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Monetary Policy and Bubbles in a New Keynesian Model 
with Overlapping Generations†

By Jordi Galí*

I analyze an extension of the New Keynesian model that features 
overlapping generations of finitely lived agents and (stochastic)
transitions to inactivity. In contrast with the standard model, the 
proposed framework allows for the existence of rational expec-
tations equilibria with asset price bubbles. I study the condi-
tions under which bubble-driven fluctuations may emerge and 
the type of monetary policy rules that may prevent them. I con-
clude by discussing some of the model’s welfare implications. 
(JEL E12, E32, E44, E52, E63)

The rise and collapse of speculative bubbles are viewed by many economists and
policymakers as an important source of macroeconomic instability and a chal-

lenge for monetary policy.1 Yet the recurrent reference to bubbles in the policy debate 
contrasts with their conspicuous absence in modern monetary models. A likely expla-
nation for this seeming anomaly lies in the fact that standard versions of the New 
Keynesian model, the workhorse framework used in monetary policy analysis, leave 
no room for the existence of bubbles in equilibrium and hence for any meaningful 
model-based discussion of their possible interaction with monetary policy.2

In the present paper, I develop a modified version of the New Keynesian model, 
which allows, under certain conditions, for the emergence of bubble-driven 

1 See, e.g., Borio and Lowe (2002) for an early statement of the risks posed by asset price fluctuations and the
need for an appropriate monetary policy response. Taylor (2014) points to excessively low interest rates in the 2000s 
as a factor behind the housing boom that preceded the financial crisis of 2007–2008. See also Barlevy (2018) for a
discussion of the contrast between economists’ and policymakers’ perspectives on bubbles.

2 The reason is well known: the equilibrium requirement that the bubble grows at the rate of interest violates the 
transversality condition of the infinite-lived representative consumer assumed in the New Keynesian model (and in 
most macro models). See, e.g., Santos and Woodford (1997) and further discussion below.
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fluctuations in equilibrium. The modifications to the standard model involve the 
introduction of overlapping generations (OLG) of finitely lived consumers and sto-
chastic transitions to inactivity (retirement).3 For brevity, I henceforth refer to the 
proposed framework as the OLG-NK model. The assumption of an infinite sequence 
of cohorts makes it possible for the transversality condition of any individual con-
sumer to be satisfied in equilibrium, even in the presence of a bubble that grows at 
the rate of interest.4 Furthermore, the assumption of retirement (or, more generally, 
of a relative decline of individual labor income over the life cycle) can generate an 
equilibrium rate of interest that does not exceed the economy’s trend growth rate, a 
necessary condition for the size of the bubble to remain bounded relative to the size 
of the economy. Finally, the assumption of sticky prices—a key feature of the New 
Keynesian model—has two important implications that are missing in most models 
with bubbles found in the literature. Firstly, price stickiness makes it possible for 
an aggregate bubble to influence aggregate demand and, hence, output and employ-
ment. Secondly, price stickiness makes monetary policy nonneutral, thus allowing 
for a meaningful discussion of the potential role of monetary policy when the pos-
sibility of bubbles and bubble-driven fluctuations is part of the environment. An 
appealing feature of the OLG-NK framework proposed here is that it nests the stan-
dard New Keynesian model (the NK model, henceforth) as a limiting case, when the 
probabilities of death and retirement approach zero.5

After deriving the equations describing the model’s equilibrium, I characterize 
the (perfect foresight) balanced growth paths consistent with that equilibrium and 
discuss the conditions under which a (nonvanishing) bubble may exist along those 
paths. If the incidence of retirement is sufficiently low (relative to the consumer’s 
discount rate), there exists a unique balanced growth path, and it is a bubbleless 
one (as in the standard model). On the other hand, if the probability of retirement is 
sufficiently high (but plausibly so), a multiplicity of bubbly balanced growth paths 
is shown to exist (each characterized by a different bubble-output ratio) in addition 
to a bubbleless one (which always exists).

After characterizing the existence and potential multiplicity of balanced growth 
paths—bubbly and bubbleless—I turn to the analysis of the stability properties of 
those paths and the role of monetary policy in shaping those properties. In order to 
do so, I log-linearize the equilibrium conditions around a balanced growth path as 
in the standard analysis of the textbook NK model, underscoring throughout the 
tractability of the new framework.

Several findings of interest emerge from the analysis of the equilibrium dynamics 
of the OLG-NK model.

Firstly, the introduction of an overlapping generations structure by itself does 
not change any of the qualitative properties of the standard NK model. Thus, in the 

3 Other authors recently have extended the New Keynesian model to incorporate overlapping generations of 
finite-lived agents into the New Keynesian framework, though none of them has investigated the possible existence 
of bubbles. See the literature discussion below.

4 And even though that transversality condition does not hold for the economy as a whole.
5 In Galí (2014) I also analyzed an OLG model with sticky prices and bubbles. That model, however, did not 

allow for the possibility of bubble-driven fluctuations in output, nor did it nest the standard New Keynesian model. 
See the literature review below.
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absence of bubbles, the resulting equilibrium conditions describing the dynamics of 
inflation and the output gap are isomorphic to those of the standard model with a 
“modified” discount factor. Among other properties, the so-called “forward-guidance 
puzzle” carries over unaltered to the OLG-NK framework despite the introduction 
of finitely lived consumers.

Secondly, and most importantly, the OLG-NK structure allows for the existence, 
under certain conditions, of bubble-driven fluctuations. A “leaning against the bubble” 
(LAB, henceforth) interest rate policy, if precisely calibrated, may succeed in insulat-
ing output and inflation from aggregate bubble fluctuations. Furthermore, if aggressive 
enough, the LAB policy may be able to rule out bubble fluctuations themselves, with 
the required strength of the response depending in a nonlinear way on the value of the 
bubble-output ratio along the associated balanced growth path. On the other hand, an 
LAB policy which does not succeed in eliminating bubble fluctuations may end up 
increasing the volatility and persistence of bubble fluctuations as in Galí (2014).

Thirdly, a policy that targets the output gap (or inflation) while ignoring the bub-
ble will generally succeed at stabilizing those macro variables. On the other hand, 
only if the average size of the bubble-output ratio lies above a certain threshold, a 
sufficiently aggressive output-based stabilization policy will succeed in ruling out 
fluctuations in the bubble as well.

Finally, and with regard to the welfare implications of the OLG-NK model, two 
main results are derived. First, expected lifetime utility along a deterministic balanced 
growth path (BGP) is increasing in the associated bubble-output ratio. Secondly, an 
increase (decrease) in the size of the aggregate bubble raises (lowers) the expected 
lifetime utility of all cohorts as long as monetary policy doesn’t “overreact” to it. 
However, and to the extent that consumers are risk averse, recurrent symmetric 
bubble-driven fluctuations will be welfare reducing and will thus justify policies that 
eliminate them. In sum: large bubbles are good, but their fluctuations are generally 
not (unless they imply larger bubbles as in one of the examples analyzed).

The paper concludes with some reflections on the caveats and limitations of the 
OLG-NK model developed here and points to some directions for future research. 
An important caveat of the present model, worth emphasizing at the outset, is that 
bubble fluctuations have an impact on the economy mainly as aggregate demand 
shifters.6 In particular, they do not generate any distortion that would break down 
the “divine coincidence” property, which still holds in the OLG-NK economy. 
Accordingly, the role of monetary policy is either to offset the effects of bubbles 
on aggregate demand or to prevent the emergence of bubble fluctuations altogether. 
In both cases, the central bank aims at stabilizing the output gap and inflation. As 
I discuss in the concluding section, one can think of extensions of the basic model 
developed here where the emergence of a bubble may generate a trade-off calling for 
a more nuanced policy response.

The rest of the paper is organized as follows. Section I summarizes the related 
literature. Section II describes the basic framework underlying the analysis in the 
rest of the paper. Section III characterizes the economy’s balanced growth paths. 

6 I write “mainly” because, as discussed below, they may also have an impact on the distribution of wealth.
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Section  IV analyzes the potential role of bubbles as a source of fluctuations and 
discusses the consequences of alternative policies in that regard. Section V makes 
some considerations about the welfare implications of bubbles and bubble-driven 
fluctuations. Section VI summarizes and concludes.

I.  Related Literature

Much of the literature on rational bubbles in general equilibrium has been based 
on real models.7 An early reference in that category is Tirole (1985), using a conven-
tional overlapping generations framework with capital accumulation. More recently, 
Farhi and Tirole (2011), Martin and Ventura (2012), Miao and Wang (2012, 2014, 
2018), Basco (2014), Aoki and Nikolov (2015), Hirano and Yanagawa (2017), 
Bengui and Phan (2018), and Ikeda and Phan (2019), among others, have studied 
the role of bubbles in real models with financial frictions, in which bubbles interact 
with financial constraints, generally relaxing them.

There is also an extensive literature on bubbles using monetary models with 
fully flexible prices. In most of those models, including the seminal paper by 
Samuelson (1958), money itself is the bubbly asset. Asriyan et al. (2016) provide 
a more recent example, introducing the notion of a “nominal” bubble. While mon-
etary policy is not always neutral in those models, the mechanism through which 
its effects are transmitted is very different from that emphasized in models with 
nominal rigidities.

A number of papers have modified the standard NK model by introducing over-
lapping generations à la Blanchard-Yaari, though none of them has considered the 
possibility of bubbles. Piergallini (2006) develops a related model with money in 
the utility function to analyze the implications of the real balance effect on the sta-
bility properties of interest rate rules. Nisticò (2012) discusses the desirability of a 
systematic monetary policy response to stock price developments in a similar model 
but in the absence of bubbles. Del Negro, Giannoni, and Patterson (2015) propose a 
related framework as a possible solution to the “forward guidance puzzle.” None of 
the previous authors allow for retirement or declining labor income in their frame-
works. That feature plays a central role in the emergence of asset price bubbles in 
the model proposed here.

Bernanke and Gertler (1999, 2001) analyze the possible gains from “leaning 
against the wind” monetary policies in an NK model in which stock prices contain 
an ad hoc deviation from their fundamental value. The properties of that deviation 
differ from those of a rational bubble, which cannot exist in their model, which 
assumes an infinitely lived representative consumer.

In Galí (2014), I studied the interaction between rational bubbles and monetary 
policy in a two-period overlapping generations model with sticky prices, empha-
sizing some of the risks associated with “leaning against the bubble” policies.8 
While closest in spirit to the present paper, the framework used in that paper had 

7 See Martin and Ventura (2018) and Miao (2014) for recent surveys on the theory of bubbles.
8 See also the comment by Miao, Shen, and Wang (2019) for an analysis of e-learnability of the bubbly equilib-

ria in Galí (2014), around both a stable and an unstable steady state.
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important limitations. In particular, it ruled out the possibility of bubble-driven 
fluctuations since employment and output were constant in equilibrium, with the 
bubble only having redistributive effects. By contrast, the model developed here 
shows how bubble fluctuations, in combination with price stickiness, can have 
an impact on economic activity, with an explicit analysis of the mechanisms that 
determine the size of that impact (i.e., the “bubble multiplier”). On the other hand, 
the assumption of two-period lived individuals made in Galí (2014), while conve-
nient, cannot be easily reconciled with the frequency of observed asset boom-bust 
episodes (not to say with the observed duration of individual prices). By way of 
contrast, the model developed here is consistent with a calibration to a quarterly 
frequency (as is conventional in the business cycle literature) and could thus be 
potentially embedded in a quantitative medium-scale DSGE model. Finally, it 
is worth noting that the structure of the linearized equilibrium conditions of the 
OLG-NK model developed below is isomorphic to that of the familiar textbook 
NK model, with the aggregate bubble being now a driver of aggregate demand 
whose evolution is described by an additional equation. Some special cases of 
interest nested in the OLG-NK model below include (i) the standard NK model 
itself, (ii) an economy with finite lives and retirement but no bubbles, and (iii) 
an economy with a constant bubble-output ratio. The use of those special cases 
as benchmarks facilitates the understanding of the factors driving the properties 
of the OLG-NK economy. Several insights emerge from that analysis, discussed 
in detail below, pertaining to the persistence of the “forward guidance puzzle” in 
the presence of finite horizons and the role played by different factors in strength-
ening or weakening the requirements on the policy rule in order to guarantee a 
unique equilibrium.

Two recent working papers have explored, using alternative perspectives, the 
connection between monetary policy and asset bubbles. In contrast with the present 
contribution, however, both papers involve frameworks characterized by a monetary 
transmission mechanism very different from that found in the standard NK model. 
Thus, Allen, Barlevy, and Gale (2017) revisit the relationship between interest rates 
and asset bubbles discussed in Galí (2014) using a variety of frameworks (mostly 
nonmonetary) and exploring the conditions and environments that determine the 
sign of that relation. Dong, Miao, and Wang (2018) analyze the implications of 
alternative monetary policy rules (including rules that respond systematically to 
asset bubbles) in an NK model with infinitely lived agents and where a bubbly asset 
can help alleviate entrepreneurs’ funding constraints. Monetary policy affects the 
amount of liquidity in the economy—and, as a result, the value attached to the bub-
bly asset—through the impact of inflation on real reserves. They show how in that 
framework, a “leaning against the bubble” policy may reduce bubble volatility but 
possibly at the cost of raising inflation volatility.

Finally, my paper is also related to Caballero and Simsek (2020), which studies 
a New Keynesian economy in which asset valuations, partly driven by investors’ 
heterogeneous beliefs, are an important determinant of aggregate demand and out-
put. The authors examine the role the both monetary and macroprudential policies 
can play at dampening the resulting excessive fluctuations in asset valuations and 
output.
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II.  A New Keynesian Model with Overlapping Generations

Next, I describe the basic framework underlying the analysis in the rest of the paper.

A. Consumers

I assume an economy with overlapping generations of the “perpetual youth” type 
as in Yaari (1965) and Blanchard (1985). The size of the population is constant and 
normalized to one. Each individual has a constant probability ​γ​ of surviving into 
the following period, independently of his age and economic status (“active” or 
“retired”). A cohort of size ​1 − γ​ is born (in an economic sense) and becomes active 
each period. Thus, the size in period ​t  ≥  s​ of the cohort born in period ​s​ is given 
by ​​(1 − γ)​​γ​​ t−s​​.

At any point in time, two types of individuals coexist in the economy, “active” 
and “inactive.” Active individuals supply labor and manage their own firms, which 
they set up when they are born. I assume that each active individual faces a con-
stant probability ​1 − υ​ of becoming “inactive,” i.e., of permanently losing his job 
and quitting his entrepreneurial activities. For concreteness, below I refer to that 
transition as “retirement,” though it should be clear that it can be given a broader 
interpretation.9 The previous assumptions imply that the size of the active popula-
tion (and, hence, the measure of firms) at any point in time is constant and given by  
​α  ≡ ​ (1 − γ)​/​(1 − υγ)​  ∈ ​ (0, 1]​​.

A representative consumer from cohort ​s​ chooses a consumption plan to maxi-
mize expected lifetime utility

	​​ E​s​​ ​∑ 
t=s

​ 
∞

 ​​​​(βγ)​​​ t−s​ log ​C​t|s​​​

subject to the sequence of period budget constraints

(1)	​​  1 _ ​P​t​​
 ​ ​∫ 

0
​ 
α
​​​P​t​​​(i)​ ​C​t|s​​​(i)​ di + ​E​t​​​{​Λ​t,t+1​​ ​Z​t+1|s​​}​  = ​ A​t|s​​ + ​W​t​​ ​N​t|s​​​

for ​t  =  s, s + 1, s + 2, …​. The term ​β  ≡  1/​(1 + ρ)​  ∈ ​ (0, 1)​​ is the discount fac-

tor, ​​C​t|s​​  ≡ ​​ (​α​​ −​ 1 _ ϵ ​​ ​∫ 0​ 
α​​​C​t|s​​ ​​(i)​​​ 1−​ 1 _ ϵ ​​ di)​​​ 

​  ϵ _ ϵ−1 ​
​​ is a consumption index, ​​C​t|s​​​(i)​​ is the quantity 

purchased of good ​i  ∈ ​ [0, α]​​ at a price ​​P​t​​​(i)​​, and ​​P​t​​  ≡ ​​ (​α​​ −1​ ​∫ 0​ 
α​​​P​t​​ ​​(i)​​​ 1−ϵ​ di)​​​ 

​  1 _ 1−ϵ ​​​ is 

the price index.
Complete markets for state-contingent securities are assumed, with ​​Z​t+1|s​​​ denot-

ing the stochastic payoff at ​t + 1​ (expressed in units of the consumption index) 
generated by the portfolio of securities purchased in period ​t​. The market value of 
that portfolio is given by ​​E​t​​​{​Λ​t,t+1​​ ​Z​t+1|s​​}​​, where ​​Λ​t,t+1​​​ is the stochastic discount 
factor for one-period-ahead (real) payoffs. Only individuals who are alive can trade 

9 Gertler (1999) introduces retirement in a similar fashion in a model of social security. More recently, Carvalho, 
Ferrero, and Nechio (2016) have used a version of the Gertler model to analyze the sources of low-frequency 
changes in the equilibrium real rate. Blanchard (1985) assumes that relative productivity declines with age and 
analyzes its impact on the real rate. All these papers develop real models, in contrast to the present one, and do not 
consider the possibility of bubbles.
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in securities markets. Note that the existence of complete securities markets allows 
individuals to insure against the “risk” of retirement.

Variable ​​A​t|s​​​ denotes financial wealth at the start of period ​t​ for a mem-
ber of cohort ​s  ≤  t​. For individuals other than those born in the current period,  
​​A​t|s​​  = ​ Z​t|s​​/γ​, where the term ​1/γ​ captures the additional return on wealth result-
ing from an annuity contract. As in Blanchard (1985), that contract has the holder 
receive each period from a (perfectly competitive) insurance firm an annuity pay-
ment proportional to his financial wealth, in exchange for transferring that wealth to 
the insurance firm upon death.10

Variable ​​W​t​​​ denotes the (real) wage per hour, and ​​N​t|s​​​ individual work hours for 
a member of cohort ​s  ≤  t​. Both the wage and work hours are taken as given by 
each worker. Each firm determines the work hours it wants to hire given desired 
output and technology. Aggregate work hours, ​​N​t​​​, are allocated uniformly among 
all active individuals, i.e., ​​N​ t|s​ 

a ​  = ​ N​t​​/α​.11 Note that ​​N​ t|s​ 
r  ​  =  0​ for retired individ-

uals. Normalizing an individual’s time endowment to unity, it must be the case 
that ​​N​t​​  ≤  α​ for all ​t​, which I assume throughout.

Finally, I assume a solvency constraint of the form ​​lim​T→∞​​ ​γ​​ T​ ​E​t​​​{​Λ​t,t+T​​ ​A​t+T |s​​}​  ≥  
0​ for all ​t​, where ​​Λ​t,t+T​​​ is determined recursively by ​​Λ​t,t+T​​  = ​ Λ​t,t+T−1​​ ​Λ​t+T−1,t+T​​​.12

The problem above yields a set of optimal demand functions

(2)	​​ C​t|s​​​(i)​  = ​  1 _ α ​ ​​(​ 
​P​t​​​(i)​

 _ ​P​t​​
 ​ )​​​ 

−ϵ

​​C​t|s​​​

for all ​i  ∈ ​ [0, α]​​, which in turn imply ​​∫ 0​ 
α​​​P​t|s​​​(i)​ ​C​t|s​​​(i)​ di  = ​ P​t​​ ​C​t|s​​​. Thus, we can 

rewrite the period budget constraint as

(3)	​​ C​t|s​​ + γ ​E​t​​​{​Λ​t,t+1​​ ​A​t+1|s​​}​  = ​ A​t|s​​ + ​W​t​​ ​N​t|s​​​.

The consumer’s optimal plan must satisfy the optimality condition13

(4)	​​ Λ​t,t+1​​  =  β ​ 
​C​t|s​​

 _ 
​C​t+1|s​​

 ​​

10 Thus, individuals who hold negative assets will pay an annuity fee to the insurance company. The latter 
absorbs the debt in case of death. The insurance arrangement can also be replicated through securities markets. In 
that case, the individual will purchase a portfolio that generates a random payoff ​​A​t+1|s​​​ if he remains alive, zero​​ 
otherwise. The value of that payoff will be given by ​​E​t​​​{​Λ​t,t+1​​ γ ​A​t+1|s​​}​​, which is equivalent to the formulation in the 
main text, given that ​​A​t|s​​  =  ​Z​t|s​​ / γ​.

11 Note that by assuming an inelastic labor supply and demand-determined work hours, I abstract from a labor 
supply decision. An alternative setup with labor disutility and a competitive labor market would generate systematic 
counterfactual differences in the quantity of labor supplied by active individuals across age groups, due to wealth 
effects. Alternatively, one may assume preferences that rule out those wealth effects but at the cost of rendering the 
analysis below less tractable.

12 Note that ​​​(Λγ)​​​ −1​​ is the “effective” (i.e., including the impact of the annuity) interest rate paid by a borrower 
in the steady state. The solvency constraint thus has the usual interpretation of a no-Ponzi game condition.

13 Note that in the optimality condition, the survival probability ​γ​ and the extra return ​1/γ​ resulting from the 
annuity contract cancel each other. Complete markets guarantee the same consumption growth rate between two 
different periods for all consumers alive in the two periods, including those who are retiring. Thus, individual con-
sumption is equated within each cohort, with differences across cohorts resulting from differences in their relative 
wealth (financial and human) at birth.
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and the transversality condition

(5)	​​  lim​ 
T→∞

​​ ​γ​​ T​ ​E​t​​​{​Λ​t,t+T​​ ​A​t+T|s​​}​  =  0​,

with (4) holding for all possible states of nature (conditional on the individual 
remaining alive in ​t + 1​).

As shown in the Appendix, by combining (3), (4), and (5), one can derive the 
following consumption functions for active and retired individuals, respectively:

(6)	​​ C​ t|s​ 
a ​  = ​ (1 − βγ)​​[​A​ t|s​ 

a ​ + ​ 1 _ α ​ ​ ∑ 
k=0

​ 
∞

 ​​​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​W​t+k​​ ​N​t+k​​}​]​​,

(7)	​​ C​ t|s​ 
r  ​  = ​ (1 − βγ)​ ​A​ t|s​ 

r  ​​,

where the superscript ​​{a, r}​​ denotes the consumer’s status, active or retired.14

B. Firms

Each individual is endowed with the know-how to produce a differentiated good 
and sets up a firm with that purpose at birth. That firm remains operative until its 
founder retires or dies, whatever comes first.15 All firms have an identical technol-
ogy, represented by the linear production function

(8)	​​ Y​t​​​(i)​  = ​ Γ​​ t​ ​N​t​​​(i)​​,

where ​​Y​t​​​(i)​​ and ​​N​t​​​(i)​​ denote output and employment for firm ​i  ∈ ​ [0, α]​​, respec-
tively, and ​Γ  ≡  1 + g  ≥  1​ denotes the (gross) rate of productivity growth. 
Individuals cannot work at their own firms and must hire instead labor services 
provided by others.16

Aggregation of (2) across consumers yields the demand schedule facing any 
given firm:

(9)	​​ C​t​​​(i)​  = ​  1 _ α ​ ​​(​ 
​P​t​​​(i)​

 _ ​P​t​​
 ​ )​​​ 

−ϵ

​​C​t​​​,

where ​​C​t​​  ≡ ​ (1 − γ)​​∑ s=−∞​ t  ​​​γ​​ t−s​ ​C​t|s​​​ is aggregate consumption. Each firm takes as 
given the aggregate price level ​​P​t​​​ and aggregate consumption ​​C​t​​​.

As in Calvo (1983), each firm is assumed to freely set the price of its good with 
probability ​1 − θ​ in any given period, independently of the time elapsed since 

14 The assumption of complete markets guarantees that for any given cohort ​s​, ​​C​ t|s​ 
a ​  =  ​C​ t|s​ 

r  ​​ for all ​t  ≥  s​. It 
follows that ​​A​ t|s​ 

r  ​  =  ​A​ t|s​ 
a ​ + (1/α) ​∑ k=0​ 

∞  ​​​​(γυ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​W​t+k​​ ​N​t+k​​}​​.
15 The assumption of finitely lived firms (or more generally, firms whose dividends shrink relative to the size 

of the economy) is needed in order for bubbles to exist in equilibrium, which requires that the interest rate is no 
greater than the economy’s trend growth rate as shown below. By equating the probability of a firm’s survival to 
that of its owner remaining active, I effectively equate the rate at which dividends and labor income are discounted, 
which simplifies considerably the analysis below. All the qualitative results discussed below carry over to the case 
of different rates of “retirement” for firms and individuals but at the cost of more cumbersome algebra.

16 I assume that each firm newly set up in any given period inherits the index of an exiting firm.
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the last price adjustment. With probability ​θ​, an incumbent firm keeps its price 
unchanged, while a newly created firm sets a price equal to the economy’s aver-
age price in the previous period.17 Accordingly, the aggregate price dynamics are 
described by the equation

	​​ P​ t​ 
1−ϵ​  =  θ​P​ t−1​ 

1−ϵ​ + ​(1 − θ)​​​(​P​ t​ 
∗​)​​​ 1−ϵ​​,

where ​​P​ t​ 
∗​​ is the price set in period ​t​ by firms optimizing their price.18 A log-linear 

approximation of the previous difference equation around the zero inflation equilib-
rium yields (letting lowercase letters denote the logs of the original variables)

(10)	​​ p​t​​  =  θ ​p​t−1​​ + ​(1 − θ)​ ​p​ t​ 
∗​​;

i.e., the current price level is a weighted average of last period’s price level and the 
newly set price, all in logs, with the weights given by the fraction of firms that do 
not and do adjust prices, respectively.

In both environments, a firm adjusting its price in period ​t​ will choose the price  
​​P​ t​ 

∗​​ that maximizes

	​​ max​ 
​P​ t​ 

∗​
​ ​ ​  ∑ 

k=0
​ 

∞
 ​​​​(υγθ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​Y​t+k|t​​​(​ 

​P​ t​ 
∗​
 _ ​P​t+k​​
 ​ − ​​t+k​​)​}​​

subject to the sequence of demand constraints

(11)	​​ Y​t+k|t​​  = ​  1 _ α ​ ​​(​ 
​P​ t​ 

∗​
 _ ​P​t+k​​
 ​)​​​ 

−ϵ

​​C​t+k​​​

for ​k  =  0, 1, 2, …​, where ​​Y​t+k|t​​​ denotes output in period ​t + k​ for a firm that last 
reset its price in period ​t​; ​​​t​​  ≡ ​ W​t​​/​Γ​​ t​​ is the productivity-adjusted real wage.19 
Note that the ​​​(υγ)​​​ k​​ term used in the discounting of future profits corresponds to the 
probability that the firm remains operative ​k​ periods ahead, while ​​θ​​ k​​ is the proba-
bility that the newly set price remains effective ​k​ periods ahead. Other than for the 
additional discounting, the present optimal price-setting problem is identical to that 
in the standard model, so the reader is referred to Galí (2015) for a discussion and 
derivation details.

The optimality condition associated with the problem above takes the form

(12)	​​  ∑ 
k=0

​ 
∞

 ​​​​(υγθ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​Y​t+k|t​​​(​ 
​P​ t​ 

∗​
 _ ​P​t+k​​
 ​ − ​​t+k​​)​}​  =  0​,

where ​  ≡  ϵ/(ϵ − 1)​ is the optimal markup under flexible prices.

17 Alternatively, a fraction ​θ​ of newly created firms “inherit” the price in the previous period for the good they 
replace. In either case, I assume a transfer system that equalizes the wealth across members of the new cohort.

18 Note that the price is common to all those firms since they face an identical problem.
19 The firm’s demand schedule (11) can be derived by aggregating (9) across cohorts.
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A first-order Taylor expansion of (12) around the zero inflation balanced growth 
path yields, after some manipulation,

(13)	​​ p​ t​ 
∗​  =  μ + ​(1 − ΛΓυγθ)​​ ∑ 

k=0
​ 

∞
 ​​​​(ΛΓυγθ)​​​ k​ ​E​t​​​{​ψ​t+k​​}​​,

where ​​ψ​t​​  ≡  log ​P​t​​ ​​t​​​ is the (log) nominal marginal cost, ​μ  ≡  log ​, and  
​Λ  ≡  1/​(1 + r)​​ is the steady-state stochastic discount factor, with ​r​ being 
the steady-state real interest rate. Throughout, I maintain the assumption that  
​ΛΓυγ  ∈ ​ [0, 1)​​, which guarantees that the firm’s problem is well defined in a neigh-
borhood of the zero inflation balanced growth path.

Letting ​​μ​t​​  ≡ ​ p​t​​ − ​ψ​t​​  =  − log ​​t​​​ denote the average (log) price markup and 
combining (10) and (13) yields the inflation equation:

(14)	​​ π​t​​  =  ΛΓυγ ​E​t​​​{​π​t+1​​}​ − λ​(​μ​t​​ − μ)​​,

where ​​π​t​​  ≡ ​ p​t​​ − ​p​t−1​​​ denotes inflation and ​λ  ≡ ​ (1 − θ)​​(1 − ΛΓυγθ)​/θ  >  0​.20

The details of wage setting are not central to the main point of the paper. As 
noted above, work hours are demand determined and allocated uniformly among 
active individuals.21 For convenience, I assume an ad hoc wage schedule linking the 
productivity-adjusted real wage ​​​t​​​ to work hours per capita:

(15)	​​ ​t​​  = ​​ (​ 
​N​t​​ _ α ​)​​​ 

φ

​​,

where ​​N​t​​  ≡ ​ ∫ 0​ 
α​​​N​t​​​(i)​ di​ denotes aggregate work hours and ​α​ is the aggregate labor 

supply. The wage is taken as given by firms. The previous wage schedule implies a 
countercyclical price markup, ​​μ​t​​ − μ  =  − φlog​(​N​t​​/N)​​.

Wage schedule (15), together with the assumption of a constant gross markup ​​ 
under flexible prices and production function (8), implies a natural (i.e., flexible 
price) level of output given by ​​Y​ t​ 

n​  = ​ Γ​​ t​ ​, where ​  ≡  α ​​​ −​ 1 _ φ ​​​. The previous 
expression also corresponds to aggregate hours under flexible prices. Note that as 
long as firms exercise their market power (​  >  1​), aggregate hours under flexible 
prices will be less than the available aggregate time endowment ​α​. This will also be 
true in the sticky price equilibrium, as long as fluctuations are “small.” The fact that 
the natural level of output follows a deterministic trend is, of course, a consequence 
of the (deliberate) absence of fundamental shocks in the framework above. But it 
implies a convenient property of the present model: bubble-driven fluctuations in 
output and employment cannot emerge under fully flexible prices since in that case 
those variables are pinned down by the supply block of the model.

20 Note that in the standard NK model with a representative consumer, the coefficient on expected inflation is 
given by ​β​, while the slope coefficient is ​λ  ≡  ​(1 − θ)​​(1 − βθ)​/θ​. Those expressions correspond to the limit of the 
expressions in the text as ​υγ  →  1​ and given that ​ΛΓ  =  β​ along a balanced growth path under the assumption of 
an infinitely lived representative consumer with log utility.

21 The alternative of a perfectly competitive labor market, combined with an inelastic labor supply at the indi-
vidual level, would imply constant aggregate employment and rule out the possibility of bubble-driven fluctuations. 
On the other hand, introducing labor disutility would lead to a dispersion in hours worked across cohorts driven by 
a wealth effect, an implication that is likely counterfactual and would complicate the analysis substantially.
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Log-linearizing (15) and combining the resulting expressions with (14), we 
obtain a version of the New Keynesian Phillips curve:

(16)	​​ π​t​​  =  ΛΓυγ ​E​t​​​{​π​t+1​​}​ + κ ​​y ˆ ​​t​​​,

where ​κ  ≡  λφ​ and ​​​y ˆ ​​t​​  ≡  log​(​Y​t​​/​Y​ t​ 
n​)​​ is the output gap. Two remarks are worth 

making with regard to the properties of (16). Firstly, one should note that in contrast 
with the standard NK model, the coefficient on expected inflation is not pinned 
down by the consumer’s discount factor. Instead, it depends on parameters affect-
ing the life expectancy of firms (through ​υγ​) as well as the gap between the real 
interest rate and the growth rate along a balanced growth path (as captured by ​ΛΓ​), 
all of which determine the effective “forward-lookingness” of price-setting. In con-
trast with the standard model, however, and as discussed below, the interest rate 
along a balanced growth path, ​r  = ​ Λ​​ −1​ − 1​, is not always uniquely determined 
by primitive parameters and may be instead related to the size of the bubble along 
a balanced growth path. Secondly, the assumed environment and, in particular, the 
absence of time-varying distortions on the supply side (related or not to the pres-
ence of a bubble) imply the absence of a trade-off between stabilization of inflation 
and the output gap; i.e., the “divine coincidence” holds in the present model as 
is clear from (16). In other words, the macroeconomic effects of bubble fluctua-
tions in the model are restricted to work through its impact on aggregate demand. 
Things would likely be different in an environment with financial frictions in which 
bubbles affected borrowing constraints for firms’ working capital and/or distorted 
a consumption-investment decision, thus implying an inefficient allocation even 
under flexible prices. The analysis of such an extension is beyond the scope of the 
present paper.22

C. Asset Markets

In addition to annuity contracts and a complete set of state-contingent securi-
ties, I assume the existence of markets for some other specific assets, whose prices 
and returns must satisfy certain equilibrium conditions. In particular, the yield on 
a one-period nominally riskless bond purchased in period ​t​, denoted by ​​i​t​​​, must 
satisfy23

(17)	​ 1  = ​ (1 + ​i​t​​)​ ​E​t​​​{​Λ​t,t+1​​ ​ 
​P​t​​ _ ​P​t+1​​

 ​}​​,

thus implying that the relation ​Λ  ≡  1/​(1 + r)​​ between the discount factor and the 
real return on a riskless nominal bond (​r​) will hold along a perfect foresight bal-
anced growth path.

22 Note, however, that the Phillips curve is not completely independent from the presence of a bubble since the 
latter’s size along a balanced growth path will generally affect the real interest rate and, hence, discount factor ​Λ​.

23 Note also that in the asset pricing equations, and from the viewpoint of an individual investor, the probability 
of remaining alive ​γ​ and the extra return ​1/γ​ resulting from the annuity contract cancel each other.
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Stocks in individual firms trade at a price (before dividends) ​​Q​ t​ 
F​​(i)​​, for all  

​i  ∈ ​ [0, α]​​, which must satisfy the asset pricing equation

(18)	​​ Q​ t​ 
F​​(i)​  = ​ D​t​​​(i)​ + υγ ​E​t​​​{​Λ​t,t+1​​ ​Q​ t+1​ 

F  ​​(i)​}​​,

where ​​D​t​​​(i)​  ≡ ​ Y​t​​​(i)​​(​(​P​t​​(i)/​P​t​​)​ − ​​t​​)​​ denotes firm ​i​’s dividends and ​υγ​ is the 
probability that firm ​i​ survives into next period. Solving (18) forward under the 
assumption that ​​lim​k→∞​​ ​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​Q​ t+k​ 

F  ​​(i)​}​  =  0​ and aggregating across firms,

(19)	​​ Q​ t​ 
F​  ≡ ​ ∫ 

0
​ 
α
​​​Q​ t​ 

F​​(i)​ di  = ​  ∑ 
k=0

​ 
∞

 ​​​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​D​t+k​​}​​,

where ​​D​t​​  ≡ ​ ∫ 0​ 
α​​​D​t​​​(i)​ di​ denotes aggregate dividends. Note that the fact that indi-

vidual firms are finitely lived makes it possible for the aggregate value of currently 
traded firms to be finite even if the interest rate is lower than the growth rate of 
aggregate dividends.

Much of the analysis below focuses on intrinsically worthless assets—i.e., assets 
generating no dividend, pecuniary or not—which may yet be traded at a positive 
price, constituting a pure bubble.24 Let ​​Q​ t​ 

B​​ denote the aggregate value of bubble 
assets in period ​t​. In equilibrium, that variable evolves over time according to the 
following two equations:

(20)	​​ Q​ t​ 
B​  = ​ U​t​​ + ​B​t​​​,

(21)	​​ Q​ t​ 
B​  = ​ E​t​​​{​Λ​t,t+1​​ ​B​t+1​​}​​,

where ​​U​t​​  ≡ ​ Q​ t|t​ 
B ​  ≥  0​ is the value in period ​t​ of new bubbles introduced by the 

newly born cohort25 and ​​B​t​​  ≡ ​ ∑ s=−∞​ t−1 ​​​ Q​ t|s​ 
B ​  ≥  0​ is the aggregate value in period ​t​ of 

preexisting bubble assets, already available for trade in period ​t − 1​, with ​​Q​ t|s​ 
B ​​ denot-

ing the period ​t​ value of bubble assets introduced in period ​s  ≤  t​. The nonnegativity 
constraints follow from the assumption of free disposal. Note also that the intro-
duction of new bubble assets by incoming cohorts makes it possible for an aggre-
gate bubble to reemerge after a hypothetical collapse, thus overcoming a common 
criticism of early models of rational bubbles. A similar environment with bubble 
creation was first introduced and analyzed in Martin and Ventura (2012) in the con-
text of an overlapping generations model with capital accumulation and financial 
frictions.26

24 In Jean Tirole’s words, pure bubbly assets are “best thought of as pieces of paper.”
25 Think of pieces of paper of a cohort-specific color or stamped with the birth year of their originators.
26 One possible interpretation is that the bubble introduced by each individual is “attached” to the stock of his 

firm, and, hence, it bursts whenever the firm stops operating (i.e., with probability ​1 − υγ​). See below for an exam-
ple of such a stochastic bubble.
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Note that in the previous environment, the initial financial wealth of a member of 
a cohort born in period ​t​ is given by

	​​ A​t|t​​  = ​ Q​ t|t​ 
F ​ + ​U​t​​/​(1 − γ)​​,

where ​​Q​ t|t​ 
F ​​ is the value in period ​t​ of a newly created firm.27

D. Market Clearing

Goods market clearing requires ​​Y​t​​​(i)​  = ​ (1 − γ)​​∑ s=−∞​ t  ​​​γ​​ t−s​ ​C​t|s​​​(i)​​ for all  

​i  ∈ ​ [0, α]​​. Letting ​​Y​t​​  ≡ ​​ (​α​​ −​ 1 _ ϵ ​​ ​∫ 0​ 
α​​​Y​t​​ ​​(i)​​​ 1−​ 1 _ ϵ ​​ di)​​​ 

​  ϵ _ ϵ−1 ​
​​ denote aggregate output, we have

	​​ Y​t​​  = ​ (1 − γ)​​  ∑ 
s=−∞

​ 
t

  ​​​γ​​ t−s​ ​C​t|s​​  = ​ C​t​​​.

Note also that in equilibrium

	​​ N​t​​  = ​ ∫ 
0
​ 
α
​​​N​t​​​(i)​ di  = ​ Δ​ t​ 

p​ ​​t​​  ≃ ​ ​t​​​,

where ​​​t​​  ≡ ​ Y​t​​/​Γ​​ t​​ is aggregate output normalized by productivity, 
and ​​Δ​ t​ 

p​  ≡  (1/α)​∫ 0​ 
α​​​​(​P​t​​​(i)​/​P​t​​)​​​ −ϵ​ di  ≃  1​ is an index of relative price distortions 

that, up to a first-order approximation, equals one near a zero inflation balanced 
growth path.

With all securities other than stocks and bubbly assets being in zero net supply, 
asset market clearing requires

(22)	​​ (1 − γ)​​  ∑ 
s=−∞

​ 
t

  ​​​γ​​ t−s​​(​υ​​ t−s​ ​A​ t|s​ 
a ​ + ​(1 − ​υ​​ t−s​)​ ​A​ t|s​ 

r  ​)​  = ​ Q​ t​ 
F​ + ​Q​ t​ 

B​​.

Aggregation of consumption functions (6) and (7) across individuals and cohorts, 
combined with asset market clearing condition (22) and the expression for funda-
mental financial wealth (19), yields the aggregate consumption function

(23)	​​ C​t​​  = ​ (1 − βγ)​​(​Q​ t​ 
B​ + ​X​t​​)​​,

where

(24)	​​ X​t​​  ≡ ​  ∑ 
k=0

​ 
∞

 ​​ ​​(υγ)​​​ k​ E​t​​ ​{​Λ​t,t+k​​ ​Y​t+k​​}​​​​​

can be interpreted as total fundamental wealth (financial plus human), i.e., the dis-
counted sum of current and future income expected to accrue to currently alive 
consumers.

Next, I characterize the economy’s perfect foresight balanced growth paths con-
sistent with zero inflation.

27 ​​Q​ t|t​ 
F ​​ should be interpreted as net of transfers assumed in order to equate the value of entering firms inde-

pendently of whether they optimize or not their initial price.
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III.  Balanced Growth Paths

In a perfect foresight balanced growth path (henceforth, BGP), the discount fac-
tor is constant and satisfies ​Λ  =  1/​(1 + r)​​, as implied by (17), where ​r​ is the 
corresponding real interest rate. Note also that zero inflation requires that actual and 
desired markups coincide, i.e., ​  =  1/​. Combined with (15), the previous con-
dition implies that output along the BGP is given by ​​Y​ t​ 

BGP​  = ​ Γ​​ t​ ​, which coincides 
with the natural level of output as derived above.

Evaluating (23) and (24) at a BGP yields

(25)	​   = ​ (1 − βγ)​​[​​​ B​ + ​  1 _ 
1 − ΛΓυγ ​ ]​​,

where ​​ and ​​​​ B​​ denote aggregate consumption and the aggregate bubble, both eval-
uated at the BGP and normalized by productivity ​​Γ​​ t​​. Goods market clearing requires 
that ​  =  ​, thus implying the following equation relating the bubble-output 
ratio ​​q​​ B​  ≡ ​ ​​ B​/​ and the discount factor ​Λ​ along a BGP:

(26)	​ 1  = ​ (1 − βγ)​​[​q​​ B​ + ​  1 _ 
1 − ΛΓυγ ​]​​,

or, equivalently,

(27)	​​ q​​ B​  = ​ 
γ​(β − ΛΓυ)​

  __________________  
​(1 − βγ)​​(1 − ΛΓυγ)​

 ​​.

Note that in deriving the previous condition, I have not made use of the law of 
motion for rational bubbles given by (21), so (27) should hold for any deviation 
from fundamental pricing, whether rational or not. On the other hand, (21) must be 
used in order to derive the BGP relation between ​​q​​ B​​ and ​u​, with the latter denoting 
the corresponding (constant) ratio between the value of new bubbles and output:

(28)	​ u  = ​ (1 − ​  1 _ ΛΓ ​)​​q​​ B​​.

Next, I turn to a characterization of the model’s balanced growth paths, i.e., the 
solutions to (27) and (28) satisfying ​​q​​ B​  ≥  0​ and ​u  ≥  0​.

A. Bubbleless Balanced Growth Paths

Consider first a “bubbleless” BGP, i.e., ​​q​​ B​  =  u  =  0​, which is always a solution 
to (27) and (28). Imposing that condition implies

	​ ΛΓυ  =  β​

or, equivalently,

	​ r  = ​ (1 + ρ)​​(1 + g)​υ − 1  ≡ ​ r​0​​​.
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Note that the real interest rate along a bubbleless BGP—henceforth denoted 
by ​​r​0​​​—is increasing in both ​υ​ and ​g​. The reason is that an increase in either of those 
variables raises desired consumption by increasing the expected stream of future 
income for currently active individuals, for any given level of aggregate output. In 
order for the goods market to clear, an increase in the interest rate is called for.

When ​υ  =  1​ (i.e., no retirement), the real interest rate along the bubbleless BGP 
is given (approximately) by the discount rate plus the growth rate, i.e., ​​r​0​​  ≃  ρ + g​, 
as in the standard representative agent model (with log utility).

Note also that a change in the expected lifetime, as indexed by ​γ​, does not have 
an independent effect on ​​r​0​​​. The reason is that when ​ΛΓυ  =  β​, a change in ​γ​ scales 
in the same proportion the present value of consumption and that of income, leav-
ing aggregate consumption unchanged and making an adjustment in the real rate 
unnecessary.28

Finally, note for future reference that in the bubbleless BGP considered here, 
the real interest rate ​​r​0​​​ is lower than the growth rate ​g​ (i.e., ​ΛΓ  >  1​) if and only 
if ​υ  <  β​, a condition which is shown below to be critical for the existence of 
bubbles.29

B. Balanced Growth Paths with Bubbles

A BGP with a positive bubble corresponds to a solution to (27) and (28) sat-
isfying ​​q​​ B​  >  0​ and ​u  ≥  0​. Thus, the existence of a BGP with a positive bub-
ble, ​​q​​ B​  >  0​, requires that

	​ ΛΓυ  <  β​

or, equivalently, ​r  > ​ r​0​​​. On the other hand, the nonnegativity constraint on newly 
created bubbles ​u  ≥  0​ requires

	​ ΛΓ  ≥  1​

or, equivalently, ​r  ≤  g​. The two previous conditions are satisfied if and only if

(29)	​ υ  <  β​.

Note that the previous condition corresponds to the real interest rate being less 
than the growth rate in the bubbleless BGP as shown above.

28 The independence of the steady-state real interest rate from ​γ​ is a consequence of the log utility specification 
assumed here. That property is not critical from the viewpoint of the present paper since there are other factors (the 
probability of retirement, in particular) that can drive the real interest rate to values consistent with the presence 
of bubbles.

29 Note that the key role of retirement or, more generally, the anticipation of declining relative income in bring-
ing about an interest rate lower than the growth rate was a central theme in Blanchard (1985) in a deterministic 
OLG model, though that paper did not discuss the possible existence of bubbles. On the other hand, in the classical 
models of bubbles using an OLG framework with two-period lives, the assumption of declining labor income, usu-
ally in the form of a lower endowment or no labor supply for the old, plays a key role in lowering the real interest 
rate and, hence, in generating the conditions for the existence of bubbles.
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One particular such bubbly BGP has no new bubbles introduced by new 
cohorts; i.e., ​u  =  0​. Note that in that case, ​ΛΓ  =  1​ or, equivalently, ​r  =  g​.  
Thus, along that BGP, any existing bubble will be growing at the same rate 
as the economy, with the implied bubble size (relative to output) given by  
​​q​​ B​  =  γ​(β − υ)​/​(​(1 − βγ)​​(1 − υγ)​)​  ≡ ​​ q –​​​ B​​.

The previous BGP is not the only bubbly BGP. If (29) is satisfied, there exists 
a continuum of bubbly BGPs indexed by ​r  ∈  (​r​0​​, g]​. To see this, note that for 
any ​r  ∈  (​r​0​​, g]​, equations (27) and (28) determine ​​q​​ B​  >  0​ and ​u  ≥  0​ uniquely. It 
can be easily checked that ​​q​​ B​​ is increasing in ​r​, with ​​lim​r→g​​ ​q​​ B​  = ​​ q –​​​ B​​, which estab-
lishes an upper bound to the size of the bubble-output ratio, given ​β​, ​γ​, and ​υ​. Note 
also that ​∂ ​​q –​​​ B​/∂ υ  <  0​; i.e., the upper bound on the size of the bubble is decreasing 
in ​υ​ over the range ​υ  ∈ ​ [0, β]​​ consistent with a bubbly BGP and converges to zero 
as ​υ  →  β​.

Finally, note that along a bubbly BGP with bubble creation (i.e., with ​u  >  0​), the 
size of any preexisting bubble will be shrinking over time relative to the size of the 
economy (since ​r  <  g​), with newly created bubbles filling up the gap so that the size 
of the aggregate bubble remains unchanged (relative to the size of the economy).

Summing up, one can distinguish two regions of the parameter space relevant for 
the possible existence of bubbly BGPs:

  • �​ β  ≤  υ  ≤  1​. In this case, the BGP is unique and bubbleless and associated 
with a real interest rate given by ​​r​0​​  ≥  g​.

• ​ 0  <  υ  <  β​. In this case, multiple BGPs coexist. One of them is bubbleless, 
with ​r  = ​ r​0​​  <  g​. In addition, there exists a continuum of bubbly BGPs, 
indexed by the real interest rate ​r  ∈  (​r​0​​, g]​ and associated with a bubble size 
(relative to output) ​​q​​ B​  ∈ ​ (0, ​​q –​​​ B​]​​, given by (27).30

Figure  1 summarizes graphically the previous regions with their associated 
BGPs.31

C. A Brief Detour: Bubbly Equilibria and Transversality Conditions

Equilibria with bubbles on assets in positive net supply can be ruled out in an 
economy with an infinitely lived representative consumer.32 In that economy, any 
asset in positive net supply must necessarily be held by the representative consumer, 
implying

	​​  lim​ 
T→∞

​​ ​E​t​​​{​Λ​t,t+T​​ ​A​t+T​​}​  ≥ ​  lim​ 
T→∞

​​ ​E​t​​​{​Λ​t,t+T​​ ​Q​ t+T​ B  ​}​​.

30 Any assessment of whether the ​r  ≤  g​ condition is satisfied or not in an actual economy is likely to be con-
troversial, but I think it is fair to say that there is no prima facie evidence against that condition, at least in the US 
economy. See, e.g., Blanchard (2019).

31 Equations (27) and (28) can be used to derive an expression for ​u​ as a function of ​r  ∈  ​(​r​0​​, g)​​. That func-
tion is equal to zero for the extreme values of ​r​’s domain, i.e., ​​r​0​​​ and ​g​, and hump shaped for values in between. 
Accordingly, each ​u​ is associated with two possible values of ​r​ and, hence, ​q​. It is thus not desirable to use ​u​ to 
index the multiple BGPs.

32 See, e.g., Santos and Woodford (1997) for a general analysis of the conditions under which rational bubbles 
can be ruled out in equilibrium.
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On the other hand, the (rational) bubble component of any asset must satisfy

	​​  lim​ 
T→∞

​​ ​E​t​​​{​Λ​t,t+T​​ ​Q​ t+T​ B  ​}​  ≥ ​ Q​ t​ 
B​​,

where the inequality allows for the possibility of new bubbles introduced after 
period ​t​. It follows that ​​lim​T→∞​​ E​t​​ ​{​Λ​t,t+T​​ ​A​t+T​​}​​​​  ≥ ​ Q​ t​ 

B​​. But the consumer’s trans-
versality condition requires that ​​lim​T→∞​​ ​E​t​​​{​Λ​t,t+T​​ ​A​t+T​​}​  =  0​. Free disposal rules 
out negative bubbles, so it must be the case that ​​Q​ t​ 

B​  =  0​ for all ​t​.
The previous reasoning cannot be applied to an overlapping generations economy 

like the one analyzed in the present paper. The reason is that it is no longer true in 
such an economy that the positive net supply of a bubbly asset must be held (asymp-
totically) by any individual agent since it can always be passed on to future cohorts 
(as it will, in equilibrium). In fact, it is easy to check that in the model above the 
individual transversality condition is satisfied along any BGP, bubbly or bubbleless. 
As shown in the Appendix, for an individual born in period ​s  ≤  t​, it must be the 
case that along any BGP

	​​  lim​ 
T→∞

​​ ​γ​​ T​ ​E​t​​​{​Λ​t,t+T​​ ​A​t+T |s​​}​  =  0​,

implying that the transversality condition is satisfied along any admissible BGP, 
including bubbly ones. It is straightforward to show that this will be the case along 
any equilibrium that remains in a neighborhood of a BGP, of the kind analyzed 
below.

Figure 1. Balanced Growth Paths
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IV.  Bubbles and Equilibrium Fluctuations

Having characterized the BGPs of the OLG-NK economy, in the present section I 
shift the focus to the analysis of the equilibrium dynamics in a neighborhood of a 
given BGP. In particular, I am interested in determining the conditions under which 
bubble-driven aggregate fluctuations may emerge in equilibrium as well as the role 
that monetary policy may play in ruling out or stabilizing those fluctuations.

As in the standard analysis of the NK model with an infinitely lived representa-
tive agent, I restrict myself to equilibria that remain in a neighborhood of a BGP and 
approximate the equilibrium dynamics by means of the corresponding log-linearized 
equilibrium conditions.33 Throughout, I assume that the condition for a bubbly BGP 
is satisfied, i.e., ​υ  ≤  β​. I leave the analysis of the global equilibrium dynamics—
including the possibility of switches between BGPs, the existence of a zero lower 
bound on interest rates, and other nonlinearities—to future research. Secondly, in 
analyzing the model’s equilibrium, I ignore the existence of fundamental shocks and 
focus instead on the possibility of bubble-driven fluctuations.34

I start by deriving the log-linearized equilibrium conditions around a BGP. The 
resulting representation of the equilibrium dynamics takes a very simple form, 
involving only a few easily interpretable equations as shown next.

Let ​​​c ˆ ​​t​​  ≡  log​(​C​t​​/​Γ​​ t​)​​ and ​​​y ˆ ​​t​​  ≡  log​(​Y​t​​/​Γ​​ t​)​​ denote log deviation of aggregate 
consumption and output from their value along a given BGP; the goods market 
clearing condition can be written as

(30)	​​​ y ˆ ​​t​​  = ​​ c ˆ ​​t​​​.

On the other hand, log-linearization of the aggregate consumption function (23), 
combined with (30), yields

(31)	​​​ y ˆ ​​t​​  = ​ (1 − βγ)​​(​​q ˆ ​​ t​ 
B​ + ​​x ˆ ​​t​​)​​,

where ​​​q ˆ ​​ t​ 
B​  ≡ ​ q​ t​ 

B​ − ​q​​ B​​, with ​​q​ t​ 
B​  ≡ ​ Q​ t​ 

B​ / ​(​Γ​​ t​ )​​ denoting the size of the aggregate bub-
ble normalized by trend output and where ​​​x ˆ ​​t​​  ≡ ​ x​t​​ − x​, with ​​x​t​​  ≡ ​ X​t​​/​(​Γ​​ t​ )​​ denot-
ing aggregate fundamental wealth normalized by trend output, ​x  ≡  1/​(1 − ΛΓυγ)​​  
being its value along the BGP.

Log-linearization of (24) around a BGP yields the following approximate expres-
sion for fundamental wealth, ​​​x ˆ ​​t​​​:

	​​​ x ˆ ​​t​​  = ​  ∑ 
k=0

​ 
∞

 ​​​​(ΛΓυγ)​​​ k​ ​E​t​​​{​​y ˆ ​​t+k​​}​ − ​ 
ΛΓυγ _ 

1 − ΛΓυγ ​ ​ ∑ 
k=0

​ 
∞

 ​​​​(ΛΓυγ)​​​ k​ ​E​t​​​{​​r ˆ ​​t+k​​}​​,

with ​​​r ˆ ​​t​​  = ​​ i ̂ ​​t​​ − ​E​t​​​{​π​t+1​​}​​ denoting the real interest rate and ​​​i ̂ ​​t​​  
≡  log​[​(1 + ​i​t​​)​/​(1 + r)​]​​ the nominal rate, all expressed in deviations from their 

33 See, e.g., Woodford (2003) and Galí (2015).
34 As the analysis of the equilibrium dynamics below will make clear, in the absence of bubbles, the economy’s 

behavior in response to fundamental shocks would involve no significant differences relative to that of the standard 
NK model.
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values along a zero inflation BGP. Note that ​​​x ˆ ​​t​​​ can be conveniently rewritten in 
recursive form as

(32)	​​​ x ˆ ​​t​​  =  βγΦ ​E​t​​​{​​x ˆ ​​t+1​​}​ + ​​y ˆ ​​t​​ − ​ 
βγΦ _ 

1 − βγΦ ​ ​​r ˆ ​​t​​ 

	 =  Φ ​E​t​​​{​​x ˆ ​​t+1​​}​ + ​ 
1 − βγ _ βγ  ​ ​​q ˆ ​​ t​ 

B​ − ​  Φ _ 
1 − βγΦ ​ ​​r ˆ ​​t​​​,

where ​Φ  ≡  ΛΓυ/β​.
As shown above, if ​υ  ≥  β​, the BGP is bubbleless and ​Φ  =  1​. On the other 

hand, if ​υ  <  β​, then ​Φ  ∈ ​ [υ/β, 1]​​, with its size inversely related to the size of the 
bubble along the BGP (or, equivalently, to the BGP real interest rate ​r​).

Log-linearization of (21) around a BGP yields the equations describing fluctua-
tions in the aggregate bubble:

(33)	​​​ q ˆ ​​ t​ 
B​  =  ΛΓ ​E​t​​​{​​b ˆ ​​t+1​​}​ − ​q​​ B​ ​​r ˆ ​​t​​​,

(34)	​​​ q ˆ ​​ t​ 
B​  = ​​ b ˆ ​​t​​ + ​​u ˆ ​​t​​​,

where ​​​u ˆ ​​t​​  ≡ ​ u​t​​ − u​, with ​​u​t​​  ≡ ​ U​t​​/​(​Γ​​ t​ )​​ denoting the size of the newly introduced 
bubble normalized by trend output and ​u​ its value along the BGP. Note that (33) 
implies that the effect of a given interest rate change ​​​r ˆ ​​t​​​ on ​​​q ˆ ​​ t​ 

B​​ is proportional to ​​q​​ B​​, 
its value along the relevant BGP. The reason for this is that ​​​q ˆ ​​ t​ 

B​​ measures the bubble 
as a fraction of aggregate output; hence, a given percent change in the (absolute) 
size of the bubble will translate into a larger change in ​​​q ˆ ​​ t​ 

B​​ the larger is the initial 
bubble-output ratio.35

Together with the New Keynesian Phillips curve derived above and given by

(35)	​​ π​t​​  =  βγΦ​E​t​​​{​π​t+1​​}​ + κ ​​y ˆ ​​t​​​,

equations (31), (32), (33), and (34) provide a description of the nonpolicy block of 
the model’s equilibrium in a neighborhood of a BGP, where the latter is defined by a 
pair ​​(​q​​ B​, Λ)​​ satisfying the conditions derived in the previous section.

Note that a particular case of the OLG-NK model above is given by the bubble-
less economy, with ​​q​​ B​  =  0​, ​Φ  =  1​, and ​​​q ˆ ​​ t​ 

B​  = ​​ u ˆ ​​t​​  =  0​ for all ​t​. In that case, we 
can combine (31) and (32) to yield

(36)	​​​ y ˆ ​​t​​  = ​ E​t​​​{​​y ˆ ​​t+1​​}​ − ​​r ˆ ​​t​​​,

which takes the same form as the so-called IS equation in the standard NK model. 
Thus, we see that the presence of finite horizons by itself does not help overcome 
the so-called “forward guidance puzzle” uncovered by a number of authors in the 

35 Accordingly, in a neighborhood of ​​q​​ B​  =  0​, the change in ​​​q ˆ ​​ t​ 
B​​ in response to a (first-order) change in ​​​r ˆ ​​t​​​ will 

be of second order.
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context of an infinitely lived representative agent model.36 Furthermore, note that 
(36) and (35) (after setting ​Φ  =  1​) provide a description of the nonpolicy block of 
the model which is isomorphic to that of a standard NK economy, albeit with a mod-
ified discount factor given by ​​β ̃ ​  =  βγ​. Accordingly, all the qualitative properties of 
alternative monetary policy rules found in that model will carry over to its OLG-NK 
extension considered here (e.g., the conditions for equilibrium uniqueness).

Next, I analyze the possibility of equilibrium bubble-driven fluctuations in the 
economy above. With little loss of generality and given the tight connection between 
inflation and the output gap implied by (35), much of the discussion below will 
focus on fluctuations in the latter variable, which simplifies the analysis consid-
erably with little loss of generality. In order to build a better understanding of the 
role played by different assumptions in making bubble-driven fluctuations possible, 
I will proceed in steps and analyze the model’s equilibrium under some limiting 
assumptions. First, I study the equilibrium under flexible prices, which provides a 
useful benchmark for the subsequent analysis. Secondly, I reintroduce sticky prices 
and analyze the properties of the model in the absence of bubble fluctuations in 
order to isolate the impact of finite lives and retirement on the model’s properties. 
Thirdly, I study the possibility of bubble-driven fluctuations in the limiting case 
of a constant real interest rate. Finally, I endogenize the interest rate by assuming 
alternative monetary policy rules and study their implications on the possibility and 
properties of bubble-driven fluctuations that remain in a small neighborhood of the 
BGP. In all the cases considered, I take the BGP around which the economy fluctu-
ates as exogenously given.

A. Bubble Fluctuations under Flexible Prices

As discussed above, in the equilibrium with flexible prices, the output gap is closed 
at all times, with output growing at a constant rate ​g​, determined by the (exogenous) 
path of productivity. Accordingly, it follows from (31) that ​​​x ˆ ​​t​​  =  − ​​q ˆ ​​ t​ 

B​​ for all ​t​; i.e., 
changes in the size of the bubble crowd out fundamental wealth one-for-one, leav-
ing aggregate demand unchanged. The necessary adjustment of private wealth is 
achieved through an appropriate change in the real interest rate. Combining the pre-
vious condition with (32), we obtain

(37)	​​​ q ˆ ​​ t​ 
B​  =  βγΦ ​E​t​​​{​​q ˆ ​​ t+1​ 

B ​ }​ + ​ 
βγΦ _ 

1 − βγΦ ​ ​​r ˆ ​​ t​ 
n​​.

Iterating (37) forward, we obtain

	​​​ q ˆ ​​ t​ 
B​  = ​ 

βγΦ _ 
1 − βγΦ ​ ​ ∑ 

k=0
​ 

∞
 ​​​​(βγΦ)​​​ k​ ​E​t​​​{​​r ˆ ​​ t+k​ 

n ​ }​​,

which makes clear that any variation in the size of the aggregate bubble must be met 
in equilibrium with an appropriate change in current and/or expected future real 

36 See, e.g., Carlstrom, Fuerst, and Paustian (2015); Del Negro, Giannoni, and Patterson  (2015); and McKay, 
Nakamura, and Steinsson (2016) for a discussion of the forward guidance puzzle.
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interest rates in order to neutralize the bubble’s impact on aggregate demand and 
leave the output gap unchanged.

Equations (33), (34), and (37) jointly describe the equilibrium behavior of the 
aggregate bubble and the natural rate, ​​​r ˆ ​​ t​ 

n​​. Combining the three equations, we can 
derive the following equilibrium condition for the aggregate bubble:

(38)	​​​ q ˆ ​​ t​ 
B​  =  Ψ ​E​t​​​{​​q ˆ ​​ t+1​ 

B ​ }​ − ϒ​E​t​​​{​​u ˆ ​​t+1​​}​​,

where ​Ψ  ≡  Φ​[1 + ​(ΛΓ − 1)​ ​ 
1 − βγ _ 

1 − βγΦ ​]​  >  0​ and ​ϒ  ≡ ​ 
ΦΛΓ​(1 − βγ)​

 _ 
1 − βγΦ  ​  >  0​.

Note that ​​​q ˆ ​​ t​ 
B​  = ​​ u ˆ ​​t​​  =  0​ for all ​t​ is always a solution to (38) and hence a possible 

equilibrium in which the size of both the aggregate bubble and of newly created bub-
bles grows at a constant rate along the BGP. But (38) may have other nonexplosive 
solutions, associated with stationary bubble fluctuations. In order to analyze that 
possibility, I distinguish two generic cases, depending on whether ​Ψ​ is smaller or 
larger than one. Later, I discuss the determinants of the size of ​Ψ​.

If ​Ψ  <  1​, the only stationary solution to (38) is the forward-stable one, given 
by37

(39)	​​​ q ˆ ​​ t​ 
B​  =  − ϒ​ ∑ 

k=1
​ 

∞
 ​​​Ψ​​ k−1​ ​E​t​​​{​​u ˆ ​​t+k​​}​​.

One particular class of solutions to (39) involves no predictable deviations of 
newly created bubbles from their BGP value (i.e., ​​E​t​​​{​​u ˆ ​​t+k​​}​  =  0​, for ​k  =  1, 2, …​ 
and all ​t​). In that case, the size of the aggregate bubble remains constant (i.e., ​​​q ˆ ​​ t​ 

B​  =  0​ 
for all ​t​), with any (unanticipated) change in ​​​u ˆ ​​t​​​ crowding out one-for-one preexisting 
bubbles (i.e., ​​​b ˆ ​​t​​  =  − ​​u ˆ ​​t​​​ for all ​t​), without the need of any change in the real interest 
rate as implied by (37).38 More generally, there are (infinitely) many other solutions 
to (39) that involve forecastable variations in the size of future new bubbles and, 
as a result, changes in the current aggregate bubble as well. A property of those 
solutions is that expectations of larger newly created bubbles in the future (i.e.,  
​​E​t​​​{​​u ˆ ​​t+k​​}​  >  0​, for ​k  =  1, 2, …​) are associated with a smaller size of the current 
bubble as implied by (39). That crowding out is needed in order to guarantee a 
nonexplosive path for the aggregate bubble, given the required change in the interest 
rate consistent with an unchanged output (see further discussion below). This kind 
of bubble fluctuations, associated with anticipated deviations in the size of newly 
created bubbles, was the focus of the analysis in Miao, Shen, and Wang (2019) in 
the context of a two-period OLG model, though their analysis was restricted to the 
case of newly created bubbles following an exogenous ​AR​(1)​​ process.

37 In the case of ​Ψ  =  1​, I further assume ​​∑ k=1​ 
∞  ​​​E​t​​​{​​u ˆ ​​t+k​​}​  <  + ∞​.

38 Note that after a (temporary) shock to ​​​u ˆ ​​t​​​, all variables return to their BGP values after one period, 
with ​​​b ˆ ​​t+1​​  =  0​, which is consistent with ​​​q ˆ ​​ t​ 

B​  =  ​​r ˆ ​​t​​  =  0​ in (33).
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When ​Ψ  >  1​, on the other hand, any eventual stationary bubble fluctuations are 
described by the backward-stable solution to (38), given by

(40)	​​​ q ˆ ​​ t​ 
B​  = ​  1 _ Ψ ​ ​​q ˆ ​​ t−1​ 

B ​  + ​ ϒ _ Ψ ​ ​E​t−1​​​{​​u ˆ ​​t​​}​ + ​ε​t​​​,

where ​​ε​t​​  ≡ ​ q​ t​ 
B​ − ​E​t−1​​​{​q​ t​ 

B​}​  = ​ (​b​t​​ − ​E​t−1​​​{​b​t​​}​)​ + ​(​u​t​​ − ​E​t−1​​​{​u​t​​}​)​​ is the bubble 
innovation, which in turn is the sum of the unanticipated changes in preexisting and 
newly created bubbles. Note that in this case, both types of innovations generate a 
persistent response of the aggregate bubble of the same sign. Furthermore, and in 
contrast with the ​Ψ  <  1​ case considered above, such persistent aggregate bubble 
fluctuations may arise even if newly created bubbles are constant or display unpre-
dictable variations. In that case, (40) simplifies to

(41)	​​​ q ˆ ​​ t​ 
B​  = ​  1 _ Ψ ​ ​​q ˆ ​​ t−1​ 

B ​  + ​ε​t​​​,

with the (natural) interest rate changing in proportion to the size of the aggregate 
bubble and given by

(42)	​​​ r ˆ ​​ t​ 
n​  = ​ (1 − ​ 

βγΦ _ Ψ  ​)​​(​ 
1 − βγΦ _ βγΦ  ​)​​​q ˆ ​​ t​ 

B​​.

Changes in the aggregate bubble in this case are the result of (self-fulfilling) 
waves of optimism or pessimism among investors regarding the future size of exist-
ing bubbles. I interpret this type of bubble fluctuations (rather than the one associ-
ated with (39)) as better capturing traditional accounts of the driving forces behind 
speculative bubble episodes, which usually involve investors’ willingness to pay a 
“high” price for an asset on the basis of further anticipated increases in the price of 
the same asset (as opposed to an anticipated decrease in the size of future newly 
created bubbles).

Next, I show that the size of ​Ψ​ and, hence, the properties of any eventual station-
ary bubble fluctuations in the equilibrium above depend critically on ​​q​​ B​​, the size of 
the bubble-output ratio along the BGP. To see this, consider first the case of ​υ  ≥  β​, 
which implies ​​q​​ B​  =  u  =  0​ and ​Ψ  =  ΛΓ  =  β/υ  ≤  1​. Thus, any stationary bub-
ble fluctuations should satisfy (39). But the nonnegativity constraints on ​​q​ t​ 

B​​ and ​​u​t​​​ 
imply that the only admissible solution is ​​q​ t​ 

B​  = ​ u​t​​  =  0​ for all ​t​, thus ruling out 
altogether bubble fluctuations in that case.

Next, consider the case of ​υ  <  β​, which is consistent with a continuum of BGP 
bubble-output ratios. Let me examine first the two limiting cases, ​​q​​ B​  =  0​ and  
​​q​​ B​  = ​​ q –​​​ B​​. If ​​q​​ B​  =  0,​ then ​Ψ  =  β/υ  >  1​, so the condition for stationary bubble fluc-
tuations given by (40) is satisfied. On the other hand, if ​​q​​ B​  = ​​ q –​​​ B​​, then ​Ψ  =  υ/β  <  1​ 
so that only bubble fluctuations of the type given by (39) may exist. It is easy to 
check that ​Ψ​ is continuous and differentiable in ​​q​​ B​​, with ​dΨ/d​q​​ B​  <  0​. It follows 
that there always exists a threshold bubble-output ratio ​​q​ ∗​ 

B​​ such that ​Ψ  >  1​ if  
​​q​​ B​  < ​ q​ ∗​ 

B​​ and, conversely, ​Ψ  ≤  1​ if ​​q​​ B​  ≥ ​ q​ ∗​ 
B​​. Thus, under the assumption 

that ​υ  <  β​, the possibility of stationary bubble fluctuations always arises, with the 
nature of those fluctuations depending critically on the size of ​​q​​ B​​.
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To gain some intuition on the role of ​​q​​ B​​ in determining the nature of any even-
tual stationary bubble fluctuations, consider a perfect foresight path followed by the 
aggregate bubble starting from period ​t​ on as implied by (33):

	​​​ q ˆ ​​ t+1​ 
B ​   = ​​ (ΛΓ)​​​ −1​ ​​q ˆ ​​ t​ 

B​ + ​​(ΛΓ)​​​ −1​ ​q​​ B​ ​​r ˆ ​​t​​ + ​​u ˆ ​​t+1​​​,

for ​k  =  0, 1, 2, …​ and assuming ​​lim​T→∞​​ ​​u ˆ ​​t+T​​  =  0​. Given the discussion above, I 
focus on the case of ​υ  <  β​, which allows for a nonzero bubble ratio ​​q​​ B​​ along the 
BGP. As discussed in the BGP analysis, ​r​ , and hence, ​​​(ΛΓ)​​​ −1​​ are increasing in ​​q​​ B​​, 
with ​​lim​​q​​ B​→​​q –​​​ B​​​ ΛΓ  =  1​. Also, recall that the interest rate comoves positively with 
the bubble in a way consistent with a constant output gap in equilibrium. Thus, if ​​q​​ B​​ 
and ​r​ are “sufficiently small,” the low inherent persistence of the bubble (measured 
by ​​​(ΛΓ)​​​ −1​​), combined with the limited impact on the bubble of the accompany-
ing changes in the interest rate, are sufficient to guarantee that ​​lim​T→+∞​​ ​​q ˆ ​​ t+T​ B ​   =  0​ 
given any initial value ​​​q ˆ ​​ t​ 

B​​, thus allowing for stationary fluctuations. By contrast, 
if ​​q​​ B​​ and ​r​ are “sufficiently large,” the high inherent persistence of the bubble, com-
bined with its strong sensitivity to interest rate changes, imply that ​​​q ˆ ​​ t​ 

B​  = ​​ r ˆ ​​t​​  =  0​ 
is the only nonexplosive solution if ​​​u ˆ ​​t+k​​  =  0​, for ​k  =  1, 2, … .​ On the other 
hand, “news” at time ​t​ of, say, an increase in the size of a future new bubble 
(e.g., ​​​u ˆ ​​t+k​​  >  0​, for some ​k  >  0​) requires an immediate fall in ​​​q ˆ ​​ t​ 

B​​ (determined by 
(39)) to guarantee convergence back to the BGP once the anticipated larger new  
bubble is realized.

The assumption of flexible prices maintained throughout the present section has 
two extreme (and arguably unrealistic) implications. Firstly, and as noted above, 
when combined with the absence of “fundamental” shocks, it leads to a constant 
output gap, even in the presence of bubble fluctuations. Secondly, it implies that real 
variables are determined in equilibrium independently of monetary policy.39 In the 
remainder of the paper, I reintroduce sticky prices and analyze the equilibrium of the 
resulting OLG-NK model, with a focus on the interaction between monetary policy 
and bubble and output fluctuations.

B. Bubble-Driven Fluctuations in the Equilibrium with Sticky Prices

Next, I turn to the analysis of the OLG-NK economy with sticky prices.  
Once the assumption of flexible prices is relaxed, output is no longer being 
determined by supply side factors and will be affected by the impact of bub-
ble fluctuations on aggregate demand. In addition, monetary policy is no lon-
ger neutral. Accordingly, and in order to close the model, equations (31) 
through (35)—the equilibrium conditions describing the behavior of the pri-
vate sector—must be complemented with a monetary policy rule. In order to 

39 Though not the focus of my analysis, it is clear that monetary policy may still have an impact on nominal 
variables under flexible prices. Given the path of ​​​r ˆ ​​ t​ 

n​​, one can combine the Fisherian equation ​​​i ̂ ​​t​​  =  ​​r ˆ ​​ t​ 
n​ + ​π​t​​​ with a 

suitable interest rate rule to determine the equilibrium path of inflation and other nominal variables. See, e.g., chap-
ter 2 in Galí (2015) for an analysis of the determination of nominal variables in a model with flexible prices and a 
real rate independent of monetary policy, like the present one.
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keep things as simple as possible, henceforth I assume the following interest  
rate rule:

(43)	​​​ i ̂ ​​t​​  = ​ E​t​​​{​π​t+1​​}​ + ​ϕ​y​​ ​​y ˆ ​​t​​ + ​ϕ​q​​ ​​q ˆ ​​ t​ 
B​​,

where ​​​i ̂ ​​t​​  ≡  log​[​(1 + ​i​t​​)​/​(1 + r)​]​​.
Note that the previous rule combines the usual stabilization motive (parameter-

ized by ​​ϕ​y​​  ≥  0​) with a possible desire to “lean against the bubble” (LAB, for short), 
parameterized by ​​ϕ​q​​  ≥  0​. Throughout, I assume the central bank takes as given the 
BGP around which the economy fluctuates (and, hence, ​r​ and ​​q​​ B​​).40 Given the sim-
ple relation between inflation and the output gap implied by (35), the assumption 
of a rule like (43), which can be written in terms of the real rate and involves no 
“direct” response to inflation, makes it possible to solve for the model’s real vari-
ables without any reference to (35), thus simplifying the analysis considerably and 
allowing me to obtain some analytical results.41

Equations (31), (32), (33), (34), and (43) describe the equilibrium behavior 
of ​​​y ˆ ​​t​​​, ​​​r ˆ ​​t​​​, ​​​x ˆ ​​t​​​, ​​​q ˆ ​​ t​ 

B​​, ​​​b ˆ ​​t​​​, and ​​​u ˆ ​​t​​​ in a neighborhood of a given BGP. A quick glance at those 
equations makes clear that an outcome with all of them equal to zero for all ​t​ always 
constitutes a solution to that system of equations. In other words, the perfect fore-
sight BGP itself is always an equilibrium. This should not be surprising, given that 
fundamental shocks have been deliberately assumed away. The question of interest, 
however, is whether that outcome is the only possible equilibrium and, more pre-
cisely, whether other equilibria exist involving aggregate fluctuations that are bubble 
driven.

In order to isolate such bubble-driven fluctuations, however, I also need to rule 
out equilibria involving expectations-driven fluctuations unrelated to the existence 
of bubble fluctuations, i.e., conventional sunspot fluctuations. With that objective in 
mind, next I analyze the conditions for a unique equilibrium in the OLG-NK model 
without bubble fluctuations.

A Brief Detour: Equilibrium in the Absence of Bubble Fluctuations.—Consider 
the economy described by (31), (32), (33), (34), and (43) on which we impose the 
assumption of no bubble fluctuations, i.e., ​​​q ˆ ​​ t​ 

B​  = ​​ u ˆ ​​t​​  =  0​ for all ​t​. A particular case 
of such an environment corresponds to the OLG-NK model without bubbles, i.e., 
with ​​q​​ B​  =  0​ as well as ​​q​ t​ 

B​  = ​ u​t​​  =  0​ for all ​t​. Combining (31), (32), and (43) after 
imposing ​​​q ˆ ​​ t​ 

B​  = ​​ u ˆ ​​t​​  =  0​ for all ​t​, we obtain the difference equation

	​​​ y ˆ ​​t​​  =  Ξ ​E​t​​​{​​y ˆ ​​t+1​​}​​,

40 The assumption of policy invariance of ​r​ and ​​q​​ B​​ is not an obvious one in the present model, where a multiplic-
ity of real interest rates and bubble-output ratios may be consistent with a BGP if certain conditions are met. This 
may be viewed as a shortcoming of the present approach that should deserve attention in future research.

41 Note that the “divine coincidence” property implies that stabilizing the output gap is equivalent to stabilizing 
inflation and vice versa.
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where ​Ξ  ≡ ​ 
Φ​(1 − βγΦ)​

  _________________  
1 − βγΦ + Φ​(1 − βγ)​ ​ϕ​y​​

 ​​, with ​Φ  ∈ ​ [υ/β, 1]​​. Thus, in the absence of  

bubble fluctuations, there is unique stationary equilibrium given by ​​​y ˆ ​​t​​  =  0​ for all ​t​, 
if and only if ​Ξ  ≤  1​ or, equivalently,

	​​ ϕ​y​​  ≥  − ​ 
​(1 − Φ)​​(1 − βγΦ)​

  ________________  
Φ​(1 − βγ)​

 ​   ≡ ​ ϕ​ y​ 
0​​.

Note that in the case of a bubbleless BGP (and, hence, in the absence of bub-
bles altogether), ​Φ  =  1​ and ​​ϕ​ y​ 

0​  =  0​, so the previous condition takes the simple 
form ​​ϕ​y​​  ≥  0​. The standard NK model is a particular case of bubbleless BGP, 
so ​​ϕ​y​​  ≥  0​ is the relevant condition for that model.42 On the other hand, in the case 
of a bubbly BGP (i.e., ​​q​​ B​  >  0​), ​​ϕ​ y​ 

0​  <  0​ and, hence, the condition for a unique 
equilibrium is relaxed somewhat, allowing for (slightly) negative values for ​​ϕ​y​​​.

Most importantly for the analysis herein, it follows from the previous finding and 
the maintained assumption of no fundamental shocks that any stationary fluctua-
tions in output in the OLG-NK model when ​​ϕ​y​​  ≥ ​ ϕ​ y​ 

0​​ must be bubble driven.
Next, I turn to the analysis of such bubble-driven fluctuations, under the main-

tained assumption that ​​ϕ​y​​  ≥ ​ ϕ​ y​ 
0​​ (which rules out stationary sunspot fluctuations 

unrelated to variations in the size of the aggregate bubble). For simplicity, hence-
forth I restrict the analysis to fluctuations in which the size of newly created bub-
bles is unforecastable (i.e., ​​E​t​​​{​​u ˆ ​​t+k​​}​  =  0​ for ​k  =  1, 2, …​ and all ​t​). There are 
several reasons for doing so. Firstly, allowing for unrestricted expectations on the 
size of future new bubbles generates an embarrassment of riches in terms of pos-
sible outcomes, making any rigorous discussion long and tedious.43 Secondly, and 
as discussed above in the context of the flexible price version of the model, the 
assumption of unforecastable new bubbles narrows the range of possible outcomes 
by ruling out stationary equilibria in which anticipated future newly created bubbles 
crowd out the current aggregate bubble, generating a negative comovement between 
the two. That mechanism, while theoretically possible, seems at odds with any-
thing observed in reality. I focus instead on bubble fluctuations that result from revi-
sions in expectations about the future value of current bubbles (new or preexisting), 
which in turn lead to adjustments on the value of those bubbles. Those fluctuations 
capture better, in my opinion, actual speculative bubble episodes, with mood swings 
leading investors to pay a higher (lower) price for an asset purely on the basis of 
expectations of further increases (decreases) in the price of the same asset, despite 
the absence of any news regarding its fundamental payoffs or the size of future new 
bubbles on different assets.

Note, however, that the assumption of newly created bubbles still plays 
two important roles even if one assumes their variations to be unforecastable.  

42 Note that in the standard NK model with an infinitely lived representative agent, ​Φ  =  1​ and ​γ  =  1​, thus 
implying ​Ξ  ≡  1/(1 + ​ϕ​y​​)​. Accordingly, ​​ϕ​y​​  ≥  0​ is necessary and sufficient for a unique solution. It can be easily 
checked that given the assumed rule, the previous condition implies an (eventual) increase in the nominal rate of 
more than one-for-one in response to a change in inflation, i.e., the familiar Taylor principle.

43 Miao, Shen, and Wang (2019) assume an ​AR​(1)​​ process for ​​{​u​t​​}​​, thus restricting somewhat the range of 
possible equilibria. A similar assumption is often made in the context of business cycle models, albeit applied to an 
exogenous driving process. But given that ​​{​u​t​​}​​ is an endogenous variable, it is not clear how one should interpret 
such a parametric assumption.
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Firstly,  their presence in a BGP (i.e., ​u  >  0​) implies that ​r  <  g​ and ​​q​​ B​  < ​​ q –​​​ B​​, 
which opens the door to stationary bubble-driven fluctuations that would not other-
wise be possible, as I show below. Secondly, newly created bubbles make it possible 
to rekindle an aggregate bubble after the collapse of the latter (see the stochastic 
bubble example below as an illustration).

The Special Case of a Constant Real Interest Rate.—In order to build some intu-
ition on the mechanisms through which aggregate bubble fluctuations are transmit-
ted to the real economy and the role of monetary policy in shaping those fluctuations, 
I start by analyzing the special case in which the central bank is assumed to maintain 
a constant real interest rate, regardless of the path of output and/or the aggregate 
bubble.44 As discussed above, I assume newly created bubbles are unforecastable 
(i.e., ​E ​t​​ ​{​​u ˆ ​​t+k​​}​​​​  =  0​, for ​k  =  1, 2​, … , and for all ​t​). Under the previous assump-
tions, the equilibrium dynamics can be summarized by the following two equations:

(44)	​​​ y ˆ ​​t​​  =  Φ​E​t​​​{​​y ˆ ​​t+1​​}​ + ​ 
​(1 − βγ)​​(1 − υγ)​

  _______________ βγ  ​ ​​q ˆ ​​ t​ 
B​​,

(45)	​​​ q ˆ ​​ t​ 
B​  =  ΛΓ​E​t​​​{​​q ˆ ​​ t+1​ 

B ​ }​​,

which can be derived by combining (31), (32), (33), and (34) under the assumption 
that ​​​r ˆ ​​t​​  =  0​ for all ​t​.

Note that an outcome involving no fluctuations (i.e., ​​​y ˆ ​​t​​  = ​​ q ˆ ​​ t​ 
B​  =  0​, for all ​t​) 

always constitutes an equilibrium. That outcome is also the only stationary equi-
librium if ​υ  ≥  β​, for in that case ​ΛΓ  ≤  1​, which is inconsistent with stationary 
fluctuations in the aggregate bubble. The same is true if ​υ  <  β​ and ​​q​​ B​  = ​​ q –​​​ B​​. On 
the other hand, under the assumption that ​υ  <  β​ and ​​q​​ B​  < ​​ q –​​​ B​​, we have ​ΛΓ  >  1​, 
so the bubble may display stationary fluctuations consistent with (45) and described 
by the ​AR​(1)​​ process

	​​​ q ˆ ​​ t​ 
B​  = ​​ (ΛΓ)​​​ −1​ ​​q ˆ ​​ t−1​ 

B ​  + ε​​​t​​​,

where ​​ε​t​​  ≡ ​​ b ˆ ​​t​​ − ​E​t−1​​​{​​b ˆ ​​t​​}​ + ​​u ˆ ​​t​​​, a martingale difference process, is the innovation in 
the aggregate bubble (the “bubble shock,” for short). Note that the persistence of the 
bubble, measured by ​​​(ΛΓ)​​​ −1​​, lies between ​υ/β​ and ​1​, so it is likely to be very high 
for any plausible calibration. Equilibrium output can then be solved for using (44):

	​​​ y ˆ ​​t​​  =  Ω ​​q ˆ ​​ t​ 
B​​,

where ​Ω  ≡ ​ (1 − βγ)​​(1 − υγ)​/​(γ​(β − υ)​)​  >  0​ can be interpreted as the bubble 
multiplier under a constant interest rate. Equivalently,

	​​​ y ˆ ​​t​​  = ​​ (ΛΓ)​​​ −1​ ​​y ˆ ​​t​​ + Ω ​ε​t​​​.

44 Woodford (2011) makes an identical assumption as a preliminary step in his analysis of the size of govern-
ment spending multipliers.
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There are several channels at work in determining that impact of the bubble 
on output. Firstly, there is a direct effect of a larger bubble on consumption, of 
size ​1 − βγ​, as implied by (31). Secondly, there is a static multiplier channel, of 
size ​​​(1 − βγ)​​​ 2​/(βγ)​, associated with the higher consumption induced by the con-
temporaneous increase in output, as implied by combining (31) and (32), while 
keeping future output constant. And, finally, a dynamic multiplier channel, of size ​
υ ​​(1 − βγ)​​​ 2​/​(βγ​(β − υ)​)​​, resulting from the higher consumption induced by the 
anticipation of higher future output, with the latter being in turn a consequence of 
the persistent response of the bubble.

Given the natural upper bound of unity for ​β​, a lower bound on the (constant 
interest rate) bubble multiplier ​Ω​ is ​​(1 − γ)​​(1 − υγ)​/​(γ​(1 − υ)​)​​, which has an 
order of magnitude of ​0.01​, a relatively small value, for any reasonable values 
for ​γ​ and ​υ​. On the other hand, the size of that multiplier becomes unbounded as ​​

(β − υ)​  →  0​. As one approaches that limiting case, and due to the high persistence 
of the bubble, any initial increase in output resulting from a bubble shock generates 
an expected discounted value of future income equal to ​​​(1 − βγ)​​​ −1​ ​​y ˆ ​​t​​​ and thus an 
“effective” marginal propensity to consume out of current income of unity, leading 
to an infinite feedback effect. Thus, we see that the range of possible values for the 
bubble multiplier under the constant interest rate assumption considered here is very 
wide, potentially including very large values. This is the case even though the mar-
ginal propensity to consume out of wealth ​​(1 − βγ)​​—which determines only the 
direct, partial equilibrium effect—is likely to be small.

Of course, with an endogenous real rate, the assumed monetary policy rule 
becomes an important factor in determining the effective bubble multiplier. Next, I 
relax the assumption of a constant interest rate and analyze the equilibrium dynam-
ics for the general case.

Bubble-Driven Fluctuations with an Endogenous Interest Rate.—Next, I study 
the possibility of bubble-driven fluctuations when the real interest rate varies endog-
enously, according to policy rule (43). It is useful to consider the cases of fluc-
tuations around a bubbleless BGP (​​q​​ B​  =  0​) and a bubbly BGP ​0  < ​ q​​ B​  ≤ ​​ q –​​​ B​​ 
separately. Again, I maintain the assumption of constant or unpredictable newly 
created bubbles.

Fluctuations near a Bubbleless BGP.—The particular case of bubble-driven fluc-
tuations near the bubbleless BGP (​​q​​ B​  =  u  =  0​) is of special interest for at least 
two reasons. Firstly, the equilibrium dynamics are simplified by the fact that to a 
first-order approximation, there is no impact of monetary policy on the bubble ratio 
itself. On the other hand, bubble fluctuations may still affect aggregate demand and 
output through their impact on monetary policy if ​​ϕ​q​​  >  0​. Secondly, this case may 
be viewed as a reasonable representation of recurrent episodes of a rise and sub-
sequent collapse of aggregate bubbles similar to those that are apparent in actual 
economies, with the no bubble state being a “natural” resting point.45

45 The dot-com bubble of the late 1990s and the housing bubbles of the 2000s are an example of such episodes.
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Near the bubbleless BGP, the bubble evolves “autonomously” according to the 
process

(46)	​​ q​ t​ 
B​  = ​ 

β _ υ ​ ​E​t​​​{​q​ t+1​ 
B  ​}​​,

where ​​q​ t​ 
B​  ≥  0​ and ​​u​t​​  ≥  0​, for all ​t​.46 The assumption ​​q​​ B​  =  0​ made here implies 

that interest rate changes do not affect (up to a first-order approximation) the 
expected evolution of the bubble-output ratio ​​q​ t​ 

B​​. If ​υ  ≥  β​, the only stationary solu-
tion to (46) is ​​q​ t​ 

B​  =  0​ for all ​t​, thus ruling out stationary bubble fluctuations and, 
assuming ​​ϕ​y​​  ≥  0​, output fluctuations as well.47 By contrast, if ​υ  <  β​, other sta-
tionary solutions to (46) exist, of the form

(47)	​​ q​ t​ 
B​  = ​  υ _ β ​ ​q​ t−1​ 

B  ​ + ​ε​t​​​,

where ​​ε​t​​  ≡ ​ b​t​​ − ​E​t−1​​​{​b​t​​}​ + ​u​t​​ − E​{​u​t​​}​​ is the aggregate bubble innovation, a mar-
tingale difference process. Note that the aggregate bubble will remain “small” (thus 
justifying the approximation around ​​q​​ B​  =  0​) as long as ​E​{​u​t​​}​  ≳  0​.48 On the other 
hand, we can combine (31), (32), and (43) to obtain the following equilibrium con-
dition for the output gap:

(48)	​​​ y ˆ ​​t​​  = ​   1 _ 
1 + ​ϕ​y​​

 ​ ​E​t​​​{​​y ˆ ​​t+1​​}​ + ​  1 _ 
1 + ​ϕ​y​​

 ​​(​ 
1 − βγ _ βγ  ​ − ​ϕ​q​​)​​q​ t​ 

B​ − ​ 
1 − βγ _ 
1 + ​ϕ​y​​

 ​ ​E​t​​​{​q​ t+1​ 
B  ​}​​.

Finally, one can combine (46) and (48) to derive an expression for the output gap 
as a function of the aggregate bubble:

(49)	​​​ y ˆ ​​t​​  = ​ (​ 
​(1 − βγ)​​(1 − υγ)​

  _______________ βγ  ​ − ​ϕ​q​​)​​
(

​  1 _ 
1 − ​ υ _ β ​ + ​ϕ​y​​

 ​
)

​ ​q​ t​ 
B​​.

Under the assumption that ​​ϕ​q​​  ≤ ​ (1 − βγ)​​(1 − υγ)​/(βγ)​—i.e., a not too aggres-
sive “lean-against-the-bubble” policy (LAB policy, henceforth)—the output gap 
comoves positively with the aggregate bubble, arguably the more realistic case. Even 
though in that environment the central bank has no influence on the bubble itself, it 
has two options in order to stabilize the impact of bubble fluctuations on aggregate 
demand and output. First, it can choose a value of ​​ϕ​q​​​ close to ​​(1 − βγ)​​(1 − υγ)​/(βγ)​, 
which can be interpreted as a “surgical” LAB policy. In that case, the strength of 
the response is calibrated so that the interest rate matches exactly the natural rate, 
which from (42) can be shown to be given by ​​​r ˆ ​​ t​ 

n​  = ​ (​(1 − βγ)​​(1 − υγ)​/(βγ))​​q​ t​ 
B​​ 

under the present assumptions. Note, however, that changes in ​​ϕ​q​​​ have a 
nonmonotonic impact on the response of output to bubble fluctuations. In particular, 
if ​​ϕ​q​​  > ​ (1 − βγ)​​(1 − υγ)​/(βγ)​, the strong interest rate response to variations in 
the size of the aggregate bubble will more than offset the impact of the latter on 

46 In order to derive (46), I have made use of (33) and the fact that ​ΛΓυ  =  β​ when ​​q​​ B​  =  0​.
47 Recall from the analysis above that ​​ϕ​y​​  ≥  0​ is a sufficient condition to rule out stationary output fluctuations 

in the absence of bubble fluctuations.
48 It is easy to check that ​​lim​T→∞​​ ​E​t​​​{​q​ t+T​ B  ​}​  =  βE​{​u​t​​}​/(β − υ)​, which can be arbitrarily small as the uncondi-

tional mean ​E​{​u​t​​}​​ approaches zero.
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the economy, reversing its sign and generating a negative comovement between the 
aggregate bubble and the output gap resulting from the central bank’s “overreac-
tion.” Alternatively, and perhaps more robustly, the central bank may “neglect” bub-
ble developments and focus on stabilizing the output gap (or, equivalently, inflation, 
given (35)) by choosing an arbitrarily large ​​ϕ​y​​​ coefficient.

The previous environment allows for the possibility of recurrent booms and busts 
driven by a “stochastic bubble” of the kind proposed in Blanchard (1979), which 
evolves according to the process

(50)	​​ q​ t​ 
B​  = ​

{
​
​ υ _ βδ ​ ​q​ t−1​ 

B ​  + ​u​t​​
​ 

with probability δ
​   

u​​​t​​
​ 

with probability 1 − δ,
​​​ 

where ​​{​u​t​​}​​ is a white noise process with positive support and unconditional mean  
​E​{​u​t​​}​  ≳  0​. It is easy to check that the previous process satisfies (46) as well as the 
nonnegativity condition. The economy’s equilibrium, described by (49) and (50), 
will display recurrent output booms, driven by rapid bubble growth, followed by 
eventual (though unpredictable) collapses, before being rekindled again by new 
bubbles.49

Fluctuations around a Bubbly BGP.—Next, I consider the possibility of 
bubble-driven fluctuations around a BGP with a positive bubble, i.e., with ​​q​​ B​  ∈ ​
(0, ​​q –​​​ B​]​​ and ​r  ∈  (​r​0​​, g]​. Accordingly, I maintain the assumption that ​υ  <  β​, which 
is necessary for such a bubbly BGP to exist. A key difference here relative to the 
case of fluctuations near a bubbleless BGP analyzed above is that the evolution of 
the bubble-output ratio ​​q​ t​ 

B​​ is affected (to a first order) by the real interest rate, as 
implied by (33). This complicates the analysis somewhat, but some progress can be 
made in understanding the key elements at play by looking at some special cases.

Consider first the case of no direct output stabilization motive (i.e., ​​ϕ​y​​  =  0​) 
while allowing for an active LAB policy (i.e., ​​ϕ​q​​  ≥  0​). In that case, we can com-
bine equations (33) and (43) to obtain the following simple equilibrium equation for 
the aggregate bubble, in deviations from its value at the BGP:

(51)	​​​ q ˆ ​​ t​ 
B​  = ​   ΛΓ _ 

1 + ​q​​ B​ ​ϕ​q​​
 ​ ​E​t​​​{​​q ˆ ​​ t+1​ 

B ​ }​​.

The stationary solution to (51) is unique and given by ​​​q ˆ ​​ t​ 
B​  =  0​ for all ​t​ if and 

only if

	​​ ϕ​q​​  > ​  ΛΓ − 1 _ 
​q​​ B​

 ​   ≡ ​ ϕ​ q​ 
∗​​.

If the previous condition is satisfied, it follows from (31) and (32) that ​​​y ˆ ​​t​​  =  0​ 
for all ​t​. In words: if ​​q​​ B​  >  0​, the central bank can always rule out bubble fluc-
tuations (and the associated output fluctuations) by committing to a sufficiently 
aggressive LAB policy. How strong that response must be is given by the 

49 The statement assumes ​​ϕ​q​​  ∈  ​[0, ​(1 − βγ)​​(1 − βυ)​/(βγ)]​​. See discussion above.
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threshold ​​ϕ​ q​ 
∗​  ≥  0​, which in turn depends crucially on ​​q​​ B​​ since the latter determines 

the impact of interest changes on the size of the bubble-output ratio.50 As ​​q​​ B​  → ​​ q –​​​ B​​, 
we have ​ΛΓ  →  1​ and, hence, ​​ϕ​ q​ 

∗​  →  0​. Thus, if the size of the bubble-output ratio 
along the BGP is “large” (i.e., close to its upper bound), a rule that commits to 
responding even weakly to fluctuations in ​​​q ˆ ​​ t​ 

B​​ were they to arise will suffice to rule 
out such fluctuations. At the other extreme, as ​​q​​ B​  →  0​ (and ​ΛΓ  →  β/υ  >  1​), we 
have ​​ϕ​ q​ 

∗​  →  + ∞​; i.e., no systematic policy response to the bubble, no matter how 
aggressive, will be effective at ruling out bubble fluctuations. More generally, note 
that the threshold ​​ϕ​ q​ 

∗​​ is decreasing in ​​q​​ B​​; i.e., the required policy response is larger 
the smaller is the bubble-output ratio along the BGP. See Figure 2.

On the other hand, if ​0  ≤ ​ ϕ​q​​  < ​ ϕ​ q​ 
∗​​, there exist equilibria with stationary bubble 

fluctuations satisfying the stationary ​AR​(1)​​ process

	​​​ q ˆ ​​ t​ 
B​  = ​ (​ 

1 + ​q​​ B​ ​ϕ​q​​
 _ ΛΓ  ​)​ ​​q ˆ ​​ t−1​ 

B ​  + ​ε​t​​​,

where ​​ε​t​​  ≡ ​ b​t​​ − ​E​t−1​​​{​b​t​​}​ + ​​u ˆ ​​t​​​. Under the assumption that the bubble innovation 
process ​​{​ε​t​​}​​ is independent of monetary policy, a (local) increase in ​​ϕ​q​​​ will result in 
an increase in the volatility of the aggregate bubble. That property is a consequence 
of the equilibrium requirement that the anticipated return on the bubble equals the 
interest rate. The endogenous rise in the latter called for by the LAB policy will thus 
“amplify” the impact over time on the size of the bubble of an initial bubble shock. 
This is consistent with the findings emphasized in Galí (2014) in the context of a 
two-period OLG model.51

More generally, if ​​ϕ​y​​  ≥  0​, one can combine (31), (32), and (43) to obtain, after 
some algebra, the following representation of the joint equilibrium dynamics for the 
output gap and the aggregate bubble:

(52)	​​ [​
​​y ˆ ​​t​​​ 
​​q ˆ ​​ t​ 

B​
​]​  = ​ [​​A​11​​​  ​A​12​​​ ​A​21​​

​  ​A​22​​
​]​​
[

​
​E​t​​​{​​y ˆ ​​t+1​​}​

​ 
​E​t​​​{​​q ˆ ​​ t+1​ 

B ​ }​
​
]

​​,

where ​​A​11​​  ≡  ΘΦ​, ​​A​12​​  ≡  Θ​[​  ΣΛΓ _ 
1 + ​q​​ B​ ​ϕ​q​​

 ​ − Φ​(1 − βγ)​]​​, ​​A​21​​  ≡  − ​ 
ΘΦ ​q​​ B​ ​ϕ​y​​ _ 
1 + ​q​​ B​ ​ϕ​q​​

 ​,​ and 

​​A​22​​  ≡ ​ 
ΛΓ − ​A​12​​ ​q​​ B​ ​ϕ​y​​ _ 

1 + ​q​​ B​ ​ϕ​q​​
 ​​ , with ​Θ  ≡ ​ 

1 + ​q​​ B​ ​ϕ​q​​ _ 
1 + ​ϕ​y​​ + ​q​​ B​ ​ϕ​q​​

 ​​ and ​Σ  ≡ ​ 
1 − βγ _ βγ  ​ − Φ​(​ 

1 − βγ _ 
1 − βγΦ ​)​​ϕ​q​​​.

50 Intuitively, a given change in the interest rate has a one-for-one effect on the anticipated percent change in the 
size of the bubble. How large that change is relative to output (i.e., how much it affects ​​​q ˆ ​​ t​ 

B​​) depends on the initial 
size of the bubble relative to output.

51 In the context of the two-period OLG model, Miao and Wang (2018) show that the finding in Galí (2014) 
regarding the impact of ​​ϕ​q​​​ on the bubble volatility can be overturned if fluctuations in newly created bubbles are 
predictable and the equilibrium is unique. In that case, the aggregate bubble evolves according to

	​ ​​q ˆ ​​ t​ 
B​  =  − ​ ∑ 

k=1
​ 

∞
 ​​​​
(

​  ΛΓ _ 
1 + ​q​​ B​ ​ϕ​q​​

 ​
)

​​​ 
k

​ ​E​t​​​{​​u ˆ ​​t+k​​}​​,

whose variance is decreasing in ​​ϕ​q​​​ for any given arbitrary expectations ​​E​t​​​{​​u ˆ ​​t+k​​}​​.
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Note that as in all the cases considered above, the perfect foresight BGP is always 
a solution to (52), corresponding to ​​[​​y ˆ ​​t​​, ​​q ˆ ​​ t​ 

B​]​  = ​ [0, 0]​​ for all ​t​. That solution is the 
only stationary if and only if both eigenvalues of matrix ​𝐀​ lie within the unit circle 
(see, e.g., Blanchard and Kahn 1980). Otherwise, other solutions to (52) exist that 
involve stationary fluctuations in the aggregate bubble and the output gap as shown 
in the Appendix.

The necessary and sufficient conditions for both eigenvalues of a ​2 × 2​ 
matrix ​𝐀​ to lie within the unit circle are given by (a) ​​| det ​(𝐀)​ |​  <  1​ and (b) ​​| tr​(𝐀)​ |​  
<  1 + det ​(𝐀)​​.52 Whether these conditions are satisfied or not in the case at hand 
depends in a nontrivial way on the interaction between different parameters, but 
some progress can be made in understanding the key factors by looking at some 
special cases.

Consider first the role of ​​ϕ​q​​​, the bubble coefficient in the policy rule. As shown 
in the Appendix, for any ​​q​​ B​  >  0​ and finite ​​ϕ​y​​  ≥  0​, ​​lim​​ϕ​q​​→+∞​​ det ​(𝐀)​  =  0​ 
and ​​lim​​ϕ​q​​→+∞​​ tr​(𝐀)​  =  Φ  <  1​. Given the continuity of ​det ​(𝐀)​​ and ​tr​(𝐀)​​ with 
respect to ​​ϕ​q​​​, it must be the case that the conditions for a unique solution are satis-
fied given a sufficiently large (but finite) ​​ϕ​q​​​, independently of ​​ϕ​y​​​. This result gen-
eralizes to an arbitrary ​​ϕ​y​​​ coefficient the finding obtained above for ​​ϕ​y​​  =  0​ and 
provides a theoretical justification for a sufficiently aggressive LAB policy as a way 
to rule out bubble-driven fluctuations.

Next, I study the role of ​​ϕ​y​​​, the output coefficient in the policy rule. The desire 
to focus on a conventional stabilization motive may be motivated by the imperfect 

52 See La Salle (1976).

Figure 2. Bubble Fluctuations and LAB Policies
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observability of the bubble and, hence, the risk that a LAB policy may generate unwar-
ranted (and, hence, destabilizing) movements in interest rates. Can bubble-driven 
fluctuations be ruled out by a suitable choice of ​​ϕ​y​​​, without the need of a systematic 
response to the bubble itself? Under ​​ϕ​q​​  =  0​, the conditions for a unique solution to 
(52) corresponding to (a) and (b) above can be written, respectively, as

(53)	​​ ϕ​y​​  >  ΦΛΓ − 1  ≡  f​(​q​​ B​)​​

and

(54)	​​ (​q​​ B​ − ​q​ ∗​ 
B​)​​(​ϕ​y​​ − h​(​q​​ B​)​)​  >  0​,

where ​h​(​q​​ B​)​  ≡ ​ 
​(ΛΓ − 1)​​(1 − Φ)​

  ____________ 
1 − Ψ  ​  >  0​ and, as above, ​Ψ  ≡  Φ​[1 + ​(ΛΓ − 1)​​ 

1 − βγ _ 
1 − βγΦ ​]​​ 

is decreasing in ​​q​​ B​​, with ​​q​ ∗​ 
B​​ defined as the (unique) ​​q​​ B​​ value for which ​Ψ  =  1​. See 

Appendix for details.
As shown in the Appendix , ​h​(​q​​ B​)​  <  f​(​q​​ B​)​​ for all ​​q​​ B​  ∈ ​ [0, ​q​ ∗​ 

B​]​​, so there is 
no ​​ϕ​y​​​ value which satisfies (53) and (54) simultaneously for that range of ​​q​​ B​​ val-
ues. Thus, if the size of the bubble-output ratio along the BGP is smaller than ​​q​ ∗​ 

B​​, 
bubble-driven fluctuations cannot be ruled out by means of an output gap–focused 
stabilization policy. On the other hand, ​h​(​q​​ B​)​  >  f​(​q​​ B​)​​ for all ​​q​​ B​  ∈ ​ (​q​ ∗​ 

B​, ​​q –​​​ B​]​​. Thus, 
over that range, the choice of ​​ϕ​y​​  >  h​(​q​​ B​)​​ guarantees that (53) and (54) are both 
met, thus implying a unique solution to (52) and the absence of bubble-driven fluc-
tuations. As shown in the Appendix, ​h​(​q​​ B​)​​ is decreasing in ​​q​​ B​​, with ​​lim​​q​ ∗​ 

B​→​q​ ∗​ 
B​+​​ h​(​q​​ B​)​  

=  + ∞​ and ​h​(​​q –​​​ B​)​  =  0​. Thus, the strength of the required output response in order 
to rule out bubble-driven fluctuations is decreasing in ​​q​​ B​​, for ​​q​​ B​  > ​ q​ ∗​ 

B​​, becoming 
unbounded above as ​​q​ ∗​ 

B​  → ​ q​ ∗​ 
B​+​. See Figure 3 for a graphical illustration of the 

previous findings.
The previous findings are related to the one obtained in the analysis of the flexible 

price economy, given that the equilibrium converges to its flexible price counterpart 
as ​​ϕ​y​​  →  + ∞​ and ​​ϕ​q​​  →  0​. Thus, under that configuration of policy coefficients, 
bubble-driven fluctuations may emerge if and only if ​​q​​ B​  ∈ ​ (​q​ ∗​ 

B​, ​​q –​​​ B​]​​ as in the flexi-
ble price equilibrium.

A Numerical Example.—While the previous model is clearly too stylized to be 
taken seriously quantitatively, it may be useful to get a sense of the ease with which 
bubble-driven fluctuations may emerge or be ruled out. With that purpose in mind, 
next I examine a simple numerical version of the OLG-NK model.

I start by assuming plausible settings for the different exogenous parameters 
(​β​, ​γ​, ​Γ​, and ​υ​), taking the time unit to be a quarter. I set ​Γ  =  1.004​, consistent 
with an average (annual) per capita GDP growth of ​1.6​ percent observed over the 
1960–2016 sample period. To calibrate ​γ​, I use the expected lifetime at age 16, which 
is ​63.2​ years in the United States, and thus set ​γ  =  1 − ​(1/(4 ⋅ 63.2))​  ≃  0.996​. I 
use the average employment ratio (relative to population aged 16 and over), which 
is (roughly) ​0.6​ on average over the period 1960–2016 as a proxy for ​α​. Conditional 
on the previous settings for ​α​ and ​γ​, one can derive ​υ  ≃  0.997​. As discussed 
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above, ​β  >  υ​ is required for the existence of a bubbly equilibrium. In contrast with 
the representative agent model, the OLG-NK model does not point to any empirical 
counterpart for ​β​, though unity seems a “natural” upper bound for that parameter. 
For the sake of illustration, I set ​β  =  0.998​, which is consistent with a (annual) real 
interest rate along a bubbleless BGP of ​1.2​ percent (i.e., ​​r​0​​  =  0.003​).

Under the previous calibration, a continuum of bubbly BGPs exists, with the 
upper bound on the bubble-output ratio given by ​​​q –​​​ B​  ≃  23.6​, i.e., a bubble of size 
roughly ​6​ times annual output and with an associated range of (annual) interest 
rates between ​1.2​ and ​1.6​ percent.53 The threshold value ​​q​ ∗​ 

B​​ which delimitates the 
regions with and without equilibria with bubble-driven fluctuations under flexible 
prices is given by ​​q​ ∗​ 

B​  ≃  12.2​, roughly 3 times annual output. According to the anal-
ysis above, if the actual bubble-output ratio along the BGP were smaller than the 
previous threshold, a monetary policy that focused exclusively on output gap sta-
bilization (i.e., without a LAB component) would not be able to rule out bubble 
fluctuations, though the central bank can always reduce the impact of the bubble 
on aggregate demand and output as much as needed by increasing ​​ϕ​y​​​. In the limit, 
as ​​ϕ​y​​  →  + ∞​, the output gap would be fully stabilized and any fluctuations in the 
aggregate bubble would be described by the ​AR​(1)​​ process (41), with an autore-
gressive coefficient ​​Ψ​​ −1​  <  1​ bounded below by a value close to ​0.999​, the value 
of ​​Ψ​​ −1​​ corresponding to ​​q​​ B​  =  0​. Thus, any eventual aggregate bubble would dis-
play very high persistence in that case.

53 Note that the average (annual) real interest rate on 3-month US Treasury bills over the period 1960–2016 has 
been roughly ​1.4​ percent (i.e., ​0.35​ percent quarterly), which lies within that interval.

Figure 3. Bubble Fluctuations and Output Stabilization Policies
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On the other hand, the monetary authority could eliminate bubble fluctua-
tions and the resulting output gap fluctuations altogether by setting ​​ϕ​q​​  > ​ ϕ​ q​ 

∗​​ , 
i.e., by pursuing a sufficiently aggressive LAB policy, even if ​​ϕ​y​​  =  0​. As dis-
cussed above, the size of the threshold ​​ϕ​ q​ 

∗​​ depends critically on ​​q​​ B​​, the size of the 
bubble-output along the underlying BGP. Thus, in the numerical example con-
sidered here, if ​​q​​ B​  =  4​ we have ​​ϕ​ q​ 

∗​  =  0.0002​ so that the commitment to even 
a tiny response to the bubble would be enough to rule out fluctuations. The cor-
responding thresholds for ​​q​​ B​  =  0.4​, ​​q​​ B​  =  0.04​, and ​​q​​ B​  =  0.004​ are, respec-
tively, ​​ϕ​ q​ 

∗​  =  0.00021​, ​​ϕ​ q​ 
∗​  =  0.024​, and ​​ϕ​ q​ 

∗​  =  0.24​, illustrating the strong 
nonlinearity in ​​ϕ​ q​ 

∗​​ as a function of ​​q​​ B​​ but also making it clear that a relatively weak 
LAB policy would be enough to rule out bubble-driven fluctuations (unless ​​q​​ B​  →  0​).

V.  Bubbles and Welfare: Some Considerations

The analysis of the OLG-NK model found in the previous sections, including 
the discussion of alternative policies, has focused on the conditions under which 
bubbles may exist along a BGP or the possibility of bubble-driven fluctuations. 
In this section,  I make some considerations regarding the impact of any eventual 
bubbles on welfare. Following the structure of the analysis above, I start with a 
discussion of the connection between bubbles and welfare along a determinis-
tic BGP, before turning to the potential impact of bubble-driven fluctuations on  
welfare.

A. Bubbles and Welfare: BGP Analysis

In the present section, I determine the expected lifetime utility at birth of an 
individual in the OLG-NK economy when the latter is moving along a deterministic 
BGP and study how that utility varies across BGPs when a multiplicity of the latter 
exists, indexed by the size of the bubble-output ratio ​​q​​ B​​ (or, equivalently, by the 
interest rate). For the remainder of the paper, I maintain the assumption that ​υ  <  β​, 
which is necessary for the existence of bubbles in equilibrium.

Let ​​​j​​​ denote the consumption along a BGP of an individual of age ​j​, normalized 
by productivity. Thus, we can write the period ​t​ consumption of an individual from 
cohort ​s  ≤  t​ as ​​C​t|s​​  = ​ ​t−s​​ ​Γ​​ t​​. The expected lifetime utility at birth of an individual 
from cohort ​s​ is thus given by

(55)	​   ≡ ​ ∑ 
t=s

​ 
∞

 ​​​​(βγ)​​​ t−s​ log ​C​t|s​​  = ​  ∑ 
j=0

​ 
∞

 ​​​​(βγ)​​​ j​ log ​​j​​ + ​Π​s​​​,

where ​​Π​s​​  ≡ ​ (​ 
βγ _ 

​​(1 − βγ)​​​ 2​
 ​ + ​  s _ 

1 − βγ ​)​log Γ​ captures the impact of technical progress 

on lifetime utility across cohorts but is independent of the size of the bubble.
Given a discount factor ​Λ  ≡  1/(1 + r)​ (which depends on ​​q​​ B​​), the individual 

consumption Euler equation evaluated at a BGP implies

(56)	​​ ​j​​  = ​​ (​ 
β _ ΛΓ ​)​​​ 

j

​ ​​0​​​,
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for ​j  =  1, 2, 3, …​. Using results derived in the Appendix, one can write an expres-
sion for ​​​0​​​ as a function of lifetime wealth:

(57) ​​ ​0​​  = ​ (1 − βγ)​​[​  u _ 
1 − γ ​ + ​(​ 1 _ α ​)​​(​  1 _ 

1 − ΛΓυγ ​)​]​  = ​   1 _ 
1 − γ ​​(1 − ​ 

βγ _ ΛΓ ​)​α ​​​ −​ 1 _ φ ​​​,

where the second equality can be derived, after some algebra, using (27) and (28) 
to substitute for ​u​ as well as the definition of ​​. Combining (55), (56), and (57), 
one can write lifetime utility up to a multiplicative scalar and an exogenous additive 
term as

(58)	​   ∼  log​(1 − ​ 
βγ _ ΛΓ ​)​ − ​ 

βγ _ 
1 − βγ ​ log Λ​.

Differentiating ​​ with respect to ​Λ​ and rearranging terms yields

	​​ 
d _ 
dΛ ​  =  − ​ 

βγ _ 
​(1 − βγ)​Λ

 ​​(​ ΛΓ − 1 _ ΛΓ − βγ ​)​  ≤  0​,

where the inequality holds for all ​ΛΓ  ∈ ​ [1, β/υ]​​, i.e., across all BGPs, while  
​d/dΛ  =  0​ if and only if ​ΛΓ  =  1​, which corresponds to the BGP with 
​​q​​ B​  = ​​ q –​​​ B​​, ​u  =  0​, and ​r  =  g​. Given the inverse relation between ​​q​​ B​​ and ​Λ​, it fol-
lows that lifetime utility across BGPs is increasing in the bubble-output ratio and 
attains a maximum when the latter takes its largest admissible value, ​​​q –​​​ B​​. In addi-
tion, it follows that the bubbleless BGP is associated with the lowest lifetime utility. 
Note that for BGPs with ​​q​​ B​  < ​​ q –​​​ B​​, the interest rate is less than the growth rate of 
the economy; at the margin, this allows for an increase in lifetime utility through a 
reallocation of resources from the young to the old, which is what a bubble attains. 
Thus, and relative to other BGPs, the utility-maximizing BGP is associated with a 
relatively higher (lower) consumption for older (younger) cohorts.

B. Bubble-Driven Fluctuations and Welfare

Along a BGP, aggregate output and consumption evolve independently of the 
size of the bubble ratio, with the latter affecting lifetime utility only through the 
distribution of consumption across cohorts. By focusing on BGPs, the analysis in 
the previous subsection has abstracted from the possibility of fluctuations in the 
aggregate bubble and the resulting fluctuations in output and consumption discussed 
in Section IV.

What are the welfare implications of such bubble-driven fluctuations? For the 
sake of argument, consider first an environment in which lump-sum transfers are 
available and used by the fiscal authority to equate consumption across individuals 
(including the newly born), thus allowing us to abstract from distributional issues. 
Under our assumptions, the level of aggregate output and consumption along any 
BGP, given by ​​Y​ t​ 

BGP​  = ​ Γ​​ t​ α ​​​ −​ 1 _ φ ​​​, lies below the efficient level, ​​Y​ t​ 
∗​  = ​ Γ​​ t​α​, due to 

the monopolistic distortion in the goods market. Thus, and taking ​​Y​ t​ 
BGP​​ as a start-

ing point, any increase (decrease) in aggregate output and consumption resulting 
from a growing (shrinking) bubble has a first-order positive (negative) effect on 
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utility. Furthermore, recurrent one-sided fluctuations in the bubble—and hence on 
output and consumption—of the sort generated by the Blanchard-type stochastic 
bubble analyzed in Section IV would also dominate from a welfare point of view the 
underlying BGP despite the likely volatility. On the other hand, recurrent symmet-
ric bubble-driven fluctuations around a given BGP would lead to an unambiguous 
(second-order) welfare loss due to the curvature of the utility function, with the 
average utility loss per period given by ​− (1/2) var​{​​y ˆ ​​t​​}​​.

In the absence of redistribution through lump-sum taxes, any welfare analysis 
should also take into account the distributional impact of bubble fluctuations. Such 
distributional effects are present even though complete financial markets have been 
assumed. The reason is that such markets are open only to cohorts that are currently 
alive, which effectively prevents the sharing of risks realized at any point in time 
(in particular, unexpected variations in existing or newly created bubbles) between 
newly born, incumbent, and future cohorts. Next, I discuss the key elements under-
lying the impact of bubble fluctuations on the three types of consumers.

Let ​​​c ˆ ​​t|s​​  ≡  log ​(​C​t|s​​/(​​t−s​​ ​Γ​​ t​))​​ denote the log deviation of ​​C​t|s​​​ from its value along 
the BGP. Consider first the impact of a positive bubble shock in period ​t​ (i.e., ​​ε​t​​  >  0​) 
on the consumption path (relative to the BGP) of a newly born consumer (​s  =  t​):

	​​ 
d​​c ˆ ​​t+k|t​​

 ______ 
d​ε​t​​

 ​   = ​ 
d​​c ˆ ​​t|t​​

 ____ 
d​ε​t​​

 ​ + ​ ∑ 
j=0

​ 
k−1

​​​ 
d​​r ˆ ​​t+j​​

 _____ 
d​ε​t​​

 ​   = ​ 
​(1 − βγ)​ΛΓ

 ___________ ΛΓ − βγ  ​​[​ 
d​​u ˆ ​​t​​ ___ 
d​ε​t​​

 ​ + ​(1 − υγ)​​ 
d​​x ˆ ​​t​​ ___ 
d​ε​t​​

 ​]​ + ​ ∑ 
j=0

​ 
k−1

​​​ 
d​​r ˆ ​​t+j​​

 _____ 
d​ε​t​​

 ​​ ,

where the first equality follows from the consumer’s Euler equation and the second 
equality makes use of the following result derived in the Appendix:

(59)	​​​ c ˆ ​​t|t​​  = ​ 
​(1 − βγ)​ΛΓ

 ___________ ΛΓ − βγ  ​​[​​u ˆ ​​t​​ + ​(1 − υγ)​ ​​x ˆ ​​t​​]​​.

The effect of the bubble shock on the consumption path of an incumbent con-
sumer (​s  <  t​) is given by

	​​ 
d​​c ˆ ​​t+k|s​​

 ______ 
d​ε​t​​

 ​   = ​ 
d​​c ˆ ​​t|∗​​

 ____ 
d​ε​t​​

 ​ + ​ ∑ 
j=0

​ 
k−1

​​​ 
d​​r ˆ ​​t+j​​

 _____ 
d​ε​t​​

 ​   = ​ 
​(1 − βγ)​ΛΓ

 ___________ βγ  ​​[​ 
d​​b ˆ ​​t​​ ___ 
d​ε​t​​

 ​ + υγ ​ d​​x ˆ ​​t​​ ___ 
d​ε​t​​

 ​]​ + ​ ∑ 
j=0

​ 
k−1

​​ ​ 
d​​r ˆ ​​t+j​​

 _____ 
d​ε​t​​

 ​​

for all ​s  <  t​, where ​​​c ˆ ​​t|∗​​  ≡  log ​(​C​t|∗​​/(​​∗​​ ​Γ​​ t​))​​, with ​​C​t|∗​​  ≡  (1/γ)​[​C​t​​ − ​(1 − γ)​​C​t|t​​]​​ 
denoting the average consumption among period ​t​ “incumbent” consumers. The 
first equality exploits the fact that under the maintained assumption of complete 
markets, the consumption of all incumbent individuals will change in the same pro-
portion in response to the shock (see (4)). Thus, ​d​​c ˆ ​​t|s​​/d​ε​t​​  =  d​​c ˆ ​​t|∗​​/d​ε​t​​​ for all ​s  <  t​. 
The second equality makes use of the following expression derived in the Appendix:

	​​​ c ˆ ​​t|∗​​  = ​ 
​(1 − βγ)​ΛΓ

 ___________ βγ  ​​[​​b ˆ ​​t​​ + υγ ​​x ˆ ​​t​​]​​.
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Finally, the impact of the bubble shock on the consumption path of individuals 
born in the future (​s  >  t​) is given by

	​​ 
d​​c ˆ ​​s+k|s​​

 ______ 
d​ε​t​​

 ​   = ​ 
d​​c ˆ ​​s|s​​

 ____ 
d​ε​t​​

 ​ + ​ ∑ 
j=0

​ 
k−1

​​ ​ 
d​​r ˆ ​​s+j​​

 _____ 
d​ε​t​​

 ​   = ​ 
​(1 − βγ)​ΛΓ​(1 − υγ)​

  __________________  ΛΓ − βγ  ​ ​ 
d​​x ˆ ​​s​​ ___ 
d​ε​t​​

 ​ + ​ ∑ 
j=0

​ 
k−1

​​ ​ 
d​​r ˆ ​​s+j​​

 _____ 
d​ε​t​​

 ​​

for all ​s  >  t​, where I have used (59) to derive the second equality.
Thus, under the weak assumption that ​d​​r ˆ ​​t+k​​/d​ε​t​​  ≥  0​ for ​k  =  0, 1, 2, …​, a suffi-

cient condition for a positive bubble shock to raise the consumption path (and hence 
welfare) of individuals currently alive, both newly born and incumbent (​s  ≤  t​), 
is given by ​d​​x ˆ ​​t​​/d​ε​t​​  >  0​; i.e., the positive bubble shock should cause an immedi-
ate increase in “fundamental” wealth. If, in addition, the latter effect is persistent, 
i.e., ​d​​x ˆ ​​t+k​​/d​ε​t​​  >  0​ for ​k  =  0, 1, 2, 3, …​, then a positive bubble shock will also 
raise the welfare of future cohorts. Note, on the other hand, that the exact distribution 
of the consumption (and welfare) gains resulting from a bubble expansion between 
the newly born and incumbent cohorts will depend on the extent to which the bubble 
shock takes the form of an innovation in the preexisting bubble (​d​​b ˆ ​​t​​/d​ε​t​​  >  0​)—in  
which case incumbent cohorts will draw a relatively larger benefit—or in newly cre-
ated bubbles (​d​​u ˆ ​​t​​/d​ε​t​​  >  0​)—which benefit relatively more the newly born cohort.54

Under what conditions will fundamental wealth increase in response to a rising 
bubble? As shown in the Appendix, fundamental wealth ​​​x ˆ ​​t​​​ is related to the aggregate 
bubble through the difference equation

	​​​ x ˆ ​​t​​  =  χ ​E​t​​​{​​x ˆ ​​t+1​​}​ + χ​(​ 
1 − βγ _ βγΦ  ​ − ​ 

​(1 − βγ)​​ϕ​y​​ + ​ϕ​q​​
  ______________ 

1 − βγΦ  ​)​ ​​q ˆ ​​ t​ 
B​​,

where ​χ  ≡ ​   Φ _____________  
1 + Φ​(​ 

1 − βγ _ 
1 − βγΦ ​)​ ​ϕ​y​​

 ​  ∈ ​ [0, 1]​​. Thus, any bubble shock that leads to a per-

sistent increase in the aggregate bubble will raise current and future fundamental 
wealth (i.e., ​d​​x ˆ ​​t+k​​/d​ε​t​​  >  0​) as long as the following condition is satisfied:

	​​ (1 − βγ)​​ϕ​y​​ + ​ϕ​q​​  < ​ 
​(1 − βγ)​​(1 − βγΦ)​

  _________________ βγΦ  ​​,

i.e., to the extent that the induced monetary policy response is not too strong.
The previous discussion has focused on the consequences of a positive bubble 

shock. The linearity of the equilibrium dynamics implies identical effects of neg-
ative bubble shocks but with the sign reversed. Accordingly, recurrent symmetric 
bubble-driven fluctuations around a BGP would only have a negative impact on 
(ex ante) expected lifetime utility due to the concavity of the utility function. That 
property would provide the main rationale for the kind of policies that rule out 
bubble fluctuations as analyzed in the previous section. Ex post, however, cohorts 
that are endowed with a sufficiently large bubble at birth may end up better off than 

54 The gains for future cohorts are independent of the nature of the bubble shock.
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in the underlying deterministic BGP despite the likely fluctuations in consumption 
over their lifetime.

VI.  Concluding Comments

The NK model remains the workhorse framework in macroeconomics, even 
though it is unsuitable—in its standard formulation—to accommodate the exis-
tence of asset price bubbles and, as a result, to address questions such as the 
conditions under which bubble-driven fluctuations may emerge or the interaction 
between aggregate bubbles and monetary policy. That shortcoming, however, is 
not tied to any essential ingredient of the model (e.g., nominal rigidities) but to 
the convenient (albeit unrealistic) assumption of an infinitely lived representative 
consumer. In the present paper, I have developed an extension of the basic NK 
model featuring overlapping generations, finite lives, and (stochastic) transitions 
to inactivity. That extension (which I referred to as OLG-NK, for short) allows, 
under certain conditions, for the existence of rational expectations equilibria with 
asset price bubbles. In particular, plausible calibrations of the model’s parameters 
are consistent with the existence of a continuum of bubbly balanced growth paths 
as well as a bubbleless one (which always exists). When combined with sticky 
prices, fluctuations in the size of the aggregate bubble unrelated to changes in fun-
damentals have been shown to be a potential source of fluctuations in aggregate 
demand and output.

The analysis of the properties of the OLG-NK model yields several insights.
First, when one abstracts from the possibility of bubbly equilibria, the introduc-

tion of an overlapping generations structure does not change any of the qualitative 
properties of the standard NK model. In fact, the resulting equilibrium conditions 
describing the dynamics of inflation and the output gap are identical to those of 
a standard model with a “modified” discount factor that accounts for effectively 
shorter horizons. In particular, the presence of finite horizons by itself does not 
help overcome the so-called “forward guidance puzzle” uncovered by a number of 
authors in the context of an infinitely lived representative agent model.

Second, a “leaning against the bubble” (LAB) interest rate policy, if precisely 
calibrated, may succeed in insulating output and inflation from aggregate bubble 
fluctuations. Furthermore, if aggressive enough, the LAB policy may be able to rule 
out bubble fluctuations themselves. The strength of the required systematic policy 
response to the bubble, however, increases in an unbounded way as the average size 
of the bubble-output ratio approaches zero. On the other hand, a LAB policy which 
does not succeed in eliminating bubble fluctuations may end up increasing the vol-
atility and persistence of bubble fluctuations as in Galí (2014).

Third, a policy that targets the output gap (or inflation) while ignoring the 
bubble will generally succeed at stabilizing those macro variables. If the aver-
age size of the bubble-output ratio lies above a certain threshold, a sufficiently 
aggressive output-based stabilization policy may rule out fluctuations in the 
bubble as well. On the other hand, if the average size of the bubble-output 
ratio lies below the same threshold, such a policy will not be able to elimi-
nate bubble fluctuations, and their consequent randomization in distribution 
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of resources across generations, even if they succeed in stabilizing output  
and inflation.

Finally, and in relation to the impact of bubbles on welfare, I have shown that 
expected lifetime utility along a deterministic balanced growth path is increasing in 
the associated bubble-output ratio. Secondly, an increase (decrease) in the size of 
the aggregate bubble raises (lowers) the expected lifetime utility of all cohorts as 
long as monetary policy doesn’t “overreact” to it. However, and to the extent that 
consumers are risk averse, recurrent symmetric bubble-driven fluctuations will be 
welfare reducing and will thus justify policies that eliminate them.

Four additional remarks pointing to possible future research avenues are in order. 
Firstly, the analysis of the equilibrium dynamics above has assumed “rationality” 
of asset price bubbles. That assumption underlies the equilibrium conditions that 
individual and aggregate bubbles must satisfy, i.e., (20) and (21), respectively, and 
the implied log-linear approximation (33). However, the remaining equilibrium 
conditions, including the modified dynamic IS equations, are still valid even if the 
process followed by the aggregate bubble were to deviate from that of a rational 
bubble. That observation opens the door to analyses of the macroeconomic effects 
and policy implications of alternative specifications of the aggregate asset price 
misalignments.

Secondly, the analysis above suggests that in the absence of other frictions, 
bubble fluctuations by themselves do not generate a trade-off between output 
gap and inflation stabilization. In other words, the “divine coincidence” property 
holds. As a result, a literal interpretation of the model is likely to favor strict infla-
tion targeting policies. It should be clear, however, that the model could be easily 
extended to incorporate some of the sources of policy trade-offs (e.g., staggered 
wage setting, shocks to desired markups, etc.) already found in the literature with-
out altering or affecting the basic links between aggregate bubbles and economic 
activity.

Thirdly, the analysis in the present paper has been conducted using a framework 
that, like the textbook NK model, abstracts from endogenous capital accumula-
tion. In the classical analysis of Tirole (1985) and others, however, where capital 
accumulation features prominently, a bubble expansion crowds out investment and 
through that channel leads to a subsequent decline in output. Note, however, that 
this would not necessarily be the case if capital accumulation were to be introduced 
in the OLG-NK model above since, in contrast with a Tirole-type model of bubbles, 
employment is endogenous and responsive to changes in aggregate demand (so that 
output can rise in response to a bubble expansion). As a result, an expansion in 
consumption does not mechanically imply a fall in investment. The latter’s response 
will depend on the expected returns to investment (which may increase if aggre-
gate demand increases persistently) and on the response of monetary policy (which 
is likely to reduce investment). Furthermore, and to the extent that firms’ borrow-
ing to finance investment is subject to collateral constraints, changes in the size of 
the aggregate bubble may affect the value of collateral and, through that channel, 
investment, potentially offsetting other crowding out channels. In that environment, 
a bubble may also distort the relative allocation of resources between consumption 
and investment, in addition to their levels, generating a trade-off for monetary policy 
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that cannot be captured in a model without investment and financial frictions. All 
these considerations seem to call for an analysis of the potential role of investment 
in the transmission of bubble fluctuations to economic activity in an economy with 
nominal rigidities.

Fourthly, balanced growth paths characterized by a larger bubble-output ratio 
are associated with a higher real interest rate. Thus, the presence of a bubble along 
a BGP should make it less likely for the zero lower bound on the nominal interest 
rate to become binding, ceteris paribus and conditional on the bubble not bursting. 
Similarly, the bursting of the bubble would bring along a reduction in the natural rate 
of interest that could pull the interest rate toward the zero lower bound. The analysis 
of the interaction of bubble dynamics with the zero lower bound seems an additional 
avenue worth exploring in future research.55

Note, finally, that the analysis of the equilibrium dynamics above has assumed 
that the central bank takes as given the BGP on which the economy settles and, 
hence, its associated real interest rate ​r​ and bubble-output ratio ​​q​​ B​​, both of which 
are parameters of the policy rule. But while the assumption of exogeneity of ​r​ is a 
natural one in a context in which that variable is uniquely pinned down (e.g., the 
standard NK model), it is not obviously so in an economy like the one described by 
the OLG-NK model, in which a multiplicity of real interest rates and bubble-output 
ratios may, under certain conditions, be consistent with a perfect foresight BGP. In 
future research, I plan to explore the implications of relaxing the assumption of a 
policy invariant BGP, i.e., of allowing the central bank to play a role in determining 
the BGP where the economy settles.

Appendix

A. Derivation of Consumption Functions

The intertemporal budget constraint as of period ​t​ for an individual born in 
period ​s​ and still active in period ​t  ≥  s​ can be derived by iterating (3) forward 
from ​t​ onward to yield

(60)	​​  ∑ 
k=0

​ 
∞

 ​​​γ​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​C​t+k|s​​}​  = ​ A​ t|s​ 
a ​ + ​ 1 _ α ​ ​ ∑ 

k=0
​ 

∞
 ​​​​(γυ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​W​t+k​​ ​N​t+k​​}​​.

For retired individuals born in period ​s​, the corresponding constraint is

(61)	​​  ∑ 
k=0

​ 
∞

 ​​​γ​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​C​t+k|s​​}​  = ​ A​ t|s​ 
r  ​​.

55 Bonchi (2017) and Billi, Galí, and Nakov (2020) represent an early effort in that direction.
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Combining (4) with (60) and (61), we obtain the corresponding consumption 
functions

	​​ C​ t|s​ 
a ​  = ​ (1 − βγ)​​[​A​ t|s​ 

a ​ + ​ 1 _ α ​ ​ ∑ 
k=0

​ 
∞

 ​​​​(γυ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​W​t+k​​ ​N​t+k​​}​]​​,

	​​ C​ t|s​ 
r  ​  = ​ (1 − βγ)​ ​A​ t|s​ 

r  ​​.

In particular, for a newly born consumer,

(62)  ​​  C​t|t​​  = ​ (1 − βγ)​​[​ 
​U​t​​ _ 

1 − γ ​ + ​ 1 _ α ​​ ∑ 
k=0

​ 
∞

 ​​​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​​(​W​t+k​​ ​N​t+k​​ + ​D​t+k​​)​}​]​ 

	 = ​ (1 − βγ)​​[​ 
​U​t​​ _ 

1 − γ ​ + ​ 1 _ α ​​ ∑ 
k=0

​ 
∞

 ​​​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​Y​t+k​​}​]​ 

	 = ​ (1 − βγ)​​[​ 
​U​t​​ _ 

1 − γ ​ + ​ 1 _ α ​ ​X​t​​]​​.

Aggregating across all individuals and cohorts and imposing asset market clear-
ing, we obtain the aggregate consumption function

	​​ C​t​​  = ​ (1 − βγ)​​[​Q​ t​ 
F​ + ​Q​ t​ 

B​ + ​ ∑ 
k=0

​ 
∞

 ​​​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​W​t+k​​ ​N​t+k​​}​]​ 

	 = ​ (1 − βγ)​​[​Q​ t​ 
B​ + ​ ∑ 

k=0
​ 

∞
 ​​​​(υγ)​​​ k​ ​E​t​​​{​Λ​t,t+k​​ ​Y​t+k​​}​]​ 

	 = ​ (1 − βγ)​​[​Q​ t​ 
B​ + ​X​t​​]​​.

Also note that one can evaluate (62) at a BGP to obtain the following expression 
for the consumption of a newly born individual, normalized by productivity, which 
is used in the section on welfare in the main text:

(63) ​​​0​​  = ​ (1 − βγ)​​[​  u _ 
1 − γ ​ + ​(​ 1 _ α ​)​​(​  1 _ 

1 − ΛΓυγ ​)​]​ 

	 = ​ 
1 − βγ _ 
1 − γ  ​​[​(1 − ​  1 _ ΛΓ ​)​​ 

γ​(β − ΛΓυ)​
  __________________  

​(1 − βγ)​​(1 − ΛΓυγ)​
 ​ + ​ 

1 − υγ _ 
1 − ΛΓυγ ​]​ 

	 = ​   1 _________________  
​(1 − γ)​​(1 − ΛΓυγ)​

 ​​[​(1 − ​  1 _ ΛΓ ​)​​(βγ − ΛΓυγ)​ + ​(1 − βγ)​​(1 − υγ)​]​ 

	 = ​   1 _ 
1 − γ ​​(1 − ​ 

βγ _ ΛΓ ​)​​,

where the second equality makes use of (27) and (28) to substitute for ​u​.
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B. Transversality Condition in a Bubbly BGP

The consumption function for an active individual born in period ​s​ is

	​​ C​ t+T |s​ 
a  ​  = ​ (1 − βγ)​​[​A​ t+T|s​ 

a  ​ + ​ 
​W​t+T​​ N/α

 _ 
1 − ΛΓυγ ​]​​.

In particular,

	​​ C​ t|s​ 
a ​  = ​ (1 − βγ)​​[​A​ t|s​ 

a ​ + ​ 
​W​t​​ N/α

 _ 
1 − ΛΓυγ ​]​​.

In addition, ​​C​t+T |s​​  = ​​ (β/Λ)​​​ 
T
​ ​C​t|s​​​, thus implying

	​​ A​ t+T |s​ 
a  ​  = ​​ (β/Λ)​​​ 

T
​​[​A​ t|s​ 

a ​ + ​(1 − ​​(ΛΓ/β)​​​ 
T
​)​ ​ 

​W​t​​ N/α
 _ 

1 − ΛΓυγ ​]​​.

On the other hand, for a retired individual,

	​​ C​ t|s​ 
r  ​  = ​ (1 − βγ)​ ​A​ t|s​ 

r  ​​.

Using the fact that ​​C​ t|s​ 
r  ​  = ​ C​ t|s​ 

a ​​, we have

	​​ A​ t|s​ 
r  ​  = ​ A​ t|s​ 

a ​ + ​ 
​W​t​​ N/α

 _ 
1 − ΛΓυγ ​​.

The transversality condition for an active individual takes the form

​​ lim​ 
T→∞

​​ ​​(γΛ)​​​ T​ ​E​t​​​{​A​t+T|s​​}​  = ​  lim​ 
T→∞

​​ ​​(γΛ)​​​ T​​[​υ​​ T​ ​A​ t+T|s​ 
a  ​ + ​(1 − ​υ​​ T​)​​A​ t+T|s​ 

r  ​]​ 

	 = ​  lim​ 
T→∞

​​ ​​(γΛ)​​​ T​​[​A​ t+T|s​ 
a  ​ + ​(1 − ​υ​​ T​)​ ​Γ​​ T​ ​ 

​W​t​​ N/α
 _ 

1 − ΛΓυγ ​]​ 

	 = ​  lim​ 
T→∞

​​ ​​(βγ)​​​ T​​[​A​ t|s​ 
a ​ + ​(1 − ​​(ΛΓ/β)​​​ 

T
​)​​ 

​W​t​​ N/α
 _ 

1 − ΛΓυγ ​]​ 

	 + ​ lim​ 
T→∞

​​ ​​(γΛΓ)​​​ T​​(1 − ​υ​​ T​)​​ 
​W​t​​ N/α

 _ 
1 − ΛΓυγ ​ 

	 = ​ 
​W​t​​ N/α

 _ 
1 − ΛΓυγ ​  ​ lim​ 

T→∞
​​​[​​(βγ)​​​ T​ − ​​(ΛΓγ)​​​ T​ + ​​(ΛΓγ)​​​ T​ − ​​(ΛΓυγ)​​​ T​]​ 

	 =  0​,

where the maintained assumption ​ΛΓυγ  <  1​ has been used.
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C. Bubble-Driven Fluctuations: A Simple Representation

Let the equilibrium be described by the system of difference equations

(64)	​​ 𝐱​t​​  =  𝐀 ​E​t​​​{​𝐱​t+1​​}​​,

where ​​𝐱​t​​  ≡  [​​y ˆ ​​t​​,​​​​q ˆ ​​ t​ 
B​ ]′​. Let ​𝐀​ have ​q  ≤  2​ eigenvalues with modulus less than one. 

If ​q  =  2​, the stationary solution to (64) is unique and given by ​​𝐱​t​​  = ​ [0, 0]​​ for all ​t​ 
(see, e.g., Blanchard and Kahn 1980). Here I focus on the case of ​q  <  2​.

Consider the transformation ​​𝐱​t​​  = ​ 𝐐𝐯​t​​​, where ​​𝐐𝐉𝐐​​ −1​  =  𝐀​, where ​𝐉​ is the 
canonical Jordan matrix and ​𝐐  ≡ ​ [​𝐪​​ ​(1)​​, ​𝐪​​ ​(2)​​]​​ is the matrix of generalized eigen-
vectors, corresponding to the two eigenvalues. Thus,

(65)	​​ 𝐯​t​​  =  𝐉 ​E​t​​​{​𝐯​t+1​​}​​.

Consider the case where ​𝐀​ has eigenvalues ​​| ​λ​1​​ |​  <  1​ and ​​|​ λ​2​​ |​  >  1​. In that 

case, ​𝐉  = ​ [​​λ​1​​​  0​ 0​  ​λ​2​​
​]​​. The stationary solutions to (65) take the form ​​𝐯​1,t​​  =  0​ and

	​​ 𝐯​2,t​​  = ​ λ​ 2​ 
−1​ ​𝐯​2,t−1​​ + ​ξ​t​​​

for all ​t​, where ​​ξ​t​​​ is a (univariate) martingale difference process. 
Accordingly, ​​𝐱​t​​  = ​ 𝐪​​ ​(2)​​ ​𝐯​ t​ 

s​​ is the sunspot solution, or alternatively,  
​​𝐱​t​​  = ​ λ​ 2​ 

−1​ ​𝐱​t−1​​ + ​𝐪​​ ​(2)​​ ​ξ​t​​​. Conditional on ​​{​ξ​t​​}​​, that solution is unique up to normal-
ization of ​​𝐪​​ ​(2)​​​.

Next, consider the case where ​𝐀​ has eigenvalues ​​|​λ​1​​|​  >  1​ and ​​|​λ​2​​|​  >  1​. If both 

eigenvalues are real, ​𝐉  = ​ [​​λ​1​​​  0​ 0​  ​λ​2​​
​]​​ and ​​𝐪​​ ​(k)​​​ corresponds to the eigenvector associ-

ated with eigenvalue ​k,​ for ​k  =  1, 2​. Otherwise, if ​​λ​1​​  =  a + bi​ and ​​λ​2​​  =  a − bi​ 

are complex conjugates, ​𝐉  = ​ [​a​  − b​ b​  a  ​]​​ and ​​𝐪​​ ​(1)​​​ and ​​𝐪​​ ​(2)​​​ are, respectively, the imag-

inary and real components of the eigenvector associated with the complex eigenval-
ues. In either case, (65) has a stable solution:

	​​ 𝐯​t​​  = ​ 𝐉​​ −1​ ​𝐯​t−1​​ + ​ξ​t​​​,

where ​​ξ​t​​​ is a (bivariate) martingale difference process. Accordingly, and using  
​​𝐱​t​​  = ​ 𝐐𝐯​t​​​ and ​​𝐐𝐉𝐐​​ −1​  =  𝐀​, we have

	​​ 𝐱​t​​  = ​ 𝐀​​ −1​ ​𝐱​t−1​​ + ​ζ​t​​​,

where ​​ζ​t​​  =  𝐐 ​ξ​t​​​.
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D. Conditions for Existence of Bubble-Driven Fluctuations: The General Case

It is easy to show, after some algebra, that

​det ​(𝐀)​  = ​   ΦΛΓ _____________  
1 + ​ϕ​y​​ + ​q​​ B​ ​ϕ​q​​

 ​  >  0​,

	 ​tr​(𝐀)​  =  ΘΦ + ​  ΛΓ _ 
1 + ​q​​ B​ ​ϕ​q​​

 ​​[1 − ​ 
​ϕ​y​​
 _____________  

1 + ​ϕ​y​​ + ​q​​ B​ ​ϕ​q​​
 ​​(​  1 − Φ _ 

1 − βγΦ ​)​]​ 

	 + βγΦ​(​ 
​ϕ​y​​
 _____________  

1 + ​ϕ​y​​ + ​q​​ B​ ​ϕ​q​​
 ​)​​(​  1 − Φ _ 

1 − βγΦ ​)​​(1 + ​  ΛΓ _ 
1 + ​q​​ B​ ​ϕ​q​​

 ​ ​ 
​ϕ​q​​
 _ 

1 − βγΦ ​)​  >  0.​

Note that for any ​​q​​ B​  >  0​, ​​lim​​ϕ​q​​→+∞​​ det ​(𝐀)​  =  0​ and ​​lim​​ϕ​q​​→+∞​​ tr​(𝐀)​  
=  Φ  <  1​, thus establishing that a sufficiently aggressive LAB policy would rule 
out the possibility of bubble-driven fluctuations.

Next, consider the case of ​​ϕ​q​​  =  0​. In that case, we can write

​	det ​(𝐀)​  = ​  ΦΛΓ _ 
1 + ​ϕ​y​​

 ​  >  0​,

​tr​(𝐀)​  = ​   Φ _ 
1 + ​ϕ​y​​

 ​ + ΛΓ​[1 − ​ 
​ϕ​y​​
 _ 

1 + ​ϕ​y​​
 ​​(​  1 − Φ _ 

1 − βγΦ ​)​]​ + βγΦ​(​ 
​ϕ​y​​
 _ 

1 + ​ϕ​y​​
 ​)​​(​  1 − Φ _ 

1 − βγΦ ​)​ 

	 = ​   Φ _ 
1 + ​ϕ​y​​

 ​ + Ψ + ​  1 _ 
1 + ​ϕ​y​​

 ​​(​  1 − Φ _ 
1 − βγΦ ​)​​(ΛΓ − βγΦ)​  >  0​,

where, as in the main text, ​Ψ  ≡  Φ​[1 + ​(ΛΓ − 1)​ ​ 
1 − βγ _ 

1 − βγΦ ​]​  ≥  0​, which is indepen-
dent of ​​ϕ​y​​​.

Accordingly, uniqueness condition ​​| det ​(𝐀)​ |​  <  1​ can be written as

(66)	​​ ϕ​y​​  >  ΦΛΓ − 1  ≡  f​(​q​​ B​)​​

given ​​q​​ B​  ∈ ​ [0, ​​q –​​​ B​]​​. On the other hand, condition ​tr​(𝐀)​  <  1 + det ​(𝐀)​​ can be writ-
ten as

	​ Ψ − 1  < ​   1 _ 
1 + ​ϕ​y​​

 ​​[Φ​(ΛΓ − 1)​ − ​(​  1 − Φ _ 
1 − βγΦ ​)​​(ΛΓ − βγΦ)​]​ 

	 = ​   1 _ 
1 + ​ϕ​y​​

 ​​[Φ​(ΛΓ − 1)​​(​ 
1 − βγ _ 

1 − βγΦ ​)​ + Φ​(ΛΓ − 1)​​ 
βγ​(1 − Φ)​

 _ 
1 − βγΦ  ​ 

	 − ​(​  1 − Φ _ 
1 − βγΦ ​)​​(ΛΓ − βγΦ)​]​ 

	 = ​   1 _ 
1 + ​ϕ​y​​

 ​​[Ψ − 1 − ​(ΛΓ − 1)​​(1 − Φ)​]​​.

Equivalently, and letting ​h​(​q​​ B​)​  ≡ ​ (ΛΓ − 1)​​(1 − Φ)​/(1 − Ψ)  >  0​, the previ-
ous inequality can be written more compactly as

(67)	​​ (​q​​ B​ − ​q​ ∗​ 
B​)​​(​ϕ​y​​ − h​(​q​​ B​)​)​  >  0​,
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given ​​q​​ B​  ∈ ​ [0, ​​q –​​​ B​]​​.
Next, I analyze the conditions on ​​ϕ​y​​​ that guarantee that (66) and (67) are jointly 

satisfied for any given ​​q​​ B​  ∈ ​ [0, ​​q –​​​ B​]​​. As a preliminary step, it is useful to examine 
the properties of ​f​(​q​​ B​)​​ and ​h​(​q​​ B​)​​.

Note that ​f​(​q​​ B​)​​ is continuous in ​​q​​ B​​, with ​f  ′​(​q​​ B​)​  <  0​, ​f​(0)​  =  (β/υ) − 1  
>  0,​ and ​f​(​​q –​​​ B​)​  =  (υ/β) − 1  <  0​. Furthermore, using the fact that ​1  

=  Φ​[1 + ​(ΛΓ − 1)​ ​ 
1 − βγ _ 

1 − βγΦ ​]​​ at ​​q​ ∗​ 
B​​, one can further show that ​f​(​q​ ∗​ 

B​)​  

= ​ 
​(ΛΓ − 1)​βγ​(1 − Φ)​

  ____________________  
1 − βγΦ + ​(ΛΓ − 1)​​(1 − βγ)​

 ​  >  0​. For future reference, define ​​q​ 0​ 
B​​ such that  

​f​(​q​ 0​ 
B​)​  =  0​, and note that ​​q​ ∗​ 

B​  < ​ q​ 0​ 
B​  < ​​ q –​​​ B​​.

On the other hand, ​h​(​q​​ B​)​​ is continuous in ​​q​​ B​​ except at ​​q​​ B​  
= ​ q​ ∗​ 

B​​ , with ​​(​q​​ B​ − ​q​ ∗​ 
B​)​h′​(​q​​ B​)​  ≥  0​ for ​​q​​ B​  ∈ ​ [0, ​q​ ∗​ 

B​)​ ∪ ​(​q​ ∗​ 
B​, ​​q –​​​ B​]​​. Furthermore, ​h​(0)​  

=  h​(​​q –​​​ B​)​  =  0​, ​​lim​​q​ ∗​ 
B​→​q​ ∗​ 

B​−​​ h​(​q​​ B​)​  =  − ∞​ and ​​lim​​q​ ∗​ 
B​→​q​ ∗​ 

B​+​​ h​(​q​​ B​)​  =  + ∞​.
The previous properties imply that ​f​(​q​​ B​)​  >  h​(​q​​ B​)​​ for all ​​q​​ B​  ∈ ​ [0, ​q​ ∗​ 

B​)​​ so that 
(66) and (67) cannot be satisfied simultaneously. Accordingly, equilibria with 
bubble-driven fluctuations will exist if ​​q​​ B​  ∈ ​ [0, ​q​ ∗​ 

B​]​​, independently of the size of 
the output coefficient ​​ϕ​y​​​.

On the other hand, we have ​h​(​q​​ B​)​  >  f​(​q​​ B​)​​ for ​​q​​ B​  ∈ ​ (​q​ ∗​ 
B​, ​​q –​​​ B​]​​. For ​​q​​ B​  > ​ q​ 0​ 

B​​, 
this is clear since ​f​(​q​​ B​)​  <  0​ and ​h​(​q​​ B​)​  ≥  0​ over that range. Furthermore, ​h​(​q​ 0​ 

B​)​  
>  f​(​q​ 0​ 

B​)​  =  0​. Finally, it is easy to prove that ​h​(​q​​ B​)​  >  f​(​q​​ B​)​​ for any ​​q​​ B​  ∈ ​
(​q​ ∗​ 

B​, ​q​ 0​ 
B​)​​ as well. Suppose ​h​(​q​​ B​)​  ≤  f​(​q​​ B​)​​. Then ​​(ΛΓ − 1)​​(1 − Φ)​  ≤ ​ (ΦΛΓ − 1)​

× ​(1 − Ψ)​​, where each term in brackets is strictly positive over the range ​​(​q​ ∗​ 
B​, ​q​ 0​ 

B​)​​. 
But this is inconsistent with the fact that over the same range, ​​(1 − Ψ)​  < ​ (1 − Φ)​​ 
and ​​(ΦΛΓ − 1)​  < ​ (ΛΓ − 1)​​. So, we must have ​h​(​q​​ B​)​  >  f​(​q​​ B​)​​ over the range ​​
(​q​ ∗​ 

B​, ​q​ 0​ 
B​)​​ as well.

E. Bubble-Driven Fluctuations and Welfare: Some Derivations

As shown in Section A of the present Appendix, consumption of a newly born 
individual is given by

	​​ C​t|t​​  = ​ (1 − βγ)​​[​  1 _ 
1 − γ ​ ​U​t​​ + ​ 1 _ α ​ ​X​t​​]​​.

Log-linearizing the previous expression around the BGP, and using the fact 

that ​​​0​​/  = ​   1 _ 1 − γ ​​(1 − ​ 
βγ _ ΛΓ ​)​​ as shown in (63), yields

	​​​ c ˆ ​​t|t​​  = ​ 
​(1 − βγ)​ΛΓ

 ___________ ΛΓ − βγ  ​​[​​u ˆ ​​t​​ + ​(1 − υγ)​ ​​x ˆ ​​t​​]​​,

where ​​​c ˆ ​​t|t​​  ≡  log ​(​C​t|t​​/(​​0​​ ​Γ​​ t​))​​.
The average consumption of “incumbent” individuals, ​​C​t|∗​​​, is given by

	​​ C​t|∗​​  ≡ ​  1 _ γ ​​[​C​t​​ − ​(1 − γ)​ ​C​t|t​​]​  = ​ (1 − βγ)​​[​ 1 _ γ ​ ​B​t​​ + υ ​X​t​​]​​.
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Log-linearizing the previous expressions around the BGP yields

	​​​ c ˆ ​​t|∗​​  = ​ 
​(1 − βγ)​ΛΓ

 ___________ βγ  ​​[​​b ˆ ​​t​​ + υγ ​​x ˆ ​​t​​]​​,

where ​​​c ˆ ​​t|∗​​  ≡  log ​(​C​t|∗​​/(​​∗​​ ​Γ​​ t​))​​ and where use has been made of the fact 
that ​​​∗​​/  =  β/(ΛΓ).​

Next, I analyze the dynamics of fundamental wealth, ​​​x ˆ ​​t​​​. From (32) we have

	​​​ x ˆ ​​t​​  =  Φ ​E​t​​​{​​x ˆ ​​t+1​​}​ + ​ 
1 − βγ _ βγ  ​ ​​q ˆ ​​ t​ 

B​ − ​  Φ _ 
1 − βγΦ ​ ​​r ˆ ​​t​​​,

which can be combined with (31) and (43) to obtain the following expression:

	​​​ x ˆ ​​t​​  =  χ ​E​t​​​{​​x ˆ ​​t+1​​}​ + χ​(​ 
1 − βγ _ βγΦ  ​ − ​ 

​(1 − βγ)​ ​ϕ​y​​ + ​ϕ​q​​
  ______________  

1 − βγΦ  ​)​ ​​q ˆ ​​ t​ 
B​​,

where ​χ  ≡ ​   Φ _____________  
1 + Φ​(​ 

1 − βγ _ 
1 − βγΦ ​)​ ​ϕ​y​​

 ​  ∈ ​ [0, 1]​​.
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