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Abstract. The forecasting literature has identi�ed two important issues: (i) several

predictors have substantial and statistically signi�cant predictive content, although only

sporadically, and it is unclear whether this predictive content can be exploited reliably; (ii)

in-sample predictive content does not necessarily translate into out-of-sample predictive abil-

ity, nor ensures the stability of the predictive relationship over time. The objective of this

chapter is to understand what we have learned about forecasting in the presence of insta-

bilities. The empirical evidence raises a multitude of questions. If in-sample tests provide

poor guidance to out-of-sample forecasting ability, what should researchers do? If there are

statistically signi�cant instabilities in Granger-causality relationships, how do researchers

establish whether there is any Granger-causality at all? If there is substantial instability in

predictive relationships, how do researchers establish which model is the �best�forecasting

model? And �nally, if a model forecasts poorly, why is that and how should researchers

proceed to improve the forecasting models? In this chapter, we answer these questions by

discussing various methodologies for inference as well as estimation that have been recently

proposed in the literature.
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1 Introduction

The forecasting literature has identi�ed two important, broad issues (see e.g. Stock andWat-

son, 1996, 2003, for a discussion). The �rst stylized fact is that there are several predictors

of output growth and in�ation that have substantial and statistically signi�cant predictive

content, although that is apparent only sporadically, at some times and in some countries.

Whether this predictive content can be reliably exploited is unclear. In fact, �nding predic-

tors that work well in one period is no guarantee that such predictors will maintain their

usefulness in subsequent periods. That is, the predictive content is unstable over

time. This lack of stability is mainly established using parameter instability tests (such as

Andrews�(1993) QLR test) in Granger-causality regressions as well as by evaluating out-of-

sample forecasts over two sub-samples and noting that the good (poor) forecasting ability of

a predictor in one sub-sample seems totally uncorrelated with whether the same predictor

will have a good (poor) forecasting ability in the other sub-sample.

A second important �nding concerns the relationship between in-sample �t and out-of-

sample forecasting ability. Researchers typically identify predictors on the basis of in-sample

Granger-causality tests. In-sample Granger-causality tests assess the signi�cance of the

proposed predictors in a regression of the dependent variable (say yt+h) onto the lagged

predictors (say, xt), where h is the forecast horizon. That is, the Granger-causality test is a

simple F-test on the parameter vector �h, where:

yt+h = �0hxt + 0hzt + "t+h; t = 1; :::; T (1)

and zt are other control variables (for example, lags of y: yt; yt�1; :::). Given that time series

are typically serially correlated and possibly heteroskedastic and the data are overlapping,

the error term might be both serially correlated and heteroskedastic, and the F-test requires

HAC-robust variance estimates (Newey and West, 1987). The researcher deems regressors to

be suitable predictors when the statistical tests reject the null hypothesis that the regressors

are insigni�cant (that is, when the F-test for testing the hypothesis �h = 0 rejects at standard

signi�cance levels). However, empirical results in the literature �nd that signi�cant Granger-

causality statistics contain little or no information about whether the predictor is reliable

out-of-sample. Indeed, in-sample predictive content does not necessarily translate

into out-of-sample predictive ability, nor ensures the stability of the predictive

relation over time. This is a well-known, although disconcerting, empirical stylized fact;

one of the earliest examples dates back to Meese and Rogo¤ (1983a,b, 1988), who found
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that successful in-sample �t of exchange rate models does not always translate into out-of-

sample predictive ability �see also Swanson andWhite (1995), who similarly found in-sample

predictive ability in the term structure of interest rates but no out-of-sample forecasting

ability, and Stock and Watson (2003), who found similar results for a much broader set of

macroeconomic time series.

Why do instabilities matter for forecasting? Clearly, if the predictive content is not

stable over time, it will be very di¢ cult to exploit it to improve forecasts. In addition, if

the regressors are selected according to in-sample Granger-causality tests, and the latter are

not indicative of true out-of-sample predictive power, this practice may result in even poorer

forecasts. In fact, the empirical evidence that we discuss has documented large swings in

parameter magnitudes and signs, which can potentially a¤ect forecasts in practice.

In a comprehensive analysis, Stock and Watson (2003) focus attention on forecasting

output growth (measured by the rate of growth of Gross Domestic Product, GDP) and

in�ation (measured by the percentage change of the consumer price index or the implicit GDP

de�ator) in U.S. data, and consider a multitude of predictors one-at-a-time, in particular

asset prices such as interest rates, term spreads, default spreads, stock prices, dividend

yields, as well as non-�nancial indicators such as unemployment, money growth and the

output gap, and �nd that the two issues above are widespread in their database up to the

early 2000�s. Is it the case also when considering the last decade of data? And do these results

hold in other databases? In what follows, we review the empirical evidence on forecasting

in the presence of instabilities, and show that the same two �ndings emerge in the recent

literature as well as in other databases: there is clear empirical evidence of instabilities in

the predictive relationships as well as poor correlation between in-sample and out-of-sample

predictive content.

The objective of this chapter is to understand what we have learned about forecasting

in the presence of instabilities, especially regarding the two questions above. The empirical

evidence raises a multitude of questions. If in-sample tests provide poor guidance to out-of-

sample forecasting ability, what should researchers do? If there are statistically signi�cant

instabilities in the Granger-causality relationships, how do researchers establish whether

there is any Granger-causality at all? If there is substantial instability in predictive rela-

tionships, how do researchers establish which model is the "best" forecasting model? And

�nally, if a model forecasts poorly, why is that, and how should researchers proceed to

improve the forecasting models? In this chapter, we answer these questions by discussing

various methodologies for inference as well as estimation that have been recently proposed
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in the literature. The last question is the hardest one, as improving models�forecasts has

been proven to be di¢ cult empirically, although the literature does provide partial answers,

which we overview.

This chapter is divided into three parts. Section 2 analyzes whether predictive content

is unstable over time and, if that is the case, the tools that researchers can use to assess

predictive ability or improve models�estimation in the presence of instabilities. Section 3

focuses on the relationship between in-sample �t and out-of-sample forecasting ability; in

particular, it provides theoretical results on why the two may di¤er, and reviews statistical

tests to assess whether that is the case in practice, and what the causes of the divergence are.

Section 4 provides an empirical analysis of whether these issues are important in practice

by focusing on an empirical analysis. We consider the same database as Stock and Watson

(2003) and test whether the predictive content is unstable, which estimation methods are

most successful in practice, whether the in-sample �t is indicative of out-of-sample forecasting

performance, and what the likely reasons of the discrepancy are.

Throughout the chapter we focus on conditional mean forecasts in linear models, given

their importance in practice.1 This allows us to clearly expose the main concepts with

simple notation, while at the same time be consistent with the empirical application in

Section 4. When results are applicable to more general models, we note so and refer readers

to the relevant literature. Finally, note that the chapter focuses on recent contributions on

forecast evaluation and estimation in the presence of instabilities (including several of the

author�s own and related works). The chapter does not cover in-sample instability tests

nor in-sample estimation of models with breaks (unless the estimation is explicitly shown

to improve models�out-of-sample forecasting ability)2. Finally, the discussion focuses on

frequentist methods; Bayesian techniques for handling model instability receive mention but

a less detailed attention.

1For a review of forecasting in non-linear models, see Terasvirta (2009); for an analysis of the relative

advantages of linear versus non-linear models Calhoun and Elliott (2012); and for a review of forecasting

with trending data, see Elliott (2009).
2For a review of tests of structural breaks, see Stock (1994).
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2 Is the Predictive Content Unstable Over Time?

The goal of this section is to determine whether the predictive content in typical economic

relationships is unstable over time. In particular, which tools are available to researchers for

assessing whether that is the case, and which models they should use for forecasting. First,

we review the empirical evidence on instabilities in predictive regressions and databases of

interest to economists. The literature suggests that the predictive content of several time

series predictors is indeed unstable over time in macroeconomics, �nance and international

�nance. Second, given the empirical �ndings, we then review the tools that researchers have

at their disposal for evaluating forecasting ability in the presence of instabilities. Typically,

researchers are interested in the following questions: (i) does a vector of time series Granger-

cause a variable of interest (e.g. in�ation or output growth)? (ii) which, among two models,

forecasts the best? (iii) are forecasts rational? Typical Granger-causality tests as well as

tests for out-of-sample forecast comparisons and tests for forecast rationality are inconsistent

in the presence of instabilities. The chapter provides guidance on which tools are available

to researchers who are interested in answering these questions when there are instabilities in

the data. Third, is it possible to exploit instabilities to improve the out-of-sample forecasting

ability of existing models? There are several approaches taken in the literature, frommethods

that identify historic breaks and impose them in the estimation to the estimation of time-

varying parameter models. The chapter provides guidance to practitioners by focusing on

methods that have been developed with the clear aim of improving forecasting ability and

have been empirically successful.3 In Section 4, we select several of these methodologies and

evaluate their usefulness for forecasting in�ation and output growth using a large database

of macroeconomic predictors in an empirical exercise similar to Stock and Watson (2003).

2.1 Is the Predictive Content Unstable Over Time? The Empiri-

cal Evidence

The literature in the last decade has shown that Stock andWatson�s (2003) empirical stylized

facts have been echoed in several other databases. For example, in �nance, instabilities have

been found when forecasting stock returns. Goyal andWelch (2003) is one of the early studies

that reports instabilities in stock return predictability, whereas Ang and Bekaert (2004) �nd

3Due to space limitations, we will not overview the literature that focuses strictly on in-sample tests for

structural breaks or in-sample estimation in the presence of structural changes.

5



a deterioration in stock return predictability in the 1990s. Rapach and Wohar (2005) �nd

several breaks in both real interest rates as well as in�ation for 13 industrialized countries.

Rapach and Wohar (2006) document the existence of structural breaks in the predictive

ability of several variables (such as the dividend price ratio and the default spread) and

S&P 500; the results are similar when predicting CRSP equal-weighted real stock returns.

Similarly, Paye and Timmermann (2006) �nd structural breaks in predicting stock returns

using the lagged dividend yield, short term interest rates and the term spread, among other

predictors. Interestingly, they note that the timing of the break is not uniform over time:

several countries experience breaks at di¤erent times. They also �nd that, in the majority

of the cases, the predictable component in stock returns has diminished following the most

recent break. Timmermann (2008) concludes that "most of the time the forecasting models

perform rather poorly, but there is evidence of relatively short-lived periods with modest

return predictability. The short duration of the episodes where return predictability appears

to be present and the relatively weak degree of predictability even during such periods makes

predicting returns an extraordinarily challenging task." See also the chapter by Rapach and

Zhou in this Handbook. Another area in �nance where instabilities seem very important

is �rm and industry-level CAPM betas, see Blume (1975) and Fama and French (1997) for

classic references.4

A second area of research where instabilities in forecasting performance are important is

exchange rate prediction. Schinasi and Swamy (1989) and Wol¤ (1987) are among the �rst

papers that found instabilities in exchange rate models and their forecasting ability. Rossi

(2006) considers traditional models of exchange rate dynamics based on macroeconomic fun-

damentals, such as interest rates, money or output di¤erentials using the Granger-causality

tests robust to the presence of parameter instability discussed later in this Section. She shows

that for some countries it is possible to reject the hypothesis that exchange rates are random

walks in favor of the existence of a time-varying relationship between exchange rates and fun-

damentals. Her �ndings raise the possibility that economic models were previously rejected

in favor of an a-theoretical random walk model not because the fundamentals are completely

unrelated to exchange rate �uctuations, but because the relationship is unstable over time

and, thus, di¢ cult to capture by Granger-causality tests or by forecast comparisons. She

also analyzes forecasts that exploit time variation in the parameters and �nds that, in some

cases, they can improve economic models� forecasts relative to the random walk. Rogo¤

4As a referee points out, in fact instabilities are so important that it is common practice to limit monthly

CAPM regressions to 3-5 years of historical data.
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and Stavrakeva (2008) point out that the predictive ability of macroeconomic fundamentals

strongly depends on the sample split chosen for forecasting, also suggesting that instabilities

are very important. Giacomini and Rossi (2010a) document that the relative forecasting

performance of the models is time-varying: economic fundamentals do have forecasting abil-

ity in the late Eighties, but the predictive ability disappears in the Nineties. Beckmann et

al. (2011) consider instabilities in the relationship between the Deutschmark/U.S. dollar ex-

change rate and macroeconomic fundamentals using a time-varying coe¢ cient model. They

show that fundamentals are important explanatory variables for exchange rates, although

their impact greatly di¤ers over time. Sarno and Valente (2009) consider forecasting �ve

major U.S. dollar exchange rates using a time-varying coe¢ cient model. They conclude that

the poor out-of-sample forecasting ability of exchange rate models may be caused by the

poor performance of in-sample model selection criteria, and that the di¢ culty in selecting

the best predictive model is largely due to frequent shifts in the fundamentals. Bacchetta

and van Wincoop (2009) and Rime et al. (2010) provide theoretical explanations for the

instabilities found in the relationship between exchange rates and macroeconomic fundamen-

tals: the former rely on unstable expectations, and the latter on learning about the state of

the economy.

A third area where researchers have found evidence of instability is macroeconomic vari-

ables�predictions, for example forecasting output growth using the term spread. Giacomini

and Rossi (2006) consider the relationship between the lagged term spread and output growth

and �nd empirical evidence of the existence of a relationship between the term spread and

output growth, although it is unstable over time. Bordo and Haubrich (2008) show that the

spread between corporate bonds and commercial paper predicts future output growth over

the period 1875-1997 although the predictive ability varies over time, and has been strongest

in the post-World War II period. Schrimpf and Wang (2010) examine the predictive ability

of the yield curve in four major developed countries (Canada, Germany, the United King-

dom, and the United States). They �nd strong evidence of instabilities in the relationship

between the yield spread and output growth by using structural break tests; they also �nd

that the yield curve has been losing its edge as a predictor of output growth in recent years.

See also Wheelock and Wohar (2009) for an overview of the usefulness of the spread for pre-

dicting economic activity across countries and over time. See also Amato and Swanson for

an analysis of the relationship between money and output over time and Croushore (2011)

for an analysis of instabilities in forecasting with real-time data. More broadly, Stock and

Watson (2007), D�Agostino, Giannone and Surico (2008) and Rossi and Sekhposyan (2010)
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have documented a change in the forecastability of in�ation as well as output growth over

time; in particular, a decrease in predictability. The same decrease in predictive ability is

apparent also when comparing the forecasting performance of structural models, as Edge

and Gurkaynak (2011) demonstrate.

2.2 Testing When the Predictive Content Is Unstable Over Time

As discussed in the introduction, forecasters are interested in several questions, among which:

(i) does a potential predictor Granger-cause an economic variable of interest? (ii) which one

between two competing models forecasts the best? (iii) are forecasts rational (or optimal)?

In this section, we review techniques that allow forecasters to answer these questions in

unstable environments.

2.2.1 How Can Researchers Establish Granger-causality in the Presence of In-

stabilities?

In the presence of instabilities, traditional Granger-causality tests are inconsistent: in fact,

Rossi (2005) showed that traditional Granger-causality tests may have no power in the

presence of instabilities. To understand why, consider the following example, which is a

special case of eq. (1). The data are generated by: yt+h = �txt + "t+h, t = 1; 2; :::; T ,

where, for simplicity, xt and "t+h are both univariate random draws from i.i.d. standard

Normal distributions, and they are independent of each other. We assume that the prediction

horizon, h , is �xed. The parameter changes over time, and this is formalized by allowing

the parameter to have a time-subscript: �t. Let

�t = 1 (t � T=2)� 1(t > T=2): (2)

A traditional Granger-causality test in this example would be a t-test for testing the null

hypothesis that the Ordinary Least Squares (OLS) parameter estimate in a regression of

yt+h onto xt equals zero. In this example, the full-sample OLS parameter estimate is:

�
TP
t=1

x2t

��1 TP
t=1

xtyt+h =

�
TP
t=1

x2t

��1 TP
t=1

xt"t+h +

�
TP
t=1

x2t

��1 TP
t=1

x2t�t

=

�
T�1

TP
t=1

x2t

��1
T�1

TP
t=1

xt"t+h

+

�
T�1

TP
t=1

x2t

��1
T�1

"
T=2P
t=1

x2t +
TP

t=T=2+1

x2t (�1)
#
!
p
0;
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since T�1
TP
t=1

x2t !
p
E (x2t ) = 1 and T�1

TP
t=1

xt"t+h !
p
0. Thus, instabilities are such that

the estimate of the Granger-causality parameter is negligible, leading to a failure to reject

the no Granger-causality hypothesis5 even if the regressor does Granger-cause yt in reality.

The problem is that the predictive ability is unstable over time, which does not satisfy the

stationarity assumption underlying traditional Granger-causality tests. While this example

is extremely simpli�ed, it can be generalized to instabilities other than eq. (2); by varying

the time of the break and the magnitude of the parameters before and after the break it is

possible to �nd similar results. The main conclusion is that traditional Granger-causality

tests are inconsistent if there are instabilities in the parameters. Note that this problem

is empirically relevant: quite often, parameter estimates change substantially in sign and

magnitude through time. See for example Goyal and Welch (2008) for suggestive plots of

time variation in sum of squared residuals of equity premium returns predictors, or the

dramatic swings over time in the sign of the coe¢ cients in exchange rate models (Rossi,

2005).6

What should researchers do in such situations? Rossi (2005) proposes tests for evaluating

whether the variable xt has no predictive content for yt in the situation where the parameter

�t might be time-varying.
7 Her procedure is based on testing jointly the signi�cance of

the predictors and their stability over time. Among the various forms of instabilities that

she considers, we focus on the case in which �t may shift from �1 to �2 6= �1 at some

unknown point in time, � . That is, �t = �1 � 1 (t � �) + �2 � 1(t > �).8 Note that, although

the parameter may have parameter instability, the null hypothesis is not just parameter

stability: the main objective of the test is to capture predictive ability, even though the

5Recall that the null hypothesis of a Granger-causality test is the absence of predictive ability.
6Note also that even if there are no dramatic swings in the coe¢ cient signs but swings in the coe¢ cient

magnitudes, and the traditional test is consistent, yet the �nite sample power of the traditional test is likely

to be inferior to that of a test that is robust to instabilities, such as the one we discuss below.
7Rossi (2005) relaxes these conditions. She considers the general case of testing possibly nonlinear restric-

tions in models estimated with Generalized Method of Moments (GMM). Here, we specialize the description

for the simple case of no Granger-causality restrictions in models whose parameters are consistently esti-

mated with OLS, such as Granger-causality regressions. She also considers the case of tests on subsets of

parameters, that is, in the case of Granger-causality regressions, tests on whether xt Granger-causes yt in

the model yt+h = x0t�t + z
0
t + "t+h.

8Note that the test is designed to have power in situations where there is at most a one-time break in the

parameters. However, by construction, since the test uses a sup-type procedure, in the presence of multiple

breaks in predictive ability the test will pick up the largest break, and it is therefore robust to the presence

of multiple breaks.

9



predictive ability may potentially appear only in a sub-sample. As such, the null hypothesis

involves the irrelevance of the predictor while allowing the relationship between the predictor

and the target (dependent) variable to be possibly time-varying.

The test is implemented as follows. Let b�1� and b�2� denote the OLS estimators before
and after the break:

b�1� =

�
1

�

�P
t=1

xtx
0
t

��1�
1

�

�P
t=1

xtyt+h

�
;

b�2� =

�
1

T � �

TP
t=�+1

xtx
0
t

��1�
1

T � �

TP
t=�+1

xtyt+h

�
:

The test builds on two components: �
T
b�1�+�1� �

T

� b�2� and b�1��b�2� . The �rst is simply the
full-sample estimate of the parameter, �

T
b�1� + �1� �

T

� b�2� = � 1
T

TP
t=1

xtx
0
t

��1�
1
T

TP
t=1

xtyt+h

�
;

a test on whether this component is zero is able to detect situations in which the parameter �t
is constant and di¤erent from zero. However, if the regressor Granger-causes the dependent

variable in such a way that the parameter changes but the average of the estimates equals

zero (as in the example previously discussed), then the �rst component would not be able to

detect such situations. The second component is introduced to perform this task. It is the

di¤erence between the parameters estimated in the two sub-samples; a test on whether this

component is zero is able to detect situations in which the parameter changes. Rossi (2005)

proposes several test statistics, among which the following:

QLR�T = sup
�=[0:15T ];:::;[0:85T ]

��T (3)

Exp�W �
T =

1

T

[0:85T ]P
�=[0:15T ]

1

0:7
exp

��
1

2

�
��T

�
(4)

Mean�W �
T =

1

T

[0:85T ]P
�=[0:15T ]

1

0:7
��T (5)

where:9 ��T �
� �b�1� � b�2��0 � �T b�1� + �1� �

T

� b�2��0 � bV �1

0@ �b�1� � b�2���
�
T
b�1� + �1� �

T

� b�2��
1A ;

bV =  �
T
S 0xx bS�11 Sxx 0

0 T��
T
S 0xx
bS�12 Sxx

!
;

9The necessity to trim the set of values for � such that � = [0:15T ]; :::; [0:85T ] derives from the fact that

one needs a su¢ cient number of observations to estimate b�1� and b�2� �see Andrews (1993) for example.
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Sxx � 1

T

TP
t=1

xtx
0
t

bS1 =

�
1

�

�P
t=1

xtb"t+hb"t+hx0t�+ �P
j=1

�
1�

���� j

� 1=3

�����
 
1

�

�P
t=j+1

xtb"t+hb"t+h�jx0t�j
!
; (6)

bS2 =

�
1

T � �

TP
t=�+1

xtb"t+hb"t+hx0t� (7)

+
TP

j=�+1

 
1�

����� j

(T � �)1=3

�����
! 

1

T � �

TP
t=j+1

xtb"t+hb"t+h�jx0t�j
!
;

for b"t+h � yt+h � x0t
b� and (6, 7) are HAC estimates of the relevant variances. If there is

no serial correlation in the data, only the �rst component in (6) and (7) is relevant. Under

the null hypothesis of no Granger-causality at any point in time, (�t = � = 0; 8t), QLR�T ,
Mean �W �

T and Exp �W �
T have asymptotic distributions whose critical values depend on

the number of predictors, p, and are tabulated in Rossi�s (2005) Table B1. For convenience,

a subset of the table is reproduced in Table A.1 in Appendix 1.

The Granger-causality test robust to parameter instabilities has been shown to be useful

in practice. For example, it was used by Rapach and Wohar (2006) to provide empirical

evidence on predictive ability of asset returns, by Giacomini and Rossi (2006) to demonstrate

that the term structure Granger-causes future output growth, and by Chen, Rogo¤and Rossi

(2010) to provide empirical evidence that exchange rates Granger-cause commodity prices.

Note that the tests (3, 4, 5) detect in-sample Granger-causality that appeared at some point

in the historical sample, which is in many ways similar to pseudo-out-of-sample forecast

evaluation procedures whose goal is to evaluate whether, historically, there was forecasting

ability; one might instead be interested in detecting whether Granger-causality currently

exists, to exploit it for forecasting. An example of the latter is Pesaran and Timmermann�s

(2002) ROC procedure, discussed in Section 2.3.2.

2.2.2 If There Are Instabilities in Predictive Relationships, HowDo Researchers

Establish Which Model Forecasts the "Best"?

A second, important series of tools commonly used by practitioners to evaluate forecasts

are out-of-sample forecast comparison tests. Typically, they involve comparing two h�step-
ahead forecasts for the variable yt; which we assume for simplicity to be a scalar.

We assume that the researcher has divided the sample of size T + h, into an in-sample
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portion of size R and an out-of-sample portion of size P ,10 and obtained two competing

sequences of h�step-ahead out-of-sample forecasts. Let the �rst model be characterized by
parameters �1 and the second model by parameters �2: For a general loss function L (:) ; we

thus have a sequence of P out-of-sample forecast loss di¤erences,
n
�Lt+h

�b�t;R�oT
t=R

�
n
L(1)(yt+h;b�1;t;R)� L(2)(yt+h;b�2;t;R)oT

t=R
, which depend on the realizations of the variable

and on the in-sample parameter estimates for each model, b�t;R � [b�01;t;R;b�02;t;R]0. These

parameters are typically estimated only once, using a sample including data indexed 1; :::; R

(�xed scheme) or re-estimated at each t = R; :::; T over a window of R data including data

indexed t�R+1; :::; t (rolling scheme) or re-estimated at each t = R; :::; T over a window of

R data including data indexed 1; :::; t (recursive scheme). See Section 2.3.1 for more details.

In this section, we assume that the researcher is using either a rolling scheme with a �xed

window size R or a �xed scheme, and discuss the recursive window scheme as a special case.

Also, here and in the rest of the chapter, we simplify notation, and denote the sequence of

out-of-sample forecast error loss di¤erences
n
�Lt+h

�b�t;R�oT
t=R

as:

f�Lt+hg , for t = R;R + 1; :::; T: (8)

For example, in the case of a quadratic loss function, eq. (8) is the sequence of the di¤erence

between the two models� squared forecast errors, and their average is the Mean Squared

Forecast Error, or MSFE.

Typically, researchers establish which model forecasts the best by looking at the average

out-of-sample forecast error loss di¤erence. For example, the statistic proposed by Diebold

and Mariano (1995) and West (1996), which we refer to as DMWP or MSE � t, is:

DMWP = b��1P�1=2 TX
t=R

�Lt+h; (9)

where b�2 is a HAC estimator of
�2 = lim

T!1
var

 
P�1=2

TX
t=R

�Lt+h

!
: (10)

The limiting distribution of DMWP is typically obtained under stationarity assumptions.

The implications of structural instability for forecast evaluation have not been formally

investigated in the literature until relatively recently.11 Giacomini and Rossi (2010a and

10P is such that R+ P + h = T + h:
11The typical approach to forecast evaluation, based on assessing the expected loss of some forecast relative
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2010b) focus on the relative evaluation of two models.12 In particular, Giacomini and Rossi

(2010a) test the null hypothesis:

E (�Lt+h) = 0; 8t = R; :::; T; (11)

They introduce two classes of methods, which depend on whether one considers a smooth

change or a one-time change at an unknown date under the alternative hypothesis. Note that

the conventional tests by Diebold and Mariano (1995), West (1996), Clark and McCracken

(2001), Giacomini and White (2006) and Clark and West (2006, 2007) would assume that

E (�Lt+h) is constant over time (E (�Lt+h) = �), and test the hypothesis that � = 0 by a

standard t-test. Note that the latter tests di¤er in the speci�cation of the null hypotheses

and in the treatment of parameter estimation error. We refer to West (2006) as well as the

chapter by Clark and McCracken (in this Handbook) for an extensive review of conventional

tests of predictive ability.13 The methodologies proposed by Giacomini and Rossi (2010a)

can be implemented no matter which of the latter approaches the researcher prefers.

Smooth change in relative performance. In this scenario, the models�relative performance

is estimated by a kernel estimator, which, for the rectangular kernel, amounts to computing

to that of a benchmark, starts with the premise that there exists a forecast that is "globally best", in the

sense that its performance is superior to that of its competitors at all time periods. From an econometric

point of view, this means assuming that the expectation in the the measure of performance, E [L (�)] ; is
constant over time, and can therefore be estimated by the average loss computed over the entire out-of-

sample period. In the applied literature, some authors more or less explicitly acknowledge that this might

be a restrictive assumption by computing the average loss over subsamples that are chosen in an arbitrary

way (e.g., the 1980s and the 1990s) (e.g., Stock and Watson, 2003, and D�Agostino et al., 2008). The typical

�nding of these studies is that the performance varies widely across subsamples. Whereas the analysis in

this applied literature is informal, Giacomini and Rossi (2009, 2010a and 2010b) have recently introduced

formal methods for forecast evaluation in the presence of instability. Giacomini and Rossi (2009) focused

on "absolute measures" of accuracy, wheareas Giacomini and Rossi (2010a and 2010b) considered "relative

measures".
12Giacomini and Rossi (2010b) consider the following local-level model for in-sample loss di¤erences:

�Lt = �t + "t; t = 1; :::; T; and propose a method for testing the hypothesis of equal performance at each

point in time: H0 : �t = 0 for all t:
13Note that the Giacomini and White (2006) test requires forecasts to satisfy a mixing assumption. Thus,

the test is robust to "small" structural changes that satisfy the mixing assumption, but not robust to breaks

that generate non-stationarity.
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rolling average losses:14

b�t = m�1
t+m=2�1X
j=t�m=2

�Lj+h; t = R +m=2; :::; T �m=2 + 1: (12)

In practice, their test involves computing the sequence of statistics:15

Ft = b��1m�1=2
t+m=2�1X
j=t�m=2

�Lj+h; t = R +m=2; :::; T �m=2 + 1; (13)

where b�2 is a HAC estimator of (10), e.g.,
b�2 = eq�1X

s=�eq+1(1� js=eqj)P�1
TX
t=R

�Lt+h�Lt+h�s; (14)

and eq is an appropriately chosen bandwidth (see e.g., Andrews, 1991 and Newey and West,
1987).16 To test the null hypothesis of equal predictive ability at each point in time against

the alternative that one of the two models forecasts the best at least one point in time,

Giacomini and Rossi (20010a) propose the following Fluctuation test statistic:

FP = max
t
jFtj : (15)

The null hypothesis is rejected at the 100�% signi�cance level against the two-sided alter-

native for some t when maxt jFtj > kGR� , where kGR� is the appropriate critical values. The

critical values depend on �, and are reported in their Table 1.17 Selected values are repro-

duced in Table A.2 in the Appendix for convenience. Critical values for testing H0 against

the one-sided alternative E (�Lj+h) > 0 for some t are reported as well in Table A.2 for

various choices of �, in which case the null is rejected when maxt Ft > kGR� .

14Here we use a rectangular kernel estimator centered at time j + h; one-sided kernels could alternatively

be used.
15To test the null hypothesis, one has two options: either considering the standard nonparametric approx-

imation which assumes that the bandwidth m=P goes to zero at an appropriate rate as m;P ! 1; or to
consider a di¤erent asymptotic approximation that assumes m=P to be �xed and equal to � as m;P !1:
That is, lim

T!1
m
P = �. Giacomini and Rossi (2010b) show that in the former case one could use uniform

con�dence bands to construct a test, but that the procedure has poor �nite sample properties.
16Alternatively, the variance can be estimated in each of the rolling windows, b�2j = Peq�1

s=�eq+1(1 � js=eqj)
m�1 Pt+m=2�1

j=t�m=2�Lj+h�Lj+h�s; , and the test be constructed as: Ft = m�1=2Pt+m=2�1
j=t�m=2 b��1j �Lj+h; t =

R+m=2; :::; T �m=2 + 1:
17Under the null hypothesis (11); Giacomini and Rossi (2010) show that the asymptotic distribution of Ft

is a functional of Brownian motions.
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The test statistic Ft in (13) is equivalent to Diebold and Mariano�s (1995) and Giacomini

and White�s (2006) (unconditional) test statistic, computed over rolling out-of-sample win-

dows of size m: Giacomini and Rossi (2010a) show that their approach can be generalized

to allow for any other tests commonly used for out-of-sample predictive ability comparisons,

as long as their asymptotic distribution is Normal. In particular, one could use the test sta-

tistics proposed by West (1996) or by Clark and West (2006, 2007), which are respectively

applicable to non-nested and nested models.18 The adoption of West�s (1996) framework

involves replacing b� in (14) with an estimator of the asymptotic variance that re�ects the
contribution of estimation uncertainty (see Theorem 4.1 of West (1996)). For the nested case,

the use of the Clark and West (2006, 2007) test statistic in practice amounts to replacing

�Lj+h in (13) with Clark and West�s (2006, 2007) corrected version.

Also note that West�s (1996) approach allows the parameters to be estimated using a

recursive scheme, in addition to a rolling or �xed scheme. In that case, let
�
WOOS
t

	
denote

a sequence of West�s (1996) test statistics for h-steps ahead forecasts calculated over recursive

windows (with an initial window of size R) for t = R+ h+m=2; :::; T �m=2+ 1: Giacomini
and Rossi (2010a) show that the null hypothesis of equal predictive ability is rejected when

maxt
��WOOS

t

�� > krec�

q
T�R
t

�
1 + 2 t�R

T�R
�
, where (�; krec� ) are (0:01; 1:143) ; (0:05; 0:948) and

(0:10; 0:850) :

One-time reversal in the relative forecasting performance at unknown date. In this sce-

nario, the alternative hypothesis postulates a one-time change in relative performance at an

unknown date.19 The test is performed as follows:

(i) Consider the test statistic

QLRP = sup
t
� (t) ; t 2 f[0:15P ] ; ::: [0:85P ]g ;

� (t) = LM1 + LM2 (t) ;

18The fundamental di¤erence between these approaches and Giacomini and White (2006) is that they test

two di¤erent null hypotheses: the null hypothesis in West (1996) and Clark and West (2006, 2007) concerns

forecast losses that are evaluated at the population parameters, whereas in Giacomini and White (2006) the

losses depend on estimated in-sample parameters. This re�ects the di¤erent focus of the two approaches on

comparing forecasting models (West, 1996, and Clark and West, 2006, 2007) versus comparing forecasting

methods (Giacomini and White, 2006).
19Note that the test against one-time change in the relative performance of the models will have power

against multiple reversals since it would capture the largest reversal. It might also be interesting to extend

the approach to multiple breaks following Bai and Perron (1998).
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where

LM1 = b��2P�1 " TX
t=R

�Lt+h

#2
(16)

LM2 (t) = b��2P�1 (t=P )�1 (1� t=P )�1 [
tX

j=R

�Lj+h � (t=P )
TX
j=R

�Lj+h]
2;

and b�2 is as in (14). Reject the null hypothesis H0 : E [�Lt+h] = 0; for every t = R; :::; T

when QLRP > k�; where (�; k�) are, e.g., (0:01; 13:4811) ; (0:05; 9:8257) and (0:10; 8:1379) :

(ii) If the null is rejected, compare LM1 and supt LM2 (t) ; t 2 f[0:15P ] ; ::: [0:85P ]g with
the critical values: (2:71; 7:17) for � = 0:10, (3:84; 8:85) for � = 0:05; and (6:63; 12:35) for

� = 0:01: If only LM1 rejects, conclude that one model is constantly better than its com-

petitor. If only LM2 rejects, conclude that there are instabilities in the relative performance

of the two models but neither is constantly better over the full sample. If both reject, then

it is not possible to attribute the rejection to a unique source.

(iii) Estimate the time of the change by t� = argmaxt2f0:15P;:::;0:85Pg LM2 (t).

(iv) Estimate the path of relative performance as(
1
t�

Pt�

j=R�Lj+h; for t < t�

1
(P�t�)

PT
j=t�+1�Lj+h; for t � t�

:

Note that the Fluctuation and the One-time reversal tests capture changes other than in

the conditional mean (such as changes in the variance of the forecast error), whereas Rossi�s

(2005) test does not.20

One might think that the problem of time variation in models�relative forecasting per-

formance is minor. On the contrary, substantial time-variation in models�relative predictive

ability of in�ation, for example, has been documented since Stock and Watson (2007). They

notice that the root mean squared error (RMSE) of univariate benchmark in�ation forecasts

(obtained using either autoregressive or random walk models) has declined sharply during

the period 1990s-early 2000 relative to the 1970s or early 1980s since in�ation (like many

other time series) has been much less volatile. This implies that in�ation has been easier

to forecast in the former period. However, on the other hand, the relative improvement of

20It might be interesting to directly model relative out-of-sample forecast error losses as following a regime

switching process. To the extent that there is cyclical behavior in relative performance, and that it can be

captured using a regime switching model, adopting a speci�cation that accommodates this variation might

improve inference.
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standard multivariate forecasting models (e.g. Phillips curve models) over the univariate

benchmark model has decreased in the 1990-2000 relative to the previous period. Therefore,

in a sense, it is also true that in�ation has become harder to forecast. Stock and Watson

(2007) propose a time-varying trend-cycle model for univariate in�ation which will be re-

viewed in detail in Section 2.3.2. According to their model, during the 1970s the in�ation

process was well approximated by a low-order autoregression (AR) with a substantial per-

manent component (akin to a trend) whose variance was large; thus, the estimation of such

permanent component provided large gains relative to simple univariate benchmark mod-

els, even though this resulted in a large MSFE. However, the coe¢ cients of the AR model

changed since 1984, and since then the AR model has become a less accurate approximation

to the in�ation process.

Stock and Watson�s (2007) �ndings are consistent with recent results by Rossi and Sekh-

posyan (2010), which we discuss at length as they are related to the empirical analysis in this

chapter. Rossi and Sekhposyan (2010) use Giacomini and Rossi�s (2010a) Fluctuation test to

empirically investigate whether the relative performance of competing models for forecasting

U.S. industrial production growth and consumer price in�ation has changed over time. They

focus on the same models considered by Stock and Watson (2003), but use monthly data.

Their predictors include interest rates, measures of real activity (such as unemployment

and GDP growth), stock prices, exchange rates and monetary aggregates. Their benchmark

model is the autoregressive model. Using both fully revised and real-time data, they �nd

sharp reversals in the relative forecasting performance. They also estimate the time of the

reversal in the relative performance, which allows them to relate the changes in the rela-

tive predictive ability to economic events. In particular, when forecasting output growth,

interest rates and the spread were useful predictors in the mid-1970s, but their performance

worsened at the beginning of the 1980s.21 When forecasting in�ation, the empirical evidence

in favor of predictive ability is weaker than that of output growth, and the predictive ability

of most variables breaks down around 1984, which dates the beginning of the Great Mod-

eration. Such predictors include employment and unemployment measures, among others,

thus implying that the predictive power of the Phillips curve disappeared around the time

of the Great Moderation. Section 4 revisits this empirical evidence using data up to 2010

(whereas Rossi and Sekhposyan�s (2010) sample ended in 2005) and using quarterly data.22

21Similar results hold for money growth (M2), the index of supplier deliveries, and the index of leading

indicators.
22Rossi and Sekhposyan (2010) also document the robustness of their results to the use of real-time data
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D�Agostino et al. (2008) also consider sub-samples identi�ed by the Great Moderation and

show a similar decrease in predictive ability of factor models as well as forecast combinations

for in�ation. They also �nd a decrease in predictive ability in GDP growth at the time of the

Great Moderation. Their timing of the reversal in predictive ability seems to be at odds with

Rossi and Sekhposyan (2010), who estimated the largest break to be around the mid-1970s;

however, if it were in the mid-1970s, one would still �nd a decrease in predictive ability by

looking at the two sub-samples before and after the Great Moderation.

Similar �ndings hold for other databases. Carstensen et al. (2010) evaluate the predic-

tive ability of seven leading indicators for euro area industrial production. They implement

Giacomini and Rossi�s (2010a) Fluctuation test to evaluate the forecasting stability of each

indicator over time, especially during booms and recessions. They �nd that a simple autore-

gressive benchmark is di¢ cult to beat in normal times whereas the indicators have advanta-

geous predictive ability in booms and recessions. A similar result is found by Diaz and Leyva

(2008) for forecasting in�ation in Chile. Additional examples of time variation in the relative

performance of �nancial models over time and linked to the business cycle include Rapach,

Strauss and Zhou (2010) and Henkel, Martin and Nardari (2011), who �nd that stock return

predictability concentrates during recessions, and Paye and Vol (2011), who �nd that the

ability of macroeconomic variables to improve long horizon volatility forecasts concentrates

around the onset of recessions. A series of papers have also built on the empirical evidence

of a breakdown in the ability of forecasting models to predict U.S. in�ation and output: see

Castelnuovo et al. (2008) for a regime-switching model in Taylor rules which �nds a switch

towards active monetary policy at the time of the Great Moderation. Fernandez, Koenig and

Nikolosko-Rzhevskyy (2010) evaluate how well several alternative Taylor rule speci�cations

describe Federal Reserve policy decisions in real time. Giacomini and Rossi (2010a) evalu-

ate the instability in the predictive ability of fundamental-based models of exchange rates.

They argue that, as shown by Rossi (2006), the estimates of exchange rate models with

economic fundamentals are plagued by parameter instabilities, and so might be the resulting

exchange rate forecasts. They show that conventional out-of-sample forecast comparison

tests do �nd some empirical evidence in favor of models with economic fundamentals for

selected countries. However, the Fluctuation test indicates that the relative forecasting per-

formance has changed over time: the Deutsche Mark and the British Pound exchange rates

(Croushore and Stark, 2001): the evidence in favor of predictive ability in the early part of the sample is

slightly weaker for a few series when using real-time data; however, their main qualitative conclusions are

robust to the use of real-time data.
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were predictable in the late Eighties, but such predictability disappeared in the Nineties.

Conventional out-of-sample tests would have been unable to uncover such evidence in favor

of models with economic fundamentals. Finally, Galvão (2011) considers a smooth transition

regression to model regime changes in high frequency variables for predicting low frequency

variables using a MIDAS framework.23 She focuses on real-time forecasts of U.S. and U.K.

output growth using daily �nancial indicators. The Fluctuation test reveals strong evidence

of instability in the predictive content of �nancial variables for forecasting output growth.

In addition, she �nds evidence that the inclusion of nonlinearities (captured by the smooth

transition model) may improve predictive ability.

2.2.3 If There Are Instabilities In Forecasting Performance, How Should Re-

searchers Determine Whether Forecasts Are Optimal?

Under a MSFE loss function, optimal forecasts have several properties: they should be

unbiased, the one-step-ahead forecast errors should be serially uncorrelated, and h-steps

ahead forecast errors should be correlated at most of order h � 1. A large literature has

focused on empirically testing whether forecasts are actually optimal � see Granger and

Newbold, 1986, Diebold and Lopez, 1996, Patton and Timmermann (2011), among others.

However, traditional tests for forecast optimality are subject to the same issues as the

other tests previously discussed: they are potentially inconsistent in the presence of insta-

bilities. In a recent paper, Rossi and Sekhposyan (2011b) have developed methodologies for

implementing forecast rationality and forecast optimality tests robust to instabilities. They

follow the general framework developed in West and McCracken (1998). Let�s assume one is

interested in the (linear) relationship between the prediction error and a vector of variables

known at time t. Let the h-steps ahead forecast made at time t be denoted by yt+hjt and let

a (p� 1) vector of variables known at time t to be denoted by gt. The variables in gt are not
used to produce the forecast; rather, they will be used to study whether their correlation

with the forecast error is zero; in fact, if the forecasts are optimal, the forecast error should

be uncorrelated with any information available at the time the forecasts are made. Finally,

let the forecast error of a model evaluated at the true parameter value, ��, be denoted by

vt+h, and its estimated value be denoted by bvt+h.
23MIDAS models are designed for modeling variables that are available at di¤erent frequencies; for a

discussion of MIDAS regressions, see Andreou, Ghysels and Kourtellos (2010).
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Consider the regression:

vt+h = g0t � �+ �t;h; for t = R; :::; T; (17)

where � is a (p� 1) parameter vector. The null hypothesis of interest is H0 : � = �0, where

typically �0 = 0: For example, in forecast rationality tests (Mincer and Zarnowitz, 1969),

vt+h, gt = [1; yt+hjt], � = [�1; �2]
0 ; and typically a researcher is interested in testing whether

�1 and �2 are jointly zero.
24 For forecast unbiasedness, gt = 1; for forecast encompassing gt

is the forecast of the encompassed model, and for serial uncorrelation gt = vt. We will refer

to all these tests as "tests for forecast optimality". To test forecast optimality, one typically

uses the following re-scaled Wald test:

WT = b�0 bV �1
�
b�; (18)

where bV� is a consistent estimate of the long run variance of the parameter vector obtained
following West and McCracken (1998). West and McCracken (1998) have shown that it is

necessary to correct eq. (18) for parameter estimation error in order to obtain test statistics

that have good size properties in small samples, and proposed a general variance estimator

as well as adjustment procedures that take into account estimation uncertainty.

Rossi and Sekhposyan (2011b) propose the following procedure, inspired by Giacomini

and Rossi (2010a). Let b�t be the parameter estimate in regression (17) computed over
centered rolling windows of size m (without loss of generality, we assume m to be an even

number). That is, consider estimating regression (18) using data from t � m=2 up to t +

m=2�1, for t = m=2; :::; P�m=2+1. Also, let the Wald test in the corresponding regressions
be de�ned as:

Wt;m = b�0t bV �1
�;t
b�t; for t = m=2; :::; P �m=2 + 1, (19)

where bV�;t is a consistent estimator of the asymptotic variance of the parameter estimates in
the rolling windows obtained following West and McCracken (1998). Rossi and Sekhposyan

(2011b) refer toWt;m as the Fluctuation optimality test. The test rejects the null hypothesis

H0 : E
�b�t� = 0 for all t = m=2; :::; P �m=2 + 1 if maxt Wt;m > kRS�;p, where k

RS
�;p are the

critical values at the 100�% signi�cance level. The critical values are reported in their Table

1 for various values of � = [m=P ] and the number of restrictions, p.25 The critical values at

5% signi�cance level are reproduced in Table A.3 in Appendix 1 for convenience for the cases

24This is similar to testing whether the slope is one and the intercept is zero in a regression of yt+h onto

a constant and yt+hjt:
25Here we assume that the researcher is interested in jointly testing whether all the � are equal to zero,
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of one and two regressors (that is, the cases of forecast unbiasedness and Mincer-Zarnowitz�s

(1969) regressions).

A simple, two-sided t-ratio test on the s-th parameter, �(s), can be obtained as b�(s)tbV �1=2
�(s);t

, where bV�(s);t is element in the s-th row and s-th column of bV�;t; then, reject the null
hypothesis H0 : E

�b�(s)t � = �
(s)
0 for all t = m=2; :::; P �m=2 + 1 at the 100�% signi�cance

level if maxt
���b�(s)t bV �1=2

�(s);t

��� > kGR� , where kGR� are the critical values provided by Giacomini and

Rossi (2010a) �see Table A.2 in Appendix 1.

Rossi (2012) considers the robustness of forecast rationality tests to instabilities in Federal

Reserve �Greenbook� forecasts of quarter-over-quarter rates of change in GDP and the

GDP de�ator, the same database considered in Faust and Wright (2009) and Patton and

Timmermann (2011). Using both heuristic empirical evidence of time variation in the rolling

estimates of the coe¢ cients of forecast rationality regressions as well as the Fluctuation

optimality test, she rejects forecast rationality. The Fluctuation optimality test, eq. (19),

is also applied to Patton and Timmermann�s (2011) optimal revision regression tests, which

shows that forecast rationality is not rejected for the GDP de�ator, whereas it is rejected

for GDP growth mainly in the late 1990�s. Rossi and Sekhposyan (2011b) use the same

technique to test whether the Federal Reserve has an information advantage in forecasting

in�ation beyond what is known to the private forecasters. They �nd evidence that the

Federal Reserve has an informational advantage relative to the private sector�s forecasts,

although it deteriorated after 2003.26

2.3 Estimation When the Predictive Content Is Unstable Over

Time

Given the widespread empirical evidence of instabilities in the data, established in the pre-

vious section, it is reasonable to ask whether it is possible to exploit such instabilities to

improve the estimation of forecasting models. For example, one might expect that, in the

presence of a one-time break in the parameters, it might be possible to improve models�

estimation by determining the time of the break and then use only the observations after the

and hence the number of restrictions is p. Alternatively, one might be interested in testing whether a subsets

of � are equal to zero, in which case the test statistic should consider only a subset of � and the degrees of

freedoms should be adjusted accordingly to be equal to the subset dimension.
26They also �nd empirical evidence against rationality in the Money, Market and Services (MMS) survey

forecasts once instabilities are taken into account.
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breaks for forecasting, as this would provide unbiased parameter estimates. However, this

intuition might be misleading. First, it might be very di¢ cult to constructively utilize break

dates to improve forecasts in practice because the time of the break might be imprecisely es-

timated. As shown by Elliott and Muller (2007), paradoxically, even in a simple model with

a single, one-time break, it is more di¢ cult to determine the exact break date than it is to

determine whether there was a break or not in the data. Elliott and Muller (2007) also show

that standard methods for constructing con�dence intervals for the break date have poor

coverage rates, and propose a new methodology that accurately captures the uncertainty in

the estimated break date. Second, even if one were able to estimate the time of the break

with su¢ cient precision, Pesaran and Timmermann (2002) show the existence of a trade-o¤

between bias and variance in the evaluation of MSFE, which might favor estimation using

more data than just the observations after the break. In a nutshell, while the detection of

structural breaks and their type are clearly important for econometric modeling, it is di¢ cult

to use that information productively to improve forecasts.

Overall, several estimation procedures have been proposed:

(i) Ad-hoc estimation methods, such as rolling or recursive estimation schemes, discounted

least squares, and exponential smoothing. They provide an agnostic, non-parametric way to

sequentially update the parameter vector. But which one should be used? Should we give

all the observations the same weight (as the rolling estimation window does, for example),

or should we give more weight to recent observations and discount the older ones (as dis-

counted least squares does)? And how should researchers choose the size of the estimation

window? Researchers have also suggested to improve forecasts by averaging across window

sizes (Pesaran and Timmermann, 2007), as well as forecast evaluation methods whose con-

clusions are robust to the estimation window size (Inoue and Rossi, 2012, and Hansen and

Timmermann, 2012).

(ii) Estimate historic breaks, by either testing for breaks (e.g. using Andrews, 1993, Bai

and Perron, 1998, Elliott and Mueller, 2006, among others), or by adapting the estimation

window to the latest break (Pesaran and Timmermann, 2002), or by explicitly modeling

the size and duration of the breaks process, either via time-varying parameter models (with

a change point every period, as in Stock and Watson, 2007) or models with multiple dis-

crete breaks (Pesaran, Pettenuzzo and Timmermann, 2006, and Koop and Potter, 2007), or

intercept corrections (Clemens and Hendry, 1996).

(iii) Combine forecasts, either by using equal weights or by using time-varying weights

estimated using either frequentist procedures or Bayesian model averaging.
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In what follows, we review each of these approaches. Section 4 provides an evaluation of

how several of these estimation methodologies perform in practice.

2.3.1 If There Are Instabilities, Do Ad-Hoc Estimation Methods Help in Fore-

casting?

Ad-hoc forecasting methods are not based on any parametric model. They are simple to

implement and widely used by practitioners. There are several such ad-hoc methods, di¤ering

according to the weight that they give to observations.

(i) Simple exponentially weighted moving average (EWMA, or exponential smooth-

ing). The EWMA forecasts made at time t for predicting yt+h are:

yES;ft+hjt = �tyt + (1� �t) y
ES;f
tjt�h (20)

where �t is the adaptive parameter. �t can be �xed a-priori or estimated by minimizing the

sum of squared forecast errors; a large estimated value of �t is a signal that the series is

close to a random walk. The initial value for the recursion can be the initial observation.27

Holt (1957) and Winters (1960) generalized the approach to include a local linear trend. See

Harvey (1989, sec. 2.2.2).

(ii) Discounted least squares. A general version of the simple discounted least squares

method (DLS, Brown, 1963) in the model with exogenous regressors such as eq. (1) implies

choosing parameter estimates that minimize the discounted sum-of-squared residuals. For

simplicity of exposition, consider the simpli�ed model: yt+h = �0hxt + "t+h; t = 1; :::; T . Let

yt+h � [yt+h�R+1; :::; yt+h]
0 ; X t;R �

�
x0t�R+1; :::; x

0
t

�0
; and W t � diag

�
�R�1; :::; �; 1

�
be the

matrix of weights to discount past observations. Then, DLS estimates the parameters at

time t as (see Agnew, 1982):28

b�DLSh;t =
�
X 0
t;RW tX t;R

��1
X 0
t;RW tyt+h; (21)

and

yDLS;ft+hjt = b�0h;txt:
27For h = 1 and �t constant, the EWMA corresponds to a forecast that is a weighted average of previous

observations, where the weights are declining exponentially: yES;ft+1jt =
t�1P
j=0

!jyt�j ; and !j = � (1� �)j .
28When h = 1 and the model includes only a constant, the formula simpli�es to: yDLS;ft+1jt = 
t�1P
j=0

�j

!�1 
t�1P
j=0

�jyt�j

!
; as in Brown (1963).
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The weights can be either imposed a-priori or estimated.29 Typically, one might prefer to

give higher weight to more recent observations and lower weight to more distant observations,

which would be a successful strategy if later observations re�ect more accurately the most

recent data generating process.

(iii) Rolling and recursive window estimation schemes. Note that several esti-

mation weighting schemes that have become popular in the forecasting literature are special

cases of eq. (21). For example, the recursive window estimation scheme is such that � = 1,

that is all observations are weighted equally, and R = t, that is all observations in the sample

up to time t are used in the estimation:

b�RECh;t =
�
X 0
t;tX t;t

��1
X 0
t;tyt+h =

 
tX
j=1

xjx
0
j

!�1 tX
j=1

xjyj+h

!
; (22)

whereas the rolling window estimation scheme with window size R is such that:

b�ROLh;t =
�
X 0
t;RX t;R

��1
X 0
t;Ryt+h =

 
tX

j=t�m+1
xjx

0
j

!�1 tX
j=t�m+1

xjyj+h

!
: (23)

Rolling or recursive window estimation procedures are agnostic, non-parametric ways to

update the parameter vector. But which one should be used? Pesaran and Timmermann

(2002) show that, when regressors are strictly exogenous, in the presence of a structural break

in the parameters OLS estimates based on post-break data are unbiased. Including pre-break

data always increases the bias; thus, there is always a trade-o¤ between a larger squared bias

and a smaller variance of the parameter estimates as more pre-break information is used.

In particular, rolling estimation is advantageous in the presence of big and recurrent breaks

whereas recursive estimation is advantageous when such breaks are small or non-existent.

Pesaran and Timmermann (2002) use this trade-o¤ to optimally determine the window

size. On the other hand, Pesaran and Timmermann (2005) show that the situation can

be very di¤erent in autoregressive models, for which the coe¢ cients inherit a small sample

bias. They show that when the true coe¢ cient declines after a break, both the bias and the

forecast error variance can be reduced using pre-break data in the estimation. Thus, in these

cases, rolling windows could perform worse than recursive windows even in the presence of

breaks. This might explain why, in some cases, recursive window forecasts perform better

than rolling window forecasts. As discussed in Pesaran and Timmermann (2005), the choice

29E.g. one might estimate e�h;� = argmin
�

�P
t=��R+1

!2t
�
yt+h � �0hxt

�2
, where !2t are weights and are typi-

cally constrained to be between zero and one and to sum to unity.
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of the window size depends on the nature of the possible model instability and the timing

of the breaks. A large window is preferable if the data generating process is stationary, but

comes at the cost of lower power since there are fewer observations in the evaluation window.

Similarly, a shorter window may be more robust to structural breaks, although it may not

provide as precise estimation as larger windows if the data are stationary.

Pesaran and Timmermann (2007) �nd that the optimal length of the observation window

is weakly decreasing in the magnitude of the break, the size of any change in the residual

variance, and the length of the post-break period. They also consider model combinations as

a competitor to the optimal choice of the observation window. Their approach is to determine

the window size that guarantees the best forecasting performance, especially in the presence

of breaks. They propose several methods in practice. Among the methods they propose,

several are available if the researcher possesses an estimate of the break, in which case, using

either only the post-break window data to estimate the parameter or a combination of pre-

and post-break data according to weights that trade-o¤ bias against reduction in parameter

estimation error, might improve forecasting performance. A di¢ culty in the latter methods

is the fact that, in practice, it may be di¢ cult to have a precise estimate of the time and

magnitude of the break. Thus, rather than selecting a single window, it might be convenient

to combine forecasts based on several estimation windows. A very simple way to combine

forecasts based on several estimation windows is to simply average them using equal weights.

That is, imagine that the researcher is interested in estimating the parameters of the models

using the latest R available observations, and that the researcher�s minimum number of

observations to be used for estimation is R. Denote the forecast for the target variable h-

steps into the future made at time t based on data from the window size R (that is data from

time t � R + 1 to t) by yft+hjt (R). Then the average ("Ave") forecast proposed by Pesaran

and Timmermann (2007) is:

yAV E;ft+hjt = (T �R + 1)�1
tP

R=t�R
yft+hjt (R) (24)

Pesaran and Timmermann (2007) demonstrate, via Monte Carlo simulations, that in the case

of many breaks, forecast combinations obtained in eq. (24) perform quite well, especially

when the magnitude of the break is very small and thus the break is more di¢ cult to detect.

It is also possible that better forecasts could be obtained by combining rolling and re-

cursive forecasts. Clark and McCracken (2009) show that there is a bias-variance trade-o¤

between rolling and recursive forecasts in the presence of model instability. By analyzing the
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trade-o¤, they analytically derive the optimal estimation window. Let yt+h = �t+"t+h, where

"t+h � iid (0; �2) ; �t = �� + T�1=21 (t � t�)� and � � � t�=T . Note that the breakpoint is

local-to-zero, which allows Clark and McCracken (2009) to emphasize the importance of the

observation window in situations where structural break tests may have little power. The

OLS parameter estimate based on rolling windows of size Rt will be b�roll;t = R�1t
tP

j=t�Rt+1
yj

and the one based on recursive windows will be b�rec;t = t�1
tP
j=1

yj. Note that the rolling

window parameter estimates are based on a partial sample whose size (Rt) is allowed to

change as forecasting moves forward in time. Let bt� be an estimate of the time of the break,b� be an estimate of �, and b� be an estimate of the size of the break in the parameter.

Clark and McCracken (2009) show that the optimal window to use in the rolling scheme is

R� = t � b� (so that the optimal window uses only data after the break) and that the fore-
cast that minimizes the MSFE is a weighted average of the rolling and recursive parameter

estimates:

��t
b�rec;t + (1� ��t )

b�roll;t; where ��t =
 
1 +

tb� b�2
bt�
T

 
1�

bt�
T

!!�1
. (25)

The result in eq. (25) can be explained, again, by noting that using data before the break in

the estimation of the parameter value after the break would lead to a bias in the parameter

estimate and in the forecast, which results in an increase in the MSFE of the recursive forecast

relative to the rolling; on the other hand, reducing the sample by choosing a window of data

that starts after the break increases the variance of the parameter estimates, which results

in an increase in the MSFE of the rolling forecast relative to the recursive. How much more

weight we should put on the recursive (rolling) forecast thus depends on the values of the

parameters. For example, the larger the estimated size of the break in the parameter, b�,
the higher the weight on the rolling window forecast. Similarly, a higher variance of the

error (�2) leads to more imprecise parameter estimates for any given sample, thus leading

to a higher optimal weight on the recursive forecast. Finally, the closer the break to the

middle of the sample ( bt�
T
' 1

2
), the lower the weight on the recursive forecast; in fact, if the

break is at the very beginning or the very end of the sample, it is optimal to use as many

observations as possible to estimate the parameters. The fact that such values might be

imprecisely estimated might adversely a¤ect the forecasting improvements provided by eq.

(25).

An alternative approach is suggested by Inoue and Rossi (2012) and Hansen and Tim-

mermann (2012). While Pesaran and Timmermann�s (2007) and Clark and McCracken�s
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(2009) objective is to improve the model�s out-of-sample forecasts, the objective of Inoue

and Rossi (2012) and Hansen and Timmermann (2012) is di¤erent. They are not interested

in improving the forecasting model nor to estimate the ideal window size. Rather, their

objective is to assess the robustness of conclusions of predictive ability tests to the choice

of the estimation window size. The choice of the estimation window size has always been a

concern for practitioners, since the use of di¤erent window sizes may lead to di¤erent em-

pirical results in practice. In addition, arbitrary choices of window sizes have consequences

about how the sample is split into in-sample and out-of-sample portions. Notwithstanding

the choice of the window size is crucial, in the forecasting literature it is common to only

report empirical results for one window size.

Inoue and Rossi (2012) note that reporting results based on one ad-hoc window size raises

several concerns. One concern is that it might be possible that satisfactory results (or lack

thereof) were obtained simply by chance, and are not robust to other window sizes. For

example, this may happen because the predictive ability appears only in a sub-sample of the

data, and whether the test can detect predictive ability depends on the estimation window

size. A second concern is that it might be possible that the data were used more than once

for the purposes of selecting the best forecasting model and thus the empirical results were

the result of data snooping over many di¤erent window sizes and the search process was not

ultimately taken into account when reporting the empirical results.30 Ultimately, however,

the estimation window is not a parameter of interest for the researcher: the objective is rather

to test for equal predictive ability and, ideally, researchers would like to reach conclusions

that are robust to the choice of the estimation window size.

Inoue and Rossi (2012) propose methodologies for comparing the out-of-sample forecast-

ing performance of competing models that are robust to the choice of the estimation and

evaluation window size by assessing the models�relative forecasting performance for a variety

of estimation window sizes, and then taking summary statistics. Their methodology can be

applied to most of the tests of predictive ability that have been proposed in the literature,

including tests for relative forecast comparisons as well as tests of forecast optimality.

Let �LT (R) denote the test of equal predictive ability for non-nested model comparison

proposed by either Diebold and Mariano (1995) or West (1996), and implemented using

forecasts based either on a rolling window of size R or recursive/split estimation starting

at observation R. Similarly, let �L"T (R) denote Clark and McCracken�s (2001) ENCNEW

30Only rarely do researchers check the robustness of the empirical results to the choice of the window size

by reporting results for a selected choice of window sizes.
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test for nested models comparison based either on rolling window estimation with window

size R or recursive/split window estimation starting at observation R. Finally, let WT (R)

denote tests for forecast optimality analyzed by West and McCracken (1998), including tests

of forecast encompassing (Clements and Hendry, 1993, Harvey, Leybourne and Newbold,

1998), tests for forecast rationality (Mincer and Zarnowitz, 1969) and tests of forecast un-

correlatedness (Granger and Newbold, 1986, and Diebold and Lopez, 1996) based on forecast

errors obtained either on a rolling window of size R or recursive/split estimation starting at

observation R.

They suggest the following statistics:

RT = sup
R2fR;:::Rg

j�LT (R) j; and AT =
1

R�R + 1

RX
R=R

j�LT (R)j , (26)

R"
T = sup

R2fR;:::Rg
�L"T (R) and A"T =

1

R�R + 1

RX
R=R

�L"T (R) , (27)

RW
T = sup

R2fR;:::Rg
WT (R) ; and AWT =

1

R�R + 1

RX
R=R

WT (R) , (28)

whereR is the smallest window size considered by the researcher, R is the largest window size,

and b
R is a consistent estimate of the long run variance matrix.31 Inoue and Rossi�s (2012)
obtain asymptotic approximations to eqs. (26), (27) and (28) by letting the size of the window

R be asymptotically a �xed fraction of the total sample size: � = lim
T!1

(R=T ) 2 (0; 1) :32

The null hypothesis of equal predictive ability or forecast optimality at each window

size for the RT test is rejected at the signi�cance level � when RT > kR�;� whereas the null

hypothesis for the AT test is rejected when AT > kA�;� ; where the critical values
�
�; kR�;�

�
and

�
�; kA�;�

�
for various values of � � lim

T!1
(R=T ) and � = 1� � are reported in the tables

in Inoue and Rossi (2012). In practice, Inoue and Rossi (2012) recommend � = 1 � � and

� = 0:15: For such values, Table A.4 in Appendix 1 reports the critical value for the statistics

at the 5% signi�cance level.

31See West (1996) for consistent variance estimates in eq. (26), Clark and McCracken (2001) for eq. (27)

and West and McCracken (1998) for eq. (28). Inoue and Rossi�s (2010) obtain asymptotic approximations

to eqs. (26), (27) and (28) by letting the size of the window R be asymptotically a �xed fraction of the total

sample size: � = lim
T!1

(R=T ) 2 (0; 1) :
32Inoue and Rossi (2012) also consider cases where the window size is �xed �we refer interested readers

to their paper for more details.
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Interestingly, Inoue and Rossi (2012) show that in the presence of instabilities the power

of rolling out-of-sample forecast tests depends crucially on the rolling window size, and that,

similarly, the power of the recursive out-of-sample forecast tests does depend on the size of

the �rst estimation window size. The intuition is as follows. Imagine that we are comparing

the forecasting performance of two models, one of which (the large model) contains additional

regressors relative to the competitor model (the small model). Suppose that the additional

regressors are relevant only in a �rst part of the sample, and that they become insigni�cant

in the later part of the sample. The �nding of a superior performance of the larger model

relative to the small model will clearly depend on when the predictive ability of the additional

regressors disappears relative to the size of the estimation window. In fact, if the predictive

ability disappears very early in the sample and the researcher uses a small window, he might

have a chance to pick up the superior predictive ability of the large model; however, if the

researcher uses a large window, he might miss the predictive ability since a large window will

"wash out" the better performance of the large model. On the other hand, a large window

would help �nding evidence of superior predictive ability if there are no instabilities in the

data because it provides more precise estimates.

Hansen and Timmermann�s (2012) analysis is based on a similar concern about data

mining over the split sample point in forecasts based on recursive estimation. They focus on

nested models estimated via a recursive estimation scheme. They consider a di¤erent test

statistic for nested models, namely the following MSFE-t-type statistic:

TP (�) �
PP

t=R�Lt+hb�2 ; (29)

where�Lt+h is the forecast error squared of the small model minus the forecast error squared

of the large model, � = lim
T!1

(R=T ) and b�2 is a consistent estimate of the variance of �Lt+h.
Following McCracken (2007) and generalizing his results, Hansen and Timmermann (2012)

show that, under the null hypothesis that the parameter on the additional regressors in the

large model are zero, the test statistic has the following limit distribution:

TP (�)) 2

Z
u�1B (u)0 �dB (u)�

Z
u�2B (u)0 �B (u) du; (30)

where � is a diagonal matrix with the eigenvalues of ��1
 on its main diagonal, and Bj (u) ;

j = 1; :::; q are independent standard Brownian motions. Let the cumulative distribution

function of TP (�) be denoted by F�;� and its p-value by p (�), whose limiting distribution is

a Uniform, U (0; 1).
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Hansen and Timmermann (2012) make several contributions. The �rst is to show that

the limiting distribution in (30) can be simpli�ed to:

B (1)2 � ��1B (�)2 + ln �; (31)

and can be simulated by
p
1� � (Z21 � Z22) + ln (�) ; where Z1 and Z2 are independent stan-

dard normal random variables. This limiting distribution is much simpler than the one

derived in Clark and McCracken (2005), which is advantageous when deriving its p-values, es-

pecially when the number of extra regressors in the model is large. Hansen and Timmermann

(2012) also show, via Monte Carlo simulations, that a researcher that data mines over several

values of the window size, � 2 [�; �], that is a researcher that reports pmin = min�2[�;�] p (�),
would typically over-reject for large values of the split point �: That is, a spurious rejection

of the null hypothesis of equal predictive ability is most likely to be found with large values

of � whereas true rejections of a false null hypothesis are more likely to be found for small

values of �:

If data were homoskedastic, Hansen and Timmermann (2012) recommend to �rst trans-

form the test statistic as follows: SP (�) = (1� �)�1=2 [TP (�)� q ln �] : In fact, the trans-

formed statistic has a limiting distribution that does not depend on � in the homoskedastic

case. However, in the heteroskedastic case the limiting distribution of SP (�) still depends

on � and therefore does not have any advantages relative to using TP (�) :

Hansen and Timmermann (2012) calculate the power of their proposed test TP (�) under

local alternatives and show that the power of the test is highest when � is small. Thus, there

is a trade-o¤ between size and power in the presence of data mining over the sample split:

the risk of rejecting the null hypothesis when it is true is highest when � is large; conversely,

the power of the test is highest when � is small.

To resolve the data mining problem, Hansen and Timmermann (2012) recommend the

following test statistic:

pmin = min
�2[�;�]

p (�) :

There are several di¤erences between this test statistic and the one proposed by Inoue and

Rossi (2012). The �rst is that Hansen and Timmermann (2012) propose to minimize the

p-value over the split-sample whereas Inoue and Rossi (2012) propose to maximize the test

statistic over the estimation window size: the two would be equivalent if the test statistic

were the same; however, note that for the case of nested models�forecast comparison (the

case considered by Hansen and Timmermann, 2012), the latter focus on the MSFE-t test

statistic (eq. 29) whereas Inoue and Rossi (2012) focus on the ENCNEW test. Another
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di¤erence is that Inoue and Rossi (2012) consider the power of the test against parameter

instabilities, whereas Hansen and Timmermann (2012) consider the power of the test in

stationary environments. The advantage of the latter is that they can obtain detailed an-

alytical power results and theoretically derive for which split-point the test has the largest

rejection probability; the advantage of the former is that they consider the power of their

test against predictive ability that appears only in a sub-sample of the data via Monte Carlo

simulations, and can cover several test statistics for predictive ability. Finally, Hansen and

Timmermann (2012) focus on recursive window estimation schemes, whereas Inoue and Rossi

(2012) consider also rolling windows.

Hansen and Timmermann (2012) consider two interesting empirical analyses. The �rst

is the predictability of stock returns, in particular the work by Goyal and Welch (2008), who

found that the constant equity premium model produced better forecasts than models with

predictors such as the default spread or the dividend yield. They �nd that the predictive

ability is the strongest either for very small or very large values of �: A second empirical

analysis focuses on in�ation forecasts in a factor model. Their test does not �nd empirical

evidence of superior predictive ability for the factor model over the simple autoregressive

benchmark.

2.3.2 If There Are Instabilities, Does Estimation of Historic Breaks Help in

Forecasting?

The presence of widespread instabilities in forecasting has inspired researchers to estimate

models that allow for structural breaks. Several ways to incorporate time variation in the

estimation of forecasting models have been proposed: (i) estimate models with multiple,

discrete breaks at unknown points in time; or (ii) estimate time-varying parameter models

where the parameters are allowed to change with each new observation, either according to

a random walk or some other parametric process.

The detection of breaks is clearly an important issue in the literature: numerous in-

sample testing procedures have been developed for detecting instabilities, each one of which

depends on the assumptions made on the process underlying the instabilities. In particular,

one-time, discrete breaks are typically detected by using Andrews�(1993) or Andrews and

Ploberger�s (1994) tests.33 Examples of full sample estimation of models with a one-time

33Andrews (1993) proposed procedures to test for the presence of a one-time break at an unknown point in

time. Bai (1997) demonstrated how to use Andrews�(1993) test to estimate the time of the break. Andrews

and Ploberger (1994) developed optimal tests for structural breaks.
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break include, among others, McConnell and Perez-Quiros (2000) for modeling the sharp

decrease in U.S. GDP growth volatility, Stock andWatson (2002) and Inoue and Rossi (2011)

for estimation of structural macroeconomic models that attempt to explain that decrease.34

The presence as well as the timing of multiple, discrete breaks at unknown times can be

detected by Bai and Perron�s (1998) or Qu and Perron�s (2007) procedure. Examples of

full sample estimation of models with multiple discrete breaks include Rapach and Wohar�s

(2005) estimation of both in�ation and real interest rates for several industrialized countries.

The presence of small and persistent time variation in the parameters can be detected by

Nyblom�s (1989) or Elliott and Muller�s (2006) test. Examples of full sample estimation of

models with time-varying parameters include Cogley and Sargent (2001, 2005) and Cogley

and Sbordone (2008), who model the parameters driving in�ation and/or unemployment

dynamics in the U.S. as a random walk. See Stock (1994) for an overview and discussion of

in-sample tests for structural breaks.

While the literature discussed above has focused on the �in sample�detection and es-

timation of models with time-varying parameters, a more recent literature has attempted

to utilize time-varying parameter models for forecasting. The latter is the objective of this

Section. One major di¤erence between in-sample detection of breaks and out-of-sample fore-

casting in the presence of breaks is that the particular type of instabilities does not matter

in the former but may play an important role in the latter. In fact, as shown by Elliott and

Muller (2006), conditional on the average magnitude of breaks being the same, the power

of several, widely used tests for structural breaks is close over a wide range of breaking

processes; thus, ignorance of which particular type of instability a¤ects the data in practice

does not matter for the goal of conducting an in-sample powerful test to detect whether

there was a break in the data. Matters are very di¤erent when forecasting: the ability to

forecast well may depend on the ability of successfully capturing and exploiting the form of

instability a¤ecting the data.

In what follows, we will review several papers that have successfully forecasted time

34McConnell and Perez-Quiros (2000) use structural break tests to identify a sharp decline in the volatility

of output (as well as consumption and investment), labeled �the Great Moderation.� Stock and Watson

(2002, 2003) perform counterfactual VAR and New Keynesian model analyses and conclude that the Great

Moderation was mainly caused by a decrease in the volatility of the shocks. Inoue and Rossi (2011) investigate

the sources of the substantial decrease in output growth volatility in the mid-1980s by identifying which of

the structural parameters in a representative New Keynesian and structural VAR models changed. They

show that the Great Moderation was due not only to changes in shock volatilities but also to changes in

monetary policy parameters, as well as in the private sector�s parameters.
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series out-of-sample using time-varying parameter models. We will focus on the following

forecasting model (1), for simplicity without control variables zt:

yt+h = �txt + "t+h; for t = 1; 2; :::T; (32)

where di¤erent choices of how �t evolves over time lead to di¤erent time-varying parameter

models:

(i) Models with multiple, discrete breaks. Models with multiple, discrete structural

breaks are such that:

�t = �1 � 1 (t < � 1) + �2 � 1(� 1 � t < � 2) + :::+ �K � 1(�K�1 � t < �K) + �K+1 � 1(�K � t);

where �1 6= �2 6= ::: 6= �K+1; K is the number of breaks, which gives rise to K + 1 regimes.

Typically, except in very special circumstances, the time of the breaks (� 1; :::; �K) are un-

known. One could assume, for example, that each regime is completely unpredictable based

on the information in the previous regimes and, in the attempt of forecasting based only on

the information available in the most recent regime, discard all data prior to time �K . Pe-

saran and Timmermann (2002) propose a Reversed Ordered Cusum (ROC) test, among other

procedures. Although the ROC test estimates one break (the most recent one), nevertheless

it is robust to the existence of multiple breaks since, in that case, it would focus on the most

relevant break for forecasting purposes. Their procedure works as follows. Consider the linear

model described by eq. (32), and let b�h;� = � 1
T��+1

TP
t=�

xt�hx
0
t�h

��1�
1

T��+1

TP
t=�

xt�hyt

�
be

the OLS estimate of �h using only observations from � onwards, where � = e� ;e��1; :::; 1. e� is
a parameter chosen to guarantee that the estimate b�h;� is meaningful; for example, Pesaran
and Timmermann (2002) recommend T �e� +1 to be set around two to three times the num-
ber of parameters in �h. Also, let bv� = �y�+h � b�0h;�x��

 
1 + x0�

�
1

T��+1

TP
t=�

xtx
0
t

��1
x�

!�1
;

� = e� ;e� � 1; :::; 1: The ROC squared test statistic is:
ROCs;T =

 
TP
j=s

bv2j
! 

TP
j=1

bv2j
!�1

; s = e� ;e� � 1; :::; 1: (33)

The null hypothesis of the ROC squared test is the stability of the Mean Squared Error of

the forecasting model and the test rejects when ROCs;T is outside the critical values provided

in Brown et al. (1975).35 As mentioned before, there are two issues with such procedure:

35Critical values depend on both the number of observations T as well as e� . Interested readers are referred
to Brown et al. (1975).
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not only the date of the latest break might be unknown and di¢ cult to estimate precisely

in �nite samples, but, also, the parameter estimate might be imprecisely estimated if based

only on data from �K � t � T . In fact, measures of forecast accuracy such as the MSFE,

which is the sum of the bias squared and the variance, would penalize a forecast depending

on both its bias and its precision. Thus, by including data prior to �K it might be possible

to improve the precision of the estimate at the cost of a higher bias. The choice of how many

recent observations to use in estimating the parameters of a successful forecasting model

clearly depends on this trade-o¤ between bias and variance. Under special assumptions,

it is possible to determine the optimal number of observations theoretically. For example,

Pesaran and Timmermann (2007) focus on a linear model with exogenous, normal regressors

and normal errors and forecast evaluation based on MSFEs. They show that the optimal

number of observations (optimal in terms of unconditional MSFE) dated time �K (or earlier)

to be used to estimate �K+1 is larger when: (i) the size of the break is smaller, (ii) T � �K is
small; and (iii) the signal to noise ratio is small. Pesaran and Timmermann (2007) describe

methodologies to optimally determine how many most recent observations to include in

estimation. Among these, they propose: (i) an optimal number of observations based on the

trade-o¤ discussed above; (ii) cross-validation; and (iii) weighted forecast combinations. We

will overview other methodologies proposed by Pesaran and Timmermann (2007) in Section

2.3.1.

Pesaran Pettenuzzo and Timmermann (2006) take a completely di¤erent approach. The

novelty of their approach is to allow for the possibility of new breaks occurring in the fore-

casting period, whose properties depend on the size and duration of past breaks: if a break

has happened in the past, they argue, it is also likely to happen in the future. Thus, it is

important, for forecasting purposes, not only to identify past breaks, but to be able to model

the stochastic process that underlies the breaks so that the breaks themselves can be fore-

casted. To be concrete, their model is as follows: the data are drawn from several regimes,

indexed by a state variable st = 1; 2; :::; K + 1, so that the sample of data, fytgTt=1 is drawn
from the distribution f (ytjyt�1; :::; y1; �s), where �s is the parameter vector in regime s. The
probability of moving from regime s � 1 to regime s is governed by a discrete �rst order
Markov process with transition probability ps�1;s, which is drawn from a known distribution

with unknown parameters, for example a Beta distribution. The prior on the parameters

of the Beta distribution are chosen to re�ect prior beliefs about the mean duration of each

regime. Finally, the parameters in each state, �s, are drawn from a common distribution,

for example a Normal distribution. This assumption allows Pesaran Pettenuzzo and Tim-
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mermann (2006) to forecast the time series outside the estimation sample even if there are

possible breaks in the out-of-sample period.

Pesaran Pettenuzzo and Timmermann (2006) assume a constant transition probability

and a �xed number of regimes. Koop and Potter (2007) extend their framework to allow for

regime changes where the number of regimes and their duration is unknown and unrestricted,

and both the duration and the parameters in a future regime are allowed to depend on

durations and parameters in a previous regime. They argue that these features are especially

useful for forecasting, since breaks may occur out-of-sample: in their model, a new break can

be forecast after the end of the sample and the size of the break depends on the properties

of the previous regime, the history of previous breaks as well as a random element.

Another possibility is to estimate the parameters by using regime-switching models

(Hamilton, 1988). Note how Pesaran, Pettenuzzo and Timmermann�s (2006) and Koop

and Potter�s (2007) models di¤er from regime-switching models: the latter are a special case

when the parameters after a break are drawn from a discrete distribution with a �nite number

of states. If the states are not recurring, a standard regime-switching model will be mis-

speci�ed and its parameter estimates will be inconsistent. In other words, regime-switching

models assume that there is a �nite number of states, and in the presence of regime changes

the time series will always take value in each of these regimes (stationarity assumption). This

is a very restrictive assumption for forecasting, and in fact regime-switching models do not

seem very successful at forecasting: see Clements et al. (2004) for a review of the literature.

Pesaran and Timmermann (2006) and Koop and Potter (2007) are also very di¤erent from

in-sample models with multiple breaks (e.g. Bai and Perron, 1998), which allow for multiple

breaks but only for in-sample estimation and does not consider forecasting out-of-sample.

(ii) Models with time-varying parameters. There are several parametric speci�-

cations for models with time-varying parameters. For example, speci�cations may involve

random walk parameters, such as:

�t = �t�1 + "rwt ;

or parameters that follow autoregressive speci�cations, such as time-varying autoregressive

models:36

�t =
p�P
j=1

�j�t�j + "art :

36The latter may be generalized to the joint estimation of several variables in Vector Autoregressive models.

The latter are typically estimated by Bayesian methods due to the computational di¢ culties in small samples

arising in the estimation from imposing the structure of the time variation.
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All these approaches attempt to strike a balance between the desire of having parameters

with a break at each point in time and the necessity of describing the time evolution of the

parameters parsimoniously, which is clearly crucial for forecasting since parameter prolifer-

ation and the resulting imprecision of the parameter estimates penalizes forecasts, at least

according to the typical MSFE loss function. Thus, these approaches describe breaks at

each point in time using a smooth, parametric function that depends on a small number

of parameters, for example the variance of "rwt in the former, and the �j�s as well as the

variance of "art in the latter. Clearly, there are many choices of parametric functions for the

evolution of the parameters.

One method that has been quite successful at forecasting in practice is the Unobserved

Components Stochastic Volatility (UCSV) model proposed by Stock and Watson (2007).

Their (univariate) model is as follows:

yt = �t + "yt ; (34)

�t = �t�1 + "�t ;

where "�t � iidN
�
0; �2�;t

�
; "yt � iidN

�
0; �2y;t

�
, ln

�
�2y;t
�
= ln

�
�2y;t�1

�
+  y;t, ln

�
�2�;t
�
=

ln
�
�2�;t�1

�
+  �;t and

�
 �;t;  �;t

�
� iidN (0; I). The model is estimated by Markov chain

Monte Carlo, and the forecast of yt+hjt is the �ltered estimate of �t obtained by using only

information available up to time t. Stock and Watson (2007) show that this model provides

quite accurate in�ation forecasts in the U.S.37

An alternative approach to model breaks due to level shifts which avoids imposing discrete

regime changes is the nonlinear stochastic permanent break (stop-break) model considered

by Engle and Smith (1999). Assuming h = 1; the model is such that:

yt+1 = �t + "t+1 (35)

�t = �t�1 + qt"t

where "t is a martingale and qt is a random variable bounded between zero and one. When

the realized value of qt is one, the realized shock at time t is permanent and yt behaves like

37Alternative approaches to proxy a slowly evolving in�ation rate include the simple exponential smoothing

method by Cogley (2002) and the autoregressive model with a shifting mean which evolves smoothly over

time according to an exponential function, proposed by Gonzales, Hubrich and Terasvirta (2011), which can

also be adapted to include exogenous information. See also Canova (1993) for a Bayesian time-varying VAR

estimation of exchange rate models; and Galvao (2006) for structural break threshold VARs for predicting

recessions.
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a random walk; when it is zero the shock is transitory and the conditional mean forecast is

constant. By allowing qt to vary between zero and one, the model builds a bridge between

the constant mean forecast and the random walk.

(iii) Automatic model selection, impulse-indicator saturation and intercept

corrections. An alternative set of methodologies for forecasting structural breaks is re-

viewed in Castle, Fawcett and Hendry (2011). They note that structural breaks resulting

in location (mean) shifts are one of the major causes of forecast failure, as discussed in

Clements and Hendry (1998, 2002 and 2006), whereas shifts in variables that have mean

zero have smaller impact on forecasts (Hendry, 2000). Thus, their chapter focuses on fore-

casting breaks. Castle, Fawcett and Hendry (2011) note that predicting a break depends

on whether it is possible to identify in advance the causes of such break; they argue that

typically breaks are predictable although the lead time might be too short to be exploited

in practice. For example, the �nancial crisis in 2007-2009 was not completely unpredictable:

data on sub-prime loans and banks�leverage were signalling relevant information and The

Economist had foreseen the possibility of a crisis well in advance; however, the extent of the

o¤-balance-sheet loans and the policy responses became known only as the crisis unfolded,

and were much more di¢ cult to predict. They distinguish between breaks coming from two

di¤erent sources: "regular" sources (i.e. economics) and other sources (i.e. politics, �nancial

innovation). Their practical recommendation is then to monitor a wide variety of sources

of information, including leading indicators,38 disaggregated data (including news variables

that are available at higher frequency and sectorial data),39 prediction markets data and

improved data at the forecast origin.

While monitoring a wide variety of data sources may provide useful information for fore-

casting, it necessitates methodologies for summarizing that information in practice. Castle,

Fawcett and Hendry (2011, sec. 6) suggest using automatic model selection (Hendry and

Krolzig, 2005, and Doornik, 2008) and impulse-indicator saturation. Other options include

forecast combinations, model averaging and factor models. Automatic model selection se-

quentially tests multiple variables using ad-hoc corrections to the critical values to take into

account multiple model selection. Impulse-indicator saturation methods include a dummy

38See Marcellino (2009) for a review of the empirical performance of leading indicators in practice.
39See e.g. Hendry and Hubrich (2011) for forecasting aggregate variables via disaggregate components;

Banbura et al. (forthcoming) for incorporating higher frequency news indicators in forecasting; Ferraro et

al. (2011) provide examples of how using high frequency data (either news variables or oil price shocks)

helps predict exchange rates.
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variable for each observation to model possible breaks at each point in time, and then uses

automatic model selection techniques to select the model. See Castle, Fawcett and Hendry

(2011) for an extensive discussion. A further approach to estimation in the presence of insta-

bilities is the intercept correction methodology proposed by Clements and Hendry (1996).

They also discuss why parsimonious models often work better than larger models when

there are breaks/instabilities; why double-di¤erenced type models work well in the presence

of breaks in the mean; when and why it helps to impose long-run (cointegrating) restrictions.

We will not provide a detailed overview of such and related approaches due to space con-

straints and since they have already been covered in the previous volume of the Handbook

series: see Clements and Hendry (2009, Section 7.2) for a thorough discussion of several of

these methodologies.

We conclude this sub-section by reviewing the empirical evidence on the performance

of models with breaks. Several researchers have evaluated the forecasting success of time-

varying parameter models in practice. For example, Canova (2007) studies forecasting in-

�ation in the G7 countries using real-time data. He compares the forecasting ability of

univariate and multivariate time-varying autoregressive parameter models, and �nds that

time variations in the coe¢ cients helps, but time varying univariate models perform better

than multivariate ones. D�Agostino et al. (2009) use a multivariate time-varying coe¢ cients

VAR model with stochastic volatility, allowing for both changes in the coe¢ cients and in

the volatility, in an attempt to improve in�ation forecasts. D�Agostino and Surico (2011)

estimate time-varying VARs for the U.S. and evaluate their predictive ability relative to

a time-varying univariate autoregression benchmark in forecasting in�ation using two pre-

dictors: money growth, according to the quantity theory, or output growth, according to a

Phillips curve. They also study whether in�ation has become harder to forecast across di¤er-

ent monetary policy regimes. They �nd that in�ation predictability is the exception rather

than the rule. Also, the forecasts produced by the bivariate model in in�ation and money

growth are signi�cantly more accurate than the autoregressive forecasts only between WWII

in 1939 and the Treasury-Federal Reserve accord in 1951. Output growth had predictive

power for in�ation in only two periods: between the great in�ation of the 1970s to the early

1980s and between 1997 and 2000. Otherwise, under the gold standard, the Bretton Woods

system and most of the Great Moderation sample, money growth and output growth had no

marginal predictive power for in�ation. Smith (2005) shows that the stop-break model (eq.

35) outperforms other nonlinear models in forecasting in�ation out-of-sample. Bauwens,

Korobilis and Rombouts (2011) compare the forecasting performance of several of the mod-
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els we discussed in an extensive empirical analysis. In particular, the models they consider

are Pesaran, Pettenuzzo, and Timmermann (2006), Koop and Potter (2007), D�Agostino et

al. (2009), Stock and Watson�s (2007) UCSV model as well as recursive and rolling OLS.

Forecasting ability is judged by MSFEs as well as average predictive likelihood40 in fore-

casting 23 univariate, quarterly U.S. macroeconomic time series from 1959 to 2010 following

Stock and Watson (1996). Their empirical analysis �nds extensive presence of structural

breaks: at least three quarters of their series do have at least one structural break. They

�nd that no single forecasting model stands out: in several instances, modeling the break

process performs the best (in 83 percent of all series according to the RMSE criterion, and

in 22 percent of all series according to the average predictive likelihood criterion), whereas

in others rolling OLS forecasts perform the best, although the gains in terms of MSFEs are

small. When the forecasting exercise starts at the beginning of the Great Recession (dated

2007), Pesaran, Pettenuzzo and Timmermann�s (2006) method seem to perform very well.

Finally, Guidolin and Timmermann (2007) use Markov-switching models to account for the

presence of regimes in asset returns and show that they forecast well out-of-sample.

2.3.3 If There Are Instabilities, Do Forecast Combinations Help?

Since the seminal papers of Bates and Granger (1969), Granger and Newbold (1973), Diebold

and Pauly (1987) and Hendry and Clements (2004), researchers have recognized the useful-

ness of forecast combinations in the presence of instabilities, and structural breaks are often

cited as motivation for combining forecasts from di¤erent models. As noted in Timmermann

(2006), the underlying idea is that models may di¤er in how they adapt to breaks: some

models may adapt quickly, while others may only adjust very slowly. Thus, when breaks

are small and recent, models with constant parameters may forecast more accurately than

models that allow for time variation, and the converse is true in the presence of large breaks

well in the past. Since detecting breaks is di¢ cult in real time, it is possible that, across

periods with varying degrees of instability, combining forecasts from models with di¤erent

degrees of adaptability outperforms forecasts from each of the individual models. A similar

reason why forecast combinations may work so well in practice is provided by Hendry and

Clements (2004). In Hendry and Clements (2004), forecast breakdowns arise from shifts in

the mean of omitted variables, which result in unpredictable breaks in the intercept. How-

ever, by averaging forecasts over several regressions, breaks in the intercepts average out

40The predictive likelihood is the predictive density evaluated at the actual (observed) value.
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and the forecast combination is more robust to structural shifts than any of the individual

regressions, provided that the intercept shifts are su¢ ciently uncorrelated across the di¤er-

ent regressions. Stock and Watson (2008) argue that, in factor models, it is plausible that

a similar argument could hold. In particular, even though factor loadings may be unstable,

using many series to estimate the factors could average out instabilities as long as they are

su¢ ciently independent across series. Then, factors might be precisely estimated even in

the presence of instabilities in the individual relationships between the observable and the

factors. Corradi and Swanson (2010) propose a test for factor model stability as well as a

test for factor model predictive failure.

(i) Simple forecast combinations. Forecast combinations are obtained as follows: let

yft+hjt;i be the forecast made at time t for horizon h using model "i", where i = 1; :::; N . The

equal weight forecast combination is:41

yCOMB;f
t+hjt =

NX
i=1

!t;iy
f
t+hjt;i; (36)

where !t;i = 1=N:More generally, forecasts can be combined with unequal and possibly time-

varying weights, !t;i, which typically sum to unity.42 In particular, Diebold and Pauly (1987)

argued that forecast combination can greatly reduce forecast errors of models in the presence

of a structural change. They considered rolling weighted least squares as well as time-varying

parameter models as generalizations of equal weight forecast combinations: time-varying

weights (which might, for example, be a function of time) might help in improving forecasts

in the presence of instabilities. They showed, via numerical examples, that the improvement

in forecasting ability can be substantial.

Several papers conjectured that the existence of instabilities could be a possible expla-

nation behind the empirical success of forecast combinations in practice. Min and Zellner

(1993) use forecast combination as a way to deal with heterogeneity arising from structural

change. They propose a Bayesian approach to combine a constant linear regression model

with a model with random walk time variation in the parameters. Hendry and Clements

(2004) have shown, via Monte Carlo simulation exercises, that forecast combinations may

work well if there are intercept shifts in the data generating process. Aiol�, Capistran and

41When researchers are concerned about making equal weight forecast combinations robust to outliers,

they implement a trimming. For example, in a 10 percent trimming, all forecasts generated at time t are

ordered; then the 5 percent highest and the lowest 5 percent forecasts are discarded, and the remaining

forecasts are combined with equal weights. See Stock and Watson (1999).
42That is, 1

N

PN
i=1 !t;i = 1 for every t.
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Timmermann (2010) also derive conditions under which, in a model with time-varying fac-

tor loadings, forecast combinations would provide more accurate forecasts than a model that

uses either one of the two factors alone.

(ii) Ridge regression and inverse MSFE weights. A series of papers have pro-

posed modi�cations of traditional forecast combination methods to improve forecasting abil-

ity in the presence of instabilities. Bates and Granger (1969) propose a ridge regression

method. That is, at each point in time forecasts are combined based on their historical

performance in real time, that is, by comparing forecasts to the actual real time realiza-

tions in a previous sub-sample, and shrinking it towards equal weights. For example, let

Y f
t+hjt =

h
yft+hjt;1; :::; y

f
t+hjt;i; :::; y

f
t+hjt;N

i0
: The weight vector, Wt = [!t;1; :::; !t;i; :::; !t;N ]

0, is

obtained as follows:

WBG
� =

 
cIN +

X
t

Y f
t+hjtY

f 0
t+hjt

!�1 
c � �N +

X
t

Y f
t+hjtyt+h

!
(37)

where IN is an (N �N) identity matrix, c = k� tr
�
N�1P�

t=��m Y
f
t+hjtY

f 0
t+hjt

�
; where k is

the shrinkage coe¢ cient (typical values of k are .001, .25 or 1), and �N is a (N � 1) vector of
ones. Note that

P
t can be either

P�
t=1 or

P�
t=��m, depending on whether researchers prefer

a recursive or a rolling estimate of the combination regression. A special case is k = 0 in eq.

(37), which leads to weighting each of the models by the inverse MSFE relative to the sum

of the inverse MSFEs of the other models.43 Alternative weight choices include predictive

least squares (also known as the lowest historical MSFE method), which involves setting a

weight equal to one to the model with the lowest historical MSFE and zero weight to the

other models. Aiol�and Timmermann (2006) propose to equally weighting only the forecasts

with historical MSFEs in the lowest quartile of the MSFE distribution or incorporating a

measure of the forecast performance by sorting forecasts into clusters based on their previous

performance. The latter allows researchers to take into account the possibility that some

models may be consistently better than others, and therefore that the good predictive ability

of some models might be persistent over time.

(iii) Discounted MSFE. Another popular weighting scheme is the discounted MSFE

method (see Diebold and Pauly, 1987); this method involves weighting forecasts by:

!t;i =

�Pt�h
s=s0

�t�h�sL(i)(yt+h;b�i;t;R)��1PN
j=1

�Pt�h
s=s0

�t�h�sL(j)(yt+h;b�j;t;R)��1
43This would correspond to the optimal weight when the forecast errors are uncorrelated across models.
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where L(j)(yt+h;b�j;t;R) was de�ned above eq. (8) for j = 1; 2, and here j = 1; ::; N ; s0
is the initial time used to calculate the weights; and � is the discount factor, e.g. � = 1

corresponds to the Bates and Granger (1969) optimal weighting scheme when forecasts are

uncorrelated across models. Other values of � used by e.g. Stock and Watson (2004) are

� = 0:95 and 0:9. See Stock and Watson (2004) and Clark and McCracken (2009) for other

forecast combination weighting schemes.

(iv) Regime switching weights. Elliott and Timmermann (2005) propose forecast

combinations where the combination weights are driven by regime switching in a latent

state variable. The idea is that in relatively turbulent times one might want to put more

weight on highly adaptive forecasts, whereas one may want to put more weight on stable

forecasting models in relatively tranquil times. More in detail, Elliott and Timmermann

(2005) consider a model where the joint distribution of the target variable and the vector of

forecasts is conditionally Gaussian and driven by a latent state variable St+h 2 (1; 2; :::; k): 
yt+h

Y f
t+hjt

!
� N

  
�y;st+h
�Y f;st+h

!
;

 
�2y;st+h �

0
y;Y f;st+h

�y;Y f;st+h �2Y f;st+h

!!
;

and the unobservable state vector is generated by a �rst-order Markov chain with a transition

probability matrix. They show that the proposed regime switching combination approach

works well for a variety of macroeconomic variables in combining forecasts from survey

data and time series models. Their Monte Carlo simulations show that time variation in the

combination weights arises when the predictors and the target variable share a common factor

structure driven by a hidden Markov process. See the comprehensive review by Timmermann

(2006) for details on these and other methods for forecast combination.

The empirical evidence suggests that forecast combinations with equal weights perform

the best in practice. Stock and Watson (2001) �nd that forecasts based on individual pre-

dictors tend to be very unstable over time whereas combinations tend to have better and

more stable performance than the forecasts of the individual models that enter the com-

binations. They note that their �nding is di¢ cult to reconcile with the theory of forecast

combinations in stationary environments. Stock and Watson (2003, 2004) note that forecast

combinations with time-varying weights do not perform well in practice. On the other hand,

Timmermann (2006) and Pesaran and Timmermann (2007) �nd that forecast combinations

in models with varying degrees of adaptability to structural breaks at unknown times are

better than forecasts from individual models. Clark and McCracken (2008) focus on fore-

casting with VARs in the presence of structural breaks. They show that simple equally
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weighted forecast combinations are consistently the best performers. It is also clear that

forecast combinations are capable of predicting the equity premium better than the histor-

ical average, as shown by Rapach, Strauss and Zhou (2010), who argue that the success

of forecast combinations is due to the presence of both instabilities and model uncertainty.

Typically, forecast combinations are useful when researchers have access to a large number of

possible regressors, and estimating a joint model with all the regressors would lead to a very

high parameter estimation error, which would penalize out-of-sample forecasts: in that case,

researchers may combine forecasts obtained using each of the regressors, one at a time (e.g.

Stock and Watson, 2003); note however that an alternative way of combining information

based on a large number of di¤erent regressors is to use factor models (for brevity, we refer

the reader to Stock and Watson, 2006, for a treatment of factor models). Aiol�, Capistran

and Timmermann (2010) also show that equally weighted forecast combinations of survey

data outperform model-based forecasts from linear and non-linear univariate speci�cations

as well as multivariate factor-augmented models for many macroeconomic variables and fore-

cast horizons. They show that model instabilities are really important for explaining the

gains due to forecast combinations. Occasionally, equally weighted forecast combinations

of survey and model-based forecasts result in additional forecast improvements. Stock and

Watson (2004) �nd that, in a seven countries database with a large number of predictors,

the forecast combinations that perform the best are the ones with the least data adaptivity

in their weighting schemes, such as equal weights. Note that the e¢ cacy of equally weighted

forecast combinations may depend on how the set of models is selected. Including several

models that forecast very poorly might negatively a¤ect the performance of forecast combi-

nations. As shown in Mazzi et al. (2010) among others, if one uses some trimming to exclude

models that forecast very poorly prior to taking the combination, equally weighted combina-

tions are again e¤ective. The recent and very detailed survey in Timmermann (2006, Section

4) discusses the usefulness of forecast combination as a hedge against model instability; in

general, the main �ndings in Timmermann (2006) con�rm that equally weighted forecast

combinations outperform forecast combinations with time-varying weights.44

44There are exceptions, though. Ravazzolo, Verbeek and van Dijk (2007) provide one of the very few

examples where models with time-varying weight schemes may forecast well when the data generating process

has structural breaks. Their empirical application to forecasting returns of the S&P 500 index shows that

time-varying weights might improve gains from investment strategies in the presence of transaction costs.

Altavilla and Ciccarelli (2007) use the information contained in the revision history of in�ation and GDP

growth to improve the forecast accuracy of the models. They propose forecast combinations using weights

that re�ect both the relative forecasting ability that each model has at di¤erent points in time as well as
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(v) Bayesian Model Averaging (BMA). BMA is an alternative method to implement

forecast combinations with time-varying weights, implemented by estimating the weights by

Bayesian methods. BMA techniques work as follows. They consider many possible models

together with prior beliefs on the probability that each model is true. Then they compute the

posterior probability that each model is the true one. Finally, they average the forecasts of

the various models by using these posterior probabilities as weights. Thus, BMA is e¤ectively

a type of forecast combinations, the only di¤erence being that the weights are estimated by

posterior probabilities. More formally, following Wright (2009), let the researcher�s prior

belief about the probability that the true model is the i-th model be P (Mi), i = 1; :::; N:

Also, let the posterior probability that the i-th model is the true model given the data D be:

P (MijD) =
P (DjMi)P (Mi)PN
j=1 P

�
DjMj

�
P (Mj)

;

where P
�
DjMj

�
is the marginal likelihood of the j-th model. The marginal likelihood could

be obtained by AIC or BIC, see e.g. Koop, Potter and Strachan (2008), Garratt, Koop and

Vahey (2008) and Clark and McCracken (2009); the latter, for example, set P
�
DjMj

�
to be the information criterion plus (�0:5) times the estimation sample size. Typically,
P (Mi) = 1=N: The BMA forecast then weights each models� forecast by the posterior

probability of the model:

yBMA;f
t+hjt =

NX
i=1

P (MijD) yft+hjt;i (38)

Several papers suggest that BMA forecasts are very competitive in practice. Wright

(2008) �nds that BMA is quite useful for predicting exchange rates out-of-sample. In par-

ticular, BMA forecasts perform quite well relative to a driftless random walk, which is the

toughest benchmark to beat in the exchange rate literature. Wright (2008) �nds that, in

most cases, BMA forecasts with a high degree of shrinkage have lower MSFEs than the

random walk benchmark, although BMA forecasts are very close to those from the random

walk forecast in magnitude. Wright (2009) �nds that BMA provides better out-of-sample

forecasts of U.S. in�ation than equal weight forecast averaging. This superior performance

is robust across sub-samples (before and after 1987), thus showing robustness to the possi-

bility of forecast instabilities. Clark and McCracken (2010) provide empirical evidence on

whether various forms of forecast averaging can improve real-time forecasts of small-scale

di¤erent vintages to capture information on the revision process and improve forecasting performance, both

in terms of precision and stability.
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VARs in the presence of instabilities (see Kozicki and Tinsley, 2001, Cogley and Sargent,

2005, Boivin and Giannoni, 2006, and Inoue and Rossi, 2011, among others, for empirical ev-

idence of instabilities in VARs). The VARs that they consider include in�ation, output and

the interest rate. They consider BMA as well as alternative approaches to forecast averaging,

such as equally weighted averages and MSFE-weighted averages as well as a large variety of

methods robust to model instability, including di¤erent estimation window sizes, intercept

corrections, allowing discrete breaks in parameters identi�ed with break tests, discounted

least squares, and BMA, among others. They show that the simplest forms of model averag-

ing (such as equally weighted forecasts) consistently perform among the very best, whereas

MSFE-weighted averages and factor models perform the worst. BMA�s forecasts with high

shrinkage perform well relative to VARs�and BVAR�s forecasts, although not as well nor as

consistently as simple equal weight forecast combinations.

A Monte Carlo analysis of the e¤ects of parameter breaks on out-of-sample forecasting

performance in BMAs is considered by Eklund and Karlsson (2005). They consider a Monte

Carlo experiment where the parameter of one of the predictors is either constant or changes

sign either at the beginning, in the middle, or towards the end of the data. When the pa-

rameters are constant, the true model is among the set of models to be estimated, whereas

in the latter case, the true model is not. They compare the out-of-sample forecasting per-

formance of typical BMA (whose weights depend on the posterior probabilities based on the

marginal likelihood) with the performance of BMA models where the weights depend on the

posterior predictive density ("BMA with predictive likelihood"). The posterior predictive

density is the density calculated in the out-of-sample portion of the data, that is observations

R+1; :::; T (the"hold-out sample", based on P = T �R observations), using parameters es-
timated on data from 1 to, say, R ("training sample"). Di¤erences between the performance

of the typical BMA and the BMA with predictive likelihood suggest that the typical BMA

may not be informative about the out-of-sample behavior. They show that results based on

the typical BMA are very similar to those based on the BMA with predictive likelihood in

the absence of a break, as long as P is large enough. However, in the presence of a break, the

typical BMA fails to approximate the BMA with predictive likelihood: when the break is

in the middle of the sample, the predictive likelihood performs signi�cantly better provided

the out-of-sample period is large enough. When the break is towards the end of the sample,

the typical BMA always performs worse than the BMA with predictive likelihood. These

results mirror the discussion in Section 2.3.1. In fact, when the true model is among the

choice set, the predictive likelihood will select the true model asymptotically, although at a
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slower rate than the marginal likelihood since it relies on fewer observations; the two will

perform similarly only when the sample size is large enough. When the true model is not

among the choice set, the predictive likelihood will guard against over-�tting whereas the

marginal likelihood will over�t.

Several new papers attempt to simultaneously address structural change and model un-

certainty using a BMA approach. In particular, Ravazzolo, Paap, van Dijk and Franses

(2007) allow for breaks of random magnitude in the parameters of forecasting regressions

as well as uncertainty about the inclusion of models�predictors in their BMA framework.

They attempt to predict U.S. excess stock returns using both macroeconomic and �nancial

predictors. They �nd several breaks, which they relate to events such as oil crises, monetary

policy changes, the 1987 stock market crash and the internet bubble. On the one hand,

incorporating uncertainty on breaks and on the predictors does not lead to signi�cant fore-

cast improvements relative to linear models or traditional BMA; on the other hand, typical

investors would be willing to pay several hundred basis points to switch to a strategy based

on their forecasting model. Similarly, Groen, Paap and Ravazzolo (2009) propose a Phillips

curve model for forecasting in�ation by averaging across di¤erent model speci�cations se-

lected from a set of potential predictors (lagged in�ation, real activity data, term structure

data, nominal data and surveys), where each of the models�speci�cations allow for stochastic

breaks in regression parameters. The breaks are occasional random shocks. Like Ravazzolo,

Paap, van Dijk, and Franses (2007), they �nd breaks that coincide with monetary policy

regime changes or oil crises, and only little evidence of breaks in the variances or persistence.

Koop and Korobilis (2009) propose a BMA where both the coe¢ cient values as well as the

entire forecast model can change over time (for example, a predictor might be useful during

recessions but not in expansions). The advantage relative to Groen, Paap and Ravazzolo

(2009) is that it can handle many more predictors.

In a more recent contribution, Pesaran et al. (2009) propose to average forecasts not only

across window sizes, as in Pesaran and Timmermann (2007) and Pesaran and Pick (2011), but

also across models. They propose an "AveAve" approach where several models�forecasts

are �rst averaged according to a Bayesian model averaging technique for a given window

size, and then the procedure is repeated over several window sizes and their forecasts are

averaged further. They show that the "AveAve" technique performs favorably in forecasting

output growth and in�ation across several countries relative to a simple equal weight forecast

combination across window sizes and relative to an equal weight forecast combination across
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predictors (i.e. models).45

2.3.4 Instabilities and Density Forecasts

So far, the discussion focused on conditional mean forecasting. To conclude, we discuss a few

additional, related empirical results regarding density forecasts, including a brief overview

of recent contributions in time-varying volatility forecasting for macroeconomic data.46

Regarding estimation of density forecasts in the presence of instabilities, researchers have

proposed to use either forecast density combinations or to model the instabilities paramet-

rically. Bayesian Model Averaging can be used to obtain forecast density combinations. For

example, letting ft+hjt;i denote the forecast density of model i; i = 1; ::; N , the BMA forecast

density combination is:

fBMA
t+hjt =

NX
i=1

P (MijD) ft+hjt;i (39)

where P (MijD) has been de�ned above eq. (38).
Hall and Mitchell (2007) discuss techniques to combine density forecasts. Their applica-

tion to U.K. in�ation density forecasts suggests that combining information across density

forecasts can generate forecast improvements, a result similar to the forecast combination

literature on point forecasts. They also discuss the estimation of the combination weights,

although not in the presence of instabilities; see also Geweke and Amisano (2011). Jore,

Mitchell and Vahey (2010) study the usefulness of combining forecast densities using many

VARs and autoregressive models of output growth, in�ation and interest rates. They propose

a recursive-weight density combination strategy, based on the recursive logarithmic score of

the forecast densities. They show that neither full-sample univariate combinations nor equal-

weight combinations produce accurate real-time forecast densities for the Great Moderation

period due to the existence of a structural break at the time of the Great Moderation. Their

proposed recursive-weight density combination strategy gives competitive forecast densities

45See also Aiol� and Timmermann (2004) for an analysis of the performance of forecast combinations

in the presence of structural breaks; Clemen and Winkler (1986) for the empirical performance of forecast

combination models for predicting output; Kang (1986) for instability in the forecast combination weights;

Palm and Zellner (1992) for issues in combining forecasts; Ravazzolo et al. (2007) for BMA in the presence

of breaks; Pesaran, Pick and Pranovich (2013) for theoretical results on optimal forecasts in the presence of

breaks; Gonzalo and Pitarikis (2010) for regime-speci�c predictability in predictive regressions; and Koop

and Potter (2004) for BMA in large panels.
46For an extensive overview of volatility forecasting, in particular for �nancial variables, see Andersen et

al. (2009).
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by assigning a higher weight on rolling and break components that allow for the shifts in

volatilities. Mazzi, Mitchell and Montana (2010) nowcast Euro-area output growth over

the 2008-9 recession using density forecast combinations and economic indicators available

at higher frequencies. They note that during the recent recession the relative forecasting

performance of the models they consider changed abruptly. Billio et al. (2012) combine

predictive densities using multivariate time-varying weights, where the weight dynamics is

driven by the past performance of the predictive densities using learning mechanisms. The

latter helps in identifying structural changes like the Great Moderation. An alternative to

forecast density combinations is the estimation of models with time-varying parameters. For

example, Clark (2011) focuses on density forecasts of U.S. GDP growth, unemployment,

in�ation and the interest rate in a Bayesian VAR with stochastic volatility, to better capture

the decrease in volatility during the Great Moderation period. He demonstrates that adding

stochastic volatility helps improving the real-time accuracy of density forecasts. Carriero,

Clark and Marcellino (2012) extend the analysis to large VARs where the volatilities are

driven by a single common factor and Koop and Korobilis (2012) propose new methods

to estimate large dimensional VARs with time-varying parameters (including time-varying

volatilities), where the models�dimension can change over time. Bache et al. (2011) consider

how the density forecasting performance of a DSGE model with time-invariant parameters

can be improved via combination with many VAR-based densities. They �nd that, although

DSGE models produce competitive point forecasts, their predictive densities are poorly cal-

ibrated. Densities become well calibrated only after merging the DSGE model with VARs

allowing for breaks, although in this case the DSGE component receives little weight. Again,

these results point to the importance of instabilities in practice. When combining density

forecasts of the DSGE and the VARs with constant parameters, instead, the DSGE receives

a larger weight, but only at horizons in which the predictive densities are mis-speci�ed.47

Potentially interesting alternative avenues for future research may include non-linear (log-

arithmic) combinations (e.g Kascha and Ravazzolo, 2010, although they do not focus on

47An interesting question is whether structural/economic restrictions and/or statistically motivated re-

strictions on the forecasting model might improve forecasts in the presence of instabilities. On the one hand,

it might be possible that economic restrictions may render the forecasting model robust to the Lucas�critique

since, if the parameters are "deep", they might be less subject to instabilities than reduced-form models. On

the other hand, it might be possible that such restrictions may be invalid in the data, thus generating a mis-

speci�ed model whose forecasts may be less robust to instabilities. It might be possible that, by restricting

the parameter space, there is less estimation error when parameters do shift, provided they remain within

the parameter space (e.g. priors might improve forecasting performance, as in the Bayesian VAR literature).
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density forecasting and instabilities) and maximizing the forecasting performance not of the

whole density, but on some regions of economic interest which might be more robust to in-

stabilities. Regarding forecast density evaluation in the presence of instabilities, researchers

might be interested in evaluating either the relative performance of density forecasts or the

correct speci�cation of the density forecast of a selected model. Regarding the former, Man-

zana and Zerom (2009) focus on forecasting the distribution of in�ation rather than its mean.

They consider commonly used macroeconomic indicators and �nd that some of them, such

as the unemployment rate and housing starts, signi�cantly improve forecasts of the distribu-

tion of core CPI in�ation.48 Regarding the latter, Rossi and Sekhposyan (2012b) empirically

evaluate the correct speci�cation of density forecasts of output growth and in�ation based

on a normal approximation in a large database of predictors similar to that considered in

the empirical application in this Chapter.49

2.3.5 Summary of Findings

Overall, instabilities are a practical and serious concern for forecasters interested in eval-

uating predictive ability. Traditional forecast evaluation methods are inconsistent in the

presence of instabilities. However, several alternative, robust procedures have been pro-

posed. To determine Granger-causality, researchers might use Granger-causality tests ro-

bust to instabilities (Rossi, 2005); to assess which model forecasts the best, researchers can

use Giacomini and Rossi�s (2010a) Fluctuation and One-time reversal tests; to determine

whether forecasts are rational, unbiased and/or optimal, researchers can rely on Rossi and

Sekhposyan�s (2011b) Fluctuation optimality tests. It is also possible to improve models�es-

timation in the presence of instabilities by either estimating historic breaks or by combining

forecasts. The empirical evidence in the literature suggests that forecast combinations with

equal weights provide the largest improvements in forecasting. Possible explanations why

forecast combinations may work well include �nite sample error in the weights estimates (see

Smith and Wallis, 2009) and di¤erent degrees of mis-speci�cations in the forecasting models,

as determined by instabilities (see Hendry and Clements, 2004). BMA also performs quite

48Amisano and Giacomini (2007) and Diks, Panchenkob and van Dijk (2011) are recent works that propose

methodologies to evaluate the relative performance of density forecasts in stable environments.
49Diebold, Gunther and Tay (1998) and Corradi and Swanson (2006a) propose methodologies for evaluating

the correct speci�cation of density forecasts in stable environments �see Corradi and Swanson (2006b) for

an excellent review. Rossi and Sekhposyan (2012a) propose tests to evaluate the correct speci�cation of

density forecasts in the presence of instabilities.
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well, whereas forecast combinations with time-varying weights are less successful. In addi-

tion, either averaging across window sizes or evaluating forecasting ability in a way robust

to the choice of the window size usually improves the empirical evidence in favor of models�

predictive ability.
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3 What is the Relationship Between In-sample and

Out-of-sample Forecasting Ability in the Presence

of Instabilities?

This section analyzes the relationship between models�in-sample �t and their out-of-sample

forecasting performance in the presence of instabilities. First, we discuss the empirical

evidence. Overall, the main message from the literature is that in-sample tests do not provide

reliable guidance to out-of-sample forecasting ability. Then, we analyze the relationship

between in-sample �t and out-of-sample forecasting ability. The di¤erence between the two

may be explained by structural breaks, over�tting, and di¤erent small sample properties of

the estimates. We provide an overview of techniques that allow researchers to formally test

whether in-sample �t provides enough guidance to out-of-sample forecasting performance via

forecast breakdown tests (Clements and Hendry, 1998, 1999, and Giacomini and Rossi, 2009).

When such tests reject, it is important to know why the in-sample �t is di¤erent from the

out-of-sample forecasting performance, and we provide methods to empirically answer this

question (Rossi and Sekhposyan, 2011a). Finally, Section 4 provides an empirical analysis

of the presence of forecast breakdowns and their explanations in an empirical application to

forecasting in�ation and output growth using a large database of time series predictors.

3.1 Does In-sample Fit Provide Good Guidance to Out-of-Sample

Forecasting Ability? The Empirical Evidence.

One area where researchers have explored whether in-sample �t provides guidance for out-

of-sample forecasting ability is in predicting stock returns. Campbell (1987), Campbell and

Shiller (1988), Bekaert and Hodrick (1992), Fama and French (1988), Perez-Quiros and Tim-

mermann (2000) and Pesaran and Timmermann (1995) have found in-sample predictability

in stock returns. However, more recent studies have documented that, although there is pre-

dictability in-sample, the true out-of-sample forecasting ability is much weaker: Bossaerts

and Hillion (1999) �nd that stock returns on a variety of U.S. and international portfolios

were unpredictable out-of-sample during the 1990s; Cooper, Gutierrez and Marcum (2005)

�nd that relative returns on portfolios of stocks sorted on �rm size, book-to-market value and

past returns were not predictable out-of-sample during the period 1974-1997. Marquering

and Veerbeek (2004) found that the trading strategies they study had predictive power only
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in the �rst half of the sample period they consider. Similarly, Sullivan, Timmermann and

White (1999) �nd that the trading strategies they study were pro�table before 1986 but not

afterwards. Paye and Timmermann (2006) formally test for instabilities in return prediction

models and �nd widespread instabilities. See also Goyal and Welch (2003) and Ang and

Bekaert (2004).

A second area where in-sample �t does not provide reliable guidance for out-of-sample

forecasting ability is when predicting exchange rates. Meese and Rogo¤(1983a,b) have shown

that, although models of exchange rate determination based on traditional fundamentals �t

well in sample, their forecasting performance is much worse than a simple, a-theoretical

random walk model. More recently, Sarno and Valente (2009) argued that the poor out-of-

sample forecasting ability of exchange rate models may be caused by the poor performance

of in-sample model-selection criteria, rather than by the lack of predictive content of the

fundamentals.

Finally, a third area of interest is predicting output growth. Swanson (1998) shows that

models with statistically signi�cant in-sample monetary aggregates are not guaranteed to

outperform simpler models out-of-sample. Furthermore, Swanson and White (1997) show

that model selection based on the BIC fails to result in improved out-of-sample performance

for several linear and non-linear models when predicting nine key macroeconomic variables.

Giacomini and Rossi (2006) focus on predicting U.S. GDP using the U.S. yield curve. They

also found signi�cant failure of measures of in-sample �t for predicting GDP growth out-of-

sample, and relate this failure to changes in monetary policy regimes.

3.2 The Theoretical Relationship Between Out-of-Sample Fore-

casts and In-sample Fit

The presence of model instability and/or over�tting might explain some of the di¤erences

between models�in-sample �t and out-of-sample forecasting ability. In fact, one important

advantage of evaluating models on the basis of their out-of-sample forecasting ability is that

out-of-sample procedures have power against structural breaks because they re-estimate their

parameters over time by either rolling or recursive window estimation schemes. Clark and

McCracken (2005) undertake an analytic investigation of the e¤ects of structural breaks on

parameters in tests of equal out-of-sample predictive ability and encompassing, as well as

in-sample tests of predictive ability.

In what follows, we present a simpli�ed example based on their results. Let yt = �t+ "t,
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where "t � iid(0; �2t ) and t = 1; 2; :::; T: Let �t = 0 for t � t� and �t = �2 for t > t�, and let

t� = [� �T ], so that the breaks happens at a �xed fraction of the total sample size, � � 2 [0; 1].
Imagine a researcher interested in evaluating Granger-causality, which, in this example,

simply means testing whether the constant is signi�cant or not. The unrestricted model is

a model with a constant, for which the in-sample �tted errors are b"2;t = yt � T�1
PT

s=1 ys;

the restricted model is a model with a zero mean, for which the in-sample �tted errors areb"1;t = yt. The Granger-causality test, GCT , can be written as:

GCT = T

"
T�1

TX
t=1

�b"21;t � b"22;t�
# "

T�1
TX
t=1

b"22;t
#�1

' T
�
�22 (1� � �)2

�
+Op

�
T 1=2

�
: (40)

Thus, GCT diverges to positive in�nity as long as �2 6= 0, and will do so at rate T . However,
it will diverge faster the larger is �2 and the larger is (1� � �)2. That is, since � � is bounded

between 0 and 1; for a given value of �2; the Granger-causality test statistic will be larger

the smaller the value of � �, that is the earliest in the sample the parameter becomes di¤erent

from zero. On the other hand, for a given value of � �, GCT will be larger the bigger �2
is, that is the more di¤erent from zero the constant is (zero is the restricted value of the

parameter).

Now consider Diebold and Mariano�s (1995) and West�s (1996) tests. These tests are

based on the one-step ahead out-of-sample forecast errors of the two models. The value of

their test statistic will depend on when the break happens: whether it happens (a) after the

sample split, or (b) before the sample split. It will also depend on the fraction of the sample

used for forecast evaluation (T�R = [(1� �)T ], using the approximation � = lim
T;R!1

(R=T ))

and on whether the parameters are re-estimated in rolling or expanding window estimation

schemes. Let the out-of-sample forecast errors of the two models considered above be denoted

by bu1;t+1jt = yt+1 and bu2;t+1jt = yt+1 � t�1
Pt

s=1 ys and let the loss function be quadratic.

Clark and McCracken (2005) show that, in the recursive window case and for h = 1, the

DMWP statistic de�ned in eq. (9) is such that:

DMWP = P

h
P�1

PT
t=R

�bu21;t+1jt � bu22;t+1jt�i�
P�1

PT
t=R

�bu21;t+1jt � bu22;t+1jt�2��1=2
; where (41)

TX
s=R

�bu21;t+1jt � bu22;t+1jt� '

8>>><>>>:
2T�22

1R
��

�
s�1 (s� � �)� s�2 (s� � �)2

�
ds = T�22 (1� � �)2 , for (a)

T�22

1R
�

h
2
s
(s� � �)� (s���)

s2

i
ds = T�22

h
1� � + � �2 � ��2

�

i
, for (b),
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and the denominator is Op
�
T 1=2

�
. In both cases, the dominating term in the DMWP test

statistic diverges to positive in�nity. However, now the speed depends on P . As in the

case of the GCT test, the value of DMWP is larger the larger is �2, that is the bigger the

predictive ability in the constant; and it is also larger the smaller � � in case (a), that is, the

earlier the predictability shows up in the data.

Since both statistics diverge to in�nity as the sample size diverges, in large samples both

tests are likely to reject the null hypothesis provided �2 6= 0. Comparing (40) with (41), it
is clear that the relative power of the two tests depends on the location of the break, � � and

the fraction of the sample used for estimation purposes, �. We have shown in Section 2.2.1

that there exist situations in which the GCT test has no power; thus, in such situations,

out-of-sample forecast tests may have better power to select the correct model than in-

sample Granger-causality tests. This argument prompted Rossi (2005) to design in-sample

tests that have power against structural breaks in the parameters, reviewed in Section 2.2.1.

Clark and McCracken (2005) have compared the performance of the GCT and DMWP tests

with Rossi�s (2005) Exp�W �
T test and shown that the latter is always more powerful when

instabilities take the form of a one-time break. This suggests that, once one has determined

the source of the possible advantage of out-of-sample predictive ability tests relative to in-

sample tests, it may be possible to �nd an in-sample test that has better power properties.

The latter point was also suggested by Inoue and Kilian (2006). However, out-of-sample

forecast tests have power against a variety of alternatives, as Giacomini and Rossi (2009)

have shown.

Giacomini and Rossi (2009) present a decomposition of the out-of-sample losses into a

series of components that identify possible sources of di¤erences between the out-of-sample

predictive ability of a model relative to what was expected based on its in-sample �t. Their

ultimate goal is to propose a theoretical framework for assessing whether a forecast model es-

timated over one period can provide good forecasts over a subsequent period. They formalize

this idea by de�ning a forecast breakdown as a situation in which the out-of-sample perfor-

mance of the model, judged by some loss function, is signi�cantly worse than its in-sample

performance. They show that one of the main causes of forecast breakdowns are instabilities

in the data generating process and relate the properties of their forecast breakdown test to

those of traditional structural break tests.

To gain some insight into the causes of forecast breakdowns, Giacomini and Rossi (2009)

analyze the expectation of the di¤erence between the out-of-sample forecast error relative to

the average loss computed over the in-sample period. That is, for a given loss function L (:)
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(for simplicity, we assume that the same loss is used for both estimation and out-of-sample

forecast evaluation) and forecast horizon h; Giacomini and Rossi (2009) propose analyzing

the sequence of P out-of-sample �surprise losses�:

SLt+h = Lt+h � Lt, for t = R;R + 1; :::; T; (42)

where Lt+h is the out-of-sample forecast error loss and Lt is the in-sample average loss. The

latter depend on the forecasting scheme. Let �j denote the relevant sample average depend-

ing on the forecasting scheme: �j = t�1
Pt

j=1 for the recursive scheme, �j = R�1
Pt

j=t�R+1

for the rolling scheme with window size R, and R�1
PR

j=1 for the �xed scheme; thus,

Lt =
P

jLj. For example, in the case of a quadratic loss, Lt+h is the squared out-of-sample

forecast error of a model, and Lt is the in-sample mean squared (�tted) error. They further

de�ne ��t to be such that E (@Lt (�
�
t ) =@�) = 0 and b�t to be the in-sample parameter estimate

at time t estimated via either �xed, recursive or rolling estimation scheme, t = 1; 2; : : : ; T:

Also, let b�t, ��j denote intermediate points between �b�t; ��t�, ���t ; ��j� ; respectively.
Giacomini and Rossi (2009) decompose the expectation of the average surprise losses

over the out-of-sample portion of the data, eq. (42), into components grouped into pa-

rameter instabilities, other instabilities and estimation uncertainty. They de�ne "Forecast

breakdowns" (see Clements and Hendry (1998, 1999) as situations where:

E

 
P�1=2

TX
t=R

SLt+h(b�t)
!
6= 0:

Their decomposition shows that forecast breakdowns can be caused by several factors. To

be concrete, let us derive the decomposition when there are both breaks in parameters and

breaks in the variance of the errors, for the special case of a linear regression model, a �xed

forecasting scheme and a quadratic loss. Consider the following simpli�ed example, where

L (e) = e2, the forecasting scheme is �xed, and the model is: yt+1 = x0t�t + "t+1; where:

"t = �tut; the (p� 1) vector xt is i:i:d: with E (xtx0t) � J ; �t = � + P�1=4�� � 1 (t � R);

�2t = �2 + P�1=2��2 � 1 (t � R) + �"2t�1 (��
2 can be negative) and ut is i.i.d.(0,1). This

speci�cation allows for ARCH and two types of structural breaks: a break in the conditional

mean parameters at time R (from � to �+��); and a break in the unconditional variance of

the errors at time R (from �2= (1� �) to (�2 +��2) = (1� �)). Giacomini and Rossi (2009)

show that:

E

 
P�1=2

TX
t=R

SLt+h(b�t)
!
=

��2

1� �| {z }
�other instabilities�

+
1

2
��0J��| {z }

�parameter instabilities II�

+ 2
P 1=2

R

�2

1� �
p| {z } :

�over�tting"

(43)
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First, note from (43) that a forecast breakdown can be caused by a �small� positive

break in the variance of the disturbances and/or a �large� break (positive or negative)

in the conditional mean parameters. However, the presence of ARCH does not cause a

forecast breakdown. Second, expression (43) implies that breaks in parameters and in the

variance of the errors could have opposite e¤ects on the forecast performance, and thus not

necessarily cause a forecast breakdown (e.g., if ��2 � �:5��0J��). In other words, there
could be a bias-variance trade-o¤ between breaks in the model�s parameters (which result

in biased forecasts) and breaks in the variance of the errors which do not necessarily result

in a discrepancy between in-sample �t and out-of-sample forecasting performance. Indirect

approaches that jointly test for breaks in conditional mean and variance parameters may

instead detect both breaks and thus incorrectly conclude that the forecast performance of the

model necessarily deteriorates. Finally, under their assumptions, the over�tting component

is present only in �nite samples and is proportional to the number of parameters, the variance

of the disturbances and the factor P 1=2=R. Giacomini and Rossi (2009) further discuss the

e¤ects of over�tting on the properties of the forecast breakdown test in greater detail and

propose an over�tting-corrected version of their test based on a small sample approximation

where the number of regressors is large relative to the total sample size.

Other additional, important points on the relationship between in-sample �t and out-

of-sample forecasting ability were made by Inoue and Kilian (2004). They note that there

are important cases where strong in-sample evidence and weak out-of-sample evidence are

not necessarily an indication that in-sample tests are not reliable. For example, in-sample

tests rely on a larger sample size than out-of-sample tests (which have to reserve a portion of

the data for out-of-sample forecast validation), so that they may have higher power. If the

data are stationary, Inoue and Kilian�s (2004) explanation implies that we should discount

the results out-of-sample tests when the latter fail to con�rm the �ndings of predictability

using in-sample tests.50 Another interesting point that Inoue and Kilian (2004) make is

that it is not necessarily true that out-of-sample tests are more robust to data mining than

in-sample tests: the problem is that out-of-sample tests are not truly �out-of-sample�, since

the researcher is free to experiment with alternative predictors in the out-of-sample portion

50Inoue and Kilian (2004) also consider the possibility of breaks.
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of the data until he �nds a signi�cant predictor.51

An interesting question is why there are instabilities in the forecasting performance and

why they might explain the gap between in-sample �t and out-of-sample forecasting ability,

such as that described in eq. (43). Timmermann (2008) provides an intriguing explanation

based on the economic analysis of the stock market. In particular, he argues that forecast-

ers of stock returns face a moving target that changes over time: "just as the forecaster

may think that he has �gured out how to predict returns, the dynamics of market prices

will, in all likelihood, have moved on �possibly as a consequence of the forecaster�s own

e¤orts" (Timmermann, 2008, p. 1). That is, forecasters constantly search across competing

approaches and investment strategies and make use of all available in-sample information.

Once a successful forecast strategy is found, more and more forecasters and investors will

try to exploit it, and it will start to have an impact on prices so that the predictability

e¤ectively gets incorporated in the current price and it disappears. Timmermann (2008)

conjectures that such a competition across forecasters and investors generates instabilities

in the models�out-of-sample forecasting performance. Interestingly, it might then be that

the lack of predictability is not due to the inexistence of predictability, or worse to the lack

of skills of forecasters, but to the fact that predictive opportunities are exploited e¢ ciently:

an example of "post hoc ergo propter hoc". Note that, as a consequence of Timmermann�s

(2008) argument, if the predictability of successful models were based on actual observed

variables whose information was e¤ectively exploited by forecasters, econometric regressions

should be able to uncover such relationships; however, successful models might be too com-

plicated to be captured by the econometrician�s simple time series regressions, in part also

due to their instabilities over time.52

Finally, note that the main focus of this Section is on the relationship between in-sample

model�s �t and out-of-sample forecasting ability in the presence of instabilities. For complete-

51Inoue and Kilian (2006) focus instead on the consistent selection of forecasting models based on the

MSFEs, rather than on testing, and show that selecting models based on MSFEs may lead to choosing

over-parameterized models under the assumption that the window size used for estimation is a �xed fraction

of the total sample size.
52See also Schwert (2003) for a similar argument. He argues that it has been observed that anomalies in

�nancial markets may disappear after being documented in the literature. This raises the question whether

the disappearance is due to sample selection bias or to the practitioners�focus on anomalies. In the former

case, there was no anomaly to start with; in the second case, it is possible that the anomaly was identi�ed

by practitioners and then disappeared because practitioners take anomalies into account in their trading

pattern so that pro�table transactions vanish.
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ness, let us mention two recent papers that focus on the relationship between in-sample �t

and out-of-sample forecasting ability, although they focus on stationary environments. The

�rst is Hansen (2009). Hansen (2009) derives the joint limiting distribution of in-sample �t

and out-of-sample forecasts at the true, or pseudo-true, parameter values. His results indicate

that for a broad class of loss functions the two are strongly negatively correlated. The conse-

quence of this result is that good in-sample �t leads into poor out-of-sample �t. In particular,

an example in Hansen (2009) shows that, under some simplifying assumptions (e.g. the data

are i.i.d. Normal and the loss is quadratic), the in-sample �tted error (bu21;t) and the out of
sample forecast error (bu21;t+1jt) are jointly distributed as �bu21;t; bu21;t+1jt�!d (Z21 ;�Z21 + 2Z2Z2) ;
where Z1; Z2 are iid Normals, independent of each other. This shows that the source of ad-

vantage of models�in-sample �t (Z21) is exactly the same component that penalizes models�

out-of-sample �t.

The second paper is the work by Calhoun (2011). Calhoun (2011) focuses on the asymp-

totic distribution of tests of forecast comparisons in models where the number of predictors

used by the larger model increases with the sample size. Under these assumptions, he shows

that out-of-sample tests can test hypotheses about measures of models�forecasting perfor-

mance if the fraction of the sample used for out-of-sample evaluation is small. Furthermore,

in-sample tests as well as Clark and McCracken�s (2001, 2005a), McCracken�s (2007) and

Clark and West�s (2006, 2007) tests will choose the larger model too often even if the smaller

model is more accurate.

3.3 How Can Researchers Formally Establish Whether In-sample

Fit is Indicative of Out-of-Sample Forecasting Ability?

Giacomini and Rossi (2009) propose a test to detect and predict forecast breakdowns in a

model. Their notion of a forecast breakdown is a formalization and generalization of what

Clements and Hendry (1998, 1999) called a �forecast failure�, described as a �deterioration in

forecast performance relative to the anticipated outcome�(Clements and Hendry, 1999, p. 1).

Giacomini and Rossi (2009) formalize the de�nition of a forecast breakdown by comparing the

model�s out-of-sample performance to its in-sample performance using the notion of surprise

losses, SLt+h; de�ned in eq. (42). Their test for predicting forecast breakdowns is obtained

as follows. Consider the sequence of P out-of-sample surprise losses SLt+h and select a

p�dimensional vector of forecast breakdown predictors Xt (which can include a constant,

lagged surprise losses, and various predictors such as business cycle leading indicators as well
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as economically meaningful variables). Then, estimate the following model:

SLt+h = a0 + a01Xt + "t+h: (44)

and test whether a0 = a1 = 0. When the null hypothesis is rejected, the model experienced

a forecast breakdown, which implies that the model (44) could be used to predict future

forecast breakdowns.53

A special case is the test to detect past forecast breakdown. For simplicity of exposi-

tion, let us focus on this simple case. Now, additional regressors Xt are not included, so

that the researcher tests whether the surprise losses are zero in expectation. The �forecast

breakdown�test statistic is then:

tR;P;h =
SLPb�SL ; (45)

where SLP = P�1=2
TP
t=R

SLt+h and b�2SL is the appropriate, consistent estimate of the variance
of the average surprise losses provided by Giacomini and Rossi (2009); for example, in the

recursive estimation case, b�2SL is simply the HAC variance estimate of the surprise losses.
The test rejects the null hypothesis at the 100�% con�dence level whenever tR;P;h is greater

than the 100(1� �)� th quantile of a standard Normal distribution.54

3.4 How to Empirically Determine Why In-sample Fit Di¤ers

From Out-of-Sample Forecasting Ability?

While the test proposed by Giacomini and Rossi (2009) has power to detect forecast break-

downs, it is not possible to use it to determine what the source of the forecast breakdown

is. Rossi and Sekhposyan (2011a) take Giacomini and Rossi�s (2009) decomposition a step

further by developing a new methodology to identify the sources of models�forecasting per-

formance. The methodology decomposes the models�forecasting performance into asymp-

totically uncorrelated components that measure instabilities in the forecasting performance,

predictive content and over-�tting.

Rossi and Sekphosyan (2011a) de�ne predictive content as the correlation between in-

sample and out-of-sample measures of �t, similarly to Giacomini and Rossi (2009). When

53Note that the estimate of the variance to be used to implement the test a0 = a1 = 0 is complicated by

parameter estimation uncertainty, and it is provided in Giacomini and Rossi (2009).
54The over�tting component is always positive and will be a cause of forecast breakdown in �nite samples.

Under special assumptions, Giacomini and Rossi (2009) also provide an over�tted-corrected test for forecast

breakdown.
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the correlation is small, the in-sample measures of �t have no predictive content for the

out-of-sample and vice versa. An interesting case occurs when the correlation is strong,

but negative: in this case, the in-sample predictive content is strong yet misleading for the

out-of-sample. Rossi and Sekhposyan (2011a) de�ne over-�tting as a situation in which a

model �ts well in-sample but loses predictive ability out-of-sample; that is, where in-sample

measures of �t fail to be informative regarding the out-of-sample predictive content.

To capture predictive content and over-�tting, they consider the following regression:

�Lt+h = a ��Lt + ut+h for t = R;R + 1; :::; T; (46)

where �Lt+h is the sequence of estimated out-of-sample loss di¤erences of two models eval-

uated at the estimated parameter values de�ned in eq. (8) and �Lt denotes the in-sample
loss di¤erence of the two models.

Let ba � � 1
P

TP
t=R

�L2t
��1�

1
P

TP
t=R

�Lt�Lt+h
�
denote the OLS estimate of a in regression

(46), ba�Lt and but+h denote the corresponding �tted values and regression errors: �Lt+h =ba�Lt + but+h. Note that regression (46) does not include a constant, so that the error term
measures the average out-of-sample loss not explained by in-sample performance. Then, the

average MSFE can be decomposed as:

1

P

TX
t=R

�Lt+h = BP + UP ; (47)

where BP � ba� 1
P

TP
t=R

�Lt
�
and UP � 1

P

TP
t=R

but+h. BP can be interpreted as the component
that was predictable on the basis of the in-sample relative �t of the models (predictive

content), whereas UP is the component that was unexpected (over-�tting).

Let A�;P = m�1
R+��1P

t=R+��m
�Lt+h � 1

P

TP
t=R

�Lt+h, and A�;P � E (A�;P ) ; BP � �E (�Lt),

UP � E (�Lt+h)� �E (�Lt) : Rossi and Sekhposyan (2011a) propose the following decom-
position:

1

m

R+��1X
t=R+��m

[�Lt+h � E (�Lt+h)] =
�
A�;P � A�;P

�
+
�
BP �BP

�
+
�
UP � UP

�
: (48)

They consider three null hypotheses: (i) Constant predictive ability: H0;A : A�;P = 0 for all

� = m;m+1; :::; P ; (ii) No predictive content: H0;B : BP = 0; and (iii) No over�tting: H0;U :

UP = 0. Under the null hypotheses, they show that the three components, A�;P ; BP and

UP , are asymptotically independent. Thus, the components in decomposition (48) can be
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used to construct three test statistics to test each of the null hypotheses: constant predictive

ability, predictive content, and over�tting:

�
(A)
P � sup

�=m;:::;P
j
p
Pb��1A A�;P j; (49)

�
(B)
P �

p
Pb��1B BP ;

�
(U)
P �

p
Pb��1U UP :

The �(A)P test rejects �constant predictive ability�when �(A)P > kRS�;� ; where k
RS
�;� ; the critical

values for the �(A)P test, are reported in Rossi and Sekhposyan�s (2011a) Table 1 and depend

on � = lim
T!1

(m=P ). The �(B)P test rejects �no predictive content� when
����(B)P

��� > z�=2,

where z�=2 is the 100 �=2 � th percentile of a standard Normal distribution. Similarly,

�
(U)
P test rejects �no over�tting� when

����(U)P

��� > z�=2. For convenience, we report Rossi

and Sekhposyan�s (2011a) critical values for tests with signi�cance level 5% in Table A.5 in

Appendix 1. For the same signi�cance level, z�=2 = 1:645:

To gain intuition, consider a simple example where the true data generating process

(DGP) is yt+h = �+"t+h, where "t+h � iidN (0; �2). Rossi and Sekhposyan (2011a) compare

the forecasts of two nested models for yt+h made at time t, based on parameter estimates

obtained via a rolling estimation scheme with a �xed window size. The �rst (unrestricted)

model includes a constant only, so that its forecasts are b�t;R = 1
R

Pt�h
j=t�h�R+1 yj+h, t = R;

R+1; :::; T; and the second (restricted) model sets the constant to be zero, so that its forecast

is zero. Consider the (quadratic) forecast error loss di¤erence between the �rst and the

second model, �Lt+h =
�
yt+h � b�t;R�2 � y2t+h, and the (quadratic) in-sample loss di¤erence

�Lt =
�
yt � b�t;R�2� y2t . Let a � E (�Lt+h�Lt) =E (�L 2

t ) : Rossi and Sekhposyan (2011a)

show that a = (�4+4�2�2+(4�2+2�2�2)=R)�1(�4�3�2=R2):When the models are nested,
in small samples E(�Lt) = �(�2 + �2=R) < 0; as the in-sample �t of the larger model is

always better than that of the small one. Consequently, E(BP ) = aE(�Lt) = 0 only when
a = 0. The calculations show that the numerator for a has two distinct components: the �rst,

�4, is an outcome of the mis-speci�cation in the second model; the other, 3�2=R2, changes

with the sample size and �captures" estimation uncertainty in the �rst model. When the two

components are equal, the in-sample loss di¤erences have no predictive content for the out-of-

sample. When the mis-speci�cation component dominates, in-sample loss di¤erences provide

information content for the out-of-sample. On the other hand, when a is negative, though the

in-sample �t has predictive content for the out-of-sample, it is misleading in that it is driven

primarily by the estimation uncertainty. For any given value of a, E(BP ) = aE(�Lt) =
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�a(�2 + �2=R). By construction, E(UP ) = E(�Lt+h) � E(BP ) = (�2=R � �2) � E(BP ):

Similar to the case of BP , the component designed to measure over-�tting is a¤ected by

both mis-speci�cation and estimation uncertainty. One should note that for a > 0, the

mis-speci�cation component a¤ects both E(BP ) and E(UP ) in a similar direction, while the

estimation uncertainty moves them in opposite directions. Estimation uncertainty penalizes

the predictive content BP and makes the unexplained component UP larger.

Rossi and Sekhposyan (2011a) use their proposed method to understand why exchange

rate forecasts based on the random walk are superior to those of economic models on av-

erage over the out-of-sample period. They �nd that lack of predictive content is the major

explanation for the lack of short-term forecasting ability of the economic models, whereas

instabilities play a role especially for medium term (one-year ahead) forecasts.

3.5 Summary of Findings

The �nding that in-sample �t is not indicative of out-of-sample forecasting performance is

widespread in economics and �nance. However, recent developments allow researchers to

test and predict forecast breakdowns, that is situations where the in-sample �t does not

provide enough guidance to out-of-sample forecasting performance, as well as methodologies

to decompose models�relative out-of-sample forecast error losses into separate components to

identify the contributions of instabilities, actual predictive content and over�t in explaining

the models�performance. The next section sheds some light on the empirical importance of

forecast breakdowns in practice and the reasons behind the breakdowns.
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4 Empirical Evidence

This section revisits the empirical evidence on forecasting in the presence of instability since

the seminal work by Stock and Watson (2003). Our main goal is to establish whether

the empirical conclusions they reached are still valid, and whether the recent estimation

and forecast evaluation techniques reviewed in this chapter change our perspectives on the

empirical evidence of forecastability of output growth and in�ation. We focus on the same

database as Stock and Watson (2003), with the main di¤erence that our database is updated

to the latest available sample, and we perform a series of estimation techniques and tests

that are substantially more extended than theirs.

We consider forecasting quarterly output growth and in�ation h-periods into the future.

Let the regression model be:

Y h
t+h = �0 + �1 (L)Xt + �2 (L)Yt + uht+h; t = 1; :::; T (50)

where the dependent variable is either Y h
t+h = (400=h) ln(RGDPt+h=RGDPt) when fore-

casting real GDP growth (RGDPt is real GDP at time t) or Y h
t+h = (400=h) ln(Pt+h=Pt) �

400 ln (Pt=Pt�1) when forecasting in�ation growth (Pt is the price level at time t), h is the

forecast horizon and equals four, so that the forecasts involve annual percent growth rates

of GDP and in�ation. �1 (L) =
Pp

j=0 �1jL
j and �2 (L) =

Pq
j=0 �2jL

j, where L is the lag

operator. We consider several explanatory variables, Xt, one at a time. The explanatory

variable, Xt, is either an interest rate or a measure of real output or unemployment, price,

money or earnings. We consider data for �ve countries: Canada (labeled "CN"), France (la-

beled "FR"), Germany (labeled "GY"), Italy (labeled "IT"), Japan (labeled "JP"), the U.K.

(labeled "UK") or the U.S. (labeled "US"). Following Stock and Watson (2003), the data

are transformed to eliminate stochastic or deterministic trends. For a detailed description

of the variables that we consider (and their transformations), see the Not-for-Publication

Appendix available at: http://www.econ.upf.edu/~brossi/. In this empirical analysis, we

focus in particular on predicting CPI in�ation and output (real GDP) growth using econo-

metric models and techniques that allow for instabilities. We utilize quarterly, �nally revised

data available in January 2011. The earliest starting point of the sample that we consider is

January 1959, although several series have a later starting date due to data availability con-

straints. For the out-of-sample forecasting exercise, we estimate the number of lags (p and

q) recursively by BIC unless otherwise noted; the estimation scheme is rolling with a win-

dow size of 40 observations.55 Tests are implemented using HAC-robust variance estimates,
55We consider only rolling forecasts due to space constraints.
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where the truncation parameter is T 1=5.

Faust and Wright (2012, in this Handbook) consider several other models that are useful

for forecasting in�ation, in particular judgemental forecasts as well as a �xed coe¢ cient

autoregressive benchmark with a judgemental starting point and a judgemental long run

value, which, they show, provides very competitive forecasts. There are two main di¤erences

between the empirical results in this chapter and Faust and Wright (2012). The latter focus

on real-time data and their sample, which is constrained by the availability of judgemental

forecasts, starts in 1985. We focus on fully revised data that were available in January 2011

since our objective is to study the behavior of in�ation over a longer sample period, which

is important in order to uncover potential instabilities in the forecasting performance of the

models.

Unless otherwise noted, in all the tables and �gures, Panel A reports results for fore-

casting in�ation and Panel B for output growth.

4.1 "Is the Predictive Content Stable Over Time?"

In this section, we test whether the predictive content is stable over time. We focus on testing

the stability of the predictive content by using both traditional Granger-causality tests, out-

of-sample forecast comparison tests, forecast rationality tests, as well as their versions robust

to instabilities. Then, we evaluate the forecasting ability of time-varying coe¢ cient models

and forecast combinations.

4.1.1 Do Traditional Macroeconomic Time Series Granger-cause In�ation and

Output Growth?

Table 1 reports results of Granger-causality tests as well as Rossi (2005) Granger-causality

tests robust to instabilities. For each of the predictors that we consider (reported in the �rst

column), transformed in several possible ways (described in the second column), and for each

of the countries that we consider (described in the remaining columns), the table reports

p-values of traditional Granger-causality tests (upper row) and p-values of Rossi�s (2005)

Granger-causality test robust to instabilities (lower row, in parentheses), QLR�T , de�ned in

eq. (3).56 The table shows two interesting empirical results. First, the traditional Granger-

56The Granger-causality tests focus on jointly testing whether �10 = ::: = �1p = 0 in regression (50).

Note that in the table several predictability tests are reported, one for each predictor, although the multiple

testing aspect is not taken into account in the calculation of the p-values. There are currently no available
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causality tests show that many of the predictors that we consider do help predicting both

in�ation and output growth since, in most cases, the p-values are close to zero. The tables

show which predictors are most useful. For example, in�ation does not Granger-cause output

growth in most countries, but some measures of unemployment do. Second, in several cases

traditional Granger-causality tests do not �nd predictive ability whereas Rossi�s (2005) test

does, thus indicating that there is Granger-causality once instability has been taken into

account. For example, only selected interest rates Granger-cause in�ation, although almost

all interest rates do Granger-cause in�ation if we take instabilities into account.

INSERT TABLE 1 HERE

To get a sense of how important instabilities are, Figure 1 reports scatterplots of the

p-values of the traditional Granger-causality tests (on the horizontal axis) and of Rossi

(2005) Granger-causality test robust to instabilities (on the vertical axis). Panel A in Figure

1 reports results for forecasting in�ation and Panel B for output growth. Each dot in the

�gure corresponds to one of the series that we consider. The dotted lines represent p-values of

5%, and divide the picture in four quadrants. Dots in the upper right quadrant correspond to

series where no Granger-causality is found by either traditional tests or by Granger-causality

tests robust to instabilities. Dots in the lower left quadrant (close to the origin) correspond

to series where Granger-causality is found by both traditional and robust tests. The upper

left and in the lower right quadrants focus on cases in which the two tests disagree. Dots

in the lower right quadrant correspond to series where traditional Granger-causality tests

do not �nd evidence of predictive ability whereas Rossi (2005) robust Granger-causality test

does �nd predictive ability. Similarly, dots in the upper left quadrant correspond to series

where traditional Granger-causality tests do �nd evidence of predictive ability whereas Rossi

(2005) robust Granger-causality test does not.

Panel A in Figure 1 shows that there are many dots concentrated in the lower left

panel, indicating that both tests do �nd Granger-causality for several in�ation predictors.

However, there are many more dots in the lower right quadrant than in the upper left

one, thus indicating that there are several cases where Granger-causality is uncovered only

by using tests that are robust to instabilities. Similar results hold for forecasting output

growth, reported in Panel B. We conclude that properly taking into account instabilities

is very important when evaluating whether traditional macroeconomic time series Granger-

tests for multiple forecast comparisons robust to instabilities.
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cause either in�ation or output growth and in several cases overturns the empirical results

based on traditional Granger-causality tests.

INSERT FIGURE 1 HERE

4.1.2 Do Traditional Macroeconomic Time Series Beat an Autoregressive Bench-

mark Model in Out-of-Sample Forecast Comparisons Tests?

We next consider the predictive ability of the same macroeconomic variables for forecasting

in�ation and output growth out-of-sample. The benchmark is the autoregressive model, and

the forecast horizon is four quarters. Results are broadly similar for the random walk without

drift benchmark and for other forecast horizons. We consider both traditional out-of-sample

forecast comparison tests as well as Giacomini and Rossi�s (2010a) forecast comparisons tests

robust to instabilities.57

Tables 2 and 3 report results of traditional out-of-sample forecast comparison tests. The

�rst line in Table 2 reports the RMSFE of the benchmark autoregressive (AR) model (labeled

�ARrmse�). In subsequent rows, for every explanatory variable, the �rst line in Table 2

reports the ratio of the MSFE of the model relative to the MSFE of the autoregressive

benchmark, so that values less than unity indicate that the model forecasts better than

the autoregressive benchmark; the second line (in parentheses) reports the p-value of the

one-sided DMWP test statistic, eq. (9). The p-values of the DMWP test statistic used

in this empirical application are obtained using the critical values in Giacomini and White

(2006). The table shows little empirical evidence in favor of predictive ability for the models.

However, there are some exceptions: for predicting in�ation one year ahead, some measures of

interest rates are useful in some countries, and some measures of output and unemployment

gap are useful for France and Italy; when predicting output growth, several interest rates

are useful for various countries, as well as industrial production and the employment gap for

Canada, Italy and the U.S.

INSERT TABLE 2 HERE

We now turn to out-of-sample forecast comparison tests that are robust to instabilities.

Table 3 reports results for Giacomini and Rossi�s (2010a) Fluctuation test, eq. (13). The

57A similar exercise was undertaken by Rossi and Sekhposyan (2010) for the US only. There are two

di¤erences relative to Rossi and Sekhposyan (2010): their sample ended in 2005 whereas ours is updated to

2010, and they also considered real-time forecasts, which we do not.
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test is implemented by choosing � = 0:375, which, for example, gives a window size of 60 out-

of-sample observations when the total number of out-of-sample forecasts is 160. Asterisks

denote signi�cance at the 5% level. In many cases we �nd empirical evidence that the

model with macroeconomic predictors forecasts better. In particular, there is evidence that

some interest rates (e.g. real overnight and T-bill rates), output measures (e.g. real GDP,

unemployment, etc.), stock prices and some measures of money supply were useful predictors

for in�ation at some point in time. Similarly, the spread, stock prices, unemployment, capital

utilization and several measures of money supply were useful predictors for output growth at

some point in time. Figure 2 reports a scatterplot of the p-values of the traditional DMWP

�average-out-of-sample�traditional test statistic (labeledMSE�t, on the horizontal axis)58

and of Giacomini and Rossi�s (2010a) Fluctuation test (on the vertical axis). Figure 2 is

interpreted as follows: dots on the right of the vertical critical value line represent successful

predictors according to the traditional test, whereas dots above the horizontal critical value

line represent successful predictors according to the Fluctuation test. Clearly, both Panels

A and B show that several of the dots are in the upper, left quadrant. Thus, even though in

many cases traditional tests would not �nd evidence that any of the predictors are useful for

forecasting in�ation or output growth, the Fluctuation test uncovers that they were indeed

useful predictors at some point in time. The problem is that their predictive ability was

masked by instabilities.

INSERT TABLE 3 AND FIGURE 2 HERE

A scatterplot of the in-sample versus the out-of-sample tests suggests that in-sample

tests typically �nd more predictive ability than out-of-sample tests. Figure 3 plots results

for traditional tests, whereas Figure 4 focuses on the robust tests. The main conclusion is

that out-of-sample tests are a tougher benchmark to beat, due to the reasons discussed in

Section 3, and con�rms one of the main themes in this Chapter, namely that in-sample tests

do not provide reliable guidance to out-of-sample forecasting ability.

INSERT FIGURES 3 AND 4 HERE

It would also be interesting to investigate the behavior of the relative predictive ability

over time by plotting the Fluctuation tests for each predictor. However, this is infeasible

due to space constraints. Instead, we report the percentage of predictors whose Fluctuation

58P-values for the DMWP test are calculated using Giacomini and White (2006).
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test is outside the critical value at each point in time. Figure 5 reports the results. Panel A

in Figure 5 shows that the largest percentages of rejections for in�ation forecasts happened

around the mid- to late 1980s, whereas there is much less empirical evidence in favor of the

predictors in the late 2000s. Results are similar for output (Panel B), except that there

seems to be more predictive ability in forecasting output growth in the late 1990s and early

2000s relative to in�ation.

INSERT FIGURE 5 HERE

Table 4 reports results for the Clark and McCracken�s (2001) ENCNEW test statistic.

See Clark and McCracken (this Handbook) and Busetti, Marcucci and Veronese (2011) for

an analysis of the relative properties of the ENCNEW test relative to other tests proposed

in the literature in stationary environments. The latter test �nds much more evidence in

favor of predictive ability than the test reported in Table 2. Several measures of interest

rates signi�cantly help predicting in�ation for most countries, as well as several measures

of output and money. Predicting output growth is instead much harder, and only selected

measures of interest rates seem to work well across countries. The reason Tables 2 and 4

reach di¤erent conclusions is because of the di¤erent null hypotheses of the two tests. Table

2 tests for equal predictive ability at the estimated parameter values, whereas Table 4 tests

for equal predictive ability under the assumption that the autoregressive benchmark model

is the truth.

INSERT TABLE 4 HERE

4.1.3 Are Forecasts Rational?

Table 5 reports the results of Mincer and Zarnowitz� (1969) tests for forecast rationality.

For every explanatory variable, the table reports the p-value of the traditional Mincer and

Zarnowitz (1969) test statistic, eq. (18). The table shows that rationality is almost never

rejected. However, results are very di¤erent when considering robust forecast rationality

tests. Rejections at 5% signi�cance level for the Rossi and Sekhposyan�s (2011b) Fluctuation

rationality test, eq. (19), are reported by asterisks. There are several instances where

rationality is rejected, in particular when using interest rates and monetary aggregates for

predicting in�ation in several countries, as well as for almost all predictors of output growth.

Figure 6 reports a scatterplot of the traditional Mincer and Zarnowitz (1969) test statistic

(on the horizontal axis) and of the Rossi and Sekhposyan (2011b) Fluctuation rationality
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test (on the vertical axis).59 The �gure shows that in several cases one would not �nd

evidence against rationality by using the traditional tests, but would reject rationality using

the Fluctuation rationality test. That is, there is empirical evidence that forecasts were not

rational at least at some point in time.

INSERT TABLE 5 AND FIGURE 6 HERE

Results are very similar for forecast unbiasedness tests �see Panel C and D in Table 5,

which report results for tests for traditional forecast unbiasedness and for robust unbiasedness

tests (Rossi and Sekhposyan, 2011b), and Figure 7, which reports scatterplots of p-values

for the same tests.

INSERT FIGURE 7 HERE

4.1.4 Are the Empirical Conclusions Robust to the Choice of the Window Size?

Table 6 reports results for Pesaran and Timmermann�s (2007) "Ave" procedure for combin-

ing forecasts across window sizes, eq. (24), relative to the autoregressive benchmark. For

each regressor, the �rst row reports the ratio of the MSFE of the "Ave" forecast relative

to the MSFE of the autoregressive benchmark, and the second line reports p-values of the

Diebold and Mariano (1995) and Giacomini and White (2006) test. In the case of in�ation,

reported in Panel A, the procedure is capable of improving the forecasting performance of

several predictors; in particular, for the U.S., the successful predictors include several inter-

est rates (Treasury bills, bonds, overnight rates, both nominal and real), stock prices, several

output measures (including GDP, capital utilization, unemployment) and producer price in-

dices. The last row of the table reports similar results for the Pesaran, Schuermann and

Smith (2009) "Ave-Ave" procedure, which combines all predictors across all windows. Inter-

estingly, the "Ave-Ave" procedure does perform signi�cantly better than the autoregressive

benchmark for all countries.

Turning to forecasting output growth, Panel B shows that Pesaran and Timmermann�s

(2007) "Ave" procedure is also useful for predicting output growth, although to a smaller

extent. A few predictors, among which the �rst di¤erence of the real overnight interest

rate, become statistically signi�cant for almost all countries, as well as exchange rates, stock

prices and money measures. Again, the last row shows that the "Ave-Ave" procedure does

perform signi�cantly better than the autoregressive benchmark for all countries.
59Note that, in this case, for simplicity, unlike in the previous tables, we report the test statistic value

rather than its p-value.
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INSERT TABLE 6 HERE

Results are even more striking when considering Inoue and Rossi�s (2012) forecast com-

parison test procedure robust to the choice of the window size, eq. (27). Rejections of the

test at the 5% signi�cance level are marked by asterisks in Table 6. The table shows that it

is possible to reject the benchmark model for almost every predictor for some choice of the

window size. Overall, we conclude that the choice of the window size signi�cantly a¤ects the

empirical evidence on predictive ability, and that methodologies that average information

across window sizes are typically quite successful.

4.1.5 Do Time-Varying Estimation Models and Forecast Combinations Improve

Forecasts?

We consider four techniques that have been used in the literature to estimate models in

the presence of instabilities and which we reviewed in Section 2.3: forecast combinations

with equal weights (labeled "EWA"), Bayesian model averaging (labeled "BMA"), factor-

augmented Autoregressive models (labeled "FAAR"), and, for predicting in�ation, Stock and

Watson�s (2007) UCSV model (labeled "UCSV"). Unreported results show that intercept

corrections never improve over the autoregressive benchmark for any of the predictors.

We follow Faust and Wright (2009) and Wright (2009) in the estimation. In partic-

ular, for the BMA model, eq. (34), we assign the same prior used in Faust and Wright

(2009): the prior over the parameters of the n models is such that, if each model is

yt+h = �0ixit + "i;t+h; where "i;t+h � N (0; �2), then the prior for �i conditional on � is

N

�
�; �

�
�2
PT

t=1 xitx
0
it

��1�
, � = 2, the marginal prior for � is proportional to 1=�: The

models� forecasts are produced based on the posterior mean of the parameters. The n

forecasts are then combined by a weighted average; the weights are determined by the pos-

terior probability that each model is correct. The FAAR model is estimated as follows:

yt+h = �0 +
Pp

i=1 �izit +
Pq

j=0 jyt�j + "t where zit are the �rst m principal components;

p and q are simultaneously chosen by BIC. The maximum number of lags for y that we

consider is 4, and the maximum number of principal components is 6.

Results for traditional out-of-sample forecast comparison tests relative to the autore-

gressive benchmark are reported in Table 7. The table reports the ratio of the MSFE of

each of the models relative to the autoregressive benchmark as well as the p-value of the

DMWP test, eq. (41), using Giacomini and White�s (2006) critical values in parentheses.

The table shows that equally weighted forecast combinations perform signi�cantly better
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than the benchmark for forecasting in�ation in most countries except Italy and France, in

which cases the MSFE is nevertheless not much worse than that of the benchmark. The

UCSV model also performs quite well especially for Germany, Japan and the U.S., although

its forecasts are not better than the equal weighting average. BMA works quite well too: in

most countries, it has a lower MSFE than the autoregressive model, although the di¤erence

is not signi�cant except for France. FAAR models do not perform particularly well.

When forecasting output growth, forecast combinations are still the preferred choice for

all countries except in the case of Japan, where the FAAR model performs better (although

not signi�cantly so) than the autoregressive benchmark. Again, BMA�s forecasts are better

than the autoregressive benchmark for several countries, although not signi�cantly so, except

in the case of Germany.

Finally, we consider forecast comparisons tests robust to instabilities. According to Gia-

comini and Rossi�s (2010a) Fluctuation test, reported in Table 8, when forecasting in�ation

both EWA and UCSV models beat the benchmark for all countries; similar results hold for

the BMA in all but two countries. The Fluctuation test instead does not �nd any predictabil-

ity in FAAR models except for Canada and Germany. Results are overall very similar for

predicting output growth except that FAAR models do better.

INSERT TABLES 7 AND 8 HERE

Figure 8 reports plots the Fluctuation test over time for each of the models that we

consider.60 Panels A-D report results for forecasting in�ation. Panel A shows the forecasting

ability of EWA models is very strong, and suggests it is strong especially in the early 1980s;

results are similar for BMA (Panel B). Panel C shows that FAAR models were never better

than the benchmark, whereas Panel D shows that the UCSV model is better than the

benchmark, both at the beginning of the sample but especially in the late 2000s. Panels E-G

in Figure 8 show similar results for forecasting output.

INSERT FIGURE 8 HERE

4.2 "In-sample Versus Out-of-Sample"

We conclude the empirical analysis by considering two additional empirical questions. The

�rst is whether there are forecast breakdowns. The second is what are the sources of the

di¤erence between in-sample �t and out-of-sample forecasting ability.

60The Fluctuation test is implemented using a centered moving window.
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Table 9 considers Giacomini and Rossi�s (2009) forecast breakdown test, eq. (45). The

table shows that most predictors, with rare exceptions, have been experiencing forecast

breakdowns. This is true both when forecasting in�ation as well as output growth. For most

of the series, the p-value of the forecast breakdown test is close to zero, which implies that

the empirical evidence in favor of forecast breakdowns is very strong. Thus, the in-sample

�t is not indicative of the out-of-sample performance for most predictors.

Finally, Table 10 investigates the causes of the di¤erences between the in-sample �t and

the forecasting ability of the candidate predictors relative to the autoregressive model by

using Rossi and Sekhposyan�s (2011a) test, eq. (49). Rossi and Sekhposyan�s (2011a) de-

composition, eq. (48), applies to the relative (de-meaned) MSFE di¤erences in the numerator

of Diebold and Mariano�s (1995) test statistic. The decomposition investigates the contribu-

tions of time-variation, over-�tting and marginal predictive content to explain the di¤erence

between in-sample �t and out-of-sample forecasting ability of the models. From Table 2,

which reported the ratio of the MSFE di¤erences, we know that, for most predictors, the

MSFE of the autoregressive model is lower than that of the model with predictors. Thus,

Rossi and Sekhposyan�s (2011a) decomposition helps understand why the predictors�model

does not signi�cantly improve over the autoregressive model in forecasting out-of-sample.

In the case of forecasting in�ation (Panel A), the �(A)P test points to the existence of

instabilities in most series and for most countries. In several cases, in particular in the

case of nominal interest rates, the �(B)P statistic is positive and signi�cant and the �(U)P

component is signi�cant only rarely, suggesting that nominal interest rates may have some

predictive content for in�ation and the main reason for their poor performance is insta-

bility. In several other cases, in particular when considering real interest rates as well as

employment/unemployment and capital utilization, the BP component is instead signi�-

cantly negative, thus suggesting that not only there is instability but also that in-sample

�t is misleading. In the case of stock prices and some measures of real activity, over�tting

(UP ) is also important. For U.S. data, in particular, Table 10 shows that money does have

predictive content for in�ation, although it is highly unstable in most cases; the in-sample

predictive content of measures of real activity and some nominal interest rates (e.g. the

3-month T-bill, and the 5 and 10 years maturity bonds), instead, is negatively correlated

with out-of-sample predictive content. The least empirical evidence of over�tting and the

most empirical evidence of predictive content seem to be related to in�ation predictors such

as the monetary base and M1.

INSERT TABLES 9 AND 10 HERE
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Predicting output shares similar features but also interesting di¤erences. As in the case

of predicting in�ation, instabilities are really important. Overall, however, notwithstanding

instabilities, most interest rates demonstrate signi�cant predictive ability on average over

the sample, as well as real output measures such as employment, capital utilization, several

measures of money growth and in�ation. The reason for their poor performance is attributed

to the fact that, for most series, over�tting is also signi�cantly present, and that undermines

the positive e¤ects of the predictive content. The in-sample �t of exchange rates and stock

prices, instead, is signi�cantly misleading for predicting output growth out-of-sample. For

the U.S., in particular, interest rates and money measures seem to have potential explanatory

power, although undermined by instabilities; exchange rates and stock prices instead, mostly

over�t.

5 Conclusions

This chapter shows that there are two important stylized facts regarding the forecasting

ability of economic models. The �rst is that the predictive content is unstable over time.

The second is that in-sample predictive content does not necessarily guarantee out-of-sample

predictive ability, nor the stability of the predictive relation over time. These issues were

discussed, among others, in an in�uential paper by Stock and Watson (2003), who also

provided empirical evidence using a large database of macroeconomic predictors for both

in�ation and output growth. As we show, these issues are important not only in the Stock

and Watson (2003) database, but also in several models and databases commonly considered

in macroeconomics, �nance, as well as international �nance.

However, several new methods for estimation and inference have been developed in the

recent literature to help researchers and practitioners to deal with these issues. In partic-

ular, researchers who are interested in evaluating predictive ability, but worry about the

predictive content being unstable over time, can rely on Granger-causality tests robust to

instabilities (Rossi, 2005), out-of-sample forecast comparison tests robust to instabilities

(Giacomini and Rossi, 2010a), and forecast rationality tests robust to instabilities (Rossi

and Sekhposyan, 2011b). Instabilities can be exploited to improve the estimation of the

forecasting models, for example by estimating historic breaks via structural breaks or time-

varying parameter models (Pesaran and Timmermann�s (2007)�ROC�procedures and Stock

and Watson�s (2007) UCSV model) or models with multiple discrete breaks (Pesaran, Pet-

tenuzzo and Timmermann, 2006, and Koop and Potter, 2007), or by combining models�
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forecasts either via equal weights, Bayesian model averaging or across window sizes (Pesaran

and Timmermann�s (2002) �Ave�procedure) or across recursive and rolling schemes (Clark

and McCracken, 2009) or by intercept corrections (Clemens and Hendry, 1996). Other tools

involve inference robust to the choice of the window size (Inoue and Rossi, 2012, and Hansen

and Timmermann, 2012).

Researchers should also worry about the fact that in-sample �t does not guarantee good

out-of-sample forecasting performance. Forecast breakdown tests (Clemens and Hendry,

1998, and Giacomini and Rossi, 2009) can be used to establish when that is the case, and

Rossi and Sekhposyan�s (2011a) decomposition can be used to determine the reasons behind

the di¤erence between in-sample �t and out-of-sample forecasting performance.

An empirical application to the updated Stock and Watson�s (2003) large database of

macroeconomic predictors for in�ation growth and real GDP growth highlights the following,

general conclusions:

(i) there is substantially more empirical evidence in favor of Granger-causality of typical

macroeconomic predictors when using Granger-causality tests robust to instabilities;

(ii) there is also substantially more empirical evidence in favor of out-of-sample forecasting

ability when using out-of-sample forecast tests robust to instabilities;

(iii) there is more empirical evidence against forecast rationality when one allows for

instabilities;

(iv) given the widespread empirical importance of instabilities, it comes at no surprise

that the choice of the window size is crucial; forecast combinations across window sizes tend

to perform well out-of-sample, and the empirical evidence in favor of predictive ability is

clearly stronger across predictors when using methods that are robust to the choice of the

window size;

(v) equally weighted averaging is among the time-varying estimation models that perform

the best out-of-sample; Bayesian model averaging and the UCSVmodel by Stock andWatson

(2007) also do very well (the latter in the special case of forecasting in�ation) although not as

well as equally weighted forecast combination. Factor autoregressive models tend to perform

worse than an autoregressive benchmark;

(vi) there is substantial evidence of forecast breakdowns, which is related not only to

instabilities, but also poor predictive ability of the regressors; in several cases, even if the

regressors have predictive power, it appears to be undermined by over�tting.

The results in this chapter suggest several avenues for future research. First, equally

weighted forecast averaging is one of the most successful and stable forecast methodologies
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in the presence of instabilities. Understanding why that is the case might provide useful

guidelines for improving the estimation of time-varying parameter models (see Hendry and

Clements, 2004, and Timmermann, 2006). Second, the widespread presence of forecast

breakdowns suggests the need of improving ways to select good forecasting models in-sample.

In addition, it is also very important to improve our understanding of the economic causes of

such breakdowns in forecasting accuracy. Developing such procedures is an important area

for future research.
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6 Appendix 1. Critical Value Tables

Table A.1. Critical values for Rossi�s (2005)

Robust Granger-causality Test

p QLR�T Exp�Wald�T Mean�Wald�T

1 9.826 3.134 5.364

2 14.225 5.015 8.743

3 17.640 6.738 11.920

4 21.055 8.191 14.362

5 24.550 9.824 17.523

6 27.377 11.203 19.877

7 30.414 12.630 22.389

8 33.717 14.225 25.397

9 36.552 15.537 27.844

10 39.020 16.761 30.039

Notes. The table reports asymptotic critical values of Rossi�s (2005)QLR�T , Exp�Wald�T

and Mean �Wald�T test statistics for tests of nominal size equal to 5%. See Section 2.2.1

for details.

Table A.2. Critical values for Giacomini and

Rossi�s (2010a) Fluctuation Test (kGR� )

� Two-sided Test One-sided Test

.1 3.393 3.176

.2 3.179 2.938

.3 3.012 2.770

.4 2.890 2.624

.5 2.779 2.475

.6 2.634 2.352

.7 2.560 2.248

.8 2.433 2.080

.9 2.248 1.975

Note. The table reports the critical values (kGR� ) of the Fluctuation test in Proposition

1 in Giacomini and Rossi (2010a). The nominal size of the test is 5%, � = m=P , where m is
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the size of the rolling window used for out-of-sample smoothing and P is the out-of-sample

size. See Section 2.2.2 for details.

Table A.3. Critical Values for Rossi and Sekhposyan (2011b)

Fluctuation Optimality Test

p � : 0:10 0:20 0:30 0:40 0:50 0:60 0:70 0:80 0:90

1 12.08 10.59 9.65 8.75 7.75 6.96 6.49 6.12 5.37

2 23.93 21.01 18.81 16.90 16.45 14.51 13.29 11.95 10.65

Note. The table reports critical values for the Fluctuation optimality test in Rossi and

Sekhposyan (2011b). The nominal size of the test is equal to 5%, � = m=P , where m is

the size of the rolling window used for out-of-sample smoothing, P is the out-of-sample size,

and p is the number of restrictions. See Section 2.2.3 for details.

Table A.4. Critical Values for Inoue and Rossi�s (2012) Test Statistics

Test Statistics: Critical Values:

A. Forecast Comparison Tests

Non-Nested Models

RT 2.7231

AT 1.7292

p : 1 2 3 4 5

Nested Models

RE
T (rolling window) 5.1436 7.1284 8.4892 9.7745 10.823

AET (rolling window) 1.7635 2.4879 2.9559 3.39 3.7427

RE
T (recursive window) 3.0078 4.2555 5.0577 6.1064 6.3340

AET (recursive window) 1.4955 2.1339 2.3919 2.9668 2.9717

B. Forecast Optimality

RW
T (forecast optimality) 1.3342 2.4634 3.5569 4.6451 5.7182

AWT (forecast optimality) 1.1424 2.2009 3.245 4.2848 5.3166

Note. The table reports critical values for the Inoue and Rossi�s (2012) test statistics. The

nominal size of the test is 5%, � = 0:15, p is either the number of regressors in the large model

in excess of those in the small model (for the nested models�forecast comparison tests) or
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the number of regressors used to check forecast optimality (for the forecast optimality tests).

See Section 2.3.1 for details.

Table A.5. Critical Values for Rossi and Sekhposyan�s (2011a) �(A)P Test

� : 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

kRS�;� : 10.496 6.609 4.842 3.738 2.984 2.412 1.900 1.446 0.952

Note. The table reports critical values kRS�;� for the test statistic �
(A)
P . The nominal

signi�cance level is equal to 5%. See Section 3.4 for details.
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7 Tables

Table 1, Panel A (In�ation). Granger-causality and Rossi�s (2005) p-values
Indicator Trans. CN FR GY IT JP UK US
rtbill lev 0.01 0.00 0.00 0.01 0.31 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rbnds lev - - - - - - - - - - 0.00 0.00

- - - - - - - - - - (0.00) (0.00)
rbndm lev 0.01 - - - - 0.00 - - - - 0.02

(0.00) - - - - (0.00) - - - - (0.00)
rbndl lev 0.02 0.00 0.01 0.00 0.31 0.00 0.01

(0.00) (0.00) (0.00) (0.00) (0.04) (0.00) (0.00)
rovnght 1d 0.12 0.00 0.00 0.16 0.01 0.82 0.02

(0.10) (0.06) (0.00) (0.46) (0.00) (0.27) (0.04)
rtbill 1d 0.11 0.00 0.00 0.46 0.01 0.00 0.00

(0.30) (0.03) (0.00) (0.77) (0.00) (0.00 (0.00)
rbnds 1d - - - - - - - - - - 0.00 0.01

- - - - - - - - - - (0.00) (0.07)
rbndm 1d 0.10 - - - - 0.80 - - - - 0.07

(0.00) - - - - (0.01 - - - - (0.43)
rbndl 1d 0.10 0.01 0.01 0.65 0.06 0.00 0.16

(0.06) (0.14) (0.05) (0.00 (0.30 (0.00 (0.34)
rrovnght lev 0.11 0.01 0.01 0.09 0.00 0.62 0.00

(0.00) (0.00) (0.00) (0.06) (0.00) (0.75) (0.00)
rrtbill lev 0.02 0.00 0.01 0.83 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrbnds lev - - - - - - - - - - 0.00 0.00

- - - - - - - - - - (0.00) (0.00)
rrbndm lev 0.00 - - - - 0.85 - - - - 0.26

(0.00) - - - - (0.06) - - - - (0.00)
rrbndl lev 0.00 0.04 0.00 0.99 0.00 0.00 0.22

(0.00) (0.00) (0.00 (0.06) (0.00) (0.00) (0.00)
rrovnght 1d 0.00 0.00 0.00 0.16 0.00 0.82 0.00

(0.00) (0.06) (0.02) (0.46) (0.00) (0.69) (0.00)
rrtbill 1d 0.00 0.00 0.00 0.06 0.00 0.00 0.00

(0.00) (0.04) (0.00) (0.62) (0.00) (0.00) (0.00)
rrbnds 1d - - - - - - - - - - 0.00 0.00

- - - - - - - - - - (0.00) (0.00)
rrbndm 1d 0.00 - - - - 0.80 - - - - 0.07

(0.00) - - - - (0.24) - - - - (0.15)
rrbndl 1d 0.00 0.01 0.00 0.65 0.00 0.00 0.16

(0.00) (0.26) (0.00) (0.01) (0.00) (0.00) (0.10)
rspread lev 0.93 0.03 0.59 0.00 0.00 0.24 0.00

(0.05) (0.00) (0.81) (0.00) (0.00) (0.00) (0.00)
exrate ln1d 0.96 0.02 0.27 0.79 0.00 0.23 0.07

(0.68) (0.00) (0.61) (0.63) (0.00) (0.38) (0.02)
rexrate ln1d 0.32 0.04 0.14 0.28 0.00 0.68 0.07

(0.22) (0.00) (0.40) (0.57) (0.00) (0.58) (0.02)
stockp ln1d 0.30 0.61 0.74 0.86 0.03 0.01 0.42

(0.00) (0.45) (0.00) (0.20) (0.00) (0.00) (0.47)
rstockp ln1d 0.14 0.84 0.58 0.89 0.02 0.06 0.22

(0.00) (0.48) (0.00) (0.56) (0.00) (0.00) (0.11)
rgdp ln1d 0.00 0.02 0.00 0.38 0.05 0.21 0.01

(0.00) (0.01) (0.00) (0.02) (0.00) (0.00) (0.00)
rgdp gap 0.00 0.00 0.00 0.21 0.25 0.02 0.01

(0.00) (0.00) (0.00) (0.14) (0.32) (0.00) (0.00)96



Indicator Trans. CN FR GY IT JP UK US
ip ln1d 0.00 0.26 0.01 0.04 0.02 0.14 0.01

(0.00) (0.24) (0.00) (0.06) (0.02) (0.15) (0.00)
ip gap 0.00 0.09 0.04 0.02 0.07 0.03 0.01

(0.00) (0.03) (0.00) (0.00) (0.00) (0.00) (0.00)
capu lev 0.06 0.41 0.00 0.01 0.07 0.78 0.00

(0.35) (0.02) (0.00) (0.00) (0.00) (0.09) (0.00)
emp ln1d 0.00 0.07 0.00 0.17 0.18 0.00 0.08

(0.00) (0.52) (0.00) (0.58) (0.66) (0.00) (0.00)
emp gap 0.00 0.07 0.00 0.05 0.00 0.00 0.01

(0.00) (0.00) (0.00) (0.48) (0.00) (0.00) (0.00)
unemp lev 0.00 0.00 0.00 0.05 0.06 0.00 0.03

(0.00) (0.00) (0.00) (0.17) (0.00) (0.00) (0.00)
unemp 1d 0.00 0.02 0.01 0.14 0.02 0.00 0.01

(0.00) (0.00) (0.00) (0.20) (0.00) (0.00) (0.00)
unemp gap 0.00 0.05 0.00 0.06 0.00 0.00 0.01

(0.00) (0.04) (0.00) (0.00) (0.00) (0.00) (0.00)
pgdp ln1d 0.49 0.33 0.38 0.15 0.42 0.19 0.06

(0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00)
pgdp ln2d 0.06 0.96 0.62 0.43 0.85 0.50 0.96

(0.37) (1.00) (1.00) (0.42) (0.65) (0.81) (0.00)
ppi ln1d 0.14 0.00 0.57 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00 (0.00) (0.00)
ppi ln2d 0.00 0.01 0.03 0.00 0.00 0.00 0.01

(0.00) (0.00) (0.33) (0.00) (0.00) (0.00) (0.07)
earn ln1d 0.85 0.41 0.03 0.96 0.12 0.00 0.97

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.03)
earn ln2d 0.19 0.06 0.31 0.08 0.01 0.00 0.12

(0.40) (0.00) (0.82) (0.02) (0.00) (0.00) (0.31)
mon0 ln1d 0.08 - - 0.16 - - - - 0.04 0.01

(0.00) - - (0.31) - - - - (0.00) (0.00)
mon0 ln2d 0.75 - - 0.59 - - - - 0.00 0.91

(0.54) - - (0.89) - - - - (0.11) (0.16)
mon1 ln1d 0.30 0.93 0.02 0.47 0.10 0.16 0.03

(0.00) (0.00) (0.00) (0.00) (0.42) (0.05) (0.00)
mon1 ln2d 0.65 0.61 0.15 0.66 0.69 0.75 0.72

(0.76) (0.00) (0.47) (0.73) (0.86) (0.10) (0.01)
mon2 ln1d 0.00 0.86 0.00 0.04 0.14 0.93 0.13

(0.00) (0.00) (0.01) (0.00) (0.03) (0.82) (0.00)
mon2 ln2d 0.00 0.91 0.74 0.53 0.46 0.18 0.16

(0.00) (0.32) (1.00) (0.73) (0.81) (1.00) (0.05)
mon3 ln1d 0.00 0.62 0.74 0.00 0.21 0.06 0.29

(0.02) (0.00) (0.32) (0.00) (0.00) (0.00) (0.04)
mon3 ln2d 0.38 0.73 0.94 0.62 0.13 0.12 0.54

(0.47) (0.00) (1.00) (0.90) (0.00) (0.06) (0.01)
rmon0 ln1d 0.00 - - 0.07 - - - - 0.00 0.00

(0.00) - - (0.13) - - - - (0.00) (0.00)
rmon1 ln1d 0.01 0.27 0.00 0.01 0.01 0.05 0.00

(0.00) (0.68) (0.00) (0.00) (0.08) (0.03) (0.00)
rmon2 ln1d 0.00 0.18 0.00 0.03 0.00 0.02 0.00

(0.00) (0.32) (0.00) (0.06) (0.00) (0.11) (0.00)
rmon3 ln1d 0.00 0.03 0.03 0.21 0.01 0.00 0.00

(0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)
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Table 1, Panel B. (Output) Granger Causality and Rossi�s (2005) p-values
Indicator Trans. CN FR GY IT JP UK US
rtbill lev 0.00 0.98 0.02 0.42 0.00 0.02 0.03

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rbnds lev - - - - - - - - - - 0.19 0.06

- - - - - - - - - - (0.00) (0.00)
rbndm lev 0.04 - - - - 0.21 - - - - 0.30

(0.00) - - - - (0.00) - - - - (0.00)
rbndl lev 0.10 0.90 0.76 0.15 0.00 0.12 0.38

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rovnght 1d 0.11 0.00 0.86 0.00 0.07 0.57 0.00

(0.00) (0.00) (0.05) (0.00) (0.00) (0.29) (0.00)
rtbill 1d 0.00 0.12 0.46 0.74 0.12 0.00 0.01

(0.00) (0.00) (0.13) (1.00) (0.00) (0.00) (0.00)
rbnds 1d - - - - - - - - - - 0.00 0.02

- - - - - - - - - - (0.00) (0.00)
rbndm 1d 0.01 - - - - 0.91 - - - - 0.03

(0.00) - - - - (0.00) - - - - (0.00)
rbndl 1d 0.03 0.06 0.30 0.81 0.47 0.00 0.02

(0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)
rrovnght lev 0.11 0.13 0.03 0.12 0.26 0.22 0.62

(0.00) (0.02) (0.00) (0.00) (0.04) (0.48) (0.61)
rrtbill lev 0.05 0.96 0.04 0.38 0.44 0.14 0.09

(0.04) (0.00) (0.00) (0.00) (0.10) (0.16) (0.13)
rrbnds lev - - - - - - - - - - 0.01 0.07

- - - - - - - - - - (0.02) (0.21)
rrbndm lev 0.54 - - - - 0.26 - - - - 0.00

(0.07) - - - - (0.00) - - - - (0.00)
rrbndl lev 0.84 0.98 0.01 0.30 0.24 0.02 0.00

(0.05) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrovnght 1d 0.94 0.48 0.00 0.42 0.81 0.32 0.80

(0.84) (1.00) (0.08) (0.27) (1.00) (0.80) (0.34)
rrtbill 1d 0.72 0.98 0.00 0.26 0.55 0.29 0.45

(0.74) (1.00) (0.00) (0.77) (0.83) (0.25) (1.00)
rrbnds 1d - - - - - - - - - - 0.31 0.65

- - - - - - - - - - (0.22 (1.00)
rrbndm 1d 0.65 - - - - 0.45 - - - - 0.60

(0.48) - - - - (0.29) - - - - (1.00)
rrbndl 1d 0.52 0.95 0.01 0.48 0.55 0.15 0.56

(0.42) (1.00) (0.15) (0.31) (1.00) (0.36) (0.89)
rspread lev 0.00 0.00 0.00 0.00 0.21 0.58 0.00

(0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00)
exrate ln1d 0.81 0.79 0.16 0.14 0.66 0.91 0.85

(0.58) (1.00) (0.88) (0.00) (0.00) (0.05) (0.41)
rexrate ln1d 0.94 0.78 0.15 0.14 0.74 0.82 0.85

(0.79) (1.00) (0.87) (0.00) (0.08) (0.08) (0.41)
stockp ln1d 0.00 0.04 0.03 0.01 0.00 0.00 0.00

(0.00) (0.00) (0.04) (0.02) (0.00) (0.00) (0.00)
rstockp ln1d 0.00 0.04 0.01 0.01 0.00 0.00 0.00

(0.00) (0.46) (0.00) (0.02) (0.00) (0.00) (0.00)
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Indicator Trans. CN FR GY IT JP UK US
ip ln1d 0.00 0.54 0.00 0.95 0.68 0.12 0.03

(0.00) (1.00) (0.00) (0.31) (0.00) (0.04) (0.18)
ip gap 0.20 0.03 0.06 0.29 0.04 0.08 0.92

(0.05) (0.00) (0.12) (0.27) (0.00) (0.02) (0.71)
capu lev 0.07 0.01 0.06 0.12 0.00 0.05 0.00

(0.00) (0.18) (0.00) (0.00) (0.00) (0.15) (0.00)
emp ln1d 0.17 0.90 0.51 0.00 0.60 0.00 0.52

(0.00) (0.00) (0.76) (0.00) (0.00) (0.00) (0.64)
emp gap 0.35 0.90 0.71 0.00 0.29 0.00 0.60

(0.05) (0.03) (0.20) (0.00) (0.00) (0.00) (0.31)
unemp lev 0.95 0.07 0.02 0.12 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
unemp 1d 0.11 0.03 0.17 0.53 0.04 0.00 0.45

(0.55) (0.00) (0.38) (0.12) (0.00) (0.00) (0.68)
unemp gap 0.05 0.00 0.01 0.63 0.01 0.00 0.00

(0.26) (0.00) (0.00) (0.02) (0.00) (0.00) (0.00)
pgdp ln1d 0.02 0.36 0.30 0.00 0.53 0.01 0.02

(0.00) (0.00) (0.02) (0.00) (0.37) (0.00) (0.00)
pgdp ln2d 0.01 0.69 0.17 0.67 1.00 0.83 0.56

(0.37) (1.00) (1.00) (1.00) (0.84) (0.74) (1.00)
cpi ln1d 0.05 0.95 0.00 0.00 0.36 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
cpi ln2d 0.83 0.06 0.00 0.47 0.46 0.29 0.02

(0.56) (0.00) (0.10) (0.38) (0.73) (0.52) (0.00)
ppi ln1d 0.18 0.00 0.00 0.25 0.11 0.00 0.00

(0.07) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ppi ln2d 0.31 0.42 0.56 0.02 0.70 0.01 0.77

(0.89) (0.63) (0.86) (0.39) (0.00) (0.00) (1.00)
earn ln1d 0.95 0.35 0.14 0.00 0.35 0.14 0.22

(0.05) (0.00) (0.01) (0.00) (0.00) (0.02) (0.01)
earn ln2d 0.88 0.76 0.93 0.26 0.47 0.45 0.88

(0.20) (1.00) (0.70) (1.00) (0.00) (0.79) (1.00)
mon0 ln1d 0.02 - - 0.79 - - - - 0.57 0.38

(0.00) - - (0.31) - - - - (0.24) (0.00)
mon0 ln2d 0.52 - - 0.43 - - - - 0.36 0.03

(0.90) - - (1.00) - - - - (1.00) (0.18)
mon1 ln1d 0.01 0.92 0.01 0.14 0.01 0.13 0.44

(0.00) (1.00) (0.00) (0.00) (0.00) (0.00) (0.01)
mon1 ln2d 0.09 0.77 0.69 0.91 0.49 0.69 0.71

(0.48) (0.83) (0.63) (1.00) (0.80) (1.00) (1.00)
mon2 ln1d 0.19 0.77 0.03 0.10 0.00 0.89 0.00

(0.00) (1.00) (0.00) (0.00) (0.00) (0.27) (0.00)
mon2 ln2d 0.30 0.88 0.38 0.52 0.00 0.52 0.42

(0.50) (0.80) (0.82) (1.00) (0.00) (1.00) (0.83)
mon3 ln1d 0.34 0.90 0.32 0.95 0.00 0.03 0.13

(0.03) (0.79) (0.01) (0.00) (0.00) (0.28) (0.00)
mon3 ln2d 0.19 0.98 0.54 0.69 0.25 0.62 0.48

(1.00) (1.00) (1.00) (1.00) (0.00) (1.00) (1.00)
rmon0 ln1d 0.01 - - 0.74 - - - - 0.06 0.22

(0.00) - - (0.67) - - - - (0.04) (0.00)
rmon1 ln1d 0.00 0.56 0.00 0.53 0.02 0.27 0.04

(0.00) (0.80) (0.00) (1.00) (0.00) (0.00) (0.00)
rmon2 ln1d 0.87 0.23 0.03 0.60 0.00 0.02 0.00

(0.29) (0.00) (0.00) (1.00) (0.00) (0.06) (0.00)
rmon3 ln1d 0.98 0.42 0.19 0.21 0.13 0.57 0.00

(0.17) (0.00) (0.00) (0.17) (0.02) (1.00) (0.00)99



Table 2, Panel A (In�ation). Relative MSFE and p-values
Indicator Trans. CN FR GY IT JP UK US
AR rmse ln2d 1.79 1.68 1.47 3.05 3.15 3.61 2.04
rtbill lev 1.18 1.43 0.99 1.04 1.27 1.49 0.95

(0.88) (0.93) (0.45) (0.60) (0.72) (0.93) (0.29)
rbnds lev - - - - - - - - - - 1.25 1.06

(- -) (- -) (- -) (- -) (- -) (0.99) (0.73)
rbndm lev 1.18 - - - - 1.58 - - - - 1.12

(0.90) (- -) (- -) (0.96) (- -) (- -) (0.87)
rbndl lev 1.23 1.37 1.00 1.66 2.46 1.19 1.11

(0.92) (0.91) (0.48) (0.98) (0.96) (0.88) (0.87)
rovnght 1d 1.12 1.10 0.96 1.73 1.08 1.05 1.02

(0.88) (0.97) (0.25) (0.99) (0.78) (0.72) (0.55)
rtbill 1d 1.05 1.12 0.96 0.89 1.29 1.17 1.05

(0.82) (0.91) (0.28) (0.11) (0.94) (0.84) (0.65)
rbnds 1d - - - - - - - - - - 1.02 1.05

(- -) (- -) (- -) (- -) (- -) (0.55) (0.75)
rbndm 1d 1.03 - - - - 1.18 - - - - 1.05

(0.76) (- -) (- -) (0.81) (- -) (- -) (0.83)
rbndl 1d 1.07 1.18 1.01 1.26 3.30 0.97 1.05

(0.81) (0.98) (0.62) (0.87) (0.97) (0.40) (0.80)
rrovnght lev 1.19 1.82 1.08 1.80 1.44 1.48 1.33

(0.92) (1.00) (0.80) (0.99) (0.98) (0.99) (0.92)
rrtbill lev 1.46 1.70 1.13 1.61 1.62 1.27 1.49

(0.96) (1.00) (0.90) (0.92) (0.89) (0.88) (0.95)
rrbnds lev - - - - - - - - - - 1.23 1.42

(- -) (- -) (- -) (- -) (- -) (0.76) (0.91)
rrbndm lev 1.48 - - - - 1.57 - - - - 1.49

(0.98) (- -) (- -) (0.99) (- -) (- -) (0.92)
rrbndl lev 1.41 1.70 0.90 1.77 2.05 1.03 1.36

(0.97) (1.00) (0.21) (0.98) (0.97) (0.56) (0.89)
rrovnght 1d 1.07 1.15 0.98 1.03 0.88 1.12 1.07

(0.74) (0.97) (0.39) (0.64) (0.09) (0.95) (0.71)
rrtbill 1d 1.00 1.00 0.98 1.01 1.02 1.00 1.13

(0.51) (0.51) (0.39) (0.54) (0.55) (0.51) (0.83)
rrbnds 1d - - - - - - - - - - 1.01 1.02

(- -) (- -) (- -) (- -) (- -) (0.54) (0.60)
rrbndm 1d 0.84 - - - - 1.20 - - - - 0.95

(0.00) (- -) (- -) (0.84) (- -) (- -) (0.19)
rrbndl 1d 0.94 0.99 0.95 1.25 2.20 0.92 0.95

(0.20) (0.40) (0.19) (0.90) (0.87) (0.26) (0.17)
rspread lev 1.10 1.32 1.10 1.52 0.93 1.27 1.01

(0.98) (0.97) (0.99) (0.98) (0.37) (0.88) (0.54)
exrate ln1d 1.09 - - - - - - - - - - - -

(0.98) (- -) (- -) (- -) (- -) (- -) (- -)
rexrate ln1d 1.11 - - - - - - - - - - - -

(0.98) (- -) (- -) (- -) (- -) (- -) (- -)
stockp ln1d 1.10 1.01 1.09 1.84 1.06 0.89 1.04

(0.95) (0.61) (0.93) (0.92) (0.88) (0.18) (0.72)
rstockp ln1d 1.10 1.01 1.08 1.78 1.00 0.94 1.04

(0.93) (0.65) (0.94) (0.91) (0.50) (0.28) (0.69)
rgdp ln1d 0.93 1.06 0.88 1.10 1.00 1.11 0.86

(0.28) (0.77) (0.08) (0.99) (0.52) (0.79) (0.12)
rgdp gap 0.91 1.34 0.87 1.27 0.98 0.96 0.90

(0.28) (0.98) (0.10) (0.97) (0.17) (0.38) (0.26)
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Indicator Trans. CN FR GY IT JP UK US
ip ln1d 0.98 1.11 1.01 1.02 0.86 1.07 0.90

(0.45) (0.97) (0.58) (0.58) (0.12) (0.82) (0.18)
ip gap 1.02 1.11 1.10 1.08 1.05 1.11 0.91

(0.55) (0.83) (0.89) (0.80) (0.66) (0.81) (0.23)
capu lev 1.38 2.57 0.96 0.97 1.25 0.88 0.92

(0.92) (0.99) (0.36) (0.43) (0.93) (0.23) (0.33)
emp ln1d 1.01 1.76 1.16 1.11 1.01 1.08 0.83

(0.53) (0.98) (0.79) (0.96) (0.54) (0.64) (0.07)
emp gap 0.82 2.13 0.92 1.20 1.10 1.69 0.88

(0.12) (0.99) (0.25) (0.98) (0.88) (0.96) (0.19)
unemp lev 1.08 1.26 0.99 1.50 1.94 1.22 1.09

(0.69) (0.93) (0.47) (0.93) (1.00) (0.89) (0.75)
unemp 1d 0.97 1.02 0.93 0.93 1.02 0.86 0.93

(0.41) (0.62) (0.24) (0.19) (0.60) (0.19) (0.31)
unemp gap 0.87 1.47 0.93 1.11 1.05 1.25 0.87

(0.22) (0.98) (0.18) (0.98) (0.76) (0.84) (0.16)
pgdp ln1d 1.08 1.32 1.13 1.58 0.99 1.09 1.16

(0.96) (0.96) (0.92) (0.99) (0.31) (0.81) (0.93)
pgdp ln2d 1.04 1.17 1.07 1.12 1.00 1.05 0.99

(0.91) (0.97) (0.98) (0.88) (0.32) (0.91) (0.30)
cpi ln1d - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
cpi ln2d - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
ppi ln1d 1.24 - - 1.12 0.83 1.28 1.12 1.22

(0.99) (- -) (0.86) (0.13) (0.90) (0.73) (0.96)
ppi ln2d 0.92 - - 1.03 0.98 0.85 0.86 0.99

(0.12) (- -) (0.64) (0.40) (0.18) (0.26) (0.41)
earn ln1d 1.18 1.32 1.03 1.38 0.96 1.15 1.15

(0.98) (0.97) (0.87) (1.00) (0.21) (0.85) (1.00)
earn ln2d 1.10 1.04 1.00 0.99 0.96 1.06 1.03

(0.94) (0.97) (0.61) (0.47) (0.10) (0.65) (0.97)
mon0 ln1d 1.20 - - 2.08 - - - - 1.02 1.08

(0.98) (- -) (0.87) (- -) (- -) (0.59) (0.90)
mon0 ln2d 1.07 - - 1.08 - - - - 1.15 1.02

(0.96) (- -) (0.89) (- -) (- -) (0.91) (0.76)
mon1 ln1d 1.23 3.45 1.10 1.31 1.09 0.98 1.03

(0.97) (0.93) (0.88) (0.99) (0.87) (0.37) (0.67)
mon1 ln2d 1.06 1.03 1.06 1.11 0.97 1.22 0.96

(0.97) (0.73) (0.92) (0.93) (0.19) (0.84) (0.16)
mon2 ln1d 1.17 2.29 1.05 1.91 1.15 1.16 1.06

(0.91) (0.93) (0.77) (0.94) (0.84) (0.97) (0.90)
mon2 ln2d 1.13 1.11 1.06 1.13 1.09 0.87 1.04

(0.92) (0.90) (0.92) (0.91) (0.99) (0.17) (0.79)
mon3 ln1d 1.09 0.93 1.01 1.53 1.37 1.10 1.20

(0.95) (0.28) (0.60) (0.96) (0.98) (0.97) (0.96)
mon3 ln2d 1.03 1.13 1.02 1.05 1.10 1.02 1.00

(0.69) (1.00) (0.97) (0.83) (0.91) (0.83) (0.38)
rmon0 ln1d 0.99 - - 2.21 - - - - 0.80 1.09

(0.47) (- -) (0.88) (- -) (- -) (0.11) (0.70)
rmon1 ln1d 1.09 1.24 1.04 1.14 1.01 1.15 0.93

(0.93) (0.98) (0.69) (0.97) (0.55) (0.90) (0.29)
rmon2 ln1d 0.85 1.48 1.05 1.17 0.95 1.17 0.99

(0.23) (0.99) (0.62) (0.87) (0.36) (0.89) (0.46)
rmon3 ln1d 0.77 5.13 0.89 1.20 1.11 1.10 1.01

(0.11) (0.96) (0.02) (0.96) (0.75) (0.97) (0.53)
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Table 2, Panel B (Output). Relative MSFE and p-values
Indicator Trans. CN FR GY IT JP UK US
AR rmse ln1d 2.34 1.68 3.38 5.01 3.35 2.51 2.46
rtbill lev 1.05 1.25 0.92 1.48 1.61 1.03 1.07

(0.63) (0.99) (0.13) (0.99) (0.99) (0.59) (0.62)
rbnds lev - - - - - - - - - - 0.96 1.07

(- -) (- -) (- -) (- -) (- -) (0.38) (0.66)
rbndm lev 1.10 - - - - 1.30 - - - - 1.22

(0.72) (- -) (- -) (0.98) (- -) (- -) (0.91)
rbndl lev 1.21 1.24 0.99 1.21 1.14 1.02 1.24

(0.87) (0.99) (0.48) (1.00) (0.92) (0.61) (0.95)
rovnght 1d 1.03 1.16 1.10 1.07 1.09 1.01 1.04

(0.76) (0.99) (0.99) (0.96) (0.90) (0.75) (0.61)
rtbill 1d 0.99 1.21 1.07 1.02 1.13 1.07 1.13

(0.47) (0.98) (0.98) (0.78) (0.92) (0.76) (0.75)
rbnds 1d - - - - - - - - - - 0.98 1.05

(- -) (- -) (- -) (- -) (- -) (0.40) (0.65)
rbndm 1d 1.07 - - - - 1.14 - - - - 1.06

(0.93) (- -) (- -) (0.98) (- -) (- -) (0.70)
rbndl 1d 1.05 1.20 1.11 1.10 1.04 0.99 1.03

(0.80) (0.98) (0.91) (0.95) (0.84) (0.45) (0.63)
rrovnght lev 1.09 1.16 0.99 0.88 1.12 1.24 1.25

(0.79) (0.95) (0.43) (0.17) (0.95) (0.97) (0.99)
rrtbill lev 1.13 1.63 1.00 1.41 0.96 1.23 1.42

(0.91) (0.98) (0.50) (0.98) (0.34) (0.98) (0.98)
rrbnds lev - - - - - - - - - - 1.06 1.49

(- -) (- -) (- -) (- -) (- -) (0.75) (0.96)
rrbndm lev 1.21 - - - - 1.23 - - - - 1.59

(0.99) (- -) (- -) (0.83) (- -) (- -) (0.96)
rrbndl lev 1.18 1.72 1.04 1.22 1.11 1.14 1.55

(0.97) (0.98) (0.93) (0.78) (0.87) (0.86) (0.94)
rrovnght 1d 1.03 1.02 1.00 1.02 1.04 1.08 1.07

(0.78) (0.97) (0.51) (0.98) (0.88) (0.92) (0.97)
rrtbill 1d 1.06 1.05 0.97 1.05 1.25 1.16 1.36

(0.97) (0.99) (0.07) (0.94) (0.94) (0.97) (0.93)
rrbnds 1d - - - - - - - - - - 1.04 1.38

(- -) (- -) (- -) (- -) (- -) (0.81) (0.97)
rrbndm 1d 1.02 - - - - 1.70 - - - - 1.36

(0.87) (- -) (- -) (0.89) (- -) (- -) (0.97)
rrbndl 1d 1.02 1.15 0.96 1.81 1.02 1.03 1.34

(0.89) (0.96) (0.12) (0.89) (0.72) (0.71) (0.97)
rspread lev 1.04 1.02 1.22 0.95 1.10 1.26 0.71

(0.57) (0.60) (0.84) (0.31) (0.98) (0.99) (0.02)
exrate ln1d 1.07 - - - - - - - - - - - -

(0.92) (- -) (- -) (- -) (- -) (- -) (- -)
rexrate ln1d 1.08 - - - - - - - - - - - -

(0.94) (- -) (- -) (- -) (- -) (- -) (- -)
stockp ln1d 0.98 0.82 1.01 1.36 0.87 1.05 0.89

(0.37) (0.02) (0.55) (0.97) (0.01) (0.68) (0.06)
rstockp ln1d 0.94 0.83 1.02 1.24 0.88 1.01 0.87

(0.24) (0.04) (0.64) (0.98) (0.03) (0.53) (0.06)
rgdp ln1d - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
rgdp gap - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
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Indicator Trans. CN FR GY IT JP UK US
ip ln1d 0.96 0.94 1.10 1.13 0.94 1.10 1.00

(0.12) (0.16) (0.86) (0.99) (0.13) (0.91) (0.48)
ip gap 1.12 0.97 1.45 1.26 1.10 1.10 1.22

(0.98) (0.31) (0.94) (1.00) (0.92) (0.91) (1.00)
capu lev 2.20 1.29 0.89 1.33 1.11 1.04 0.99

(0.94) (0.86) (0.22) (1.00) (0.86) (0.64) (0.47)
emp ln1d 1.03 1.01 1.03 1.03 1.03 1.12 1.03

(0.78) (0.54) (0.61) (0.93) (0.87) (0.92) (0.82)
emp gap 1.21 1.11 1.04 1.27 1.35 1.41 1.38

(0.99) (0.78) (0.75) (0.97) (1.00) (0.96) (0.99)
unemp lev 1.07 0.92 1.05 1.04 1.14 1.24 1.01

(0.72) (0.30) (0.63) (0.59) (0.89) (0.87) (0.52)
unemp 1d 1.10 1.02 0.81 1.04 1.06 1.02 0.99

(0.95) (0.62) (0.14) (0.83) (0.97) (0.64) (0.38)
unemp gap 1.11 1.03 1.00 1.14 1.15 1.22 1.06

(0.93) (0.62) (0.51) (0.98) (0.97) (0.94) (0.77)
pgdp ln1d 1.14 1.35 1.02 1.03 1.00 1.10 1.13

(0.91) (0.96) (0.70) (0.60) (0.49) (0.92) (0.75)
pgdp ln2d 1.03 1.04 1.00 1.51 1.01 1.07 1.24

(0.93) (0.88) (0.28) (0.93) (0.71) (0.95) (0.99)
cpi ln1d 1.02 1.41 0.92 1.41 1.00 1.16 1.00

(0.59) (0.94) (0.20) (0.85) (0.50) (0.87) (0.50)
cpi ln2d 1.03 1.27 0.96 1.61 1.19 1.09 1.15

(0.94) (0.96) (0.04) (0.89) (0.93) (0.76) (0.86)
ppi ln1d 1.19 - - 0.97 1.19 1.38 1.15 1.20

(0.97) (- -) (0.35) (0.93) (0.96) (0.91) (0.84)
ppi ln2d 1.02 - - 1.02 1.12 1.34 1.12 1.02

(0.80) (- -) (0.88) (1.00) (0.98) (0.86) (0.83)
earn ln1d 1.10 1.25 1.01 0.96 1.12 0.99 1.21

(0.91) (0.99) (0.61) (0.33) (0.97) (0.46) (0.99)
earn ln2d 1.01 1.13 1.01 1.11 0.99 1.01 1.04

(0.67) (0.82) (0.94) (0.69) (0.15) (0.81) (0.94)
mon0 ln1d 1.19 - - 1.06 - - - - 1.15 1.22

(0.91) (- -) (0.94) (- -) (- -) (0.94) (1.00)
mon0 ln2d 1.04 - - 1.02 - - - - 0.98 0.99

(0.84) (- -) (0.75) (- -) (- -) (0.17) (0.29)
mon1 ln1d 1.04 1.81 0.87 1.02 1.07 1.05 1.08

(0.59) (0.98) (0.08) (0.70) (1.00) (0.68) (0.92)
mon1 ln2d 1.04 1.02 0.99 1.02 1.08 1.11 1.01

(0.94) (0.82) (0.35) (0.93) (0.97) (0.82) (0.73)
mon2 ln1d 1.24 1.53 1.14 1.03 1.11 1.16 0.97

(0.92) (1.00) (0.96) (0.67) (0.86) (0.89) (0.34)
mon2 ln2d 1.02 1.02 1.00 1.03 1.02 0.99 1.08

(0.81) (0.67) (0.60) (0.94) (0.77) (0.19) (0.92)
mon3 ln1d 1.11 1.04 1.16 1.31 0.84 1.00 1.28

(0.74) (0.64) (0.99) (0.98) (0.05) (0.50) (1.00)
mon3 ln2d 1.03 0.97 1.01 1.02 0.96 1.08 1.08

(0.86) (0.14) (0.90) (0.92) (0.09) (0.77) (0.86)
rmon0 ln1d 1.10 - - 1.11 - - - - 1.02 0.99

(0.70) (- -) (0.95) (- -) (- -) (0.59) (0.47)
rmon1 ln1d 1.09 1.02 0.87 1.04 1.09 1.04 0.95

(0.63) (0.69) (0.05) (0.95) (0.96) (0.71) (0.37)
rmon2 ln1d 1.19 1.06 1.04 0.99 1.47 1.01 0.78

(0.93) (0.73) (0.62) (0.40) (0.92) (0.80) (0.05)
rmon3 ln1d 1.17 1.51 1.10 1.08 1.00 1.07 0.85

(0.98) (0.88) (0.97) (0.88) (0.49) (0.80) (0.09)
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Table 3, Panel A. (In�ation) Fluctuation Test
(Critical Value = 2.62)

Indicator Trans. CN FR GY IT JP UK US
rtbill lev 4.23* 1.30 15.68* 1.74 0.12 3.47* 6.41*
rbnds lev - - - - - - - - - - 1.50 4.05*
rbndm lev 1.77 - - - - 0.36 - - - - 2.96*
rbndl lev 4.93* 4.35* 6.07* 0.05 0.02 -1.40 3.00*
rovnght 1d 1.76 -0.27 9.82* 1.32 0.49 2.98 6.55*
rtbill 1d 3.97* 0.26 22.71* 12.47* 0.05 1.98 4.69*
rbnds 1d - - - - - - - - - - 10.18* 2.42
rbndm 1d 4.08* - - - - 0.22 - - - - -0.42
rbndl 1d 1.82 -0.05 5.44* 0.17 0.10 8.31* 3.27*
rrovnght lev -0.81 0.27 4.87* 0.47 0.45 -1.37 0.44
rrtbill lev 1.06 -0.02 3.80* 0.64 1.75 0.09 0.69
rrbnds lev - - - - - - - - - - 1.71 0.73
rrbndm lev 2.18 - - - - 0.03 - - - - 1.33
rrbndl lev 2.63* -0.04 7.31* 0.08 1.93 5.47* 1.88
rrovnght 1d 3.57* -0.34 9.04* 8.09* 15.20* 3.29 3.39*
rrtbill 1d 7.62* 9.47* 17.52* 8.67* 18.85* 10.99* 1.49
rrbnds 1d - - - - - - - - - - 17.08* 10.24*
rrbndm 1d 20.63* - - - - 0.16 - - - - 14.02*
rrbndl 1d 9.29* 10.37* 7.97 0.23 0.25 8.63* 20.31*
rspread lev -4.29 0.96 1.13 0.03 17.73* 1.80 2.99*
exrate_a ln1d -2.28 - - - - - - - - - - - -
rexrate_a ln1d -0.93 - - - - - - - - - - - -
stockp ln1d -4.33 5.48* 2.74* -0.02 0.17 9.31* 5.94*
rstockp ln1d -6.64 5.16* 1.77 -0.02 3.37* 8.98* 5.34*
rgdp ln1d 11.69* 3.27* 11.22* 0.57 3.41* 9.19* 6.98*
rgdp gap 12.21* 0.93 10.85* -0.07 11.37* 12.76* 5.30*
ip ln1d 4.90* -0.46 9.54* 9.42* 13.84* 2.29 9.48*
ip gap 5.31* -0.81 1.46 -1.33 1.43 3.62* 8.49*
capu lev 1.77 0.13 8.15* 2.72* 2.78* 10.50* 8.54*
emp ln1d 12.20* 1.11 0.84 0.14 2.62* 8.72* 9.40*
emp gap 14.26* 0.28 8.66* 0.23 -0.17 0.83 8.49*
unemp lev 8.93* -0.24 8.18* -0.05 0.00 5.81* 6.07*
unemp 1d 12.43* 3.38* 9.63* 10.60* 1.31 8.48* 7.32*
unemp gap 11.25* -0.17 8.67* 2.21 1.05 6.63* 6.20*
pgdp ln1d 3.16* 0.51 1.63 0.25 4.30* 0.55 0.44
pgdp ln2d 3.37* -2.99 1.52 0.39 5.54* 0.59 15.44*
cpi ln1d - - - - - - - - - - - - - -
cpi ln2d - - - - - - - - - - - - - -
ppi ln1d -0.67 - - 10.64* 5.95* 0.41 -0.04 -0.73
ppi ln2d 10.22* - - 16.30* 5.31* 8.46* 11.53* 12.78*
earn ln1d 2.42 0.44 4.10 -0.30 10.88* 4.52* 0.29
earn ln2d -0.85 0.75 5.86 22.81* 11.48* 2.22 -0.07
mon0 ln1d -0.77 - - 0.81 - - - - 8.68* 4.92*
mon0 ln2d 0.94 - - 1.09 - - - - 0.65 5.01*
mon1 ln1d -1.39 0.21 4.03* 0.72 1.42 6.26* 5.47*
mon1 ln2d 0.62 7.39* 2.78* 0.39 11.60* 1.15 25.98*
mon2 ln1d 4.36* 0.61 3.60* 0.29 0.24 0.52 5.06*
mon2 ln2d 1.73 0.79 0.82 0.29 0.50 12.54* 3.73*
mon3 ln1d 0.42 7.16* 8.38* 0.28 3.09* 1.45 -0.33
mon3 ln2d 2.70* -0.02 1.71 3.04* 1.61 4.13* 18.62*
rmon0 ln1d 9.91* - - 0.90 - - - - 9.68* 4.42*
rmon1 ln1d -0.07 -3.66 9.05* 1.41* 5.21* 0.61 7.65*
rmon2 ln1d 12.59* 0.78 3.36* 1.40 19.58* 3.31* 7.77*
rmon3 ln1d 9.74* 0.11 12.30* 0.62 4.39* -0.01 6.34*
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Table 3, Panel B. (Output) Fluctuation Test
(Critical Value = 2.62)

Indicator Trans. CN FR GY IT JP UK US
rtbill lev 6.10* -2.30 9.06* 0.58 1.60 9.42* 0.95
rbnds lev - - - - - - - - - - 6.93* 1.14
rbndm lev 4.10* - - - - -0.64 - - - - -0.61
rbndl lev 0.41 -2.00 6.84* -7.02 6.82* 6.57* -1.63
rovnght 1d 6.73* -0.20 -0.24 0.54 0.97 8.82* 10.57*
rtbill 1d 8.86* 0.43 0.27 2.49 0.47 3.88* 3.45*
rbnds 1d - - - - - - - - - - 17.61 6.99*
rbndm 1d 1.55 - - - - -0.23 - - - - 1.93
rbndl 1d 3.14* 1.20 1.02 0.12 3.76* 2.77* 4.44*
rrovnght lev -1.98 0.45 6.83* 7.24* 2.74* 1.57 -0.56
rrtbill lev 1.60 1.53 4.93* 0.44 2.99* 1.84 -0.21
rrbnds lev - - - - - - - - - - 6.63* -0.06
rrbndm lev 0.57 - - - - 3.14* - - - - 1.16
rrbndl lev 1.55 1.53 2.51 1.94 6.44* 7.70* 1.49
rrovnght 1d 3.80* 1.33 7.05* 0.55 4.05* 0.41 0.96
rrtbill 1d -2.43 0.08 9.58* 0.54 0.00 -0.02 0.11
rrbnds 1d - - - - - - - - - - 7.22* -0.01
rrbndm 1d 2.31 - - - - 0.25 - - - - 0.04
rrbndl 1d 1.23 0.17 9.13* 0.19 5.06* 5.50* 0.03
rspread lev 3.23* 11.61* 2.26 7.82* 4.36* 0.97 10.75*
exrate_a ln1d 3.50* - - - - - - - - - - - -
rexrate_a ln1d -0.17 - - - - - - - - - - - -
stockp ln1d 8.56* 12.09* 2.76* 0.05 14.45* 3.58* 13.45*
rstockp ln1d 8.93* 9.83* 0.78 0.06 9.18* 7.74* 14.53*
rgdp ln1d - - - - - - - - - - - - - -
rgdp gap - - - - - - - - - - - - - -
ip ln1d 9.20* 9.41* 0.88 -1.04 13.15* 0.88 9.13*
ip gap -2.05 10.92* -0.28 -3.94 4.53* 1.72 1.34
capu lev 0.43 8.08* 7.05* -0.41 10.05* 2.78* 12.19*
emp ln1d 3.17* 5.38* 6.39* 2.16 3.66* 1.29 10.48*
emp gap -0.01 0.13 5.79* 0.85 1.09 1.06 0.62
unemp lev 4.02* 7.71* 5.81* 4.74* 3.14* 5.25* 14.37*
unemp 1d 1.92 8.76* 7.60* 2.81* 3.24* 3.53* 11.53*
unemp gap 0.75 8.92* 6.11* 0.25 4.43* 5.05* 9.21*
pgdp ln1d 1.96 -3.61 6.38* 7.13* 8.27* 6.07* 2.17
pgdp ln2d 1.72 2.90* 11.45* 0.20 4.93* 0.08 0.17
cpi ln1d 5.81* 7.82* 9.06* 1.11 2.81* 8.96* 11.47*
cpi ln2d -0.76 0.04 9.10* -0.00 0.79 2.14 0.50
ppi ln1d 3.49* - - 13.27* 3.63* 1.02 6.29* -0.62
ppi ln2d 6.86* - - 4.38* -1.57 0.51 2.88* 4.71*
earn ln1d 3.49* -0.33 5.35* 9.07* 0.29 6.83* -1.59
earn ln2d 3.07* 1.78 1.07 3.07* 11.28* 5.22* 2.14
mon0 ln1d 1.63 - - 2.66* - - - - -0.10 -1.39
mon0 ln2d 2.06 - - 2.37 - - - - 9.37* 17.27*
mon1 ln1d 3.76* 0.09 25.26* 2.81* 1.21 -0.00 1.83
mon1 ln2d 1.11 4.22* 13.52* 0.72 1.11 0.04 1.18
mon2 ln1d 3.54* -0.04 2.88* 1.97 4.18* 1.16 9.33*
mon2 ln2d 7.62* 7.33* 8.54* 2.28 6.04* 17.58* 1.18
mon3 ln1d 7.64* 2.61 -0.32 0.84 10.30* 10.44* -0.28
mon3 ln2d 3.61* 8.80* -0.82 7.00* 8.23* 0.04 0.47
rmon0 ln1d -0.12 - - 1.12 - - - - 4.42* 9.02*
rmon1 ln1d 1.90 4.47* 20.01* 2.79* 3.13* 0.02 11.95*
rmon2 ln1d 4.54* 1.19 6.87* 3.99* 1.44 3.45* 11.74*
rmon3 ln1d 2.34* 0.75 -0.08 1.60 5.68* 3.67* 9.69*
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Table 4, Panel A. (In�ation) ENCNEW Test
Indicator Trans. CN FR GY IT JP UK US
rtbill lev 10.24* 14.83* 5.52* 10.49* 36.92* 8.04* 55.33*
rbnds lev - - - - - - - - - - 13.65* 26.38*
rbndm lev 9.20* - - - - 16.43* - - - - 18.60*
rbndl lev 11.73* 15.57* 12.78* 5.57* 36.93* 32.12* 12.87*
rovnght 1d 1.31 -1.41 7.62* -11.74 9.57* 4.92* 21.93*
rtbill 1d 4.30* -3.42 7.93* 6.22* 0.24 4.86* 21.81*
rbnds 1d - - - - - - - - - - 14.30* 9.96*
rbndm 1d 3.33 - - - - 26.86* - - - - 5.33*
rbndl 1d 6.72* -6.59 2.76* 18.54* 16.67* 32.39* 13.67*
rrovnght lev 5.55* -6.18 - - -12.40 - - - - - -
rrtbill lev -3.19 6.02*
rrbnds lev - -
rrbndm lev -9.64
rrbndl lev - -
rrovnght 1d 4.93* -1.05 2.90* 1.66 16.45*
rrtbill 1d 8.70* 11.45* 2.32* 13.20*
rrbnds 1d
rrbndm 1d 20.35*
rrbndl 1d 14.09*
rspread lev -2.83 -5.44 -3.47 -0.25 34.78* 30.39*
exrate ln1d -1.20
rexrate ln1d -1.03 - -
stockp ln1d 0.83 0.15 5.21* -7.77 5.69* 24.58* 5.90*
rstockp ln1d 1.49 0.04 2.57* -7.12 13.72* 18.44* 9.25*
rgdp ln1d 27.35* 4.19* 21.74* -2.58 12.10* 6.50* 39.23*
rgdp gap 43.30* 9.25* 33.56* -4.35 4.58* 23.41* 46.93*
ip ln1d 33.32* -4.23 5.38* 10.04* 31.37* 1.99* 27.06*
ip gap 34.10* 6.40* 3.40* 3.62* 13.52* - - 36.12*
capu lev 3.34 11.46* 22.60* 48.43* 31.53* - - 43.82*
emp ln1d 32.69* 1.80 10.73* -3.17 6.66* - - 49.76*
emp gap 47.01* 0.75 32.24* -1.36 2.91* 25.52* 54.13*
unemp lev 16.46* 6.42* 24.97* -2.80 -9.69 21.16* 23.96*
unemp 1d 27.06* 8.34* 23.34* 11.02* 9.13* 45.00* 37.62*
unemp gap 43.13* 4.63* 16.43* -3.65 7.90* 42.24* 46.61*
pgdp ln1d - - -0.89 -2.17 - - 3.87* 4.55* - -
pgdp ln2d 0.97 -1.43 -0.47 - - 1.13 -1.54 1.45
cpi ln1d - - - - - - - - - - - - - -
cpi ln2d - - - - - - - - - - - - - -
ppi ln1d 3.60* - - 2.21 20.44* 16.54* 31.83* - -
ppi ln2d 22.31* - - - - 9.17* 97.33* - - 11.18*
earn ln1d 0.65 -5.51 -0.18 9.66* 7.98* 4.28* - -
earn ln2d -3.86 -1.91 0.30 6.66* 5.20* 9.31* -0.76
mon0 ln1d -4.35 - - 18.24* - - - - 24.17* 2.18*
mon0 ln2d -2.76 - - 0.10 - - - - 10.82* 2.20*
mon1 ln1d -8.00 - - 3.69* 2.19* 5.43* - - 12.09
mon1 ln2d -2.10 - - -0.06 -2.12 3.20* - - - -
mon2 ln1d 8.33* - - 7.78* -4.51 15.27* -2.38 2.14*
mon2 ln2d 4.41* - - -1.85 -2.09 -2.06 9.85* 1.54
mon3 ln1d 5.68* - - 1.75 -1.89 -1.83 -0.86 - -
mon3 ln2d 2.21 - - -0.68 0.09 -0.29 -0.35 - -
rmon0 ln1d 18.34* - - 19.43* - - - - - - - -
rmon1 ln1d 0.82 - - 8.73* 0.16 36.51* - - - -
rmon2 ln1d 48.66* - - 21.77* -0.84 - - - - 18.66*
rmon3 ln1d 50.24* - - 12.30* -2.90 - - -1.03 - -
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Table 4, Panel B. (Output) ENCNEW Test
Indicator Trans. CN FR GY IT JP UK US
rtbill lev 44.28* -0.88 24.16* -7.88 -2.49 33.91* - -
rbnds lev - - - - - - - - - - 28.128 - -
rbndm lev - - - - - - 4.948* - - - - 20.86*
rbndl lev - - -0.62 36.77* -4.13 1.61 20.83* - -
rovnght 1d 2.00* -5.10 -3.77 -4.57 0.57 -0.09 - -
rtbill 1d 23.14* -5.93 -1.55 -0.46 2.72* 11.55* - -
rbnds 1d - - - - - - - - - - 10.02* - -
rbndm 1d 12.07* - - - - -2.67 - - - - - -
rbndl 1d 18.18* -5.70 13.92* -2.99 5.86* 29.50* - -
rrovnght lev 7.87* 7.14* 7.33* 36.20* -4.36 -5.11 -10.31
rrtbill lev 8.40* -7.52 6.45* 0.37 12.17* -6.29 -2.89
rrbnds lev - - - - - - - - - - 3.91* 5.24*
rrbndm lev -7.02 - - - - 12.97* - - - - 35.15*
rrbndl lev -5.68 -7.93 -0.42 18.37* -2.09 6.49* 35.67*
rrovnght 1d -0.19 -0.91 1.88 -1.40 -0.68 -2.06 -2.74
rrtbill 1d -1.79 -1.90 3.86* -2.27 -6.31 -3.57 -10.16
rrbnds 1d - - - - - - - - - - -0.33 -7.39
rrbndm 1d -0.55 - - - - -0.42 - - - - -5.81
rrbndl 1d -0.71 -4.95 4.50* 0.32 1.49 2.89* -5.00
rspread lev 20.97* 10.17* -4.62 21.57* -3.85 -3.52 110.47*
exrate ln1d -1.45 - - - - - - - - - - - -
rexrate ln1d -1.87 - - - - - - - - - - - -
stockp ln1d - - - - 12.02* - - 26.47* 10.55* - -
rstockp ln1d - - - - 11.70* - - 23.49* 16.80* - -
rgdp ln1d - - - - - - - - - - - - - -
rgdp gap - - - - - - - - - - - - - -
ip ln1d - - 8.52* -3.61 - - 12.79* -1.33 - -
ip gap -2.26 10.97* -14.04 - - -0.89 5.92* - -
capu lev - - 4.95* 31.07* -11.16 10.74* 4.15* - -
emp ln1d 0.71 6.99* 13.31* - - -0.85 0.06 - -
emp gap -7.60 6.48* 5.34* - - -12.12 0.40 -7.11
unemp lev 12.48* - - 26.17* - - 3.23* 9.97* - -
unemp 1d -3.31 4.17 45.44* - - -1.93 6.89* - -
unemp gap -0.09 8.42* 9.57* - - -0.34 5.44* - -
pgdp ln1d 9.79* -3.20 -0.13 - - 1.87 4.71* 27.55*
pgdp ln2d -0.88 -0.99 0.58 2.91* -0.03 -3.04 1.98*
cpi ln1d 25.46* 6.10* 23.38* 13.05* 12.58* 12.79* 70.85*
cpi ln2d -1.42 -5.62 4.37* 9.02* -4.86 10.84* 8.71*
ppi ln1d 3.76* - - 18.82* 11.73* -10.97 8.46* 34.22*
ppi ln2d 0.11 - - -0.17 -3.04 -8.96 0.90 -0.21
earn ln1d 4.96* -2.80 0.87 19.11* -4.77 18.72* -1.28
earn ln2d 0.07 0.18 -1.03 13.75* 1.46 -0.14 -1.44
mon0 ln1d 2.36 - - 0.47 - - - - -0.15 2.76*
mon0 ln2d 2.52* - - 0.84 - - - - 2.11* 1.91
mon1 ln1d 17.68* - - 23.24* 3.70* -3.67 2.67 0.99
mon1 ln2d 0.49 - - 1.46 -0.79 -3.59 -0.82 0.43
mon2 ln1d - - - - -3.21 4.78* 4.74* -0.96 20.23*
mon2 ln2d -0.30 - - 0.31 -0.85 1.84 0.24 0.05
mon3 ln1d 11.56* - - -4.10 -9.18 25.90* 3.65* -2.29
mon3 ln2d 0.20 - - -0.56 -0.76 3.50* 1.26 -0.20
rmon0 ln1d 24.91* - - 0.32 - - - - 7.77* 51.96*
rmon1 ln1d 36.10* - - 23.16* -0.13 -0.54 1.65 41.18*
rmon2 ln1d -1.87 - - 9.88* 1.46 -8.41 0.19 64.26*
rmon3 ln1d -3.56 - - -1.40 0.93 4.16* 2.35* 38.07*
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Table 5, Panel A. (In�ation) Mincer-Zarnowitz�s (1969) Forecast Rationality Test
Traditional p-values versus Rossi and Sekhposyan (2011b)

Indicator Trans. CN FR GY IT JP UK US
RW ln2d 0.98 0.85 0.85 0.80 0.72 0.89 0.98
AR ln2d 0.93 0.81 0.48 0.85 0.87 0.70 0.88
rtbill lev 0.48 0.84 0.44 0.17 0.48 0.15 0.61
rbnds lev - - - - - - - - - - 0.10 0.69
rbndm lev 0.60 - - - - 0.95 - - - - 0.87
rbndl lev 0.84 0.83 0.22 0.82 0.22 0.18 0.79
rovnght 1d 0.87 0.37 0.62* 0.08 0.83 0.64 0.74
rtbill 1d 0.93 0.73 0.62 0.85 0.80 0.64 0.79
rbnds 1d - - - - - - - - - - 0.93 0.76
rbndm 1d 0.94 - - - - 0.98 - - - - 0.59
rbndl 1d 0.96 0.71 0.39 0.96 0.79 0.95 0.47
rrovnght lev 0.14 0.25 0.60y 0.06 0.75 0.98 0.90
rrtbill lev 0.71 0.83 0.55y 0.41 0.76y 0.14 0.95
rrbnds lev - - - - - - - - - - 0.39y 0.99
rrbndm lev 0.98 - - - - 0.99 - - - - 0.94
rrbndl lev 0.96 0.83 0.41 0.97 0.19 0.86 0.94
rrovnght 1d 0.81 0.41 0.64 0.23 0.92 0.61 0.71
rrtbill 1d 1.00 0.83 0.63 0.71 0.96 0.51 0.71
rrbnds 1d - - - - - - - - - - 0.92 0.83
rrbndm 1d 0.95 - - - - 0.93 - - - - 0.84
rrbndl 1d 0.85 0.86 0.46 0.94 0.92 0.90 0.79
rspread lev 0.77 0.14 0.30 0.11 0.70 0.59 0.76
exrate ln1d 0.67 - - - - - - - - - - - -
rexrate ln1d 0.61 - - - - - - - - - - - -
stockp ln1d 0.97 0.46 0.43 0.84 0.90 0.97 0.91
rstockp ln1d 0.97 0.46 0.35 0.85 0.84 0.99 0.95
rgdp ln1d 0.83 0.66 0.68 0.79 0.65 0.83 0.84
rgdp gap 0.91 0.10 0.85 0.78 0.84 0.81 0.61
ip ln1d 0.56 0.76 0.71 0.93 0.45 0.82 0.97
ip gap 0.79 0.75 0.33 0.89 0.80 0.81 0.71
capu lev 0.49 0.50 0.64 0.03y 0.91 0.61 0.64
emp ln1d 0.44 0.82 0.43 0.87 0.82 0.66 0.85
emp gap 0.77 0.84 0.28 0.83 0.90 0.78 0.96
unemp lev 0.75 0.69 0.31 0.75 0.74 0.84 0.85
unemp 1d 0.90 0.28 0.48 0.85 0.99 0.27 0.77
unemp gap 0.86 0.18 0.28 0.87 0.93 0.39 0.52
pgdp ln1d 0.64 0.10 0.66 0.87 0.86 0.50 0.52
pgdp ln2d 0.88 0.45 0.50 0.80 0.90 0.75 0.89
cpi ln1d - - - - - - - - - - - - - -
cpi ln2d - - - - - - - - - - - - - -
ppi ln1d 0.77 - - 0.29 0.82 0.68 0.29 0.58
ppi ln2d 0.87 - - 0.49 0.71 0.53 0.80 0.69
earn ln1d 0.38 0.49 0.78 0.62 0.94 0.38 0.66
earn ln2d 0.93 0.85 0.51 0.84 0.92 0.31 0.85
mon0 ln1d 0.72 - - 0.58 - - - - 0.80 0.78
mon0 ln2d 0.99 - - 0.31 - - - - 0.80 0.91
mon1 ln1d 0.79 0.14 0.41 0.45 0.88 0.96 0.74
mon1 ln2d 0.91 0.66y 0.49 0.69 0.87 0.60 0.96
mon2 ln1d 0.49 0.14 0.69 0.51 0.13 0.75 0.97
mon2 ln2d 0.50 0.95y 0.44 0.69 0.83 0.81 0.80
mon3 ln1d 0.72 0.89 0.78 0.50 0.35 0.35 0.87
mon3 ln2d 0.54 0.80y 0.56 0.79 0.69 0.76 0.99
rmon0 ln1d 0.71 - - 0.56 - - - - 0.01 0.53
rmon1 ln1d 0.85 0.75 0.27 0.53 0.60 0.98 0.64
rmon2 ln1d 0.74 0.38 0.69 0.58 0.28 0.82 0.94
rmon3 ln1d 0.80 0.50 0.81 0.65 0.01 0.73 0.95
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Table 5, Panel B. (Output) Mincer-Zarnowitz�s (1969) Forecast Rationality Test
Traditional p-values versus Rossi and Sekhposyan (2011b)

Indicator Trans. CN FR GY IT JP UK US
RW ln1d 0.69y 0.64y 0.70y 0.13y 0.07y 0.10y 0.51y
AR ln1d 0.20y 0.00y 0.00y 0.68y 0.36y 0.01y 0.05y
rtbill lev 0.16 0.00y 0.07 0.55y 0.03y 0.04y 0.00y
rbnds lev - - - - - - - - - - 0.27 0.00y
rbndm lev 0.09y - - - - 0.64y - - - - 0.00y
rbndl lev 0.03y 0.00y 0.01y 0.63y 0.29y 0.06y 0.00y
rovnght 1d 0.11 0.00y 0.00 0.68 0.24y 0.02y 0.00y
rtbill 1d 0.17 0.00y 0.00 0.72 0.17y 0.01y 0.00y
rbnds 1d - - - - - - - - - - 0.07y 0.01y
rbndm 1d 0.08 - - - - 0.78y - - - - 0.02y
rbndl 1d 0.04y 0.00y 0.01 0.89y 0.39y 0.01y 0.02y
rrovnght lev 0.30y 0.01 0.01 0.56y 0.31y 0.00y 0.00y
rrtbill lev 0.09y 0.00y 0.01 0.44y 0.38y 0.00 0.00y
rrbnds lev - - - - - - - - - - 0.00y 0.00y
rrbndm lev 0.02y - - - - 0.35y - - - - 0.00y
rrbndl lev 0.03y 0.00y 0.00y 0.49y 0.56y 0.00y 0.00y
rrovnght 1d 0.09 0.00y 0.00 0.70y 0.27y 0.00y 0.00y
rrtbill 1d 0.04y 0.00y 0.01 0.76y 0.11y 0.00y 0.00y
rrbnds 1d - - - - - - - - - - 0.01y 0.00y
rrbndm 1d 0.13y - - - - 0.23y - - - - 0.00y
rrbndl 1d 0.11y 0.00y 0.01 0.21y 0.47y 0.00y 0.00y
rspread lev 0.32y 0.15 0.01 0.90y 0.47y 0.00y 0.22y
exrate ln1d 0.00y - - - - - - - - - - - -
rexrate ln1d 0.00y - - - - - - - - - - - -
stockp ln1d 0.29 0.58 0.04y 0.13y 0.30y 0.00y 0.04y
rstockp ln1d 0.46 0.48 0.04 0.27y 0.37y 0.01y 0.05y
rgdp ln1d - - - - - - - - - - - - - -
rgdp gap - - - - - - - - - - - - - -
ip ln1d 0.32y 0.02 0.00y 0.86y 0.41y 0.00y 0.04y
ip gap 0.03y 0.00 0.00y 0.49y 0.23y 0.00y 0.00y
capu lev 0.00y 0.00 0.02y 0.47y 0.31y 0.65y 0.01y
emp ln1d 0.12y 0.07 0.00y 0.97y 0.23y 0.00y 0.01y
emp gap 0.01y 0.02y 0.01y 0.54y 0.01y 0.00y 0.00y
unemp lev 0.15y 0.06y 0.02 0.16y 0.10y 0.00y 0.05y
unemp 1d 0.05y 0.00 0.00y 0.92y 0.20y 0.01y 0.02y
unemp gap 0.04y 0.00 0.00 0.63y 0.02y 0.00y 0.00y
pgdp ln1d 0.01y 0.00y 0.01 0.40y 0.32y 0.01y 0.00y
pgdp ln2d 0.09y 0.00y 0.00 0.04y 0.33y 0.00y 0.00
cpi ln1d 0.15 0.01y 0.06 0.26y 0.47y 0.01y 0.01y
cpi ln2d 0.12y 0.00y 0.01 0.24y 0.09y 0.00y 0.00y
ppi ln1d 0.00y - - 0.04y 0.73y 0.06y 0.00y 0.00y
ppi ln2d 0.12y - - 0.00 0.71y 0.02y 0.00y 0.01y
earn ln1d 0.11y 0.00y 0.00 0.64y 0.22y 0.50y 0.00y
earn ln2d 0.19y 0.00y 0.00 0.44y 0.40y 0.01y 0.01y
mon0 ln1d 0.00y - - 0.23 - - - - 0.00y 0.00y
mon0 ln2d 0.07y - - 0.81 - - - - 0.01y 0.10y
mon1 ln1d 0.14 0.00y 0.01 0.83y 0.27y 0.19y 0.00y
mon1 ln2d 0.10y 0.00y 0.00 0.83y 0.17y 0.00y 0.05y
mon2 ln1d 0.00 0.00y 0.00y 0.87y 0.11y 0.00y 0.02y
mon2 ln2d 0.01 0.00y 0.00 0.89y 0.25y 0.15y 0.00y
mon3 ln1d 0.06y 0.00y 0.00 0.36y 0.45 0.19y 0.00y
mon3 ln2d 0.02y 0.00y 0.00 0.87y 0.89y 0.01y 0.00y
rmon0 ln1d 0.02y - - 0.13 - - - - 0.02y 0.07y
rmon1 ln1d 0.20 0.00y 0.05 0.70y 0.21y 0.07y 0.04y
rmon2 ln1d 0.00 0.00y 0.00y 0.82y 0.03y 0.06y 0.13y
rmon3 ln1d 0.00 0.00y 0.00y 0.70y 0.80y 0.04y 0.02y
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Table 5, Panel C. (In�ation) Forecast Unbiasedness Test
Traditional p-values versus Rossi and Sekhposyan (2011b)

Indicator Trans. CN FR GY IT JP UK US
RW ln2d 0.98 0.85 0.85 0.80y 0.72 0.89 0.98
AR ln2d 0.93 0.81 0.48 0.85 0.87 0.70 0.88
rtbill lev 0.48 0.84 0.44 0.17 0.48 0.15y 0.61
rbnds lev - - - - - - - - - - 0.10y 0.69
rbndm lev 0.60 - - - - 0.95y - - - - 0.87
rbndl lev 0.84 0.83y 0.22y 0.82 0.22y 0.18y 0.79
rovnght 1d 0.87 0.37 0.62 0.08 0.83 0.64 0.74
rtbill 1d 0.93 0.73 0.62 0.85 0.80 0.64 0.79
rbnds 1d - - - - - - - - - - 0.93 0.76
rbndm 1d 0.94 - - - - 0.98y - - - - 0.59
rbndl 1d 0.96 0.71 0.39 0.96y 0.79 0.95 0.47
rrovnght lev 0.14 0.25 0.60y 0.06 0.75 0.98 0.90
rrtbill lev 0.71 0.83 0.55y 0.41 0.76y 0.14 0.95
rrbnds lev - - - - - - - - - - 0.39y 0.99
rrbndm lev 0.98y - - - - 0.99 - - - - 0.94
rrbndl lev 0.96 0.83 0.41 0.97 0.19 0.86y 0.94
rrovnght 1d 0.81 0.41 0.64 0.23 0.92 0.61 0.71
rrtbill 1d 1.00 0.83 0.63 0.71 0.96 0.51 0.71
rrbnds 1d - - - - - - - - - - 0.92 0.83
rrbndm 1d 0.95 - - - - 0.93 - - - - 0.84
rrbndl 1d 0.85 0.86 0.46 0.94 0.92 0.90 0.79
rspread lev 0.77 0.14 0.30 0.11 0.70 0.59 0.76
exrate ln1d 0.67 - - - - - - - - - - - -
rexrate ln1d 0.61 - - - - - - - - - - - -
stockp ln1d 0.97 0.46 0.43 0.84 0.90 0.97 0.91
rstockp ln1d 0.97 0.46 0.35 0.85 0.84 0.99 0.95
rgdp ln1d 0.83 0.66 0.68 0.79 0.65 0.83 0.84
rgdp gap 0.91 0.10 0.85 0.78 0.84 0.81 0.61
ip ln1d 0.56 0.76 0.71 0.93 0.45 0.82 0.97
ip gap 0.79 0.75 0.33 0.89 0.80 0.81 0.71
capu lev 0.49 0.50 0.64 0.03y 0.91 0.61 0.64
emp ln1d 0.44 0.82 0.43 0.87 0.82 0.66 0.85
emp gap 0.77 0.84 0.28 0.83 0.90 0.78 0.96
unemp lev 0.75 0.69 0.31 0.75 0.74 0.84 0.85
unemp 1d 0.90 0.28 0.48 0.85 0.99 0.27 0.77
unemp gap 0.86 0.18 0.28 0.87 0.93 0.39 0.52
pgdp ln1d 0.64 0.10 0.66 0.87 0.86 0.50 0.52
pgdp ln2d 0.88 0.45 0.50 0.80 0.90 0.75 0.89
cpi ln1d - - - - - - - - - - - - - -
cpi ln2d - - - - - - - - - - - - - -
ppi ln1d 0.77 - - 0.29 0.82 0.68 0.29 0.58
ppi ln2d 0.87 - - 0.49 0.71 0.53 0.80 0.69
earn ln1d 0.38 0.49 0.78 0.62 0.94 0.38 0.66
earn ln2d 0.93 0.85 0.51 0.84 0.92 0.31 0.85
mon0 ln1d 0.72 - - 0.58 - - - - 0.80 0.78
mon0 ln2d 0.99 - - 0.31 - - - - 0.80 0.91
mon1 ln1d 0.79 0.14y 0.41 0.45 0.88 0.96 0.74
mon1 ln2d 0.91 0.66y 0.49 0.69 0.87 0.60 0.96
mon2 ln1d 0.49 0.14y 0.69 0.51 0.13 0.75 0.97
mon2 ln2d 0.50 0.95y 0.44 0.69 0.83 0.81 0.80
mon3 ln1d 0.72y 0.89 0.78 0.50 0.35 0.35 0.87
mon3 ln2d 0.54 0.80y 0.56 0.79 0.69 0.76 0.99
rmon0 ln1d 0.71y - - 0.56 - - - - 0.01y 0.53
rmon1 ln1d 0.85 0.75 0.27 0.53 0.60 0.98 0.64
rmon2 ln1d 0.74y 0.38 0.69 0.58 0.28 0.82 0.94
rmon3 ln1d 0.80 0.50 0.81 0.65 0.01 0.73 0.95
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Table 5, Panel D. (Output) Forecast Unbiasedness Test
Traditional p-values versus Rossi and Sekhposyan (2011b)

Indicator Trans. CN FR GY IT JP UK US
RW ln1d 0.69y 0.64y 0.70y 0.13y 0.07y 0.10y 0.51y
AR ln1d 0.20y 0.00y 0.00y 0.68y 0.36y 0.01y 0.05y
rtbill lev 0.16 0.00y 0.07y 0.55y 0.03y 0.04y 0.00y
rbnds lev - - - - - - - - - - 0.27y 0.00y
rbndm lev 0.09y - - - - 0.64y - - - - 0.00y
rbndl lev 0.03y 0.00y 0.01y 0.63y 0.29y 0.06y 0.00y
rovnght 1d 0.11y 0.00y 0.00y 0.68y 0.24y 0.02y 0.00y
rtbill 1d 0.17y 0.00y 0.00y 0.72y 0.17y 0.01y 0.00y
rbnds 1d - - - - - - - - - - 0.07y 0.01y
rbndm 1d 0.08y - - - - 0.78y - - - - 0.02y
rbndl 1d 0.04y 0.00y 0.01y 0.89y 0.39y 0.01y 0.02y
rrovnght lev 0.30y 0.01y 0.01y 0.56y 0.31y 0.00y 0.00y
rrtbill lev 0.09y 0.00y 0.01y 0.44y 0.38y 0.00y 0.00y
rrbnds lev - - - - - - - - - - 0.00y 0.00y
rrbndm lev 0.02y - - - - 0.35y - - - - 0.00y
rrbndl lev 0.03y 0.00y 0.00y 0.49y 0.56y 0.00y 0.00y
rrovnght 1d 0.09y 0.00y 0.00y 0.70y 0.27y 0.00y 0.00y
rrtbill 1d 0.04y 0.00y 0.01y 0.76y 0.11y 0.00y 0.00y
rrbnds 1d - - - - - - - - - - 0.01y 0.00y
rrbndm 1d 0.13y - - - - 0.23y - - - - 0.00y
rrbndl 1d 0.11y 0.00y 0.01y 0.21y 0.47y 0.00y 0.00y
rspread lev 0.32y 0.15y 0.01y 0.90y 0.47y 0.00y 0.22y
exrate ln1d 0.00y - - - - - - - - - - - -
rexrate ln1d 0.00y - - - - - - - - - - - -
stockp ln1d 0.29y 0.58y 0.04y 0.13y 0.30y 0.00y 0.04y
rstockp ln1d 0.46y 0.48y 0.04y 0.27y 0.37y 0.01y 0.05y
rgdp ln1d - - - - - - - - - - - - - -
rgdp gap - - - - - - - - - - - - - -
ip ln1d 0.32y 0.02y 0.00y 0.86y 0.41y 0.00y 0.04y
ip gap 0.03y 0.00y 0.00y 0.49y 0.23y 0.00y 0.00y
capu lev 0.00y 0.00y 0.02y 0.47y 0.31y 0.65y 0.01y
emp ln1d 0.12y 0.07y 0.00y 0.97y 0.23y 0.00y 0.01y
emp gap 0.01y 0.02y 0.01y 0.54y 0.01y 0.00y 0.00y
unemp lev 0.15y 0.06y 0.02y 0.16y 0.10y 0.00y 0.05y
unemp 1d 0.05y 0.00y 0.00y 0.92y 0.20y 0.01y 0.02y
unemp gap 0.04y 0.00y 0.00y 0.63y 0.02y 0.00y 0.00y
pgdp ln1d 0.01y 0.00y 0.01y 0.40y 0.32y 0.01y 0.00y
pgdp ln2d 0.09y 0.00y 0.00y 0.04y 0.33y 0.00y 0.00y
cpi ln1d 0.15y 0.01y 0.06 0.26y 0.47y 0.01y 0.01y
cpi ln2d 0.12y 0.00y 0.01y 0.24y 0.09y 0.00y 0.00y
ppi ln1d 0.00y - - 0.04y 0.73y 0.06y 0.00y 0.00y
ppi ln2d 0.12y - - 0.00y 0.71y 0.02y 0.00y 0.01y
earn ln1d 0.11y 0.00y 0.00y 0.64y 0.22y 0.50y 0.00y
earn ln2d 0.19y 0.00y 0.00y 0.44y 0.40y 0.01y 0.01y
mon0 ln1d 0.00y - - 0.23y - - - - 0.00y 0.00y
mon0 ln2d 0.07y - - 0.81y - - - - 0.01y 0.10y
mon1 ln1d 0.14y 0.00y 0.01y 0.83y 0.27y 0.19y 0.00y
mon1 ln2d 0.10y 0.00y 0.00y 0.83y 0.17y 0.00y 0.05y
mon2 ln1d 0.00y 0.00y 0.00y 0.87y 0.11y 0.00y 0.02y
mon2 ln2d 0.01y 0.00y 0.00y 0.89y 0.25y 0.15y 0.00y
mon3 ln1d 0.06y 0.00y 0.00y 0.36y 0.45 0.19y 0.00y
mon3 ln2d 0.02y 0.00y 0.00y 0.87y 0.89y 0.01y 0.00y
rmon0 ln1d 0.02y - - 0.13y - - - - 0.02y 0.07y
rmon1 ln1d 0.20 0.00y 0.05y 0.70y 0.21y 0.07y 0.04y
rmon2 ln1d 0.00y 0.00y 0.00y 0.82y 0.03y 0.06y 0.13y
rmon3 ln1d 0.00y 0.00y 0.00y 0.70y 0.80y 0.04y 0.02y
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Table 6, Panel A. (In�ation). Pesaran and Timmermann (2007) & Inoue and Rossi (2012)
Indicator Trans. CN FR GY IT JP UK US
AR rmsfe ln2d 1.57 1.44 1.22 2.42 2.46 2.90 1.78
rtbill lev 0.84* 0.81* 0.88* 0.80* 0.67* 0.71* 0.66*

(0.17) (0.16) (0.00) (0.18) (0.35) (0.00) (0.00)
rbnds lev - - - - - - - - - - 0.79* 0.73*

(- -) (- -) (- -) (- -) (- -) (0.01) (0.01)
rbndm lev 0.82* - - - - 0.74* - - - - 0.80*

(0.07) (- -) (- -) (0.09) (- -) (- -) (0.05)
rbndl lev 0.79* 0.83* 0.81* 0.81* 0.84* 0.71* 0.84*

(0.04) (0.17) (0.03) (0.21) (0.67) (0.04) (0.09)
rovnght 1d 0.88* 0.83* 0.95* 1.14* 0.82* 0.79* 0.83*

(0.05) (0.16) (0.09) (0.37) (0.05) (0.19) (0.01)
rtbill 1d 0.93* 0.84* 0.91* 1.04* 0.61* 0.69* 0.83*

(0.07) (0.12) (0.02) (0.56) (0.10) (0.01) (0.01)
rbnds 1d - - - - - - - - - - 0.65* 0.85*

(- -) (- -) (- -) (- -) (- -) (0.01) (0.01)
rbndm 1d 0.89* - - - - 0.89* - - - - 0.89*

(0.00) (- -) (- -) (0.50) (- -) (- -) (0.06)
rbndl 1d 0.87* 0.85* 0.93* 0.85* 0.83* 0.73* 0.88*

(0.00) (0.08) (0.05) (0.46) (0.69) (0.06) (0.08)
rrovnght lev 0.88* 0.91* 0.91 1.39* 0.96* 1.27* 0.83*

(0.10) (0.45) (0.24) (0.10) (0.78) (0.33) (0.07)
rrtbill lev 0.91* 1.02* 0.88* 1.07* 0.70* 1.08* 0.83*

(0.14) (0.85) (0.11) (0.63) (0.10) (0.66) (0.09)
rrbnds lev - - - - - - - - - - 1.02* 0.86*

(- -) (- -) (- -) (- -) (- -) (0.91) (0.18)
rrbndm lev 0.89* - - - - 0.99* - - - - 0.78*

(0.11) (- -) (- -) (0.94) (- -) (- -) (0.04)
rrbndl lev 0.87* 1.03* 0.85* 0.89* 0.65* 0.82* 0.75*

(0.10) (0.77) (0.13) (0.53) (0.33) (0.33) (0.03)
rrovnght 1d 0.90* 0.89* 0.97 0.96* 0.95* 0.84* 0.84*

(0.28) (0.23) (0.51) (0.55) (0.23) (0.20) (0.01)
rrtbill 1d 0.91* 1.00* 0.91* 1.01* 0.74 0.85* 0.86

(0.09) (0.91) (0.06) (0.90) (0.20) (0.06) (0.02)
rrbnds 1d - - - - - - - - - - 0.86* 0.89*

(- -) (- -) (- -) (- -) (- -) (0.08) (0.03)
rrbndm 1d 0.84* - - - - 0.86* - - - - 0.94*

(0.00) (- -) (- -) (0.14) (- -) (- -) (0.12)
rrbndl 1d 0.85* 1.01* 0.93* 0.79* 0.63* 0.73* 0.95*

(0.00) (0.69) (0.14) (0.14) (0.36) (0.05) (0.17)
rspread lev 0.95* 0.82* 0.95* 1.01* 0.82* 0.74* 0.67*

(0.03) (0.19) (0.04) (0.97) (0.63) (0.03) (0.01)
exrate ln1d 0.94* 0.64* 0.75* 0.82* 0.70* 0.72* 0.75*

(0.12) (0.03) (0.01) (0.17) (0.18) (0.16) (0.10)
rexrate ln1d 0.95* 0.69* 0.79* 0.92* 0.69* 0.91* 0.75*

(0.26) (0.05) (0.01) (0.43) (0.20) (0.02) (0.10)
stockp ln1d 0.94* 0.96* 0.91* 0.81* 0.82* 0.82* 0.84*

(0.34) (0.11) (0.07) (0.22) (0.17) (0.20) (0.02)
rstockp ln1d 0.93* 0.96* 0.92* 0.82* 0.76* 0.87* 0.81*

(0.36) (0.08) (0.03) (0.21) (0.17) (0.29) (0.02)
rgdp ln1d 0.78* 0.93* 0.78* 0.98* 0.90* 0.91* 0.67*

(0.05) (0.13) (0.06) (0.09) (0.45) (0.21) (0.01)
rgdp gap 0.80* 0.79* 0.78* 1.00* 0.96* 0.84* 0.71*

(0.12) (0.02) (0.08) (0.98) (0.04) (0.10) (0.03)
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Indicator Trans. CN FR GY IT JP UK US
rgdp gap 0.80* 0.79* 0.78* 1.00* 0.96* 0.84* 0.71*

(0.12) (0.02) (0.08) (0.98) (0.04) (0.10) (0.03)
ip ln1d 0.77* 0.93* 0.93* 0.83* 0.78* 0.95* 0.66*

(0.08) (0.07) (0.07) (0.09) (0.17) (0.43) (0.00)
ip gap 0.74* 0.89* 0.92* 0.91* 0.81* 0.88* 0.70*

(0.07) (0.12) (0.22) (0.41) (0.27) (0.24) (0.01)
capu lev 0.77* 0.69* 0.80* 0.97* 0.75* 0.66* 0.59*

(0.23) (0.04) (0.04) (0.80) (0.28) (0.00) (0.00)
emp ln1d 0.75* 0.69* 0.83* 0.96* 0.84* 0.59* 0.62*

(0.07) (0.01) (0.02) (0.11) (0.25) (0.04) (0.00)
emp gap 0.74* 0.73* 0.73* 0.94* 0.80* 0.73* 0.66*

(0.06) (0.07) (0.00) (0.27) (0.26) (0.21) (0.02)
unemp lev 0.74* 0.80* 0.77* 0.71* 0.83* 0.64* 0.66*

(0.04) (0.05) (0.03) (0.17) (0.15) (0.06) (0.00)
unemp 1d 0.78* 0.88* 0.81* 0.86* 0.89* 0.63* 0.66*

(0.08) (0.09) (0.05) (0.25) (0.34) (0.10) (0.01)
unemp gap 0.78* 0.84* 0.86* 0.91* 0.91* 0.68* 0.66*

(0.06) (0.04) (0.04) (0.24) (0.48) (0.17) (0.01)
pgdp ln1d 0.93* 0.89* 0.96* 0.94* 0.98* 0.99* 0.87*

(0.00) (0.27) (0.05) (0.57) (0.73) (0.82) (0.12)
pgdp ln2d 0.96* 0.98* 0.95* 0.93* 0.99* 0.98* 0.97*

(0.04) (0.16) (0.01) (0.03) (0.33) (0.27) (0.01)
ppi ln1d 0.81* 0.56* 0.91* 0.69* 0.55* 0.68* 0.80*

(0.02) (0.01) (0.06) (0.02) (0.10) (0.01) (0.02)
ppi ln2d 0.82* 0.62* 0.95* 0.84* 0.56* 0.73* 0.87*

(0.02) (0.02) (0.18) (0.03) (0.11) (0.03) (0.01)
earn ln1d 0.93* 0.96* 0.98* 0.76* 0.90* 0.81* 0.96*

(0.07) (0.55) (0.47) (0.12) (0.09) (0.06) (0.03)
earn ln2d 0.97* 0.95* 0.98 0.87* 0.95* 0.79* 0.99

(0.01) (0.04) (0.07) (0.09) (0.30) (0.03) (0.28)
mon0 ln1d 0.93* - - 0.76* - - - - 0.87* 0.96*

(0.20) (- -) (0.06) (- -) (- -) (0.04) (0.39)
mon0 ln2d 0.96* - - 0.92* - - - - 0.93* 0.97*

(0.05) (- -) (0.00) (- -) (- -) (0.23) (0.29)
mon1 ln1d 0.96 0.54* 0.90* 0.79* 0.93* 0.52* 0.92*

(0.28) (0.07) (0.20) (0.12) (0.32) (0.01) (0.20)
mon1 ln2d 0.97* 0.74* 0.97* 0.97* 0.96* 0.77* 0.96*

(0.04) (0.26) (0.18) (0.54) (0.10) (0.15) (0.10)
mon2 ln1d 0.82* 0.49* 0.86* 0.73* 0.89* 0.86* 0.97*

(0.13) (0.06) (0.04) (0.09) (0.49) (0.04) (0.38)
mon2 ln2d 0.83* 0.71* 0.98* 0.89* 0.99* 0.86* 0.97*

(0.04) (0.23) (0.07) (0.27) (0.66) (0.08) (0.05)
mon3 ln1d 0.78* 0.91* 0.93* 0.74* 1.20* 0.85* 0.91*

(0.16) (0.70) (0.10) (0.11) (0.22) (0.00) (0.07)
mon3 ln2d 0.87* 1.30* 1.00* 0.89* 0.89* 0.90* 0.97*

(0.04) (0.23) (0.94) (0.25) (0.24) (0.14) (0.03)
rmon0 ln1d 0.79* - - 0.67* - - - - 0.58* 0.80*

(0.03) (- -) (0.01) (- -) (- -) (0.02) (0.11)
rmon1 ln1d 0.91* 0.63* 0.84* 0.90* 0.72* 0.52* 0.76*

(0.03) (0.15) (0.07) (0.26) (0.12) (0.00) (0.06)
rmon2 ln1d 0.61* 0.60* 0.77* 0.89* 0.61* 0.80* 0.75*

(0.03) (0.12) (0.05) (0.27) (0.07) (0.14) (0.01)
rmon3 ln1d 0.61* 0.89* 0.88* 0.90* 0.90* 0.80* 0.78*

(0.03) (0.62) (0.15) (0.31) (0.73) (0.00) (0.07)
AVG-AVG na 0.72 0.73 0.78 0.68 0.60 0.57 0.71

(0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00)
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Table 6, Panel B. (Output). Pesaran and Timmerman (2007) & Inoue and Rossi (2012)
Indicator Trans. CN FR GY IT JP UK US
AR rmsfe ln1d 2.17 1.50 2.72 5.27 3.34 2.13 2.22
rtbill lev 0.71* 0.93* 0.86* 0.80* 0.71* 0.71* 0.76*

(0.14) (0.50) (0.18) (0.00) (0.09) (0.07) (0.11)
rbnds lev - - - - - - - - - - 0.79* 0.79*

(- -) (- -) (- -) (- -) (- -) (0.17) (0.16)
rbndm lev 0.76* - - - - 0.91* - - - - 0.84*

(0.21) (- -) (- -) (0.16) (- -) (- -) (0.26)
rbndl lev 0.81* 0.94* 0.88* 0.96* 0.81* 0.82* 0.86*

(0.30) (0.57) (0.26) (0.44) (0.13) (0.06) (0.32)
rovnght 1d 0.85* 0.93* 0.89* 0.94* 0.95* 0.92* 0.61*

(0.07) (0.38) (0.02) (0.09) (0.53) (0.01) (0.01)
rtbill 1d 0.75* 0.99* 0.89* 0.97* 0.92* 0.82* 0.70*

(0.06) (0.92) (0.07) (0.18) (0.45) (0.01) (0.02)
rbnds 1d - - - - - - - - - - 0.90* 0.71*

(- -) (- -) (- -) (- -) (- -) (0.09) (0.02)
rbndm 1d 0.81* - - - - 0.95* - - - - 0.78*

(0.16) (- -) (- -) (0.14) (- -) (- -) (0.06)
rbndl 1d 0.78* 1.01* 0.82* 0.98* 0.99* 0.73* 0.77*

(0.13) (0.90) (0.05) (0.15) (0.95) (0.00) (0.05)
rrovnght lev 0.73* 0.91* 0.91* 0.78* 0.84* 0.86* 0.91*

(0.07) (0.18) (0.12) (0.07) (0.18) (0.02) (0.14)
rrtbill lev 0.89* 0.96* 0.91* 0.74* 0.82* 0.85* 0.86*

(0.27) (0.52) (0.11) (0.05) (0.20) (0.04) (0.24)
rrbnds lev - - - - - - - - - - 0.80* 0.85*

(- -) (- -) (- -) (- -) (- -) (0.00) (0.24)
rrbndm lev 0.95* - - - - 0.74* - - - - 0.79*

(0.26) (- -) (- -) (0.05) (- -) (- -) (0.20)
rrbndl lev 0.93* 0.95* 0.88* 0.73* 0.81* 0.76* 0.77*

(0.07) (0.57) (0.03) (0.06) (0.11) (0.00) (0.17)
rrovnght 1d 0.90* 0.97* 0.91* 0.96* 0.97* 0.92* 0.94*

(0.05) (0.02) (0.00) (0.03) (0.01) (0.06) (0.01)
rrtbill 1d 0.92* 1.00* 0.92* 0.96* 0.94* 0.87* 0.90*

(0.04) (0.95) (0.01) (0.25) (0.05) (0.02) (0.01)
rrbnds 1d - - - - - - - - - - 0.86* 0.89*

(- -) (- -) (- -) (- -) (- -) (0.03) (0.06)
rrbndm 1d 0.97* - - - - 0.82* - - - - 0.85*

(0.14) (- -) (- -) (0.16) (- -) (- -) (0.08)
rrbndl 1d 0.98* 0.99* 0.95* 0.80* 0.95* 0.83* 0.84*

(0.19) (0.78) (0.01) (0.14) (0.12) (0.01) (0.07)
rspread lev 0.56* 0.87* 0.78* 0.82* 0.97* 0.86* 0.64*

(0.03) (0.26) (0.01) (0.03) (0.46) (0.18) (0.02)
exrate ln1d 0.96* 0.89* 0.90* 0.85* 0.99* 0.95* 0.92*

(0.03) (0.01) (0.02) (0.01) (0.86) (0.21) (0.34)
rexrate ln1d 0.93* 0.88* 0.87* 0.94* 1.00* 0.94* 0.92*

(0.02) (0.01) (0.01) (0.30) (0.99) (0.17) (0.34)
stockp ln1d 0.88* 0.91* 0.84* 0.90* 0.80* 0.81* 0.86*

(0.08) (0.11) (0.03) (0.20) (0.00) (0.00) (0.03)
rstockp ln1d 0.84* 0.91* 0.83* 0.92* 0.81* 0.76* 0.81*

(0.06) (0.14) (0.05) (0.20) (0.00) (0.00) (0.02)
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Indicator Trans. CN FR GY IT JP UK US
ip ln1d 0.93* 0.92* 0.93* 0.94* 0.92* 0.85* 0.97*

(0.19) (0.12) (0.09) (0.40) (0.08) (0.03) (0.34)
ip gap 0.94* 0.91* 0.93* 0.92* 0.94* 0.89* 0.92*

(0.13) (0.15) (0.11) (0.15) (0.05) (0.13) (0.11)
capu lev 0.63* 0.88* 0.93* 0.77* 0.88* 0.60* 0.86*

(0.02) (0.14) (0.29) (0.12) (0.00) (0.00) (0.09)
emp ln1d 0.96* 0.86* 0.92* 0.96* 0.94* 0.90* 0.97*

(0.11) (0.10) (0.06) (0.00) (0.01) (0.03) (0.11)
emp gap 0.95* 0.80* 0.94* 0.95* 0.84* 0.82* 0.90*

(0.13) (0.11) (0.20) (0.31) (0.07) (0.21) (0.15)
unemp lev 0.86* 0.79* 0.91* 0.73* 0.89* 0.74* 0.86*

(0.03) (0.05) (0.12) (0.04) (0.02) (0.01) (0.14)
unemp 1d 0.93* 0.90* 0.95* 0.97* 0.97* 0.75* 0.97*

(0.11) (0.11) (0.50) (0.20) (0.06) (0.02) (0.19)
unemp gap 0.94* 0.84* 0.93* 0.95* 0.92* 0.72* 0.87*

(0.11) (0.04) (0.03) (0.35) (0.08) (0.04) (0.07)
pgdp ln1d 0.78* 0.94* 0.98* 0.81* 0.93* 0.88* 0.82*

(0.01) (0.18) (0.13) (0.05) (0.01) (0.06) (0.17)
pgdp ln2d 0.95* 0.94* 0.99* 0.75* 0.97* 0.96* 0.85*

(0.02) (0.03) (0.00) (0.14) (0.01) (0.15) (0.06)
cpi ln1d 0.86* 0.80* 0.89* 0.72* 0.85* 0.71* 0.69*

(0.22) (0.09) (0.23) (0.04) (0.23) (0.00) (0.05)
cpi ln2d 0.98* 0.92* 0.95* 0.80* 0.93* 0.78* 0.78*

(0.01) (0.34) (0.01) (0.12) (0.08) (0.02) (0.06)
ppi ln1d 0.85* 0.30* 0.81* 0.82* 0.81* 0.77* 0.70*

(0.03) (0.03) (0.07) (0.04) (0.23) (0.03) (0.04)
ppi ln2d 0.96* 0.60* 0.93* 0.96* 0.85* 0.77* 0.96*

(0.00) (0.01) (0.02) (0.07) (0.03) (0.01) (0.03)
earn ln1d 0.91* 0.97* 0.96* 0.82* 0.89* 0.87* 0.89*

(0.15) (0.55) (0.09) (0.04) (0.24) (0.05) (0.11)
earn ln2d 0.95* 0.96* 0.98 0.81* 0.97* 0.95* 0.98

(0.03) (0.35) (0.08) (0.21) (0.07) (0.11) (0.01)
mon0 ln1d 0.91* - - 0.89* - - - - 0.91* 0.92*

(0.24) (- -) (0.02) (- -) (- -) (0.04) (0.07)
mon0 ln2d 0.92* - - 0.92* - - - - 0.96* 0.97*

(0.08) (- -) (0.05) (- -) (- -) (0.00) (0.00)
mon1 ln1d 0.87* 0.74* 0.86* 0.83* 0.96* 0.46* 0.93*

(0.13) (0.03) (0.06) (0.00) (0.19) (0.03) (0.10)
mon1 ln2d 0.91* 0.91* 0.95* 0.94* 0.97* 0.60* 0.91*

(0.04) (0.03) (0.05) (0.04) (0.02) (0.04) (0.01)
mon2 ln1d 0.79* 0.65* 0.95* 0.82* 0.72* 0.79* 0.92*

(0.00) (0.00) (0.26) (0.00) (0.01) (0.01) (0.29)
mon2 ln2d 0.96* 0.88* 0.98* 0.94* 0.88* 0.80* 0.89*

(0.16) (0.00) (0.05) (0.00) (0.04) (0.01) (0.01)
mon3 ln1d 0.77* 0.80 0.95* 0.78* 0.74* 0.58* 0.95*

(0.01) (0.02) (0.17) (0.03) (0.02) (0.02) (0.56)
mon3 ln2d 0.94 0.90 0.98* 0.91* 0.90* 0.81* 0.92*

(0.13) (0.00) (0.01) (0.00) (0.03) (0.01) (0.04)
rmon0 ln1d 0.80* - - 0.87* - - - - 0.86* 0.69*

(0.15) (- -) (0.02) (- -) (- -) (0.01) (0.05)
rmon1 ln1d 0.78* 0.83 0.78* 0.83* 0.92* 0.65* 0.83*

(0.19) (0.02) (0.05) (0.01) (0.11) (0.07) (0.21)
rmon2 ln1d 0.89* 0.73* 0.93* 0.92* 0.75* 0.94* 0.69*

(0.07) (0.00) (0.33) (0.01) (0.01) (0.05) (0.02)
rmon3 ln1d 0.76* 0.82* 0.93* 0.86* 0.83* 0.70* 0.78*

(0.03) (0.03) (0.11) (0.21) (0.06) (0.03) (0.06)
AVG-AVG na 0.73 0.71 0.79 0.64 0.75 0.64 0.66

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)115



Table 7. Relative MSFE and Equal Predictive Ability Test�s P-value
Model CN FR GY IT JP UK US

Panel A. In�ation
AR RMSFE 1.79 1.68 1.47 3.05 3.15 3.61 2.04
EWA 0.88 1.02 0.88 1.00 0.85 0.80 0.82

(0.01) (0.68) (0.00) (0.50) (0.01) (0.01) (0.00)
BMA 0.96 1.22 0.93 1.20 0.87 0.99 0.94

(0.39) (0.98) (0.18) (0.80) (0.09) (0.48) (0.27)
UCSV 0.93 0.93 0.80 0.82 0.83 0.94 0.84

(0.18) (0.15) (0.01) (0.03) (0.01) (0.25) (0.02)
FAAR 1.06 1.32 0.91 1.66 1.95 1.17 1.30

(0.62) (0.97) (0.26) (1.00) (0.96) (0.81) (0.88)
Panel B. Output

AR RMSFE 2.34 1.68 3.38 5.01 3.35 2.51 2.46
EWA 0.92 1.02 0.92 0.98 1.01 0.91 0.84

(0.01) (0.65) (0.01) (0.41) (0.69) (0.00) (0.01)
BMA 0.96 1.00 0.87 1.13 1.27 0.95 0.98

(0.38) (0.49) (0.04) (0.77) (0.96) (0.27) (0.46)
FAAR 1.20 1.22 0.97 1.14 0.98 1.36 1.06

(0.92) (0.82) (0.40) (0.75) (0.41) (0.97) (0.61)

Table 8. Giacomini and Rossi�s (2010a) Fluctuation Test
Critical Value = 2.624

Model CN FR GY IT JP UK US
Panel A. In�ation

EWA 16.82 5.19 14.48 11.60 12.89 12.15 10.81
BMA 10.33 0.25 15.65 0.16 13.42 3.87 8.33
UCSV 14.15 18.09 11.31 11.28 14.16 13.72 21.15
FAAR 9.76 -0.83 7.15 -0.02 0.18 0.40 1.07

Panel B. Output
EWA 13.74 6.88 12.74 8.33 4.66 14.85 12.96
BMA 9.41 11.37 11.77 7.47 2.03 7.71 8.36
FAAR 3.77 8.05 9.84 7.46 9.36 1.39 6.26
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Table 9, Panel A. (In�ation). Giacomini and Rossi�s (2009)
Forecast Breakdown Test (P-values in Parentheses)

Indicator Trans. CN FR GY IT JP UK US
AR ln2d 3.25 2.15 3.05 3.13 2.07 1.92 5.43

(0.00) (0.03) (0.00) (0.00) (0.04) (0.05) (0.00)
rovnght lev 3.74 3.11 4.37 -6.94 5.57 -2.92 9.44

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rtbill lev 7.97 7.99 4.33 -0.83 5.87 4.46 9.47

(0.00) (0.00) (0.00) (0.41) (0.00) (0.00) (0.00)
rbnds lev - - - - - - - - - - 0.11 9.23

(- -) (- -) (- -) (- -) (- -) (0.91) (0.00)
rbndm lev 9.56 - - - - 6.52 - - - - 10.87

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rbndl lev 9.59 7.76 4.86 8.42 2.00 7.69 10.36

(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00)
rovnght 1d 2.99 0.66 4.17 -3.70 3.62 -5.44 5.79

(0.00) (0.51) (0.00) (0.00) (0.00) (0.00) (0.00)
rtbill 1d 5.49 4.62 4.32 -3.73 4.00 1.54 6.02

(0.00) (0.00) (0.00) (0.00) (0.00) (0.12) (0.00)
rbnds 1d - - - - - - - - - - -1.78 6.19

(- -) (- -) (- -) (- -) (- -) (0.08) (0.00)
rbndm 1d 5.01 - - - - 5.90 - - - - 6.91

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rbndl 1d 5.26 4.86 4.10 6.83 2.55 4.56 7.30

(0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00)
rrovnght lev 3.47 6.14 7.06 -3.08 4.92 -1.69 8.08

(0.00) (0.00) (0.00) (0.00) (0.00) (0.09) (0.00)
rrtbill lev 7.46 9.94 7.08 1.35 3.56 5.60 8.44

(0.00) (0.00) (0.00) (0.18) (0.00) (0.00) (0.00)
rrbnds lev - - - - - - - - - - 3.29 7.84

(- -) (- -) (- -) (- -) (- -) (0.00) (0.00)
rrbndm lev 8.35 - - - - 6.11 - - - - 7.90

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rrbndl lev 7.83 9.74 6.93 6.67 0.52 9.32 7.96

(0.00) (0.00) (0.00) (0.00) (0.60) (0.00) (0.00)
rrovnght 1d 2.92 1.03 4.45 -10.02 1.16 -4.76 6.37

(0.00) (0.30) (0.00) (0.00) (0.25) (0.00) (0.00)
rrtbill 1d 5.51 3.01 4.55 -2.34 1.96 -0.15 6.90

(0.00) (0.00) (0.00) (0.02) (0.05) (0.88) (0.00)
rrbnds 1d - - - - - - - - - - -2.48 5.73

(- -) (- -) (- -) (- -) (- -) (0.01) (0.00)
rrbndm 1d 3.00 - - - - 6.42 - - - - 5.57

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rrbndl 1d 4.37 2.65 3.52 7.03 -0.44 4.37 5.59

(0.00) (0.01) (0.00) (0.00) (0.66) (0.00) (0.00)
rspread lev 1.82 3.15 4.55 0.07 -9.80 -2.78 9.84

(0.07) (0.00) (0.00) (0.94) (0.00) (0.01) (0.00)
exrate ln1d 1.08 -4.66 2.59 -2.63 -0.56 -3.07 5.26

(0.28) (0.00) (0.01) (0.01) (0.57) (0.00) (0.00)
rexrate ln1d 1.23 -7.15 2.25 -7.92 -0.07 -3.68 5.26

(0.22) (0.00) (0.02) (0.00) (0.94) (0.00) (0.00)
stockp ln1d 5.60 4.37 5.65 6.48 5.91 4.52 7.15

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rstockp ln1d 5.74 4.36 5.08 6.32 5.73 4.58 7.72

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rgdp ln1d 7.50 -0.62 5.42 4.89 4.71 4.78 8.36

(0.00) (0.53) (0.00) (0.00) (0.00) (0.00) (0.00)
117



Indicator Trans. CN FR GY IT JP UK US
rgdp gap 7.75 6.63 6.20 6.76 2.35 4.57 10.26

(0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00)
ip ln1d 6.08 4.17 3.59 6.23 3.74 3.47 8.10

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ip gap 9.97 5.23 5.33 6.17 5.07 5.47 8.72

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
capu lev 3.46 6.36 5.58 -6.62 -2.95 2.64 9.37

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
emp ln1d 6.82 5.16 5.35 4.58 4.13 -2.16 8.71

(0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.00)
emp gap 6.50 6.07 6.52 7.64 5.22 2.50 9.05

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00)
unemp lev 8.05 3.91 7.17 6.28 9.01 -1.65 9.87

(0.00) (0.00) (0.00) (0.00) (0.00) (0.10) (0.00)
unemp 1d 7.40 0.26 5.70 3.54 3.47 -5.08 8.39

(0.00) (0.80) (0.00) (0.00) (0.00) (0.00) (0.00)
unemp gap 7.40 6.45 5.32 4.93 4.86 -0.03 10.06

(0.00) (0.00) (0.00) (0.00) (0.00) (0.98) (0.00)
pgdp ln1d 4.86 3.38 4.69 5.62 2.34 3.95 11.28

(0.00) (0.00) (0.00) (0.00) (0.02) (0.00) (0.00)
pgdp ln2d 4.08 -1.70 4.37 3.19 2.14 2.47 5.69

(0.00) (0.09) (0.00) (0.00) (0.03) (0.01) (0.00)
cpi ln1d - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
cpi ln2d - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
ppi ln1d 7.78 2.65 5.29 3.20 7.41 7.00 8.84

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
ppi ln2d 4.29 2.47 4.63 3.06 5.61 4.23 6.90

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
earn ln1d 6.70 7.27 3.63 6.17 1.97 3.09 8.34

(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00)
earn ln2d 4.31 3.19 3.07 3.45 1.97 3.11 6.15

(0.00) (0.00) (0.00) (0.00) (0.05) (0.00) (0.00)
mon0 ln1d 6.68 - - 3.26 - - - - -6.93 7.63

(0.00) (- -) (0.00) (- -) (- -) (0.00) (0.00)
mon0 ln2d 4.19 - - -1.20 - - - - -6.30 6.05

(0.00) (- -) (0.23) (- -) (- -) (0.00) (0.00)
mon1 ln1d 5.70 0.17 3.69 3.46 3.37 2.47 7.82

(0.00) (0.87) (0.00) (0.00) (0.00) (0.01) (0.00)
mon1 ln2d 4.13 -6.68 2.95 1.63 1.82 2.56 5.48

(0.00) (0.00) (0.00) (0.10) (0.07) (0.01) (0.00)
mon2 ln1d 6.13 -1.15 5.56 4.26 5.99 1.91 7.09

(0.00) (0.25) (0.00) (0.00) (0.00) (0.06) (0.00)
mon2 ln2d 3.95 -6.21 3.53 1.80 3.68 0.35 6.07

(0.00) (0.00) (0.00) (0.07) (0.00) (0.72) (0.00)
mon3 ln1d 3.93 -6.95 2.64 4.56 -0.79 2.70 6.32

(0.00) (0.00) (0.01) (0.00) (0.43) (0.01) (0.00)
mon3 ln2d 2.34 -6.20 2.30 1.48 -2.61 2.31 2.50

(0.02) (0.00) (0.02) (0.14) (0.01) (0.02) (0.01)
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Table 9, Panel B. (Output). Giacomini and Rossi�s (2009)
Forecast Breakdown Test (P-values in Parentheses)

Indicator Trans. CN FR GY IT JP UK US
AR ln1d 4.57 3.72 5.27 4.78 5.07 5.80 4.56

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rovnght lev 8.43 7.61 4.70 9.66 8.28 4.87 8.65

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rtbill lev 14.48 7.36 5.75 6.65 8.14 7.50 8.80

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rbnds lev - - - - - - - - - - 6.31 10.49

(- -) (- -) (- -) (- -) (- -) (0.00) (0.00)
rbndm lev 13.50 - - - - 10.67 - - - - 12.08

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rbndl lev 12.20 7.43 7.92 8.71 4.64 8.63 11.90

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rovnght 1d 3.52 5.93 6.46 8.48 7.71 3.93 7.82

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rtbill 1d 6.56 6.16 6.71 4.27 4.95 6.09 6.43

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rbnds 1d - - - - - - - - - - 4.69 7.30

(- -) (- -) (- -) (- -) (- -) (0.00) (0.00)
rbndm 1d 7.82 - - - - 7.22 - - - - 8.78

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rbndl 1d 8.87 6.20 8.79 6.44 4.20 7.45 8.48

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrovnght lev 5.99 6.74 5.52 8.99 7.28 5.76 7.52

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrtbill lev 9.67 8.49 5.51 7.82 3.99 6.32 8.80

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrbnds lev - - - - - - - - - - 6.10 8.45

(- -) (- -) (- -) (- -) (- -) (0.00) (0.00)
rrbndm lev 7.39 - - - - 6.93 - - - - 8.59

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rrbndl lev 6.59 8.46 6.10 6.10 4.74 9.34 8.21

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrovnght 1d 2.71 3.99 4.90 8.17 5.53 4.04 5.77

(0.01) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrtbill 1d 5.74 4.47 4.79 4.32 4.86 4.78 6.31

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rrbnds 1d - - - - - - - - - - 4.43 7.36

(- -) (- -) (- -) (- -) (- -) (0.00) (0.00)
rrbndm 1d 5.18 - - - - 5.53 - - - - 7.79

(0.00) (- -) (- -) (0.00) (- -) (- -) (0.00)
rrbndl 1d 5.25 5.49 4.83 5.37 3.52 6.93 7.84

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rspread lev 6.69 6.29 5.49 10.43 4.93 5.72 8.61

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
exrate ln1d 2.14 2.35 2.90 4.20 5.61 4.15 1.21

(0.03) (0.02) (0.00) (0.00) (0.00) (0.00) (0.23)
rexrate ln1d 2.20 2.32 3.20 4.94 6.02 4.14 1.21

(0.03) (0.02) (0.00) (0.00) (0.00) (0.00) (0.23)
stockp ln1d 6.28 3.11 6.79 9.81 6.18 7.73 5.34

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rstockp ln1d 6.09 3.34 6.83 9.16 5.96 7.87 5.88

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
rgdp ln1d - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
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Indicator Trans. CN FR GY IT JP UK US
rgdp gap - - - - - - - - - - - - - -

(- -) (- -) (- -) (- -) (- -) (- -) (- -)
ip ln1d 4.83 3.95 5.75 6.43 4.65 7.26 4.96

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ip gap 7.17 4.42 6.10 8.42 6.33 8.70 8.77

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
capu lev 3.20 5.56 7.27 10.25 5.41 3.26 7.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
emp ln1d 5.14 4.24 7.61 5.30 5.40 4.80 5.27

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
emp gap 7.71 5.28 7.28 8.68 9.10 6.66 9.64

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
unemp lev 7.87 6.05 7.38 10.84 7.18 6.23 7.59

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
unemp 1d 5.75 4.32 4.62 5.35 6.19 4.78 5.08

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
unemp gap 6.68 5.17 6.56 7.54 8.11 6.11 7.42

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
pgdp ln1d 8.93 6.22 5.53 5.10 5.46 8.44 8.61

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
pgdp ln2d 5.53 4.23 5.33 5.93 5.27 6.43 8.18

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
cpi ln1d 7.89 10.32 5.57 5.87 6.36 9.56 10.07

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
cpi ln2d 5.10 6.41 4.72 5.84 7.23 7.97 7.37

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
ppi ln1d 7.49 2.68 6.97 4.58 6.96 9.03 9.56

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
ppi ln2d 4.88 2.49 5.89 3.71 7.64 7.05 5.16

(0.00) (0.01) (0.00) (0.00) (0.00) (0.00) (0.00)
earn ln1d 7.14 6.46 5.45 5.94 7.02 4.96 9.83

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
earn ln2d 4.63 4.75 5.35 5.89 4.89 3.41 5.29

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
mon0 ln1d 8.21 - - 0.33 - - - - 4.76 9.90

(0.00) (- -) (0.74) (- -) (- -) (0.00) (0.00)
mon0 ln2d 5.91 - - -1.19 - - - - 2.76 4.63

(0.00) (- -) (0.23) (- -) (- -) (0.01) (0.00)
mon1 ln1d 7.31 3.29 3.59 3.92 6.05 2.95 6.86

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
mon1 ln2d 5.96 1.96 3.89 3.64 6.18 3.19 5.00

(0.00) (0.05) (0.00) (0.00) (0.00) (0.00) (0.00)
mon2 ln1d 6.82 3.55 6.73 4.11 8.65 3.71 7.07

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
mon2 ln2d 4.62 1.90 5.43 3.69 7.02 2.96 6.41

(0.00) (0.06) (0.00) (0.00) (0.00) (0.00) (0.00)
mon3 ln1d 4.14 2.37 5.87 5.00 4.79 3.05 6.45

(0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)
mon3 ln2d 2.48 1.88 4.48 3.60 4.85 3.05 2.87

(0.01) (0.06) (0.00) (0.00) (0.00) (0.00) (0.00)
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Table 10, PanelA. (In�ation) Rossi and Sekhposyan�s (2010) Test
5% Critical Values are: �3.97, �1.96, and �1.96

Indicator Trans. CN FR GY IT JP UK US
rovnght lev 5.84 2.45 8.00 2.34 4.63 4.45 5.07

0.18 12.46 -2.14 7.15 0.87 4.28 -1.70
5.21 -1.82 -0.79 -1.48 1.45 0.76 -0.76

rtbill lev 4.81 3.46 14.50 5.17 6.03 1.95 5.53
1.04 19.55 1.35 1.39 -4.91 3.37 -2.82
2.04 1.29 -0.95 0.49 1.52 1.06 0.00

rbnds lev - - - - - - - - - - 5.51 4.57
- - - - - - - - - - 2.19 -5.97
- - - - - - - - - - 3.72 3.89

rbndm lev 2.57 - - - - 2.91 - - - - 5.67
-1.24 - - - - 11.92 - - - - -4.13
1.75 - - - - 1.30 - - - - 6.10

rbndl lev 3.59 3.68 4.27 3.18 2.23 4.82 5.65
-1.52 10.38 0.65 3.93 -1.95 -3.41 -4.02
1.85 1.29 -0.15 1.62 1.43 3.96 5.10

rovnght 1d 4.99 2.80 5.86 2.42 7.78 7.61 3.75
-4.63 12.03 2.72 2.82 10.08 -0.78 -1.67
2.72 1.69 -3.00 1.21 1.29 3.78 0.73

rtbill 1d 5.44 4.87 9.91 2.26 3.00 2.78 3.38
-0.52 8.27 2.79 -2.78 4.90 7.75 -1.53
2.49 1.40 -3.65 0.03 1.74 0.16 1.09

rbnds 1d - - - - - - - - - - 2.44 5.71
- - - - - - - - - - -1.12 -0.64
- - - - - - - - - - 0.95 1.56

rbndm 1d 3.37 - - - - 6.34 - - - - 7.59
2.42 - - - - -2.02 - - - - 2.89
0.22 - - - - 2.01 - - - - 2.82

rbndl 1d 4.85 4.27 5.17 6.02 2.37 4.87 3.74
-3.04 8.65 0.22 -2.95 -6.66 -2.35 2.70
1.86 1.94 1.09 1.98 1.54 0.05 0.22

rrovnght lev 7.97 2.55 5.19 2.18 2.69 3.03 4.23
1.56 5.66 2.36 12.12 -2.89 0.05 -0.12
3.44 1.75 1.97 0.81 1.48 3.40 1.85

rrtbill lev 3.38 3.39 5.62 2.99 2.50 7.15 3.48
-1.91 5.38 0.76 5.26 3.93 7.96 1.17
2.04 2.64 2.74 1.39 1.03 2.27 1.55

rrbnds lev - - - - - - - - - - 6.34 3.59
- - - - - - - - - - 7.38 2.11
- - - - - - - - - - 1.01 1.46

rrbndm lev 3.38 - - - - 3.18 - - - - 3.28
-4.38 - - - - 0.51 - - - - 0.52
2.11 - - - - 1.96 - - - - 1.38

rrbndl lev 3.70 3.29 4.28 3.08 2.37 7.52 3.20
-0.99 5.06 1.76 1.96 -3.33 -3.86 0.22
2.31 2.63 -1.90 1.74 1.28 0.94 1.25

rrovnght 1d 4.10 2.92 4.77 2.40 2.77 5.34 5.01
-1.05 9.20 4.56 1.45 5.54 1.75 -8.95
1.31 2.93 -1.39 0.26 -1.52 3.01 2.12

rrtbill 1d 6.26 5.23 5.80 5.18 9.38 10.66 3.99
-2.73 -0.14 2.68 -1.98 1.79 3.08 -7.69
0.31 0.11 -1.50 0.74 0.36 -0.43 2.06
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Indicator Trans. CN FR GY IT JP UK US
rrbnds 1d - - - - - - - - - - 6.69 4.90

- - - - - - - - - - -4.43 -1.42
- - - - - - - - - - 1.22 2.49

rrbndm 1d 4.74 - - - - 5.80 - - - - 3.00
-3.05 - - - - -3.14 - - - - -1.72
-8.24 - - - - 2.31 - - - - -0.18

rrbndl 1d 4.15 4.53 3.89 5.57 2.32 5.27 2.34
-1.07 0.61 1.76 -8.46 0.35 -1.38 -1.52
-1.28 -0.54 -1.07 2.23 1.34 -1.15 -0.18

rspread lev 6.55 3.29 3.74 3.10 4.43 3.37 6.33
2.96 0.43 -11.58 -2.33 4.83 3.31 0.31
4.50 2.94 2.82 1.60 -0.73 1.19 -0.03

exrate ln1d 2.59 4.54 7.90 2.58 6.40 3.75 2.75
-6.35 12.87 10.24 10.50 6.84 -1.16 1.59
3.49 1.05 -0.58 1.59 -0.65 3.20 1.56

rexrate ln1d 4.82 8.58 6.99 3.33 7.44 2.20 2.75
0.91 24.09 6.54 3.84 7.15 1.72 1.59
5.20 -1.41 2.94 1.36 -0.32 0.30 1.56

stockp ln1d 6.08 5.12 7.20 3.59 5.54 3.01 4.55
1.84 -18.60 2.36 -1.57 2.10 -1.36 0.37
4.13 1.40 2.95 2.09 1.82 -1.07 1.45

rstockp ln1d 7.43 4.53 6.33 3.65 5.14 3.59 5.19
3.12 -18.30 1.06 -0.68 0.10 1.27 -0.35
3.97 1.39 2.68 2.00 -0.01 -0.97 2.24

rgdp ln1d 5.77 4.47 6.97 3.30 9.03 3.96 6.68
9.13 2.71 -8.27 3.97 3.00 2.24 -0.96
-4.54 1.09 -2.84 2.00 -0.11 0.90 -1.90

rgdp gap 5.03 5.05 4.42 4.27 4.10 4.62 6.68
3.29 -3.18 -0.94 5.20 0.24 2.54 -5.61
-3.38 2.24 -3.55 2.24 -2.10 -2.12 -0.01

ip ln1d 10.05 3.28 2.22 7.94 3.94 4.05 6.36
12.20 2.82 -0.99 -0.46 -4.71 0.65 1.32
-1.58 2.42 0.59 1.98 -1.51 2.07 -4.09

ip gap 7.42 8.83 2.70 5.80 8.37 4.04 5.09
3.03 -8.72 -0.13 -0.39 5.33 1.98 0.54
-0.32 3.42 1.27 2.70 0.88 1.75 -2.35

capu lev 2.82 2.73 3.27 5.68 2.84 3.37 5.85
2.38 6.76 -0.17 6.74 -5.59 -3.28 -2.03
1.32 1.34 -0.72 -0.44 1.51 -0.26 -0.32

emp ln1d 15.50 2.41 5.24 2.91 6.16 4.43 3.73
11.47 5.76 1.16 14.31 -6.78 -0.23 -4.75
-4.73 1.20 1.72 0.66 0.96 0.72 -0.71

emp gap 6.22 2.72 5.39 4.51 6.06 2.25 3.25
4.79 9.77 0.18 5.56 -9.94 -2.06 -6.72
-2.91 1.11 -1.48 2.60 2.32 1.36 -0.03

unemp lev 6.87 5.80 5.88 4.48 2.92 5.50 4.96
0.12 1.30 0.34 -15.20 2.17 1.66 0.44
1.33 2.07 -0.32 2.60 1.71 1.38 10.73

unemp 1d 7.22 6.44 3.12 4.63 6.65 4.95 4.36
1.81 -1.22 -0.89 -15.71 1.22 0.24 1.31
-5.13 0.72 -1.02 0.50 0.62 -1.61 -1.90
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Indicator Trans. CN FR GY IT JP UK US
unemp gap 4.99 6.24 3.72 2.50 6.35 3.45 7.35

3.62 -0.01 -1.67 -10.28 5.00 3.31 -3.28
-2.09 3.15 -0.87 1.41 1.37 1.23 -0.60

pgdp ln1d 4.98 3.10 4.49 3.27 7.01 4.17 4.43
8.89 6.51 6.74 0.76 -8.01 0.69 1.47
2.76 1.35 2.26 3.12 -0.95 2.20 2.08

pgdp ln2d 3.49 5.92 4.62 2.79 5.01 3.75 2.47
-1.36 5.48 -1.56 6.79 -11.08 -6.01 -2.58
1.19 4.16 2.64 1.58 -0.40 2.07 0.57

cpi ln1d - - - - - - - - - - - - - -
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -

cpi ln2d - - - - - - - - - - - - - -
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -

ppi ln1d 2.41 6.55 2.81 4.19 4.94 6.17 2.69
-4.88 -3.47 -0.66 -0.87 7.69 3.22 -0.50
2.46 1.82 1.52 -1.73 1.46 1.76 2.67

ppi ln2d 4.79 6.32 14.22 2.80 3.42 3.69 6.70
-3.91 -1.44 6.23 -8.17 -6.37 -4.45 -2.04
-1.21 -1.74 1.02 -0.16 -0.57 -0.96 0.09

earn ln1d 5.60 4.63 3.52 3.06 2.85 3.90 3.29
1.39 3.79 -1.42 2.38 -11.20 3.28 3.23
4.17 2.05 2.47 1.92 -0.23 1.65 3.05

earn ln2d 4.49 5.64 6.18 12.46 2.40 7.12 5.67
0.14 17.60 -3.90 6.95 -15.18 4.49 1.85
4.03 2.81 1.26 -4.27 -0.48 1.44 4.34

mon0 ln1d 5.70 - - 3.86 - - - - 2.53 7.46
-0.42 - - -4.29 - - - - -0.62 2.44
3.01 - - 2.46 - - - - 0.45 3.54

mon0 ln2d 3.39 - - 4.56 - - - - 4.76 5.11
1.92 - - 3.06 - - - - 0.42 0.04
1.77 - - 1.22 - - - - 2.58 1.28

mon1 ln1d 4.65 3.40 5.43 2.49 3.45 8.37 6.46
0.13 1.97 -17.69 1.12 1.30 -4.92 9.46
2.81 2.00 2.87 1.97 2.31 0.22 0.36

mon1 ln2d 4.87 2.99 3.71 2.58 2.43 2.34 2.68
0.39 -0.60 -6.22 1.98 -49.96 28.66 -0.33
2.87 1.13 1.73 1.80 0.36 0.28 -1.21

mon2 ln1d 5.94 3.45 4.01 2.91 4.87 3.02 5.45
4.43 2.52 -4.35 -3.79 -6.84 -1.44 2.02
3.47 2.04 1.23 1.88 2.13 2.84 2.28

mon2 ln2d 4.08 3.92 6.22 2.58 3.30 2.34 2.79
-2.44 1.66 1.87 1.88 0.58 -5.12 -0.56
3.11 1.20 3.31 1.97 1.95 -0.34 1.56

mon3 ln1d 3.58 3.55 3.31 2.84 2.45 4.65 5.61
2.30 2.57 -2.62 -3.32 6.43 10.80 2.84
1.92 -1.02 0.57 2.08 1.37 3.55 3.15

mon3 ln2d 4.31 2.84 6.83 3.14 2.27 5.23 7.45
0.95 -0.14 22.06 0.57 -5.91 3.00 3.49
0.07 2.86 4.31 1.21 1.65 0.00 -9.85
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Table 10, Panel B. (Output) Rossi and Sekhposyan�s (2010) Test
5% Critical Values are: �3.97, �1.96, and �1.96

Indicator Trans. CN FR GY IT JP UK US
rovnght lev 3.58 4.11 4.09 6.18 2.58 4.12 4.70

0.71 -0.89 2.22 -6.16 -3.68 2.46 1.35
3.15 1.41 -5.46 2.03 1.51 1.49 -0.99

rtbill lev 3.93 4.04 3.88 4.40 2.78 8.92 5.94
3.40 11.92 -4.12 6.58 3.27 -1.60 0.54
0.26 4.89 -0.81 1.75 1.30 0.79 0.48

rbnds lev - - - - - - - - - - 5.21 5.66
- - - - - - - - - - -1.86 1.63
- - - - - - - - - - -0.36 0.36

rbndm lev 4.17 - - - - 7.08 - - - - 6.34
2.46 - - - - 0.40 - - - - 5.31
0.87 - - - - 4.52 - - - - 2.16

rbndl lev 6.92 4.40 4.30 6.78 3.00 7.78 6.41
4.49 9.01 2.17 -0.82 3.00 -2.03 5.26
2.14 5.00 -0.30 5.84 1.40 1.30 3.12

rovnght 1d 8.73 2.42 5.52 2.57 4.85 4.77 5.87
0.57 3.63 2.27 7.44 -1.22 8.08 4.99
2.78 1.29 4.74 1.18 1.79 0.06 -0.58

rtbill 1d 8.64 2.40 6.23 3.11 4.57 2.51 3.55
10.94 3.22 4.70 1.89 -7.28 -1.62 3.14
-6.06 1.06 4.96 0.91 2.43 0.75 0.94

rbnds 1d - - - - - - - - - - 1.96 4.84
- - - - - - - - - - -3.73 1.77
- - - - - - - - - - 0.60 1.03

rbndm 1d 5.85 - - - - 4.04 - - - - 5.55
8.54 - - - - 0.56 - - - - 2.68
3.20 - - - - 2.34 - - - - 1.06

rbndl 1d 7.93 2.27 4.49 3.89 2.88 9.59 8.05
7.73 3.40 -1.20 4.64 4.99 -4.04 2.87
1.69 0.96 2.39 2.43 0.58 0.42 0.64

rrovnght lev 7.00 5.60 4.16 2.86 2.54 5.14 3.80
18.10 -6.11 0.82 -6.44 -3.49 -0.95 14.76
-0.12 3.62 -0.50 -0.21 1.92 3.37 2.66

rrtbill lev 4.66 2.31 4.83 5.81 5.27 5.09 3.51
2.42 0.88 0.73 -2.31 -11.02 -0.02 1.65
2.67 1.93 -0.13 3.06 0.35 3.72 2.04

rrbnds lev - - - - - - - - - - 3.67 3.96
- - - - - - - - - - 2.13 1.72
- - - - - - - - - - -1.05 2.02

rrbndm lev 3.41 - - - - 3.96 - - - - 3.41
1.19 - - - - 14.61 - - - - 1.39
2.04 - - - - 0.38 - - - - 1.62

rrbndl lev 3.55 2.34 3.44 4.76 2.17 6.72 3.86
-0.31 0.72 0.19 12.26 -1.13 5.42 1.62
1.66 1.98 2.42 0.14 0.79 -1.08 1.59

rrovnght 1d 4.18 3.73 6.16 7.32 3.20 2.30 4.75
5.16 7.18 1.97 2.10 5.98 -2.15 3.33
-0.21 1.67 -0.99 6.79 0.20 1.87 4.20

rrtbill 1d 7.64 3.43 2.73 2.95 2.99 2.77 3.56
7.32 20.69 4.81 2.13 21.47 1.74 -4.22
3.88 1.88 -3.59 1.95 1.19 2.20 2.71
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Indicator Trans. CN FR GY IT JP UK US
rrbnds 1d - - - - - - - - - - 3.74 3.60

- - - - - - - - - - 0.93 -1.30
- - - - - - - - - - 0.95 2.49

rrbndm 1d 3.73 - - - - 3.38 - - - - 3.67
1.70 - - - - -4.61 - - - - 0.22
1.99 - - - - 1.85 - - - - 2.36

rrbndl 1d 3.15 2.05 4.29 3.36 5.91 3.07 3.72
1.61 0.08 -3.63 -4.73 0.99 1.07 -0.55
2.11 1.99 -2.08 1.92 1.25 0.63 2.37

rspread lev 5.21 4.22 4.48 2.89 3.00 3.01 3.10
-4.18 0.37 2.38 -3.06 -0.44 5.75 -2.52
0.38 0.26 -0.09 0.16 1.72 2.45 -1.28

exrate ln1d 3.25 2.01 9.75 2.58 3.49 2.62 5.42
2.41 1.73 -5.54 5.06 -7.49 5.04 -0.54
1.55 1.89 0.63 0.02 3.16 1.25 6.73

rexrate ln1d 2.61 2.80 2.40 2.72 4.26 3.39 5.42
2.82 0.23 -1.85 -3.31 -11.23 5.13 -0.54
1.78 2.05 1.64 -0.78 3.67 1.13 6.73

stockp ln1d 3.57 2.30 4.71 3.62 3.93 7.18 3.15
0.93 -2.79 -1.27 2.61 -1.88 0.55 -1.46
-0.46 -1.76 0.22 1.82 -4.55 0.94 -1.99

rstockp ln1d 3.37 2.78 4.84 3.45 4.23 4.94 4.24
0.69 -3.17 -2.26 14.06 -2.98 0.40 -2.02
-0.85 -1.56 0.61 1.25 -2.22 0.02 -2.17

rgdp ln1d - - - - - - - - - - - - - -
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -

rgdp gap - - - - - - - - - - - - - -
- - - - - - - - - - - - - -
- - - - - - - - - - - - - -

ip ln1d 5.73 5.97 4.70 3.92 4.54 3.39 4.65
1.23 2.34 2.56 4.31 -4.36 2.74 3.74
-2.24 -3.20 1.72 2.55 -2.33 1.14 -0.39

ip gap 5.65 6.14 4.13 3.35 4.64 5.18 3.07
1.42 3.35 3.47 -1.67 -4.05 3.66 3.74
4.82 -1.98 2.31 4.41 3.13 1.26 1.78

capu lev 2.50 2.94 4.66 3.30 7.89 3.18 5.45
7.59 6.15 5.67 6.52 2.44 0.24 0.12
0.64 1.26 -1.32 1.75 0.00 0.55 -0.22

emp ln1d 5.30 3.47 6.03 2.30 3.17 2.66 4.69
-0.32 -1.19 7.22 -1.77 2.91 -0.41 5.88
1.45 0.30 0.25 1.85 1.31 1.56 0.55

emp gap 4.53 5.68 4.54 4.33 5.40 2.71 2.80
3.30 -0.81 1.68 -0.15 3.48 3.50 2.79
3.88 1.86 1.00 3.68 4.38 1.26 1.68

unemp lev 3.65 3.79 3.21 3.79 5.53 5.86 6.60
0.72 -3.06 -5.48 -0.14 -4.37 -3.34 -1.60
0.35 -0.39 0.44 0.72 2.76 2.65 0.32

unemp 1d 5.36 4.77 4.56 3.29 3.69 5.27 5.48
9.96 0.95 -6.13 1.79 4.60 -2.79 1.40
2.16 0.63 -1.69 1.43 1.16 0.96 -2.44

125



Indicator Trans. CN FR GY IT JP UK US
unemp gap 5.07 5.62 4.32 2.71 4.38 4.68 5.64

3.94 3.56 5.10 -1.41 1.58 2.17 0.90
4.31 0.26 -0.65 2.65 2.23 1.48 1.37

pgdp ln1d 5.52 6.18 5.29 3.33 6.42 7.05 5.24
0.65 -0.71 3.87 3.85 1.42 -0.82 1.80
1.54 3.68 0.79 0.04 -0.53 2.52 1.41

pgdp ln2d 2.35 6.58 7.05 3.49 5.49 2.47 3.20
0.40 1.87 -1.44 0.93 -8.15 5.10 3.50
1.63 1.79 -0.66 1.50 2.82 0.89 2.01

cpi ln1d 6.21 5.97 5.04 3.40 5.69 5.47 4.11
-1.16 4.29 2.07 9.14 -9.21 3.69 2.21
0.43 2.39 0.00 0.58 1.39 0.02 -1.21

cpi ln2d 3.61 2.26 3.58 3.44 2.64 6.74 5.90
4.25 6.48 3.85 3.09 8.74 3.13 -5.84
2.06 1.88 -2.91 1.37 0.80 1.05 3.26

ppi ln1d 4.21 5.19 3.08 4.92 2.49 6.86 7.86
-0.25 21.92 -1.97 -1.61 -9.25 5.37 6.73
2.75 -2.29 -0.19 3.07 1.82 2.08 2.89

ppi ln2d 6.13 10.02 8.61 3.65 2.36 2.60 2.77
-0.94 4.59 0.83 -3.79 2.39 1.36 0.44
3.02 0.00 5.19 4.92 0.71 0.82 1.58

earn ln1d 5.18 3.13 7.00 3.46 2.73 6.39 3.77
1.08 5.54 1.62 -3.06 4.42 -0.94 -6.41
1.99 1.91 0.32 -0.53 1.39 0.08 3.95

earn ln2d 3.92 2.52 2.69 7.47 3.79 6.19 7.34
-1.47 2.13 1.63 2.23 -6.17 7.27 0.85
2.35 0.98 1.84 1.10 -0.34 1.63 3.49

mon0 ln1d 6.80 - - 3.52 - - - - 6.41 5.85
14.28 - - -1.73 - - - - -0.01 1.62
1.99 - - 2.20 - - - - 2.31 6.55

mon0 ln2d 8.01 - - 4.71 - - - - 2.77 3.25
3.30 - - 0.47 - - - - 4.78 9.31
1.94 - - 1.45 - - - - -1.04 -1.01

mon1 ln1d 5.97 3.65 6.04 7.54 2.30 9.40 3.13
-0.75 2.95 -0.22 3.75 4.28 33.11 -4.56
0.65 1.92 -4.50 0.73 1.89 -0.58 2.77

mon1 ln2d 4.72 2.66 7.63 2.36 4.13 4.35 6.98
5.62 -3.28 -0.68 1.02 3.28 8.43 14.03
2.11 1.53 -1.09 1.49 3.14 1.49 -0.67

mon2 ln1d 4.46 3.47 4.53 3.52 2.91 2.51 4.35
3.31 0.85 3.15 -3.13 4.08 4.56 0.12
-5.46 2.68 3.04 0.79 0.17 1.74 -0.60

mon2 ln2d 2.13 4.75 4.40 2.44 3.29 3.35 2.40
0.61 0.26 -0.78 -3.53 3.43 0.00 1.14
0.66 0.96 0.50 1.58 0.31 -0.11 1.68

mon3 ln1d 2.32 3.55 3.14 2.74 4.78 5.75 5.26
-4.96 11.96 0.18 1.24 -5.58 -0.08 -0.09
0.88 0.25 3.28 1.58 -1.16 -0.01 5.56

mon3 ln2d 6.20 2.69 5.29 3.64 4.57 3.81 2.15
1.41 1.13 1.01 1.01 -2.55 0.00 1.20
3.62 -1.09 2.59 1.33 -2.23 2.59 1.25
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Notes to the Tables.

Table 1 reports, for each predictor and transformation (listed in the �rst two columns on the

left) and for each country (listed in the columns), the p-value of the Granger-causality for each

predictor as well as the p-values of Rossi�s (2005) Granger-causality test robust to instabilities (eq.

(3), reported in the �rst and second row for each predictor, respectively). The test statistics are

reported for several countries, listed in the columns. Panel A is for predicting in�ation and panel

B is for predicting real GDP growth.

Table 2 reports, for each predictor and transformation (listed in the �rst two columns on the left)

and for each country (listed in the columns), the value of the ratio of the MSFE for each predictor

relative to the RMSFE of the benchmark model. The p-value of the Diebold and Mariano�s (1995)

test statistic, eq. (41), is reported in parenthesis. The benchmark model is the autoregressive

model, whose RMSFE of the benchmark model is reported in the �rst row of the table. The test

statistics are reported for several countries, listed in the columns. Panel A is for predicting in�ation

and panel B is for predicting real GDP growth.

Table 3 reports, for each predictor and transformation (listed in the �rst two columns on the

left) and for each country (listed in the columns), the value of the Clark and McCracken�s (2001)

test statistic; asterisks denote signi�cance at the 5% signi�cance level. The benchmark model is the

autoregressive model. The test statistics are reported for several countries, listed in the columns.

Panel A is for predicting in�ation and panel B is for predicting real GDP growth.

Table 4 reports, for each predictor and transformation (listed in the �rst two columns on the

left) and for each country (listed in the columns), the value of Giacomini and Rossi�s (2010a)

Fluctuation test statistic, eq. (13). The benchmark model is the autoregressive model. The test

statistics are reported for several countries, listed in the columns. Panel A is for predicting in�ation

and panel B is for predicting real GDP growth. The 5% critical value is listed on top of the table.

Table 5 reports, for each predictor and transformation (listed in the �rst two columns on

the left) and for each country (listed in the columns), the p-values of the forecast rationality

test statistic (Panels A and B, for in�ation and real GDP growth respectively) and those of the

forecast unbiasedness test statistic (Panels C and D, for in�ation and real GDP growth respectively).

Daggers (y) in Panels A and B denote instead rejections at the 5% signi�cance level using Rossi

and Sekhposyan�s (2011b) Fluctuation rationality test statistic, eq. (19), implemented by choosing

gt= [1; yt+h;t] and jointly testing both coe¢ cients; daggers in Panels C and D denote rejections

of Rossi and Sekhposyan�s (2011b) Fluctuation unbiasedness test, i.e. eq. (19) implemented by

choosing gt = 1. The test statistics are reported for several countries, listed in the columns.

The 5% critical value of the Fluctuation rationality test is 16.90, whereas that of the Fluctuation
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unbiasedness test is 7.1035.

Table 6 reports, for each predictor and transformation (listed in the �rst two columns on the

left) and for each country (listed in the columns), the ratio of the MSFE of the �Average�forecast

across window sizes (based on Pesaran and Timmermann�s (2007) method, eq. (24)) relative to the

RMSFE of the benchmark model; the p-value of the Diebold and Mariano�s (1995) test statistic is

reported in parenthesis. The benchmark model is the autoregressive model. Asterisks denote 5%

signi�cance of the Inoue and Rossi�s (2012) sup-type test statistic across window sizes (unreported)

implemented using the Clark and McCracken�s (2001) method, R"T ; i.e. eq. (27). The test statistics

are reported for several countries, listed in the columns. Panel A is for predicting in�ation and

panel B is for predicting real GDP growth.

Table 7 reports the values of the ratio of the MSFE for each model listed in the �rst column

relative to the RMSFE of the benchmark model; the p-value of the Diebold and Mariano�s (1995)

test statistic is reported in parenthesis. The models are: forecast combinations with equal weights

(labeled �EWA�), Bayesian model averaging (labeled �BMA�), Stock and Watson�s (2007) unob-

served components stochastic volatility (labeled �UCSV�) and the factor-augmented autoregressive

model (labeled �FAAR�). The benchmark model is the autoregressive model. The test statistics

are reported for several countries, listed in the columns. Panel A is for predicting in�ation and

panel B is for predicting real GDP growth.

Table 8 reports the values of the Giacomini and Rossi�s (2010a) Fluctuation test statistic for

each model listed in the �rst column: forecast combinations with equal weights (labeled �EWA�),

Bayesian model averaging (labeled �BMA�), Stock and Watson�s (2007) unobserved components

stochastic volatility (labeled �UCSV�) and the factor-augmented autoregressive model (labeled

�FAAR�). The benchmark is the autoregressive model. The test statistics are reported for several

countries, listed in the columns. Panel A is for predicting in�ation and panel B is for predicting

real GDP growth. The 5% critical value is listed on top of the table.

Table 9 reports, for each predictor and transformation (listed in the �rst two columns on the

left) and for each country (listed in the columns) the value of Giacomini and Rossi�s (2009) forecast

breakdown test statistic (p-values are reported in parentheses below the statistics). Panel A is for

predicting in�ation and panel B is for predicting real GDP growth.

Table 10 reports, for each predictor and transformation (listed in the �rst two columns on the

left) and for each country (listed in the columns), the values of the �(A)P ; �
(B)
P and �(U)P test statistics

corresponding to the decomposition in Rossi and Sekhposyan (2011a), eqs. (49). The three test

statistics are listed in the �rst, second and third row, respectively, for each predictor. Panel A is

for predicting in�ation and panel B is for predicting real GDP growth.
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8 Figures

Figure 1, Panel A. (In�ation) Granger-causality Tests
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Figure 1, Panel B. (Output) Granger-causality Tests
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Figure 2, Panel A. (In�ation) Robust vs. Traditional Forecast Comparison Tests
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Figure 2, Panel B. (Output) Robust vs. Traditional Forecast Comparison Tests
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Figure 3, Panel A. (In�ation) Traditional In-sample Vs. Out-of-Sample Tests
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Figure 3, Panel B. (Output) Traditional In-sample Vs. Out-of-Sample Tests
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Figure 4, Panel A. (In�ation) Robust In-sample Vs. Out-of-Sample Tests
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Figure 4, Panel B. (Output) Robust In-sample Vs. Out-of-Sample Tests
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Figure 5, Panel A. (In�ation) Fluctuation Tests Across Series
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Figure 5, Panel B. (Output) Fluctuation Tests Across Series
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Figure 6, Panel A. (In�ation) Robust vs. Traditional Forecast Rationality Tests
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Figure 6, Panel B. (Output) Robust vs. Traditional Forecast Rationality Tests
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Figure 7, Panel A. (In�ation) Robust vs. Traditional Forecast Unbiasedness Tests
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Figure 7, Panel B. (Output) Robust vs. Traditional Forecast Unbiasedness Tests
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Figure 8, Panel A. (In�ation) Fluctuation Test on EWA vs. AR Model
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Figure 8, Panel B. (In�ation) Fluctuation Test on BMA vs. AR Model
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Figure 8, Panel C. (In�ation) Fluctuation Test on FAAR vs. AR Model
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Figure 8, Panel D. (In�ation) Fluctuation Test on UCSV vs. AR Model
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Figure 8, Panel E. (Output) Fluctuation Test on EWA vs. AR Model
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Figure 8, Panel F. (Output) Fluctuation Test on BMA vs. AR Model
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Figure 8, Panel G. (Output) Fluctuation Test on FAAR vs. AR Model
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Notes to Figures.

Figure 1 reports scatterplots of the p-values of the traditional Granger-causality tests (on the

horizontal axis) and of Rossi�s (2005) Granger-causality test robust to instabilities (on the vertical

axis). Each dot in the �gure corresponds to one of the series that we consider. The dotted lines

represent p-values of 5%.

Figure 2 reports a scatterplot of the p-values of the traditional MSE-t test using Giacomini and

White�s (2006) critical values (on the horizontal axis) and of the Giacomini and Rossi�s (2010a)

Fluctuation test (on the vertical axis).

Figure 3 reports scatterplots of the p-values of the traditional Granger-causality tests (on the

horizontal axis) and of the traditional MSE-t test using Giacomini and White�s (2006) critical values

(on the vertical axis). Each dot in the �gure corresponds to one of the series that we consider. The

dotted lines represent p-values of 5%.

Figure 4 reports a scatterplot of the p-values of Rossi�s (2005) Granger-causality test robust to

instabilities (on the horizontal axis) and of Giacomini and Rossi�s (2010a) Fluctuation test (on the

vertical axis). Each dot in the �gure corresponds to one of the series that we consider. The dotted

lines represent p-values of 5%.

Figure 5 reports the percentage of predictors whose Giacomini and Rossi�(2010a) Fluctuation

test is outside the critical value at each point in time.

Figure 6 reports a scatterplot of the p-values of the traditional Mincer and Zarnowitz�s (1969)

tests (on the horizontal axis) and of Rossi and Sekhposyan�s (2011b) Fluctuation rationality test

(on the vertical axis).

Figure 7 reports a scatterplot of the p-values of the traditional forecast unbiasedness tests (on

the horizontal axis) and of Rossi and Sekhposyan�s (2011b) Fluctuation unbiasedness test (on the

vertical axis).

Figure 8 reports plots the Fluctuation test over time for each of the models that we consider.

Panels A-D report results for forecasting in�ation, and Panels E-G report results for forecasting

output.
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