a benefit of voting.
- The simplest assumption is that people engage in *expressive voting* and derive a psychological benefit ψ (W_i (q_A) W_i (q_B)) from supporting A against B.
 - Turnout rises with the stakes of the election.
 - Candidates' incentives to chose platforms are analogous to those of the probabilistic-voting model, and as tractable if κ_i ~ U [κ, κ̄].
- *Group-level* theories of turnout do not suffer from the rational-voter paradox:
 - Each voter's turnout generates positive externalities for like-minded individuals.
 - If externalities within the group are internalized, members follow he jointly optimal rule, which involves much higher turnout than the individually optimal behaviour.
 - Turnout rises in both the stakes and the closeness of the race.

э.

Microfoundations of Group Participation

- Shachar and Nalebuff (1999) suggest that politicians and other opinion leaders invest resources in increasing their followers' benefit of voting (or reducing the cost).
- Feddersen and Sandroni (2006) appeal to the ethics of *rule utilitarianism*.
 - Ethical agents follow the voting rule that would maximize social welfare if it were followed by all agents, while non-ethical agents abstain.
 - There are two kinds of ethical agents, who disagree over the assessment of the social-welfare consequences of the two policies.
- Coate and Conlin (2004) give the argument a twist with group rule utilitarianism: each agent only cares about the welfare of members of his own group.
 - They find this model outperforms simple expressive voting in explaining participation in Texas liquor referenda.
 - Coate, Conlin and Moro (2008) in turn find that the expressive voting model outperforms the pivotal-voter model.