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1. Introduction

Since the seminal work of Kydland and Prescott (1982) and Prescott

(1986b), proponents of the real business cycle (RBC) paradigm have

claimed a central role for exogenous variations in technology as a

source of economic fluctuations in industrialized economies. Those

fluctuations have been interpreted by RBC economists as the equilib-

rium response to exogenous variations in technology, in an environ-

ment with perfect competition and intertemporally optimizing agents,

and in which the role of nominal frictions and monetary policy is, at

most, secondary.

Behind the claims of RBC theory lies what must have been one of

the most revolutionary findings in postwar macroeconomics: a cali-

brated version of the neoclassical growth model augmented with

a consumption-leisure choice, and with stochastic changes in total fac-

tor productivity as the only driving force, seems to account for the

bulk of economic fluctuations in the postwar U.S. economy. In practice,

‘‘accounting for observed fluctuations’’ has meant that calibrated

RBC models match pretty well the patterns of unconditional second

moments of a number of macroeconomic time series, including their

relative standard deviations and correlations. Such findings led Pre-

scott to claim ‘‘that technology shocks account for more than half the

fluctuations in the postwar period, with a best point estimate near 75

percent.’’1 Similarly, in two recent assessments of the road traveled

and the lessons learned by RBC theory after more than a decade,

Cooley and Prescott (1995) could confidently claim that ‘‘it makes

sense to think of fluctuations as caused by shocks to productivity,’’

while King and Rebelo (1999) concluded that ‘‘[the] main criticisms



levied against first-generation real business cycle models have been

largely overcome.’’

While most macroeconomists have recognized the methodological

impact of the RBC research program and have adopted its modeling

tools, other important, more substantive elements of that program

have been challenged in recent years. First, and in accordance with the

widely acknowledged importance of monetary policy in industrialized

economies, the bulk of the profession has gradually moved away from

real models (or their near-equivalent frictionless monetary models)

when trying to understand short-run macroeconomic phenomena. Sec-

ond, and most important for the purposes of this paper, the view of

technological change as a central force behind cyclical fluctuations has

been called into question. In the present paper, we focus on the latter

development by providing an overview of the literature that has chal-

lenged the central role of technology in business cycles.

A defining feature of the literature reviewed here lies in its search for

evidence on the role of technology that is more direct than just check-

ing whether any given model driven by technology shocks, and more

or less plausibly calibrated, can generate the key features of the busi-

ness cycle. In particular, we discuss efforts to identify and estimate the

empirical effects of exogenous changes in technology on different mac-

roeconomic variables, and to evaluate quantitatively the contribution

of those changes to business-cycle fluctuations.

Much of that literature (and, hence, much of the present paper)

focuses on one central, uncontroversial feature of the business cycle

in industrialized economies, namely, the strong positive comovement

between output and labor input measures. That comovement is illus-

trated graphically in Figure 1, which displays the quarterly time series

for hours and output in the U.S. nonfarm business sector over the

period 1948:1–2002:4. In both cases, the original series has been trans-

formed using the bandpass filter developed in Baxter and King (1999),

calibrated to remove fluctuations of periodicity outside an interval

between 6 and 32 quarters. As in Stock and Watson (1999), we inter-

pret the resulting series as reflecting fluctuations associated with busi-

ness cycles.

As is well known, the basic RBC model can generate fluctuations

in labor input and output of magnitude, persistence, and degree of

comovement roughly similar to the series displayed in Figure 1. As

shown in King and Rebelo (1999), when the actual sequence of technol-

ogy shocks (proxied by the estimated disturbances of an autoregres-
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sive (AR) process for the Solow residual) is fed as an input into the

model, the resulting equilibrium paths of output and labor input track

surprisingly well the observed historical patterns of those variables;

the latter exercise can be viewed as a more stringent test of the RBC

model than the usual moment-matching.

The literature reviewed in the present paper asks very different

questions, however: What have been the effects of technology shocks

in the postwar U.S. economy? How do they differ from the predictions

of standard RBC models? What is their contribution to business-cycle

fluctuations? What features must be incorporated in business-cycle

models to account for the observed effects? The remainder of this

paper describes the tentative (and sometimes contradictory) answers

that the efforts of a growing number of researchers have yielded.

Some of that research has exploited the natural role of technological

change as a source of permanent changes in labor productivity to iden-

tify technology shocks using structural vector autoregressions (VARs);

other authors have instead relied on more direct measures of tech-

nological change and examined their comovements with a variety of

macro variables. It is not easy to summarize in a few words the wealth

of existing evidence nor to agree on some definite conclusions of a
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Business-cycle fluctuations in output and hours
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literature that is still very much ongoing. Nevertheless, it is safe to state

that the bulk of the evidence reviewed in the present paper provides

little support for the initial claims of the RBC literature on the central

role of technological change as a source of business cycles.

The remainder of the paper is organized as follows. Section 2 reviews

some of the early papers that questioned the importance of technology

shocks and presents some of the basic evidence regarding the effects of

those shocks. Section 3 discusses a number of criticisms and possible

pitfalls of that literature. Section 4 presents the case for the existence of

nominal frictions as an explanation of the estimated effects of technol-

ogy shocks. Section 5 summarizes some of the real explanations for the

same effects found in the literature. Section 6 lays out and analyzes an

estimated dynamic stochastic general equilibrium (DSGE) model that

incorporates both nominal and real frictions, and evaluates their re-

spective roles. Section 7 concludes.

2. Estimating the Effects of Technology Shocks

In Galı́ (1999), the effects of technology shocks were identified and esti-

mated using a structural VAR approach. In its simplest specification, to

which we restrict our analysis here, the empirical model uses informa-

tion on two variables: output and labor input, which we denote respec-

tively by yt and nt, both expressed in logs. Those variables are used

to construct a series for (log) labor productivity, xt 1 yt � nt. In what

follows, the latter is assumed to be integrated of order one (in a way

consistent with the evidence reported below). Fluctuations in labor

productivity growth ðDxtÞ and in some stationary transformation of la-

bor input ðn̂ntÞ are assumed to be a consequence of two types of shocks

hitting the economy and propagating their effects over time. Formally,

the following moving average (MA) representation is assumed:

Dxt

n̂nt

� �
¼ C11ðLÞ C12ðLÞ

C21ðLÞ C22ðLÞ

� �
ezt
edt

� �
1CðLÞet ð1Þ

where ezt and edt are serially uncorrelated, mutually orthogonal struc-

tural disturbances whose variance is normalized to unity. The poly-

nomial jCðzÞj is assumed to have all its roots outside the unit circle.

Estimates of the distributed lag polynomials CijðLÞ are obtained by

a suitable transformation of the estimated reduced form VAR for

½Dxt; n̂nt� after imposing the long-run identifying restriction C12ð1Þ ¼ 0.2

That restriction effectively defines fezt g and fedt g as shocks with and
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without a permanent effect on labor productivity, respectively. On the

basis of some of the steady-state restrictions shared by a broad range

of macro models (and further discussed below), Galı́ (1999) proposes

to interpret permanent shocks to productivity fezt g as technology shocks.

On the other hand, transitory shocks fedt g can potentially capture a

variety of driving forces behind output and labor input fluctuations

that would not be expected to have permanent effects on labor produc-

tivity. The latter include shocks that could have a permanent effect

on output (but not on labor productivity), but which are nontechno-

logical in nature, as would be the case for some permanent shocks

to preferences or government purchases, among others.3 As discussed

below, they could in principle capture transitory technology shocks

as well.

2.1 Revisiting the Basic Evidence on the Effects of Technology

Shocks

Next, we revisit and update the basic evidence on the effects of tech-

nology shocks reported in Galı́ (1999). Our baseline empirical analysis

uses quarterly U.S. data for the period 1948:I–2002:IV. Our source is

the Haver USECON database, for which we list the associated mne-

monics. Our series for output corresponds to nonfarm business-sector

output (LXNFO). Our baseline labor input series is hours of all persons

in the nonfarm business sector (LXNFH). Below we often express the

output and hours series in per-capita terms, using a measure of civilian

noninstitutional population aged 16 and over (LNN).

Our baseline estimates are based on a specification of hours in first-

differences; i.e., we set n̂nt ¼ Dnt. That choice seems consistent with the

outcome of Augmented Dickey-Fuller (ADF) tests applied to the hours

series, which do not reject the null of a unit root in the level of hours at

a 10% significance level, against the alternative of stationarity around a

linear deterministic trend. On the other hand, the null of a unit root in

the first-differenced series is rejected at a level of less than 1%.4 In a

way consistent with the previous result, a Kwiatkowski et al. (1992)

(KPSS) test applied to nt rejects the stationarity null with a significance

level below 1%, while failing to reject the same null when applied to

Dnt. In addition, the same battery of ADF and KPSS tests applied to

our xt and Dxt series support the existence of a unit root in labor pro-

ductivity, a necessary condition for the identification strategy based

on long-run restrictions employed here. Both observations suggest the
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specification and estimation of a VAR for ½Dxt;Dnt�. Henceforth, we

refer to the latter as the difference specification.

Figure 2 displays the estimated effects of a positive technology

shock, of a size normalized to one standard deviation. The graphs on

the left show the dynamic responses of labor productivity, output, and

hours, together with (G) two standard error bands.5 The corresponding

graphs on the right show the simulated distribution of each variable’s

response on impact. As in Galı́ (1999), the estimates point to a signifi-

cant and persistent decline in hours after a technology shock that raises

labor productivity permanently.6 The point estimates suggest that

hours do eventually return to their original level (or close to it), but

not until more than a year later. Along with that pattern of hours, we

observe a positive but muted initial response of output in the face of a

positive technology shock.
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The estimated effects of technology shocks (Difference specification, 1948:01–2002:04)
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The estimated responses to a technology shock displayed in Figure

2 contrast starkly with the predictions of a standard calibrated RBC

model, which would predict a positive comovement among the three

variables plotted in the figure in response to that shock.7

Not surprisingly, the previous estimates have dramatic implications

regarding the sources of the business-cycle fluctuations in output and

hours displayed in Figure 1. This is illustrated in Figure 3, which dis-

plays the estimated business-cycle components of the historical series

for output and hours associated with technology and nontechnology
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Sources of U.S. business cycle fluctuations (Difference specification, sample period: 1948:01–

2002:04)
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shocks. In both cases, the estimated components of the (log) levels of

productivity and hours have been detrended using the same bandpass

filter underlying the series plotted in Figure 1. As in Galı́ (1999), the

picture that emerges is very clear: fluctuations in hours and output

driven by technology shocks account for a small fraction of the vari-

ance of those variables at business-cycle frequencies: 5 and 7%, re-

spectively. The comovement at business-cycle frequencies between

output and hours resulting from technology shocks is shown to be es-

sentially zero (the correlation is �0.08), in contrast with the high posi-

tive comovement observed in the data (0.88). Clearly, the pattern of

technology-driven fluctuations, as identified in our structural VAR,

shows little resemblance to the conventional business-cycle fluctua-

tions displayed in Figure 1.

The picture changes dramatically if we turn our attention to the esti-

mated fluctuations of output and hours driven by shocks with no per-

manent effects on productivity (displayed in the bottom graph). Those

shocks account for 95 and 93% of the variance of the business-cycle

component of hours and output, respectively. In addition, they gener-

ate a nearly perfect correlation (0.96) between the same variables. In

contrast with its technology-driven counterpart, this component of out-

put and hours fluctuations displays a far more recognizable business-

cycle pattern.

A possible criticism to the above empirical framework is the as-

sumption of only two driving forces underlying the fluctuations in

hours and labor productivity. As discussed in Blanchard and Quah

(1989), ignoring some relevant shocks may lead to a significant distor-

tion in the estimated impulse responses. Galı́ (1999) addresses that is-

sue by estimating a five-variable VAR (including time series on real

balances, interest rates, and inflation). That framework allows for as

many as four shocks with no permanent effects on productivity, and

for which no separate identification is attempted. The estimates gener-

ated by that higher-dimensional model regarding the effects of technol-

ogy shocks are very similar to the ones reported above, suggesting that

the focus on only two shocks may not be restrictive for the issue at

hand.8

2.2 Related Empirical Work

The empirical connection between technological change and business-

cycle fluctuations has been the focus of a rapidly expanding literature.
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Next, we briefly discuss some recent papers that provide evidence on

the effects of technology shocks, and that reach conclusions similar to

Galı́ (1999), while using a different data set or empirical approach. We

leave for later a discussion of the papers whose findings relate more

specifically to the content of other sections, including those that ques-

tion the evidence reported above.

An early contribution is given by the relatively unknown paper by

Blanchard, Solow, and Wilson (1995). That paper already spells out

some of the key arguments found in the subsequent literature. In par-

ticular, it stresses the need to sort out the component of productivity

associated with exogenous technological change from the component

that varies in response to other shocks that may affect the capital-labor

ratio. They adopt a simple instrumental variables approach, with a

number of demand-side variables assumed to be orthogonal to ex-

ogenous technological change used as instruments for employment

growth or the change in unemployment in a regression that features

productivity growth as a dependent variable. The fitted residual in

that regression is interpreted as a proxy for technology-driven changes

in productivity. When they regress the change in unemployment

on the filtered productivity growth variable, they obtain a positive

coefficient; i.e., an (exogenous) increase in productivity drives the

unemployment rate up. A dynamic specification of that regression

implies that such an effect lasts for about three quarters, after which

unemployment starts to fall and returns rapidly to its original value.

As mentioned in Galı́ (1999, footnote 19) and stressed by Valerie

Ramey in her comment about this paper (also in this volume), the find-

ing of a decline in hours (or an increase in unemployment) in response

to a positive technology shock could also have been detected by an at-

tentive reader in a number of earlier VAR papers, though that finding

generally goes unnoticed or is described as puzzling. Blanchard and

Quah (1989) and Blanchard (1989) are exceptions because they provide

some explicit discussion of the finding, which they interpret as consis-

tent with a traditional Keynesian model ‘‘in which increases in produc-

tivity . . . may well increase unemployment in the short run if aggregate

demand does not increase enough to maintain employment.’’9

The work of Basu, Fernald, and Kimball (1999) deserves special at-

tention here, given its focus and the similarity of its findings to those

in Galı́ (1999) despite the use of an unrelated methodology. Basu,

Fernald, and Kimball (BFK) use a sophisticated growth accounting

methodology allowing for increasing returns, imperfect competition,
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variable factor utilization, and sectoral compositional effects to un-

cover a time series for aggregate technological change in the postwar

U.S. economy. Their approach, combining elements of earlier work by

Hall (1990) and Basu and Kimball (1997), among others, can be viewed

as an attempt to cleanse the Solow residual (Solow, 1957) of its widely

acknowledged measurement error resulting from the strong assump-

tions underlying its derivation. Estimates of the response of the econ-

omy to innovations in their measure of technological change point to a

sharp short-run decline in the use of inputs (including labor) when

technology improves, with output showing no significant change

(with point estimates suggesting a small decline). After that short-run

impact, both variables gradually adjust upward, with labor input

returning to its original level and with output reaching a permanently

higher plateau several years after the shock.

Kiley (1997) applies the structural VAR framework in Galı́ (1999) to

data from two-digit manufacturing industries. While he does not re-

port impulse responses, he finds that technology shocks induce a nega-

tive correlation between employment and output growth in 12 of the

17 industries considered. When he estimates an analogous conditional

correlation for employment and productivity growth, he obtains a neg-

ative value for 15 out of 17 industries. Francis (2001) conducts a similar

analysis, though he attempts to identify industry-specific technology

shocks by including a measure of aggregate technology, which is

assumed to be exogenous to each of the industries considered. He finds

that, for the vast majority of industries, a sectoral labor input measure

declines in response to a positive industry-specific technology shock.

Using data from a large panel of 458 manufacturing industries and 35

sectors, Franco and Philippon (2004) estimate a structural VAR with

three shocks: technology shocks (with permanent effects on industry

productivity), composition shocks (with permanent effects on the in-

dustry share in total output), and transitory shocks. They find that

technology shocks (1) generate a negative comovement between output

and hours within each industry, and (2) are almost uncorrelated across

industries. Thus, they conclude that technology shocks can account for

only a small fraction of the variance of aggregate hours and output

(with two-thirds of the latter accounted for by transitory shocks).

Shea (1998) uses a structural VAR approach to model the connection

between changes in measures of technological innovation (research

and development [R&D] and number of patent applications) and sub-

sequent changes in total factor productivity (TFP) and hired inputs, us-
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ing industry-level data. For most specifications and industries, he finds

that an innovation in the technology indicator does not cause any sig-

nificant change in TFP but tends to increase labor inputs in the short

run. While not much stressed by Shea, however, one of the findings

in his paper is particularly relevant for our purposes: in the few VAR

specifications for which a significant increase in TFP is detected in re-

sponse to a positive innovation in the technology indicator, inputs—

including labor—are shown to respond in the direction opposite to the

movement in TFP, a finding in line with the evidence above.10

Francis and Ramey (2003a) extend the analysis in Galı́ (1999) in sev-

eral dimensions. The first modification they consider consists in aug-

menting the baseline VAR (specified in first differences) with a capital

tax rate measure to sort out the effects of technology shocks from those

of permanent changes in tax rates (more below). Second, they identify

technology shocks as those with permanent effects on real wages (as

opposed to labor productivity) and/or no long-run effects on hours,

both equally robust predictions of a broad class of models that satisfy

a balance growth property. Those alternative identifying restrictions

are not rejected when combined into a unified (overidentified) model.

Francis and Ramey show that both the model augmented with capital

tax rates and the model with alternative identifying restrictions (con-

sidered separately or jointly) imply impulse responses to a technology

shock similar to those in Galı́ (1999) and, in particular, a drop in hours

in response to a positive technology shock.

Francis, Owyang, and Theodorou (2003) use a variant of the sign re-

striction algorithm of Uhlig (1999) and show that the finding of a nega-

tive response of hours to a positive technology shock is robust to

replacing the restriction on the asymptotic effect of that shock with

one imposing a positive response of productivity at a horizon of ten

years after the shock.

A number of recent papers have provided related evidence based on

non-U.S. aggregate data. In Galı́ (1999), the structural VAR framework

discussed above is also applied to the remaining G7 countries (Canada,

the United Kingdom, France, Germany, Italy, and Japan). He uncovers

a negative response of employment to a positive technology shock in

all countries, with the exception of Japan. Galı́ (1999) also points out

some differences in those estimates relative to those obtained for the

United States: in particular, the (negative) employment response to a

positive technology shocks in Germany, the United Kingdom, and Italy

appears to be larger and more persistent, which could be interpreted
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as evidence of hysteresis in European labor markets. Very similar qual-

itative results for the European area as a whole can also be found in

Galı́ (2004), which applies the same empirical framework to the quar-

terly data set that has recently been available. In particular, technology

shocks are found to account for only 5% and 9% of the variance of the

business-cycle component of euro area employment and output, respec-

tively, with the corresponding correlation between their technology-

driven components being �0.67). Francis and Ramey (2003b) estimate

a structural VAR with long-run identifying restrictions using long-

term U.K. annual time series tracing back to the nineteenth century;

they find robust evidence of a negative short-run impact of technology

shocks on labor in every subsample.11 Finally, Carlsson (2000) devel-

ops a variant of the empirical framework in BFK (1999) and Burnside

et al. (1995) to construct a time series for technological change, and

applies it to a sample of Swedish two-digit manufacturing industries.

Most prominently, he finds that positive shocks to technology have,

on impact, a contractionary effect on hours and a nonexpansionary

effect on output, as in BFK (1999).

2.3 Implications

The implications of the evidence discussed above for business-cycle

analysis and modeling are manifold. Most significantly, those findings

reject a key prediction of the standard RBC paradigm, namely, the pos-

itive comovement of output, labor input, and productivity in response

to technology shocks. That positive comovement is the single main fea-

ture of that model that accounts for its ability to generate fluctuations

that resemble business cycles. Hence, taken at face value, the evidence

above rejects in an unambiguous fashion the empirical relevance of the

standard RBC model. It does so in two dimensions. First, it shows that

a key feature of the economy’s response to aggregate technology

shocks predicted by calibrated RBC models cannot be found in the

data. Second, and to the extent that one takes the positive comovement

between measures of output and labor input as a defining characteris-

tic of the business cycle, it follows as a corollary that technology shocks

cannot be a quantitatively important (and, even less, a dominant)

source of observed aggregate fluctuations. While the latter implication

is particularly damning for RBC theory, given its traditional emphasis

on aggregate technology variations as a source of business cycles, its

relevance is independent of one’s preferred macroeconomic paradigm.
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3. Possible Pitfalls in the Estimation of the Effects of Technology

Shocks

This section has two main objectives. First, we try to address a ques-

tion that is often raised regarding the empirical approach used in Galı́

(1999): to what extent can we be confident in the economic interpreta-

tion given to the identified shocks and, in particular, in the mapping

between technology shocks and the nonstationary component of labor

productivity? We provide some evidence below that makes us feel

quite comfortable about that interpretation. Second, we describe and

address some of the econometric issues that Christiano, Eichenbaum,

and Vigfusson (2003) have raised and that focus on the appropriate

specification of hours (levels or first differences). Finally, we discuss a

paper by Fisher (2003) that distinguishes between two types of technol-

ogy shocks: neutral and investment-specific.

3.1 Are Long-Run Restrictions Useful in Identifying Technology

Shocks?

The approach to identification proposed in Galı́ (1999) relies on the as-

sumption that only (permanent) technology shocks can have a perma-

nent effect on (average) labor productivity. That assumption can be

argued to hold under relatively weak conditions, satisfied by the bulk

of business-cycle models currently used by macroeconomists. To re-

view the basic argument, consider an economy whose technology can

be described by an aggregate production function:12

Yt ¼ FðKt;AtNtÞ ð2Þ

where Y denotes output, K is the capital stock, N is labor input and A

is an index of technology. Under the assumption that F is homoge-

neous of degree 1, we have:

Yt

Nt
¼ AtFkðkt; 1Þ ð3Þ

where kt 1Kt=ðAtNtÞ is the ratio of capital to labor (expressed in effi-

ciency units). For a large class of models characterized by an underly-

ing balanced growth path, the marginal product of capital Fk must

satisfy, along that path, a condition of the form:

ð1� tÞFkðk; 1Þ ¼ ð1þ mÞ rþ dþ g

s

� �
ð4Þ
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where m is the price markup, t is a tax on capital income, r is the time

discount rate, d is the depreciation rate, s is the intertemporal elasticity

of substitution, and g is the average growth rate of (per-capita) con-

sumption and output. Under the assumption of decreasing returns to

capital, it follows from equation (4) that the capital labor ratio k will be

stationary (and will thus fluctuate around a constant mean) as long as

all the previous parameters are constant (or stationary). In that case,

equation (3) implies that only shocks that have a permanent effect on

the technology parameter A can be a source of the unit root in labor

productivity, thus providing the theoretical underpinning for the iden-

tification scheme in Galı́ (1999).

How plausible are the assumptions underlying that identification

scheme? Preference or technology parameters like r; d; s, and g are gen-

erally assumed to be constant in most examples and applications found

in the business-cycle literature. The price markup m is more likely to

vary over time, possibly as a result of some embedded price rigidities;

in the latter case, however, it is likely to remain stationary, fluctuating

around its desired or optimal level. In the event that desired markups

(or the preference and technology parameters listed above) are non-

stationary, the latter would more likely take the form of some smooth

function of time, which should be reflected in the deterministic com-

ponent of labor productivity, but not in its fluctuations at cyclical fre-

quencies.13 Finally, notice that the previous approach to identification

of technology shocks requires that (1) Fk be decreasing, so that k is

uniquely pinned down by equation (4), and (2) that the technology

process fAtg is exogenous (at least with respect to the business cycle).

The previous assumptions have been commonly adopted by business-

cycle modelers.14

3.1.1 Do Capital Income Tax Shocks Explain Permanent Changes

in Labor Productivity?

The previous argument is much less appealing, however, when ap-

plied to the capital income tax rate. As Uhlig (2004) and others have

pointed out, the assumption of a stationary capital income tax rate

may be unwarranted, given the behavior of measures for that variable

over the postwar period. This is illustrated in Figure 4, which displays

two alternative measures of the capital income tax rate in the United

States. Figure 4.A displays a quarterly series for the average capital

income tax rate constructed by Jones (2002) for the period 1958:I–

1997:IV. Figure 4.B shows an annual measure of the average marginal
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capital income tax rate constructed by Ellen McGrattan for the period

1958–1992 and that corresponds to an updated version of the one used

in McGrattan (1994).15 Henceforth we denote those series by t
J
t and tMt ,

respectively. Both series display an apparent nonstationary behavior,

with highly persistent fluctuations. This is confirmed by a battery of

ADF tests, which fail to reject the null hypothesis of a unit root in both

series, at conventional significance levels.

As shown in Figures 4.C and 4.D, which display the same series in

first differences, the presence of sizable short-run variations in those

measures of capital taxes could hardly be captured by means of some

deterministic or smooth function of time (their standard deviations

being 0.79% for the quarterly Jones series, and 2.4% for the annual

McGrattan series). In fact, in both cases, that first-differenced series Dtt
shows no significant autocorrelation, suggesting that a random walk

process can approximate the pattern of capital income tax rates pretty

well.

The previous evidence, combined with the theoretical analysis above,

points to a potential caveat in the identification approach followed in

Galı́ (1999): the shocks with permanent effects on productivity esti-

mated therein could be capturing the effects of permanent changes in

tax rates (as opposed to those of genuine technology shocks). That mis-

labeling could potentially account for the empirical findings reported

above.

Francis and Ramey (2003a) attempt to overcome that potential short-

coming by augmenting the VAR with a capital tax rate variable, in

addition to labor productivity and hours. As mentioned above, the

introduction of the tax variable is shown not to have any significant in-

fluence on the findings: positive technology shocks still lead to short-

run declines in labor.

Here, we revisit the hypothesis of a tax rate shock mistaken for a

technology shock by looking for evidence of some comovement be-

tween (1) the permanent shock ezt estimated using the structural VAR

discussed in Section 2, and (2) each of the two capital tax series, in

first-differences. Given the absence of significant autocorrelation in Dt Jt
and DtMt , we interpret each of those series as (alternative) proxies for the

shocks to the capital income tax rate. Also, when using the McGrattan

series, we annualize the permanent shock series obtained from the quar-

terly VAR by averaging the shocks corresponding to each natural year.

The resulting evidence can be summarized as follows. First, innova-

tions to the capital income tax rate show a near-zero correlation with
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the permanent shocks from the VAR. More precisely, our estimates of

corrðDt Jt ; ezt Þ and corrðDtMt ; ezt Þ are, respectively, �0.06 and 0.12, neither

of which is significant at conventional levels. Thus, it is highly unlikely

that the permanent VAR shocks may be capturing exogenous shocks to

capital taxes.

Second, an ordinary least squares (OLS) regression of the Jones tax

series Dt Jt on current and lagged values of ezt yields jointly insignificant

coefficient estimates: the p-value is 0.54 when four lags are included,

0.21 when we include eight lags. A similar result obtains when we re-

gress the McGrattan tax series DtMt on current and several lags of ezt ,

with the p-value for the null of zero coefficients being 0.68 when four

lags are included (0.34 when we use 8 lags). Since the sequence of those

coefficients corresponds to the estimated impulse response of capital

taxes to the permanent VAR shock, the previous evidence suggests

that the estimated effects of the permanent VAR shocks are unlikely to

be capturing the impact of a possible endogenous response in capital

taxes to whatever exogenous shock underlies the estimated permanent

VAR shock.

We conclude from the previous exercises that there is no support for

the hypothesis that the permanent shocks to labor productivity, inter-

preted in Galı́ (1999) as technology shocks, could be instead capturing

changes in capital income taxes.16

3.1.2 Do Permanent Shocks to Labor Productivity Capture

Variations in Technology?

Having all but ruled out variations in capital taxes as a significant fac-

tor behind the unit root in labor productivity, we present next some ev-

idence that favors the interpretation of the VAR permanent shock as a

shift to aggregate technology. We also provide some evidence against

the hypothesis that transitory variations in technology may be a signif-

icant force behind the shocks identified as transitory shocks, a hypoth-

esis that cannot be ruled out on purely theoretical grounds.

Francis and Ramey (2003a) test a weak form of the hypothesis of

permanent shocks as technology shocks by looking for evidence of

Granger-causality among several indicators that are viewed as inde-

pendent of technology on one hand, and the VAR-based technology

shock on the other. The indicators include the Romer and Romer

(1989) monetary shock dummy, the Hoover and Perez (1994) oil shock

dummies, Ramey and Shapiro’s (1998) military buildup dates, and

the federal funds rate. Francis and Ramey show that none of them
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have a significant predictive power for the estimated technology

shock.

Here, we provide a more direct assessment by using the measure

of aggregate technological change obtained by Basu, Fernald, and

Kimball (1999).17 As discussed earlier, those authors constructed that

series using an approach unrelated to ours. The BFK variable measures

the annual rate of technological change in the U.S. nonfarm private

business sector. The series has an annual frequency and covers the

period 1950–1989. Our objective here is to assess the plausibility of the

technology-related interpretation of the VAR shocks obtained above by

examining their correlation with the BFK measure. Given the differ-

ences in frequencies we annualize both the permanent and transitory

shock series obtained from the quarterly VAR by averaging the shocks

corresponding to each natural year.

The main results can be summarized as follows. First, the correlation

between the VAR-based permanent shock and the BFK measure of

technological change is positive and significant at the 5% level, with a

point estimate of 0.45. The existence of a positive contemporaneous

comovement is apparent in Figure 5, which displays the estimated

VAR permanent shock together with the BFK measure (both series

have been normalized to have zero mean and unit variance, for ease of

comparison).

Second, the correlation between our estimated VAR transitory shock

and the BFK series is slightly negative, though insignificantly different

from zero (the point estimate is �0.04). The bottom graph of Figure 5,

which displays both series, illustrates the absence of any obvious

comovement between the two.

Finally, and given that the BFK series is mildly serially correlated,

we have also run a simple OLS regression of the (normalized) BFK

variable on its own lag, and the contemporaneous estimates of the per-

manent and transitory shocks from the VAR. The estimated equation,

with t statistics in brackets, is given by:

BFKt ¼ 0:29

ð1:85Þ
BFKt�1 þ 0:67

ð2:16Þ
ezt � 0:32

ð�1:11Þ
edt

which reinforces the findings obtained from the simple contemporane-

ous correlations.

In summary, the results from the above empirical analysis sug-

gest that the VAR-based permanent shocks may indeed be capturing

exogenous variations in technology, in a way consistent with the
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interpretation made in Galı́ (1999). In addition, we cannot find evi-

dence supporting the view that the VAR transitory shocks—which

were shown in Section 2 to be the main source of business-cycle fluctu-

ations in hours and output—may be related to changes in technology.

3.2 Robustness to Alternative VAR Specifications

Christiano, Eichenbaum, and Vigfusson (2003) have questioned some

of the VAR-based evidence regarding the effects of technology shocks

found in Galı́ (1999) and Francis and Ramey (2003a), on the basis of

their lack of robustness to the transformation of labor input used. In

particular, Christiano, Eichenbaum, and Vigfusson (CEV) argue that

first-differencing the (log) of per-capita hours may distort the sign of

the estimated response of that variable to a technology shock, if that

variable is truly stationary. Specifically, their findings—based on a

bivariate VAR model in which (per-capita) hours are specified in levels

ðn̂nt ¼ ntÞ—imply that output, hours, and productivity all rise in re-

sponse to a positive technology shock. On the other hand, when they

use a difference specification, they obtain results similar to the ones

reported above, i.e., a negative comovement between output (or pro-

ductivity) and hours in response to technology shocks. Perhaps most

interesting, CEV discuss the extent to which the findings obtained

under the level specification can be accounted for under the assump-

tion that the difference specification is the correct one, and vice versa.

Given identical priors over the two specifications, that encompassing

analysis leads them to conclude that the odds in favor of the level spec-

ification relative to the difference specification are about 2 to 1.18 CEV

obtain similar results when incorporating additional variables in the

VAR.

Our own estimates of the dynamic responses to a technology shock

when we specify (per-capita) hours in levels do indeed point to some

qualitative differences. In particular, the point estimate of the impact

response of hours worked to a positive technology is now positive,

though very small. In contrast with the findings in CEV, that impact

effect and indeed the entire dynamic response of hours is not signifi-

cantly different from zero. The sign of the point estimates is sufficient,

however, to generate a positive correlation (0.88) between output and

hours conditional on the technology shock. As reported in the second

row of Table 1, under the level specification, technology shocks still ac-

count for a (relatively) small fraction of the variance of output and
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hours at business-cycle frequencies (37 and 11%, respectively), though

that fraction is larger than the one implied by the difference specifica-

tion estimates.19

While we find the encompassing approach adopted by CEV enlight-

ening, their strategy of pairwise comparisons with uniform priors

(which mechanically assigns a 1
2 prior to the level specification) may

lead to some bias in the conclusions. In particular, a simple look at a

plot of the time series for (log) per-capita hours worked in the United

States over the postwar period, displayed in Figure 6, is not suggestive

of stationarity, at least in the absence of any further transformation. In

particular, and in agreement with the ADF and KPSS tests reported

above, the series seems perfectly consistent with a unit root process,

though possibly not a pure random walk. On the basis of a cursory

look at the same plot, and assuming that one wishes to maintain the

assumption of a stationary process for the stochastic component of

(log) per-capita hours, a quadratic function of time would appear to be

a more plausible characterization of the trend than just the constant

implicit in CEV’s analysis. In fact, an OLS regression of that variable

on a constant, time and time squared, yields a highly significant co-

efficient associated with both time variables. A test of a unit root on

the residual from that regression fails to reject that hypothesis, while

the KPSS does not reject the null of stationarity, at a 5% signifi-

cance level in both cases.20 Figure 6 displays the fitted quadratic trend

and the associated residual, illustrating graphically that point. When

we re-estimate the dynamic responses to a technology shock using

detrended (log) per-capita hours, we find again a decline in hours in

Table 1

The effects of technology shocks on output and hours in the nonfarm business sector

Contribution to Conditional Impact on n and y

varðyÞ varðnÞ corrðy;nÞ Sign Significance

Per-capita hours

Difference 0.07 0.05 �0.08 �/þ Yes/yes

Level 0.37 0.11 0.80 þ/þ No/yes

Detrended 0.07 0.05 �0.11 �/þ Yes/yes

Total hours

Difference 0.06 0.06 �0.03 �/þ Yes/yes

Level 0.10 0.36 0.80 �/� Yes/no

Detrended 0.15 0.36 0.80 �/0 Yes/no
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response to a positive technology shock, and a slightly negative (�0.11)

conditional correlation between the business-cycle components of out-

put and hours. In addition, the estimated contribution of technology

shocks to the variance of output and hours is very small (7 and 5%, es-

sentially the same as under difference specification; see Table 1).21

To assess further the robustness of the above results, we have also

conducted the same analysis using a specification of the VAR using an

alternative measure of labor input, namely, (log) total hours, without a

normalization by working-age population. As it should be clear from

the discussion in Section 3.1, the identification strategy proposed in

Galı́ (1999) and implemented here should be valid independent of

whether labor input is measured in per-capita terms since labor pro-

ductivity in invariant to that normalization.22 The second panel in

Table 1 summarizes the results corresponding to three alternative

transformations considered (first differences, levels, quadratic detrend-

ing). In the three cases, a positive technology shock is estimated to

have a strong and statistically significant negative impact on hours

worked, at least in the short run. Under the level and detrended trans-

formations, that negative response of hours is sufficiently strong to

pull down output in the short run, despite the increase in productivity.

Note, however, that the estimated decline in output is not significant in

either case.23 The estimated contribution of technology shocks to the

variance of the business-cycle component of output and hours is small

in all cases, with the largest share being 36% of the variance of hours,

obtained under the level and detrended specifications.

As an additional check on the robustness of our findings, we have

also estimated all the model specifications discussed above using em-

ployment as labor input measure (instead of hours), and real GDP as

an output measure. A summary of our results for the six specifications

considered using employment and GDP can be found in Table 2. The

results under this specification are much more uniform: independent

of the transformation of employment used, our estimates point to a de-

cline in that variable in the short run in response to a positive technol-

ogy shock, as well as a very limited contribution of technology shocks

to the variance of GDP and employment. We should stress that we

obtained those findings even when we specify employment rate in

levels, even though the short-run decline in employment is not statisti-

cally significant in that case. In summary, the previous robustness ex-

ercise based on postwar U.S. data has shown that, for all but one of

the transformations of hours used, we uncover a decline in labor input
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in response to a positive technology shock, in a way consistent with the

literature reviewed in Section 2. The exception corresponds to the level

specification of per-capita hours, but even in that case the estimated

positive response of hours does not appear to be significant. In most

cases, the contribution of technology shocks to the variance of the cycli-

cal component of output and hours is very small, and always below

40%. Finally, and possibly with the exception mentioned above, the

pattern of comovement of output and hours at business-cycle frequen-

cies resulting from technology shocks fails to resemble the one associ-

ated with postwar U.S. business cycles.

Fernald (2004) makes an important contribution to the debate

by uncovering the most likely source of the discrepancy of the esti-

mates when hours are introduced in levels. In particular, he shows the

existence of a low-frequency correlation between labor productivity

growth and per-capita hours. As illustrated through a number of simu-

lations, the presence of such a correlation, while unrelated to the

higher-frequency phenomena of interest, can distort significantly the

estimated short-run responses. Fernald illustrates that point most

forcefully by re-estimating the structural VAR in its levels specification

(as in CEV), though allowing for two (statistically significant) trend

breaks in labor productivity (in 1973:I and 1997:II): the implied im-

pulse responses point to a significant decline in hours in response to a

technology shock, a result that also obtains when the difference specifi-

cation is used.

Additional evidence on the implications of alternative transforma-

tions of hours using annual time series spanning more than a century

Table 2

The effects of technology shocks on GDP and employment

Contribution to Conditional Impact on n and y

varðyÞ varðnÞ corrðy;nÞ Sign Significance

Employment rate

Difference 0.31 0.04 0.40 �/þ Yes/yes

Level 0.03 0.19 �0.30 �/þ Yes/no

Detrended 0.15 0.04 �0.43 �/þ Yes/yes

Total employment

Difference 0.21 0.03 �0.40 �/þ Yes/yes

Level 0.09 0.08 �0.72 �/þ Yes/yes

Detrended 0.09 0.09 �0.68 �/þ Yes/no

Technology Shocks and Aggregate Fluctuations 249



is provided by Francis and Ramey (2003b). Their findings based on

U.S. data point to considerable sensitivity of the estimates across sub-

sample periods and the choice of transformation for hours. To assess

the validity of the different specifications, they look at their implica-

tions for the persistence of the productivity response to a nontechnol-

ogy shock, the plausibility of the patterns of estimated technology

shocks, as well as the predictability of the latter (the Hall-Evans test).

On the basis of that analysis, they conclude that first-differenced and,

to a lesser extent, quadratically detrended hours yields are the most

plausible specification. Francis and Ramey show that in their data,

those two preferred specifications generate a short-run negative

comovement between hours and output in response to a shock that

has a permanent effect on technology in the postwar period. In the

pre–World War II period, however, the difference specification yields

an increase in hours in response to a shock that raises productivity per-

manently. On the other hand, when they repeat the exercise using U.K.

data (and a difference specification), they find a clear negative comove-

ment of employment and output both in the pre–World War II and

postwar sample periods.24

In light of those results and the findings in the literature discussed

above, we conclude that there is no clear evidence favoring a conven-

tional RBC interpretation of economic fluctuations as being largely

driven by technology shocks, at least when the latter take the form

assumed in the standard one-sector RBC model. Next, we consider

how the previous assessment is affected once we allow for technology

shocks that are investment-specific.

3.3 Investment-Specific Technology Shocks

In a series of papers, Greenwood, Hercowitz, and Huffman (1988), and

Greenwood, Hercowitz, and Krusell (1997, 2000) put forward and ana-

lyze a version of an RBC model in which the main source of techno-

logical change is specific to the investment sector. In the proposed

framework, and in contrast with the standard RBC model, a technol-

ogy shock does not have any immediate impact on the production

function. Instead, it affects the rate of transformation between current

consumption and productive capital in the future. Thus, any effects on

current output must be the result of the ability of that shock in eliciting

a change in the quantity of input services hired by firms. Greenwood,

Hercowitz, and Krusell (GHK) motivate the interest in studying the
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potential role of investment-specific technology shocks by pointing to

the large variations in measures of the relative price of new equipment

constructed by Gordon (1990), both over the long-run as well as at

business-cycle frequencies. In particular, GHK (2000) analyze a cali-

brated model in which investment-specific technology shocks are the

only driving force. They conclude that the latter can account for about

30% of U.S. output fluctuations, a relatively modest figure compared to

the claim of the earlier RBC literature regarding the contribution of

aggregate, sector-neutral technology shocks in calibrated versions of

one-sector RBC models.

Fisher (2003) revisits the evidence on the effects of technology

shocks and their role in the U.S. business cycle and uses an empirical

framework that allows for separately identified sector-neutral and

investment-specific technology shocks (which, following Fisher, we

refer to, respectively, as N-shocks and I-shocks). In a way consistent

with the identification scheme proposed in Galı́ (1999), both types of

technology shocks are allowed to have a permanent effect on labor

productivity (in contrast with nontechnology shocks). In a way consis-

tent with the GHK framework, only investment-specific technology

shocks are allowed to affect permanently the relative price of new in-

vestment goods. Using times series for labor productivity, per-capita

hours, and the price of equipment (as a ratio to the consumption goods

deflator) constructed by Cummins and Violante (2002), Fisher esti-

mates impulse responses to the two types of shocks and their relative

contribution to business-cycle fluctuations. We have conducted a simi-

lar exercise and have summarized some of the findings in Table 3.25

For each type of technology shock and specification, the table reports

its contribution to the variance of the business-cycle component of out-

put and hours, as well as the implied conditional correlation between

those two variables.

The top panel in Table 3 corresponds to three specifications using

per-capita hours worked, the labor input variable to which Fisher

(2003) restricts his analysis. Not surprisingly, our results essentially

replicate some of his findings. In particular, we see that under the three

transformations of labor input measures considered, N-shocks are esti-

mated to have a negligible contribution to the variance of output and

hours at business-cycle frequencies, and to generate a very low correla-

tion between those two variables.

The results for I-shocks are different in at least two respects. First,

and as stressed in Fisher (2003), I-shocks generate a high positive
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correlation between output and hours. The last column of Table 3 tells

us that such a result holds for all labor input measures and transforma-

tions considered. As argued in the introduction, that property must

be satisfied by any shock that plays a central role as a source of busi-

ness cycles. Of course, this is a necessary, not a sufficient, condition.

Whether the contribution of I-shocks to business-cycle fluctuations is

large or not depends once again on the transformation of labor input

used. Table 3 shows that when that variable is specified in levels, it

accounts for more than half of the variance of output and hours at

business-cycle frequencies, a result that appears to be independent of

the specific labor input measure used. On the other hand, when hours

or employment are specified in first differences or are quadratically

detrended, the contribution becomes much smaller and always re-

mains below one-fourth.

What do we conclude from this exercise? First of all, the evidence

does not speak with a single voice: whether technology shocks are

given a prominent role or not as a source of business cycles depends

on the transformation of the labor input measure used in the analysis.

Table 3

Investment-specific technology shocks: the Fisher model

Contribution of N-shocks to: Contribution of I-shocks to:

varðyÞ varðnÞ corrðy; nÞ varðyÞ varðnÞ corrðy;nÞ

Per-capita hours

Difference 0.06 0.06 �0.09 0.22 0.19 0.94

Level 0.12 0.02 0.16 0.62 0.60 0.96

Detrended 0.08 0.07 �0.03 0.10 0.09 0.94

Total hours

Difference 0.07 0.06 0.05 0.16 0.14 0.94

Level 0.05 0.15 0.33 0.82 0.78 0.97

Detrended 0.10 0.28 0.62 0.09 0.08 0.93

Employment rate

Difference 0.21 0.05 0.08 0.19 0.13 0.93

Level 0.08 0.08 �0.32 0.86 0.89 0.95

Detrended 0.06 0.17 �0.11 0.12 0.10 0.92

Total employment

Difference 0.19 0.06 �0.05 0.10 0.06 0.90

Level 0.04 0.16 �0.25 0.64 0.52 0.96

Detrended 0.04 0.20 0.05 0.12 0.09 0.90
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Perhaps more interesting, the analysis of the previous empirical model

makes it clear that if some form of technological change plays a signifi-

cant role as a source of economic fluctuations, it is not likely to be of

the aggregate, sector-neutral kind that the early RBC literature empha-

sized, but of the investment-specific kind stressed in GHK (2000). Fi-

nally, and leaving aside the controversial question of the importance

of technology shocks, the previous findings, as well as those in Fisher

(2003), raise a most interesting issue: why do I-shocks appear to gener-

ate the sort of strong positive comovement between output and labour

input measures that characterizes business cycles, while that property

is conspicuously absent when we consider N-shocks? Below we at-

tempt to provide a partial explanation for this seeming paradox.

4. Explaining the Effects of Technology Shocks

In this section, we briefly discuss some of the economic explanations

for the anomalous response of labor input measures to technology

shocks. As a matter of simple accounting, firms’ use of inputs (and

labor, in particular) will decline in response to a positive technology

shock only if they choose (at least on average) to adjust their level of

output less than proportionally to the increase in total factor pro-

ductivity. Roughly speaking, we can think of two broad classes of

factors that are absent in the standard RBC model and that could po-

tentially generate that result. The first class involves the presence of

nominal frictions, combined with certain monetary policies. The sec-

ond set of explanations is unrelated to the existence of nominal fric-

tions, so we refer to it as real explanations. We discuss them in turn

next.

4.1 The Role of Nominal Frictions

A possible explanation for the negative response of labor to a technol-

ogy shock, put forward both in Galı́ (1999) and BFK (1999), relies on

the presence of nominal rigidities. As a matter of principle, nominal

rigidities should not, in themselves, necessarily be a source of the

observed employment response. Nevertheless, when prices are not

fully flexible, the equilibrium response of employment (or, for that

matter, of any other endogenous variable) to any real shock (including

a technology shock) is not invariant to the monetary policy rule in

place; in particular, it will be shaped by how the monetary authority
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reacts to the shock under consideration.26 Different monetary policy

rules will thus imply different equilibrium responses of output and

employment to a technology shock, ceteris paribus.

Galı́ (1999) provided some intuition behind that result by focusing

on a stylized model economy in which the relationship yt ¼ mt � pt
holds in equilibrium,27 firms set prices in advance (implying a prede-

termined price level), and the central bank follows a simple money-

supply rule. It is easy to see that, in that context, employment will

experience a short-run decline in response to positive technology

shocks, unless the central bank endogenously expands the money sup-

ply (at least) in proportion to the increase in productivity. Galı́ (2003)

shows that the previous finding generalizes (for a broad range of

parameter values) to an economy with staggered price setting, and a

more realistic interest elasticity of money demand, but still an exoge-

nous money supply. In that case, even though all firms will experience

a decline in their marginal cost, only a fraction of them will adjust their

prices downward in the short run. Accordingly, the aggregate price

level will decline, and real balances and aggregate demand will rise.

Yet when the fraction of firms adjusting prices is sufficiently small, the

implied increase in aggregate demand will be less than proportional to

the increase in productivity. That, in turn, induces a decline in aggre-

gate employment.

Many economists have criticized the previous argument on the

grounds that it relied on a specific and unrealistic assumption regard-

ing how monetary policy is conducted, namely, that of a money-based

rule (e.g., Dotsey, 2002). In the next subsection, we address that criti-

cism by analyzing the effects of technology shocks in the context of a

simple illustrative model with a more plausible staggered price-setting

structure, and a monetary policy characterized by an interest rate rule

similar to the one proposed by Taylor (1993). The model is simple

enough to generate closed-form expressions for the responses of out-

put and employment to variations in technology, thus allowing us to

illustrate the main factors shaping that response and thus generating a

negative comovement between the two variables.

4.1.1 A Simple Illustrative Model

The model we use to illustrate the role of nominal rigidities and mone-

tary policy in shaping the effects of technology shocks is a standard

new Keynesian framework with staggered price setting à la Calvo

(1983). Its equilibrium dynamics can be summarized as follows. On
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the demand side, output is determined by a forward-looking IS-type

equation:

yt ¼ Etfytþ1g � sðrt � Etfptþ1gÞ ð5Þ

where yt denotes (log) output, rt is the nominal interest rate, and

pt 1 pt � pt�1 denotes the rate of inflation between t� 1 and t. Param-

eter s can be broadly interpreted as a measure of the sensitivity of

aggregate demand to changes in interest rates and thus of the effective-

ness of monetary policy.

Inflation evolves according to a forward-looking new Keynesian

Phillips curve:

pt ¼ bEtfptþ1g þ kðyt � ytÞ ð6Þ

where yt is the natural level of output (or potential output), defined

as the one that would prevail in the absence of nominal frictions. The

variable yt can also be interpreted as the equilibrium output generated

by some background real business-cycle model driven by technology.

The previous equation can be derived from the aggregation of optimal

price-setting decisions by firms subject to price adjustment constraints

à la Calvo (1983). In that context, coefficient k is inversely related to

the degree of price stickiness: stronger nominal rigidities imply a

smaller response of inflation to any given sequence of output gaps.

For simplicity, we assume that exogenous random variations in pro-

ductivity are the only source of fluctuations in the economy and hence

the determinants of potential output. Accordingly, we postulate the

following reduced-form expression for potential output:28

yt ¼ cyat ð7Þ

where at represents an exogenous technology parameter. The latter

is assumed to follow an AR(1) process at ¼ raat�1 þ et, where ra A ½0; 1�.
Notice that under the assumption of an aggregate production function

of the form yt ¼ at þ ð1� aÞnt, we can derive the following expression

for the natural level of employment nt:

nt ¼ cnat

where cn 1 ðcy � 1Þ=ð1� aÞ. Since we want to think of the previous

conditions as a reduced-form representation of the equilibrium of a

standard calibrated RBC model (without having to specify its details),

it is natural to assume cy b 1 (and hence cn > 0). In that case, a posi-

tive technology shock generates an increase in both output and
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employment, as generally implied by the RBC models under conven-

tional calibrations. It is precisely this property that makes it possible

for any technology-driven RBC model to generate equilibrium fluctua-

tions that replicate some key features of observed business cycles,

including a positive comovement of output and employment.29

In that context, a natural question is, To what extent is the comove-

ment of output and employment in response to technology shocks

found in the evidence described above the result of the way monetary

policy has been conducted in the United States and other industrial-

ized economies? To illustrate that point, we use the simple model

above and derive the implications for the effects of technology shocks

of having the central bank follow an interest rate rule of the form:

rt ¼ fppt þ fy yt ð8Þ

A rule similar to equation (8) has been proposed by Taylor (1993)

and others as a good characterization of monetary policy in the United

States and other industrialized economies in recent decades. Notice

that, as in Taylor, we assume that the monetary authority responds to

output (or its deviations from trend), and not to the output gap. We

view this as a more realistic description of actual policies (which em-

phasize output stabilization) and consistent with the fact that the con-

cept of potential output used here, while necessary to construct any

measure of the output gap, cannot be observed by the policymaker.30

Combining equation (8) with equilibrium conditions in equations (5)

and (6), we can derive the following closed-form expression for equi-

librium output:

yt ¼ Ycyat

1cyat

where

Y1
kðfp � raÞ

ð1� braÞ½s�1ð1� raÞ þ fy� þ kðfp � raÞ

Notice that under the (weak) assumption that fp > ra, we have

0 < Ya 1. The fact that Y is greater than 0 guarantees that a positive

(negative) technology shock raises (lowers) output, as in the standard

RBC model. On the other hand, Ya 1 implies that:

cy acy
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i.e., in the presence of nominal frictions, the size of response of output

to a technology shock, cy, is bounded above by that implied by the

corresponding RBC model ðcyÞ when the central bank follows the rule

in equation (8). Hence, the combination of sticky prices and a Taylor

rule will tend to overstabilize the output fluctuation resulting from

technology shocks. We can interpret parameter Y as an index of effec-

tive policy accommodation, i.e., one that measures the extent to which

the Taylor rule in equation (8) accommodates the changes in potential

output resulting from variations in technology shocks, given the per-

sistence of the latter and the rest of the parameters describing the econ-

omy. Notice that the index of effective policy accommodation Y is

increasing in the size of the inflation coefficient in the Taylor rule ðfpÞ,
and in the effectiveness of interest changes (as reflected by s). It is also

positively related to k (and hence inversely related to the degree of

price stickiness). On the other hand, it is inversely related to the size of

the output coefficient in the Taylor rule ðfyÞ.
Let us now turn to the equilibrium response of employment to a

technology shock, which is given by:

nt ¼
Ycy � 1

1� a

 !
at

1cnat

Notice that, in a way analogous to the output case, we have cn acn.

In other words, the size of the employment response to a (positive)

technology shock in the presence of nominal frictions is bounded above

by the size of the response generated by the underlying frictionless

RBC model. It is clear that the impact of a technology shock on em-

ployment may be positive or negative, depending on the configuration

of parameter values.

We can get a sense for the likely sign and plausible magnitude for

cn by using conventional values used in calibration exercises in the lit-

erature involving similar models. Thus, Rotemberg and Woodford’s

(1999) estimates, based on the response to monetary policy shocks, im-

ply a value of 0.024 for k. A unit value is often used as an upper bound

for s. Taylor’s widely used values for fp and fy are 1.5 and 0.5, respec-

tively. In standard RBC calibrations, the assumption ra ¼ 0:95 is often

made. Finally, we can set b ¼ 0:99 and a ¼ 1
3 , two values that are not

controversial. Under those assumptions, we obtain a value for Y of

0.28. The latter figure points to a relatively low degree of effective pol-

icy accommodation.
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Using a standard calibrated RBC model, Campbell (1994) obtains a

range of values for cy between 1 and 2.7, depending on the persistence

of the shock and the elasticity of the labor supply. In particular, given a

unit labor supply elasticity and a 0.95 autocorrelation in the technology

process, he obtains an elasticity cy of 1.45, which we adopt as our

benchmark value.31 When we combine the latter with our calibrated

value for Y computed, we obtain an implied benchmark elasticity of

employment cn equal to �0.87.

The previous calibration exercise, while admittedly quick and loose,

illustrates that condition cn < 0 is likely to hold under a broad range of

reasonable parameter values. Under those circumstances, and subject

to the caveat implied by the simplicity of the model and the charac-

terization of monetary policy, it is hard to interpret the negative

comovement between output and employment observed in the data

as a puzzle, as it has often been done.32

In his seminal paper, Prescott (1986b) concluded his description

of the predictions of the RBC paradigm by stating: ‘‘In other words

[RBC] theory predicts what is observed. Indeed, if the economy did

not display the business cycle phenomena, there would be a puzzle.’’

In light of the analysis above, perhaps we should think of turning Pre-

scott’s dictum over its head, and argue instead that if, as a result of

technology variations, the economy did indeed display the typical pos-

itive comovement between output and employment that characterizes

the business cycle, then there would be a puzzle!

4.1.2 Nominal Rigidities and the Effects of Investment-Specific

Technology Shocks

The logic behind the impact of nominal rigidities on the effects of con-

ventional aggregate, sector-neutral technology shocks, on which the

previous discussion focuses, would also seem consistent with the esti-

mated effects of investment-specific technology shocks, as reported in

Fisher (2003) and discussed in Section 3 above. The argument can be

made most clearly in the context of a sticky-price version of a model

like that in the GHK (2000) model. Once again, let us say for simplicity

that the relationship yt ¼ mt � pt holds in equilibrium, and that both

mt and pt are pre-determined relative to the shock. In that case, firms

will want to produce the same quantity of the good but, in contrast

with the case of neutral technology shocks, to do so they will need to

employ the same level of inputs since the efficiency of the latter has

not been affected (only newly purchased capital goods will enhance
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that productivity in the future). That property of I-shocks is illustrated

in Smets and Wouters (2003a) in the context of a much richer DSGE

model. In particular, those authors show that even in the presence of

the substantial price and wage rigidities estimated for the U.S. econ-

omy, a positive I-shock causes output and labor input to increase

simultaneously, in a way consistent with the Fisher (2003) VAR evi-

dence. In fact, as shown in Smets and Wouters (2003a), the qualitative

pattern of the joint response of output and hours to an I-shock is not af-

fected much when they simulate the model with all nominal rigidities

turned off.

4.1.3 Evidence on the Role of Nominal Rigidities

A number of recent papers have provided evidence, often indirect, on

the possible role of nominal rigidities as a source of the gap between

the estimated responses of output and labor input measures to a tech-

nology shock and the corresponding predictions of an RBC model.

Next, we briefly describe a sample of those papers.

Models with nominal rigidities imply that the response of the econ-

omy to a technology shock (or to any other shock, for that matter) will

generally depend on the endogenous response of the monetary author-

ity and should thus not be invariant to the monetary policy regime in

place. Galı́, López-Salido, and Vallés (2003) exploit that implication

and try to uncover any differences in the estimated response to an

identified technology shock across subsample periods. Building on the

literature that points to significant differences in the conduct of mone-

tary policy between the pre-Volcker and the Volcker–Greenspan peri-

ods, they estimate a four-variable structural VAR with a long-run

restriction as in Galı́ (1999) for each of those subsample periods. Their

evidence points to significant differences in the estimated responses to

a technology shock. In particular, they show that the decline in hours

in response to a positive technology shock is much more pronounced

in the pre-Volcker period and is hardly significant in the Volcker–

Greenspan. That evidence is consistent with the idea that monetary

policy in the latter period has focused more on the stabilization of in-

flation and not so much on the stabilization of economic activity.33

Some evidence at the micro-level is provided by Marchetti and

Nucci (2004), who exploit a detailed data set containing information

on output, inputs, and price-setting practices for a large panel of Italian

manufacturing firms. Using a modified Solow residual approach, they

construct a time series for total factor productivity at the firm level,
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and estimate the responses of a number of firm-specific variables to

an innovation in the corresponding technology measure. Among other

findings, they provide evidence of a negative impact effect of a tech-

nology shock on labor input. Most interesting is that Marchetti and

Nucci also exploit firm-specific information regarding the frequency of

price adjustments. They split the sample of firms according to the fre-

quency of their price revisions: flexible-price firms (adjust prices every

three months or more often) and sticky-price firms (adjusting every six

months or less often). They find that the negative response of employ-

ment to a positive technology shock is larger (and significant) in the

case of sticky-price firms, and much weaker (and statistically insignifi-

cant) for flexible-price firms. That evidence suggests that nominal

rigidities may be one of the factors underlying the estimated effects of

technology shocks.34

4.2 Real Explanations

Several authors have proposed explanations for the evidence described

in Section 2 that do not rely on the presence of nominal rigidities. Such

real explanations generally involve some modification of the standard

RBC model. Next, we briefly describe some of those explanations.

Francis and Ramey (2003a) propose two modifications of an other-

wise standard RBC model that can potentially account for the negative

comovement of output and hours in response to a technology shock.

The first model incorporates habit formation in consumption and capi-

tal adjustment costs. As shown in Francis and Ramey, a calibrated ver-

sion of that model can account for many of the estimated effects of

technology shocks. In particular, the response to a permanent improve-

ment in technology of consumption, investment, and output is more

sluggish than in the standard model with no habits or capital adjust-

ment costs. If that dampening effect is sufficiently strong, the increase

in output may be smaller than the increase in productivity itself, thus

causing a reduction in hours. The latter decline is consistent with the

optimal decision of households to consume more leisure (despite the

higher wage) as a consequence of a dominant income effect.35 A simi-

lar mechanism underlies the modification of the basic RBC model

proposed by Wen (2001), who assumes a utility function with a subsis-

tence level of consumption (equivalent to a constant habit).

The second modification of the RBC model proposed by Francis and

Ramey (2003a) hinges on the assumption of no substitutability be-
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tween labor and capital in production. In that context, the only way to

increase output in the short run is by increasing the workweek of capi-

tal. Hours beyond the standard workweek generate additional disutil-

ity. In such a model, a permanent increase in labor-augmenting

technology is shown to generate a short-run decline in hours. The intu-

ition is simple, and in the final analysis not much different from other

modifications proposed. While output increases in the short run (due

to increased investment opportunities), that increase is not sufficient to

compensate for the fact that any quantity of output can now be pro-

duced with less employment (per shift) and a shorter workweek.

Rotemberg (2003) develops a version of the RBC model in which

technological change diffuses much more slowly than implied by con-

ventional specifications found in the RBC literature. The rate at which

technology is adopted is calibrated on the basis of the micro studies

on the speed of diffusion. Rotemberg shows that when the smooth

technology process is embedded in the RBC model, it generates small

short-run fluctuations in output and employment, which are largely

unrelated to the cyclical variations associated with a detrended mea-

sured of employment and output. In particular, a positive innovation

to technology that diffuses very slowly generates a very large wealth

effect (relative to the size of the innovation), which in turn leads house-

holds to increase their consumption of leisure. As a result, both hours

and output experience a short-run decline in response to a technology

shock of a typical size before they gradually increase above their initial

levels. Because those responses are so smooth, they imply very small

movements at cyclical frequencies. It follows that technology shocks

with such characteristics will account only for a small fraction of

observed cyclical fluctuations in output and hours.

Collard and Dellas (2002) emphasize an additional mechanism, spe-

cific to an open economy, through which technology shocks may

induce short-run negative comovements between output and labor

input even in the absence of nominal rigidities. They analyze a two-

country RBC model with imperfect substitutability between domestic

and foreign consumption goods. If that substitutability is sufficiently

low, a positive technology shock in the home country triggers a large

deterioration in its terms of trade (i.e., a large decline in the price of do-

mestic goods relative to foreign goods). That change in relative prices

may induce households to increase their consumption of leisure at any

given product wage, thus contracting labor supply and lowering

hours. The quantitative analysis of a calibrated version of their model
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suggests that while technology shocks may be a nonnegligible source

of output fluctuations, its role is likely to be very small as a driving

force behind hours fluctuations.

The papers discussed in this section provide examples of model

economies that can account for the evidence regarding the effects of

technology shocks without relying on any nominal frictions. On the ba-

sis of that evidence, it is not possible to sort out the relative role played

by nominal and real frictions in accounting for the evidence. The rea-

son is simple: there is no clear mapping between the estimated coeffi-

cients in a structural VAR and the underlying structural parameters

that determine the degree of those frictions. As a result, estimated

VARs cannot serve as the basis of the sort of counterfactual simula-

tions that would allow us to uncover the implied effects of technology

shocks if either nominal or real frictions were not present. Such coun-

terfactual exercises require the use of an estimated structural model. In

the next section, we turn our attention to one such model.

5. Technology Shocks and the Business Cycle in an Estimated

DSGE Model

In this section, we try to sort out the merits of the two types of expla-

nations discussed above by estimating and analyzing a framework

that incorporates both types of frictions and that is sufficiently rich to

be taken to the data. The features that we incorporate include habit for-

mation in consumption, staggered price- and wage-setting à la Calvo,

flexible indexation of wages and prices to lagged inflation, and a mon-

etary policy rule of the Taylor type with interest rate smoothing.

Several examples of estimated general equilibrium models can be

found in the literature. Our framework is most closely related to the

one used in Rabanal (2003), with two main differences. First, we allow

for a unit root in the technology process in a way consistent with the

assumptions underlying the identification strategy pursued in Section

2. Second, we ignore the cost channel mechanism allowed in Rabanal

(2003), in light of the evidence in that paper suggesting an insignificant

role for that mechanism.

We estimate the parameters of the model using Bayesian methods

and focus our analysis on the implications of the estimated model

regarding the effects of technology shocks and the contribution of the

latter to the business cycle. The use of a structural estimated model

allows us to determine, by means of counterfactual simulations, the
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role played by different factors in accounting for the estimated effects

of technology shocks. Last but not least, the estimated model gives us

an indication of the nature of the shocks that have played a dominant

role as a source of postwar business cycles.

The use of Bayesian methods to estimate DSGE models has

increased over recent years, in a variety of contexts.36 Fernández-

Villaverde and Rubio-Ramı́rez (2004) show that parameter estimation

is consistent in the Bayesian framework even under model mis-

specification. Smets and Wouters (2003a, 2003b) estimate a model with

capital accumulation, and both nominal and real rigidities for the Eu-

ropean area and the United States. Lubik and Schorfheide (2003b) use

the Bayesian framework to estimate a small-scale model allowing for

indeterminacy. Rabanal (2003) estimates a general equilibrium model

for the United States and the European area in search for cost channel

effects of monetary policy.37

Next we summarize the set of equilibrium conditions of the model.38

The demand side of the model is represented by the Euler-like

equation:

bDyt ¼ EtfDytþ1g � ð1� bÞðrt � Etfptþ1gÞ þ ð1� rgÞð1� bÞgt ð9Þ

which modifies equation (5) above by allowing for some external habit

formation (indexed by parameter b) and introducing a preference

shock fgtg that follows an AR(1) process with coefficient rg. Underly-

ing equation (9) is an assumption that preferences are separable be-

tween consumption and hours, and logarithmic in the quasidifference

of consumption to preserve the balanced growth path property.39 Ag-

gregate output and hours are related by the simple log-linear produc-

tion function:

yt ¼ at þ nt

Using a tilde to denote variables normalized by current productivity

(to induce lack of movement), we have:

~yyt ¼ nt ð10Þ

Log-linearization of the optimal price-setting condition around the

zero inflation steady state yields an equation describing the dynamics

of inflation as a function of the deviations of the average (log) markup

from its steady-state level, which we denote by m
p
t :
40

pt ¼ gbpt�1 þ gf Etfptþ1g � kpðmp
t � utÞ ð11Þ

Technology Shocks and Aggregate Fluctuations 263



where gb ¼ hp=ð1þ bhpÞ, gf ¼ b=ð1þ bhpÞ, kp ¼ ð1� bypÞð1� ypÞ=
ypð1þ hpbÞ, yp is the probability of not adjusting prices in any given

period, and hp A ½0; 1� is the degree of price indexation to lagged infla-

tion. Notice that m
p
t ¼ �logðWt=PtAtÞ1� ~oot is the price markup, where

~oot ¼ ot � at is the real wage per efficiency unit. Variable ut denotes ex-

ogenous variations in the desired price markup.

Log-linearization of the optimal wage-setting condition yields the

following equation for the dynamics of the (normalized) real wage:

~oot ¼
1

1þ b
~oot�1 þ

b

1þ b
Etf ~ootþ1g �

1

1þ b
Dat þ

b

1þ b
EtfDatþ1g

þ hw
1þ b

pt�1 �
ð1þ bhwÞ
1þ b

pt þ
b

1þ b
Etfptþ1g �

kw

1þ b
ðmw

t � vtÞ ð12Þ

where yw denotes the fraction of workers that do not re-optimize their

wage, hw A ½0; 1� is the degree of wage indexation to lagged inflation,

and kw 1 ð1� ywÞð1� bywÞ=ywð1þ ewjÞ, and ew is the wage elasticity

of labor demand in the steady state. Also notice that mw
t 1 ~oot �

ðð1=ð1� bÞÞ ~yyt � ðb=ð1� bÞÞ ~yyt�1 � gt þ ðb=ð1� bÞÞDat þ jntÞ is the wage

markup. Variable vt denotes exogenous variations in the desired wage

markup.

Finally, we close the model by assuming that the monetary authority

adjusts interest rates in response to changes in inflation and output

growth according to the rule:

rt ¼ frrt�1 þ ð1� frÞfppt þ ð1� frÞfyDyt þ zt ð13Þ

where zt is an exogenous monetary shock.41

The exogenous driving variables are assumed to evolve as follows:

at ¼ at�1 þ eat

gt ¼ rggt�1 þ e
g
t

ut ¼ ruut�1 þ eut

vt ¼ rvvt�1 þ evt

zt ¼ ezt

Notice that while we do not observe ~oot and ~yyt, the two variables are

related as follows:

ot � yt ¼ ~oot � ~yyt
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and ot � yt is an observable variable, which should be stationary in

equilibrium. In the next section, we explain how to write the likeli-

hood function in terms of the five observable variables: output growth,

inflation, the nominal interest rate, hours, and the real wage-output

ratio.

5.1 Parameter Estimation

5.1.1 Data

We estimate the model laid out in the previous section using U.S. quar-

terly time series for five variables: real output, inflation, real wages,

hours, and interest rates. The sample period is 1948:1 to 2002:4. For

consistency with the analysis in Section 2, we use the same series for

output and hours. Our measure of nominal wages is the compensation

per hour in the nonfarm business sector (LXNFC), and the measure for

the price level is the nonfarm business sector deflator (LXNFI). Finally,

we use the quarterly average daily readings of the 3-month T-bill

(FTB3) as the relevant nominal interest rate. To render the series sta-

tionary, we detrend hours and the real wage-output ratio using a

quadratic trend. We treat inflation, output growth, and the nominal in-

terest rate as stationary, and express them in deviations from their

sample mean.

As is well known from Bayes’s rule, the posterior distribution of the

parameters is proportional to the product of the prior distribution of

the parameters and the likelihood function of the data. Until recently,

only well-known and standard distributions could be used. The advent

of fast computer processors and Markov Chain Monte Carlo (MCMC)

methods has removed this restriction, and a more general class of

models and distributions can be used.42 To implement the Bayesian es-

timation method, we need to be able to evaluate numerically the prior

and the likelihood function. Then we use the Metropolis-Hastings algo-

rithm to obtain random draws from the posterior distribution, from

which we obtain the relevant moments of the posterior distribution of

the parameters.

5.1.2 The Likelihood Function

Let c denote the vector of parameters that describe preferences, tech-

nology, the monetary policy rule, and the shocks of the model; dt
be the vector of endogenous variables (observable or not); zt be the

vector of shocks; and et be the vector of innovations. The system of
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equilibrium conditions and the process for the exogenous shocks can

be written as a second-order difference equation:

AðcÞEtfdtþ1g ¼ BðcÞdt þ CðcÞdt�1 þDðcÞzt

zt ¼ NðcÞzt�1 þ et

Eðete 0tÞ ¼ SðcÞ

We use standard solution methods for linear models with rational

expectations (see, for example, Uhlig, 1999) to write the law of motion

in state-space form and the Kalman filter, as in Hamilton (1994), to

evaluate the likelihood of the five observable variables xt ¼ ½rt; pt;ot �
yt; nt;Dyt� 0. We denote by LðfxtgTt¼1 jcÞ the likelihood function of

fxtgTt¼1.

5.1.3 Priors

In this section, we denote by PðcÞ the prior distribution of the parame-

ters. We present the list of the structural parameters and its associated

prior distributions in the first three columns of Table 4. Most of the pri-

ors involve uniform distributions for the parameters, which simply re-

strict the support. We use uniform distributions for the parameter that

explains habit formation, for the probabilities of the Calvo lotteries, and

for the indexation parameters. The prior for all these parameters has

support between 0 and 1, except the probabilities of the Calvo lottery,

which are allowed to take values up to 0.9; i.e., we are ruling out aver-

age price and wage durations of more than 10 quarters.

We try to supplement as much prior information as possible for the

model’s exogenous shocks. The AR(1) coefficients have uniform prior

distributions between 0 and 0.97. Gamma distributions for the stan-

dard deviations of the shocks are assumed (to guarantee nonnegativ-

ity). We select their hyperparameters to match available information

for the prior mean standard deviation of the innovations, while allow-

ing reasonable uncertainty in these parameters. For instance, for the

monetary policy rule, we choose the means of the inflation and output

growth coefficients to match the ones proposed by Taylor.43 For the

monetary policy shock, we use the standard deviation that comes

from running an OLS regression for the Taylor rule equation.

In addition, we fix some parameters. We set the discount factor at

b ¼ 0:99. The elasticities of product and labor demand are set to 6

(implying steady-state markups of 20%). These values are pretty con-

ventional in the literature.
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5.1.4 Drawing from the Posterior

From Bayes’s rule, we obtain the posterior distribution of the parame-

ters as follows:

pðc j fxtgTt¼1Þz LðfxtgTt¼1 jcÞPðcÞ

The posterior density function is proportional to the product of

the likelihood function and the prior joint density function of c. Given

our priors and the likelihood functions implied by the state-space solu-

tion to the model, we are not able to obtain a closed-form solution

for the posterior distributions. However, we are able to evaluate both

expressions numerically. We follow Fernández-Villaverde and Rubio-

Ramı́rez (2004) and Lubik and Schorfheide (2003a) and use the random

walk Metropolis-Hastings algorithm to obtain a random draw of size

500,000 from pðc j fxtgTt¼1;mÞ. We use the draw to estimate the

moments of the posterior distribution and to obtain impulse responses

and second moments of the endogenous variables.

Table 4

Prior and posterior distributions

Prior distribution Posterior distribution

Para-
meter Mean

Standard
deviation Mean

Standard
deviation

b Uniformð0; 1Þ 0.50 0.289 0.42 0.04

j Normalð1; 0:25Þ 1.00 0.25 0.80 0.11

yp Uniformð0; 0:9Þ 0.45 0.259 0.53 0.03

yw Uniformð0; 0:9Þ 0.45 0.259 0.05 0.02

hp Uniformð0; 1Þ 0.50 0.289 0.02 0.02

hw Uniformð0; 1Þ 0.50 0.289 0.42 0.28

rr Uniformð0; 0:97Þ 0.485 0.284 0.69 0.04

fy Normalð0:5; 0:125Þ 0.50 0.13 0.26 0.06

fp Normalð1:5; 0:25Þ 1.50 0.25 1.35 0.13

rg Uniformð0; 0:97Þ 0.485 0.284 0.93 0.02

ru Uniformð0; 0:97Þ 0.485 0.284 0.95 0.02

rv Uniformð0; 0:97Þ 0.485 0.284 0.91 0.01

sz Gammað25; 0:0001Þ 0.0025 0.0005 0.003 0.000

sa Gammað25; 0:0004Þ 0.01 0.002 0.009 0.001

sg Gammað16; 0:00125Þ 0.02 0.005 0.025 0.0024

su Gammað4; 0:0025Þ 0.01 0.005 0.011 0.001

sv Gammað4; 0:0025Þ 0.01 0.005 0.012 0.001
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5.2 Main Findings

5.2.1 Parameter Estimates and Second Moments

The last two columns of Table 4 report the mean and standard devia-

tion of the posterior distributions for all the parameters. Notice that

the habit formation parameter is estimated to be 0.42, a value some-

what smaller than that suggested by Christiano, Eichenbaum, and

Evans (2003) or Smets and Wouters (2003b). The parameter that mea-

sures the elasticity of the marginal disutility of hours, j, is estimated to

be 0.80, which is close to values usually obtained or calibrated in the

literature.

The average duration of price contracts implied by the point esti-

mate of the price stickiness parameter lies slightly above two quarters.

We view this estimate as a moderate amount of price stickiness in the

economy. Perhaps most surprising is the low degree of wage stickiness

uncovered by our estimation method. Such an implausible low esti-

mate may suggest that the Calvo model is not the best formalism to

characterize wage dynamics.44

The price indexation coefficient is estimated at a low value, 0.04,

suggesting that the pure forward-looking model is a good approxima-

tion for inflation dynamics, once we allow for autoregressive price

markup shocks. On the other hand, indexation in wage setting is more

important, with a posterior mean of 0.42. The coefficients of the interest

rate rule suggest a high degree of interest rate smoothing, 0.69, a small

response of the interest rate to output growth fluctuations, and a coeffi-

cient of the response of the interest rate to inflation of 1.33, which cor-

responds to a lean-against-the-wind monetary policy. The estimated

processes for the shocks of the model suggest that all of them are

highly autocorrelated, with parameters between 0.95 for the price

markup shock and 0.91 for the wage markup shock.45

Table 5 displays some selected posterior second moments implied

by the model estimates and compares them to the data.46 The first two

columns present the standard deviation of the observed variables, and

their counterparts implied by the estimated model. We can see that the

model does a very good job in replicating the standard deviations of

output, inflation, and the nominal interest rate. The model also does

well in mimicking the unconditional correlation between the growth

rates of hours and output: in the data, it is 0.75; in the model, it is 0.72.

However, it overestimates the standard deviation of hours (3.11% in
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the data and 4.6% in the model) and to a lesser extent the real wage–

output ratio (3.69% in the data, 4.44% in the model).

5.2.2 The Effects of Technology Shocks

Next, we turn our attention to the estimated model’s predictions

regarding the effects of technology shocks.47 Figure 7 displays the

posterior impulse responses to a permanent technology shock of a size

normalized to one standard deviation.48 We can observe that the model

replicates the VAR-based evidence fairly well, in spite of the differ-

ences in the approach. In particular, the estimated model implies a

persistent decline in hours in response to a positive technology shock,

and a gradual adjustment of output to a permanently higher plateau.

It takes about four quarters for output to reach its new steady-state

level. Hours drop on impact, by about 0.4 percentage points, and con-

verge monotonically to their initial level afterward.49

The third column of Table 5 reports the second moments of the

observed variables conditional on technology shocks being the only

driving force. The fourth column shows the fraction of the variance of

each variable accounted for by the technology shock.50 We can see that

technology shocks do not play a major role in explaining the variability

of the five observed variables. They explain 22% of the variability

of output growth and 6% of the variability of inflation. For the rest of

Table 5

Second moments of estimated DSGE model

Standard deviations (%) Contribution to variance

Data Model
Technology
component

Technology
shocks

Original data

Output growth 1.36 1.27 0.60 22.3%

Inflation 0.72 0.73 0.18 6.0%

Interest rate 0.72 0.67 0.04 0.3%

Hours 3.11 4.60 0.42 0.8%

Real wage/output 3.69 4.44 0.13 0.1%

Correlation between (dy; dn) 0.75 0.72 �0.49

Bandpass filtered data

Output 2.04 2.04 0.87 18.2%

Hours 1.69 1.69 0.26 2.3%

Correlation between (y;n) 0.88 0.88 �0.14
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variables, including hours, they explain an insignificant amount of

overall volatility. A key result emerges when we simulate the model

with technology shocks only: we obtain a correlation between

ðDyt;DntÞ of �0.49, which contrasts with the high positive correlation

between the same variables observed in the data.

The last three rows of Table 5 report statistics based on bandpass fil-

tered data. In this case, the series of output growth and hours gener-

ated by the estimated model (when all shocks other than technology

are turned off) are used to obtain the (log) levels of hours and output,

on which the bandpass filter is applied. Once again, we find that tech-

nology shocks can account for only a small fraction of the variance of

the business-cycle component of output and hours. The conditional

correlation between those two variables falls to �0.14, from a value of

0.88 for the actual filtered series.

The previous findings are illustrated in Figure 8, which displays the

business-cycle components of log output and log hours associated with

technology shocks, according to our estimated model. It is apparent
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Posterior impulse responses to a technology shock: model based estimates
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that technology shocks explain only a minor fraction of output fluctua-

tions. This is even more dramatic when we look at fluctuations in

hours, in a way consistent with most of the VAR findings. Similar qual-

itative findings are found in Altig et al. (2003), Ireland (2004), and

Smets and Wouters (2003b), using slightly different models and/or es-

timation methods.

5.2.3 What Are the Main Sources of Economic Fluctuations?

Which shocks play a more important role in explaining fluctuations in

our observed variables? In Table 6, we report the contribution of each

shock to the total variance of each variable implied by our model esti-

mates. The shock that explains most of the variance of all variables in

our framework is the preference shock, which we can interpret more

broadly as a (real) demand shock. It explains above 70% of the vari-

ance of hours, the real wage-output ratio, and the nominal interest

rate. The preference shock also explains 57% of the variance of output
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The role of technology shocks in U.S. postwar fluctuations: model-based estimates
Note: Solid line: technology component (BP-filtered); dashed line: U.S. data (BP-filtered).

Technology Shocks and Aggregate Fluctuations 271



and 36% of the variance of inflation. On the other hand, the monetary

shock explains only approximately 5% of output growth and the nomi-

nal interest rate, and is an important determinant of inflation variabil-

ity, contributing to 27% of total volatility. Price and wage markup

shocks both have some importance in explaining the volatility of all

variables, with contributions to the variance that range from 7% to

17%. Overall, the picture that emerges from Table 6 is that preference

shocks are key for explaining the volatility of all variables. The mone-

tary and technology shocks have some importance in the sense that

they explain about 20% of the variance in one of the variables (output

growth in the case of technology, inflation in the case of monetary

shocks), but their contribution to the remaining variables is very small.

The price and wage markup shocks explain a small fraction of variabil-

ity in all variables.

5.2.4 Structural Explanations for the Estimated Effects of

Technology Shocks

Finally, we examine which features of the model are driving the nega-

tive comovement between hours and output in response to technology

shocks. In Table 7, we present the correlation between the business-

cycle components of output and hours that arises under several coun-

terfactual scenarios. For each scenario, we shut down some of the

rigidities of the model and simulate it again while keeping the same

value for the remaining parameter estimates.

Three features of the model stand out as natural candidates to ex-

plain the negative correlation between output and hours: sticky prices,

sticky wages, and habit formation. When we shut down each of those,

we find that the remaining rigidities still induce a large and negative

Table 6

Variance decomposition from estimated DSGE model

Shocks

Monetary Technology Preference
Price
markup

Wage
markup

Output growth 4.8% 22.3% 57.1% 8.0% 7.1%

Inflation 27.1% 6.1% 36.3% 13.7% 14.7%

Nominal rate 5.0% 0.4% 72.3% 9.8% 11.8%

Hours 0.4% 0.8% 70.0% 17.6% 9.6%

Wage� output 0.1% 0.1% 73.6% 12.0% 12.8%
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conditional correlation. For instance, in the second row of the table, we

can see that assuming flexible wages ðyw ¼ hw ¼ 0Þ delivers basically

the same correlations. This result is not surprising given that nominal

wage rigidities do not appear to be important in turn given the param-

eter estimates. When we assume flexible prices but keep sticky wages

and habit formation, things do not change much either.

A particular scenario would seem to be of special interest: one with

flexible prices and wages, and habit formation. In that case, once again,

a similar pattern of correlations emerges. A similar result is obtained

by Smets and Wouters (2003b), who interpret it as evidence favorable

to some of the real explanations found in the literature. Yet when we

turn off habit formation in our estimated model but keep nominal

rigidities operative, we find a qualitatively similar result: the condi-

tional and unconditional correlations between hours and output have

the same pattern of signs as that observed in the data. It is only when

we shut down all rigidities (nominal and real) that we obtain a posi-

tive correlation between hours and output, both conditionally and un-

conditionally, and in a way consistent with the predictions of the basic

RBC model.

Finally, we consider a calibration in which the central bank responds

exclusively to inflation changes but not to output. Some authors have

argued that the negative comovement of output and hours may be a

consequence of an attempt by the monetary authority to overstabilize

output. Our results suggest that this cannot be an overriding factor:

when we set the coefficient on output growth equal to zero (but keep-

ing both habit formation and nominal rigidities operative), we still ob-

tain a negative conditional correlation between hours and output.

In light of the previous findings, we conclude that both real rigidities

(habit formation, in our model) and nominal rigidities (mostly sticky

Table 7

Technology-driven fluctuations output and hours: correlations implied by alternative
model specifications (BP-filtered data)

Original �0.14

Flexible wages �0.16

Flexible prices �0.18

No habit formation �0.29

Flexible prices and wages �0.21

No frictions (RBC) 0.22

Inflation targeting �0.15
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prices) appear to be relevant factors in accounting for the evidence on

the effects of technology shocks. By way of contrast, both nominal and

real rigidities seem to be required to account for the empirical effects

of monetary policy shocks (see, for example, Christiano, Eichenbaum,

and Evans, 1999, or the dynamics of inflation, for example, Galı́ and

Gertler, 1999).

6. Conclusion

In the present paper, we have reviewed recent research efforts that

seek to identify and estimate the role of technology as a source of eco-

nomic fluctuations in ways that go beyond the simple unconditional

second-moment matching exercises found in the early RBC literature.

The number of qualifications and caveats of any empirical exercise

that seeks to provide an answer to the above questions is never small.

As is often the case in empirical research in economics, the evidence

does not speak with a single voice, even when similar methods and

data sets are used. Those caveats notwithstanding, the bulk of the evi-

dence reported in the present paper raises serious doubts about the im-

portance of changes in aggregate technology as a significant (or, even

more, a dominant) force behind business cycles, in contrast with the

original claims of the RBC literature. Instead, it points to demand fac-

tors as the main force behind the strong positive comovement between

output and labor input measures that is the hallmark of the business

cycle.

7. Addendum: A Response to Ellen McGrattan

In her comments to the present paper, Ellen McGrattan (2004) dis-

misses the evidence on the effects of technology shocks based on struc-

tural VARs (SVARs) that rely on long-run identifying restrictions. The

purpose of this addendum is to explain why we think McGrattan’s

analysis and conclusions are misleading. Since some of her argument

and the evidence she provides is based on her recent working paper

with Chari and Kehoe, our discussion often refers directly to their

paper (Chari, Kehoe, and McGrattan, 2004a).

Our main point is easy to summarize. McGrattan and Chari, Kehoe,

and McGrattan (CKM) study a number of model economies, all of

which predict that hours should rise in response to a positive technol-

ogy shock. Yet when they estimate an SVAR on data generated by
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those models, the resulting impulse responses show a decline in hours

in response to such a shock (with one exception, to be discussed

below).

McGrattan presents her findings and those in CKM as an illustration

of a general flaw with SVARs. But we find that conclusion unwar-

ranted. What McGrattan and CKM really show is that a misidentified

and/or misspecified SVAR often leads to incorrect inference. As

McGrattan herself acknowledges, in her example of a standard RBC

model (as well as in all but one of the examples in CKM), the assump-

tions underlying the data-generating model are inconsistent with the

identifying assumption in the VAR: either technology is stationary, or

nontechnology shocks have a permanent effect on productivity, or the

order of integration of hours is wrong.51 In those cases, the finding of

incorrect inference is neither surprising nor novel since it restates

points that have already been made in the literature.52 That conclusion

should be contrasted with that of Erceg, Guerrieri, and Gust (2004),

who show that when the SVAR is correctly specified and the identify-

ing restrictions are satisfied by the underlying data-generating models,

the estimated responses to technology shocks match (at least qualita-

tively) the theoretical ones.

We think that, when properly used, SVARs provide an extremely

useful guide for developing business-cycle theories. Evidence on the

effects of particular shocks that is shown to be robust to a variety of

plausible identification schemes should not be ignored when develop-

ing and refining DSGE models that will be used for policy analysis.

On the one hand, that requirement imposes a stronger discipline on

model builders than just matching the patterns of unconditional second

moments of some time series of interest, the approach traditionally

favored by RBC economists. On the other hand, it allows one to assess

the relevance of alternative specifications without knowledge of all the

driving forces impinging on the economy.53

Another finding in CKM that may seem striking to many readers is

that their business accounting framework produces a rise in hours in

response to a positive technology shock, in contrast with the evidence

summarized in Section 2 of the present paper. Below, we conjecture

that such a result hinges critically on treating the conventional Solow

residual as an appropriate measure of technology, in contrast to the

wealth of evidence suggesting the presence of significant procyclical

error in that measure of technology. By way of contrast, most of the

SVAR-based findings on the effects of technology shocks overviewed
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in the present paper rely on identifying assumptions that are much

weaker than those required for the Solow residual to be a suitable mea-

sure of technology.

Next, we elaborate on the previous points as well as on other issues

raised by McGrattan’s comment. First, we try to shed some light on

why the estimated SVARs do not recover the model-generated impulse

responses. Second, we provide a conjecture about why CKM’s esti-

mated model would predict an increase in hours in response to a posi-

tive technology shock, even if the opposite were true. Finally, we

comment on CKM’s proposed alternative to SVARs.

7.1 Why Does the SVAR Evidence Fail to Match the McGrattan and

CKM Models’ Predictions?

The reason why the SVAR estimates reported by McGrattan fail to

recover the joint response of output and hours implied by her RBC

model should not be viewed as reflecting an inherent flaw in the

SVAR approach. Instead, it is most likely a consequence of misspecifi-

cation and misidentification of the SVAR used.

First, and most flagrantly, the geometric growth specification of

technology assumed in the McGrattan exercise implies that technol-

ogy shocks will have only temporary effects on labor productivity. A

maintained assumption in Galı́ (1999) and in Section 2.1 above is

the existence of a unit root in the technology process, underlying the

observed unit root in productivity. It is clear that if a researcher holds

an inherent belief in the stationarity of technology, she will not want

to use that empirical approach to estimate the effects of technology

shocks. We find the notion that technology shocks don’t have perma-

nent effects hard to believe, though we cannot offer any proof (and

though we have provided suggestive evidence along those lines in

Section 3.1). In any event, we find it useful to point out that the litera-

ture contains several examples, reviewed in Section 2, that do not rely

on the unit root assumption and that yield results similar to Galı́

(1999).54

In principle, CKM appear to overcome the previous misidentifica-

tion problem by using as a data-generating mechanism an RBC model

that assumes a unit root in technology. They consider two versions of

that model (preferred and baseline), which we discuss in turn. Their

preferred specification fails to satisfy the identifying restriction of the

VAR in another important dimension: because of the endogeneity of
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technology in their model (reflected in the nonzero off-diagonal terms

in the process describing the driving forces), shocks that are non-

technological in nature are going to have an effect on the level of tech-

nology and hence on productivity. As a result, the identification

underlying the SVAR will be incorrect, and inference will be distorted.

The two misidentification problems just discussed should not affect

the CKM baseline specification because in the latter, technology is

assumed to follow an exogenous random walk process. Yet when we

look at the properties of that model, we uncover a misspecification prob-

lem in the VAR used. In a nutshell, and as is the case for most RBC

models found in the literature, CKM’s baseline model implies that

hours worked follow a stationary process, though they estimate the

SVAR using first-differenced hours. The potential problems associated

with that misspecification were originally pointed out by CEV (2003)

and have been discussed extensively in Section 3 of the present

paper.55

CKM provide one example (the exception we were referring to

above) in which the estimated SVAR satisfies both the key long-run

identifying restriction (technology is exogenous and contains a unit

root) and is correctly specified (hours are introduced in levels). In that

case, and not surprisingly, the SVAR makes a correct inference: hours

are estimated to rise in response to a technology shock, as the model

predicts. While CKM acknowledge that fact, they instead focus on the

finding that the estimated impulse response shows a nonnegligible

bias. This is an interesting point, but it is not central to the controversy

regarding the effects of technology shocks: the latter has focused all

along on the estimated sign of the comovement of output and hours,

not on the size of the responses. Nor is it novel: it is one of the two

main findings in Erceg, Guerrieri, and Gust (2003), who already point

out and analyze the role played by the slow adjustment of capital in

generating that downward bias.

Neither McGrattan nor CKM emphasize Erceg, Guerrieri, and Gust’s

(EGG’s) second main finding, which is highly relevant for their pur-

poses: using both a standard RBC model and a new Keynesian model

with staggered wage and price setting as data-generating mechanisms,

they conclude that the estimated responses to a technology shock, us-

ing the same SVAR approach as in Galı́ (1999), look like the true

responses to that shock in both models, at least from a qualitative

viewpoint (leading to a rise in hours in the former case, and to a drop

in the latter, in a way consistent with the models’ predictions).
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7.2 Why Does the CKM Accounting Framework Predict a Rise in

Hours?

The framework used by McGrattan in Section 2.2 of her comment

is unlikely to be recognized by most macroeconomists as a standard

RBC model, the title of the subsection notwithstanding. Instead, it con-

sists of a version of the business-cycle accounting framework originally

developed in Chari et al. (2004b). That framework consists of a stan-

dard RBC model with four driving forces (or wedges, in their terminol-

ogy). One of those driving forces, which enters the production function

as a conventional productivity parameter, is interpreted as a technol-

ogy shock. Two other driving forces are broadly interpreted as a labor

market and an investment wedge. The fourth is government spending.

After assuming functional forms for preferences and technology as

well as a conventional calibration of the associated parameters conven-

tional in the RBC literature, CKM estimate a VAR model for the four

driving forces using time series for output, hours, investment, and gov-

ernment consumption.

Let us put aside some of the issues regarding the suitability of

SVARs discussed in the previous section to turn to a different question:

Why does the estimated CKM accounting framework predict an in-

crease in hours in response to a positive technology shock? The interest

of the question may be puzzling to some readers; after all, the CKM

model looks like a standard RBC model augmented with many shocks.

But that description is not accurate in a subtle, but important dimen-

sion: the disturbances/wedges in the CKM accounting framework are

not orthogonal to each other, having instead a rich dynamic structure.

Thus, nothing prevents, at least in principle, some of the nontechnol-

ogy wedges from responding to a technology shock in such a way as

to generate a negative comovement between output and hours in re-

sponse to that shock. After all, the increase in markups following a

positive technology shock is precisely the mechanism through which a

model with nominal rigidities can generate a decline in hours.

Here, we can only speculate on the sources of the sign of the re-

sponse of hours predicted by the CKM model. But a cursory look at

the structure of the model, and the approach to uncovering its shocks,

points to a very likely candidate for that finding: the CKM measure

of the technology parameter corresponds to the gap between (log)

GDP and a weighted average of (log) capital and (log) hours, with the

weights based on average income shares. In other words, the CKM
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measure of technology corresponds, for all practical purposes, to the

conventional Solow (1957) residual. In adopting that approach to iden-

tification of technology, CKM are brushing aside two decades of re-

search pointing to the multiple shortcomings of the Solow residual as

a measure of short-run variations to technology, from Hall (1988) to

BFK (1999). In the absence of any adjustments for market power, vari-

able utilization of inputs, and other considerations, the Solow residual,

as an index of technological change, is known to have a large (and

highly procyclical) measurement error.

To illustrate this, consider an economy with a constant technology

(and no capital) in which output and (measured) hours are linked

according to the following reduced-form equilibrium relationship:

yt ¼ ant

CKM’s index of technology zt would have been computed, using the

Solow formula as:

zt ¼ yt � snt

where s is the average labor income share. Under Solow’s original

assumptions, s ¼ a. But the existing literature provides a number of

compelling reasons why in practice we will almost surely have a > s.

It follows that CKM’s technology index can be written as:

zt ¼ ða� sÞnt

thus implying a mechanical positive correlation between measured

technology and hours.

The previous example is admittedly overstylized, but we think it

illustrates the point clearly. Thus, it should come as no surprise if the

estimated responses of the different wedges to innovations in that

error-ridden measure of technology were to be highly biased and may

indeed resemble the responses to a demand disturbance. In fact, the

use of VARs based on either long-run restrictions (as in Galı́, 1999) or

purified Solow residuals (as in BFK, 1999) as well as the approach to

model calibration in Burnside and Eichenbaum (1996) was largely

motivated by that observation.

7.3 Some Agreement

We cannot conclude this addendum without expressing our agreement

with CKM’s proposed alternative approach to the identification and
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estimation of technology (and other shocks), based on the specification

of a ‘‘state representation and a set of identifying assumptions that

nests the class of models of interest’’ and that can be ‘‘conveniently esti-

mated with Kalman filtering’’ techniques. But this is precisely the

approach that we have pursued in Section 5 of the present paper, fol-

lowing the footsteps of a number authors referred to in that section

(including the second author of the present paper).

In her comment, McGrattan criticizes the particular model that

we choose to implement that approach (which she refers to as the

triple-sticky model) on the grounds that it abstracts from capital ac-

cumulation. But our goal was not to develop a fully-fledged model,

encompassing all relevant aspects of the economy, just to provide an il-

lustration of a potentially fruitful approach to analyzing the role of dif-

ferent frictions in shaping the estimated effects of technology shocks.

Other authors have provided a similar analysis using a richer structure

that includes endogenous capital accumulation, among many other

features. The models used in that literature allow (but do not impose)

all sorts of frictions in a highly flexible way, and nest the standard

RBC model as a particular case. Most important for our purposes here,

some of those papers (see, for example, Smets and Wouters, 2003b)

have analyzed explicitly the effects of technology shocks implied by

their estimated models. In a way consistent with our findings above,

those effects have been shown to imply a negative response of hours

to a positive technology shock. McGrattan reports no comparable evi-

dence for her triple-sticky model with investment, though we conjec-

ture that the latter would imply a similar response.

Notes
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tura, Lutz Weinke, the editors (Mark Gertler and Ken Rogoff), and discussants (Ellen
McGrattan and Valerie Ramey) for useful comments. We have also benefited from com-
ments by participants in seminars at the CREI-UPF Macro Workshop, MIT Macro Faculty
Lunch, and Duke. Anton Nakov provided excellent research assistance. We are grateful
to Craig Burnside, Ellen McGrattan, Harald Uhlig, Jonas Fisher, and Susanto Basu for
help with the data. Galı́ acknowledges financial support from DURSI (Generalitat de Cat-
alunya), CREA (Barcelona Economics), Fundación Ramón Areces, and the Ministerio de
Ciencia y Tecnologı́a (SEC2002-03816). This paper should not be reported as representing
the views of the International Monetary Fund (IMF). The views expressed are those of
the authors and do not necessarily reflect the views of the IMF or IMF policy.

1. Prescott (1996a).
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2. See Blanchard and Quah (1989) and Galı́ (1999) for details.

3. It is precisely this feature that differentiates the approach to identification in Galı́
(1999) from that in Blanchard and Quah (1989). The latter authors used restrictions on
long-run effects on output, as opposed to labor productivity. In the presence of a unit
root in labor input, that could lead to the mislabeling as technology shocks of any distur-
bances that was behind the unit root in labor input.

4. With four lags, the corresponding t-statistics are �2.5 and and �7.08, the level and
first-difference, respectively.

5. That distribution is obtained by means of a Montecarlo simulation based on 500 draw-
ings from the distribution of the reduced-form VAR distribution.

6. Notice that the distribution of the impact effect on hours assigns a zero probability to
an increase in that variable.

7. See, e.g., King et al. (1988a) and Campbell (1994).

8. See also Francis and Ramey (2003a), among others, for estimates using higher dimen-
sional VARs.

9. Blanchard (1989, p. 1158).

10. See the comment on Shea’s paper by Galı́ (1998) for a more detailed discussion of that
point.

11. The latter evidence contrasts with their analysis of long-term U.S. data, in which the
results vary significantly across samples and appear to depend on the specification used
(more below).

12. An analogous but somewhat more detailed analysis can be found in Francis and
Ramey (2003a).

13. Of course, that was also the traditional view regarding technological change, but one
that was challenged by the RBC school.

14. Exceptions include stochastic versions of endogenous growth models, as in King et
al. (1988b). In those models, any transitory shock can in principle have a permanent effect
on the level of capital or disembodied technology and, as a result, on labor productivity.

15. We are grateful to Craig Burnside and Ellen McGrattan for providing the data.

16. A similar conclusion is obtained by Fisher (2003) using a related approach in the con-
text of the multiple technology shock model described below.

17. In particular, we use their fully corrected series from their 1999 paper When revising
the present paper, BFK told us of an updated version of their technology series, extend-
ing the sample period through to 1996 and incorporating some methodological changes.
The results obtained with the updated series were almost identical to the ones reported
below.

18. That odds ratio increases substantially when an F statistic associated with a covari-
ates ADF test is incorporated as part of the encompassing analysis.

19. With the exception of their bivariate model under a level specification, CEV also find
the contribution of technology shocks to the variance of output and hours at business
cycles to be small (below 20%). In their bivariate, level specification model, that contribu-
tion is as high as 66 and 33%, respectively.
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20. Given the previous observations, one wonders how an identical prior for both speci-
fications could be assumed, as CEV do when computing the odds ratio.

21. Unfortunately, CEV do not include any statistic associated with the null of no trend
in hours in their encompassing analysis. While it is certainly possible that one can get a t

statistic as high as 8.13 on the time-squared term with a 13% frequency when the true
model contains no trend (as their Montercarlo analysis suggests), it must surely be the
case that such a frequency is much higher when the true model contains the quadratic
trend as estimated in the data!

22. In fact, total hours was the series used originally in Galı́ (1999).

23. The finding of a slight short run decline in output was obtained in BFK (1999).

24. Pesavento and Rossi (2003) propose an agnostic procedure to estimate the effects of
a technology shock that does not require taking a stance on the order of integration
of hours. They find that a positive technology shock has a negative effect on hours on
impact.

25. We thank Jonas Fisher for kindly providing the data on real investment price.

26. See the discussion in McGrattan (1999); Dotsey (2002); and Galı́, López-Salido, and
Vallés (2003), among others.

27. This would be consistent with any model in which velocity is constant in equilib-
rium. See Galı́ (1999) for an example of such an economy.

28. Such a reduced-form relationship would naturally arise as an equilibrium condition
of a simple RBC model with productivity as the only state variable.

29. The absence of another state variable (say, capital stock or other disturbances)
implies a perfect correlation between the natural levels of output and employment, in
contrast with existing RBC models in the literature, where that correlation is positive and
very high, but not one.

30. Throughout we assume that the condition kðfp � 1Þ þ ð1� bÞfy > 0 is satisfied. As
shown by Bullard and Mitra (2002), that condition is necessary to guarantee a unique
equilibrium.

31. This corresponds to the impact elasticity with respect to productivity and ignores the
subsequent adjustment of capital (which is very small). The source is Table 3 in Campbell
(1994), with an appropriate adjustment to correct for his (labor-augmenting) specification
of technology in the production function (we need to divide Campbell’s number by two-
thirds).

32. A similar result can be uncovered in an unpublished paper by McGrattan (1999).
Unfortunately, the author did not seem to notice that finding (or, at least, she did not dis-
cuss it explicitly).

33. The analysis in Galı́, López-Salido, and Vallés (2003) has been extended by Francis,
Owyang, and Theodorou (2004) to other G7 countries. They uncover substantial differ-
ences across countries in the joint response of employment, prices, and interest rates to
technology shocks, and argue that some of those differences can be grounded in differ-
ences in the underlying interest rate rules.

34. A less favorable assessment is found in Chang and Hong (2003), who conduct a simi-
lar exercise using four-digit U.S. manufacturing industries, and rely on evidence of sec-
toral nominal rigidities based on the work of Bils and Klenow (2002).
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35. See Lettau and Uhlig (2000) for a detailed analysis of the properties of an RBC model
with habit formation. As pointed out by Francis and Ramey, Lettau and Uhlig seem
to dismiss the assumption of habits on the grounds that it yields ‘‘counterfactual cyclical
behavior.’’

36. However, the existing literature on estimating general equiilibrium models using
Bayesian methods assumes that all shocks are stationary, even when highly correlated. A
novelty of this paper is that we introduce a permanent technology shock. Ireland (2004)
estimates a general equilibrium model with permanent technology shocks, using maxi-
mum likelihood.

37. A somewhat different estimation strategy is the one followed by Christiano, Eichen-
baum, and Evans (2003); Altig et al. (2003); and Boivin and Giannoni (2003), who esti-
mate general equilibrium models by matching a model’s implied impulse-response
functions to the estimated ones.

38. Details can be found in an appendix available from the authors upon request.

39. Specifically, every household j maximizes the following utility function:

E0

Xy
t¼0

b t Gt logðC j
t � bCt�1Þ �

ðN j
t Þ

1þj

1þ j

" #

subject to a usual budget constraint. The preference shock evolves, expressed in logs, as:

gt ¼ ð1� rgÞGþ rggt�1 þ e
g
t

40. See Smets and Wouters (2003a) for a derivation of the price- and wage-setting
equations.

41. Following Erceg and Levin (2003), we assume that the Federal Reserve reacts to out-
put growth rather than the output gap. An advantage of following such a rule, as Orpha-
nides and Williams (2002) stress, is that mismeasurement of the level of potential output
does not affect the conduct of monetary policy (as opposed to using some measure of
detrended output to estimate the output gap).

42. See Fernández-Villaverde and Rubio-Ramı́rez (2004).

43. If a random draw of the parameters is such that the model does not deliver a unique
and stable solution, we assign a zero likelihood value, which implies that the posterior
density will be zero as well. See Lubik and Schorfheide (2003a) for an estimated DSGE
model allowing for indeterminacy.

44. Rabanal (2003) finds a similar result for an estimated DSGE model that is only
slightly different from the one used here.

45. We have also conducted some subsample stability analyses, splitting the sample into
pre-Volcker years and the Volcker–Greenspan era. While there were some small differ-
ences in estimated parameters across samples, none of the main conclusions of this sec-
tion were affected.

46. These second moments where obtained using a sample of 10,000 draws from the
500,000 that were previously obtained with the Metropolis-Hastings algorithm.

47. A related analysis has been carried out independently by Smets and Wouters (2003b),
albeit in the context of a slightly different DSGE model.

48. The posterior mean and standard deviations are based on the same sample that was
used to obtain the second moments.
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49. A similar pattern of responses of output and hours to a technology shock can be
found in Smets and Wouters (2003b).

50. We use the method of Ingram, Kocherlakota, and Savin (1994) to recover the struc-
tural shocks. This method is a particular case of using the Kalman filter to recover the
structural shocks. We assume that the economy is at its steady-state value in the first ob-
servation, rather than assuming a diffuse prior. By construction, the full set of shocks rep-
licate the features of the model perfectly.

51. In the one case where the VAR is identified correctly, it yields the correct qualitative
responses, though with some quantitative bias resulting from the inability to capture the
true dynamics with a low-order VAR. This result has been shown in Erceg, Guerrieri,
and Gust (2004).

52. See Cooley and Dwyer (1998) and Christiano et al. (2003), among others.

53. See Christiano et al. (2003) for an illustration of the usefulness of that approach.

54. See, for example, BFK (1999), Francis et al. (2003), and Pesavento and Rossi (2004).

55. CKM’s discussion of that problem is somewhat obscured by their reference to ‘‘the in-
sufficient number of lags in the VAR’’ as opposed to just stating that hours are overdiffer-
enced. See also Marcet (2004) for a more general discussion of the consequences (or lack
thereof) of overdifferencing.
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