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ABSTRACT   We study how changes in the steady-state real interest rate 
(henceforth r*) affect the optimal inflation target in a New Keynesian dynamic 
stochastic general equilibrium (DSGE) model with trend inflation and a lower 
bound on the nominal interest rate. In this setup, a lower r* increases the proba-
bility of hitting the lower bound. That effect can be counteracted by an increase 
in the inflation target, but the resulting higher steady-state inflation has a 
welfare cost in and of itself. We use an estimated DSGE model to quantify that 
trade-off and determine the implied optimal inflation target, conditional on the 
monetary policy rule in place before the financial crisis. The relation between 
r* and the optimal inflation target is downward sloping. While the increase in 
the optimal inflation rate is in general smaller than the decline in r*, in the 
currently empirically relevant region the slope of the relation is found to be 
close to −1. That slope is robust to allowing for parameter uncertainty. Under 

PHILIPPE ANDRADE
Federal Reserve Bank of Boston

JORDI GALÍ
Centre de Recerca en Economia Internacional

Conflict of Interest Disclosure: Philippe Andrade is a senior economist and policy adviser 
at the Federal Reserve Bank of Boston; Jordi Galí is a senior researcher at the Centre de 
Recerca en Economia Internacional (CREI), a professor at Universitat Pompeu Fabra, and a 
research professor at the Barcelona Graduate School of Economics, as well as an academic 
consultant to Sveriges Riksbank and a member of the Research Council of the Deutsche 
Bundesbank; Hervé Le Bihan is Deputy Director for the Directorate of Monetary and Finan-
cial Studies at the Banque de France; Julien Matheron is a senior research adviser for the 
Directorate of Monetary and Financial Studies at the Banque de France. Beyond these affili-
ations, the authors did not receive financial support from any firm or person for this paper or 
from any firm or person with a financial or political interest in this paper. None of the authors 
are currently officers, directors, or board members of any organization with an interest in 
this paper. No outside party had the right to review this paper before circulation. The views 
expressed in this paper are those of the authors, and do not necessarily reflect those of the 
aforementioned institutions affiliated with the authors.



174  Brookings Papers on Economic Activity, Fall 2019

makeup strategies such as price level targeting, the optimal inflation target is 
significantly lower and less sensitive to r*.

A recent but sizable literature has pointed to a permanent—or at least 
very persistent—decline in the natural rate of interest in advanced 

economies (Holston, Laubach, and Williams 2017; Laubach and Williams 
2016). Various likely sources of that decline have been discussed, includ-
ing a lower trend growth rate of productivity (Gordon 2015), demographic 
factors (Eggertsson, Mehrotra, and Robbins 2019), or an enhanced prefer-
ence for safe and liquid assets (Caballero and Farhi 2018; Del Negro and 
others 2017; Summers 2014).

A lower steady-state real interest rate matters for monetary policy. 
Given average inflation, a lower steady-state real interest rate will cause 
the nominal interest rate to hit its zero lower bound (ZLB) more frequently, 
hampering the ability of monetary policy to stabilize the economy, bringing 
about more frequent (and potentially protracted) episodes of recession and 
below-target inflation. The low interest rate environment is a key factor 
behind the Federal Reserve’s current review of its monetary policy (Clarida 
2019; Fuhrer and others 2018).1

In the face of that risk several prominent economists have forcefully 
argued in favor of raising the inflation target.2 Since a lower natural rate 
of interest is conducive to a higher ZLB incidence, one would expect a 
higher inflation target to be desirable as, other things being equal, a higher 
inflation target increases the steady-state nominal interest rate and reduces 
the ZLB incidence. But the answer to the practical question of how much 
should the target be increased is not obvious. Indeed, the benefit of provid-
ing a better hedge against hitting the ZLB, which is an infrequent event, 
comes at the cost of higher steady-state inflation which induces permanent 
costs, as recently argued by Bernanke (2016), among others. The answer 
to this question thus requires us to assess how the trade-off between the 
incidence of the ZLB and the welfare cost induced by steady-state inflation 
is modified when the natural rate of interest decreases. While the decrease 
in the natural rate of interest has been emphasized in the recent literature, 
such assessment has received surprisingly little attention.

1. Note that the numerical value of the inflation target is not part of that review.
2. See, among others, Ball (2014), Blanchard, Dell’Ariccia, and Mauro (2010), and, with 

qualifications, Williams (2016).
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The present paper contributes to this debate by asking four questions. 
First, to what extent does a lower steady-state real interest rate (r*) call for 
a higher optimal inflation target (π*)? Second, does the source of decline in 
r* matter? Third, how does parameter uncertainty affect the (r*, π*) curve? 
Fourth, to what extent do the strategy and rules followed by the central 
bank alter the relation between r* and π*? We focus on the U.S. economy 
but the issues we investigate equally apply to other advanced economies—
in particular the euro area—because the decline in r* appears to be a global 
phenomenon (Brand, Bielecki, and Penalver 2019; Del Negro and others 
2019; Rachel and Summers 2019).3

We provide answers to these questions using a structural, empirically 
estimated, macroeconomic model. Our main findings can be summarized 
as follows: (1) The relation between r* and π* is downward sloping, but not 
necessarily, in general, one-for-one. (2) In the vicinity of the pre-crisis 
values for r*, the slope of the (r*, π*) locus is close to −1, though slightly 
below in absolute value; the relation is largely robust to the underlying 
source of variation in r* for a plausible range of r* values. (3) The slope of 
the (r*, π*) locus remains close to −1 when the central bank is uncertain 
about the parameters of the model characterizing the economy, including r*. 
(4) The slope of the curve is also robust to various alteration of the monetary 
policy rule but not to the adoption of rules such as price level targeting, 
which involve a credible commitment to making up for past deviations 
from the inflation target.

Our results are obtained from extensive simulations of a New Keynesian  
dynamic stochastic general equilibrium (DSGE) model estimated for the 
United States over a Great Moderation sample.4 The framework features: 
(1) price stickiness and partial indexation of prices to trend inflation,  
(2) wage stickiness and partial indexation of wages to both inflation and 
productivity, and (3) a ZLB constraint on the nominal interest rate. The first 
two features imply the presence of potentially substantial costs associated 
with nonzero steady-state inflation. The third feature warrants a strictly 
positive inflation rate in order to mitigate the incidence and adverse effects 
of the ZLB. To our knowledge, these three features have not been jointly 
taken into account in previous analyses of optimal inflation.

3. We will provide a comparable analysis for the euro area in a work in progress, “Should 
the ECB Adjust Its Strategy in the Face of a Lower Natural Rate of Interest?”

4. In Andrade, Le Bihan, Galí, and Matheron (2020), we show that very similar results 
obtain in a model estimated with euro area data.
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Our analysis focuses on the trade-off between the costs attached to the 
probability of hitting the ZLB and the costs induced by a positive steady-
state inflation rate for a given monetary policy strategy. In the baseline, 
monetary policy follows an inertial interest rate rule estimated using 
pre-crisis data. Importantly, the specification of the policy rule implies that 
interest rates remain low for long after the end of a ZLB episode and that 
private agents expect the central bank to do so. This implies that some 
monetary accommodation can be provided despite the ZLB constraint. 
This specification can thus be seen as a parsimonious way to factor in  
the effects of nonconventional policies that the Fed implemented during the 
ZLB period in our analysis.

According to our simulations, the optimal inflation target obtained when 
the policymaker is assumed to know the economy’s parameters with  
certainty (and taken to correspond to the mean of the posterior distribution) 
is around 2 percent (in annual terms). This result is obtained in an envi-
ronment with a relatively low probability—around 6 percent—of hitting 
the ZLB when the target for the inflation rate is set at the historical mean  
of inflation and given the size of the shocks estimated on our Great  
Moderation sample. Our simulations also show that a 100 basis point 
drop of r* from its estimated 2.5 percent pre-crisis level will almost 
double the probability of hitting the ZLB if the monetary authority keeps 
its inflation target unchanged. The optimal reaction of the central bank is to 
increase the inflation target by about 99 basis points. This optimal reaction 
limits the increase in the probability of hitting the ZLB to a mere half of 
a percentage point.

This optimal adjustment is robust to a set of alternative scenarios. It does 
not depend on the cause (productivity, demography, or safe assets) under-
lying such a structural decline. It also remains close to one for one when 
we consider alternative assumptions regarding key structural parameters: 
structural shocks with higher variance, alternative markups in the goods 
and labor market, and different degrees of indexation to trend inflation. 
Strikingly, while the level of the locus can be significantly affected by those 
changes—these alternative scenarios call for an optimal inflation target 
that would have been close to or above 2 percent before the crisis—overall 
the slope of the (r*, π*) relation remains close to −1 in the vicinity of the 
pre-crisis parameter region.

More generally, one may wonder how a central bank should adjust its 
optimal inflation target when it is uncertain about the true values of struc-
tural parameters describing the economy. A notable feature of our approach 
is that we perform a full-blown Bayesian estimation of the model. This 
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allows us not only to assess the uncertainty surrounding π* but also to derive 
an optimal inflation target taking into account the parameter uncertainty 
facing the policymaker, including uncertainty with regard to the determi-
nants of the steady-state real interest rate. When that parameter uncertainty 
is allowed for, the optimal inflation target value increases significantly, to 
2.4 percent. The higher optimal target under parameter uncertainty reflects 
the fact that the loss function is asymmetric, so that choosing an inflation 
target that is lower than the optimal one is more costly than choosing an 
inflation target that is above. In spite of the higher level, it remains true that a 
Bayesian-theoretic optimal inflation target rises by about 90 basis points in 
response to a downward shift of the distribution in r* by 100 basis points.

Finally, we study how potential changes in the monetary policy rule or  
strategy affect the (r*, π*) relation. We consider a number of different 
cases: (1) defining the inflation target in terms of average realized infla-
tion as opposed to a parameter in the rule; (2) a central bank constrained  
by an effective lower bound on the policy rate that can be below zero;  
(3) a central bank with a lower or higher smoothing parameter in the inter-
est rate policy rule; (4) a monetary policy rule with a smoothing component 
that involves the lagged actual policy rate instead of the lagged shadow 
rate; and (5) a central bank targeting the price level rather than the infla-
tion rate. All these changes have an impact on the level of π* for any given 
level of r*. Yet only in the case of higher interest rate smoothing and price 
level targeting do we find a noticeable change in the slope of the (r*, π*) 
relation. In these two cases, the relation is much less steep, illustrating the 
strength of makeup strategies to overturn the ZLB. However, as we discuss 
in the conclusion, an important caveat is that this result is obtained under 
the joint assumption of rational expectations, perfect information, and full 
credibility of the commitment.

The remainder of the paper is organized as follows. Section I describes 
our baseline model. Section II discusses how the model is estimated and 
simulated, as well as how the welfare-based optimal inflation target is 
computed. Section III is devoted to the analysis of the (r*, π*) relation 
under the baseline estimates as well as for a set of alternative parameters. 
Section IV presents and discusses this locus under parameter uncertainty. 
Section V investigates the (r*, π*) under alternative monetary policy rules 
and strategies. Finally section VI summarizes and concludes.

RELATED LITERATURE To our knowledge no paper has systematically 
investigated the (r*, π*) relation. Coibion, Gorodnichenko, and Wieland 
(2012), followed up by Dordal-i-Carreras and others (2016), and Kiley and 
Roberts (2017), are the papers most closely related to ours, as they study 



178 Brookings Papers on Economic Activity, Fall 2019

optimal inflation in quantitative setups that account for the ZLB. However, 
the analyses by Coibion, Gorodnichenko, and Wieland (2012) assume  
a constant steady-state natural rate of interest, so a key difference is our 
focus on eliciting the relation between the steady-state real interest rate 
and optimal inflation. Other differences are that we estimate, rather than 
calibrate, the model, and that we allow for wage rigidity in the form of 
infrequent, staggered, wage adjustments. A distinctive feature with respect to 
Kiley and Roberts (2017) is that we use a model-consistent, micro-founded 
loss function to compute optimal inflation.

A series of papers assessed the probability that the U.S. economy hit the 
ZLB for a given inflation target. Interestingly, our own assessment of this 
pre-crisis ZLB incidence falls in the ballpark of available estimates, for 
example, Chung and others (2012). As we show, when the inflation target 
is not adjusted, but allowing for post–Great Moderation shocks, we also 
get post-crisis probability of hitting the ZLB that is comparable to the 
ones obtained in recent related studies such as Chung and others (2019).

In the New Keynesian setup that we consider, agents have rational 
expectations and make decisions that are forward-looking: they fully 
understand that the central bank’s inability to lower the policy further will 
lead to a deflation which magnifies the contractionary demand shocks that 
were responsible for driving the economy to the ZLB in the first place. 
One concern may be that this framework makes the ZLB too destabilizing, 
hence overweighing the benefits of a positive inflation target. However, 
this is partially offset by the fact that rational expectations and forward-
looking decisions also make the lower for longer monetary policies that 
we consider at the end of the trap very effective, which limits the length 
and width of ZLB episodes. Chung and others (2019) illustrate that ZLB 
episodes can also be very costly in setups featuring agents that are less 
forward-looking, such as the FRB/US model (one of the Federal Reserve’s 
models of the U.S. economy).

Our assessment of the (welfare) cost of inflation also critically relies 
on our assumptions of a Calvo mechanism for price and wage setting. 
Among the recent papers on ZLB, Blanco (forthcoming) studies optimal 
inflation in a state-dependent pricing model, that is, a menu cost model.  
In this setup, optimal inflation is typically positive and higher than with time-
dependent pricing. Indeed, as in our analysis, positive inflation hedges the 
economy against the detrimental effects of the ZLB.5 In addition, as shown 

5. By contrast, see Burstein and Hellwig (2008) for a similar exercise under menu costs 
without ZLB, which leads to negative optimal inflation rate.
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by Nakamura and others (2018), the presence of state-dependent pricing 
weakens considerably the positive relationship between inflation and price 
dispersion, thus reducing the costs of inflation. Nakamura and others (2018) 
further argue that menu costs are a more plausible mechanism for pricing 
frictions.6 Two points are, however, worth making. First, in the range of 
values for the inflation target that we consider, the difference between the 
welfare cost in a Calvo model and in a menu cost model is less dramatic 
than with a 10 percent or higher inflation rate, as documented by Nakamura 
and others (2018). Second, most recent empirical analyses of price setting 
show that there is a mass of small price changes in the data that cannot 
be rationalized by a menu cost model. To fit the micro data, much of this 
recent literature typically introduces a random opportunity of price change, 
hence a Calvo component, in the menu cost model (Alvarez, Le Bihan, and 
Lippi 2016). In such an augmented menu cost model, the distinction with 
the assessment taken from the Calvo model is bound to be attenuated.

Our paper is also connected to the voluminous literature on monetary 
policy under uncertainty (Levin and others 2006; Williams 2013), although 
to our knowledge this literature has not investigated the impact of uncer-
tainty on the determination of the optimal inflation target.

Other relevant references, albeit ones that put little or no emphasis on 
the ZLB, are the following. An early literature focuses on sticky prices and 
monetary frictions. In such a context, as shown by Khan, King, and Wolman 
(2003) and Schmitt-Grohé and Uribe (2010), the optimal rate of inflation 
should be slightly negative. Similarly, a negative optimal inflation would 
result from an environment with trend productivity growth and prices and 
wages both sticky, as shown by Amano and others (2009). In this kind of 
environment, moving from a 2 percent to a 4 percent inflation target would 
be extremely costly, as suggested by Ascari, Phaneuf, and Sims (2018). 
By contrast, adding search and matching frictions to the setup, Carlsson  
and Westermark (2016) show that optimal inflation can be positive. Bilbiie,  
Fujiwara, and Ghironi (2014) find positive optimal inflation can be an 
outcome in a sticky-price model with endogenous entry and product variety. 
Somewhat related, Adam and Weber (2019) show that, even without any 
ZLB concern, optimal inflation might be positive in the context of a model 
with heterogeneous firms and systematic firm-level productivity trends. 

6. They document that the cross-sector dispersion in the size of price changes is similar 
in the current low inflation period as in the high inflation period of the late 1970s. If Calvo 
were the relevant pricing frictions, the dispersion in size of price changes should have been 
much larger in the high inflation period than today.
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Finally, Lepetit (2018) shows that optimal inflation can be different from 
zero when profits and utility flows are discounted at different rates, as is 
generally the case in overlapping generation models. In a parameterized 
example of the latter, he shows the optimal steady-state inflation is signifi-
cantly above zero.

I. The Model

We use a relatively standard medium-scale New Keynesian model as a frame-
work of reference. Crucially, the model features elements that generate 
a cost to inflation: (1) nominal rigidities, in the form of staggered price 
and wage setting; (2) less than perfect price (and wage) indexation to past 
or trend inflation; and (3) trend productivity growth, to which wages are 
imperfectly indexed.

As is well known, staggered price setting generates a positive relation  
between deviations from zero inflation and price dispersion (with the 
resulting inefficient allocation of resources). Also, and ceteris paribus, price 
inflation induces (nominal) wage inflation, which in turn triggers inefficient 
wage dispersion in the presence of staggered wage setting. Partial index-
ation also magnifies the costs of nonzero price (or wage) inflation as com-
pared to a setup where price and wages fully catch up with trend inflation 
(Ascari and Sbordone 2014). Finally the lack of a systematic indexation of 
wages to productivity also induces an inefficient wage dispersion.

At the same time, there are benefits associated to a positive inflation rate, 
as interest rates are subject to a ZLB constraint. In particular, and given the 
steady-state real interest rate, the incidence of binding ZLB episodes and 
the associated macroeconomic volatility should decline with the average 
rate of inflation.

Overall, the model we use, and the implied trade-off between costs and 
benefits of steady-state inflation, are close to those considered by Coibion, 
Gorodnichenko, and Wieland (2012). However we assume Calvo-style 
sticky wages, in addition to sticky prices.7

I.A. Households

The economy is inhabited by a continuum of measure one of infinitely 
lived, identical households. The representative household is composed of a 

7. In their robustness analysis, Coibion, Gorodnichenko, and Wieland (2012) consider 
downward nominal wage rigidity, which entails different mechanisms than with Calvo-style 
rigidities.
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continuum of workers, each specialized in a particular labor type indexed 
by h ∈ [0,1]. The representative household’s objective is to maximize an 
intertemporal welfare function
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where β ≡ e−ρ is the discount factor (ρ being the discount rate), !t{•} is 
the expectation operator conditional on information available at time t, 
Ct is consumption, and Nt(h) is the supply of labor of type h. The utility 
function features habit formation, with degree of habits h. The inverse 
Frisch elasticity of labor supply is v, and χ is a scale parameter for labor 
disutility. The utility derived from consumption is subject to a preference 
shock ζg,t.

The representative household maximizes equation (1) subject to the 
sequence of constraints
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where Pt is the aggregate price level, Wt(h) is the nominal wage rate  
associated with labor of type h, eζq,tQt is the price at t of a one-period 
nominal bond paying one unit of currency in the next period, where ζq,t is a  
“risk-premium” shock, Bt is the quantity of such bonds acquired at t,  
Tt denotes lump-sum taxes, and Dt stands for the dividends rebated to the 
households by monopolistic firms.

I.B. Firms and Price Setting

The final good is produced by perfectly competitive firms according to 
the Dixit-Stiglitz production function
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where Yt is the quantity of final good produced at t, Yt( f ) is the input of 
intermediate good f, and θp the elasticity of substitution between any two 
intermediate goods. The zero-profit condition yields the relation
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Intermediate goods are produced by monopolistic firms, each specialized 
in a particular good f ∈ [0, 1]. Firm f has technology

Y f Z L ft t t ,1( ) ( )= φ

where Lt( f ) is the input of aggregate labor, 1/φ is the elasticity of production 
with respect to aggregate labor, and Zt is an index of aggregate productivity. 
The latter evolves according to

Z Zt t
z z t= −

µ +ζe ,1
,

where µz is the average growth rate of productivity. Thus, technology is 
characterized by a unit root in the model.

Intermediate goods producers are subject to nominal rigidities à la 
Calvo. Formally, firms face a constant probability αp of not being able to 
reoptimize prices. In the event that firm f is not drawn to reoptimize at t,  
it rescales its price according to the indexation rule

P f P ft t t
p ,1 1( ) ( ) ( )= Π −

γ
−

where Πt ≡ Pt/Pt–1, Π is the associated steady-state value and 0 ≤ γp < 1. 
Thus, in case firm f is not drawn to reoptimize, it mechanically rescales its 
price by past inflation. Importantly, however, we assume that the degree 
of indexation is less than perfect since γp < 1. One obvious drawback of 
the Calvo setup is that the probability of price reoptimization is assumed 
to be invariant, inter alia to the long-run inflation rate. Drawing from the 
logic of menu cost models, the Calvo parameter of price stickiness could 
be expected to endogenously decrease when trend inflation rises. However, 
in the range of values for trend inflation that we will consider, available 
microeconomic evidence, such as that summarized in Golosov and Lucas 
(2007), suggests there is no significant correlation between the frequency 
of price change and trend inflation.

If drawn to reoptimize in period t, a firm chooses Pt* in order to maximize
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where Λt denotes the marginal utility of wealth, τp,t is a sales subsidy paid 
to firms and financed via a lump-sum tax on households, and Yt,t+s is the 
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demand function that a monopolist who last revised its price at t faces  
at t + s. It obeys
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t,t+s reflects the compounded effects of price indexation to past 
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with ζu,t appearing in the system as a cost-push shock. Furthermore, we set 
τp so as to neutralize the steady-state distortion induced by price markups.

I.C. Aggregate Labor and Wage Setting

There is a continuum of perfectly competitive labor-aggregating firms 
that mix the specialized labor types according to the CES technology
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where Nt is the quantity of aggregate labor and Nt(h) is the input of labor 
of type h, and where θw denotes the elasticity of substitution between any 
two labor types. Aggregate labor Nt is then used as an input in the production 
of intermediate goods. Equilibrium in the labor market thus requires
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Here, it is important to notice the difference between Lt( f ), the demand for 
aggregate labor emanating from firm f, and Nt(h), the supply of labor of 
type h by the representative household.

The zero-profit condition yields the relation
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where Wt is the nominal wage paid to aggregate labor while Wt(h) is the 
nominal wage paid to labor of type h.

Mirroring prices, we assume that wages are subject to nominal rigidities, 
à la Calvo, in the manner of Erceg, Henderson, and Levin (2000). Formally, 
unions face a constant probability αw of not being able to reoptimize wages. 
In the event that union h is not drawn to reoptimize at t, it rescales its wage 
according to the indexation rule

W h W ht t t
z z w( ) ( ) ( )= Πγ µ

−
γ

−e ,1 1

where, as before, wages are indexed to past inflation. However, we assume 
that the degree of indexation is here, too, less than perfect by imposing  
0 ≤ γw <1. In addition, nominal wages are also indexed to average produc-
tivity growth with indexation degree 0 ≤ γz <1.

If drawn to reoptimize in period t, a union chooses W t* in order to 
maximize
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where the demand function at t + s facing a union who last revised its 
wage at t obeys
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and where Vw
t,t+s reflects the compounded effects of wage indexation to 

past inflation and average productivity growth
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Furthermore, we set τw so as to neutralize the steady-state distortion induced 
by wage markups.

I.D. Monetary Policy and the ZLB

Monetary policy in so-called normal times is assumed to be given by an 
inertial Taylor-like interest rate rule
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î î a a xt i t i t y t R t(2) 1 ˆ ˆ ,1 ,( )( )= ρ + − ρ π + + ζ− π

where it ≡ −log(Qt), with ît denoting the associated deviation from steady 
state, that is, ît ≡ it − i. Also, πt ≡ logΠt, π̂t ≡ πt − π is the gap between 
inflation and its target, and x̂ t ≡ log(Yt/Yt

n) where Yt
n is the efficient level 

of output, defined as the level of output that would prevail in an economy 
with flexible prices and wages and no cost-push shocks. Finally, ζR,t is a 
monetary policy shock.

Importantly, we interpret π as the central bank target for change in 
the price index. An annual inflation target of 2 percent would thus imply 
π = 2/400 = 0.005, as the model will be parameterized and estimated with 
quarterly data. Note that the inflation target thus defined may differ from 
average inflation.

Crucially for our purposes, the nominal interest rate it is subject to a 
ZLB constraint:

it ≥ 0.

The steady-state level of the real interest rate is defined by r*  ≡ i − π. 
Given logarithmic utility, it is related to technology and preference param-
eters according to r*  = ρ + µz. Combining these elements, it is convenient 
to write the ZLB constraint in terms of deviations from steady state

ît z( )≥ − µ + ρ + π(3) .

The rule effectively implemented is given by:

î ît t
n

z( ){ }= − µ + ρ + π(4) max , ,

where

î î a a xt
n

i t
n

i t y t R t( )( )= ρ + − ρ π + + ζ− π(5) 1 ˆ ˆ ,1 ,

with i t
n denoting the shadow or notional rate, that is, the one that would be 

effective in the absence of the ZLB constraint. Thus the lagged rate that 
matters is the lagged notional interest rate, rather than the lagged actual 
rate. In making that assumption we follow Coibion, Gorodnichenko, and 
Wieland (2012) and a large share of the recent literature.
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Before proceeding, several remarks are in order. First, note that realized 
inflation might be on average below the target π as a consequence of ZLB 
episodes, that is, !{πt} < π. In such instances of ZLB, monetary policy 
fails to deliver the appropriate degree of accommodation, resulting in a 
more severe recession and lower inflation than in an economy with no ZLB 
constraint.8

Second, we assume the central bank policy is characterized by a simple 
interest rate rule rather than a Ramsey-like fully optimal policy of the 
type studied, for example, by Khan, King, and Wolman (2003) or Schmitt-
Grohé and Uribe (2010). Such rules have been shown to be a good empirical  
characterization of the behavior of central banks in the last decades.9  
Moreover, two features in our setup—the inertia in the monetary policy  
rule and the use of a lagged notional rate rather than a lagged actual rate—
render the policy more persistent and thus closer to a Ramsey-like fully 
optimal interest rate rule. In particular the dependence on the lagged notional 
rate î t

n results in the nominal interest rate ît being lower for longer in the 
aftermath of ZLB episodes (as î t

n will stay negative for a protracted period). 
In section V, we study how alternative strategies of lower for longer affect 
the (r*, π*) relation.

As equation (3) makes clear, µz, ρ, π enter symmetrically in the ZLB 
constraint. Put another way, for given structural parameters and a given 
process for ît, the probability of hitting the ZLB would remain unchanged if 
productivity growth or the discount rate decline by 1 percent and the infla-
tion target is increased by a commensurate amount at the same time. Based 
on these observations, one may be tempted to argue that in response to a 
permanent decline in µz or ρ, the optimal inflation target π* must necessarily 
change by the same amount (with a negative sign).

The previous conjecture is, however, incorrect. The reasons for this are 
twofold. First, any change in µz (or ρ) also translates into a change in the 
coefficients of the equilibrium dynamic system. It turns out that this effect 
is nonnegligible since, as our later results imply, after a 1 percentage point 
decline in r* the inflation target has to be raised by more than 1 percent 
in order to keep the probability of hitting the ZLB unchanged. Second, 
because there are welfare costs associated with increasing the inflation 
target, the policymaker would also have to balance the benefits of keeping  
the incidence of ZLB episodes constant with the additional costs in terms 

8. For convenience, table A.1 in the online appendix summarizes the various notions of 
optimal inflation and long-run or target inflation considered in this paper.

9. See, for example, Clarida, Galí, and Gertler (1998).



ANDRADE, GALÍ, LE BIHAN, and MATHERON 187

of extra price dispersion and inefficient resource allocation. These costs 
can be substantial and may more than offset the benefits of holding the 
probability of ZLB constant. Assessing these forces is precisely this paper’s 
endeavor.

II. Estimation and Simulations

In the present section we discuss how the model is estimated and simulated, 
as well as how the welfare-based optimal inflation target is computed.

II.A. Estimation without a Lower Bound on Nominal Interest Rates

We estimate the model using data for a pre-crisis period over which the 
ZLB constraint is not binding. This enables us to use the linear version of 
the model.10

ESTIMATION PROCEDURE Because the model has a stochastic trend, we first 
induce stationarity by dividing trending variables by Zt. The resulting system 
is then log-linearized in the neighborhood of its deterministic steady state.11 
We append to the system a set of equations describing the dynamics of the 
structural shocks, namely,

! ! Nk t k k t k k t k t ∼ ( )ζ = ρ ζ + σ− , 0,1, , 1 , ,

for k ∈ {R, g, u, q, z}.
Absent the ZLB constraint, the model can be solved and cast into the 

usual linear transition and observation equations:

T R !s st t t( ) ( )= θ + θ− ,1

M Hx st t( ) ( )= θ + θ ,

with st a vector collecting the model’s state variables, xt a vector of  
observable variables, and !t a vector of innovations to the shock processes 
!t = (!R,t, !g,t, !u,t, !q,t, !z,t)′. The solution coefficients are regrouped in the 
conformable matrices T (θ), R (θ), M(θ), and H (θ) which depend on the 
vector of structural parameters θ.

10. See Gust and others (2017) and Lindé, Maih, and Wouters (2017) for alternative 
methods that deal with the ZLB constraint at the estimation stage.

11. See the online appendix for further details.
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The sample of observable variables is XT ≡ {xt}T
t=1 with

xt

t

t

t

t

( )

( )

( )
=

∆

∆

∆

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

′log GDP ,

log GDPDeflator ,

log Wages ,

ShortTermInterestRate

,

where the short-term nominal interest rate is the effective federal funds rate. 
We use a sample of quarterly data covering the period 1985:Q2–2008:Q3.12 
This choice is guided by two objectives. First, this sample strikes a balance 
between size and the concern of having a homogeneous monetary policy 
regime over the period considered. The sample covers the Volcker and  
post-Volcker period, arguably one of relative homogeneity of monetary 
policy. Second, we use a sample that coincides more or less with the  
so-called Great Moderation. Over the latter we expect smaller shocks to hit 
the economy. In principle, this will lead to a conservative assessment of the 
effects of the more stringent ZLB constraint due to lower real interest rates.

The parameters φ, θp, and θw are calibrated prior to estimation.  
The parameter θp is set to 6, resulting in a steady-state price markup of  
20 percent. Similarly, the parameter θw is set to 3, resulting in a wage 
markup of 50 percent. These numbers fall into the arguably large ballpark 
of available values used in the literature. In a robustness section, we inves-
tigate the sensitivity of our results to these parameters. The parameter φ is 
set to 1/0.7. Given the assumed subsidy correcting the steady-state price 
markup distortion, this results in a steady-state labor share of 70 percent.

We rely on a full-system Bayesian estimation approach to estimate 
the remaining model parameters. After having cast the dynamic system  
in the state-space representation for the set of observable variables, we 
use the Kalman filter to measure the likelihood of the observed variables.  
We then form the joint posterior distribution of the structural parameters by 
combining the likelihood function p(XT|θ) with a joint density characterizing 
some prior beliefs p(θ). The joint posterior distribution thus obeys

p X p X pT T( ) ( ) ( )θ ∝ θ θ .

Given the specification of the model, the joint posterior distribution  
cannot be recovered analytically but may be computed numerically, using a 

12. The data are obtained from the Federal Reserve Economic Data (FRED) database. 
GDP is expressed in per capita terms.
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Markov chain Monte Carlo (MCMC) sampling approach. More specifically, 
we rely on the Metropolis-Hastings algorithm to obtain a random draw of 
size 1,000,000 from the joint posterior distribution of the parameters.

ESTIMATION RESULTS Table 1 reports the parameter’s postulated priors 
(type of distribution, mean, and standard error) and estimation results, that 
is, the posterior mean and standard deviation, together with the bounds of 
the 90 percent probability interval for each parameter.

For the parameters π, µz, and ρ, we impose Gaussian prior distributions.  
The parameters governing the latter are chosen so that the model steady-
state values match the mean values of inflation, real per capita GDP growth, 
and the real interest rate in our U.S. sample. Our choice of priors for the 
other parameters are standard. In particular, we use beta distributions 
for parameters in [0,1], gamma distributions for positive parameters, and 
inverse gamma distributions for the standard error of the structural shocks.

Table 1. Estimation Results

Parameter Prior shape 
Prior  
mean 

Prior 
std. 

Posterior 
mean 

Posterior 
std. Low High

ρ Normal 0.20 0.05 0.19 0.05 0.11 0.27
µz Normal 0.44 0.05 0.43 0.04 0.36 0.50
π* Normal 0.61 0.05 0.62 0.05 0.54 0.69
αp Beta 0.66 0.05 0.67 0.03 0.61 0.73
αw Beta 0.66 0.05 0.50 0.05 0.43 0.58
γp Beta 0.50 0.15 0.20 0.07 0.08 0.32
γw Beta 0.50 0.15 0.44 0.16 0.21 0.68
γz Beta 0.50 0.15 0.50 0.18 0.26 0.75
η Beta 0.70 0.15 0.80 0.03 0.75 0.85
v Gamma 1.00 0.20 0.73 0.15 0.47 0.97
ap Gamma 2.00 0.15 2.13 0.15 1.89 2.38
ay Gamma 0.50 0.05 0.50 0.05 0.42 0.58
ρTR Beta 0.85 0.10 0.85 0.02 0.82 0.89
σz Inverse Gamma 0.25 1.00 1.06 0.22 0.74 1.38
σR Inverse Gamma 0.25 1.00 0.10 0.01 0.09 0.11
σq Inverse Gamma 0.25 1.00 0.39 0.11 0.16 0.61
σg Inverse Gamma 0.25 1.00 0.23 0.04 0.16 0.29
σu Inverse Gamma 0.25 1.00 0.24 0.05 0.06 0.46
ρR Beta 0.25 0.10 0.51 0.06 0.41 0.61
ρz Beta 0.25 0.10 0.27 0.13 0.09 0.45
ρg Beta 0.85 0.10 0.98 0.01 0.97 1.00
ρq Beta 0.85 0.10 0.88 0.04 0.80 0.95
ρu Beta 0.80 0.10 0.80 0.10 0.65 0.96

Source: Authors’ calculations.
Note: “Low” and “High” denote the bounds of the 90 percent probability interval for the posterior 

distribution.
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Most of our estimated parameters are in line with the calibration adopted 
by Coibion, Gorodnichenko, and Wieland (2012), with important qualifica-
tions. First, we obtain a slightly higher degree of price rigidity than theirs 
(0.67 versus 0.55). Second, our specification of monetary policy is different 
from theirs. In particular, they allow for two lags of the nominal interest 
rate in the monetary policy rule while we have only one lag. However, we 
can compare the overall degree of interest rate smoothing in the two setups. 
To this end, abstracting from the other elements of the rule, we simply 
focus on the sum of autoregressive coefficients. It amounts to 0.92 in their 
calibration while the degree of smoothing in our setup has a mean posterior 
value of 0.85. While this might not seem to be a striking difference, it is use-
ful to cast these figures in terms of half-life of convergence in the context of 
an autoregressive model of order 1. Our value implies twice as small a half- 
life than theirs. Third, our monetary policy shock and our shocks to demand 
have approximately twice as small an unconditional standard devia tion as 
theirs. Finally, we estimate the degree of indexation to past inflation rather 
than setting it to zero as in Coibion, Gorodnichenko, and Wieland (2012). 
We find small though nonzero degrees of indexation to past inflation. This 
will translate into a higher tolerance for inflation in our subsequent analysis 
of the optimal inflation target. This is because a higher indexation helps to 
mitigate the distortions induced by a higher inflation target. However, it 
turns out that, given these estimates, this effect is quantitatively small.

Properties of the estimated model, such as the response to a monetary 
policy shock, are standard (see online appendix, section B; online appen-
dix, section C, illustrates the lower for longer property embedded in the 
policy rule).

II.B. Computing the Optimal Inflation Target

Next we show how the optimal inflation target is computed.
SIMULATIONS WITH A ZLB CONSTRAINT The model becomes nonlinear when 

one allows the ZLB constraint to bind. The solution method we imple-
ment follows the approach developed by Bodenstein, Erceg, and Guerrieri 
(2009) and Guerrieri and Iacoviello (2015). The approach can be described 
as follows. There are two regimes: the no-ZLB regime k = n and the ZLB 
regime k = e, and the canonical representation of the system in each regime is

A B C D !s s s ft
k

t
k

t
k

t
k

t
k! { }+ + + + =( ) ( ) ( ) ( ) ( )

+ − 0,1 1

where st is a vector collecting all the model’s variables, A (k), B (k), C (k), and 
D (k) are conformable matrices, and f (k) is a vector of constants. In the 
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no-ZLB regime, the vector f (n) is filled with zeros. In the ZLB regime,  
the row of f (e) associated with it is equal to µz + ρ + π. Similarly, the rows 
of the system matrices associated with it in the no-ZLB regime correspond 
to the coeffi cients of the interest rate rule while in the ZLB regime, the 
coefficient associated with it is equal to 1 and all the other coefficients are 
set to zero.

In each period t, given an initial state vector st–1 and vector stochastic  
innovations !t, we simulate the model under perfect foresight (that is, 
assuming that no further shocks hit the economy) over the next N periods, 
for N sufficiently large. In case this particular draw is not conducive to a 
ZLB episode, we find st using the linear solution stated above. In contrast,  
if this draw leads to a ZLB episode, we postulate integers Ne < N and  
Nx < N such that the ZLB is reached at time t + Ne and left at time t + Nx.  
In this case, we solve the model by backward induction. We obtain the time 
varying solution

T R !s d st q t q t q t q t q t q= + ++ + + + − + + ,1

with !t+q = 0 for q > 0 and where, for q ∈ {Ne, . . . , Nx − 1},

T A T B Ct q
e

t q
e e( )= − +( ) ( ) ( )

+ + +
−

,1

1

R A T B Dt q
e

t q
e e( )= − +( ) ( ) ( )

+ + +
−

,1

1

A T B Ad d ft q
e

t q
e e

t q
e( ) ( )= − + +( ) ( ) ( ) ( )

+ + +
−

+ +1

1

1

and, for q ∈ {0, . . . , Ne − 1},

T A T B Ct q
n

t q
n n( )= − +( ) ( ) ( )

+ + +
−

,1

1

R A T B Dt q
n

t q
n n( )= − +( ) ( ) ( )

+ + +
−

,1

1

A T B Ad d ft q
n

t q
n n

t q
n( ) ( )= − + +( ) ( ) ( ) ( )

+ + +
−

+ + ,1

1

1

using T t+Nx = T , R t+Nx = R  and dt+Nx set to a column filled with zeros as initial 
conditions of the backward recursion.
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We then check that given the obtained solution, the system hits the ZLB 
at t + Ne and leaves the ZLB at t + Nx. Otherwise, we shift Ne or Nx forward 
or backward by one period and start all over again until convergence. 
Once convergence has been reached, we use the resulting matrices to com-
pute st and repeat the process for all the simulation periods.

Our approach is thus similar to the one used by Coibion, Gorodnichenko, 
and Wieland (2012) in their study of the optimal inflation target in a  
New Keynesian setup.13

A shortcoming of this approach is that the agents in the model are assumed 
to believe that the ZLB will not bind again in the future, once the current 
ZLB episode comes to an end. This may bias estimates, as explained by 
Gust and others (2017), even when, as in our case, estimation is performed 
on a pre-ZLB period. The scope of this concern is, however, dampened 
by the fact that in the pre-crisis environment there is evidence that even 
experts severely underestimated the probability of the ZLB occurring 
(Chung and others 2012).14

A WELFARE-BASED OPTIMAL INFLATION TARGET A second-order approxi-
mation of the household expected utility derived from the structural model  
is used to quantify welfare, in a similar manner as in Woodford (2003), 
assuming a small steady-state inflation rate. As detailed in the online 
appendix, this second-order approximation is given by:
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y t t

t

p p t p t

w z z w w t w t
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where t.i.p collects terms that are independent of monetary policy and  
O(||ζ, π ||3) denotes residual terms of order 3, with ||ζ, π|| denoting a bound on  

13. In practice we combine the implementation of the Bodenstein, Erceg, and Guerrieri 
(2009) algorithm developed by Coibion, Gorodnichenko, and Wieland (2012) with the solu-
tion algorithm and the parser from Dynare. Our implementation is in the spirit of Guerrieri 
and Iacoviello (2015), resulting in a less user-friendly yet faster suite of programs.

14. Global solution methods, such as advocated and implemented by Gust and others 
(2017), are in principle more accurate. However, given the size of our model and the 
large set of inflation targets and real interest rates that we need to consider (and given that 
these have to be considered for each and every parameter configuration in our simulations), 
a global solution would be computationally prohibitive.
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the amplitude of exogenous shocks and the inflation target. Parameters λy, 
λp, and λw are effectively weights on an output gap term, a price inflation  
term, and a wage inflation term. Parameter δ fulfills 0 ≤ δ ≤ 1. The param-
eter x– is the log ratio of steady-state output to efficient output; x– is  
zero either when trend inflation and trend productivity growth are zero or 
when indexation is full, and negative otherwise (in which case, output is 
inefficiently low). Finally, λy, λp, λw, δ, and x– are functions of the structural 
parameters θ.

We let W (π; θ) denote this welfare criterion to emphasize that welfare 
depends on the inflation target π together with the rest of the structural 
parameters θ. Two cases are considered concerning the latter. In the base-
line case, the structural parameters θ are fixed at reference values and taken 
to be known with certainty by the policymaker. In an alternative exercise, 
the policymaker maximizes welfare while recognizing the uncertainty asso-
ciated with the model’s parameters.

The optimal inflation target associated with a given vector of param-
eters θ, π*(θ) is approximated via numerical simulations of the model 
allowing for an occasionally binding ZLB constraint, using the algorithm 
outlined above.15 The optimal inflation rate associated to a given vector of 
parameters θ is then obtained as the one maximizing the welfare function, 
that is:

W ( )( )π θ ≡ π θ
π

* argmax ; .

Given parameter estimates at the posterior mean, we can compute the 
weight on output and wage inflation relative to inflation, that is, λy/λp and 
λw/λp. These relative weights are respectively equal to 0.22 and 0.10.16 Note 
these values are in the ballpark of values obtained in analyses of optimal 
inflation based on welfare criteria.

15. More precisely, a sample of size T = 100,000 of innovations {!t}T
t=1 is drawn from a 

Gaussian distribution (we also allow for a burn in the sample of 200 points that we later dis-
card). We use these shocks to simulate the model for given parameter vector θ. The welfare 
function W (π; θ) is approximated by replacing expectations with sample averages. The 
procedure is repeated for each of K = 51 inflation targets on the grid {π(k)}K

k=1 ranging from 
0.5
4

π = ⎛
⎝⎜

⎞
⎠⎟

 percent to 
5
4

π = ⎛
⎝⎜

⎞
⎠⎟

 percent (expressed in quarterly rates). Importantly, we use 

the exact same sequence of shocks {!t}T
t=1 in each and every simulation over the inflation grid.

16. The absolute value of λp is found to be 130.52. See the online appendix for equations 
stating the formulas for lambdap, lambdaw, and lambdax.
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II.C.  Some Properties of the Loss Function and the Optimal  
Inflation Target in the Estimated Model

This section presents selected properties of the model related to the 
optimal inflation target. Figure 1 displays the welfare function—expressed 
as losses relative to the maximum social welfare—associated with three 
natural benchmarks for the parameter vector θ: the posterior mean (dark 
line), the median (medium line), and the mode (light line). For conve-
nience, the peak of each welfare function is identified with a dot. Also, to 
facilitate interpretations, the inflation targets are expressed in annualized 
percentage rates.

As figure 1 illustrates, the U.S. optimal inflation target is close to 2 per-
cent and varies between 1.85 percent and 2.21 percent depending on which 
indicator of central tendency (mean, mode, or median) is selected. This 

Source: Authors’ calculations.
Note: Solid line indicates parameters set at the posterior mean; dashed line indicates parameters set 

at the posterior median; dotted line indicates parameters set at the posterior mode. The equation 
πË ≡ log(ΠË) pertains. In all cases, the welfare functions are normalized so as to peak at zero.

Posterior mean 
4πË = 2.21

Posterior mode 
4πË = 1.85

Posterior median 
4πË = 2.12
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Figure 1. Welfare and the Inflation Target
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range of values is consistent with those of Coibion, Gorodnichenko,  
and Wieland (2012) even though in the present paper it is derived from 
an estimated model over a much shorter sample.17 Importantly, while the 
larger shocks in Coibion, Gorodnichenko, and Wieland (2012) ceteris 
paribus induce larger inflation targets, the high degree of interest rate 
smoothing in their analysis works in the other direction (as documented 
in section V).

To complement these illustrative results, figure 2 displays the proba-
bility of reaching the ZLB as a function of the annualized inflation target 
(again, with the parameter vector θ evaluated at the posterior mean, median, 

Posterior mean

Posterior mode

Posterior median

Source: Authors’ calculations.
Note: Solid line indicates parameters set at the posterior mean; dashed line indicates parameters set 

at the posterior median; dotted line indicates parameters set at the posterior mode. The equation 
/Ë > log(WË) pertains.

3.52 3
Annualized inflation rate
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Figure 2. Probability of ZLB

17. Coibion, Gorodnichenko, and Wieland (2012) calibrate their model on a post-WWII, 
pre–Great Recession U.S. sample. By contrast, we use a Great Moderation sample.



196  Brookings Papers on Economic Activity, Fall 2019

and mode). For convenience, the dot in each curve marks the corresponding 
optimal inflation target.

The probability of hitting the ZLB associated to these positive optimal 
inflation targets is relatively low, at about 6 percent. This result, as anticipated 
above, is the mere reflection of our choice of a Great Moderation sample. 
At the same time, our model is able to predict a fairly spread-out distribution 
of ZLB episode durations, with a significant fraction of ZLB episodes 
lasting more than, say, five years (see figure D.1 in the online appendix). 
Given the existence of a single ZLB episode in the recent history, we 
do not attempt here to take a stand on what is a relevant distribution of  
ZLB episodes.18

A property of our model, as noticed by Kiley (2019), is that ZLB 
episodes are rather costly, compared to other studies. This property reflects 
the absence in our model of ad hoc stabilizing devices sometimes present 
in other papers concerned with the ZLB, such as emergency fiscal packages 
or exogenous caps on the maximum duration of ZLB episodes, as in Kiley 
and Roberts (2017) and in Williams (2009). Allowing for such devices  
would mechanically reduce the severity of ZLB episodes in our framework, 
resulting in a lower optimal inflation target.

III.  The Optimal Inflation Target and  
the Steady-State Real Interest Rate

The focus of this section is to investigate how the monetary authority 
should adjust its optimal inflation target π* in response to changes in the 
steady-state real interest rate, r*.19 Intuitively, with a lower r* the ZLB is 
bound to bind more often, so one would expect a higher inflation target 
should be desirable in that case. But the answer to the practical question of 
how much should the target be increased is not obvious. Indeed, the benefit 
of providing a better hedge against hitting the ZLB, which is an infrequent 
event, comes at a cost of higher steady-state inflation which induces 
permanent costs, as argued by Bernanke (2016).

To start with, we compute the relation linking the optimal inflation target 
to the steady-state real interest rate, based on simulations of the estimated 

18 See Dordal-i-Carreras and others (2016) for further analysis in that direction.
19. Note our exercise here is different from assessing what would be the optimal response 

to a time-varying steady state—a specification consistent with econometric work like that 
of Holston, Laubach, and Williams (2017). Our exercise is arguably consistent with secular 
stagnation—understood as a permanently lower real rate of interest—while doing without 
having to assume a unit root process in the real rate of interest.
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model and ignoring parameter uncertainty. We show that the link between 
π* and r* depends to some extent on the factor underlying a variation in r*,  
that is, a change in the discount rate ρ or a change in the growth rate of 
technology µz. In our setup the first scenario roughly captures the “taste for  
safe asset” and “aging population” rationales for secular stagnation, while 
the second one captures the “decline in technological progress” rationale. 
Subsequently, we investigate how the relation between the optimal infla-
tion target and the steady-state real interest rate depends on various features 
of the monetary policy framework, as well as on the size of shocks or on 
the steady-state price and wage markups.

III.A. The Baseline (r*, π*) Relation

To characterize the link between r* and π*, the following simulation 
exercise is conducted. The structural parameter vector θ is fixed at its 
posterior mean, θ–, with the exception of µz and ρ. These two parameters 
are varied—each in turn, keeping the other parameter, µz or ρ, fixed at 
its baseline posterior mean value (namely, 1.72 percent and 0.76 percent, 
respectively, in annualized terms). For both µz and ρ, we consider values 
on a grid ranging from 0.4 percent to 10 percent in annualized percentage 
terms. The model is then simulated for each possible value of µz or ρ and 
various values of inflation targets π using the same procedure as before.20 
The optimal value π* associated to each value of r* is obtained as the one 
maximizing the welfare criterion W (π; θ).

We finally obtain two curves. The first one links the optimal inflation 
target π* to the steady-state real interest rate r* for various growth rates 
of technology µz: π*[r*(µz)], where the notation r*(µz) highlights that the 
steady-state real interest rate varies as µz varies. The second one links 
the optimal inflation target π* to the steady-state real interest rate r* for 
various discount rates ρ: π*[r*(ρ)]. Here, the notation r*(ρ) highlights that 
the steady-state real interest rate varies as ρ varies.21

Figure 3 depicts the (r*, π*) relations thus obtained. The round dots 
correspond to the case when the steady-state real interest rate r* varies  

20. In particular, we use the same sequence of shocks {!t}T
t=1 as used in the computation 

implemented in the baseline exercises of section II.B. Here again, we start from the same 
grid of inflation targets for all the possible values of µz or ρ. Then, for each value of µz or ρ, 
we refine the inflation grid over successive passes until the optimal inflation target associated 
with a particular value of µz or ρ proves insensitive to the grid.

21. In the online appendix, figures G.1 and G.2 report similar results at the posterior 
mode and at the posterior median. Figure H.1 documents the relation in terms of the optimal 
nominal interest rate.
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with µz. The square dots correspond to the case when the steady-state real 
interest rate r* varies with ρ. For convenience, both the real interest rate 
and the associated optimal inflation target are expressed in annualized 
percentage rates. The dashed gray lines indicate the benchmark result 
corresponding to the optimal inflation target at the posterior mean of the 
structural parameter distribution.

These results are complemented with figure 4 which shows the relation 
between r* and the probability of hitting the ZLB, evaluated at the optimal  
inflation target. As with figure 3, round dots correspond to the case when 
r* varies with µz, while square dots correspond to the case when it varies 
with ρ.22

Source: Authors’ calculations.
Note: The round dots correspond to the (rË, πË) locus when rË varies with µz; the square dots 

correspond to the (rË, πË) locus when rË varies with ρ.
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Figure 3. Optimal Inflation Rate as a Function of the Steady-State Real Interest Rate  
(at the Posterior Mean)

22. Figure E.1 in the online appendix shows the relation between r* and the nominal 
interest rate when the inflation target is set at its optimal value.
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As expected, the relation in figure 3 is decreasing. However, the slope 
varies with the value of r*. The slope is relatively large in absolute value—
although smaller than 1—for moderate values of r* (say, below 4 percent). 
The slope declines in absolute value as r* increases: lowering the inflation 
target to compensate for an increase in r* becomes less and less desirable. 
This reflects the fact that, as r* increases, the probability of hitting the 
ZLB becomes smaller and smaller. For very large r* values, the probability 
becomes almost zero, as figure 4 shows.

At some point, the optimal inflation target becomes insensitive to changes 
in r* when the latter originate from changes in the discount rate ρ. In this 
case, the inflation target stabilizes at a slightly negative value in order to 
lower the nominal wage inflation rate required to support positive pro-
ductivity growth, given the imperfect indexation of nominal wages to 

rË(µz)
rË(ρ)

Source: Authors’ calculations.
Note: The round dots correspond to the (rË, πË) locus when rË varies with µz; the square dots 

correspond to the (rË, πË) locus when rË varies with ρ.
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Figure 4. Relation between Probability of ZLB at Optimal Inflation and r *  
(at the Posterior Mean)
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productivity. At the steady state, the real wage must grow at a rate of µz. 
It is optimal to obtain this steady-state growth as the result of a moderate 
nominal wage increase and a moderate price decrease, rather than as  
the result of a zero price inflation and a consequently larger nominal wage 
inflation.23

The previous tension is even more apparent when r* varies with µz 
since, in this case, the effects of imperfect indexation of wages to produc-
tivity are magnified given that a higher µz calls for a higher growth in the 
real wage, which is optimally attained through greater price deflation, as 
well as a higher wage inflation. Notice, however, that even in this case, 
the optimal inflation target becomes less sensitive to changes in r* for very 
large values of r*, typically above 6 percent.

For low values of r*, on the other hand, the slope of the curve is steeper. 
In particular, in the empirically relevant region, the relation is not far 
from one to one. More precisely, it shows that, starting from the posterior  
mean estimate of θ, a 100 basis point decline in r* should lead to an over 
99 basis point increase in π*. Importantly, this increase in the optimal 
inflation target is virtually the same no matter the underlying factor causing  
the change in r*: a drop in potential growth, µz, or a decrease in the discount 
factor, ρ. At the same time, the ZLB incidence evaluated at the optimal 
inflation rate also increases when the real rate decreases. At some point, 
the speed at which this probability increases slows down, reflecting that the 
social planner would choose to increase the inflation target as needed so as 
to avoid a higher ZLB incidence.

Figure 5 shows how the probability of ZLB changes as a function of r*, 
holding the inflation target constant. We first set the inflation target at its 
optimal baseline value (that is, the value computed at the posterior mean, 
2.21 percent). This is reported as the square dots. Similarly, we also com-
pute an analog relation assuming, this time, that the inflation target is held 
constant at the optimal value consistent with a steady-state real interest 
rate 1 percentage point lower (thus, inflation is set to 3.20). Here again, the 
other parameters are set at their posterior mean. This corresponds to the  

23. For very large r*, as a rough approximation, we can ignore the effects of shocks and 
assume that the ZLB is a zero-mass event. Assuming also a negligible difference between 
steady-state and efficient outputs and letting λp and λw denote the weights attached to price 
dispersion and wage dispersion, respectively, in the approximated welfare function, the 
optimal inflation obeys π* ≈ −λw(1 − γz)(1 – γw)/[λp(1 – γp )2 + λw(1 – γw )2]µz. Given the low 
values of λw resulting from our estimation, it is not surprising that π* is negative but close to 
zero. See Amano and others (2009) for a similar point in the context of a model abstracting 
from ZLB issues.
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triangle dots in the figure. For convenience, we also report the the probability 
of hitting the ZLB as a function of r* conditional on adjusting optimally the 
inflation target, as in figure 4. This corresponds to the round dots.

Consider first the square-dot curve. At the level of the real interest rate 
prevailing before the permanent decline, assuming that the central bank 
sets its target to the associated optimal level, the probability of reaching the 
ZLB would be slightly below 6 percent. Imagine now that the real interest 
rate experiences a decline of 100 basis points. Keeping the inflation target 
at the same level as prior to the shock, the probability of reaching the ZLB 
would now climb up to approximately 11 percent. However, the change 
in the optimal inflation target brings the probability of reaching the ZLB 
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Source: Authors’ calculations.
Note: The square dots correspond to the relation linking rË and the probability of ZLB, holding the 

optimal inflation target πË at the baseline value. The triangle dots correspond the same relation when the 
optimal inflation target πË is set at the value consistent with a steady-state real interest rate one percentage 
point lower. The round dots correspond to the probability of ZLB obtained under the optimal inflation 
target πË associated with a given value of rË.

Figure 5. Relation between Probability of ZLB and r* (at the Posterior Mean)
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back to approximately 6 percent. Thus, the social planner would almost 
neutralize the effects of the natural rate decline on the probability of hitting 
the ZLB.

Finally we investigate whether the trade-off analyzed above translates 
into meaningful welfare costs, measured in terms of foregone per period 
consumption. Results are reported in the online appendix, section F. It turns 
out that, under sufficiently low r* values, agents faced with a 1 percentage 
point decline in the steady-state real interest rates would require up to a 
1.5 percentage point increase in consumption to be as well off under the 
former optimal inflation target (that is, 2.21 percent) as under the optimal 
target associated with the lower real interest rate (3.20 percent in this case). 
In other words, the welfare costs of not adjusting the target in the face of a 
decline in r* are substantial.

III.B. Robustness to Alternative Structural Assumptions

In this section, we investigate the robustness of the (r*, π*) relation  
to altering (or modifying) some structural features of the environment. 
We consider several relevant dimensions: the case of larger shocks, alter-
native calibrations for the steady-state price and wage markup, and changes 
in the degree of price and wage indexation.24

LARGER SHOCKS As argued before, the model is estimated using data from 
the Great Moderation period. One may legitimately argue that the decline 
in the real interest rate resulting from the secular stagnation has come hand 
in hand with larger shocks, as the Great Recession suggests. To address 
this concern, we simulate the model assuming that demand shocks have a 
standard deviation 30 percent larger than estimated.

We conduct this exercise assuming that changes in average product ivity 
growth µz are the only driver of changes in the natural rate. Apart from  
σq and σg, which are rescaled, all the other parameters are frozen at their 
posterior mean. Given this setup, the optimal inflation target is 3.7 percent 
as opposed to 2.21 percent conditional on the baseline value of r*. Also, 
under the alternative shock configuration, the probability of hitting the ZLB 
is 5.3 percent, as opposed to 5.5 percent in the baseline. These probabili-
ties may seem low, especially in the case of large shocks which we argue 
capture Great Recession-like shocks. However they are particularly low 
because the inflation target is chosen optimally in this setup. In particular, 
in the larger shocks case, the increase in the inflation target is large enough 

24. Robustness to altering the monetary policy rule is assessed further in section V.
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to offset the impact of larger shocks in terms of ZLB incidence. When 
instead we keep the inflation target unchanged, the probability of hitting 
the ZLB rises to 18 percent in the face of a 1 percent decline in r*.25 In that  
case, these ZLB probabilities come close to the probabilities reported by 
Kiley and Roberts (2017) in the case of their DSGE model (albeit they find  
a higher probability of ZLB, of the order of 30 percent when using the 
FRB/US model), or by Chung and others (2019).26

Figure 6 reports the (r*, π*) relation under larger demand shocks (square 
dots) and compares the outcome with the baseline relation (round dots).27 
Interestingly, the (r*, π*) locus has essentially the same slope in the low 
r* region. Here again, we find a slope close to −1. However, the curve is 
somewhat steeper in the high r* region and shifted up, compared to the 
baseline scenario. This reflects that under larger demand shocks, even at 
very high levels of the natural rate, a drop in the latter is conducive to more 
frequent ZLB episodes. The social planner is then willing to increase the 
inflation target at a higher pace than in the baseline scenario and generi-
cally sets the inflation target at higher levels to hedge the economy against 
ZLB episodes.

ALTERNATIVE MARKUPS The optimal level of inflation in our setup depends 
on the elasticities of substitution among intermediate goods, θp, and among 
labor types, θw, since those parameters determine the extent to which  
the price and wage dispersion induced by inflation is translated into an 
inefficient allocation of resources. These parameters have been calibrated, 
as they cannot be identified from time-series data and a log-linearized ver-
sion of the model.

In our calibration, the baseline value for the elasticity of substitution  
θp is 6, leading to a steady-state price markup of 20 percent. While this 
value is in line with common textbook parameterizations (Galí 2015), and 
is close to the baseline value obtained in Hall (2018) and in Christiano,  
Eichenbaum, and Evans (2005), there is considerable uncertainty in the 
empirical literature about the level of markups. For example, some esti-
mates in Basu and Fernald (1997) and Traina (2015) point to possibly 
much smaller values, while Autor and others (forthcoming), De Loecker 

25. See the online appendix, section I, in which such counterfactual probabilities of ZLB 
are reported.

26. In addition to per period probability of ZLB, these authors also put forward and 
emphasize the probability that a ZLB event occurs in the next decade. By construction this 
number is a larger one, and the mapping between the two numbers is not fully straightforward.

27. We obtain this figure using the same procedure as outlined before. Here again, we 
run several passes with successively refined inflation grids.
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and Eeckhout (2017), and Farhi and Gourio (2018) suggest substantially 
larger figures. To investigate the robustness of our results, we redo our main 
simulation exercise, this time setting θp to a value as large as 10 or as low as 3. 
These values largely encompass the range of available empirical estimates.

Similarly, for the wage markup, there is arguably even scarcer evidence, 
and in any case considerable uncertainty around our baseline parameteriza-
tion, given by θw set to 3. Here again, so as to cover a broad range of plau-
sible estimates, we run alternatives exercises, setting in turn θw to 8 and θw 
to 1.5. Results are reported in figure 7 in the case of robustness with respect 
to the price markup and in figure 8 with respect to the wage markup.

The main takeaway from these figures is that our key result is by and 
large preserved. That is, in the empirically relevant region (for levels of 

πË, π– (annualized)
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Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario wherein all the structural parameters are set 

at their posterior mean θ–. The square dots correspond to the counterfactual simulation with σq and σg set 
to twice their baseline value.
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r* lower than, say, 4 percent), the slope of the (r*, π*) curve is only very 
mildly affected when changing the elasticity of substitution of goods or 
labor types.

Another noticeable result of this robustness exercise is that, by contrast, 
in the region with high steady-state real interest rates (say, r* larger than 
5 percent) the value of the optimal inflation target and the slope of the curve 
of interest are more sensitive to the value of θp or θw. To see why, first 
notice that, in this region, the ZLB is essentially irrelevant so the standard 
welfare cost of inflation setup applies. With less substitution across goods, 
a given level of price dispersion induced by inflation leads to smaller output 
dispersion (as is clear, for instance, in the polar case of complementary 
goods, which leads to no output dispersion across firms at all). The effect  

πË (annualized)
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Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario wherein all the structural parameters are set 

at their posterior mean θ–. The square dots correspond to the counterfactual simulation with θp set to 10. 
The triangle dots correspond to the counterfactual simulation with θp set to 3.
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of θp on output dispersion is apparent from the formulas in our online 
appendix or in textbook derivations of output dispersion, for example, 
chapter 3 in Galí (2015). Thus, with a low substitution (that is, a low θp), 
the welfare loss due to inflation (or deflation) is smaller. Therefore a 
lower θp allows for an inflation target farther away from zero, insofar as 
there are motives for a nonzero steady-state inflation. Such a mechanism 
explains why, in figure 7, optimal inflation is more negative with lower 
substitution.

Interestingly, when we consider robustness with respect to parameter θw,  
the ranking of the corresponding curves is reversed (see figure 8). That is, 
a larger θw induces a larger inflation target in absolute value. The reason is 
that, with a larger substitution across labor types, a given nominal wage 

πË (annualized)

1 2 3 4 5 6 7 8 9 10 11
Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario wherein all the structural parameters are set 

at their posterior mean θ–. The square dots correspond to the counterfactual simulation with θw set to 8. 
The triangle dots correspond to the counterfactual simulation with θw set to 1.5.
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growth generates dispersion of quantities across types of labor that turns 
out to be particularly costly. In that case, it is optimal that the burden of 
adjustment of real wages to growth is borne not by nominal wages but rather 
by nominal prices (thus leading to a more pronounced deflation).28

ALTERNATIVE DEGREES OF INDEXATION The degree of indexation of price 
and wage is an important determinant of the cost of inflation. In our empirical 
estimate the degrees of indexation are moderate: 0.22 for prices and 0.44 
for wages at the posterior mean. It is worthwhile examining the sensitivity  
of our results to the degree of indexation. Indeed, some existing macro 
estimates find or impose a much larger degree of indexation (Christiano, 
Eichenbaum, and Evans 2005). By contrast, existing micro studies hardly 
find any evidence of indexation. In this robustness exercise, we consider in  
turn a zero indexation case, a high indexation case (setting γp and γw to 0.7), 
and a very high indexation case (setting γp and γw to 0.9). The last two 
configurations are arguably unrealistic. Results are presented in figure 9.  
In the absence of indexation, results are similar to those under our estimated 
indexation levels. For the high indexation case (γp and γw equal to 0.7), 
the results differ from the baseline only for relatively large values of the 
steady-state real interest rate.

In the very high indexation case, the position and shape of the curve are 
substantially affected: the curve is nearly a decreasing straight line. Indeed, 
for a very large indexation degree the welfare cost of inflation (or deflation)  
is substantially reduced. As a result, it is optimal to allow for a sizable 
trend deflation when the natural rate is large as a result of large productivity 
growth. However, we can note that in the empirically relevant region, that 
is, for r* below 2 percent, the local slope of the curve is similar whatever 
the degree of indexation.

IV. The Effect of Parameter Uncertainty

In this section we investigate the impact of parameter uncertainty on the 
relation between the optimal inflation target and the steady-state real interest 
rate. Specifically, we analyze how a Bayesian-theoretic optimal inflation 
target reacts to a downward shift in the distribution of the steady-state real 
interest rate.

28. This can be illustrated again in the approximated welfare function, ignoring the 
effects of shocks. Then the optimal inflation obeys π* ≈ −(λw (1 − γz)(1 − γw)/[λp (1 − γp)2 + 
λw (1 − γw )2]) µz. The inflation target is a decreasing function of λw, thus of θw.
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IV.A. A Bayesian-Theoretic Optimal Inflation Target

The location of the loss function W (π; θ) evidently depends on the 
vector of parameters θ describing the economy. As a result of estimation 
uncertainty around θ, the optimal inflation rate π*(θ) will be subject 
to uncertainty. Further, a policymaker may wish to take into account the 
uncertainty surrounding θ when determining the optimal inflation target. 
A relevant feature of the welfare functions in our setup is that, in general, 
and as shown above, they are markedly asymmetric: adopting an inflation 
target 1 percentage point below the optimal value generates welfare losses 
larger than setting it 1 percentage point above. As a result, the certainty 
equivalence does not hold. A policymaker maximizing expected welfare 
while recognizing the uncertainty will choose an inflation target differing 
from that corresponding to the case where θ is set to its expected value and 
taken to be known with certainty, as in our baseline analysis.

πË (annualized)
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Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario wherein all the structural parameters are set 

at their posterior mean θ–. The square dots correspond to the counterfactual simulation with γp = γw = 0. 
The triangle dots correspond to the counterfactual simulation with γp = γw = 0.7. The star dots correspond 
to the counterfactual simulation with γp = γw = 0.9.
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Formally, the estimated posterior distribution of parameters p(θ|XT) 
can be exploited to quantify the impact of parameter uncertainty on the 
optimal inflation target and to compute a Bayesian-theoretic optimal inflation 
target. We define the latter as the inflation target π** which maximizes 
the expected welfare not only over the realizations of shocks but also 
over the realizations of parameters:29

W p XT∫ ( ) ( )π ≡ π θ θ θ
π

θ** argmax ; d .

We interpret the spread between the optimal Bayesian inflation target and 
the certainty-equivalent optimal inflation target at the posterior mean θ– as 
a measure of how uncertainty about the parameter values affects optimal 
inflation. Given the nature of the asymmetry in the welfare function, the 
spread will turn out to be positive: a Bayesian policymaker will tend to 
choose a higher inflation target than a policymaker taking θ to be known 
and equal to the mean of its distribution. A higher inflation target indeed 
acts as a buffer to hedge against particularly detrimental parameter values 
(either because they lead to more frequent ZLB episodes or because they 
lead to particularly acute inflation distortions). We define

( ) ( )θ ≡ π −π θSpr ** *

and assess below Spr(θ–).

IV.B. Results

According to the simulation exercise, π** = 2.40 percent. This robust 
optimal inflation target is higher than the value obtained with θ set at its 

29. This Bayesian inflation target is recovered from simulating the model under a ZLB 
constraint using the exact same sequence of shocks {!t}T

t=1 with T = 100,000 as in the previous 
subsection (together with the same burn-in sample) and combining it with N draws of param-
eters {θj}N

j=1 from the estimated posterior distribution p(θ|XT), with N = 500. As in the previ-
ous section, the social welfare function W (π; θ) is evaluated for each draw of θ over a grid of 
inflation targets {π(k)}K

k=1. The Bayesian welfare criterion is then computed as the average wel-
fare across parameter draws. Here, we start with the same inflation grid as before and then 
run several passes. In the first pass, we identify the inflation target maximizing the Bayesian 
welfare criterion. We then set a finer grid of K = 51 inflation targets around this value. 
We repeat this process several times with successively finer grids of inflation targets until  
the identified optimal inflation target proves insensitive to the grid. In this particular exercise, 
some parameter draws for θ lead to convergence failure in the algorithm implementing the 
ZLB. These draws are discarded.
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central tendency. As expected, a Bayesian policymaker chooses a higher 
inflation target to hedge against particularly harmful states of the world 
(that is, parameter draws) where the frequency of hitting the ZLB is high.

Assessing how a change in r* affects π** for every value of r* is not 
possible, due to the computational cost involved. Such a reaction is thus 
investigated for a particular scenario: it is assumed that the economy starts 
from the posterior distribution of parameters p(θ|XT) and that, everything 
else being constant, the mean of r* decreases by 100 basis points. Such a 
1 percentage point decline is chosen mainly for illustrative purposes. Yet, 
it is of a comparable order of magnitude, although somewhat smaller in 
absolute value, than recent estimates of the drop of the natural rate after the 
crisis, such as Laubach and Williams (2016) and Holston, Laubach, and 
Williams (2017). The counterfactual exercise considered can therefore be 
seen as a relatively conservative characterization of the shift in the steady-
state real interest rate. Figure 10 depicts the counterfactual shift in the distri-
bution of r* that is considered.

The Bayesian-theoretic optimal inflation target corresponding to the 
counterfactual lower distribution of r* is obtained from a simulation 
exercise that relies on the same procedure as before.30 Given a draw in the 
posterior of parameter vector θ, the value of the steady-state real interest 
rate is computed using the expression implied by the postulated structural 
model r* (θ) = ρ(θ) + µz(θ). From this particular draw, a counterfactual 
lower steady-state real interest rate, r*(θ∆), is obtained by shifting the 
long-run growth component of the model µz downward by 1 percentage 
point (in annualized terms). The welfare function W (π; θ∆) is then evaluated. 
Since there are no other changes than this shift in the mean value of µz in the 
distribution of the structural parameters, we can characterize the counter-
factual distribution p(θ∆|XT) as a simple transformation of the estimated 
posterior p(θ|XT). The counterfactual Bayesian-theoretic optimal inflation 
target is then obtained as

W p XT∫ ( ) ( )π ≡ π θ θ θ∆
π

θ ∆ ∆ ∆∆
** argmax ; d .

Figure 11 illustrates the counterfactual change in optimal inflation target 
obtained when the mean of the distibution of the steady-state real interest 
rate declines by 100 basis points. The simulation exercise returns a value 

30. Again, we use the same sequence of shocks and the same parameter draws as in 
section II.B.
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of π∆** = 3.30 percent, that is, 90 basis points higher than the optimal value 
under uncertainty obtained with the posterior distribution of parameters in 
the pre-crisis sample π∆** = 2.40 percent.31

Thus, in our setup, a monetary authority that is concerned about the 
uncertainty surrounding the parameters driving the costs and benefits of the 
inflation chooses a higher optimal inflation target. However, the reaction 
of this optimal inflation target following a drop in the mean r* is hardly 
altered: a 100 basis point decrease in the steady-state real interest rate calls 
for a roughly 90 basis point increase in the optimal inflation target, in the 
vicinity of pre-crisis parameter estimates.
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Source: Authors’ calculations.
Note: The curves indicate PDFs of rË (baseline solid and counterfactual dotted); the dashed vertical 

lines indicate mean value of rË.

0.2

0.4

0.6

0.8

0.3

0.1

0.5

0.7

0.9

Figure 10. Posterior Distributions of r* and Counterfactual r*

31. Figure J.1 in the online appendix shows how the posterior distribution of π* is shifted 
after the permanent decline in the mean of r*.
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IV.C. A Known Reaction Function

Here we study the consequences of the (plausible) assumption that the 
central bank actually knows the coefficients of its interest rate rule with 
certainty. More specifically we repeat the same simulation exercise as in the 
previous subsection but with parameters aπ, ay, and ρi in the reaction func-
tion (equation 2) taken to be known with certainty. In practice we fix these 
three parameters at their posterior mean instead of sampling them from their 
posterior distribution. This is arguably the relevant approach from the point 
of view of the policymaker.32 Note, however, that all the other parameters 
are subject to uncertainty from the standpoint of the central bank.
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Source: Authors’ calculations.
Note: Solid line is the curve !θ(W (π, θ)); dotted line is the curve !θ(W (π, θ)) with lower rË.
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Figure 11. Expected Bayesian Welfare in Baseline and Counterfactual

32. In practice, long-run inflation targets are seldom reconsidered while the rotation in 
monetary policy committees happens at a higher frequency. From this viewpoint, our base-
line assumption of uncertainty on all the monetary policy rule parameters is not necessarily 
unwarranted.
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Figure 12 presents the Bayesian-theoretic optimal inflation targets 
obtained when simulating the model at the initial posteriors and after a −100 
basis point level shift in the posterior distribution of the long-run growth 
rate µz and, hence, the steady-state real interest rate r*. According to these 
simulations, the inflation target should initially be π** = 2.24 percent. After 
the counterfactual change in the distribution of r* considered, π** should be 
increased to 3.16 percent, again in the ballpark of a 90 basis point increase in 
π* in response to a 100 basis point downward shift in the distribution of r*.

V. Alternative Monetary Policy Rules and Environments

In the present section we study the optimal adjustment of the inflation 
target in response to a change in the steady-state real interest rate under 
five alternative assumptions regarding monetary policy: setting the inflation 

Source: Authors’ calculations.
Note: The solid line indicates curve !θ(W (π, θ)); the dotted line indicates curve !θ(W (π, θ)) with 

lower rË. In each case, ρi, aπ, and ay are frozen at their posterior mean values.
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Figure 12. Expected Bayesian Welfare
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target in terms of average realized inflation; an effective lower bound on 
the policy rate that can be below zero; alternative degrees of smoothing 
in the policy rule; a central bank with no lower for longer strategy; and a 
price level targeting rule. For simplicity, throughout this section we ignore 
the role of uncertainty and treat the model parameters as known.

V.A. Average vs. Target Inflation

As emphasized in recent works (Hills, Nakata, and Schmidt 2016; 
Kiley and Roberts 2017), when the probability of hitting the ZLB is 
nonnegligible, realized inflation is on average significantly lower than the 
inflation rate that the central bank targets in the interest rate rule (and which 
would correspond to steady-state inflation in the absence of shocks or in a 
linear model). This results from the fact that anytime the ZLB is binding  
(a recurrent event), the central bank effectively loses its ability to stabi-
lize inflation around the target. Knowing this, it may be relevant to assess 
the central bank’s outcomes and set the corresponding target in terms of the 
effective average realized inflation. In this section, we investigate whether 
measuring the inflation target in this alternative way matters.

To this end, the analysis of the (r*, π*) relation in section II.B is 
com plemented here with the analysis of the relation between r* and the 
average realized inflation rate !{πt} obtained when simulating the model 
for various values of r*  and the associated optimal inflation target π∗.  
In the interest of brevity, the calculations are presented only in the case 
when the source of variation in the natural interest rate is the change in 
average productivity growth µz.

Figure 13 illustrates the difference between the (r* , π∗) curve (round 
dots) and the (r* , !{πt}) curve (square dots). The overall shape of the 
curve is unchanged. Unsurprisingly, both curves are identical when r* is 
high enough. In this case, the ZLB is (almost) not binding and average 
realized inflation does not differ much from π*. A spread between the 
two emerges for very low values of r*. There, for low values of the natural 
rate, the ZLB incidence is higher and, as a result, average realized infla-
tion becomes indeed lower than the optimal inflation target. However, that 
spread remains limited, less than 10 basis points. The reason is that the 
implied optimal inflation target is sufficiently high to prevent the ZLB from 
binding too frequently, thus limiting the extent to which average realized 
inflation and π* can differ.

Unreported simulation results show that the gap between π* and aver-
age realized inflation becomes more substantial when the inflation target is 
below its optimal value. For instance, mean inflation is roughly zero when 



ANDRADE, GALÍ, LE BIHAN, and MATHERON 215

the central bank adopts a 1 percent inflation target in an economy where the 
optimal inflation target is π* = 2 percent.

V.B. A Negative Effective Lower Bound

The recent experience of many advanced economies (including the euro 
area) points to an effective lower bound (ELB) for the nominal interest rate 
below zero. For instance, the ECB’s deposit facility rate, which gears 
the overnight money market rate because of excess liquidity, was set at  
a negative value of −10 basis points in June 2014 and has been further 
lowered down to −40 basis points in March 2016.33

Source: Authors’ calculations.
Note: The round dots correspond to the optimal inflation target πË associated to a given value of rË. The 

square dots correspond to the average realized inflation associated to a given value of rË.

πË

Average realized inflation

1 2 3 4 5 6 7 8 9 10 11
Annualized steady-state real interest rate

–1

0

1

2

3

–0.5

0.5

1.5

2.5

3.5

πË, π– (annualized)

Figure 13. Average Realized Inflation and Optimal Inflation

33. In September 2019, the rate on the deposit facility was lowered to −0.5 percent.
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We use the estimated model to evaluate the implications of a negative 
ELB in the United States. More precisely, we set the lower bound on the 
nominal rate it so that

i et ≥ ,

and we set e to −40 basis points (in annual terms) instead of zero. Results 
are presented in figure 14. As expected, the (r*, π*) locus is shifted 
downward, though by somewhat less than 40 basis points. Importantly, 
its slope remains identical to the baseline case: around the baseline value 

Source: Authors’ calculations.
Note: The round dots correspond to the optimal inflation target πË associated with a given value of rË 

in the baseline scenario. The square dots correspond to the average realized inflation associated with a 
given value of rË under an ELB set at minus 50 basis points.
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Figure 14. Optimal Inflation Rate as a Function of the Steady-State Real Interest Rate 
with a Negative ELB
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for the real interest rate, a 100 basis point downward shift in the distribu-
tion of r* calls for around a 90 basis point increase in π*.

V.C. Alternative Degrees of Interest Rate Smoothing

Our analysis is conditional on a specific reaction function of the central 
bank, described in our setup by the set of parameters aπ, ay, and ρi. Among 
these parameters, the smoothing parameter, ρi, has a key influence on the 
probability of being in a ZLB regime. A higher smoothing has two effects 
in our model. The first effect—through standard monetary policy rule 
inertia—is to reduce the speed at which interest rates are raised when the 
economy exits the lower bound regime since the current rate inherits the past 
values of the effective nominal rate. The second effect comes from the fact 
that the smoothing applies to the notional rate it

n that would prevail absent 
the lower bound constraint (see equation 5) while the effective nominal 
interest rate is the maximum of zero and the notional rate (see equation 4).  
Thus the interest rate inherits the past negative values of the notional 
nominal rate. So, a higher smoothing results in maintaining the effective 
interest rate at zero for an extended period of time beyond that implied by 
the macroeconomic shocks that initially brought the economy to the zero 
lower bound constraint. Such a monetary policy strategy introduces history 
dependence whereby, in the instance of a ZLB episode, the central bank 
is committed to keep rates lower for longer. As this reaction function is 
known to the agents in the model, this commitment to future accommoda-
tion, through generating higher expected inflation and output, helps with 
exiting the trap (or even avoiding entering it).

Through both effects, a higher degree of smoothing thus reinforces the 
history dependence of monetary policy and tends to shorten the length of 
ZLB episodes and the probability of hitting the ZLB constraint. Everything 
else equal, one should therefore expect a lower optimal inflation rate for 
higher values of the smoothing parameters. This property of the model 
is illustrated in figure 15 which depicts the (r*, π*) relation under three 
possible values of the smoothing parameter ρi. The value used under our 
baseline scenario, that is, posterior mean estimates, is 0.85. We also consider 
two alternative settings: a higher value of ρi = 0.95, which is close to the 
inertia of the central bank reaction function in Coibion, Gorodnichenko, 
and Wieland (2012), and a lower value of ρi = 0.8. These two values 
arguably encompass the existing empirical uncertainty on the degree of 
smoothing, as they stand outside the 90 percent probability interval of our 
posterior parameter estimates.



218 Brookings Papers on Economic Activity, Fall 2019

The effect of a higher interest rate smoothing is to shift the (r*, π*) 
curve downward except for high values of r* for which the probability of 
hitting the ZLB is close to zero and the optimal inflation target is slightly 
negative. Under this strategy, the pre-crisis optimal inflation rate would be 
close to 0.5 percent in the United States.34 Conversely, a lower interest rate 

πË (annualized)

1 2 3 4 5 6 7 8 9 10 11
Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario wherein all the structural parameters are set 

at their posterior mean θ–. The square dots correspond to the counterfactual simulation with ρi set to 0.8. 
The triangle dots correspond to the counterfactual simulation with ρi set to 0.95.

–2

0

2

4

–1

1

3

5
πË baseline
πË lower ρi
πË higher ρi

Figure 15. Optimal Inflation Rate as a Function of the Steady-State Real Interest Rate 
with Alternative ρi

34. This is not inconsistent with the result in Coibion, Gorodnichenko, and Wieland 
(2012), who report an optimal inflation target of 1.5 percent under their baseline calibration 
on U.S. post-WWII data. Indeed, the variance of their underlying shocks is higher than in 
our baseline, which is based on Great Moderation estimates. As discussed above, a higher 
variance of shocks induces more frequent ZLB episodes; hence, it calls for a higher optimal 
inflation target.
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smoothing shifts the (r*, π*) curve upward, even for relatively high values 
of r*, because the probability of being in a ZLB regime increases under 
this strategy. With a lower ρi, the pre-crisis optimal inflation rate would be 
close to 3.5 percent.

As for the slope of the (r*, π*) curve, in the empirically relevant 
region (that is, for values close to the baseline estimates), it is much less 
affected than the level of this locus. It is, however, more affected in this 
exercise than in other robustness experiments considered above. A very 
large smoothing parameter, due to its effect outlined above on the prob-
ability of ZLB, somewhat alleviates the extent to which an increase in the 
inflation target is needed. The slope is indeed close to –0.7 in that case. 
For a strategy associated with a low smoothing parameter, the slope is 
close to –1, so closer to the benchmark case. For large values of r*, the 
degree of smoothing is irrelevant.

V.D. More Traditional Specifications of the Policy Rule

We also considered the case of a monetary policy rule featuring no 
shadow rate (that is, no lower for longer feature), as well as of a simple 
non intertial Taylor rule. Results are reported in figures 16 and 17. In the 
first case, the lagged interest rate is the lagged actual rate. As soon as 
the liftoff occurs after a ZLB episode, the interest rate follows a stan-
dard path, so monetary policy does not retain the memory of having  
been constrained for some periods by the ZLB (unlike under our base-
line specification). In the second case, there is no inertia at all, but  
we use a four-quarter inflation rate as in the standard Taylor (1993) rule 
and its implementation in Kiley and Roberts (2017). In both cases, the 
overall degree of monetary policy inertia decreases, and so the stabiliza-
tion property of the policy rule is weaker in our forward-looking model, 
materializing in more frequent ZLB episodes. As a result, the optimal 
inflation rate is in both cases larger than in the baseline for realistic 
values of the real interest rate. Also the optimal inflation rate is positive 
for a wider range of values of r*. However, in both variants the slope 
of the (r*, π*) is similar to that of our baseline curve around the sample 
value of r*.

V.E. A Price Level Targeting Rule

We finally consider that the rule effectively implemented by the  
central bank reacts to deviations of the (log) price level p̂t = p̂t–1 + π̂t to  
a targeted path, instead of the gap π̂t between the inflation rate and its  
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target. Formally, we assume that the central bank sets the policy rate accord-
ing to the following rule:

a p a xt
plt

i t
plt

i p t y t R t( )( )= ρ + − ρ + + ζ− 1 ˆ ˆ1 ,î î

with ît = max{î t
plt, –(µz + ρ + π)}.

We perform the same exercises as before, focusing on the case in which 
average productivity growth µz is the driver of changes in the natural rate. 
We consider two values for ap: .1 and .5. All the other parameters of the 
model are set to their posterior mean.

Figure 18 reports the (r*, π*) relation obtained under these two alter-
native scenarios. A striking feature of that new curve is that the optimal 

πË (annualized)
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Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario. The square dots correspond to the counter-

factual simulation with simple standard Taylor rule used. Parameters of the rules on inflation and output 
gap are the same as in the baseline, but there is no inertia and year-on-year inflation is used.
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Figure 16. Optimal Inflation Rate as a Function of the Steady-State Real Interest Rate 
with Simple Standard Taylor Rule
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inflation target lies then between 0 percent and 1 percent as opposed to 
2.21 percent in the baseline. Price level targeting makes the commitment to 
make up for past inflation undershooting (or overshooting) even stronger 
than what can be obtained when increasing the smoothing parameters in a 
rule which targets inflation instead. This commitment stabilizes inflation 
expectations so that both the probability of hitting the zero lower bound 
and the average length of such episodes are reduced. As a consequence, 
there is no incentive to bear the costs of a positive steady-state inflation 
and the optimal inflation target is close to zero. This holds whether the 
central bank reacts aggressively or not to the price level deviating from its 
targeted path.

Another striking result is that the (r*, π*) relation is much flatter  
in the vicinity of the pre-crisis level for r* than under alternative inflation 

πË (annualized)
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Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: The round dots correspond to the baseline scenario. The square dots correspond to the counter-

factual noninertial policy rule used.
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Figure 17. Optimal Inflation Rate as a Function of the Steady-State Real Interest Rate 
with “No Shadow Rate” Rule
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targeting monetary policy strategies. The slope is close to −0.3 instead 
of the [−1, −0.7] range obtained previously. A price level targeting strategy 
thus allows the costs of the ZLB to be kept small even if the natural rate of 
interest dropped by, say, 1 percent compared to the pre-crisis regime.

VI. Summary and Conclusions

In this paper, we have assessed how changes in the steady-state natural 
interest rate (r*) translate into changes in the optimal inflation target in a 
model subject to the ZLB. Our main finding is that, starting from pre-crisis 
values, a 1 percentage point decline in r* should be accommodated by an 
increase in the optimal inflation target between 0.9 and 1 percentage point. 

πË (annualized)

1 2 3 4 5 6 7 8 9 10 11
Annualized steady-state real interest rate

Source: Authors’ calculations.
Note: Simulations obtained under the price level targeting policy rule given in equation 7. The round 

(square) dots correspond to the scenario wherein αp = .1 (.5). All the other structural parameters are set 
at their posterior mean θ–.
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Figure 18. Optimal Inflation Rate as a Function of the Steady-State Real Interest Rate 
with Price Level Targeting Strategy
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For convenience, table 2 recapitulates our results. Overall, across the 
different concepts of optimal inflation considered in this paper, the level 
of optimal inflation does vary. However, it is a very robust finding that the 
slope of the (r*, π*) relation is close to −1 in the vicinity of the pre-crisis 
value of steady-state real interest rates.

In our analysis, we have considered adjusting the inflation target as 
the only option at the policymaker’s disposal, while preserving all other 
elements of the monetary policy strategy. In reality policymakers have 
a larger set of options. As a matter of fact, recent discussions revolving 
around monetary policy in the new normal have suggested that the various 
nonconventional measures—forward guidance on interest rates and large-
scale asset purchases—used in the aftermath of the Great Recession could 
feature permanently in the policy toolbox. In particular, unconventional 
monetary policies could represent useful second-best instruments when the 
ZLB is reached, as advocated by Reifschneider (2016), Swanson (2018), 
and Sims and Wu (2019).35 By implying a low for long interest rate at  
the end of a liquidity trap, the monetary policy rule that we consider in 
our exercise accounts, at least partially, for the effect of nonconventional 
policies that were implemented at the ZLB. But more aggressive non-
conventional packages could be considered as alternative strategies. Beyond 
these monetary policy measures, fiscal policies could also play a significant 

Table 2. Effect of a Decline in r* under Alternative Notions of Optimal Inflation

Baseline Lower r* ∆

Mean of π* 2.00 3.00 1.00
Median of π* 1.96 2.90 .94
π* at posterior mean 2.21 3.20 .99
π* at posterior median 2.12 3.11 .99
π** 2.40 3.30 .90
π**, frozen MP 2.24 3.16 .92
Average realized inflation at posterior mean 2.20 3.19 .99
π* at posterior mean, ELB −40 bp 1.90 2.83 .93
Average realized inflation at posterior mean,  

ELB −40 bp 
1.86 2.77 .91

π* at posterior mean, higher ρi 0.44 1.13 .69
π* at posterior mean, price level targeting 0.06 0.32 .26

Source: Authors’ calculations.
Note: All figures are in annualized percentage rate.

35. See also Eberly, Stock, and Wright (2019) and Chung and others (2019) for recent 
work documenting the effectiveness of such instruments.
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role, as emphasized by Correia and others (2013). As a result, the ZLB 
might be less stringent a constraint in a practical policy context than in 
our analysis, as argued in Debortoli, Galí, and Gambetti (forthcoming). 
However, the efficacy and the costs of these policies should also be part 
of the analysis. The complete comparison of these policy trade-offs goes 
beyond the scope of the present paper.

An alternative would consist of a change of the monetary policy strat-
egy, for example, adopting variants of the price level targeting strategy, as 
recently advocated by Williams (2016) and Bernanke, Kiley, and Roberts  
(2019). Our exercise emphasizes that, when the central bank follows a 
strategy of making up for past inflation deviations from target, the case for 
increasing the inflation target is much reduced. Nevertheless, these results 
are obtained under the assumption that private agents believe and under-
stand the commitment of the central bank to deviate from its inflation target 
in order to compensate for previous deviations. This is a debatable assump-
tion. Andrade and others (2019) show that the lower for longer guidance 
on future interest rates that the Federal Open Market Committee gave  
during the recent ZLB episode was interpreted differently by private agents, 
including professional forecasters: some viewed it as good news of a com-
mitment to future accommodation, and some viewed it as bad news that 
the lowflation will last longer. As they emphasize, lower for longer policies 
are much less effective in practice than implied by theoretical models with 
perfect credibility, full information, and rational expectations. They can even 
be detrimental if the bad signals prevail.

We have discussed the potential desirability of a higher inflation target, 
abstracting from the challenges of implementing an eventual transition to 
the new objective. In the current lowflation environment, increasing the 
inflation target in reaction to a drop in the steady-state value of the real 
interest rate might raise some credibility issues. However, a move toward 
makeup strategies would as well raise substantial credibility issues, as 
these imply an arguably time-inconsistent commitment to deviate from the 
inflation target once it has been reached.

Finally, our analysis has also abstracted from forces identified in the 
literature as warranting a small, positive inflation target, irrespective of ZLB 
issues, as emphasized in, for example, Bernanke and others (1999) and 
Kiley, Mauskopf, and Wilcox (2007). The first argument is grounded on 
measurement issues, following the finding from the 1996 Boskin report 
that the consumer price index did probably overestimate inflation in the 
United States by more than 1 percentage point in the early 1990s. The 
second argument is rooted in downward nominal rigidities. In an economy 
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where there are such downward rigidities (for example, in nominal wages) 
a positive inflation rate can help “grease the wheel” of the labor market by 
facilitating relative price adjustments. Symmetrically, we also abstracted 
from forces calling for lower inflation targets. The most obvious is the  
so-called Friedman (1969) rule, according to which average inflation should 
be equal to minus the steady-state real interest rate, hence be negative, in 
order to minimize loss of resources or utility and the distortionary wedge 
between cash and credit goods (for example, consumption and leisure) 
induced by a nonzero nominal interest rate. Presumably, these and several 
other factors were taken into account when an inflation target of 2 percent 
was chosen. But an estimate of r* was, undoubtedly, one of the key factors 
in that choice. Accordingly, the current reassessment of r* by the Federal 
Reserve and other central banks would seem to call for a simultaneous 
reassessment of the optimal inflation target.
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